
A zero-trust swarm security architecture and protocols, v1.0

Alex Shafarenko

July 20, 2024

Contents

1 Coordination Protocols 3
1.1 Introduction . 3
1.2 Threat model and security objectives . 6
1.3 Orchestration Protocols . 6

1.3.1 Group RWS (GRWS) protocol . 7
1.3.2 Protocol . 8
1.3.3 Identity . 10
1.3.4 Launch . 12

2 Reputation Protocols 13
2.1 Blind Signature . 14
2.2 Extended Content-Addressed Storage (ECAS) . 16
2.3 Anonymous Reputation Update Protocol . 17

2.3.1 Problem setting . 17
2.3.2 Threat model . 18
2.3.3 ARU Protocol . 18
2.3.4 Blind signature with public metadata: the algorithm 22
2.3.5 Ordinary signature . 24
2.3.6 Ancillary services . 24

1

Abstract

This report presents the security protocols and general trust architecture of the SMARTEDGE swarm com-
puting platform. Part 1 describes the coordination protocols for use in a swarm production environment, e.g.
a smart factory, and Part 2 deals with crowd-sensing scenarios characteristic of traffic-control swarms.

0. Executive summary

This document contains security recommendations and a detailed description of two security protocols.
Part 1 deals with a smart-factory type of situation where a swarm of robots receives a recipe (a smart

contract) from Cloud and performs state-changing actions. Every state change requires a certain combination
of messages from participating actors, which must be authenticated and which it should never be possible to
repudiate. None of the swarm members is trusted except for progress. The swarm is coordinated by a member
that can change the membership of the swarm, called Coordinator. The state transitions are controlled by
a member whose job it is to collect state changing messages from relevant members to affect the transition.
Every state transition is recorded on a ledger called the Winternitz stack. If members disagree, the stack
can be dumped and sent to an Adjudicator, which is a Cloud agent that is not involved with any of the
swarms or their recipes. Thanks to the Winternitz Stack protocol, the Adjudicator is able to determine a
rogue member of the swarm solely by analysing the stack and the recipe. Its conclusions are formal proofs
requiring neither extra data or informal interpretation.

The report makes a recommendation regarding the networking infrastructure and the communication
primitives required for meeting the security objectives. The central concept is a witnessed broadcast channel
on which any member of the swarm can transmit (assuming the time-division schedule or robust conflict
resolution). The channel is a wireless channel and it is witnessed by agents whose location is unknown to a
potential attacker. The witnesses help to ensure that the broadcast split, whereby the swarm is partitioned
into nonintersecting groups each receiving a different but valid message without knowing it, is practically
impossible.

Part 2 attends to another difficult problem of swarm computing: anonymous reputation update. This
is relevant to a swarm of free agents that navigate a physical space (e.g. the road network) and send their
sensing reports which can be accurate and relevant to varying degrees. The problem that we attempt to solve
is that the reports are referenced to specific locations and are time-stamped which reveals the location of the
sensors as a function of time. Since in many crowd-sensing scenarios the sensors travel with a human who
either wears them on their person or keeps them in their vehicle, the sensing reports divulge the human’s
time-referenced movements across the physical space, which tends to be private data not to be divulged. So
on the one hand, the relevance and accuracy of the report depend on the reputation of the submitter, but on
the other the submitter must remain anonymous. Worse still, the reports must remain disassociated in the
sense that it should be very difficult if not impossible to determine that two reports have been submitted by
the same, albeit anonymous, principal. The reason for that is the practical risk of breaking the principal’s
anonymity by association. For example, if it were possible to determine that the queue at a certain traffic
light is reported every Friday at 5pm by a principal whose first report is received on the same day at 8am
about a road junction in a certain sparsely populated district, it would be relatively easy to correlate the two
time-referenced location and observe a single vehicle or a very small number of vehicles that fit the bill.

The solution described in the report is zero-trust (in keeping with Part 1), properly anonymous and
dissociative. It is based on two servers (or groups of servers depending on the network infrastructure):
a Registration Authority, RA, and the Reputation Server(s), RS. A client registers with the RA, either
anonymously or not, either for free or for a fee. Non-anonymous registration may be required to limit access
to the system to a certain type of client. At registration the client is assigned the lowest reputation and an
anonymous certificate containing the reputation level and a blindly signed temporary identifier is issued to
the client.

The client goes through rounds of reporting and reputation updates. The protocol, the Anonymous
Reputation Update (ARU) protocol, ensures that the RS receives the sensing report and issues a reputation
update coupon without knowing the client’s identity, except the client’s reputation as certified by the RA.

1

One could say that the client’s anonymity is within the group of equally reputable clients. If the reputation
levels are only a few and provided that there are a large number of clients, this limited anonymity should
not present any problem. The ID contained in the certificate is not linked with the client’s true identity
but it contains a secret not available to the issuing RA since the signing is blind. The secret is used by
the client to bind the certificate (and its reputation level, signed by the RA) with the sensing report. A
similar trick is used to obtain a blindly signed reputation update coupon, which contains the client’s secret
and a new reputation level. The client executes a random delay (to prevent an adversary’s time-correlation)
and submits the coupon back to the RA to obtain an updated certificate for the next round. The protocol
guarantees that even if the RS and the RA are colluding, it is practically impossible for the RA to bind the
new reputation in the coupon with the sensing report and thus learn the client’s private data. The protocol
enables the client to cryptographically convince the RA that the coupon belongs to the same client that
the certificate was issued for, and because it is signed by the RS, that the new reputation is earned — but
nothing beyond that.

Part 2 contains detailed descriptions of the ancillary structure required to run the protocol, the Extended
Content-Addressable Storage (ECAS). This is intended as a Cloud service that makes it possible to execute
the protocol completely asynchronously, with the client sending messages without return address via an
unspecified number of intermediaries (for example via ZigBee) and the Server (either RA or RS) responding by
deploying a self-certified tagged message in the ECAS, which can also be accessed via arbitrary intermediaries
without jeopardising the security of the data contained therein.

Both parts propose protocols specifically tailored to support low-power IoT devices. Non-Cloud entities
only require the ability to compute hash functions (Part 1) and occasionally perform ten or so modular
multiplications (Part 2). These computations are available to modest microcontrollers operating on quite
limited battery power.

The present document is work in progress. Questions and comments should be sent to Dr Alex Shafarenko
(a.shafarenko@gmail.com).

2

1. Coordination Protocols

1.1 Introduction

Threat model. A swarm is assembled from smart nodes by a coordinator, which receives a recipe from
Cloud. This document is not concerned with Cloud security. We recognise that the universe of smart nodes
that can execute the recipe is finite and properly registered with the Cloud-based owner. Having said that,
it is desirable to treat the smart nodes as untrustworthy to prevent insider attacks, which constitute a major
threat in distributed computing environments in general and smart factories in particular.

The coordinator appoints a smart node to a role of orchestrator to run the recipe with the swarm. The
recipe defines roles and minimum capabilities of nodes performing the role. The coordinator may order the
orchestrator to replace a node that performs a certain role by another sufficiently capable node. There can
be a role that allows multiple nodes to perform it. For such a role the coordinator may add a node to the
swarm or remove it. A replacement is tantamount to removing a node and adding another in the same role
as a single transaction.

The following security assumptions are made:

Coordinator is authorised to deal with the composition of the swarm as it sees fit. It is trusted for onboard-
ing and offboarding nodes (by instructing the coordinator to execute appropriate security protocols)
and for launching, suspending and terminating the recipe. In doing so it relies on the orchestrator,
which is trusted for progress, but not data.

Orchestrator is appointed by the Coordinator and is responsible for maintaining a single, distributed,
linearly ordered, immutable ledger of the recipe. It is trusted to run the ledger protocol without
deliberately stalling execution, but this trust is not absolute. Any node can alert the Coordinator to
the lack of progress if the orchestrator consistently ignores transaction requests from any swarm node
involved in the recipe. The orchestrator is not trusted on data: every smart node participating in
the recipe is enabled by the ledger protocol to collect a self-contained proof of inconsistency, which is
then submitted to the Cloud adjudication service and notified to the Coordinator. Consequently, the
Orchestrator is not trusted post hoc.

Smart nodes are not trusted for either progress or data. Any Byzantine behaviour of a smart node is
detectable by the rest of them involved in the recipe as a result of running the ledger protocol. The
minimum security requirement is for the swarm to have at least one honest smart node (which may
or may not be the Orchestrator) in addition to the Coordinator as this would eliminate any chance of
collusion.

Recipe. In a low-code approach to edge computing the recipe is a set of actions (programmed in high-
code or pre-prepared low code grpahs) that change the state of the system. The actions are triggered by
the availability of all necessary inputs, and the inputs are messages received from specific principals (smart
nodes). For example in a furniture factory a table recipe may contain an action of screwing table legs onto
a tabletop, for which the availability of parts is required as well as a vacant threaded hole in the tabletop.
The action AssembleTable has a state variable: an integer NHoles, initialised with 4. The assembly robot

3

cloud services:
1. Identity/capability
2. CAS
3. Adjudication

Witnessed
broadcast
channel

swarm
orchestrator

swarm
coordinator

swarm

Figure 1.1: Overall architecture

is contacted by the tabletop maker robot as it supplies the tabletop, and the leg maker does the same as it
produces a leg. We assume that the assembly robot does not need any fixtures to be supplied by yet another
principal. So the robot forms a joint supply message, collects signatures from the two makers and adds its
own, screws down the leg and sends the completed joint message to the AssesmbleTable action. As a result,
the state variable NHoles is decremented. As well as any smart contract, the recipe is executed by all smart
nodes involved at the same time, so each has a consistent copy of all state variables. The tabletop producer
will see NHole turning to 0 as a signal to supply the next tabletop.

