
IACR Transactions
ISSN XXXX-XXXX, Vol. 0, No. 0, pp. 1–23. DOI:XXXXXXXX

Grafted Trees Bear Better Fruit: An Improved
Multiple-Valued Plaintext-Checking Side-Channel

Attack against Kyber

Jinnuo Li1, Chi Cheng1,�, Muyan Shen2, Peng Chen1, Qian Guo3,
Dongsheng Liu4, Liji Wu5 and Jian Weng6

1 Hubei Key Laboratory of Intelligent Geo-Information Processing, School of Computer Science,
China University of Geosciences, Wuhan, China

2 School of Cryptology, University of Chinese Academy of Sciences, Beijing, China
3 Lund University, Lund, Sweden

4 Huazhong University of Science and Technology, Wuhan, China
5 School of Integrated Circuits, Tsinghua University, Beijing, China

6 College of Cyber Security, Jinan University, Guangzhou, China
chengchi@cug.edu.cn

Abstract. As a prominent category of side-channel attacks (SCAs), plaintext-checking
(PC) oracle-based SCAs offer the advantages of generality and operational simplicity on
a targeted device. At TCHES 2023, Rajendran et al. and Tanaka et al. independently
proposed the multiple-valued (MV) PC oracle, significantly reducing the required
number of queries (a.k.a., traces) in the PC oracle. However, in practice, when dealing
with environmental noise or inaccuracies in the waveform classifier, they still rely on
majority voting or the other technique that usually results in three times the number
of queries compared to the ideal case.
In this paper, we propose an improved method to further reduce the number of
queries of the MV-PC oracle, particularly in scenarios where the oracle is imperfect.
Compared to the state-of-the-art at TCHES 2023, our proposed method reduces
the number of queries for a full key recovery by more than 42.5%. The method
involves three rounds. Our key observation is that coefficients recovered in the
first round can be regarded as prior information to significantly aid in retrieving
coefficients in the second round. This improvement is achieved through a newly
designed grafted tree. Notably, the proposed method is generic and can be applied
to both the NIST key encapsulation mechanism (KEM) standard Kyber and other
significant candidates, such as Saber and Frodo. We have conducted extensive software
simulations against Kyber-512, Kyber-768, Kyber-1024, FireSaber, and Frodo-1344 to
validate the efficiency of the proposed method. An electromagnetic attack conducted
on real-world implementations, using an STM32F407G board equipped with an ARM
Cortex-M4 microcontroller and Kyber implementation from the public library pqm4,
aligns well with our simulations.
Keywords: NIST post-quantum cryptography standardization · Lattice-based cryp-
tography · Kyber · Side-channel attacks · multiple-valued plaintext-checking
oracle.

1 Introduction
With the advent of quantum computing, mathematical problems integral to current public-
key cryptographic systems, such as integer factorization or discrete logarithms, will be

Licensed under Creative Commons License CC-BY 4.0.

https://doi.org/XXXXXXXX
mailto:chengchi@cug.edu.cn
http://creativecommons.org/licenses/by/4.0/

2 Grafted Trees Bear Better Fruit: An Improved MV-PC SCA against Kyber

efficiently solved by Shor’s algorithm [Sho99]. Recognizing this threat, in 2016, the National
Institute of Standards and Technology (NIST) initiated the standardization process for
post-quantum cryptography (PQC), seeking candidates conjectured to resist both classical
and quantum attacks [Moo16].

Lattice-based cryptographic algorithms constitute a significant portion of several
rounds of NIST selection. Among them, CRYSTALS-Kyber [ABD+19], which is based
on the Module Learning with Errors (M-LWE) problem, was ultimately selected for
standardization of public-key encryption (PKE) or key encapsulation mechanism (KEM)
in July 2022 [AAC+22]. As a consequence, in August 2023, NIST released FIPS 203 ML-
KEM, a draft standard that adopts CRYSTALS-Kyber as the cornerstone [NIS23]. More
recently, Kyber has been integrated into the transition to quantum-resistant cryptography
at Google. This strategic move positions traffic on the Google Chrome browser to support
a hybrid mechanism named X25519Kyber-768, combining the use of both conventional
Elliptic Curve Cryptography X25519 and Kyber-768.

Given the anticipated widespread implementation of CRYSTALS-Kyber across diverse
computational platforms and applications, it is imperative to assess its implementation
security comprehensively. This evaluation includes a thorough examination of vulnerability
to Side-Channel Attacks (SCAs). Initially introduced by Kocher in 1996 [Koc96], SCAs
exploit various types of leaked information, such as timing, cache timing, power consumption
or electromagnetic emanation, to glean information about the long-term secret key or
message in cryptographic algorithms.

In the design of LWE-based NIST PQC PKEs/KEMs, a common approach is to
utilize the Fujisaki-Okamoto (FO) transformation [FO99]. This involves starting with a
construction secure against chosen plaintext attacks (CPA) and then transforming it to be
secure against chosen ciphertext attacks (CCA). A prominent research focus has been to
identify and mitigate side-channel leakages that could compromise the CCA protection
offered by the FO transformation.

1.1 Related works
SCAs against CCA-secure KEMs. NIST explicitly encourages further research
into the security analysis of post-quantum cryptographic schemes against SCAs, aligning
with the need to fortify cryptographic systems against potential threats. In line with this
concept, numerous SCAs against CCA-secure KEMs have been proposed, such as those in
[DTVV19, GJN20, RRCB20, NDGJ21, HHP+21, GNNJ23]. These attacks vary in their
models, making differences in the difficulties of mounting such attacks and the baseline of
attacking sample complexities (i.e., the required number of queries or traces). The first type
of adversary model, known as the plaintext-checking (PC) oracle, operates by comparing
the decrypted message to a predetermined value [RRCB20, UXT+22]. In this attack model,
the adversary gains 1 bit of information about the secret key with each query, gradually
recovering the entire secret key. The second attack model is referred to as the decryption-
failure (DF) oracle. It operates by exploiting a decryption failure correlated with the value of
the secret key, which is particularly effective against the non-constant-time implementation
of the algorithms [GJN20, BDH+21, DHP+21]. These two types of attacks gain limited
information from each query, making them more generic. Yet another adversary model, the
full-decryption (FD) oracle, exploits specific leaky operations of the decryption algorithm
to further reduce the sample complexities [XPSR+21, NDGJ21]. Attacks based on the FD
oracle require fewer traces and are thus more efficient. However, the operations vulnerable
to FD oracle exploitation are relatively rapid compared to the whole re-encryption process
targeted in other attack types. Consequently, implementing countermeasures against the
PC oracle-based attacks could result in a substantially significant performance detriment.

Parallel variant of the PC oracle. The concept of the parallel PC oracle or
Multiple-valued (MV) PC oracle is first introduced at TCHES 2023. These works were

J. Li et al. 3

motivated by the following observations: the binary PC oracle-based attack extracts only
a single bit of information from an extensive leakage trace of the entire re-encryption
process, which incorporates thousands of leakage points. These points in the power traces
leak partial secret information. Thus, there is a potential to uncover multiple bits from a
single trace, significantly enhancing attack efficiency. To strike a balance, the parallel PC
oracle is introduced. It stands between the PC oracle-based and FD oracle-based attacks
in terms of trace requirements: it needs fewer traces than the binary PC oracle-based
attack (hundreds instead of thousands) but more than the FD oracle-based attack (which
requires only a few). The MV-PC oracle-based attack deserves special attention for its
generic feature and the significant challenges it presents in deploying countermeasures, a
characteristic it shares with the binary PC oracle-based attack. In [RRD+23], Rajendran
et al. use an improved method to construct ciphertexts, allowing the recovery of an
arbitrary P number of bits of information in a single query. They applied this attack to the
Kyber KEM, investigating various attack scenarios such as the existence of a clone device.
The results showed a 2.89 to 7.65 times acceleration compared to binary PC oracle-based
attacks. Another work proposed by Tanaka et al. uses a similar method but adopts a
neural network for the multi-classification of side-channel leakage [TUX+23]. They reduce
attack queries for dependable key recovery by as much as 87%, compared to existing binary
PC oracle-based attacks against Kyber and other lattice-based KEMs.

Robust recovery in practical settings. A significant consideration in implementing
these SCAs in real-world scenarios is the presence of environmental noise or inaccuracies in
the waveform classifier. These factors potentially introduce errors into the oracle responses,
compromising the integrity of the recovered secret key. To address this issue, a widely
adopted method is majority voting. For example, in [RRCB20], Ravi et al. employ a
strategy of three-vote majority voting for each oracle response, resulting in three times
the total queries compared with its theoretically estimated sample complexity. A more
advanced approach is to use techniques like negative-log likelihood (NLL) to improve the
accuracy of the oracle, especially when the waveform classifier is constructed using deep
learning [ISUH21, UXT+22, TUX+23].

