Attribute-Based Signatures for Circuits with Optimal Parameter Size from Standard Assumptions

Ryuya Hayashi1,2, Yusuke Sakai2, and Shota Yamada2

1 The University of Tokyo, Tokyo, Japan
\texttt{rhys@iis.u-tokyo.ac.jp}
2 AIST, Tokyo, Japan
\texttt{\{yusuke.sakai, yamada-shota\}@aist.go.jp}

Abstract. Attribute-based signatures (ABS) allow users to simultaneously sign messages and prove their possession of some attributes while hiding the attributes and revealing only the fact that they satisfy a public policy. In this paper, we propose a generic construction of ABS for circuits of unbounded depth and size with optimal parameter size, meaning that the lengths of public parameters, keys, and signatures are all constant. Our generic construction can be instantiated from various standard assumptions including LWE or DLIN. Only previous ABS construction with optimal parameter size necessitates succinct non-interactive argument of knowledge, which can be only constructed from non-standard assumptions. Our generic construction is based on RAM delegations, which intuitively allows us to compress the evaluation of a circuit when inputs are public. In high level, we find a way to compress the computation of the policy circuit on input a user attribute to achieve overall parameter size, while hiding the user policy at the same time.

1 Introduction

1.1 Backgrounds

Attribute-based signatures (ABS), firstly proposed by Maji, Prabhakaran, and Rosulek [35], allow users to simultaneously sign messages and prove their possession of some attributes while hiding the attributes and revealing only the fact that they satisfy a public policy. In the typical scenario of using ABS, we consider two entities: a key issuing authority and signers. The authority first generates a master secret key together with some public parameter and issues a user secret key associated with the user’s attribute. The authority first generates a master secret key together with some public parameter and issues a user secret key associated with the user’s attribute. After receiving the user secret key, each signer can generate a signature on a message with a policy. Such a signature is publicly verifiable, and anyone can verify that a signer who generates the signature has some attributes that satisfy the policy if the verification passes. The important feature is that the signature hides the attributes used to satisfy the policy and any information identifying the signer. ABS draws increasing attention for its applications such as anonymous credentials [44], non-transferable access controls [33], electronic medical records [25], etc.
Table 1: Comparison of efficiency among expressive ABS schemes.

<table>
<thead>
<tr>
<th>Policy</th>
<th>Param.</th>
<th>Sig.</th>
<th>Key</th>
<th>Assumption</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGI14 [4]</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>zk-SNARKs</td>
</tr>
<tr>
<td>SAH16 [42]</td>
<td>$O(</td>
<td>x</td>
<td>)$</td>
<td>$O(</td>
</tr>
<tr>
<td>EK18 [18]</td>
<td>$O(</td>
<td>x</td>
<td>)$</td>
<td>$O(</td>
</tr>
<tr>
<td>SKAH18 [43]</td>
<td>TM†</td>
<td>$O(1)$</td>
<td>$O(T^2)$</td>
<td>$O(</td>
</tr>
<tr>
<td>DDK23 [12]</td>
<td>TM</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>iO</td>
</tr>
<tr>
<td>LNP+24 [34]</td>
<td>Unbounded circuits</td>
<td>$O(</td>
<td>x</td>
<td>)$</td>
</tr>
<tr>
<td>Ours</td>
<td>Unbounded circuits</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
<td>$O(1)$</td>
</tr>
</tbody>
</table>

* Unbounded circuits: Circuits of unbounded depth and size
† TM: Unbounded polynomial-time deterministic Turing machines of unbounded input length and description size
$|x|$: Length of attributes
$|C|$: Length of policy circuits
T: Computational time of Turing machines
$|Γ|$: Length of policy descriptions

Expressiveness and Efficiency. After Maji et al. [35] introduced the notion of ABS and proposed ABS schemes for monotone span programs, earlier works [1, 8, 26, 33, 38, 39, 44–46] proposed ABS for limited class of policies. The work by Sakai, Attrapadung, and Hanaoka [42], who proposed an ABS for circuits with unbounded depth and size, significantly broadened the class of policies. After this work, several works proposed ABS schemes for quite expressive classes of policies including unbounded circuits [18, 34] and Turing machines [12, 43]. We summarized these schemes in Section 1.1. As shown in the table, no existing ABS scheme that can deal with circuits or more expressive class realizes optimal parameters, i.e., constant size of the public parameters, signatures, and secret keys at the same time. Only exception is the construction proposed by [4], but it requires succinct non-interactive arguments of knowledge (SNARKs) as a building block, whose instantiation is not known from standard assumptions. Given the state of affairs, we pose the following natural question:

Can we construct an ABS for circuits with optimal parameter size from standard assumptions?

1.2 Our Contribution

The main contribution of this paper is to propose a construction of an ABS for circuits with unbounded depths and sizes that has optimal parameter size, answering the above question in the affirmative. As shown in Section 1.1, no existing scheme but BGI14 [4] does not achieve the constant lengths. Moreover, our construction can be constructed from any of the following assumptions: LWE, DLIN over pairing groups, or simultaneously assuming QR and DDH over
groups without pairings. Namely, we are the first to propose such an optimal ABS from standard assumptions.

1.3 Technical Overview

We provide a generic construction of ABS with constant parameters. Our generic construction is from a public-key encryption scheme, a signature scheme, a RAM SNARG corresponding to the specific hash family, and a non-interactive zero-knowledge (NIZK) proof system.

For brevity, we consider a simpler variant of an ABS, called a constrained signature (CS) [3, 46], in which a prover only generates a proof to show that it has attributes x to satisfy some policy C, i.e., we do not consider the part of signing a message m in the following.

Naive Construction. The difficulty of constructing a succinct CS for unbounded circuits is how to realize constant lengths of user secret keys and signatures without revealing other information than the fact that each has attributes x to satisfy some policy C, i.e., $C(x) = 1$. If we do not consider the requirement of the succinctness, a naive construction is informally as follows:

- The key issuing authority, given some attribute x, generates a signature σ_x of its attribute and sends the signature to each user as its user secret key.
- Each user generates a NIZK proof Π to show that (i) it has a pair (x, σ_x) such that σ_x is a valid signature of x and (ii) $C(x) = 1$ holds. Then, it publishes Π as its signature.
- Verifiers check if the received proof Π is valid with the given C.

Of course, the proof length in the above naive construction depends both on the attribute and the policy size, which we should avoid.

Our Approach using RAM Delegations. Our first attempt is to make the verification of $C(x) = 1$ succinct by using publicly verifiable RAM delegations [6, 11, 28–30]. A RAM delegation is a succinct non-interactive argument (SNARG) for RAM computations where a prover, given a common reference string crs, a RAM machine R, and an input x, can produce a short proof that the RAM machine R takes x as input and outputs y. The important feature of publicly verifiable RAM delegations is that any one can check the validity of the proof with *the short digest of the input to the RAM machine*. In addition, the proof length and the verifier runtime is independent of the input length and polylogarithmic in the runtime of the RAM machine R. Therefore, by using a RAM delegation for a RAM machine R that takes (x, C) as inputs and computes $C(x) = b \in \{0, 1\}$, each user can generate a succinct proof to show that $C(x) = 1$, and the proof can be verified with the short digest of (x, C). We next show a simple construction of ABS using RAM delegations.
Simple Construction by applying RAM Delegations. In a simple construction of a CS using RAM delegations, similar to the naive construction, each user generates a NIZK proof to show that the verification of the RAM delegation passes by including the digest of the input in the witness. More concretely, the simple construction is as follows (we use the underline for the different part from the naive construction for clarity):

- The key issuing authority, given some attribute x, generates a signature σ_x of its attribute and sends the signature to each user as its user secret key.
- Each user proceeds as follows:

 1. Computes a digest d of the input (x, C) and a proof π of the RAM delegation to show that $C(x) = 1$;
 2. Generate a NIZK proof P to show that (i) it has a pair (x, σ_x) such that σ_x is a valid signature of x, (ii) the verification of the RAM delegation passes with the digest d and the proof π, and (iii) the digest d is correctly computed by taking (x, C) as input.

Then, it publishes P as its signature.
- Verifiers check if the received proof P is valid with the given C.

However, the signature size in the above construction still depends on the lengths both of attributes and policies, so we need a little more work.

New Primitive: Circuit Delegations. The reason why the signature size depends on the lengths both of attributes and policies is due to the fact that we need to prove (i) and (iii) using NIZK in the above simple construction. To achieve the succinctness, our key idea is to make the digest value of (x, C) computable from the digest of x and one of C separately. If the digest value can be separately computed as this, the NIZK proof size will be succinct by having the key issuing authority sign the digest of x since verifiers know C and can compute the digest of C by themselves. Fortunately, we can use arbitrary hash family for computing the digest in RAM delegations as long as the hash family can locally open a bit of each position. Kalai et al. [28] introduced the formal definition of such RAM delegations and called them flexible RAM SNARGs.

For easily understanding of this technique, we introduce a new notion, a Circuit SNARG, that allows us to verify $C(x) = b \in \{0, 1\}$ with the digest values of the input (x, C) and a succinct proof π. More precisely, in Circuit SNARGs, a prover can generate a succinct proof π to show that $C(x) = b$, and verifiers, given the digest value of x, the digest value of C, the output bit b, and the proof π, can check the validity of the given proof. This primitive can be easily constructed from a flexible RAM SNARG for the RAM machine R that takes x and C as input and outputs $C(x)$. The flexible RAM SNARG corresponds to a specific hash family, in which the digest value of (x, C) consists of the digest of x and one of C. Such a hash family can be also easily constructed from any hash family in a generic way. See Section 3 in detail.
The Overview of Our Construction. Using the above Circuit SNARGs, we can construct a succinct CS as follows (we use the underline for the different part from the simple construction for clarity):

- The key issuing authority, given some attribute \(x \), computes the digest \(d_x \) of \(x \), generates a signature \(\sigma_{d_x} \) of the digest, and sends the digest \(d_x \) and the signature \(\sigma_{d_x} \) to each user as its user secret key.

- Each user proceeds as follows:
 1. Computes a digest \(d_x \) of the part \(x \) of the input and a proof \(\pi \) of the Circuit SNARG to show that \(C(x) = 1 \);
 2. Generate a NIZK proof \(\Pi \) to show that (i) it has a pair \((d_x, \sigma_{d_x}) \) such that \(\sigma_{d_x} \) is a valid signature of \(d_x \) and (ii) the verification of the Circuit SNARG passes with the digests \(d_x \) and \(d_C \), and the proof \(\pi \), where \(d_C \) is the digest of \(C \).

Then, it publishes \(\Pi \) as its signature.

In the above construction, it is easy to see that all lengths of public parameters, user secret keys, and signatures are polylogarithmic in the lengths both of attributes and circuits. To make the above construction of CS apply to ABS, we will use a simulation-sound NIZK and add a ciphertext of a NIZK witness to a signature in ABS. The formal description and security analysis of our scheme will be provided in Section 4. As a result, we obtain the following informal theorem.

Theorem 1.1. (Informal.) If the public-key encryption scheme, signature scheme, circuit SNARG, and NIZK are secure, then the above construction of ABS with constant parameters is secure.