The overall system architecture is presented in Figure 1.1. It depicts one swarm, but there can be many
that share the cloud services and the witnessed broadcast channel (WBC).

Witnessed Broadcast Channel. The functionality required of the WBC is twofold. On the one hand, it
is a broadcast channel, so a message send on it is transmitted to all connected smart nodes on it. It should
be impossible to segment the WBC in such a way that a group of nodes receive a broadcast while the rest of
the nodes in the swarm are either not aware that a broadcast is taking place or they receive different valid
data. On the other hand, a node should not be able to falsely claim that it has broadcast some valid data
while no broadcast has taken place. These security requirements are achieved by silent witnesses, which are
smart nodes outside the swarm that listen but do not transmit on the channel until a protocol violation has
been detected by at least one of them. They are connected to the channel, but may also be talking to each
other in ways not exposed to the swarm, as well as talking to Cloud. When talking to each other, they may
detect inconsistency in received data, which is reported to Cloud to help to detect an attack and to stop
execution of the swarm contract.

The key property of a witnesses is that the attacker (including a compromised insider) does not know
which node it is and where it is located, so it should be difficult to suppress it. The WBC and witnesses
collectively constitute a light-weight, auxiliary consensus mechanism. It is light–weight since it does not
require an expensive proof of work, stake, etc, nor any proper Byzantine protocol to validate transactions,
and it is auxiliary because its purpose is to support self-contained post hoc proofs of inconsistency that the
ledger protocols generate, rather than to pre-validate a transaction. The support is in terms of blocking

4

some threats to prevent the vulnerability of the swarm protocols from being exploited by external or internal
adversaries.

The life of a swarm begins with the Cloud appointment of a coordinator, which receives a recipe, i.e. a
smart contract to be executed collectively by the newly created swarm.

Swarm coordinator functionality. The swarm coordinator’s job is to maintain the swarm. This includes

• Appointment of the orchestrator (activity driver) and passing to it the instance of the recipe, i.e smart
contract to be executed

• Appointment of smart nodes that collectively execute the contract

• Onboarding/offboarding nodes

• Terminate the contract at Cloud’s order

The first step in unfurling the swarm structure is the appointment of the orchestrator. This is done using
the Identity/Capability Service (ICS) via the Cloud. Then smart nodes needed for the recipe are appointed
similarly. A recipe may permit proactive expansion/contraction, whereby a new smart node may request to
join or a current one to leave in the process of execution. This is done via the coordinator, which receives
such requests, determines their validity and passes all valid ones on to the orchestrator. In the process, ICS
is used to determine not only capability but the sufficient reputation of the requester (for joining). Leaving
the swarm is permitted or denied by the orchestrator on the basis of the recipe itself.

Orchestrator. The orchestrator maintains the state of the recipe (a dictionary of symbols) and aWinternitz
stack, defined later, which reflects the history of all swarm messages communicated via the WBC as well as
its own.

Upon initiation, it gathers every participating node’s pseudonymous identity (a public key, which is
the end-point of the node’s Winternitz chain generated specifically for participation in the swarm under
the current recipe). It then receives blocks from a group of nodes (down to a singleton) participating in
a transaction, and places each block on the Winternitz stack while signing it by running the group RWS
(GRWS) protocol based on [13] with all swarm members. The GRWS ensures that all stack frames are
effectively digitally signed by their originators for content, and by the rest of the swarm for awareness.

To start with, each smart node sends the Orchestrator its Schnorr identity [11], which we will discuss
later. We use the version of the protocol augmented by Fiat-Shamir heuristic[5] to avoid the need to provide
a fresh random challenge. The identity consists of the hash of the node’s Schnorr public key and the random
exponential commitment from the node. In the next stack frame, the node provides the zero-knowledge proof
using as the challenge the hash of the commitment concatenated to the swarm members’ latest Wintenitz
chain-tops. This way the pseudonym and the zero-knowledge identity are securely linked via GRWS. All
other smart nodes in the swarm will then be in a position to silently verify the identity proof.

If the recipe allows participants to be anonymous, then 0 is pushed onto the Winternitz stack in place of
the Schnorr identity to indicate that the Schnorr protocol is not run for this anonymous smart node.

As soon as all smart nodes in the swarm verified every other smart node, they push the hash of the
shared secret (a short hash, say 8 bytes) on the stack and invalidate the same number of bytes in the shared
secret. The rest of the bytes are used from now on to produce MACs (message authentication codes) for each
transmission of a swarm node on the WBC. Now the recipe can start executing.

The details of all protocols follow in the following sections.
If the Coordinator signals to the Orchestrator that a member of the swarm must be offboarded, it does so

by pushing a command onto Winternitz stack. The rest of the swarm adjust their GRWS protocol tables to
exclude the specified member. Similarly if the Coordinator needs to introduce a node into the swarm, it will
push the appropriate command onto the stack, and the Orchestrator and the rest of the swarm adjust their
protocol tables. The stack remains self-contained requiring no eternal information for its proof of valiadity.

5

1.2 Threat model and security objectives

Each security protocol has to make assumptions about the attacker and possible abnormal behaviour of the
principals. Choosing the correct threat model is key for both effectiveness and efficiency of the cryptographic
protection of open networks. Too esoteric threats, if taken on board, may result in a solution with a prohibitive
resource footprint or a long latency or both. However, an unduly optimistic threat model is fraught with
security breaches. Our analysis of the SmartEdge circumstances leads to the following assumptions:

A1 Any broadcast on the WBC remains effective under jamming. This means that the channel has sufficient
retransmission resources to make sure that each node listening on the WBC will receive every broadcast
message, either directly or via a gossip network if one exists. Conversely, there are sufficient silent
witnesses on the WBC to guarantee that if none of them received a message claimed to be broadcast,
then it was not; or if they received valid and conflicting broadcasts, then malicious network segmentation
has occurred.

A2 Members of a swarm can be compromised. Compromised members may collude but there will always
be at least one non-colluding member in the swarm. It is not guaranteed that this honest member is
necessary the Orchestrator or the Coordinator.

The first assumption requires some hardware fine-tuning. An adversary should not be able to jam mem-
bers’ broadcasts unnoticeably to all, and if jamming is detected, there should be an alternative unsecured
broadcast channel that can be witnessed by the same witnesses, while any countermeasures are being de-
ployed.

The second assumption is a natural constraint, since total collusion (all with all) defeats any protocol with
post hoc verification: the principals are able to re-run it from beginning to end with different data and fake
all their transactions. Fortunately, with minimum physical security and a firewall for outside communications
it is possible to guarantee that compromised modes are a small minority.

The following security objectives are achieved by the protocols presented in later sections:

Non-repudiation The core protocol, GRWS, maintains a single ordered immutable record (a mini-blockchain)
of all transactions digitally signed by all smart nodes participating in the recipe. Assuming progress
is assured, the broadcast is complete, and no deliberate non-transmission is detected (A1) no principal
is able to forge any signature or roll back any transaction unless all principals collude (in violation of
A2).

Robust identity Each principal is able to prove its identity cheaply (at the cost of 1 modulo exponentiation,
thanks to the Schnorr protocol) and effectively: the proof of identity is executed once, at the beginning
of the recipe execution. The identity is maintained for all transactions on the recipe thanks to its being
linked with the GRWS pseudonym. Because Schnorr is run only once, it could be sufficient strength
to secure against a possible quantum attack without degrading the overall system performance. Note
that the identity protocol produces a single-bit result (genuine/fake) and does not introduce a digital
signature.

Resistance to DoS An external adversary is unable to impede progress by sending fake messages on behalf
of any principals. Not only are these messages unable to cause a transaction (thanks to GRWS), they
cannot even waste the stack space. This is due to the use of Schnorr identity, which can be repurposed
for the Static Diffie-Hellman protocol which requires no extra exchange between communicating parties.
All messages addressed to the Orchestrator and Coordinator are authenticated by using shared secrets
produced from the sender and receiver identities. The proposed solution continues to resist DoS after
swarm contraction even when the contraction is the result of expelling a compromised node, which
effectively publishes all secrets shared with it.

1.3 Orchestration Protocols

We begin with the group version of the recently published RWS protocol [13] which is a trivial extension of
the RWS.

6

...

...

...

Figure 1.2: Winternitz fabric. The shaded nodes represent the fabric edge. A vertical line followed down
connects a value with its hash image

1.3.1 Group RWS (GRWS) protocol

This subsection contains a brief and informal recount of the concepts pertaining to the RWS protocol; detailed
definitions and proofs are available from [13].

A Winternitz chain is a sequence of integers, called points,each of which is a hash of the previous one,
with the first integer being physically random. The end point of the chain serves as a “public key”. Only the
owner of the first point (which is never revealed to anyone) is able to make a backward step on the chain.
We treat such a function as a random oracle, which means:

1. it is a function, so if it is computed on the same value again, the result is the same;

2. the statistics of the result over the domain of the function is such that the result bits are 0 and 1 with
equal frequency, and that different bit positions are uncorrelated;

Of the cryptographic hash function (as opposed to the idealised random oracle) we require in addition
that it is computationally infeasible to find the argument for a given hash value, if it is unknown (preimage
resistance) and that whenever the preimage is known, finding a different value that produces the same hash is
computationally infeasible (second preimage resistance), both of which are believed to have been achieved with
modern crypto hashes, such as SHA-2 (both 256 and 512 variety). The hash function’s preimage resistance is
what makes the step backwards on the chain only available to the chain owner. The second-image resistance
is what makes each stack frame (see below) reliably linked with a single signed document.