In these works, a practical key recovery is initiated by first establishing a reliable or
near-perfect oracle, operating under the assumption of an ideal environment. At TCHES
2023, Shen et al. introduce an alternative method for real-world binary PC attack [SCZ+23],
conducting key recovery with a newly proposed error detection method. The fundamental
idea involves generating and querying special ciphertexts to detect the positions of error
coefficients. Notably, their method reduces 45.9% to 55.4% of total number of traces
compared with the attack in [UXT+22] against Kyber512.

However, how to efficiently deal with errors in the responses of MV-PC oracle is still
unsolved. The performance of using NLL, as described in [TUX+23], is superior to that of
majority voting. But it typically leads to three times the number of queries compared to
the ideal scenario in which no errors occur. A direct observation is that: Can we integrate
the error detection method into the MV-PC oracle to further reduce the number of queries?
We indicate that such a combination is non-trivial and challenging. This is because the
ciphertext generation method for parallel key recovery is not compatible with Shen et
al.’s approach. In this paper, we aim to propose a new approach to efficiently locating
and correcting error coefficients in the MV-PC oracle, especially when the channel is not
perfect. The primary objective of our approach is to facilitate parallel key recovery while
substantially minimizing the number of queries needed.

1.2 Contributions
The principal contributions of this study are:

• We propose an efficient MV-PC oracle-based side-channel attack against Kyber,

4 Grafted Trees Bear Better Fruit: An Improved MV-PC SCA against Kyber

designed for an imperfect oracle. Our innovative approach involves a novel method
for efficient detection and correction of errors in the MV-PC oracle. There are 3
rounds in our improved method. In round 1, a parallel key recovery is executed. Our
key observation is that the coefficients recovered in the first round can be regarded as
prior information to facilitate key recovery in the second round. As a result, in the
second round, we can considerably decrease the number of queries required through
a newly created grafted tree. The grafted tree is designed to enable retrieval of each
coefficient in nearly two queries. Compared to the latest attack [TUX+23][RRD+23]
at TCHES 2023, our proposed attack reduces the number of queries for a full key
recovery by more than 42.5%.

• We center our research on Kyber, recognized as the primary future NIST KEM
standard. Notably, our method is generic: It is also applicable to similar schemes, such
as Saber and Frodo, two LWE/LWR-based candidates from the second/third rounds
of the NIST PQC competition. Our extensive experiments cover all security levels of
Kyber (Kyber-512, Kyber-768, Kyber-1024), FireSaber, and Frodo-1344. We base the
MV-PC oracle on a multiple-classification neural network model. Further, we validate
our proposed method in real-world scenarios by conducting an electromagnetic attack
on an STM32F407G board equipped with an ARM Cortex-M4 microcontroller and
Kyber implementation from the publicly available testing and benchmarking library
pqm4. The results from the real-world implementation align well with our prior
simulations.

• In high-noise environments, we have enhanced our method to fit such scenarios. Fur-
ther analysis reveals that compared to majority voting, our method can decrease the
number of queries by 29.4% and 22.8% at an accuracy of 95% and 90%, respectively.
This underscores the versatility and effectiveness of our approach.

1.3 Organizations
We present the background of Kyber and MV-PC oracle in Section 2. Our new method
and the analysis of our attacks are presented in Section 3 and Section 4, respectively.
Finally, we conclude our paper in Section 5.

2 Background

2.1 Kyber
Kyber operates over the polynomial ring Rq = Zq[x]/(xn + 1), where q = 3329 is a
prime modulo, and n = 256. Each coefficient ai of the polynomial f(x) = a0 + a1x +
... + an−1xn−1 ∈ Rq belongs to Zq for 0 ≤ i ≤ n − 1, with Zq representing the ring of
integers modulo q. All polynomial operations, including additions and multiplications, are
performed modulo xn + 1. We use a bold lower-case letter a ∈ Rq and its vector form
(a[0], . . . , a[n− 1]) interchangeably to represent a polynomial.

The security of Kyber is based on the M-LWE problem. In linear algebra, solving for
s in the equation b = As is a straightforward process. Here, A is a matrix, and both b
and s are vectors. However, the LWE problem indicates that the addition of even small
coefficients of noise can render the recovery of b = As + e challenging. As a variant of
the LWE problem, the M-LWE problem is to distinguish (A, B = As + e) ∈ Rl×l

q ×Rl
q

from uniformly selected (A, B) ∈ Rl×l
q × Rl

q. The parameter l is set to be 2, 3, or 4,
which corresponds to three different security levels in Kyber: Kyber-512, Kyber-768, and
Kyber-1024, respectively.

J. Li et al. 5

In Kyber, all the secret key coefficients and error vectors are sampled from a centered
binomial distribution Bη, where Bη represents the centered binomial distribution with
parameter η. They can be generated by

∑η
i=1(ai − bi). Here ai and bi are uniformly

random samples independently selected from {0, 1}. The value of η is different in three
security levels, i.e., η = 3 in Kyber 512 and η = 2 in Kyber 768 and Kyber 1024.

Algorithm 1 KYBER.CCA KEM
KYBER.KEM.KeyGen

Output: sk′, pk
1: Generate a pseudo-random coin z
2: ◦ KYBER.CPA.KeyGen
3: A $←− Rl×l

q , s, e $←− Bl
η1

4: b := AT s + e
5: sk = s, pk := (A, b)
6: sk′ := (sk||pk||H(pk)||z)

KYBER.CCA.Encaps
Input: pk
Output: ct, K

1: m $←− {0, 1}256

2: (K̄, r) = G(m,H(pk))
3: ◦ KYBER.CPA.Enc(pk, m, r)
4: r, e1, e2

$←− Bl
η2

5: u = AT r + e1
6: v = bT r + e2 + DeCompq(m, 1)
7: c1 := Compq(u, du)
8: c2 := Compq(v, dv)
9: ct := (c1, c2)

10: K := KDF(K̄,H(ct))

KYBER.CCA.Decaps
Input: sk′, ct
Output: K

1: ◦ KYBER.CPA.Dec(sk, ct)
2: u′ = DeCompq(c1, du)
3: v′ = DeCompq(c2, dv)
4: m′ = Compq(v′ − sT u′, 1)
5: (K̄ ′, r′) = G(m′,H(pk))
6: ct′ = KYBER.CPA.Enc(pk, m′, r′)
7: if ct = ct′ then
8: K := KDF(K̄ ′,H(ct))
9: else

10: K := KDF(z,H(ct))
11: end if

Let⌊x⌋ denote the maximum integer not exceeding x, and ⌈x⌋ is the rounding function,
i.e. ⌈x⌋ =

⌊
x + 1

2
⌋
. In the following, we first give the definitions of two functions:

Compq(x, d) and DeCompq(x, d).

Definition 1. The Comp function: Zq → Z2d :

Compq(x, d) =
⌈
(2d/q) · x

⌋
(mod 2d). (1)

Definition 2. The DeComp function: Z2d → Zq:

DeCompq(x, d) =
⌈
(q/2d) · x

⌋
. (2)

In Compq(x, d) and DeCompq(x, d) the input x is selected from Zq. Likewise, when
the input is a polynomial, the above operation will be performed separately for each
coefficient.

Similarly, in Compq(x, d) and DeCompq(x, d), the value of d is set as du or dv for
the different security levels of Kyber. In Table 1, we summarize the main parameters.

Typically, a KEM consists of three parts: key generation, encapsulation, and decapsula-
tion. The CCA-secure Kyber KEM is constructed from a simple CPA-secure PKE, which
can be divided into KYBER.CPA.KeyGen, KYBER.CPA.Enc and KYBER.CPA.Dec.
The process of transforming a CPA-secured PKE into a CCA-secure KEM is based on
Fujisaki-Okamoto transform and its variants. Two hash functions G(·) and H(·) are used
in the encapsulation and decapsulation process, and KDF(·) denotes a key-derivation

6 Grafted Trees Bear Better Fruit: An Improved MV-PC SCA against Kyber

Table 1: Parameter sets of Kyber
Schemes n d q η du dv

Kyber-512 256 2 3329 3 10 4
Kyber-768 256 3 3329 2 10 4
Kyber-1024 256 4 3329 2 11 5

function. The main parts of Kyber encapsulation and decapsulation, ignoring some details
such as number-theoretic transformations (NTTs), are depicted in Algorithm 1.

The following discusses the PC oracle and the corresponding MV-PC oracle.