In particular, each building block of our construction is known to be constructed from assumptions either pairings or lattices. See Section 1.4 in detail. Thus, we obtain the following corollary.

Corollary 1.1. (Informal.) There is an ABS for unbounded circuits with constant parameters based either on the DLIN (on pairings) or LWE (on lattices) assumption.

1.4 Related Works

A Line of Work in ABS. Maji et al. [35] first proposed an ABS for monotone span programs, in which each signature size depends on the policy size. Following their work, several works have studied ABS for various classes of computations including conjunction predicates [33, 44], non-monotone span programs [1,39,45], threshold policies [8,26], bounded circuits [46], and deterministic finite automata [38]. The work by Sakai et al. [42], who proposed an ABS for unbounded circuits, significantly broadened the class of policies. After this, several works realized ABS schemes for quite expressive classes of policies as follows. El Kaafarani and Katsumata [18], and Ling et al. [34] proposed an ABS for
unbounded circuits, but its signatures size depends on the size of the circuits. Sakai et al. [43] proposed an ABS for Turing machines, but its signatures size is quadratic to the running time of the Turing machines. Datta et al. [12] also proposed an ABS for Turing machines with better parameters, but its length of keys still depends on the length of attributes.

ABS with Additional Functionalities and Security Requirements. In this paper, we focus on the standard ABS, but there are also some variants of ABS. For example, Escala et al. [19, 34] proposed a revocable ABS that allows an external judge to break the anonymity of signatures. Okamoto and Takashima [40] proposed a decentralized ABS, in which there are multiple authorities to issue user secret keys and is no central authority. Zhang et al. [48] recently proposed a registered ABS that allows any user to generate their own key pairs and register them to the system. In addition to these, some works have considered traceability [14], hierarchical variants [16, 17, 20, 23], and the universal composability [2].

SNARGs and RAM Delegations. Existing works [5, 7, 9–11, 13, 22, 24, 28, 30–32, 37, 47] studied succinct non-interactive arguments (SNARGs) for efficiently verifying computations. Choudhuri, Jain, and Jin [11] and Kalai, Vaikuntanathan, and Zhang [32] proposed a generic compiler from SNARGs for Batch-NP computations (BARGs) with somewhere extractable succinct commitment schemes with local opening (SECOM) to RAM delegations for deterministic polynomial-time computations. Then, Kalai, Lombardi, Vaikuntanathan, and Wichs [28] bootstrapped the efficiency of RAM delegations with succinctness poly(λ, log T) constructed from any BARG and SECOM, where T is the computational time of the RAM machine. This result implies that succinct RAM delegations can be constructed from various computational assumptions since SECOM can be constructed from any of the following assumptions: LWE, QR, DDH, or DLIN [15], and BARGs can be constructed from any of the following assumptions: LWE [11], QR and DDH [27], or DLIN [47].

2 Preliminaries

In this section, we review basic notations and formal definitions of primitives.

Notation. In this paper, we use the following notations. \(x \leftarrow X \) denotes sampling an element \(x \) from a finite set \(X \) uniformly at random. \(y \leftarrow \mathcal{A}(x; r) \) denotes that a probabilistic algorithm \(\mathcal{A} \) outputs \(y \) for an input \(x \) using a randomness \(r \), and we simply denote \(y \leftarrow \mathcal{A}(x) \) when we need not write an internal randomness explicitly. For strings \(x \) and \(y \), \(x || y \) denotes the concatenation of \(x \) and \(y \). Also, \(x := y \) denotes that \(x \) is defined by \(y \), and \(|x| \) denotes the length of \(x \). \(\lambda \) denotes a security parameter. A function \(f(\lambda) \) is a negligible function in \(\lambda \) if \(f(\lambda) \) tends to 0 faster than \(\frac{1}{\lambda^c} \) for every constant \(c > 0 \). \(\text{negl}(\lambda) \) denotes an unspecified negligible function. PPT stands for probabilistic polynomial time. \(\emptyset \) denotes the empty set. If \(n \) is a natural number, \([n]\) denotes the set of integers \(\{1, \ldots, n\} \). If
x is a n bits string, x_i denotes the i-th bit of the string x for any $i \in [n]$. If O is a function or an algorithm and A is an algorithm, A^O denote that A has oracle access to O.

2.1 Public-Key Encryption

We recall a definition of a public-key encryption (PKE) scheme.

Definition 2.1 (Public-Key Encryption). A PKE scheme PKE with a plaintext space M consists of the following three PPT algorithms.

$PKE.KG(1^\lambda) \rightarrow (ek, dk)$: The key generation algorithm, given a security parameter 1^λ, outputs an encryption key ek and a decryption key dk.

$PKE.Enc(ek, m) \rightarrow c$: The encryption algorithm, given an encryption key ek and a plaintext m, outputs a ciphertext c.

$PKE.Dec(dk, c) \rightarrow m$: The (deterministic) decryption algorithm, given a decryption key dk, and a ciphertext c, outputs a plaintext $m \in \{\perp\} \cup M$.

Furthermore, we require a PKE scheme to satisfy the following standard properties.

Correctness. For all $\lambda \in \mathbb{N}$ and $m \in M$, we have

$$\Pr[(ek, dk) \leftarrow PKE.KG(1^\lambda) : PKE.Dec(dk, PKE.Enc(ek, m)) = m] = 1.$$

IND-CPA Security. For any PPT adversary A, the following advantage is negligible:

$$\text{Adv}^{\text{ind-cpa}}_{\text{PKE}, A}(\lambda) := \Pr \left[\begin{array}{c} b \leftarrow \{0, 1\}, \\ (ek, dk) \leftarrow PKE.KG(1^n), \\ (m_0^*, m_1^*, st) \leftarrow A(ek), \\ b = b' \\ c^* \leftarrow PKE.Enc(ek, m_0^*), \\ b' \leftarrow A(c^*, st) \end{array} \right] - \frac{1}{2},$$

where A is required to output m_0^* and m_1^* satisfying $|m_0^*| = |m_1^*|$.

2.2 Signature Scheme

Here we recall the definition of a signature scheme.

Definition 2.2 (Signature). A signature scheme SIG with a message space M consists of the following three PPT algorithms.

$SIG.KG(1^\lambda) \rightarrow (vk, sk)$: The key generation algorithm, given a security parameter 1^λ, outputs a verification key vk and a signing key sk.

$SIG.Sign(sk, m) \rightarrow \sigma$: The signing algorithm, given a signing key sk and a message m, outputs a signature σ.
SIG.Ver(vk, m, σ) → 1/0: The (deterministic) verification algorithm, given a verification key vk, a message m, and a signature σ, outputs either 1 (accept) or 0 (reject).

Furthermore, we require a signature scheme to satisfy the following properties.

Correctness. For all λ ∈ \(\mathbb{N} \) and m ∈ \(\mathbb{M} \), we have

\[
\Pr[(vk, sk) \leftarrow SIG.KG(1^\lambda) : SIG.Ver(vk, m, SIG.Sign(sk, m)) = 1] = 1.
\]

EUF-CMA Security. For any PPT adversary \(A \), the advantage defined as follows is negligible:

\[
\text{Adv}_{\text{SIG,A}}^{\text{euf-cma}}(\lambda) := \Pr \left[L_{\text{sig}} := \emptyset, (vk, sk) \leftarrow SIG.KG(1^\lambda), (m^*, \sigma^*) \leftarrow A_{\text{sign}}(vk) : \text{SIG.Ver}(vk, m^*, \sigma^*) = 1 \wedge m^* \notin L_{\text{sig}} \right],
\]

where the signing oracle \(O_{\text{sign}} \) is defined as follows:

Signing Oracle. When \(A \) accesses the signing oracle \(O_{\text{sign}} \) by making a query \(m \), it computes \(\sigma \leftarrow SIG.Sign(sk, m) \), returns \(\sigma \) to \(A \), and appends \(m \) to \(L_{\text{sig}} \).

2.3 Non-Interactive Zero-Knowledge Proof

We define a non-interactive zero-knowledge proof (or simply NIZK). We require NIZK to satisfy the *simulation soundness*, which is known to be constructed from standard NIZK [21].

Definition 2.3 (NIZK Proof System). A non-interactive zero-knowledge (NIZK) proof system \(\text{NIZK} \) for a NP relation \(\rho \subseteq X \times W \) consists of the following three PPT algorithms.

\(\text{NIZK.Setup}(1^\lambda) \rightarrow \text{crs} : \) The setup algorithm, given a security parameter \(1^\lambda \), outputs a common reference string \(\text{crs} \).

\(\text{NIZK.Prove}(\text{crs}, X, W) \rightarrow \pi : \) The prove algorithm, given a common reference string \(\text{crs} \) and a pair of statement and witness \((X, W) \in \rho \), outputs a proof \(\pi \).

\(\text{NIZK.Ver}(\text{crs}, X, \pi) \rightarrow 1/0 : \) The verify algorithm, given a common reference \(\text{crs} \), a statement \(X \), and a proof \(\pi \), outputs either 1 (accept) or 0 (reject).

Furthermore, we require a NIZK proof system to satisfy the following properties.

Correctness. For all λ ∈ \(\mathbb{N} \), \((X, W) \in \rho \), we have

\[
\Pr \left[\text{crs} \leftarrow \text{NIZK.Setup}(1^\lambda), \pi \leftarrow \text{NIZK.Prove}(\text{crs}, X, W) : \text{NIZK.Ver(} \text{crs}, X, \pi) = 1 \right] = 1.
\]
Zero-Knowledge. Let Sim = (Sim₀, Sim₁) be a zero-knowledge simulator for NIZK. For any PPT adversary \(A \), the advantage defined as follows is negligible:

\[
\text{Adv}_{\text{NIZK}, A}(\lambda) := \left| \Pr[\text{crs} \leftarrow \text{NIZK.Setup}(1^{\lambda}) : A^{\text{crs}}(\text{crs}) = 1] - \Pr[\text{crs}, \text{td} \leftarrow \text{Sim}_0(1^{\lambda}) : A^{\text{crs}, \text{td}}(\text{crs}) = 1] \right|
\]

where \(P \) and \(S \) are oracles that on input \((X, W)\) return \(1 \) if \((X, W) \notin \rho \) and otherwise return \(\text{NIZK.Prove}(\text{crs}, X, W) \) and \(\text{Sim}_1(\text{crs}, \text{td}, X) \), respectively.

Simulation Soundness. Let Sim = (Sim₀, Sim₁) be a zero-knowledge simulator for NIZK. For any PPT adversary \(A \), the advantage defined as follows is negligible:

\[
\text{Adv}_{\text{NIZK}_{\text{Sim, sound}}, A}(\lambda) := \Pr \left[\begin{array}{c}
L_\varepsilon := \emptyset, \\
\text{NIZK.Ver}(\text{crs}, X, \pi) = 1 \\
(X, \pi) \leftarrow \text{Sim}_0(1^{\lambda}), \\
\land (X, \pi) \notin L_\pi \\
\land X \notin L_\rho
\end{array} \right],
\]

where \(S \) is a oracle that on input \((X, W)\) return \(\pi \leftarrow \text{Sim}_1(\text{crs}, \text{td}, X) \) and add \((X, \pi)\) to \(L_\varepsilon \), and \(L_\rho \) is the NP language such that \(L_\rho := \{ x \mid \exists w, (x, w) \in \rho \} \).