A Winternitz fabric is an indexed set of Winternitz chains of the same length. The cardinality of the set
is called the width w of the fabric. The end-points of all chains form a vector that we call the edge E(F) of
the fabric F .

A Winternitz stack over a fabric is a set of frames placed on top of one another. Each frame contains a
fixed number (κ≪ w) of fabric points marked off on top of the previous frames or the fabric edge. Marking a
point means for the stack owner to publish its content on the WBC. More than one member can be marked in
any given chain of the fabric without gaps; this is done by publishing the highest node. In principle, the arity
could be discovered by repeatedly hashing the value until it matches the chain member already exposed, thus
obviating the explicit publication. Unfortunately as shown in [14], the probability of multiple members drops
only about linearly with the number of members, so if the publication is fake, the listeners of the WBC will
need to execute of the order of w hash functions before they can prove it to themselves. Still, since κ ≪ w
and since there cannot be more than κ fabric members included in a frame, the calculation is affordable.

The cardinality-κ multiset of fabric indices is linked with a fixed size document digest via the current and
previous frames. This is done by forming a signature by

7

r0
[0] r1

[0] rw
[0]…

r0
[1] r1

[1] rw
[1]…

r0
[N] r1

[N] rw
[N]…

…… …
0	 1	 2	 3	 4	 5	 6	

[N]

[N −1]

[N − 2]

7	

j = 0...4 :

[N −3]

Figure 1.3: An example of a depth-5 signature stack over a Winternitz (8, N)-fabric using a random oracle
with κ = 3. Empty boxes represent unused members of the fabric. The top of the stack T is highlighted in
grey and the fabric edge in yellow. The document family is not shown.

1. taking the hash of the concatenation of the current digest and the previous signature; the hash’s initial
κ log2 w-bit segment becomes the current signature;

2. Segmenting the current signature into κ chunks of size log2 w bits each. The result is a cardinality-κ
multiset of binary numbers, {si}, 1 ≤ i < κ, each in the range 0, . . . , w − 1. The numbers, which
represent fabric indices, are not necessarily pairwise distinct, hence the multiset;

3. the current stack frame is formed by marking the chain members according to the multiset;

Figure 1.3 illustrates a signature stack of depth 5.

1.3.2 Protocol

Principals: orchestrator R, swarm members Mi, i = 1, . . . , N
Private (initially):

For R: Width-w fabric F of length L, except the edge E(F);

For each Mi: Chain C
[i]
k , k = 0, . . . , 2L− 1, of length 2L , except the end point C

[i]
2L−1;

Public(initially):

L, w, R’s public key E(F), members’ public keys Pi = C
[i]
2L−1, i ∈ [1, N]

For rounds k = 1, . . . do

1. R receives a digest Dk to be posted on the stack. Only one digest is accepted in the current round, the
rest are declined. To guarantee progress each Mi is assigned priority i+ k mod N ; the highest priority
submission wins. The sending of the digest requires booking. Node R receives booking requests from

8

one or more swarm members for the current round and satisfies the highest priority one. This helps to
avoid the cost of forming a correctly signed digest, which according to step 6 below requires knowledge
of which round k it will be broadcast in. We use Message Authentication Codes (discussed in section
1.3.3) to pre-share a common secret between swarm members that require authenticated messaging, in
particular booking requests/confirmation and Dk, from some k = k∗ onward.

Note that the Digest is typically the hash of some content stored in the CAS after the booking request
has been granted and the round k in which the content is to be posted has become certain. The
orchestrator safeguards the content by copying it from the CAS to its local storage to be able to
complete the stack dump for external adjudication. If the booking node sends a properly authenticated
hash that is not a name of a CAS file at the reception time, the booking is annulled and the incident
is reported to the Coordinator.

2. R computes the current frame message xk = H(xk−1

f
Dk) and produces the multiset {sj}j∈[1,κ] from

it.

3. for j ∈ [1, κ] do:

R: strip fabric chain sj of its end point, ej , and broadcast ej on WBC. No integrity control (authen-
tication code) is necessary.

For each Mi: Receive one WBC broadcast r, compute H(r) and find in the current fabric edge the
endpoint with this value. Strip the endpoint, and note its corresponding index, sj . Place that
index in the frame buffer. If H(r) does not match, initiate ARQ.

4. R broadcast Dk. No integrity control is necessary.
For each Mi:
compute H(xk−1

f
Dk), segment it into a multiset and compare the result with the current frame buffer.

If it matches, places it in the verification buffer. If it does not match, initiate ARQ.

5. For each Mi:
Update Pi to C

[i]
2L−2k+1 and broadcast it on WBC, listening at the same time to broadcasts p′j by any

other Mj . From H(pj) = Pj find j and update Pj to pj . If no match found, initiate ARQ. Each
successful update advances the downcount from an initial N − 1 down to 0.
R: Receives broadcasts from all Mi and updates its stored values of Pi (ARQ otherwise) counting down
from N to 0.

6. Same as the previous step except the update of Pi is to C
[i]
2L−2k. Two near-identical steps are required

to verify that all Mi have completed verification of Dk.

At the end of the kth round all Mi have received and validated the candidate digest Dk. The digest has
the following structure:

Dk = H(τk
n
Qk

n
µ
[k]
1

n
. . .

n
µ[k]
m) , (1.1)

where τk is the ID of an m-ary action of the recipe, Qk is the (hash of) the joint message of m smart nodes

specified in the action (and agreed between them using their private communication channels) and all µ
[k]
i

are the signatures of the corresponding nodes:

µ
[k]
i = H(τk

n
Qk

n
C

[i]
2L−2k+1) .

Notice that at the time that the value of µ
[k]
i is required to form Dk (step 1) the value of C

[i]
2L−2k+1 is only

known to smart node i, so the presence of µ
[k]
i in the digest acts as that node’s proper digital signature. Also

since the hash function is preimage resistant, knowledge of µ
[k]
i by the rest of the smart nodes involved in

the m-ary action does not enable them to forge the signature of smart node i under a different joint message
Q′

k ̸= Qk whether individually or jointly. The only way to achieve a digest with all valid signatures is to
agree it. This trick, namely publication of a hash with subsequent publication of its preimage after the first
publication is assuredly received by the principals is the basis of all Guy-Fawkes type of protocols [2]. The
whole swarm is able to instantly validate the digest without requiring any external info at step 6, provided

9

that the IDs of all smart nodes are either directly contained in the m-ary action identified by τi, or they are
part of the joint message Qk.

The argument of the hash function in Eq 1.1 is the actual transaction between the nodes that signed it,
and it is stored in CAS before the Orchestrator receives the digest.

Notice that the validity of the digest does not affect the protocol. If the digest is found to be invalid at
the end of the round, it is simply ignored and the process is repeated. A large proportion of invalid digests
may trigger denial of service counter-measures, or point to an insider threat, more about it in the sequel.

The above assumes that the role of the Orchestrator is entirely passive. It receives requests to post a joint
message on the stack and it fulfils it by forming the digest. However, it can also place its own content on the
stack, for example the notification of swarm reconfiguration, or of suspension of execution. This is achieved
by forming a special digest

Dk = H(0
n
Qk) , (1.2)

which has zero as the Action ID and no signature at the end.

1.3.3 Identity

The identity mechanism of smart nodes is based on the hardness of discrete logarithm computation over a large
cyclic group. Following the NIST recommendations we use Diffie-Hellman Group 14 [7] as sufficiently large
(2048-bit public key) to guard against quantum computing in the next 10 years. Since none of the protocols
requires or benefits from Forward Secrecy (i.e. assurance of confidentiality over tens of years), it seems to be
appropriate to employ relatively cheap group-theoretical techniques that are only conditionally secure against
quantum attacks. Post-Quantum analogues are currently more expensive than a simple doubling of the key
length, the latter resulting several tens of years of expected protection.

Each smart node i produces a secret physically random integer xi < q, where q = (p−1)/2 and p is Group
14’s public modulus; and forms the public key Ki = 4x mod p. Physical randomness is usually available from
microcontrollers with on-board WiFi facilities. It is achieved by sampling microwave noise. The node identity
Id= H(K) is stored by the Idenitity/Capability Service (ICS) in Cloud along with the capability list and any
other information about the physical characteristics of the device. It is assumed that introduction of new
smart nodes to the pool is infrequent, and that there is a periodic schedule of slots in which such events may
occur. All coordination-capable smart nodes must synchronise their internal node lists with the ICS at those
times to keep consistent. A smart node joining a swarm can be given identity information that is missing in
its stored copy of the node list by the Coordinator, provided that the Coordinator identity is known to the
node.