2.2 From PC oracle to MV-PC oracle

2.2.1 PC oracle

Algorithm 2 PC oracle and the corresponding attack
PC oracle O

Input: ct, m
Output: 0 or 1

1: m′ ← KYBER.CPA.Dec(sk, ct))
2: if m = m′ then
3: Return 1
4: else
5: Return 0
6: end if

PC oracle based attack
Input: PC oracle O
Output: Secret s

1: for i = 0→ l − 1 do
2: for j = 0→ n− 1 do
3: Set response sequence seq ← “”
4: while si[j] cannot be recovered

from seq do
5: Generate ct according to seq
6: Append O(ct, m) to seq
7: end while
8: Set si[j] according to seq
9: end for

10: end for
11: Return s

In this paper, we take into consideration a chosen-ciphertext attack against FO trans-
formation with the help of side-channel leakages, which can be modeled as the well-known
PC oracle-based attack [RRCB20]. In a PC oracle, there is an honest user Alice who
implements Kyber on her devices for key establishment. An adversary Eve acts as a valid
user Bob to negotiate shared keys with Alice. The adversary sends a series of well-chosen
ciphertexts to Alice and exploits side-channel leakage to help recover Alice’s secret key sk.
To be specific, in a PC oracle, for chosen ciphertext ct and message m, the oracle tells
whether the decrypted m′ (line 4 in KYBER.CCA.Encaps) equals m or not. This
process is depicted in Algorithm 2. Since m and m′ determine the final key K, we can
also know whether the keys generated by the two parties match or not. Hence, a PC
oracle-based attack is also called the key mismatch attack [QCZ+21].

In the following, we take Kyber-1024 as an example to introduce the PC oracle-based
attack. Assume Alice’s secret key is s = (s0, s1). At first Eve sets reference plaintext
m = (1, 0, . . . , 0), u = (⌈q/32⌋ , 0, · · · , 0) and c2 = (k, 0, . . . , 0), where k ∈ Zq is a parameter
used to help recover the secret key. Then, Eve computes c1 = Compq(u, du) and packs c1
and c2 into ct and sends it to Alice. With (c1, c2), Alice computes u′ = DeCompq(c1, du)
and v′ = DeCompq(c2, dv) = (⌈(q/32)k⌋ , 0, · · · , 0). Alice goes on calculating m′, and

J. Li et al. 7

the relationship between m′[0] and s0[0] can be built as follows:

m′[0] = Compq((v− sT
0 u)[0], 1) (3)

=
⌈
(2/q)

(
v[0]− (sT

0 u)[0]
)⌋

mod 2 (4)
= ⌈(2/q)(v[0]− s0[0]u[0])⌋ mod 2 (5)
= ⌈(2/q) (⌈(q/32)k⌋ − s0[0] ⌈q/32⌋)⌋ mod 2. (6)

We can see that the value of m′[0] relies only on k and s0[0]. Similarly, for i ≥ 1,
m′[i] = ⌈(2/q) (0− s0[i] ⌈q/32⌋)⌋ mod 2. Recall that in Kyber-1024, coefficients are
chosen from interval [-2, 2], s0[i] at most takes the value 2, we have

(2/q) (s0[i] ⌈q/32⌋) ≈ 0.125 < 1/2. (7)

That is, for i ≥ 1, m′[i] = 0. Hence, whether m = m′ is totally determined by the
value of m′[0]. To be specific, m = m′ (the oracle outputs 1) if and only if m′[0] = 1.
By choosing different k and inputting the corresponding ct into the oracle, we can get a
sequence seq consisting of the corresponding outputs of the oracle. This sequence can
directly correspond to a coefficient value.

Table 2: The value of m′[0] corresponding to different k and s0[0]
s0[0] = −2 s0[0] = −1 s0[0] = 0 s0[0] = 1 s0[0] = 2

k = 7 1 0 0 0 0
k = 8 1 1 0 0 0
k = 9 1 1 1 0 0
k = 10 1 1 1 1 0

As indicated in Table 2, for each coefficient s0[0] within the range [−2, 2], we can pre-
calculate the relationship between k and m′[0]. Subsequently, by constructing a specialized
ciphertext ct and making multiple queries to the oracle, the adversary can progressively
narrow down the possible values for s0[0], eventually obtaining its precise value. Within an
iteration, u remains fixed, and the value of k is adjusted based on the responses received
from the PC oracle. Consequently, if k is appropriately chosen, as illustrated in Table 3,
the attacker could efficiently recover s0[0] with a minimal number of queries.

Table 3: Selection of parameters and the corresponding States
State 1 State 2 State 3 State 4
k = 8 k = 9 k = 10 k = 7

O → 0 State 2 State 3 s0[0] = 2 s0[0] = −1
O → 1 State 4 s0[0] = 0 s0[0] = 1 s0[0] = −2

2.2.2 BRT for PC oracle

In Table 3, we present an illustration of adaptive ciphertext selection, a process derived
from [QCZ+21]. In their work, Qin et al. introduced the concept of the binary recovery
tree (BRT), which serves as a common framework for explaining both binary PC oracle
and MV-PC oracle concepts. The BRT serves as a visual representation of the adaptive
selection of ciphertext based on oracle responses. It is structured as a rooted binary tree
comprising a single root node and n-leaf nodes, where each leaf node corresponds to an
element from the set of coefficients of Kyber. For Kyber-1024 and Kyber-768 the set is {-2,
-1, 0, 1, 2} and for Kyber-512 the set is {-3, -2, -1, 0, 1, 2, 3}. For each node with children,

8 Grafted Trees Bear Better Fruit: An Improved MV-PC SCA against Kyber

denote by 1 its left child and by 0 its right child, where 0 and 1 correspond to the response
of the oracle. Here, in the context of a BRT, the depth represents the number of steps or
hops from a leaf node to the root node. It signifies the cumulative number of queries made
during the process. The BRT is constructed with the help of Huffman coding, i.e., the
higher the probability of occurrence of a secret coefficient, the fewer number of queries
(lower depth in the BRT) it will require to uniquely distinguish it.

For PC oracle-based attack against Kyber-1024, the BRT on the left side of Figure 1
aligns with the information presented in Table 3. Note that the BRT for Kyber-1024 is
not uniquely determined, and we can find two such trees with the same number of queries.

[-2, -1, 0, 1, 2]

[-2, -1, 0]

0 1 2[-2, -1]

-2 -1

[1, 2]

[-2, -1, 0, 1, 2]

[0, 1, 2][-2, -1]

0-2 -1 [1, 2]

1 2

1

1 1

1

1

1

1

1

0

00

0

0

00

0

Figure 1: BRTs in PC oracle-based attack against Kyber-1024

2.2.3 MV-PC oracle

The PC oracle demands an extensive number of traces due to the limited information
an attacker obtains with each query. Specifically, only one bit of information is garnered
per query to the oracle. To further reduce the traces, Rajendran et al. [RRD+23] and
Tanaka et al. [TUX+23] have proposed the concept of parallel PC oracle or MV-PC oracle,
independently. In an MV-PC oracle, it is possible to recover a set of N bits of information
about the secret key in a single query.

The core idea of MV-PC oracle is to construct special ciphertexts such that the first N
bits of m′ depend on the N corresponding coefficients of the secret key. Specifically, Eve
selects u = (⌈q/32⌋ , 0, · · · , 0), and c2 = (k0, k1, · · · , kN−1, 0, · · · , 0) , then Eve compresses
c1 = Compq(u, du) and sends ct := (c1, c2) to Alice. With received ct, Alice decompresses
u = DeCompq(c1, du) and v = DeCompq(c2, dv). Similar to the analysis in (6) and (7),
Alice decrypts and gets:

m′[i] =
{
⌈(2/q) (⌈(q/32)ki⌋ − s0[i] ⌈q/32⌋)⌋ mod 2, i = 0, . . . , N − 1,

⌈(2/q) (0− s0[i] ⌈q/32⌋)⌋ mod 2 = 0, i ≥ N.
(8)

With the parallelization factor N , the ciphertext ct can be decrypted to one of the 2N

J. Li et al. 9

known plaintexts, which can be expressed as follows:

m0 = (0, 0, 0, · · · , 0︸ ︷︷ ︸
N bits

0, 0, 0, · · · , 0︸ ︷︷ ︸
256−N bits

)

m1 = (1, 0, 0, · · · , 0︸ ︷︷ ︸
N bits

0, 0, 0, · · · , 0︸ ︷︷ ︸
256−N bits

)

m2 = (0, 1, 0, · · · , 0︸ ︷︷ ︸
N bits

0, 0, 0, · · · , 0︸ ︷︷ ︸
256−N bits

)

· · ·
m2N −1 = (1, 1, 1, · · · , 1︸ ︷︷ ︸

N bits

0, 0, 0, · · · , 0︸ ︷︷ ︸
256−N bits

)

Similarly, we need to adjust our strategy to employ a parallel approach in an SCA-
assisted chosen ciphertext attack. First, the waveforms generated during the decryption
process are collected to train a multiple-valued classifier. We useW0, · · · ,W2N −1 to denote
different waveforms corresponding to m0, · · · , m2N −1, respectively.