2.4 Hash Family with Local Opening

Here we recall the definition of a hash family with local opening [36]. The following definition refers to previous works [5, 28].

Definition 2.4. A hash tree HT consists of the following four PPT algorithms.

HT.Gen\((1^{\lambda})\) → hk : The key generation algorithm, given a security parameter \(1^{\lambda}\), outputs a hash key hk.

HT.Hash(hk, x) → d : The hash algorithm, given a hash key hk and a message x, outputs a hash value d.

HT.Open(hk, x, i) → (b, π) : The opening algorithm, given a hash key hk, an input x, and an index \(i \in [N]\), outputs a bit b and an opening \(\pi \).

HT.Ver(hk, d, i, b, π) → 1/0 : The verification algorithm, given a hash key hk, a hash value d, an index \(i \), a bit b, and an opening \(\pi \), outputs either 1 (accept) or 0 (reject).

Furthermore, we require a hash family with local opening to satisfy the following properties.

Completeness. For all \(\lambda \in \mathbb{N} \), all \(x \in \{0, 1\}^{\text{poly}(\lambda)} \), and all \(i \in \|x\| \), there exists a negligible function negl such that

\[
\Pr \left[\begin{array}{c}
hk \leftarrow \text{HT.Gen}(1^{\lambda}), \\
d \leftarrow \text{HT.Hash}(hk, x), \\
(b, \pi) \leftarrow \text{HT.Open}(hk, x, i) \\
\text{HT.Ver}(hk, d, i, b, \pi) = 1, \\
\land b = x_i
\end{array} \right] \geq 1 - \text{negl}(\lambda).
\]
Efficiency. In the completeness experiment above, both the running times of HT.Gen and HT.Ver are at most $\text{poly}(\lambda)$.

Collision Resistance w.r.t. Opening. For any PPT adversary A, the advantage defined as follows is negligible:

$$\text{Adv}_{\text{HT}, A}^{\text{coll}}(\lambda) := \Pr\left[\begin{array}{c} \text{hk} \leftarrow \text{HT.Gen}(1^\lambda), \\
(d, i, \pi_0, \pi_1) \leftarrow A(\text{hk}) \\
\wedge \text{HT.Ver}(\text{hk}, d, i, 0, \pi_0) = 1, \\
\text{HT.Ver}(\text{hk}, d, i, 1, \pi_1) = 1 \end{array} \right].$$

2.5 flexible RAM SNARGs

Here we recall the definition of a flexible RAM SNARG proposed by Kalai, Lombardi, Vaikuntanathan, and Wichs [28], which is a RAM delegation scheme [6, 11, 29, 30] in a specific model. In this scheme, we consider a read-only RAM machine that deterministically runs with random access to an external memory of arbitrary size. It allows us to verify whether the RAM machine accepts an input or not with a digest value of the initial external memory.

Definition 2.5. A flexible RAM SNARG RamS for machine R corresponding to a hash family $\text{HT} = (\text{HT.Gen}, \text{HT.Hash}, \text{HT.Open}, \text{HT.Ver})$ consists of the following four PPT algorithms.

- $\text{RamS.Setup}(1^\lambda) \rightarrow \text{crs}$: The setup algorithm, given a security parameter 1^λ, outputs a common reference string crs.
- $\text{RamS.Dig}(\text{hk}, x_{\text{imp}}) \rightarrow d$: The digest algorithm, given a hash key hk generated by $\text{HT.Gen}(1^\lambda)$ and a string x_{imp}, outputs a digest d.
- $\text{RamS.Prove}(\text{crs}, \text{hk}, (x_{\text{imp}}, x_{\text{exp}})) \rightarrow (b, \pi)$: The prove algorithm, given a common reference string crs, a hash key hk, and a pair of implicit and explicit input $(x_{\text{imp}}, x_{\text{exp}})$, outputs a bit b (indicating $R(x_{\text{imp}}, x_{\text{exp}})$) and a proof π.
- $\text{RamS.Ver}(\text{crs}, \text{hk}, d, x_{\text{exp}}, b, \pi) \rightarrow 1/0$: The verification algorithm, given a common reference string crs, a hash key hk, a digest d, an explicit input x_{exp}, a bit b, and a proof π, outputs either 1 (accept) or 0 (reject).

Furthermore, we require a RAM SNARG to satisfy the following properties.

Completeness. For all $\lambda \in \mathbb{N}$, all RAM machines R, all $x = (x_{\text{imp}}, x_{\text{exp}})$ such that $R(x)$ accepts (i.e., $R(x) = 1$), there exists a negligible function negl such that

$$\Pr\left[\begin{array}{c} \text{crs} \leftarrow \text{RamS.Setup}(1^\lambda), \\
d \leftarrow \text{RamS.Dig}(\text{hk}, x_{\text{imp}}), \\
(b, \pi) \leftarrow \text{RamS.Prove}(\text{crs}, \text{hk}, x_{\text{imp}}) \\
\text{RamS.Ver}(\text{crs}, \text{hk}, d, x_{\text{exp}}, b, \pi) = 1 \\
\wedge b = R(x) \end{array} \right] \geq 1 - \text{negl}(\lambda).$$

Efficiency. In the completeness experiment above, the running time of RamS.Setup is at most $\text{poly}(\lambda, |x_{\text{exp}}|, \log |x_{\text{imp}}|)$, and the length of a proof π is at most $\text{poly}(\lambda, |x_{\text{exp}}|, \log |x_{\text{imp}}|)$.

Soundness. For any PPT adversary A, the advantage defined as follows is negligible:

$$\text{Adv}_{\text{RamS}, A}^{\text{sound}}(\lambda) := \text{Pr} \left(\begin{array}{c}
\text{crs} \leftarrow \text{RamS.Setup}(1^\lambda), \\
(x = (x_{\text{imp}}, x_{\text{exp}}, b, \pi) \leftarrow A(\text{crs}), \\
d \leftarrow \text{RamS.Dig}(\text{hk}, x_{\text{imp}}) \\
\text{RamS.Ver}(\text{crs}, \text{hk}, d, x_{\text{exp}}, b, \pi) = 1 \\
\wedge b \neq R(x)
\end{array} \right) \right).$$

Remark 2.1. Kalai, Lombardi, Vaikuntanathan, and Wichs [28] proposed a RAM SNARG scheme that satisfies a stronger definition of soundness, partial input soundness, but a weaker definition defined as above is enough for our construction in the following. We also note that existing constructions [11, 30] of a RAM delegation satisfy the weaker soundness.

Remark 2.2. In the above definition, we omit a time bound T from an input to the setup algorithm since we can set T as at most 2^λ in the existing constructions [11, 28, 30].

2.6 Attribute-Based Signature

Here we recall the definition of an attribute-based signature scheme from [35, 41].

Definition 2.6. An attribute-based signature ABS scheme consists of the following four PPT algorithms.

- **ABS.Setup**(1$^\lambda$, 1$^\ell$) \rightarrow (pp, msk): The setup algorithm, given a security parameter 1$^\lambda$ and an attribute length 1$^\ell$, outputs a public parameter pp and a master secret key msk.
- **ABS.KG**(msk, x) \rightarrow sk$_x$: The key generation algorithm, given a master secret key msk and an attribute $x \in \{0, 1\}^\ell$, outputs a user secret key sk$_x$.
- **ABS.Sign**(pp, sk$_x$, x, C, m) \rightarrow Σ: The signing algorithm, given a public parameter pp, a user secret key sk$_x$, an attribute x, a policy C, and a message m, outputs a signature Σ.
- **ABS.Ver**(pp, C, m, Σ) \rightarrow 1/0: The verification algorithm, given a public parameter pp, a policy C, a message m, and a signature Σ, outputs either 1 (accept) or 0 (reject).

Furthermore, we require an attribute-based signature scheme to satisfy the following properties.

Correctness. For all $\lambda \in \mathbb{N}$, all $\ell \in \text{poly}(\lambda)$, all (pp, msk) \leftarrow ABS.Setup(1$^\lambda$, 1$^\ell$), all attributes x, all sk$_x$ \leftarrow ABS.KG(msk, x), all policies C satisfying $C(x) = 1$, all messages m, and all Σ \leftarrow ABS.Sign(pp, sk$_x$, x, C, m), we have ABS.Ver(pp, C, m, Σ) = 1.
Privacy. For any PPT adversary $A = (A_1, A_2)$, the advantage defined as follows is negligible:

$$Adv_{\text{priv}}^{\text{ABS}, A} (\lambda) := \Pr \left[\begin{array}{c} b \in \{0, 1\}, \\
(pp, msk) \leftarrow \text{ABS.Setup}(1^\lambda, 1^\ell), \\
(st, x_0, x_1, C, m) \leftarrow A_1(pp, msk), \\
\forall i \in \{0, 1\}, sk_i \leftarrow \text{ABS.KG}(msk, x_i), \\
\Sigma \leftarrow \text{ABS.Sign}(pp, sk_b, x_b, C, m), \\
b' \leftarrow A_2(st, sk_0, sk_1, \Sigma) \\
\end{array} \right] - \frac{1}{2},$$

where A_1 is required to output x_0, x_1, and C satisfying $C(x_0) = C(x_1) = 1$.

Unforgeability. For any PPT adversary A, the advantage $Adv_{\text{unf}}^{\text{ABS}, A} (\lambda) := \Pr[\text{Exp}_{\text{unf}}^{\text{ABS}, A}(\lambda) = 1]$ is negligible, where the experiment is defined in Figure 1.

3 Circuit SNARGs

In this section, we introduce a new notion, Circuit SNARG, which will be a useful tool for describing our construction in Section 4. Intuitively, this primitive allows us to verify $C(x) = b \in \{0, 1\}$ with digest values of an input x and a circuit C, and a succinct proof π.

Definition 3.1. A Circuit SNARG CirS for circuits C consists of the following five PPT algorithms.
CirS.Setup(\(1^\lambda, 1^\ell\)) \rightarrow \text{crs} : The setup algorithm, given a security parameter \(1^\lambda\) and an input length \(1^\ell\), outputs a common reference string \text{crs}.

CirS.DStr(crs, x) \rightarrow d_x : The string digest algorithm, given a common reference string \text{crs} and a string \(x \in \{0, 1\}^\ell\), outputs a string digest \(d_x\).

CirS.DCir(crs, C) \rightarrow d_C : The circuit digest algorithm, given a common reference string \text{crs} and a circuit \(C\), outputs a circuit digest \(d_C\).

CirS.Prove(crs, x, C) \rightarrow (b, \pi) : The prove algorithm, given a common reference string \text{crs}, a string \(x\), and a circuit \(C\), outputs a bit \(b\) and a proof \(\pi\).