Onboarding The lifetime of a recipe (or recipe instance if the same recipe is executed by more than
one swarm) begins when the Coordinator is appointed by the Cloud App and the combination (Recipe
Id,Coordinator-Id) is signed by the Edge Server. The content of the recipe is stored in the CAS under Recipe
Id as the filename, since the Id is simply the hash of the content. The Coordinator establishes the initial list
of nodes based solely on the ICS list and the Recipe requirements (which must be matched with the nodes’
capabilities). It posts an announcement on the ICS site (unauthenticated) inviting or ordering nodes to join.
Each candidate node posts a join request that consists of:

1. S, Ref to Announcement

2. Ii, Node’s Id

3. C
[i]
2L−1, Node’s Winternitz chain top , where L the step limit of the Recipe.

4. Ai, node’s private address (need not be unique)

5. µi, MAC (Message Authentication Code)

The private address is used on an open unauthenticated side channel that delivers messages to any
recipient with a matching private address. For node i the MAC is computed as following:

µi = HMAC(σci, S
n
Ii

n
C

[i]
2L−1

n
µi) ,

10

where HMAC is a hash-based MAC function[8] σci = Kxi
c mod p is a shared secret for the Coordinator and

node i, and Kc is the Coordinator’s public key. The Coordinator is able to verify that the post is genuine by
exploiting the Diffie-Hellman property

σci ≡ Kxc
i mod p ,

where xc is the Coordinator’s private key and Ki is the node i public one. Note that σci requires one modular
exponentiation to be made by node i, which may be expensive for a low-power device, but the result is non-
ephemeral: it can be used repeatedly to authenticate messages to and from the Coordinator provided that,
as we assume in our Threat Model, the coordinator is trusted for progress.

Unfortunately, a MAC is not a digital signature and so a third-party identity proof is impossible: at
best the third party will be able to assume that the post had been made by no-one else but node i or the
coordinator itself. Consequently in a zero-trust situation, if the services of node i are engaged, the node has
to provide a self-contained public proof of its identity without revealing any secrets. This is achieved by
Schnorr’s protocol as follows.

Schnorr’s protocol. We use a non-interactive version, based on the Fiat-Shamir heuristic [11, 5]. The
first posting of any node involved in the recipe is a special identity-proof record, composed as follows.

The node chooses an integer r, 0 < r < q at random, then sets

u = 4r mod p ,

c = H∗(ρ
n
C

[i]
2L−2k,Ki, u) ,

and
z = r + cx mod q .

Here ρ is the unique identity of the recipe instance, H∗ is a cryptographic hash function with an output in
the range [1, q]. It’s first argument is a bit-string the length of a hash (32 bytes) and the remaining two are
the length of Group 14 modulus, i.e. 256 bytes, which can be split in 8 32-byte segments. Let us use square
brackets to denote indexing the segments of strings c, Ki and u. Then one possible implementation of H∗

can be as follows:
c[j] = H(ρ

n
C

[i]
2L−2k

n
Ki[j]

n
u[j]) mod q ,

for 0 ≤ j < 8, where H is the standard SHA-2 hash.
Then (u, z) is sent to the Orchestrator1 to be posted on the stack. Any third party can then reconstruct

c from u and the public parameters, and check that

4z ≡ uKc
i mod p .

Establishing the node identity requires its chain-top to securely link the identity with the chain, because
the Orchestrator is not trusted. If the node is the Orchestrator itself, the trust issue does not arise and the
formula for c above is replaced by

c = H∗(ρ
n
H(E),Ko, u) , (1.3)

where E is the fabric edge, and Ko the Orchestrator’s public key.
Limiting ourselves to the Random Oracle Model (ROM)[3], the security of this protocol for ordinary nodes

and the Orchestrator is due to the lack of statistical correlation between c and u. Also note that the value
c depends on node i’s Wintrernitz chain and the recipe instance identity ρ, so its reuse (a replay attack) by
a member of this or another swarm (executing a different recipe instance) is impossible. The security of the
protocol also demands that the value of r is destroyed as soon as z has been computed. That value must
never be used again in conjunction with the identity of node i.

1as mentioned earlier, the content is stored in CAS and its hash is sent to the Orchestrator as the Digest

11

1.3.4 Launch

Let us summarise the process of starting a recipe on a swarm. As mentioned before, the first step is for
Cloud to appoint the Coordinator and provide it with the Recipe Instance, which contains a list of roles
with expected capabilities, and a set of actions of different arities. The nature of the actions, the state of
the computation that they change and the calculations this may involve are outside the scope of the present
document. All we are concerned about here is the fully signed messages that trigger specific actions, their
authenticity and nonrepudiation.

All point to point communication is done using direct authenticated messages.

1. The coordinator, as mentioned above on page 10, advertises the swarm on the ICS bulletin board, and
waits for requests to join.

2. When it has received sufficient requests to form the swarm, it confirms each accepted request, giving
the node its sequential number, Recipe Instance ID and the Orchestrator ID. The Coordinator is node
0 and the Orchestrator is node 1.

3. The Coordinator supplies the Orchestrator with the list of members in the ascending order of their
sequential numbers, giving their Ids, addresses and chain-tops. Finally, it provides its own chain-top.

4. The Orchestrator generates its Winternitz fabric F and obtains its Edge E. The Edge E and the array
of members’ chain-tops is communicated to all members in their membership order; the Coordinator is
served first. From this point on, the Winternitz stack is active.

5. The Orchestrator invites the Coordinator to post its Schnorr record (u, z) and runs a round of the
protocol.

6. The Orchestrator posts its Schnorr record using the shortened digest detailed in Eqs 1.2, 1.3 and runs
a round of the protocol.

7. The Orchestrator invites each member to post their Schnorr record and runs one round for each. At
the end of this step, the execution of the Recipe Instance is deemed fully signed.

12

2. Reputation Protocols

Let us now turn to a very different swarm situation. Coordinated swarm was focused on provable and correct
execution of a recipe by the principals duly authorised for such execution, under the control of an Orchestrator
and as a swarm formed and periodically altered by Coordinator. Imagine a swarm that act anonymously via
a set of intermediaries to collectively evaluate the environment for the purposes of environmental control.
For example, a swarm of cars informing smart traffic lights of the prevailing traffic in the vicinity of the site
to improve the switching of the traffic flows and reduce congestion. Here none of the smart nodes is able
to significantly damage the quality of the control based on its individual reported data; however, the data
being reported should not be trusted per se for at least two reasons. Firstly, the quality of the data may be
dependent on the equipment of the data source, so nodes may produce data with an accuracy that varies.
Secondly, as in the example of smart traffic lights, data sources are also recipients of the control decisions
based on their data. Deliberately false data (e.g. reporting a traffic jam that does not exist to gain green
light in one’s direction of travel) may bring an advantage to a dishonest node. Finally, there is a problem of
coincidental disclosure of private data: a car reporting a traffic jam reports its location at the time of the
message; this may well be the car owner’s private date and as such it is protected by GDPR and similar
legislation. So on the one hand, the Evaluator that receives reports from the data sources need to know
whether the data can be trusted or not, and on the other, has no right to know the identity of the source.

A nice solution to this problem is provided by the concept of reputation. The first zero-trust solution
to the best of our knowledge is article [10]. The authors introduced and extensively tested a set of ad hoc
formulae that govern:

location distance factor Θ is a value between 0 and 1 which indicates how irrelevant the report may be
distance-wise, with 0 indicating close distance and 1 reliably remote.

time sensitivity Ω is similarly a value between 0 and 1, which is 0 for sensing reports that are fresh and 1
for those irrelevant due to the elapsed time being over the limit.

A node reputation is a value between −1 and 1, where −1 means that it is completely not trustworthy;
and 1, totally trustworthy. The sensing report is sent from a swarm member to a Reputation Server (RS) at
a certain location, and the RS uses Theta and Omega to determine the relevance of the sensing report. Since
the RS is expected to receive such reports from a number of swarm members that happen to be close in space
and time to the object of sensing, the Server is in a position to compare the reports weighted for relevance
and to work out the environmental condition. It then scores each individual report r for its reliability based
on the closeness or otherwise to the likeliest dataset, and gives it a reputation increment ∆r.

Each node carries a Reputation Certificate (RC), signed by the Registration Authority. It is sent along
with the sensing report. Based on ∆r and the current reputation R the reputation coupon is produced,
which is a certificate signed by the RS which contains the current reputation level R and the course-grain
increment/decrement (a few, say 5, gradations). The smart node takes that certificate back to the registration
authority and the RA updates the node’s reputation.

The above is a much simplified scenario, which leaves many unanswered questions. Is the identity of the
smart node protected? Can an attacker copy the coupon and redeem it with the RA at the expense of the
genuine node? Can a low reputation node’s certificate be stolen by a higher reputation node to obtain a larger

13

increment. There are many more, and some of them are answered in paper [10], and the rest are eliminated
by certain trust assumptions. We will develop appropriate protocols ab initio, bearing in mind that we have
our specific threat model for swarm computing and that we aim to minimise the resource footprint to make
our solution as generic as possible.

2.1 Blind Signature

Reputation management with the privacy constraints describe above require anonymity. The Reputation
Server must not know the identity of the node that has submitted the report; all it needs to know is the
node’s reputation level certified by the Registration Authority. In issuing the reputation coupon, the RS
cannot link it with the identity of the node either, neither explicitly nor implicitly. Finally when the RA
updates the node’s reputation record, it must have no way of knowing where and when the coupon was earned.

These security constraints are not easily resolvable. Indeed, the node can never be sure that its identity
remains unknown to the signer if it cannot be reassured that the reputation certificate presented to the RS has
no data on it that can be used to establish the node’s identity. If it can be verified that only the signature
is contained in the certificate besides the plaintext info, this makes it usable but automatically makes it
transferrable to any other node with the same reputation level. The node cannot borrow a certificate with a
lower level of reputation from a colluding node, because the reputation level is copied to the coupon, which
would become irredeemable due to the reputation mismatch. However, the sensing report sent alongside the
certificate can be modified by an attacker to cause loss of reputation, which is again something that cannot be
prevented if the integrity of the session is not maintained by some methods involving trust. Finally, a coupon
containing the node’s current reputation and the earned increment/decrement needs to be redeemed against
the node’s identity, and since the latter is not contained in the former, the coupon could be intercepted and
redeemed by a rogue node before it is received by the node that earned it.