Then, for each attack, the waveform W generated in the hash function G(·) is collected
and classified as one of W0, · · · ,W2N −1. The formula W =Wi means that W is classified
to Wi and the attacker will be able to derive m′ generated in KYBER.CCA.Decaps,
which is equal to mi. The specific approach is described in Algorithm 3.

Algorithm 3 MV-PC oracle and the corresponding attack
MV-PC oracle Omv

Input: Ciphertext ct
Input: Reference plaintexts m
Output: m′

1: W ← SCA(KYBER.CCA.Decaps(sk′, ct))
2: for i= 0 to 2N−1 do
3: if W =Wi then
4: m′ = mi

5: Return m′

6: end if
7: end for

MV-PCAttack
Input: MV-PC oracle Omv

Output: Secret key s

1: for i = 0→ l − 1 do
2: for j = 0→ (256/N)− 1 do
3: Set response sequence seq ← “”
4: while block si[j ∗ N], · · · , si[j ∗

N + N − 1] cannot be fully recovered
from seq do

5: Generate ct according to seq
6: Append Omv(ct, m) to seq
7: end while
8: Set the values of the block accord-

ing to seq
9: end for

10: end for
11: Return Recovered s

2.2.4 BRT for MV-PC oracle

In an MV-PC oracle, the BRT used in the PC oracle may not be the optimal choice. This is
because, in this scenario, we aim to recover N coefficients simultaneously, and the number
of queries needed depends on the coefficient with the maximum depth. Here, depth refers
to the position of the leaf node corresponding to the coefficient in the BRT.

For a set of N-tuple coefficients {s0, s1, s2, · · · , sN−1}, if all the coefficients belong
to {0, 1, 2}, the MV-PC oracle-based parallel recovery can be completed in two queries.
However, if there are coefficients belonging to {−1,−2}, the parallel recovery for this
N-tuple must be accomplished in 3 queries. For Kyber512, Rajendran et al. have proposed
to adopt a more balanced BRT. As illustrated in Figure 2, the maximum depth on the left
BRT is 4, while on the right, the maximum depth has decreased to 3. But this adjustment
is only valid for Kyber-512. For Kyber-1024, and Kyber-768, the BRT in Figure. 1 cannot
be more balanced.

10 Grafted Trees Bear Better Fruit: An Improved MV-PC SCA against Kyber

[-3, -2, -1, 0, 1, 2, 3]

[-3, -2, -1, 0] [1, 2, 3]

-1

1[-3, -2]

-3 -2

[-1, 0]

0

[2, 3]

2 3

[-3, -2, -1, 0, 1, 2, 3]

[-3, -2, -1, 0] [1, 2, 3]

-3

1[-3, -2, -1]

-1[-3, -2]

-2

[2, 3]

2 3

0

1

1

1

1

1

1

0

00

0

0

0

0

0

00

0

0

1

1

1

1

11

Figure 2: For Kyber-512, the optimal BRT in PC oracle (left) and a more balanced BRT
for MV-PC oracle (right).

3 Challenges and our new method

3.1 Challenges from noises and our observations
Recall that both the PC oracle and MV-PC oracle are instantiated with side-channel
attacks. In practice, the accuracy of the oracle may be influenced by environmental
noises and the need to protect against side-channel attacks, such as shuffling and masking.
Furthermore, the performance of the classifier itself can also impact accuracy, especially
for the MV-PC oracle, since 2N (where N > 1) classifications are more complex than
binary classification, which can lead to lower accuracy. For example, in [TUX+23], they
compare the results using NLL technique with a 9-round majority voting in their attack
when N > 6. Even with NLL, the resulting number of queries usually reaches three times
the number of that in the ideal case.

When the retrieved results contain errors, the traditional approach is to use majority
voting, which leverages multiple inference results to improve the accuracy of the classifier
further. For an oracle with accuracy α, after t rounds of majority voting, the accuracy
becomes

α′ = 1−
⌊t/2⌋∑
s=0

(
t

s

)
αs(1− α)t−s

. (9)

Instead of majority voting, Shen et al. treat the detection of errors as a coding problem
and propose an efficient method called fast-checking to identify error locations [SCZ+23].
For the PC oracle, an attacker with two accesses to the oracle can employ fast-checking to
verify the accuracy of secret key coefficients at four locations. To be specific, there are
three steps in [SCZ+23]. In Step 1, a roughly correct key is retrieved. Then, in Step 2
the attacker selects some attack parameters to detect errors in the retrieved key coeffi-
cients. For example, to check whether the retrieved coefficient block s0[0], s0[1], s0[2], s0[3]
are correct or not, u = uatk[0] − uatk[1]x255 − uatk[2]x254 − uatk[3]x253 and v =
vatk are generated from the values of s0[0], s0[1], s0[2], s0[3]. Here, the selection of at-
tack parameters uatk[0], uatk[1], uatk[2], uatk[3], vatk ensures that if the recovered co-
efficients s0[0], s0[1], s0[2], s0[3] are correct, the resulted codeword is special. So an
interesting question arises here: Can we adapt fast-checking to the MV-PC oracle?
In fact, this is challenging. The challenge stems from conflicts in the selection of
attack parameters. In MV-PC oracle, if we want to check two different coefficient
blocks s0[0], s0[1], s0[2], s0[3] and s0[4], s0[5], s0[6], s0[7] at the same time, we need to
set u = uatk[0] − uatk[1]x255 − uatk[2]x254 − uatk[3]x253 and v = vatk and gets 1 bit of

J. Li et al. 11

information from m′[0]:

m′[0] =
⌈

2
q

(vatk − (
3∑

n=0
s0[n]uatk[n]))

⌋
mod 2. (10)

Meanwhile, we need to set u = u′
atk[0] − u′

atk[1]x255 − u′
atk[2]x254 − u′

atk[3]x253 and
v = v′

atk to get another 1 bit of information from m′[4]:

m′[4] =
⌈

2
q

(v′
atk − (

3∑
n=0

s0[n + 4]u′
atk[n]))

⌋
mod 2. (11)

However, this incurs conflicts in the setting of u for two blocks with different coefficients.
An obvious question is whether, in the parallel case (where the attacker can get

multiple bits of information), a more efficient method could be found – potentially by
better leveraging prior knowledge – than the one proposed by [SCZ+23] to expedite the
process.

3.2 Our basic idea

In this part, we describe the general full-key recovery framework of the new attack. We
start by introducing the basic ideas.

-2 -2-1 1 0 00 1 3 -1-2 2

-2 -2-1 1 0 00 1 2 20 3

-2 -2-1 1 0 00 1 2 20 3

Additional recoveryCopy Copy

-2 -2-1 1 0 00 1 2 20 3

Round 1

Round 2

Round 3

Same Same Different
Prior

information

Copy Copy Majority-voting

Final result

Figure 3: Our main idea

In Figure 3, we illustrate the main idea of our key recovery strategy. In majority voting,
we need to repeat the same key recovery procedure several times. Our key observation is
that the coefficients recovered in the previous round can be regarded as prior information to
facilitate the recovery of coefficients in the subsequent round. Consequently, in our strategy,
after employing an MV-PC oracle to recover the initial round coefficients, we establish a
grafted tree to guide the recovery of the second round coefficients. This approach enables
us to achieve significant reductions in the number of required queries.

12 Grafted Trees Bear Better Fruit: An Improved MV-PC SCA against Kyber

[-2, -1, 0, 1, 2]

[-2, -1, 0]

0 1 2[-2, -1]

-2 -1

[1, 2]

[-2, -1, 0, 1, 2]

[0, 1, 2][-2, -1]

0-2 -1 [1, 2]

1 2

-2 -1 0 1 2

Tree Selection

Coefficients from Round 1

1

1 1

1 1

1

1

0

0

0

0

0

00

0

Figure 4: A grafted tree for Kyber-1024 and Kyber-768, including a BRT for coefficients
-2, -1, 0 (left) and a BRT for coefficients 1, 2 (right)

We summarize the main process as follows:

• Round 1: Parallel key recovery is executed to obtain approximately correct secret
key coefficients using MV-PC oracle.

• Round 2: After the parallel key recovery, with the prior information acquired in
round 1, we construct the corresponding grafted tree and perform another parallel
key recovery with the grafted tree. We compare each coefficient block recovered in
round 2 with the corresponding coefficient block in round 2. If a recovered coefficient
block exhibits a value different from that in the round 1 recovery, the corresponding
coefficient block is labeled as suspicious.