CirS.Ver(crs, dx, dC, b, \pi) \rightarrow 1/0 : The verification algorithm, given a common reference string \text{crs}, a string digest \(d_x\), a circuit digest \(d_C\), and a proof \(\pi\), outputs either 1 (accept) or 0 (reject).

Furthermore, we require a Circuit SNARG to satisfy the following properties.

Completeness. For all \(\lambda \in \mathbb{N}\), all strings \(x \in \{0, 1\}^\ell\), all circuits \(C\) such that \(C(x) = b\), we have

\[
\Pr \left[\begin{array}{l}
\text{crs} \leftarrow \text{CirS.Setup}(1^\lambda, 1^\ell), \\
\text{dx} \leftarrow \text{CirS.DStr(crs,x)}, \\
\text{dC} \leftarrow \text{CirS.DCir(crs,C)}, \\
(b, \pi) \leftarrow \text{CirS.Prove(crs,x,C)}
\end{array} \right] = 1.
\]

Efficiency. In the completeness experiment above, the running time of \text{CirS.Ver} is at most \(\text{poly}(\lambda, \log(|x| + |C|))\), and the lengths of both digests \(\text{dx}\) and \(\text{dC}\) are \(O(\lambda)\), and the length of a proof \(\pi\) is at most \(\text{poly}(\lambda, \log(|x| + |C|))\).

Collision Resistance w.r.t. the String Digest. For any PPT adversary \(A\), the advantages defined as follows is negligible:

\[
\text{Adv}_{\text{CirS}, A}^{\text{col-str}}(\lambda) := \Pr \left[\begin{array}{l}
\text{crs} \leftarrow \text{CirS.Setup}(1^\lambda, 1^\ell), \\
(x_0, x_1) \leftarrow A(\text{crs}), \\
d_{x_0} \leftarrow \text{CirS.DStr(crs,x_0)}, \\
d_{x_1} \leftarrow \text{CirS.DStr(crs,x_1)}
\end{array} \right] : d_{x_0} \neq d_{x_1}.
\]

Collision Resistance w.r.t. the Circuit Digest. For any PPT adversary \(A\), the advantages defined as follows is negligible:

\[
\text{Adv}_{\text{CirS}, A}^{\text{col-cir}}(\lambda) := \Pr \left[\begin{array}{l}
\text{crs} \leftarrow \text{CirS.Setup}(1^\lambda, 1^\ell), \\
(C_0, C_1) \leftarrow A(\text{crs}), \\
d_{C_0} \leftarrow \text{CirS.DCir(crs,C_0)}, \\
d_{C_1} \leftarrow \text{CirS.DCir(crs,C_1)}
\end{array} \right] : d_{C_0} \neq d_{C_1}.
\]
Soundness. For any PPT adversary A, the advantage defined as follows is negligible:

$$
\text{Adv}_{\text{Sirs}, A}(\lambda) := \Pr \left[\begin{array}{l}
\text{crs} \leftarrow \text{Sirs.Setup}(1^\lambda, 1^\ell), \\
(x^*, C^*, b^*, \pi^*) \leftarrow A(\text{crs}), \\
\text{Sirs.Ver}(\text{crs}, d_{x^*}, d_{C^*}, b^*, \pi^*) = 1 \\
\text{d}_{x^*} \leftarrow \text{Sirs.DStr}(\text{crs}, x^*), \\
\text{d}_{C^*} \leftarrow \text{Sirs.DCir}(\text{crs}, C^*)
\end{array} \right] \land b^* \neq C^*(x^*) \right].
$$

3.1 Construction from flexible RAM SNARGs

We propose a construction of a Circuit SNARG for a circuit class C with input length ℓ. Our construction is directly from a flexible RAM SNARG RamS corresponding to a hash family HT'. Below we define a hash family HT' and a RAM machine \mathcal{R}'.

Hash Family HT'. Let HT = (HT.Gen, HT.Hash, HT.Open, HT.Ver) be a hash family (Definition 2.4). We use a hash family HT' = (HT'.Gen, HT'.Hash, HT'.Open, HT'.Ver) defined as follows.

HT'.Gen(1^λ) : It computes $hk \leftarrow \text{HT.Gen}(1^\lambda)$ and outputs $hk' = hk$.

HT'.Hash(hk', x) : It first parses $x \in \{0, 1\}^N$ as (x_0, x_1), where $x_0 \in \{0, 1\}^\ell$ and $x_1 \in \{0, 1\}^{N-\ell}$. Then, it computes $d_{x_0} \leftarrow \text{HT.Hash}(hk, x_0)$ and $d_{x_1} \leftarrow \text{HT.Hash}(hk, x_1)$. Finally, it outputs $d = (d_{x_0}, d_{x_1})$.

HT'.Open(hk', x, j) : If $j \in [\ell]$, then it sets $\rho \leftarrow \text{HT.Open}(hk, x_0, j)$. Otherwise, it computes $\rho \leftarrow \text{HT.Open}(hk, x_1, j - \ell)$. Finally, it outputs ρ.

HT'.Ver(hk', d, j, b, ρ) : It first parses d as (d_{x_0}, d_{x_1}). If $j \in [\ell]$, then it outputs $\text{HT.Ver}(hk, d_{x_0}, j, b, \rho)$. Otherwise, it outputs $\text{HT.Ver}(hk, d_{x_1}, j, b, \rho)$.

It is easy to see that the above hash family HT' satisfies all properties in Definition 2.4.

Theorem 3.1. If HT is a hash family with local opening, then the above HT' is a hash family with local opening.

Flexible RAM SNARG RamS for \mathcal{R}. We use a flexible RAM SNARG RamS = (RamS.Setup, RamS.Dig, RamS.Prove, RamS.Ver) for a RAM machine \mathcal{R}, which is corresponding to the above hash family HT'. A RAM machine \mathcal{R} takes as input $(x_{\text{imp}}, x_{\text{exp}}) = (x||C, \perp)$ and outputs 1 if and only if $C(x) = 1$, where $x \in \{0, 1\}^\ell$ and $C \in \{0, 1\}^{N-\ell}$.

Our Construction. We show the construction of Circuit SNARG. We note that the RamS.Dig algorithm is deterministic and fixed by the corresponding HT'. Let hk' be a hash key generated by HT'.Gen(1^λ). From the construction of HT', two digests (d_{x_0}, d_{x_1}) are separately computable. More precisely, if a string $x_{\text{imp}} \in \{0, 1\}^N$ stored in the random access memory can be divided into two
strings $x \in \{0,1\}^\ell$ and $C \in \{0,1\}^{N-\ell}$, then the digest value $d = (d_x, d_C) \leftarrow \text{RamS.Dig}(hk', x_{\text{imp}} = x || C)$ can be computed separately, i.e., there exist two algorithms RamS.Dig_1 and RamS.Dig_2 such that $d_x \leftarrow \text{RamS.Dig}_1(hk', x)$ and $d_C \leftarrow \text{RamS.Dig}_2(hk', C)$, respectively.

\begin{itemize}
 \item \text{CirS.Setup}(1^\lambda) : It generates a hash key $hk' \leftarrow \text{HT'.Gen}(1^\lambda)$ and a common reference string for RAM SNARG $\text{crs}_\text{Ram} \leftarrow \text{RamS.Setup}(1^\lambda)$ and outputs $\text{crs} = (hk', \text{crs}_\text{Ram})$.
 \item \text{CirS.DStr}(\text{crs}, x) : It computes $d_x \leftarrow \text{RamS.Dig}_1(hk', x)$ and outputs d_x.
 \item \text{CirS.DStr}(\text{crs}, C) : It computes $d_C \leftarrow \text{RamS.Dig}_2(hk', C)$ and outputs d_C.
 \item \text{CirS.Prove}(\text{crs}, x, C) : It generates a RAM SNARG proof $(b, \pi) \leftarrow \text{RamS.Prove}(\text{crs}_\text{Ram}, hk', (x || C, \bot))$ and outputs (b, π).
 \item \text{CirS.Ver}(\text{crs}, d_x, d_C, b, \pi) \rightarrow 1/0 : It computes $b' \leftarrow \text{RamS.Ver}(\text{crs}, hk', (d_x, d_C), \bot, b, \pi)$ and outputs b'.
\end{itemize}

It is easy to see that the above construction satisfies completeness and efficiency requirement if the RAM SNARG satisfies completeness and is efficient.

3.2 Security Analysis

In this section, we provide a security proof to show that our construction of a Circuit SNARG satisfies the collision resistance w.r.t. the circuit digest and the soundness. Although we omit a proof to show that our construction satisfies the collision resistance w.r.t. the string digest, it is easy to see that ours also satisfies it in the same way as proof of Theorem 3.2.

Theorem 3.2. If the hash family HT' is collision-resistant w.r.t. opening, then the above Circuit SNARG is collision-resistant w.r.t. the circuit digest.

Proof. Assume that there exists a PPT adversary A which breaks the collision resistance w.r.t. the circuit digest of the Circuit SNARG with non-negligible probability. Then, we can construct another PPT adversary B that breaks the collision-resistant w.r.t. opening of the hash family with the same probability. The description of B is as follows.

- B initially receives hk', computes $\text{crs}_\text{Ram} \leftarrow \text{RamS.Setup}(1^\lambda)$, sets $\text{crs} := (hk', \text{crs}_\text{Ram})$ and runs $A(\text{crs})$.
- When A outputs $(C^*_{0,i}, C^*_{1,i})$ and terminates, B finds an index i such that $C^*_{0,i} \neq C^*_{1,i}$, where $C^*_{b,i}$ denotes the i-th bit of C^*_b for $b \in \{0,1\}$. Then, B computes $d \leftarrow \text{HT'.Hash}(hk', C^*_0), \pi_0 \leftarrow \text{HT'.Open}(hk', C^*_0, i)$, and $\pi_1 \leftarrow \text{HT'.Open}(hk', C^*_1, i)$, outputs (d, i, π_0, π_1) if $C^*_{0,i} = 0$; otherwise, it outputs (d, i, π_1, π_0).

The above completes the description of B. Since A breaks the collision resistance w.r.t. the circuit digest, we have $d = \text{HT'.Hash}(hk', C^*_0) = \text{HT'.Hash}(hk', C^*_1)$. In addition, since each opening is correctly generated, we have $\text{HT'.Ver}(hk', d, i, 0, \pi_0) = \text{HT'.Ver}(hk', d, i, 1, \pi_1)$. Therefore, if A breaks the collision resistance, B also breaks the collision resistance, which contradicts the assumption.

Thus, the Circuit SNARG is collision-resistant w.r.t. the circuit digest.
1 and $HT'.Ver(hk', d, i, 1, \pi_1) = 1$ if $C^*_{0,i} = 0$; otherwise, we have $HT'.Ver(hk', d, i, 0, \pi_1) = 1$ and $HT'.Ver(hk', d, i, 1, \pi_0) = 1$. In both cases, B breaks the collision-resistant w.r.t. opening of the hash family. Therefore, we have $Adv_{\text{Gar}, A}(\lambda) = Adv_{\text{cal}, HT', B}(\lambda)$. \hfill \Box (Theorem 3.2)

Theorem 3.3. If the flexible RAM SNARG RamS is sound, then the above Circuit SNARG is sound.