All of these threats can be countered using the concept of blind and partially blind signature. We define
them next.

Definition 1. A blind signature scheme (BSS) is a public tuple (B,U, S, V). It involves a Signer (the signing
server) and a Requester (the message source). The scheme operates a publicly known key Kp and a secret
key Ks, the latter only available to the Signer. For any message m, the Requester obtains m′ = B(σ,Kp,m).
Here σ is the Requester’s secret seed, without which m cannot be restored from m′. Message m′ is sent to the
Signer, which returns the signature s′ = S(Ks,m

′). The Requester verifies the signature using the public key
by checking that V (Kp,m

′, s′) is true. Then the Requester obtains s = U(σ,Kp, s
′) and the scheme guarantees

that s = S(Ks,m) and so V (Kp,m, s) is also true.

The above definition of blind signature is easier to understand with the help of a commutative diagram:

m s

m′ s′

S(Ks,•)

B(σ,Kp,•)

S(Ks,•)

U(σ,Kp,•)

Informally, to obtain the correct signature s out of a message m one can either do it directly by letting
the server apply function S, in which case the server learns the message m; or one can “blind the message”
by applying function β with a secret random σ to obtain message m′, and send m′ to the server to obtain
signature s′, in which case the server will not learn the message m. However, the Requester is able to
“unblind” the signature s′ by applying function U to it using the same random σ, which will result in exactly
the same s as with the first option.

The blind signature concept allows coupons and certificates to be signed without revealing the identity
of the owner to the signing server, and in this sense they are a useful tool for anonymity. Unfortunately,
complete blindness has its disadvantages. Ideally coupons and certificates should have an expiry date and
other metadata, for example, reputation level or reputation delta, which should be in the clear. If they are
not, the requester has no assurance that circumstances of coupon issue are not hidden under the cipher. For

14

example, the server could include the time and location of the report, which would allow the registration
authority to correlate those attributes with the node ID, thus obtaining personal data. Consequently even
blind signatures would not be sufficient under a zero-trust threat model. There is, however, an extension of
Definition 1, which we consider next.1.

Definition 2. A blind signature scheme with public metadata (BSSPM) is a public sextuple (B, ρ,W, S, F, V).
It also involves a Signer and a Requester and the two keys Kp and Ks. For any message m the Requester

1. obtains m′ = B(σ,Kp, H(m)) using a random σ, which it keeps secret;

2. m′ and the processed random value ρ(m,σ) are sent to the Signer;

3. The Signer applies the pee-imager W to combine m′ and ρ(m′, σ) and public metadata µ into a preimage
Ω′;

4. Ω′ is then encrypted by S using the Signer’s secret key Ks to obtain the pre-signature Z ′ = S(Ks,m
′),

which is sent to the Requester;

5. the Requester applies the finalisation function F to the pre-signature and produces the signature triplet,
which contains the signature proper s, the randomisation context c, and the public metadata µ, assigned
by the Signer;

6. The Requester then verifies that V ((s, c, µ),m) is true.

The scheme must also guarantee that

1. ρ does not leak information about σ in any significant way, so m cannot be obtained from m′ in practice
as long as σ is not divulged;

2. Even though different choices of σ result in different signature triplets (except the public metadata which
remains the same), all such triplets pass the verifier V ;

3. any change in the metadata (or rather its hash) will result in V failing the signature triplet. Since this
is a signature scheme the same is true of m.

The above definition of blind signature with public metadata is easier to understand with the help of a
commutative diagram:

(m, ρ(m,σ0)) Ω Z (s, c, µ)

(m′, ρ(m′, σ)) Ω′ Z ′ (s′, c′, µ) true

W (µ,•)

B(σ,Kp,•)

S(Ks,•) F (σ0,•)

V (m,•)

W (µ,•)
S(Ks,•) F (σ,•)

V (m,•)

Here σ0 is such that m can be obtained immediately from Ω and µ, i.e. no blinding.
It should be noted that at the core of our chosen BSSPM scheme lies standard asymmetric encryption

with a secret key S(Ks, •), that is a standard asymmetric digital signature. This is important because it
makes it possible for the requester to verify the pre-signature Z ′ before finalising the signature with F (σ, •),
provided that the public metadata µ is available to it: reverse the encryption using the Signer’s public key
and match Ω′ with W (µ,m′, ρ(m′, σ)). In fact, in our chosen BSSPM, the preimager is degenerate:

W (µ,m′, ρ(m′, σ)) = W1(µ,W2(m
′, ρ(m′, σ))),

with an invertible W1, which further enables verification of the encryption by matching W2(m
′, ρ(m′, σ)) with

W−1
1 (µ, •) applied to Ω′. That fortuitous property will be used by ECAS in the next section.

1We are interested in randomising blind signature schemes as they make it possible to use low public exponents thus drastically
reducing the complexity of cryptographic primitives for a requester. The definition below is not completely general.

15

2.2 Extended Content-Addressed Storage (ECAS)

In this tripartite scenario with multiple middle agent (the client) the protocol has two choices: (i) to introduce
sessions with a temporary ID to maintain the session integrity for each client, bearing in mind that several
such sessions can run simultaneously or (ii) introduce a zero-trust secure Cloud-based synchronisation facility.
We chose the latter since it avoids any correlation between instances of communication to the extend that
messages can be sent by clients via other clients acting on behalf of it, and thus further impeding the identity
analysis. Option (ii) also helps to protect the protocol from denial of service attacks assuming that the
synchronisation facility operates in the clear and is witnessed. Let us dwell on this in some detail.

Content-Addressed Storage (CAS) is a networked, persistent memory facility which receives datasets and
stores them under the dataset hash as its name. By construction, if a retrieval request referring to the name
of the dataset, the recipient has a strong assurance (as strong as the second preimage resistance properties of
the hash) that the dataset has not been tampered with. The store/retrieve interface is the simplest one for
a CAS; we are interested in the asynchronous version of it: publish/subscribe, which, as the name suggests,
allows an interested party to subscribe to a certain name and be notified by the CAS that the content has
been published (with the content supplied with the notification). When the CAS detects a publish request
it checks that it has received the dataset correctly, since the request contains both the data and the name,
that is the hash. If the latter matches, the dataset is stored under the name, otherwise the request fails.

The extended CAS (ECAS) that we propose here is a generalisation of the content-hash principle by
utilising digital signatures in addition to the hash. The publisher provides attributes that describe the
integrity control using some namespace (set of symbols) globally shared by the swarm to set the relebamy
attributes. ECAS checks that the dataset and its name pass that integrity control and then it stores the
dataset. The subscriber can subscribe to a name and specify some or all of the attributes. Different attribute
sets generally mean a different dataset. The attributes provided by the subscriber are matched with those set
by the publisher and if the match is established, the rest of the attributes are communicated to the subscriber
along with the dataset.

The following request set is proposed:

publish value[attr];

subto tag[attr] → variable;

subto tag[attr] → variable, mdvar.

The attributes in brackets are optional are can be in two parts: server and metadata, separated by a‘;’. The
server attribute is either RA or RS, indicating that the value is signed by the corresponding principal. The
signature can be either ordinary or with public metadata. In the latter case the text of the metadata follows
after the semicolon.

The publish request carries the value (either plain or signed, depending on the attributes) and its hash
as the tag. The ECAS checks the request before approving it:

• If the attributes are omitted, it hashes the value and compares the result with the tag. The pair is
stored in ECAS if the match is achieved, otherwise the request fails.

• If the attribute RA/RS is specified, but no metadata, the value is assumed to have been enciphered
with the corresponding server’s private key. The ECAS uses the corresponding public key to obtain
the plaintext of the value and then hashes the the plaintext to match the result with the tag. In the
case of a match, it stores the original tag-value pair.

• If the metadata attribute is specified, the ECAS acts the same as in the previous case with value, and
then it strips the public metadata off the plaintext by applying W−1

1 (µ, •) to it. Then the result is
hashed and compared with the tag. If it is a match, the original value and the metadata are stored
under the tag. The reason for hashing without metadata is that the subscriber has no knowledge of it
and would not be in a position to prepare the subscription tag it depended on it.

16

In all cases attributes are included in the dataset stored under the tag.

When a subto request is received by ECAS, it attempts to find a tag-value pair with the matching tag.
If one exists, then the attributes, if any, are checked for a match.

• If the request carries the server attribute, but not the metadata, the metadata is considered successfully
matched, and the metadata stored under the tag, if any, is included in the result dataset.

• If no attribute is provided and the stored attribute set is not empty, the outcome is not a match.

If a match is achieved, the value and any metadata are immediately returned to the subscriber and the
connection is closed . Otherwise the reaction differs between Cloud and swarm. A subto request from
RA/RS for which the tag has not been published keeps the requester’s connection open. Eventually, either
the tag is published or the ECAS times out and closes the connection, whichever the sooner, the latter causing
the protocol to fail. It is different for a client. The client may not wish to maintain a lasting connection
to avoid a correlation leak, so an active wait could be preferable: the client repeats the subto request, say
every second, until it is fulfilled. How exactly notifications are processed in a specific scenario is up to the
networking side of the solution; the security of the protocol does not depend on it.

When the subto request is fulfilled, the variable specified in it is assigned with the value from the tag-
value pair, and the mdvar parameter is another variable, which is assigned with the metadata stored under
the tag. The variables can be omitted to indicate that the requester ignores the value after validation; this
is typical of secure synchronisation.