• Round 3: If the retrieved coefficient blocks match in round 1 and round 2, we directly
classify these blocks as correctly recovered. For the identified suspicious coefficient
blocks, an additional parallel recovery is conducted on these blocks. Subsequently,
the coefficient values obtained from the three rounds undergo a majority voting
process. The result of the majority voting for coefficients is considered the correct
outcome.

In the next subsection, we elaborate on how prior information is employed to construct
a grafted binary recovery tree (grafted tree).

3.3 The grafted tree for key recovery
The grafted tree. Our key observation is that, with prior information about which
coefficient has been retrieved in round 1, we can choose different branches in different
BRTs to further reduce the needed number of queries. We call the new constructed the
grafted tree. More specifically, taking Kyber-1024 as an example, for coefficients recovered
as [-2, 0] in round 1, we employ the left and right branches of the left BRT in Figure 1;
While for [1, 2], the right branch of the right BRT in Figure 1 is leveraged. In Figure 4, it
can be seen that each coefficient retrieved in round 1 has depth of 2.

Here a question arises, for each coefficient, can we find a BRT in which the depth of the
corresponding leaf node has the depth of 2? We summarize the results in the following.

J. Li et al. 13

Lemma 1. In Kyber, for each coefficient, we can find a BRT in which the depth of the
corresponding leaf node has depth 2.

Proof. The problem is equivalent to proving that for each coefficient, we can distinguish
it from other coefficients by accessing the oracle twice. We summarize all the results for
Kyber in Table 4, including Kyber-1024, Kyber-768, and Kyber-512. In Table 4, k1, k2
denotes the value of k in the ciphertext constructed during the first and second access to
the oracle, respectively. 2(11) means the retrieved coefficient is 2, and 11 is the output
sequence of the oracle. From the result in Table 4, we conclude that for each coefficient,
it is always possible to construct a BRT in which the leaf node corresponding to this
coefficient has a depth of 2.

Table 4: Distinguishing coefficients by ciphertext pairs

(a) In Kyber-1024

(k1, k2) Distinguished coefficients Others
(7,8) -2(11), -1(01) {0, 1, 2}(00)
(8,9) 0(01) {-1, -2}(11), {1, 2}(00)
(9,10) 1(01), 2(00) {0, 1, 2}(11)

(b) In Kyber-768

(k1, k2) Distinguished coefficients Others
(3,4) -2(11), -1(01) {0, 1, 2}(00)
(4,5) 0(01) {-1, -2}(11), {1, 2}(00)
(5,6) 1(01), 2(00) {-0, -1, -2}(11)

(c) In Kyber-512

(k1, k2) Distinguished coefficients Others
(2,3) -3(11), -2(01) {-1, 0, 1, 2, 3}(00)
(3,4) -1(01) {-3, -2}(11), {0, 1, 2, 3}(00)
(4,5) 0(01) {-3, -2, -1}(11), {1, 2, 3}(00)
(5,6) 1(01) {-3, -2, -1, 0}(11), {2, 3}(00)
(6,7) 2(01), 3(00) {-3, -2, -1, 0, 1}(11)

In contrast to previous attack methods, in round 2, our approach enables the selection
of distinct BRTs. This flexibility arises from our knowledge of the approximate correct
coefficient values, which serve as valuable prior information when constructing the grafted
tree. This enables us to utilize the optimal BRT for each coefficient, accelerating our
attack and reducing overall attack overheads.

The remaining problem is how to construct a grafted tree. We treat the generation of
a grafted tree as an expansion of the BRT generation process. Certain principles need to
be followed: For each coefficient, position this coefficient as low as possible in the tree,
without regard for the positions of the leaf nodes where the other coefficients are situated.
There is no need to construct a large number of BRTs during preparation, as coefficients
only need to be placed on the second level of a binary tree. In Kyber-1024 and Kyber-768,
only 2 BRTs are needed to form a grafted tree, instead of 5, as shown in Figure 4. For
Kyber-512 we need only 4 BRTs. Trees for Kyber-512 are included in Figure 5.

14 Grafted Trees Bear Better Fruit: An Improved MV-PC SCA against Kyber

[-3, -2, -1, 0, 1, 2, 3]

[0, 1, 2, 3][-3, -2, -1]

-1 [2, 3]

2

1 0

1 0 1 0

1 0
[0, 1]

0 1

1 0

3

[-3, -2]

-3 -2

[-3, -2, -1, 0, 1, 2, 3]

[1, 2, 3][-3, -2, -1, 0]

0 [2, 3]

2

1 0

1 0 1 0

1 0

3-1

[-3, -2, -1] 1

[-3, -2]

-3 -2

[-3, -2, -1, 0, 1, 2, 3]
1 0

0
[-3, -2, -1, 0, 1] [2, 3]

2

1 0

3[-3, -2, -1]

1

-1[-3, -2]

-3 -2

1

1

1 0

01

1

0

0

[0, 1]

0 1

1 0

0

[-3, -2, -1, 0, 1, 2, 3]

[-1, 0, 1, 2, 3][-3, -2]

-3 -2 [1, 2, 3]

1

1 0

1 0 1 0

1 0
[-1, 0]

-1 0 [2, 3]

1 0

2 3

1 0Tree 1

Tree 3

Tree 2

Tree 4

0 1 2 3

-2-3 -1

Figure 5: A grafted tree for Kyber-512, including a BRT for coefficients -3, -2 (left above)
and -1 (right above), and a BRT for coefficients 0, 1 (below left) and 2, 3 (below right)

For the trees that have been selected, we store them in a collection of trees called
Trees. When Eve selects u = (⌈q/32⌋ , 0, · · · , 0), and c2 = (k0, k1, · · · , kN−1, 0, · · · , 0).
The value of k is determined by the coefficient value of the previous stage of recovery and
the detailed process is shown in Algorithm 4.

Next, we briefly introduce how to recover a block with coefficients (1,−2, 2, 0) retrieved
from round 1 using a grafted tree in Kyber-1024.

1. In round 2, from Table 4, for coefficients 1 and 2, we need to set k1 = 9; For −2 and
−1, we set k1 = 7; For −0, we let k1 = 8. Hence, we first set c2 = (9, 8, 9, 8, 0, · · · , 0).
Subsequently, we access the oracle, obtaining a response sequence m′

1.

2. Then, from Table 4 again, we go on setting c2 = (10, 7, 10, 9, 0, · · · , 0) and access the
oracle to get another response sequence m′

2.

3. If m′
1 = 0100 and m′

2 = 1101, from Table 4, 01, 11, 00, 01 correspond to 1, -2, 2,
0, respectively. Thus, we know the retrieved block in round 2 is also (1,−2, 2, 0),
matching the result in round 1. If not, the results in the two rounds are different
and we need a third round.

J. Li et al. 15

Algorithm 4 Constructing the grafted tree and recovery in rounds 1, 2, 3
Recovery in round 1

Input: An imperfect MV-PC oracle Omv

Output: Roughly correct secret key coeffi-
cients ŝ

1: Return MV-PCAttack(Omv)
ConsGraftedT

Input: Coefficients ŝ from round 1, Trees
Output: tree_list

1: Initialise tree_list
2: for ŝ[i] in ŝ do
3: Find the tree where ŝ[i] is at the

second level of it from Trees
4: Append the corresponding tree to

tree_list
5: end for
6: Return tree_list

Recovery in round 2
Input: An imperfect MV-PC oracle Omv

and coefficients ŝ form round 1
Output: Roughly secret key coefficients s̄

1: tree_list← ConsGraftedT(ŝ)
2: s̄ ← MV-PCAttack(Omv) with

tree_list
3: Return s̄

Recovery in round 3

Input: An imperfect MV-PC oracle Omv

Input: coefficients ŝ, s̄ form round 1 and 2
Output: Secret key coefficients s

1: for i = 0→ l − 1 do
2: for j = 0→ (256/N)− 1 do
3: for k = 0→ N − 1 do
4: if s̄i[j ∗N + k] ̸= ŝi[j ∗N + k]

then
5: Set this block suspicious
6: end if
7: end for
8: end for
9: end for

10: s ← MV-PCAttack(Omv) for suspi-
cious block

11: for i = 0→ l − 1 do
12: for j = 0→ (256/N)− 1 do
13: for k = 0→ N − 1 do
14: if si[j ∗N + k] ̸= ŝi[j ∗N + k]

then
15: si[j ∗N +k] = s̄i[j ∗N +k]
16: end if
17: end for
18: end for
19: end for
20: Return s

4 Experiments and analysis

This section presents the results and analysis of empirical studies designed to objectively
assess the effectiveness of our improved method. We begin by demonstrating the efficiency
of our improved method through software simulation. Next, we compare the experimental
results with those of Tanaka et al. [TUX+23] and Rajendran et al. [RRD+23] for Kyber-
1024, Kyber-768, Kyber-512, FireSaber, and Frodo-1344, respectively, showcasing how our
method enhances existing work. Finally, we apply our method in a real-world scenario to
illustrate that the simulation experiment results align with actual scenarios.