Proof. Assume that there exists a PPT adversary A which breaks the soundness of the Circuit SNARG with non-negligible probability. Then, we can construct another PPT adversary B that breaks the soundness of the flexible RAM SNARG with the same probability. Let us fix a hash key hk' generated by $HT'.Gen(1^\lambda)$ corresponding to the flexible RAM SNARG. The description of B is as follows.

- B initially receives crs_R, sets $\text{crs} := (hk', \text{crs}_R)$ and runs $A(\text{crs})$.
- When A outputs (x^*, C^*, b^*, π^*) and terminates, B sets $x^*_{\text{imp}} = x^* || C^*$ and $x^*_{\text{exp}} = \bot$, outputs $((x^*_{\text{imp}}, x^*_{\text{exp}}), b^*, \pi^*)$, and terminates.

The above completes the description of B. Let $d_{x^*} = \text{RamS}.\text{Dig}_i(hk', x^*)$ and $d_{C^*} = \text{RamS}.\text{Dig}_i(hk', C^*)$. Since A breaks the soundness of the Circuit SNARG, we have $\text{CirS}.\text{Ver}(\text{crs}, d_{x^*}, d_{C^*}, b^*, \pi^*) = 1$ and $b^* \neq C^*(x^*)$. Thus, we now have $b^* = \text{RamS}.\text{Ver}(\text{crs}_R, hk', d_{x^*}, d_{C^*}, \bot, b^*, \pi^*)$ while $b^* \neq R(x^* || C^*, \bot)$ due to the definition of the RAM machine R. Therefore, we have $Adv_{\text{cal}, \text{Ram},{\text{crs}}, A}(\lambda) = Adv_{\text{cal}, \text{Ram},{\text{crs}}, B}(\lambda)$. \hfill \Box (Theorem 3.3)

4 Attribute-Based Signatures for General Circuits from Circuit Delegations

In this section, we provide a construction of an attribute-based signature scheme for every polynomial-size circuits with input length ℓ. Before showing our detailed construction, we provide an intuition of the construction. To issue a user signing key, the key issuer computes a digest d_x of the user’s attribute x and signs the digest. Each user receives a signing key that consists of an attribute digest d_x and its signature σ_{d_x} and generates a proof π to show that his attribute satisfies some policy C. In addition, for completing security proof, we require each user to encrypt a witness consisting of a message m to be signed, the digest d_x, its signature σ_{d_x}, and the proof π, and include a calculated ciphertext to a signature. It also computes a NIZK proof to show that it has (i) an attribute x such that $C(x) = 1$, (ii) a valid signature of its digest value, and (iii) a ciphertext of the witness.

4.1 Our Construction

Here we provide a construction based on following building blocks:

- a PKE scheme $\text{PKE} = (\text{PKE.KG}, \text{PKE.Enc}, \text{PKE.Dec})$;
– a signature scheme $\text{SIG} = (\text{SIG.KG}, \text{SIG.Sign}, \text{SIG.Ver})$;
– a NIZK NIZK = (NIZK.Setup, NIZK.Prove, NIZK.Ver) where the NIZK relation ρ is defined as follows:
 \[
 \rho := \{ ((ek, vk, crs_{\text{GSw}}, d_C, m, ctx), (d_x, \sigma_d, \pi, rand)) \mid \\
 \text{CirS.Ver}(crs_{\text{GSw}}, d_x, d_c, 1, \pi) = 1 \\
 \land \text{SIG.Ver}(vk, d_x, \sigma_d) = 1 \\
 \land PKE.\text{Enc}(ek, (m, d_x, \sigma_d, \pi; rand)) = ctx \};
 \]

– a Circuit SNARG $\text{CirS} = (\text{CirS.Setup}, \text{CirS.DStr}, \text{CirS.DCir}, \text{CirS.Prove}, \text{CirS.Ver})$.

Our Construction. Our construction is as follows.

ABS.Setup(λ^1, λ^1) : It computes the following:
– a key pair for PKE $(ek, dk) \leftarrow PKE(\lambda^1)$,
– a key pair for SIG $(sk, vk) \leftarrow SIG.KG(\lambda^1)$,
– a common reference string for NIZK $crs_{\text{NIZK}} \leftarrow NIZK.\text{Setup}(\lambda^1)$, and
– a common reference string for Circuit SNARG $crs_{\text{GSw}} \leftarrow \text{CirS.}\text{Setup}(\lambda^1, \lambda^1)$.

Then, it outputs $pp := (ek, vk, crs_{\text{NIZK}}, crs_{\text{GSw}})$ and $msk := (sk, crs_{\text{GSw}})$.

ABS.KG$(\text{msk}, x) :$ It computes in the following steps:
1. Parse $\text{msk} = (sk, crs_{\text{GSw}})$;
2. Compute $d_x \leftarrow \text{CirS.DStr}(crs_{\text{GSw}}, x)$ and $\sigma_d \leftarrow \text{SIG.Sign}(sk, d_x)$.

Then, it outputs $sk_x := (d_x, \sigma_d)$.

ABS.Sign$(\text{pp}, sk_x, x, C, m) :$ It computes in the following steps:
1. Parse $\text{pp} = (ek, vk, crs_{\text{NIZK}}, crs_{\text{GSw}})$ and $sk_x = (d_x, \sigma_d)$;
2. Compute $d_C \leftarrow \text{CirS.DCir}(crs_{\text{GSw}}, C)$ and $(b, \pi) \leftarrow \text{CirS.Prove}(crs_{\text{GSw}}, x, C)$;
3. Randomly choose $\text{rand} \leftarrow \{0, 1\}^{\text{poly}(\lambda^1)}$ and compute $ctx \leftarrow PKE.\text{Enc}(ek, (m, d_x, \sigma_d, \pi); \text{rand})$;
4. Compute $\Pi \leftarrow \text{NIZK.Prove}(crs_{\text{NIZK}}, (ek, vk, crs_{\text{GSw}}, d_C, m, ctx), (d_x, \sigma_d, \pi, \text{rand}))$.

Finally, it outputs $\Sigma := (ctx, \Pi)$.

ABS.Ver$(\text{pp}, C, m, \Sigma) \rightarrow 1/0 :$ It computes in the following steps:
1. Parse $\text{pp} = (ek, vk, crs_{\text{NIZK}}, crs_{\text{GSw}})$ and $\Sigma = (ctx, \Pi)$;
2. Compute $d_C \leftarrow \text{CirS.DCir}(crs_{\text{GSw}}, C)$ and $b \leftarrow \text{NIZK.Ver}(crs_{\text{NIZK}}, (ek, vk, crs_{\text{GSw}}, d_C, m, ctx), \Pi)$.

Finally, it outputs 1 if $b = 1$; otherwise, it outputs 0.

It is easy to see that the above construction satisfies the correctness if each building block is correct.

Efficiency. We show that the above construction achieves optimal parameter sizes as follows: if the underlying Circuit SNARG is efficient,
– the length of the public parameter is $\text{poly}(\lambda, \log(|x| + |C|))$;
the length of the key is poly(\(\lambda\)) since |\(d_x| = O(\lambda)|;
\)
the length of the signature is poly(\(\lambda, \log(|x| + |C|)\)) since we have |\(d_x|, |d_C| = O(\lambda)| and |\(|\pi| = \text{poly}(\lambda, \log(|x| + |C|))\), so the verification circuit of NIZK and its proof are of lengths poly(\(\lambda, \log(|x| + |C|)\)).

4.2 Security Analysis

Here we provide security proofs to show that our construction satisfies the privacy and unforgeability in Theorem 4.1 and Theorem 4.2, respectively. In the following proofs of theorems and lemmata, we will use the underline explicitly to show the parts where each reduction accesses to its challenge oracle for clarity.

Theorem 4.1. If the PKE scheme PKE is IND-CPA secure and the NIZK proof system NIZK is zero-knowledge, then the above ABS scheme is private.

Proof. Let us fix a PPT adversary \(\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)\) attacking the privacy of the ABS, the security parameter \(\lambda\), and the attribute length \(\ell\). The attack game used to define the privacy is in Definition 2.6. We define two games as follows:

Game\(_0\): This game is the original attack game.

Game\(_1\): This game is the game identical with Game\(_0\) except that we use modified algorithms, in which some steps are replaced as follows:

- In the ABS.\(\text{Setup}(1^\lambda, 1^\ell)\) algorithm, \(\text{crs}_{\text{NIZK}} \leftarrow \text{NIZK.\text{Setup}}(1^\lambda)\) is replaced by \((\text{crs}, \text{td}) \leftarrow \text{Sim}_0(1^\lambda)\).
- In the ABS.\(\text{Sign}(\text{pp, sk})\), \(\text{x, C, m})\) algorithm, \(\Pi \leftarrow \text{NIZK.\text{Prove}}(\text{crs}_{\text{NIZK}}, (\text{ek, vk, \text{crs}_{\text{CirS}}, d_C, C, m, ctx})), (\text{d_x, \sigma, \pi, rand}))\) is replaced by \(\tilde{\Pi} \leftarrow \text{Sim}_1(\text{crs}, \text{td}, (\text{ek, vk, \text{crs}_{\text{CirS}}, d_C, C, m, ctx})).\)

For \(i = 0, 1\), let \(T_i\) be the event that \(\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)\) wins the privacy experiment in the game Game\(_i\). We will show that the probability \(|\Pr[T_0] − \Pr[T_1]| \leq \text{negl}(\lambda)\) and \(\Pr[T_1] \leq \text{negl}(\lambda)\) in the following lemmas.

We first show to have \(|\Pr[T_0] − \Pr[T_1]| \leq \text{negl}(\lambda)\). Intuitively, any difference between these two games Game\(_0\) and Game\(_1\) yields a PPT algorithm that distinguishes the real proof from the simulated proof.

Lemma 4.1. There exists a PPT algorithm \(\mathcal{B}\) such that

\(|\Pr[T_0] − \Pr[T_1]| = \text{Adv}^\text{NIZK, B}_\mathcal{B}(\lambda)\).

Proof. Assume that there exists a PPT adversary \(\mathcal{A} = (\mathcal{A}_1, \mathcal{A}_2)\) which makes the probability \(|\Pr[T_0] − \Pr[T_1]|\) non-negligible. Then, we can construct another PPT adversary \(\mathcal{B}\) that breaks the zero-knowledge property of \(\Pi\) with non-negligible probability, which implies the lemma. The description of \(\mathcal{B}\) is as follows.