Validation. Zero-trust is a critical part of the ECAS. Any subto request presupposes that the received
data will be validated by the requester in exactly the same way as the ECAS validates any publish request.
We will not mention the validation procedure of the subto request explicitly.

2.3 Anonymous Reputation Update Protocol

Before looking into reputation update, we would like to introduce a slightly different form of Winternitz
chain, the intention of which will be clearer later on.

Definition 3. A Randomised Winternitz Chain (RWC) with x0 its end-point is a sequence of pairs (xi, ni),
i ∈ [1, L], where ni are some random nonces, such that

xk = H(xk+1

n
nk+1), k ∈ [0, L− 1], (2.1)

see the grey box in the middle of Fig 2.1.

The difference between that and a standard Winternitz chain is that for a standard chain, knowledge of some
xi implies knowledge of all xk for k < i, whereas with an RWC it would require knowledge of all nk, k < i as
well. This makes it possible to change the verifier mid-chain and not worry about the new verifier’s ability
to restore all earlier xk from xi, provided that all nonces are destroyed immediately after verification via Eq
2.1. Note that, similar to the standard Winternitz chain, an RWC is computed in advance and has a limited
length L.

2.3.1 Problem setting

The Anonymous Reputation Update is performed by three principals:

• Registration Authority (RA)

• A swarm node that remains anonymous, which we will call the client for short

• Reputation Server (RS)

17

The client goes through a series of rounds. There can be more than one RS but only one is used in each
round for any given client. There can be more than one RA also, but for the time being we will assume there
is only one. RA is in Cloud, and RS is an Edge server. The protocol can be run for several clients at the
same time, but there is no interaction between different clients in the protocol other than the fact that they
all share the RA and all the RS.

Objectives The client registers with the RA. The details of registrations may vary. It is possible that
an ID is checked to control access to the reputation environment or that complete anonymity is maintained
from the start making the system wide open. At registration the client is assigned the lowest reputation
0 and this is made a part of its registration record. The objective of the protocol is to enable the RS to
receive the client’s reputation claim and situation report as the client moves in space and time and senses its
environment. The RS should then be able to satisfy itself that

1. the client’s claimed reputation is correct;

2. the situation report genuinely comes from the same client that has claimed its reputation;

and to work out the relevance and trustworthiness of the report based on the client’s reputation and reports
from other clients and their reputation2. Then the RS will determine the reputation update for the client
based on the newly determined relevance and trustworthiness of the report and establish the client’s new
reputation value3. Finally the protocol ensures that the updated reputation will be securely returned to the
client in the form of digital coupon and that the client will be able to redeem the coupon.

Above all, the protocol guarantees that the Registration Authority will not be able to determine where
and when the client has visited even though the situation report contains that data (it must contain it to
determine its relevance and trustworthiness) and even though the RA and the RS are not trusted not to
collude.

Further objectives include

1. to prevent the client from “forgetting” an unfavourable reputation update by destroying the coupon.

2. to minimise computational cost of the protocol for the client (but not the servers) to enable low-power
devices to participate in the process of reputation update;

3. to reduce the footprint of the client in the RA memory to impede time-correlation attack on anonymity.

2.3.2 Threat model

The RA and RS may collude to correlate the client’s timed position reports, but neither will impede progress
by not responding to a valid submission. Clients may go rogue and seek to undermine high-reputation
colleagues, either individually or in groups. We assume that all communication with the RS and the RA
(the latter after the initial registration) is by anonymous broadcast/bulletin boards. To implement this,
the suggestion of a local TOR network is popular in literature, but we will not require such structures if a
temporary network address (as in WiFi) is obtained on location every time a report is submitted.

2.3.3 ARU Protocol

The proposed protocol is illustrated in figure 2.1. It proceeds in rounds, each starting with a new reputation
certificate being issues and finishing with the reputation update coupon being redeemed. The rounds are
secured by the client’s RWC, which means that the RA and the client cannot start a new round without
finishing the current one, and that no more than one reputation certificate per client is valid at any time.

2this is domain specific and is not part of the protocol
3this is also outside the protocol

18

Registration
Authority

...

fetch
scan at for

delete queue, blacklist
reputation update:

, store
destroy

traveling
to next
location

compose sensing report
set random

compute
compute authenticator

validate RA signature

publish

subto

scan at
for

delete queue, blacklist
compute

publish

set random
set

set authenticator

NEXT ROUND

Reputation
Server

swarm node

1

2

3

4

5

6

7

8

random delay

validate RS signature unless

publish

subto

publish

set radnom ,
set , ,
set authenticator

subto

subto

START

Figure 2.1: ARU protocol

19

Local memory. Both RA and RS use local private tag-value memory. Tags can be blacklisted; any memory
operation with a blacklisted tag fails. The value is either a number or a queue of tuples. If the value is a
number then we use notation tag⇒value and define two commands:

store tag⇒value;

fetch tag⇒variable.

The operation ‘fetch’ either succeeds or fails. If succeeds, the variable is assigned with the valuestored under
the same tag. Two operations are supported for queues:

enqueue a new tuple on the queue: tag⇒ enqueue(tuple);

scan the queue for the first tuple that satisfies a predicate: scan at tag : (v1, . . . , vm) for pred(v1, . . . , vm).

A queue is created implicitly when the first ‘enqueue’ operation is executed. The operation ‘scan’, if succeeds,
associates the elements of the satisfying tuple with the variables listed after the colon. Tag-value pairs in
memory can be destroyed using the operation

destroy tag.

Two kinds of signature are performed by the RA/RS using their private keys and verified by clients with the
help of the corresponding certified public keys. The standard signature

[message]server

and the blind signature with public metadata:

{(blinded) message;metadata}server ,

with both notations denoting the combination of the message and its signature.

Execution. Every step of the protocol is performed by one principal, either a client or the RA or the
RS. If a server is the principal for the step, the step is launched when a valid incoming message is received.
Validation is step specific and may involve checking associative memory, verifying signatures or both. If
the client is the principal, then the execution is triggered by a subscription request with valid data. Here
validation follows the procedures defined for the ECAS.

If the message is invalid, it is ignored (but could trigger network traffic analysis). Then the principal
computes its output message and sends it to the appropriate server (if the principal is a client) or publishes
it on the ECAS (if the principal is a server). One can think of all messages to be broadcast in the plain
without any integrity control or checksum, but possibly with FEC. The destination principal will attempt to
validate all broadcast messages to find the genuine, uncorrupted one.

A round consists of 8 steps.

Step 1. In round 1, the client sends the initial coupon containing unsigned x1 and reputation 0/0 (new/old).
At this point the client provides its credentials (if access control is in place) and the top of its RWS, x0, via
a side channel. This is all the onboarding that any client needs. In round k > 1, at Step 1 the client send
the coupon, which contains its xk blindly signed by the RS with the public metadata (a, a′) . In either case
the client also sends b, a blinded representation of H(ϕ) computed with a fresh random nonce ϕ. This is
done using a secret random nonce σ, which does not leave the client, but a function of it ρ(b, σ) is included
in the message. Finally, the Guy Fawkes authenticator α is computed to link all individual items securely
together (more about it at Step 5), using the current RWC nonce nk as a binding secret. An output message
containing {xk+1; (a, a

′)}RS, b, ρ, α is sent to the RA. More about Step 1 is in the paragraph Back to Step
1 below.

Step 2. The RA extracts the current a, the awarded a′ and the RWC point xk from the RS-signed item
{xk; (a, a

prime)} in the message, as well as the blinded data b and ρ for a new signature and the authenticator
α. It validates the RS signature (except for round 1) and enqueues the tuple (b, ρ, α, a, a′) under H(xk), so
that it may fetch and validate it at step 4. Finally it enciphers b||α with its private key and publishes it on
ECAS.

20

Step 3. It is separate from Step 2 to fend off the jam-spoof attack, whereby the attacker intercepts the Step
1 message and replaces b, ρ and α there while jamming the original. The known defence [12] is two-phase: (i)
the sender confirms that the message has been received intact and by the genuine destination (hence signature
on the hash), and (ii) the sender publishes the preimage of the authenticator. The receiver must check the
authenticator and then find the firstvalid message that the preimage authenticates. That last action prevents
the attacker from intercepting/jamming the preimage and sending a fake message immediately after that:
it will not be first, since the receiver has already confirmed by signature the receipt of the first message,
and since the sender has verified that the first message was received untampered with before sending the
preimage. Hence the need for a queue at Step 2. Now the sender (which is the client in this case) can and
should send the preimage nk (and also xk to maintain the virtual session).

Step 4. The step starts when the RA receives a valid tuple (xk, nk). The tuple is valid when (xk, nk) = xk−1,
received previously, for which the RA has stored a tag-value pair, using xk−1 as a tag and some a as the
current reputation. At k = 0 (for which there is no round) the onboarding procedure placed x0 ⇒ 0 in the
RA associative storage (possibly after an identity check involving x0).

Next the queue tagged with H(xk) is scanned to locate and verify the record placed on it at Step 2. Two
conditions are checked: first, the authenticator has to match (to prevent a jam-spoof attack) and secondly
the claimed reputation a∗ (verified by the RS) should match the latest record a fetched from RA’s associative
storage. How could it not match?