4.1 Software simulations

4.1.1 Simulation settings

All our simulations are conducted on a desktop featuring a 3 GHz Intel Core i5-7400 CPU
and 16 GB RAM. Our code is derived from the C implementation of Kyber submitted to
the third round of the NIST PQC project. Recall that an imperfect MV-PC oracle Omv
succeeds with an accuracy α. That is, the MV-PC oracle returns the correct result with a
probability α and, with a probability of 1− α, provides incorrect outputs. When defining
the MV-PC oracle to recover N coefficients simultaneously, we employ random selection
from m0, m1, · · · , m2N −1 to indicate instances when the MV-PC oracle returns an error.

16 Grafted Trees Bear Better Fruit: An Improved MV-PC SCA against Kyber

4.1.2 Comparison with existing work

Table 5: The accuracy of the NN for 2N -classification in [TUX+23]
21 22 23 24 25 26 27 28

Accuracy 99.93% 99.98% 99.94% 99.93% 99.93% 99.93% 99.92% 99.92%

Table 6: Comparison of experimental results in Kyber
Schemes N Method #EvQuery #EvError

Kyber-512

4
Tanaka et al. 1152 (ref) 0.00/512 1

Rajendran et al. 1150.8 0.0003/512
Our Method 641.7 (−44.2%) 0.002/512

8
Tanaka et al. 576 (ref) 0.00/512
Rajendran et al. 576.0 0.001/512
Our Method 321.2 (−44.2%) 0.003/512

Kyber-768

4
Tanaka et al. 1728 (ref) 0.00/768
Rajendran et al. 1599.3 0.001/768
Our Method 919.6 (−42.5%) 0.005/768

8
Tanaka et al. 864 (ref) 0.00/768
Rajendran et al. 849.7 0.0004/768
Our Method 476.7 (−43.9%) 0.006/768

Kyber-1024

4
Tanaka et al. 2304 (ref) 0.00/1024
Rajendran et al. 2132.4 0.001/1024
Our Method 1226.0 (−42.5%) 0.002/1024

8
Tanaka et al. 1152 (ref) 0.00/1024
Rajendran et al. 1132.9 0.001/1024
Our Method 635.5 (−43.9%) 0.003/1024

In our software simulations, we validate the improvement of our proposed method over
the previous work of Tanaka et al [TUX+23] and Rajendran et al [RRD+23]. They
instantiate the MV-PC oracle using a multiple-classification Neural Network (NN) model
and a t-test-based classifier, respectively. Table 5 presents the accuracy of the trained
NNs on the test sets for 2N -classification.

In the work of Rajendran et al [RRD+23], they mention that it is possible to utilize
majority voting or error correcting codes in [SCZ+23] to enhance the success rate. To give
a fair comparison, in our experiment, we use majority voting (t = 3) to improve Rajendran
et al.’s results in a noisy environment. It is worth noting that in our simulation, the oracle
accuracy α can be set as 99.90%, slightly lower compared to Tanaka et al.’s 99.93% when
N = 4 and 99.92% when N = 8.

We employ #EvQuery to signify the average number of queries needed for full key
recovery and #EvError to denote the average number of error coefficients present in
the final result. The latter serves as a crucial indicator of the effectiveness of the full key
recovery. Both our approach and previous methods aim to minimize #EvError to below
1.0. As depicted in Table 6, we generate 10, 000 random secret keys for various security
levels of Kyber to assess the performance of our method. The reported results represent
the average number of queries required for the recovery of 10, 000 random secret keys.

1Tanaka et al. did not give the exact number of the #EvError in their experiments, but their method
can achieve nearly 0 errors.

J. Li et al. 17

In comparison to existing work, our proposed method exhibits significant improvements.
Specifically, for Kyber-1024, we achieve a reduction of 42.5% and 43.9% in total queries
when N = 4 and 8, respectively. Similarly, for Kyber-512, our method leads to a reduction
of 44.3% in total queries. Regardless of whether N = 4 or N = 8, our method consistently
decreases the number of queries by more than 42.5% compared to existing work.

Even with α = 99.90%, #EvError remains significantly below 1.0 in our simulations.
This suggests that achieving the desired outcomes is feasible even with a lower accuracy.
In other words, our proposed method does not require an excessively high level of accuracy
to achieve the expected results. In the next subsection, we will describe how we obtain a
threshold for accuracy.

Table 7: Comparison of experimental results in FireSaber and Frodo-1344
Schemes N Method #EvQuery #EvError

FireSaber

4
Tanaka et al. 2304(ref) 0.00/1024
Rajendran et al. 2301.6 0.005/1024
Our Method 1283.6 (−44.2%) 0.005/1024

8
Tanaka et al. 1152 (ref) 0.00/1024
Rajendran et al. 1152.0 0.003/1024
Our Method 642.5 (−44.2%) 0.004/1024

Frodo-1344
4 Tanaka et al. 21504(ref) 0.00/10752

Our Method 16257.1 (−24.4%) 0.03/10752

7 Tanaka et al. 18432 (ref) 0.00/10752
Our Method 11433.2 (−38.0%) 0.229/10752

Moreover, our method is generic and can be applied to other LWE-based schemes such
as Saber [DKRV19]. Saber is another third-round NIST candidate that provides three
levels of security: LightSaber, Saber, and FireSaber. The security of Saber is based on the
learning with rounding (LWR) problem.

The secret key coefficients of FireSaber are selected within the range of [-3,3], similar
to Kyber-512. This means that we can use the same grafted tree approach that is used
for Kyber-512 with FireSaber. We conduct an experimental validation of this method on
FireSaber by testing it against 10,000 randomly generated secret keys. In Table 7, it can
be observed that we achieve a reduction of 44.2% in the total number of queries, compared
to previous work.

The experimental results demonstrate that our new method can be easily migrated to
Saber and remains efficient. Furthermore, the results of the experiment for Frodo-1344
are also presented in Table 7, further demonstrating our approach can be applied to other
KEM schemes that use variations of FO. It can be noted that the best experimental results
for Frodo-1344 in [TUX+23] is given at N = 7, not N = 8. To give a fair comparison, in
Table 7, we also set N = 7 in our experiment against Frodo-1344.

4.1.3 Comparison between the grafted tree and previous method in round 2

We compare our improved method with the approaches of Rajendran et al. [RRD+23] and
Qin et al. [QCZ+21]. We let Qparallel represent the average number of queries to recover a
coefficient block in one round. Note that the Qparallel provided is for key recovery in round
2, not for the first round, where the best Qparallel is still the one proposed in [RRD+23]
and [QCZ+21]. Thus, we focus on the performance of the graft tree method compared to
the previous method in round 2. For all security levels of Kyber, we compare our results
using the grafted tree with Qin et al.’s and Rajendran et al.’s BRTs. The values of Qparallel

for different parallelization factors N and our comparisons are presented in Figure 6a.

18 Grafted Trees Bear Better Fruit: An Improved MV-PC SCA against Kyber

2 4 6 8
Parallelization factor N

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8
pa

ra
lle

l

Qin et al.'s BRT for Kyber-512
Rajendran et al.'s BRT for Kyber-512
Qin et al.'s BRT for Kyber-1024/768
Ours for Kyber-512 and Kyber-1024/768

(a) Qparallel with parallelization factor N in
different methods against Kyber in round 2

99.0% 98.8% 98.6% 98.4% 98.2% 98.0% 97.8%
Accuracy

0.2

0.4

0.8

1.0

1.2

1.4

1.6

#
Ev

Er
ro

r

Kyber-1024
Kyber-768
Kyber-512
Baseline

(b) Changes in #EvError as the accuracy
decreases

Figure 6: Qparallel in round 2 and changes in #EvError.

We observe that for Kyber-512, Qparallel increases with the parallelization factor N
and converges to 4.0 with Qin et al.’s BRT, while it tends to be 3.0 with Rajendran et al.’s
more balanced BRT. For Kyber-1024, Rajendran et al.’s BRT coincides with Qin et al.’s
BRT, hence we only present the result with Qin et al.’s BRT. The value of Qparallel also
tends to 3.0.

The results also confirm our earlier statement in Section 2.2.4 that the number of queries
required to recover N coefficients depends on the coefficient with the maximum depth.
With our improved method, Qparallel stabilizes around 2.0, representing a substantial
reduction in attack overhead compared to other methods.