1. \(\mathcal{B}\) initially receives \(\text{crs}\), computes \((\text{ek, dk}) \leftarrow \text{PKE}(1^\lambda), (\text{sk, vk}) \leftarrow \text{SIG.KG}(1^\lambda),\) and \(\text{crs}_{\text{CirS}} \leftarrow \text{CirS.\text{Setup}}(1^\lambda, 1^\ell)\), sets \(\text{pp} := (\text{ek, vk, crs, crs}_{\text{CirS}})\) and \(\text{msk} := (\text{sk, crs}_{\text{CirS}})\), and runs \(\mathcal{A}_1(\text{pp, msk})\).
2. When A_1 outputs (st, x_0, x_1, C, m) and terminates, B randomly chooses $b \leftarrow \{0, 1\}$ and proceeds as follows, where $*$ denotes that some value exists but is being ignored:

 (i) Compute $d_{x_i} \leftarrow \text{CirS.DStr}(crs_{\text{CirS}}, x_i)$ for both $i \in \{0, 1\}$, $d_C \leftarrow \text{CirS.DCir}(crs_{\text{CirS}}, C)$, and $(*, \pi_b) \leftarrow \text{CirS.Prove}(crs_{\text{CirS}}, x_b, C)$;

 (ii) Compute $\sigma_{d_{x_i}} \leftarrow \text{SIG.Sign}(sk, d_{x_i})$ for both $i \in \{0, 1\}$;

 (iii) Randomly choose $\text{rand} \leftarrow \{0, 1\}^{\text{poly}(\lambda)}$ and compute $\text{ctx} \leftarrow \text{PKE.Enc}(ek, (m, d_{x_0}, \sigma_{d_{x_0}}, \pi); \text{rand})$;

 (iv) Query $((\text{ek}, \text{vk}, crs_{\text{CirS}}, d_C, m, \text{ctx}), (d_{x_i}, \sigma_{d_{x_i}}, \pi, \text{rand}))$ to the challenge oracle, and receive Π.

3. B sets $\Sigma := (\text{ctx}, II)$ and runs $A_2(st, (d_{x_0}, \sigma_{d_{x_0}}), (d_{x_1}, \sigma_{d_{x_1}}), \Sigma)$;

4. When A_2 outputs b' and terminates, B outputs 1 if and only if $b' = b$; otherwise, it outputs 0.

The above completes the description of B. If crs is generated by the NIZK.Setup (resp., Sim_0) algorithm and B accesses the NIZK.Prove (resp., Sim_1) oracle, then B perfectly simulates Game_0 (resp., Game_1) for A. Therefore, we have $|\Pr[\text{Game}_0] - \Pr[\text{Game}_1]| = |\Pr[b = b' \text{ in } \text{Game}_0] - \Pr[b = b' \text{ in } \text{Game}_1]| = \text{Adv}_{\text{NIZK,B}}^{\text{ind-cpa}}(\lambda)$.

\[\Box \] (Lemma 4.1)

Next, we show to have $\Pr[\text{Game}_1] \leq \text{negl}(\lambda)$. Intuitively, any algorithm that makes the probability $\Pr[\text{Game}_1]$ non-negligible can distinguish two ciphertexts with different messages.

Lemma 4.2. There exists a PPT algorithm B such that

\[\Pr[\text{Game}_1] = \text{Adv}_{\text{PKE,B}}^{\text{ind-cpa}}(\lambda). \]

Proof. Assume that there exists a PPT adversary $A = (A_1, A_2)$ which makes the probability $\Pr[\text{Game}_1]$ non-negligible. Then, we can construct another PPT adversary B that breaks the IND-CPA security of the PKE with the same probability, which implies the lemma. The description of B is as follows.

1. B initially receives ek, computes $(sk, vk) \leftarrow \text{SIG.KG}(1^\lambda)$, $(\text{crs}, \text{td}) \leftarrow \text{Sim}_0(1^\lambda)$, and $crs_{\text{CirS}} \leftarrow \text{CirS.Setup}(1^\lambda, 1^\ell)$, sets $pp := (\text{ek}, \text{vk}, \text{crs}, crs_{\text{CirS}})$ and $\text{msk} := (sk, crs_{\text{CirS}})$, and runs $A_1(pp, \text{msk})$.

2. When A_1 outputs (st, x_0, x_1, C, m) and terminates, B proceeds as follows:

 (i) Compute $d_{x_i} \leftarrow \text{CirS.DCir}(crs_{\text{CirS}}, C)$, $(\pi_i) \leftarrow \text{CirS.Prove}(crs_{\text{CirS}}, x_i, C)$, and $d_{x_i} \leftarrow \text{CirS.DStr}(crs_{\text{CirS}}, x_i)$ for both $i \in \{0, 1\}$;

 (ii) Compute $\sigma_{d_{x_i}} \leftarrow \text{SIG.Sign}(sk, d_{x_i})$ for both $i \in \{0, 1\}$;

 (iii) Query $((m, d_{x_0}, \sigma_{d_{x_0}}, \pi_0), (m, d_{x_1}, \sigma_{d_{x_1}}, \pi_1))$ to the challenge oracle, and receive ctx:

 (iv) Compute $\Pi \leftarrow \text{Sim}_1(\text{crs}, \text{td}, (\text{ek}, \text{vk}, crs_{\text{CirS}}, d_C, m, \text{ctx})$;

3. B sets $\Sigma := (\text{ctx}, II)$ and runs $A_2(st, (d_{x_0}, \sigma_{d_{x_0}}), (d_{x_1}, \sigma_{d_{x_1}}), \Sigma)$.
4. When A_2 outputs b' and terminates, B outputs b' and terminates.

The above completes the description of B. It is easy to see that B perfectly simulates Game$_1$ for A. Therefore, we have $\Pr[T_1] = \text{Adv}^{\text{ind-cpa}}_{\text{PKE}, B}(\lambda)$.

\square (Lemma 4.2)

Theorem 4.1 now follows immediately from Lemmata 4.1 and 4.2.

\square (Theorem 4.1)

Theorem 4.2. If the PKE scheme PKE is IND-CPA secure, the signature scheme SIG is EUF-CMA secure, the NIZK proof system NIZK is simulation sound and zero-knowledge, and the Circuit SNARG CirS is collision-resistant of the circuit digest and sound, then the above ABS scheme is unforgeable.

Proof. Let us fix a PPT adversary A attacking the unforgeability of the ABS, the security parameter λ, and the attribute length ℓ. The attack game used to define the unforgeability is in Definition 2.6. We define three games as follows:

- **Game$_0$**: This game is the original attack game.
- **Game$_1$**: This game is the game identical with Game$_0$ except that we use modified algorithms, in which some steps are replaced as follows:
 - In the $\text{ABS.Setup}(1^\lambda, 1^\ell)$ algorithm, $\text{crs}_{\text{NIZK}} \leftarrow \text{NIZK.Setup}(1^\lambda)$ is replaced by $(\tilde{\text{crs}}, \text{td}) \leftarrow \text{Sim}_0(1^\lambda)$.
 - In the $\text{ABS.Sign}(\text{pp}, \text{sk} = (d_x, \sigma), x, C, m)$ algorithm, $\text{II} \leftarrow \text{NIZK.Prove}(\text{crs}_{\text{NIZK}}, (\text{ek}, \text{vk}, \text{crs}_{\text{CirS}}, \text{dC}, m, \text{ctx}), (d_x, \sigma, \pi, \text{rand}))$ is replaced by $\tilde{\text{II}} \leftarrow \text{Sim}_1(\tilde{\text{crs}}, \text{td}, (\text{ek}, \text{vk}, \text{crs}_{\text{CirS}}, \text{dC}, m, \text{ctx}))$.
- **Game$_2$**: This game is the game identical with Game$_1$ except that the signing algorithm is modified in some step as follows:
 - In the $\text{ABS.Sign}(\text{pp}, \text{sk} = (d_x, \sigma), x_0, C, m)$ algorithm, $\text{ctx} \leftarrow \text{PKE.Enc}(\text{ek}, (m, d_x, \sigma_{d_x}, \pi))$ is replaced by $\tilde{\text{ctx}} \leftarrow \text{PKE.Enc}(\text{ek}, 0^t)$, where t is the total length of $(m, d_x, \sigma_{d_x}, \pi)$.

For $i = 0, 1, 2$, let T_i be the event that A wins the unforgeability experiment in the game Game$_i$. We will show that the probability $|\Pr[T_0] - \Pr[T_i]| \leq \text{negl}(\lambda)$, $|\Pr[T_0] - \Pr[T_1]| \leq \text{negl}(\lambda)$, and $\Pr[T_1] \leq \text{negl}(\lambda)$ in turn.

We first show to have $|\Pr[T_0] - \Pr[T_1]| \leq \text{negl}(\lambda)$. Similar to Lemma 4.1, any difference between these two games Game$_0$ and Game$_1$ yields a PPT algorithm that distinguishes the real proof from the simulated proof.

Lemma 4.3. There exists a PPT algorithm B such that

$$|\Pr[T_0] - \Pr[T_1]| = \text{Adv}^{\text{NIZK}, B}_{\text{NIZK}, B}(\lambda).$$

Proof. Assume that there exists a PPT adversary A which makes the probability $|\Pr[T_0] - \Pr[T_1]|$ non-negligible. Then, we can construct another PPT adversary \tilde{B} that breaks the zero-knowledge property of NIZK with non-negligible probability, which implies the lemma. The description of B is as follows.
1. B initially receives crs, computes $(ek, dk) \leftarrow PKE(1^\lambda)$, $(sk, vk) \leftarrow SIG.KG(1^\lambda)$, and $crs_{\text{Gir}} \leftarrow \text{Gir.Setup}(1^\lambda, 1^\ell)$, sets $L_{\text{sig}}, L_{\text{corr}}, L_{\text{key}} := \emptyset$, and $pp := (ek, vk, crs, crs_{\text{Gir}})$, and runs $A(pp)$.

2. B responds to each of queries from A as follows:
 - For each query to $O_{\text{sig}}(x, C, m)$, B returns \perp if $C(x) = 0$; otherwise, it proceeds as follows:
 (i) If $\exists (x, \cdot) \notin L_{\text{key}}$, then
 (a) compute $d_x \leftarrow \text{Gir.DStr}(crs_{\text{Gir}}, x)$ and $\sigma_{d_x} \leftarrow \text{SIG}\cdot\text{Sign}(sk, d_x)$;
 (b) add $(x, (d_x, \sigma_{d_x}))$ to L_{key};
 Otherwise, find $(x, sk_x) \in L_{\text{key}}$ and parse $sk_x = (d_x, \sigma_{d_x})$;
 (ii) Compute $d_C \leftarrow \text{Gir.DCir}(crs_{\text{Gir}}, C)$ and $(\cdot, \pi) \leftarrow \text{Gir.Prove}(crs_{\text{Gir}}, x, C)$;
 (iii) Randomly choose rand $\leftarrow \{0, 1\}^{\text{poly}(\lambda)}$ and compute $ctx \leftarrow PKE.\text{Enc}(ek, (m, d_x, \sigma_{d_x}, \pi); \text{rand})$;
 (iv) Query $((ek, vk, crs_{\text{Gir}}, d_C, m, ctx), (d_x, \sigma_{d_x}, \pi, \text{rand}))$ to the challenge oracle, and receive H.

 Then, B adds (C, m) to L_{sig} and returns (ctx, H).
 - For each query to $O_{\text{corr}}(x)$, B computes as follows:
 - If $\exists (x, \cdot) \notin L_{\text{key}}$, then B computes $d_x \leftarrow \text{Gir.DStr}(crs_{\text{Gir}}, x)$ and $\sigma_{d_x} \leftarrow \text{SIG}\cdot\text{Sign}(sk, d_x)$, sets $sk_x := (d_x, \sigma_{d_x})$, and adds (x, sk_x) to L_{key};
 - Otherwise, B finds $(x, sk_x) \in L_{\text{key}}$.
 Finally, B adds x to L_{corr} and returns sk_x.