Imagine a scenario whereby there are two colluding clients C1 and C2 with reputations a1 > a2. Nothing
would stop C1 from swapping their RWC’s (by revealing them to each other and using each other’s xk+1 at
Step 5), which would result in C2 acquiring an unearned higher reputation, a1. This scenario goes against
the objectives of the RS: the server derives situation awareness form adequately weighted clients’ reports.
While a lowered reputation does not hurt the server much (it only reduces the number of reputable inputs to
the averaging algorithm, thus affecting the accuracy slightly), a reputation that has been artificially pumped
up reduces the accuracy a great deal more as well as affecting the reputation update of honest clients. The
solution that we have adopted is for the RS to include not only the new reputation but also the current one
in the coupon. This way, the worst that can happen is that two clients with the same current reputation
swap their chains, which is, interestingly, not a threat, since colluding clients can simply swap their sensing
reports and that cannot be prevented by any protocol. The sensing report cannot be bound to the sensing
platform without revealing (or creating) its identity, which would defeat the purpose of the ARU protocol.

Back to Step 4, the RA deletes and blacklists association for tag H(xk) (the blacklisting is to prevent
repay attacks since nk is now in the clear and since Step 2 can be repeated), updates the reputation by storing
xk ⇒ a with the latest a and, to prevent correlation attacks, destroys the previous record by destroying the
tag xk−1. The tag destruction is not essential, but helps to obliterate the historic trace of the client in the
server memory. We need not mention the destruction of nk: since it is not written in the persistent storage,
it will not survive the current step anyway.

Finally, the server publishes the pre-signature of H(ϕ) under its preimage W (a, b, ρ), which the client will
be able to subscribe to as it has knowledge of all three parameters for W .

Step 5. The client subscribes to W (a, b, ρ) and fetches the pre-signature into p, then applies the finaliser
FRA(σ, p) to unblind the reputation certificate {H(ϕ); a}RA. Now it can travel to the next location to prepare
and submit its anonymous sensing report R there. At that point, the mechanics of a blind signature with
public metadata are reinitialised and set in motion. The client sets the new random σ and computes a blinded
message b which embodies the next RWC chain point for the RS to sign with current and new reputation of
the client as metadata, using the context ρ also supplied. The new reputation will be established by the RS
by looking at the sensing report and comparing it with other reports taking into account the time and place
of the observations and the reputation of the observing clients.

The RS will sign the coupon blindly and include the public metadata a from the reputation certificate4

and the newly established reputation a′ at step 8.
The client’s reputation certificate is bound to the client by the latter’s knowledge of the random preimage

ϕ, and that knowledge will be reused to bind the report R and the coupon to the certificate. As a reulst

4it uses it anyway in calculating the new reputation, since the latter depends on the former

21

the RS gets the assurance that the report was created by a reputation-a client (of unknown identity, of
course) and the client gets the assurance that the coupon cannot be used by any other client even though all
communication is in the clear.

The way it is done is via a standard Guy-Fawkes [2] protocol trick. First the client produces a hash of all
the entities it wishes to bind to each other and to the preimage that no other principal has the knowledge
of at this time. We call the result the GF authenticator or the authenticator for short. Then it gets the
counterparty to sign the authenticator and the items it authenticates, publish the signature and put it on
a queue. After validating the counterparty signature (to assure itself that all items have been correctly
received) the client discloses the preimage. An attacker can learn the preimage and produce its own binding
using it, but it will not be received by the counterparty first, and so it will be ignored as an instance of the
jam-spoof attack [12]. A queue, rather than a holding area, is required because the genuine client’s preimage
can be intercepted and corrupted by an attacker, so it will arrive there potentially after a few attempts. The
counterparty must scan the queue for a satisfying record every time a candidate preimage is received, but
only the first successful match will matter.

Step 6. The RS receives a message containing five items: the reputation certificate, the sensing report,
and the blinded coupon: b and ρ. It validates the certificate and extracts H(ϕ) and a from it and en-
queues (R, a, b, ρ, α) under H(ϕ) to use at Step 8, and publishes signed (by enciphering with its private key)
H(ϕ)||R||b||ρ||α.

Step 7. The client subscribes to the tag H(H(ϕ)||R||b||ρ||α) expecting an RS-enciphered value. After
validation it is assured that the RS has received all data correctly, so ϕ can now be released to achieve the
binding.

Step 8. The RS receives ϕ and locates the first valid record on the H(ϕ) queue, unpacks it and deletes
the queue. To prevent a replay attack, the tag becomes blacklisted. Then it forms the pre-signature of
the coupon c = [W ((a, a′), b, ρ)]RA and publishes it supplying the metadata (a, a′). The ECAS tag, as we
mentioned before, strips the metadata from the tag, recording the hash of W−1

1 ((a, a′),W ((a, a′), b, ρ)) which
is the same value as W2(b, ρ) that the client will subscribe to at the next step.

Back to step 1. The client subscribes to H(W2(b, ρ))[RS] and then finalises the content to an anonymous
coupon carrying the RWC point xk+1 and the reputation pair (a, a′) as metadata. Now it restarts the
machinery of blind signature by setting a fresh random σ and a new random ϕ, for which it determines H(ϕ)
and its blinded signature data b and ρ. The coupon along with b, ρ, and α is sent to the RA. At this point
the client sets k ← k + 1 to account for the fact that the next round has started.

2.3.4 Blind signature with public metadata: the algorithm

We follow [4]. This is an old publication but the proposal has unique useful properties, which a recently
codified competing algorithm [1] does not. Also the algorithm in paper [4] has been critiqued at length, even
considered broken by [6], but was vindicated later [15]. This gives us confidence that the algorithm has been
sufficiently exposed to the research community to be used in practice. For our purposes we have streamlined
[4] in the light of [5] to make it a one-step request/response procedure rather than a two-step one with an
extra random parameter.

The algorithm is an extension of RSA and as such assumes a publicly available RSA modulus n of sufficient
length (the recommendation at this time is 2000 bits or more). The Signer knows its factorisation into two
primes p and q, but no other principal does. The scheme assumes a very low public exponent e = 3, but
would work with a more standard e = 216 + 1 at a higher cost (an order of magnitude). The authors argue
that there is no reason to choose the higher e, and the available literature supports their position. The Signer
utilises its knowledge of p and q to find d such that de ≡ 1 mod (p − 1)(q − 1) and keeps the value of d a
secret. It is well known that such d satisfies the following equation for all m < n:

mde ≡ m mod n .

22

That is why RSA encrypts by raising the plaintext to the power d and decrypts by raising the ciphertext to
the power e, both modulo n. Accordingly, (n, e) is the public key and (n, d) the private one. The signature
method is just the other way around: the message to be signed is raised to the d by the Signer to obtain the
signature, and anybody could verify it by raising it to the power e, both modulo n.

To support the ARU protocol we need to define all the functions mentioned in it.

random nonce σ is defined as a 3-tuple σ = (r, r′, u), all three random, positive integers less than n;

the blinding function B depends on the public key (e, n) and requires five modular multiplications: B(σ,m) =
b = re(u2 + 1)m mod n;

the random context ρ is originally defined as ρ = (rr′)e(u−x) mod n, where x statistically independent
of b. In the original protocol x would be chosen at random by the Signer. The goal is to thwart
the chosen plaintext attack whereby u is chosen together with x so that (x2 + 1)/ρ2 ≡ 1 mod n (see
function W2 next). We rely on [5] to replace a random value by a random oracle: x = H∗(b), which is
a cryptographic hash function that has an output of ⌊log2 n− 1⌋ bits.

the preimager W2(b, ρ) Here b = B(σ,m), the blinded message. This function is required by the Signer,
but also by the Requester, since the latter has to compute the tag for ECAS at Step 1.

W2(b, ρ) = (b(x2 + 1)/ρ2)2 mod n .

This involves four modular multiplications and, unfortunately, an inversion ρ−1 mod n which requires
the Extended Euclid Algorithm, which has the same cost as proper exponentiation. Fortunately, we
can extend the ECAS to publish and then subscribe to ρ with a new attribute [/], and it will be well
within the computational power of a Cloud service to do this for an IoT client, see Section 2.3.6. The
verification by the client will only take a single modular multiplication.

the preimager W1(µ, •) is a simple multiplication: for any p produced by W2, W1(µ, p) = H(µ)p mod n.
The metadata is represented by its hash. Combining both parts of the preimager we obtain

W (µ, b, ρ) = H(µ)(b(x2 + 1)/ρ2)2 mod n ,

with the cost of five modular multiplications.

the finaliser F (σ, •) The output of the preimager goes through the standard RSA encipherment to obtain
the pre-signature

Z = Hd(µ)(b(x2 + 1)/ρ2)2d mod n ,

and the pre-signature is returned to the Requester. The full signature F (σ, Z) is a 3-tuple (s, c, µ),
where µ is, as above, the public metadata and s and c is computed by the requester thus:

c = (rr′)e(ux+ 1)/ρ mod n ,

s = r2r′4Z mod n .

Assuming that the multiplicative inverse ρ−1 was obtained at the preimage stage, and taking it into
account that (rr′)e has been raised to the power e in computing ρ earlier, we find that the finaliser
costs six modular multiplications: three to compute c, and three to compute s, since (rr′)2 has been
obtained in the process of computing (rr′)e.

the verifier V (m, (s, c, µ)) establishes the truth of the following congruence:

se ≡ H(µ)m2(c2 + 1)2 mod n .

taking five modular multiplications.

23

2.3.5 Ordinary signature

The ARU protocol relies on the Server’s ordinary (non-blind, no metadata) signature which may require a
different private/public key arrangement, which is undesirable. We propose to use RSA and the same keys we
require for the BSSPM, which implies a low RSA public exponent of 3. This makes it particularly important
that the IETF recommendation for the use of RSA signatures are taken on board. Specifically, since we
typically sign the hash of the document we require to be signed, except when that document is a hash, the
padding recommendations must be followed, in particular RSASSA-PSS hash/padding mechanism, which
provides a secure signature even for a low public exponent, see p.32 in [9].