4.1.4 The threshold for accuracy

In [SCZ+23], a threshold is introduced to distinguish between high and low-accuracy cases.
Similarly, we seek an accuracy threshold indicating the minimum acceptable accuracy
for our proposed method, while ensuring #EvError remains below 1.0. This threshold
is identified through extensive simulation experiments wherein we systematically reduce
the oracle’s accuracy rate and monitor the resulting #EvError. The accuracy rate is
consistently decreased until #EvError surpasses 1.0.

Figure 6b illustrates how #EvError changes as the accuracy rate decreases. The blue
line in the figure represents an #EvError of 1.0, serving as the baseline for comparison.
Measuring the precise accuracy when #EvError reaches 1.0 experimentally poses chal-
lenges, but an approximate value can be determined to establish an accuracy threshold.
Specifically, for Kyber-1024, our improved method ensures that #EvError is kept below
1.0 with an accuracy of 98.3%, while for Kyber-768 and Kyber-512 the respective accuracy
thresholds are 98.0% and 97.8%.

4.1.5 Experiments for lower accuracy

Note that our method is generic and applicable to various classifiers. Moreover, it
exhibits enhanced performance, especially with 2N -classifiers, where N > 8, provided
they maintain sufficient accuracy. Our adversary model (MV-PC oracle) is tailored for
optimal performance in low-noise environments, where its effectiveness is most prominent.
Our primary focus is to refine the MV-PC oracle to optimize its effectiveness in such

J. Li et al. 19

environments. Next, we will further evaluate the performance of our model under different
noise levels (e.g., α = 95.00% and α = 90.00%) to demonstrate the adaptive capability of
the proposed method even in high noise environments, with some adjustments. Specifically,
we first incorporate majority voting to improve the accuracy of the oracle, and then still
use our methodology.

We conduct experiments for Kyber-1024 with N = 8 and compare our results with
those in [RRD+23] (with majority voting). The results are displayed in Table 8, in which
t represents the number of votes cast.

Table 8: Comparison between majority voting and proposed method in low accuracy
Accuracy Method #EvQuery #EvError

95.00% Majority Voting (t = 5) 1888 (ref) 0.372/1024
Our Method 1332 (−29.4%) 0.351/1024

90.00% Majority Voting (t = 7) 2643 (ref) 0.477/1024
Our Method 2041 (−22.8%) 0.646/1024

Next, we provide a more detailed explanation of our method concerning low-accuracy
scenarios. We still need three rounds. To compensate for the problems associated with
accuracy degradation, we use majority voting (t = 3) to help refine the output of the
MV-PC oracle. This entails executing the same decryption process multiple times whenever
the attacker accesses the oracle, resulting in multiple outcomes. A majority vote is then
conducted for the result. For an accuracy of α = 95.00%, we employ a majority voting in
rounds 2 and 3. When the accuracy decreases to α = 90.00%, majority voting is employed
across all three rounds.

As depicted in Table 8, although the use of oracle combined with majority voting
increases the overhead of the attack, our method applied to Kyber-1024 exhibits comparable
#EvError to majority voting, and it reduces the #EvQuery by 29.4% and 22.8% when
achieving accuracy of 95.00% and 90.00%, respectively. These findings highlight the
efficiency of our method even in high-noise environments, where the performance of the
MV-PC oracle is typically hindered.

4.2 Real-world experiments

Table 9: The hyperparameters of the NN for 28-class classifier
Operator Activation function Batch normalization Pooling Stride

Conv1 conv1d (3) SELU Yes Avg (2) 2
Conv2 conv1d (3) SELU Yes Avg (2) 2
Conv3 conv1d (3) SELU Yes Avg (2) 2
Conv4 conv1d (3) SELU Yes Avg (2) 2
Conv5 conv1d (3) SELU Yes Avg (2) 2
Conv6 conv1d (3) SELU Yes Avg (2) 2
FLT flatten - - - -
FC1 dense SELU No No -
FC2 dense SELU No No -
FC3 dense Softmax No No -

4.2.1 Experiment settings

In this subsection, we conduct experiments to validate the feasibility and efficiency of
our proposed attack in real-world scenarios. The experiments are implemented on an

20 Grafted Trees Bear Better Fruit: An Improved MV-PC SCA against Kyber

STM32F407G board, featuring an ARM Cortex-M4 microcontroller. We choose Cortex-M4
since NIST has recommended it for efficiency evaluation in their postquantum cryptogra-
phy standardization. The ARM-optimized Kyber-512 implementation from the publicly
available testing and benchmarking library pqm4 [KRSS19] is executed on the board.

Then, we employ a PicoScope 3403D oscilloscope and a CYBERTEK EM5030-3 EM
Probe to collect the waveforms and use the PicoSDK interface provided with the PicoScope
oscilloscopes to drive the PicoScope series of digital oscilloscopes. The oscilloscope is
connected to the probe via a CYBERTEK EM5020A signal amplifier. Whenever the trigger
function is called, the oscilloscope collects waveforms generated from the G(m′,H(pk)).
Each collected waveform contains 50,000 sample points, and the sample rate is set at 500
MHz.

The real-world attack is divided into two phases, the profiling phase and the attack
phase. In the profiling phase, we first construct the special ciphertext and call the
KYBER.CCA.Decaps function to collect the waveform. Specially, we set u = (0, · · · , 0)
and c2 = (k1, k2, . . . , kN−1, 0, . . . , 0). The value of ki determines whether the value of m′[i]
is 0 or 1. By constantly adjusting the value of c2, we can obtain waveforms corresponding
to m0, · · · , m2N −1, respectively. For each plaintext, we collect 200 waveforms, of which
100 are used for training, 50 for validation, and 50 for testing. We aim to train a 28 class
classifier with the collected waveforms. Specially, we employ CUDA 12.2, cuDNN 8.3,
Keras 2.10.0, and Tensorflow-gpu 2.10.1 on a desktop equipped with Intel Core i9-12900K
and NVIDIA GeForce RTX 3030 to train an NN model.

We adopt the NN framework proposed by Tanaka et al. [TUX+23] with some modifi-
cations according to the format of our collected waveforms. To ensure the robustness of
our model, we get an average accuracy of 99.86% over 100 iterations. According to the
threshold given above, this classifier is sufficient for our proposed attack.

In the attack phase, we first describe how to use the trained classifier to instantiate
the MV-PC oracle. Whenever we construct the ciphertext ct according to the BRT or
grafted tree and access the MV-PC oracle, the waveform generated from the G(m′,H(pk))
function is fed as an input to the 2N -classifier, and then the classification result of the
classifier is used as the output of the MV-PC oracle, and we thus obtain the value of m′.
Finally, we perform full key recovery as shown in Section 3 and record the number of times
MV-PC oracle is queried.

4.2.2 Experiment results

Table 10: Comparison of results between real-world and simulated attacks on Kyber-512
N = 8 #EvQuery #EvError

Real-world 321.9 0.20
Simulations 321.2 0.003

We conduct the full key recovery process 10 times using the trained classifier and finally
get the values of #EvQuery and #EvError.

In Table 10, we present the results of both software simulations and real-world experi-
ments. In the real-world experiments, we achieve a full key recovery with an average of
only 321.9 queries using the proposed new method. The close correspondence between the
results of real-world attacks and software simulations validates the usability and efficiency
of our method in real-world scenarios.

During the experiment, we also record the number of error coefficients during round 1
and round 2, which are 1.1 and 0.3, respectively. The number of error coefficients in round
1 is equal to the number of errors in full key recovery if no measures (e.g. NLL, majority
voting, and the proposed method) have been applied. It can be noticed that the use of the

J. Li et al. 21

grafted tree in round 2 not only reduces the number of queries in round 2 but also leads to
a reduction in the number of errors, which in the end improves the reliability of the results.

5 Conclusions
In this paper, we have proposed an improved MV-PC oracle-based side-channel attack
against LWE-based KEMs, leveraging grafted BRTs to efficiently utilize prior information.
Simulations and real-world implementations have shown that our method reduces the
number of queries for a full key recovery by more than 42.5%, compared to the state-of-
the-art at TCHES 2023. We have also experimentally validated our attack on FireSaber
and Frodo-1344 to show that our method is generic and can be applied to other important
KEM candidates in the NIST PQC competition. To further demonstrate the generality of
our proposed method, we add a supplementary experiment in environments characterized
by relatively higher levels of noise and still reduce the number of queries by more than
22.8%.

In practice, the number of queries can be further reduced by combining our method
with post-processing techniques such as lattice reduction. We can recover only a part of
the coefficients and then recover the remaining ones via the lattice reduction framework
in an offline manner. For example, following the work in [MJZ22], we can use the LWE
estimator in [DSDGR20] to estimate the coefficients to be recovered and further reduce
the number of queries for Kyber-512, Kyber-768, and Kyber-1024 by 34%, 29%, and 27%,
respectively, with the ability to perform 232 offline computations.