3. When A outputs $(C^*, m^*, \Sigma^* = (ctx^*, H^*))$ and terminates, B computes $d_{C^*} \leftarrow \text{Gir.DCir}(crs_{\text{Gir}}, C^*)$ and outputs 1 if $C^*(x) = 0$ for all $x \in L_{\text{corr}}$, $(C^*, m^*) \notin L_{\text{sig}}$, and $\text{NIZK.Ver}(crs_{\text{NIZK}}, (ek, vk, crs_{\text{Gir}}, d_{C^*}, m^*, ctx^*), H^*) = 1$; otherwise, it outputs 0.

The above completes the description of B. If crs is generated by the NIZK.Setup (resp., Sim_0) algorithm and B accesses the NIZK.Prove (resp., Sim_1) oracle, then B perfectly simulates Game_0 (resp., Game_1) for A. Therefore, we have $|Pr[T_0] - Pr[T_1]| = Adv_B^{\text{NIZK}}(\lambda)$.

\square (Lemma 4.3)

Secondly, we will show to have $|Pr[T_1] - Pr[T_2]| \leq \text{neg}(\lambda)$. Intuitively, any difference between these two games Game_1 and Game_2 yields a PPT algorithm that distinguishes two ciphertexts with different messages.

Lemma 4.4. There exists a PPT algorithm B such that

$$|Pr[T_1] - Pr[T_2]| = Adv_{B^{\text{PKE}}}^{\text{ind-cpa}}(\lambda).$$

Proof. Assume that there exists a PPT adversary A which makes the probability $|Pr[T_1] - Pr[T_2]|$ non-negligible. Then, we can construct another PPT adversary B that breaks the IND-CPA security of the PKE with non-negligible probability, which implies the lemma. The description of B is as follows.
1. B initially receives ek, computes $(sk, vk) \leftarrow \text{SIG.KG}(1^\lambda)$, $(crs, td) \leftarrow \text{Sim}_0(1^\lambda)$, and $\text{crs}_{\Sigma} \leftarrow \text{CirS.Setup}(1^\lambda, 1^t)$, sets $L_{\text{sig}}, L_{\text{corr}}, L_{\text{key}} := \emptyset$, and runs $A(pp)$.

2. B responds to each of queries from A as follows:
 - For each query to $O_{\text{sig}}(x, C, m)$, B returns \perp if $C(x) = 0$; otherwise, it proceeds as follows:
 (i) If $\exists (x, \cdot) \notin L_{\text{key}}$, then
 (a) compute $d_x \leftarrow \text{CirS.DStr}(\text{crs}_{\Sigma}, x)$ and $\sigma_{d_x} \leftarrow \text{SIG.Sign}(sk, d_x)$;
 (b) add $(x, (d_x, \sigma_{d_x}))$ to L_{key};
 Otherwise, find $(x, sk_x) \in L_{\text{key}}$ and parse $sk_x = (d_x, \sigma_{d_x})$;
 (ii) Compute $d_C \leftarrow \text{CirS.DCir}(\text{crs}_{\Sigma}, C)$ and $(\cdot, \pi) \leftarrow \text{CirS.Prove}(\text{crs}_{\Sigma}, x, C)$;
 (iii) Query $((m, d_x, \sigma_{d_x}, \pi), 0^t)$ to the challenge oracle, where t is the length of message $(m, d_x, \sigma_{d_x}, \pi)$, and receive ctx;
 (iv) Compute $\Pi \leftarrow \text{Sim}_1((crs, td, (ek, vk, \text{crs}_{\Sigma}, d_C, x, \text{ctx}))$;
 Then, B adds (C, m) to L_{sig} and returns (ctx, Π).
 - For each query to $O_{\text{corr}}(x)$, B computes in the same way as described in the proof of Lemma 4.3.

3. When A outputs $(C^*, m^*, \Sigma^* = (\text{ctx}^*, \Pi^*))$ and terminates, B computes $d_{C^*} \leftarrow \text{CirS.DCir}(\text{crs}_{\Sigma}, C^*)$ and outputs 1 if $C^*(x) = 0$ for all $x \in L_{\text{corr}}$, $(C^*, m^*) \notin L_{\text{sig}}$, and $\text{NIZK.Ver}(\text{crs}_{\Sigma}, (ek, vk, \text{crs}_{\Sigma}, d_{C^*}, m^*, \text{ctx}^*), \Pi^*) = 1$; otherwise, it outputs 0.

The above completes the description of B. If ctx is an encryption of a message $(m, d_x, \sigma_{d_x}, \pi)$ (resp., 0^t), then B perfectly simulates Game_1 (resp., Game_2) for A. Therefore, we have $|Pr[T_1] - Pr[T_2]| = 2 \cdot \text{Adv}^{\text{ind-cpa}}_{\text{PKE}, B}(\lambda)$.

□ (Lemma 4.4)

Thirdly, we will show $Pr[T_2] \leq \text{negl}(\lambda)$, so we focus on the game Game_2 only. We consider the winning condition for A in the game Game_2. In the following, let t be the fixed total length of a message m, an attribute digest d_x, its signature σ_{d_x}, and a Circuit SNARG proof π. In addition, let $(C^*, m^*, \Sigma^* = (\text{ctx}^*, \Pi^*))$ be the A’s output of the game.

In the following, we will use the notation \star denoting that some value exists but is being ignored. We consider two events in the game as follows:

E_{sig}: is the event that there exists $(C, \star) \in L_{\text{sig}}$ such that $\text{CirS.DCir}(\text{crs}_{\Sigma}, C^*) = \text{CirS.DCir}(\text{crs}_{\Sigma}, C)$ and $C^* \neq C$.

E_{ρ}: is the event that the statement $(\star, \text{crs}_{\Sigma}, d_{C^*}, m^*, \text{ctx}^*)$ is not in the language corresponding to the NIZK relation ρ, where $d_{C^*} = \text{CirS.DCir}(\text{crs}_{\Sigma}, C^*)$.

E_{key}: is the event that there exists $x \in L_{\text{corr}}$ such that $d^* = \text{CirS.DStr}(\text{crs}_{\Sigma}, x)$, where $(\star, d^*, \star, \star) = \text{PKE.Dec}(dk, \text{ctx}^*)$.

We clearly have

$$Pr[T_2] \leq Pr[T_2 \wedge E_{\text{sig}}] + Pr[T_2 \wedge \neg E_{\text{sig}} \wedge E_{\rho}]$$
There exists a PPT algorithm Lemma 4.6.

of the NIZK scheme.

see that if \(A \) wins the game \(\text{Game} \), then it breaks the collision resistance of the circuit digest of the Circuit SNARG scheme.

Lemma 4.5. There exists a PPT algorithm \(B \) such that

\[
\Pr[T_2 \land E_{\text{sig}}] \leq \text{Adv}_{\text{circ}, B}^{\text{col}}(\lambda).
\]

Proof. Assume that there exists a PPT adversary \(A \) which makes the probability \(\Pr[T_2 \land E_{\text{sig}}] \) non-negligible. Then, we can construct another PPT adversary \(B \) that breaks the collision resistance of the circuit digest of \(\text{CirS} \) with non-negligible probability, which implies the lemma. The description of \(B \) is as follows, where \(\star \) denotes that some value exists but is being ignored.

1. \(B \) initially receives \(\text{crs}_{\text{CirS}} \), computes \((ek, dk) \leftarrow \text{PKE}(1^\lambda), (sk, vk) \leftarrow \text{SIG}.KG(1^\lambda), \) and \((\bar{crs}, td) \leftarrow \text{Sim}_0(1^\lambda)\), sets \(L_{\text{sig}}, L_{\text{corr}}, L_{\text{key}} := \emptyset \), and \(pp := (ek, vk, crs, \text{crs}_{\text{CirS}}) \), and runs \(A(pp) \).

2. \(B \) responds to each of queries from \(A \) as follows:
 - For each query to \(O_{\text{sig}}(x, C, m) \), \(B \) returns \(\bot \) if \(C(x) = 0 \); otherwise, it proceeds as follows:
 - (i) Compute \(d_C \leftarrow \text{CirS}.DCir(\text{crs}_{\text{CirS}}, C) \);
 - (ii) Compute \(\text{ctx} \leftarrow \text{PKE}.Enc(0^t) \), where \(t \) is the fixed length in \(\text{Game}_2 \);
 - (iii) Compute \(\bar{\Pi} \leftarrow \text{Sim}_1(\bar{crs}, td, (ek, vk, crs_{\text{CirS}}, d_C, m, \text{ctx})) \).
 - Then, \(B \) adds \((C, m)\) to \(L_{\text{sig}} \) and returns \((\text{ctx}, \bar{\Pi})\).
 - For each query to \(O_{\text{corr}}(x) \), \(B \) computes in the same way as described in the proof of Lemma 4.3.

3. When \(A \) outputs \((C^*, m^*, \Sigma^* = (\text{ctx}^*, \bar{\Pi}^*)) \) and terminates, \(B \) finds \(C \) such that \((C, \star) \in L_{\text{sig}} \) and \(\text{CirS}.DCir(\text{crs}_{\text{CirS}}, C) = \text{CirS}.DCir(\text{crs}_{\text{CirS}}, C^*) \). If \(B \) cannot find such \(C \), then it outputs \(\bot \); otherwise, it outputs \((C, C^*)\).

The above completes the description of \(B \). It is easy to see that \(B \) perfectly simulates the game \(\text{Game}_2 \) for \(A \). Let \(X^* = (ek, vk, crs_{\text{CirS}}, d_C^*, m^*, \text{ctx}^*) \). When the event \(E_{\text{sig}} \) occurs, \(B \) can always find \(C \) such that \((C, \star) \in L_{\text{sig}}, C \neq C^* \), and \(\text{CirS}.DCir(\text{crs}_{\text{CirS}}, C) = \text{CirS}.DCir(\text{crs}_{\text{CirS}}, C^*) \). Therefore, we have \(\Pr[T_2 \land E_{\text{sig}}] \leq \text{Adv}_{\text{circ}, B}^{\text{col}}(\lambda) \).

\(\square \) (Lemma 4.5)

Second, if the event \(E_{\text{sig}} \) never occurs but the event \(E_{\rho} \) occurs, it is easy to see that if \(A \) wins in the game \(\text{Game}_2 \), then it breaks the simulation soundness of the NIZK scheme.

Lemma 4.6. There exists a PPT algorithm \(B \) such that

\[
\Pr[T_2 \land \neg E_{\text{sig}} \land E_{\rho}] \leq \text{Adv}_{\text{NIZK}, B}^{\text{sim-sound}}(\lambda).
\]
Proof. Assume that there exists a PPT adversary \(A \) which makes the probability \(\Pr[T_2 \land \neg E_{sig} \land E_{\rho}] \) non-negligible. Then, we can construct another PPT adversary \(B \) that breaks the simulation soundness of NIZK with non-negligible probability, which implies the lemma. The description of \(B \) is as follows.