2.3.6 Ancillary services

A few ancillary services could aid practical implementation of the ARU protocol, especially if low-power
devices are planned.

Multiplicative inverse. In Steps 1 and 5 finalisation is performed, which depends on the ability to compute
the multiplicative inverse 1/ρ. The cost of it is similar to modular exponentiation, which works out as up
to 2× 103 modular multiplications, two orders of magnitude above the cost of any function the client has to
compute in the course of running the protocol. An easy solution of this problem would be to add an attribute
to the ECAS to allow storage of the data for inversion. For example, the request

publish z[RA, /] ,

where z is a number would result in ECAS inverting that number using RA’s public modulus, and storing it
under H(z). The subscriber would then subscribe to H(z) and get ẑ = z−1 mod nRA which will be validated
by the requester by checking that ẑ × z ≡ 1 mod nRA at the cost of one modular multiplication.

There could be a security concern in that the zero-trust inversion service also makes public the number it
has been requested to invert. The remedy is obvious: blinding. Instead of inverting z, the requester should
request inversion of some z0z mod n, where z0 is a random nonzero nonce less than the appropriate n. After
getting (z0z)

−1 mod n, the requester will simply multiply it by z0 mod n, thus getting the inverse at a cost
of two modular multiplications with perfect confidentiality.

RA distribution. The Reputation Server is placed in Fog, so there will likely be several of those, perhaps
sharing one signing server in Cloud. This makes it easier to protect the RS from monitoring attacks as the
attacker would need to intercept local communication in several locations to correlate a client’s presence to
form a fuzzy trajectory.

However, the Registration Authority is in Cloud and it seems to be the nexus of continuity data. If it
could be compromised, the adversary would collect all RWC points and their associated reputation changes.
The ARU protocol provides a good opportunity to make it harder for the attacker to monitor the RA.

We observe that at Step 1 the client finalises a coupon which contains a fresh xk. The value is a hash
output and as such is pseudorandom. Consider the architecture of the RA whereby 2ν (virtual) RA servers
are installed, each establishing a channel with a signing authority that produces the RSA signature of either
the plain or a padded preimage. All clients share a net directory where the 2ν RA servers are defined together
with their network addresses. As a variant, the RA servers may have a different public key each and not use
the signing authority at all. At Step 1 the client determines which server to send the request to by taking ν
least significant bits of xk. The same approach is then followed at Step 3 and finally when at Step 4 the RA
needs to fetch xk−1 ⇒ a , it first extracts the ν least significant bits form xk−1 and passes the request to the
corresponding RA. Provided that ni are not kept for longer than one step (and they are not) by an honest
RA, the trace of the client ends there. If some of the RA servers are dishonest, they may collect segments of
the client’s trajectories, but not more than ν rounds in length, as long as at least one honest RA remains. A
nice side-effect of hash-based work distribution, is that the load ballance is statistically even all by itself.

24

Bibliography

[1] Ghous Amjad, Kevin Yeo, and Moti Yung. RSA blind signatures with public metadata. Cryptol-
ogy ePrint Archive, Paper 2023/1199, 2023. https://eprint.iacr.org/2023/1199. URL: https:
//eprint.iacr.org/2023/1199.

[2] Ross Anderson, Francesco Bergadano, Bruno Crispo, Jong-Hyeon Lee, Charalampos Manifavas, and
Roger Needham. A new family of authentication protocols. SIGOPS Oper. Syst. Rev., 32(4):9–20,
October 1998. doi:10.1145/302350.302353.

[3] Gerrit Bleumer. Random Oracle Model, pages 1027–1028. Springer US, Boston, MA, 2011. doi:

10.1007/978-1-4419-5906-5_220.

[4] Hung-Yu Chien, Jinn-Ke Jan, and Yuh-Min Tseng. Rsa-based partially blind signature with low
computation. In Proceedings. Eighth International Conference on Parallel and Distributed Systems.
ICPADS 2001, pages 385–389, 2001. URL: https://ieeexplore.ieee.org/document/934844, doi:
10.1109/ICPADS.2001.934844.

[5] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Conference on the theory and application of cryptographic techniques, pages 186–194.
Springer, 1986. URL: https://link.springer.com/content/pdf/10.1007/3-540-47721-7_12.pdf.

[6] Min-Shiang Hwang, Cheng-Chi Lee, and Yan-Chi Lai. Traceability on rsa-based partially sig-
nature with low computation. Applied Mathematics and Computation, 145(2):465–468, 2003.
URL: https://www.sciencedirect.com/science/article/pii/S0096300302005003, doi:10.1016/

S0096-3003(02)00500-3.

[7] T. Kivinen and M. Kojo. RFC3526: More modular exponential (MODP) Diffie-Hellman groups for Inter-
net Key Exchange (IKE). Technical report, RFC Editor, USA, 2003. URL: https://www.rfc-editor.
org/rfc/rfc3526.txt.

[8] Dr. Hugo Krawczyk, Mihir Bellare, and Ran Canetti. HMAC: Keyed-Hashing for Message Au-
thentication. RFC 2104, February 1997. URL: https://www.rfc-editor.org/info/rfc2104, doi:
10.17487/RFC2104.

[9] Kathleen Moriarty, Burt Kaliski, Jakob Jonsson, and Andreas Rusch. PKCS #1: RSA Cryptography
Specifications Version 2.2. RFC 8017, November 2016. URL: https://www.rfc-editor.org/info/
rfc8017, doi:10.17487/RFC8017.

[10] Xinlei Oscar Wang, Wei Cheng, Prasant Mohapatra, and Tarek Abdelzaher. ARTSense: Anonymous
reputation and trust in participatory sensing. In 2013 Proceedings IEEE INFOCOM, pages 2517–2525,
2013. doi:10.1109/INFCOM.2013.6567058.

[11] Claus-Peter Schnorr. Efficient signature generation by smart cards. Journal of cryptology, 4:161–174,
1991. URL: https://link.springer.com/article/10.1007/BF00196725.

[12] Alex Shafarenko. A PLS blockchain for IoT applications: protocols and architecture. Cybersecurity,
4(1):4, 2021. URL: https://doi.org/10.1186/s42400-020-00068-0.

25

https://eprint.iacr.org/2023/1199
https://eprint.iacr.org/2023/1199
https://eprint.iacr.org/2023/1199
https://doi.org/10.1145/302350.302353
https://doi.org/10.1007/978-1-4419-5906-5_220
https://doi.org/10.1007/978-1-4419-5906-5_220
https://ieeexplore.ieee.org/document/934844
https://doi.org/10.1109/ICPADS.2001.934844
https://doi.org/10.1109/ICPADS.2001.934844
https://link.springer.com/content/pdf/10.1007/3-540-47721-7_12.pdf
https://www.sciencedirect.com/science/article/pii/S0096300302005003
https://doi.org/10.1016/S0096-3003(02)00500-3
https://doi.org/10.1016/S0096-3003(02)00500-3
https://www.rfc-editor.org/rfc/rfc3526.txt
https://www.rfc-editor.org/rfc/rfc3526.txt
https://www.rfc-editor.org/info/rfc2104
https://doi.org/10.17487/RFC2104
https://doi.org/10.17487/RFC2104
https://www.rfc-editor.org/info/rfc8017
https://www.rfc-editor.org/info/rfc8017
https://doi.org/10.17487/RFC8017
https://doi.org/10.1109/INFCOM.2013.6567058
https://link.springer.com/article/10.1007/BF00196725
https://doi.org/10.1186/s42400-020-00068-0

[13] Alex Shafarenko. Winternitz stack protocols for embedded systems and IoT. Cybersecurity, 7(1):34,
2024. URL: https://cybersecurity.springeropen.com/articles/10.1186/s42400-024-00225-9.

[14] Kazuhiro Suzuki, Dongvu Tonien, Kaoru Kurosawa, and Koji Toyota. Birthday paradox for multi-
collisions. In Min Surp Rhee and Byoungcheon Lee, editors, Information Security and Cryptology –
ICISC 2006, pages 29–40, Berlin, Heidelberg, 2006. Springer Berlin Heidelberg. URL: https://link.
springer.com/content/pdf/10.1007/11927587.pdf.

[15] Hsiang-An Wen, Kuo-Chang Lee, Sheng-Yu Hwang, and Tzonelih Hwang. On the traceability on rsa-
based partially signature with low computation. Applied Mathematics and Computation, 162(1):421–
425, 2005. URL: https://www.sciencedirect.com/science/article/pii/S0096300304001043, doi:
10.1016/j.amc.2003.12.110.

26

https://cybersecurity.springeropen.com/articles/10.1186/s42400-024-00225-9
https://link.springer.com/content/pdf/10.1007/11927587.pdf
https://link.springer.com/content/pdf/10.1007/11927587.pdf
https://www.sciencedirect.com/science/article/pii/S0096300304001043
https://doi.org/10.1016/j.amc.2003.12.110
https://doi.org/10.1016/j.amc.2003.12.110

	Coordination Protocols
	Introduction
	Threat model and security objectives
	Orchestration Protocols
	Group RWS (GRWS) protocol
	Protocol
	Identity
	Launch

	Reputation Protocols
	Blind Signature
	Extended Content-Addressed Storage (ECAS)
	Anonymous Reputation Update Protocol
	Problem setting
	Threat model
	ARU Protocol
	Blind signature with public metadata: the algorithm
	Ordinary signature
	Ancillary services