References
[AAC+22] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang,

John Kelsey, Jacob Lichtinger, Yi-Kai Liu, Carl Miller, Dustin Moody, et al.
Status report on the third round of the nist post-quantum cryptography
standardization process. US Department of Commerce, NIST, 2022.

[ABD+19] Roberto Avanzi, Joppe Bos, Léo Ducas, Eike Kiltz, Tancrède Lepoint, Vadim
Lyubashevsky, John M Schanck, Peter Schwabe, Gregor Seiler, and Damien
Stehlé. Crystals-kyber: Algorithm specification and supporting documentation
(version 2.0). In Submission to the NIST post-quantum project (2019), 2019.
https://pq-crystals.org/kyber.

[BDH+21] Shivam Bhasin, Jan-Pieter D’Anvers, Daniel Heinz, Thomas Pöppelmann, and
Michiel Van Beirendonck. Attacking and defending masked polynomial com-
parison for lattice-based cryptography. IACR Transactions on Cryptographic
Hardware and Embedded Systems, pages 334–359, 2021.

[DHP+21] Jan-Pieter D’Anvers, Daniel Heinz, Peter Pessl, Michiel Van Beirendonck,
and Ingrid Verbauwhede. Higher-order masked ciphertext comparison for
lattice-based cryptography. Cryptology ePrint Archive, 2021.

[DKRV19] Jan-Pieter D’Anvers, Angshuman Karmakar, Sujoy Sinha Roy, and
Frederik Vercauteren. Saber: Mod-lwr based kem algorithm specifica-
tion and supporting documentation. In Submission to the NIST post-
quantum project (2019), 2019. https://www.esat.kuleuven.be/cosic/
publications/article-3055.pdf.

[DSDGR20] Dana Dachman-Soled, Léo Ducas, Huijing Gong, and Mélissa Rossi. Lwe
with side information: attacks and concrete security estimation. In Annual
International Cryptology Conference, pages 329–358. Springer, 2020.

https://pq-crystals.org/kyber
https://www.esat.kuleuven.be/cosic/publications/article-3055.pdf
https://www.esat.kuleuven.be/cosic/publications/article-3055.pdf

22 Grafted Trees Bear Better Fruit: An Improved MV-PC SCA against Kyber

[DTVV19] Jan-Pieter D’Anvers, Marcel Tiepelt, Frederik Vercauteren, and Ingrid Ver-
bauwhede. Timing attacks on error correcting codes in post-quantum schemes.
In Proceedings of ACM Workshop on Theory of Implementation Security
Workshop, pages 2–9, 2019.

[FO99] Eiichiro Fujisaki and Tatsuaki Okamoto. Secure integration of asymmetric
and symmetric encryption schemes. In Annual International Cryptology
Conference, pages 537–554. Springer, 1999.

[GJN20] Qian Guo, Thomas Johansson, and Alexander Nilsson. A key-recovery timing
attack on post-quantum primitives using the fujisaki-okamoto transforma-
tion and its application on frodokem. In Annual International Cryptology
Conference, pages 359–386. Springer, 2020.

[GNNJ23] Qian Guo, Denis Nabokov, Alexander Nilsson, and Thomas Johansson. SCA-
LDPC: A code-based framework for key-recovery side-channel attacks on
post-quantum encryption schemes. In Jian Guo and Ron Steinfeld, editors,
Advances in Cryptology - ASIACRYPT 2023 - 29th International Confer-
ence on the Theory and Application of Cryptology and Information Security,
Guangzhou, China, December 4-8, 2023, Proceedings, Part IV, volume 14441
of Lecture Notes in Computer Science, pages 203–236. Springer, 2023.

[HHP+21] Mike Hamburg, Julius Hermelink, Robert Primas, Simona Samardjiska,
Thomas Schamberger, Silvan Streit, Emanuele Strieder, and Christine van
Vredendaal. Chosen ciphertext k-trace attacks on masked cca2 secure kyber.
IACR Transactions on Cryptographic Hardware and Embedded Systems, pages
88–113, 2021.

[ISUH21] Akira Ito, Kotaro Saito, Rei Ueno, and Naofumi Homma. Imbalanced data
problems in deep learning-based side-channel attacks: analysis and solution.
IEEE Transactions on Information Forensics and Security, 16:3790–3802,
2021.

[Koc96] Paul C. Kocher. Timing attacks on implementations of diffie-hellman, rsa,
dss, and other systems. In Neal Koblitz, editor, Advances in Cryptology
- CRYPTO ’96, 16th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 18-22, 1996, Proceedings, volume 1109 of
Lecture Notes in Computer Science, pages 104–113. Springer, 1996.

[KRSS19] Matthias J Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen.
pqm4: Testing and benchmarking nist pqc on arm cortex-m4. 2019. https:
//github.com/mupq/pqm4.

[MJZ22] Ruiqi Mi, Haodong Jiang, and Zhenfeng Zhang. Lattice reduction meets
key-mismatch: New misuse attack on lattice-based nist candidate kems.
Cryptology ePrint Archive, 2022.

[Moo16] Dustin Moody. Post Quantum Cryptography Standardization: Announce-
ment and outline of NIST’s Call for Submissions. PQCrypto 2016,
Fukuoka, Japan, 2016. https://csrc.nist.gov/Presentations/2016/
Announcement-and-outline-of-NIST-s-Call-for-Submis.

[NDGJ21] Kalle Ngo, Elena Dubrova, Qian Guo, and Thomas Johansson. A side-
channel attack on a masked ind-cca secure saber kem. IACR Transactions on
Cryptographic Hardware and Embedded Systems, 4:676âĂŞ707, 2021.

https://github.com/mupq/pqm4
https://github.com/mupq/pqm4
https://csrc.nist.gov/Presentations/2016/Announcement-and-outline-of-NIST-s-Call-for-Submis
https://csrc.nist.gov/Presentations/2016/Announcement-and-outline-of-NIST-s-Call-for-Submis

J. Li et al. 23

[NIS23] NIST. Module-lattice-based key-encapsulation mechanism standard, 2023.
FIPS 203 (Draft), https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.
203.ipd.pdf.

[QCZ+21] Yue Qin, Chi Cheng, Xiaohan Zhang, Yanbin Pan, Lei Hu, and Jintai Ding. A
systematic approach and analysis of key mismatch attacks on lattice-based nist
candidate kems. In International Conference on the Theory and Application
of Cryptology and Information Security, pages 92–121. Springer, 2021.

[RRCB20] Prasanna Ravi, Sujoy Sinha Roy, Anupam Chattopadhyay, and Shivam Bhasin.
Generic side-channel attacks on cca-secure lattice-based pke and kems. IACR
Trans. Cryptogr. Hardw. Embed. Syst., 2020(3):307–335, 2020.

[RRD+23] Gokulnath Rajendran, Ravi Ravi, Jan-Pieter D’Anvers, Shivam Bhasin, and
Anupam Chattopadhyay. Pushing the limits of generic side-channel attacks
on lwe-based kems-parallel pc oracle attacks on kyber kem and beyond. IACR
Transactions on Cryptographic Hardware and Embedded Systems, 2023(2):418–
446, 2023.

[SCZ+23] Muyan Shen, Chi Cheng, Xiaohan Zhang, Qian Guo, and Tao Jiang. Find the
bad apples: An efficient method for perfect key recovery under imperfect sca
oracles–a case study of kyber. IACR Transactions on Cryptographic Hardware
and Embedded Systems, pages 89–112, 2023.

[Sho99] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer. SIAM review, 41(2):303–332, 1999.

[TUX+23] Yutaro Tanaka, Rei Ueno, Keita Xagawa, Akira Ito, Junko Takahashi, and
Naofumi Homma. Multiple-valued plaintext-checking side-channel attacks
on post-quantum kems. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 473–503, 2023.

[UXT+22] Rei Ueno, Keita Xagawa, Yutaro Tanaka, Akira Ito, Junko Takahashi, and
Naofumi Homma. Curse of re-encryption: A generic power/em analysis on
post-quantum kems. IACR Transactions on Cryptographic Hardware and
Embedded Systems, pages 296–322, 2022.

[XPSR+21] Zhuang Xu, Owen Michael Pemberton, Sujoy Sinha Roy, David Oswald, Wang
Yao, and Zhiming Zheng. Magnifying side-channel leakage of lattice-based
cryptosystems with chosen ciphertexts: The case study of kyber. IEEE
Transactions on Computers (Early Access), 2021.

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.ipd.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.203.ipd.pdf

	Introduction
	Related works
	Contributions
	Organizations

	Background
	Kyber
	From PC oracle to MV-PC oracle

	Challenges and our new method
	Challenges from noises and our observations
	Our basic idea
	The grafted tree for key recovery

	Experiments and analysis
	Software simulations
	Real-world experiments

	Conclusions