1. \(B \) initially receives \(\text{crs} \), computes \((ek, dk) \leftarrow \text{PKE}(1^\lambda) \), \((sk, vk) \leftarrow \text{SIG.KG}(1^\lambda) \), and \(\text{crs} \leftarrow \text{CirS.Setup}(1^\lambda, 1^\ell) \), sets \(L_{sig}, L_{corr}, L_{key} := \emptyset \), and \(pp := (ek, vk, \text{crs}, \text{crs} \leftarrow \text{CirS}) \), and runs \(A(pp) \).

2. \(B \) responds to each of queries from \(A \) as follows:
 - For each query to \(O_{sig}(x, C, m) \), \(B \) returns \(\perp \) if \(C(x) = 0 \); otherwise, it proceeds as follows:
 (i) Compute \(dc \leftarrow \text{CirS.DCir}(\text{crs} \leftarrow \text{CirS}, C) \);
 (ii) Compute \(c\tilde{x} \leftarrow \text{PKE.Enc}(0^t) \), where \(t \) is the fixed length in \(\text{Game}_2 \);
 (iii) Query \((ek, vk, \text{crs} \leftarrow \text{CirS}, dc, m, c\tilde{x}) \) to the simulation oracle, and receive \(\Pi \).
 Then, \(B \) adds \((C, m) \) to \(L_{sig} \) and returns \((c\tilde{x}, \Pi) \).
 - For each query to \(O_{corr}(x) \), \(B \) computes in the same way as described in the proof of Lemma 4.3.

3. When \(A \) outputs \((C^*, m^*, \Sigma^* = (c\tilde{x}^*, \Pi^*)) \) and terminates, \(B \) computes \(dc^* \leftarrow \text{CirS.DCir}(\text{crs} \leftarrow \text{CirS}, C^*) \) and outputs \(((ek, vk, \text{crs} \leftarrow \text{CirS}, dc^*, m^*, c\tilde{x}^*, \Pi^*)) \).

The above completes the description of \(B \). It is easy to see that \(B \) perfectly simulates the game \(\text{Game}_2 \) for \(A \). Let \(X^* = (ek, vk, \text{crs} \leftarrow \text{CirS}, dc^*, m^*, c\tilde{x}^*, \Pi^*) \). When the event \(E_{\rho} \) occurs, we have \(X^* \notin L_{\rho} \), where \(L_{\rho} := \{ x \mid \exists w \text{ s.t. } (x, w) \in \rho \} \). On the other hand, when \(A \) wins, we have \(\text{NIZK.Ver}(\text{crs}, X^*, \Pi^*) = 1 \). In addition, \(X^* \) is never queried to the simulation oracle from the following reason: if \((\star, m^*) \notin L_{sig} \), then \(X^* \) is never queried; otherwise, there is no \(C \) such that \((C, m^*) \in L_{sig} \) and \(\text{CirS.DCir}(\text{crs} \leftarrow \text{CirS}, C) = \text{CirS.DCir}(\text{crs} \leftarrow \text{CirS}, C^*) \) since the event \(E_{sig} \) never occurs and we have \((C^*, m^*) \notin L_{sig} \) due to the winning condition for \(A \). Therefore, we have \(\Pr[T_2 \land \neg E_{sig} \land E_{\rho}] \leq \text{Adv}_{\text{NIZK}, B}^{\text{round}}(\lambda) \).

\(\square \) (Lemma 4.6)

Third, if the events \(E_{sig} \) and \(E_{\rho} \) never occur but the event \(E_{key} \) occurs, \(A \) must generate a circuit SNARG proof that passes the verification of the Circuit SNARG. However, we have \(C^*(x) = 0 \) for all \(x \in L_{corr} \) when \(A \) wins the game. Therefore, to win the game, \(A \) has to break the soundness of the CirS scheme.

Lemma 4.7. There exist PPT algorithms \(B \) such that
\[
\Pr[T_2 \land \neg E_{sig} \land \neg E_{\rho} \land E_{key}] \leq \text{Adv}_{\text{CirS}, B}^{\text{round}}(\lambda).
\]

Proof. Assume that there exists a PPT adversary \(A \) which makes the probability \(\Pr[T_2 \land \neg E_{sig} \land \neg E_{\rho} \land E_{key}] \) non-negligible. Then, we can construct another PPT adversary \(B \) that breaks the soundness of CirS with non-negligible probability, which implies the lemma. The description of \(B \) is as follows, where \(\star \) denotes that some value exists but is being ignored.
1. \mathcal{B} initially receives crs_{cirS}, computes $(ek, dk) \leftarrow \text{PKE}(1^\lambda), (sk, vk) \leftarrow \text{SIG.KG}(1^\lambda)$, and $(\text{crs}, td) \leftarrow \text{Sim}_0(1^\lambda)$, and sets $L_{\text{sig}}, L_{\text{corr}}, L_{\text{key}} = \emptyset$, and $pp := (ek, vk, \text{crs}, \text{crs}_{\text{cirS}})$, and runs $\mathcal{A}(pp)$.

2. \mathcal{B} responds to each of queries from \mathcal{A} in the same way as described in the proof of Lemma 4.5.

3. When \mathcal{A} outputs $(C^*, m^*, \Sigma^* = (\text{ctx}^*, \Pi^*))$ and terminates, \mathcal{B} computes $(m^*, d^*, \sigma_\mathcal{F}, \pi^*) \leftarrow \text{PKE-Dec}(dk, \text{ctx}^*)$ and finds x^* such that $(x^*, (d^*, \star)) \in L_{\text{key}}$. If \mathcal{B} cannot find such x^*, then it outputs ⊥; otherwise, it outputs $(x^*, C^*, 1, \pi^*)$.

The above completes the description of \mathcal{B}. It is easy to see that \mathcal{B} perfectly simulates the game Game_2 for \mathcal{A}. Let $X^* = (ek, vk, \text{crs}_{\text{cirS}}, d_{C^*}, m^*, \text{ctx}^*)$. When the event E_{key} occurs, \mathcal{B} can always find x^* such that $(x^*, (d^*, \star)) \in L_{\text{key}}$. On the other hand, when \mathcal{A} wins, we have $C^*(x) = 0$ for all $(x, \star) \in L_{\text{key}}$ since $\{x \mid x \in L_{\text{corr}}\} = \{x \mid (x, \star) \in L_{\text{key}}\}$ from the above description of \mathcal{B}. We also have $\text{CirS.Ver}(\text{crs}_{\text{cirS}}, d^*, d_{C^*}, 1, \pi^*) = 1$ since we have $X \in L_{\mathcal{F}}$ and both d^* and d_{C^*} are calculated deterministically. Therefore, we have $\Pr[T_2 \land \neg E_{\text{sig}} \land \neg E_{\mathcal{F}} \land E_{\text{key}}] \leq \text{Adv}_{\text{CirS}, \mathcal{B}}^{\text{Euf-cma}}(\lambda)$. □ (Lemma 4.7)

Finally, if all the events $E_{\text{sig}}, E_{\mathcal{F}},$ and E_{key} never occur, \mathcal{A} must generate a valid signature for d_{x^*}. Thus, if \mathcal{A} wins, then it breaks the EUF-CMA security of the signature scheme.

Lemma 4.8. There exists a PPT algorithm \mathcal{B} such that

$$\Pr[T_2 \land \neg E_{\text{sig}} \land \neg E_{\mathcal{F}} \land \neg E_{\text{key}}] \leq \text{Adv}_{\text{SIG}, \mathcal{B}}^{\text{Euf-cma}}(\lambda).$$

Proof. Assume that there exists a PPT adversary \mathcal{A} which makes the probability $\Pr[T_2 \land \neg E_{\text{sig}} \land \neg E_{\mathcal{F}} \land \neg E_{\text{key}}]$ non-negligible. Then, we can construct another PPT adversary \mathcal{B} that breaks the EUF-CMA security of SIG with non-negligible probability, which implies the lemma. The description of \mathcal{B} is as follows.

1. \mathcal{B} initially receives vk, computes $(ek, dk) \leftarrow \text{PKE}(1^\lambda), (\text{crs}, td) \leftarrow \text{Sim}_0(1^\lambda)$, and $\text{crs}_{\text{cirS}} \leftarrow \text{CirS.Setup}(1^\lambda, 1^\ell)$, and sets $L_{\text{sig}}, L_{\text{corr}}, L_{\text{key}} := \emptyset$, and $pp := (ek, vk, \text{crs}, \text{crs}_{\text{cirS}})$, and runs $\mathcal{A}(pp)$.

2. \mathcal{B} responds to each of queries from \mathcal{A} as follows, where \star denotes that some value exists but is being ignored:

- For each query to $O_{\text{sig}}(x, C, m)$, \mathcal{B} computes in the same way as described in the proof of Lemma 4.5.

- For each query to $O_{\text{corr}}(x)$, \mathcal{B} computes as follows:
 - If $\exists(x, \star) \notin L_{\text{key}}$, then \mathcal{B} proceeds as follows:
 - Compute $d_x \leftarrow \text{CirS.DStr}(\text{crs}_{\text{cirS}}, x)$;
 - Query d_x to the signing oracle and receive σ_{d_x};
 - Set $sk_x := (d_x, \sigma_{d_x})$, and add (x, sk_x) to $L_{\text{key}}.$
- Otherwise, \(B\) finds \((x, sk_x) \in L_{key}\).

Then, \(B\) adds \(x\) to \(L_{corr}\) and returns \((d_x, \sigma_{d_x})\).

3. When \(A\) outputs \((C^*, m^*, \Sigma^* = (\text{ctx}^*, \Pi^*))\) and terminates, \(B\) computes \((m^*, d^*, \sigma_{d^*}, \pi^*) \leftarrow \text{PKE}.\text{Dec}(d_k, \text{ctx}^*)\) and outputs \((d^*, \sigma_{d^*})\).

The above completes the description of \(B\). It is easy to see that \(B\) perfectly simulates the game \(\text{Game}_2\) for \(A\). Let \(X^* = (ek, vk, \text{crs}_{\text{Sig}}, dC^*, m^*, \text{ctx}^*)\). Since the event \(E_{key}\) never occurs, \(B\) never queries \(d^*\) to the signing oracle in the EUF-CMA security experiment. On the other hand, when \(A\) wins, \(\text{SIG}.\text{Ver}(vk, d^*, \sigma_{d^*}) = 1\) since we have \(X \in L_{\rho}\). Therefore, we have

\[
\Pr[T_2 \land \neg E_{\text{sig}} \land \neg E_{\rho} \land \neg E_{key}] \leq \text{Adv}_{\text{SIG},B}^{\text{euf-cma}}(\lambda).
\]

\(\square\) (Lemma 4.8)

Theorem 4.2 now follows immediately from Lemmata 4.3 to 4.8.

\(\square\) (Theorem 4.2)

Acknowledgement. This work was partially supported by JSPS KAKENHI Grant Number JP23KJ0548.

References

