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Abstract. Enhanced pqsigRM is a code-based hash-and-sign scheme proposed
to the second National Institute of Standards and Technology call for post-
quantum signatures. The scheme is based on the (U,U + V )-construction and
it enjoys remarkably small signature lengths, about 1KBytes for a security
level of 128 bits. Unfortunately we show that signatures leak information
about the underlying (U,U + V )-structure. It allows to retrieve the private-
key with 100, 000 signatures.

1. Introduction

Code-Based Signature Schemes. Until very recently, no digital signature scheme
based on the hardness of decoding a random linear code which could compete with
widespread schemes like DSA or RSA were known. Contrary to those signatures,
code-based schemes would provide quantum-safe solutions, no efficient quantum al-
gorithm is known to efficiently decode a random linear code. A glaring illustration
of this situation was given by the first National Institute of Standards and Technol-
ogy (NIST) call from ’17 for post-quantum cryptographic primitives: all code-based
signatures were broken during the first of the four rounds [HBPL18,DT18,ASP18].
However and fortunately the situation has drastically changed. Many safe code-
based signatures are currently known. This rapidly changing situation may also
once again be illustrated by the efforts of the NIST which had recently called for an
additional standardizing process dedicated to quantum-safe digital signatures (in
order to increase the diversity of the future standards). Many schemes whose secu-
rity inherits from coding problems were proposed and they can be sorted according
to two main approaches. The first one uses the Fiat-Shamir transform [FS87]
to turn (i) zero-knowledge authentication schemes [BBB+23b,BBB+23a,CNP+23]
or (ii) MPC in the head protocols [ABB+23c, ABB+23b, ABB+23a, ABB+23d,
AMFG+23] into signatures while the second one is known as hash-and-sign [CNL+23,
RBK+23,BCC+23]. Both approaches enjoy dual advantages and drawbacks. Using
the Fiat-Shamir transform leads to large signature lengths but small public-keys
while hash-and-sign schemes usually turn out to benefit from short signatures and
fast verification but big public-keys. However, even if both approaches turn out to
be dual in terms of advantages and drawbacks, it has been historically much more
difficult to build secure and efficient code-based hash-and-sign schemes. It is again
illustrated by the current NIST standardization: only three code-based hash-and-
sign schemes were submitted [CNL+23,RBK+23,BCC+23].

First Attempt to Design Code-Based Hash-and-Sign. The first approach
to design a code-based hash-and-sign primitive was given by the so-called CFS

1 Inria and Laboratoire LIX, École Polytechnique, Palaiseau, France
2 Thales, Gennevilliers, France
E-mail addresses: thomas.debris@inria.fr, pierre.loisel@inria.fr,

valentin.vasseur@thalesgroup.com.
1



EXPLOITING SIGNATURE LEAKAGES: BREAKING ENHANCED PQSIGRM 2

scheme [CFS01]. It consisted in finding parity-check matrices H ∈ F(n−k)×n
2 such

that the solution e of smallest Hamming weight of the equation,

eH⊤ = s (1)

could be found for a non-negligible proportion of s ∈ Fn−k
2 . This task was achieved

by using high rate Goppa codes but it has unfortunately two main drawbacks: (i)
high rates Goppa codes are distinguishable from random codes [FGO+11,CMT23]
(avoiding to reduce the security to decoding a random linear code as aimed in code-
based cryptography) and (ii) security scales only weakly super-polynomially in the
key-size for polynomial-time signature generation making the scheme unpractical
(public-key size of terabytes, signature time of hours for quantum-safe security lev-
els). Facing these difficulties, one may say that CFS approach is asking too much.
Particularly, it seems natural to relax for hash-and-sign purposes the task of hav-
ing a non-negligible fraction of syndromes that can be decoded (it constraints a lot
the choice of the code). One way to proceed is by only asking parity-check matri-
ces H such that Equation (1) admits for most of the s’s a solution e of moderately
small weight which is enough to design a hash-and-sign scheme. Interestingly, there
exists many code families achieving such task. These codes are not used in error-
correction but in lossy source coding or source-distortion theory where the problem
is to find codes with an associated “decoding” algorithm which can approximate any
word of the ambient space by a close enough codeword. Convolutional, LDGM or
polar codes are examples of such codes but unfortunately they are distinguishable
from random codes [LJ12,PT16,BCD+16] avoiding their use for designing signature
schemes.

SURF: the First Code-Based Signature Based on Source-Distortion The-
ory. Despite the aforementioned difficulties, basing hash-and-sign construction on
source-distortion theory turned out to be fruitful. A first attempt based on this
approach was proposed in ’17: SURF [DST17b] which introduced (U,U + V ) codes
in this context. The latter are just a way of building codes of length n from two
codes U and V of length n/2. It consists in,

(U,U + V )
def
= {(u,u+ v) : u ∈ U,v ∈ V } .

These codes are extremely attractive as even by choosing codes U and V as ran-
dom (putting as few as possible structure on the whole code in order to make
it indistinguishable from a random code), then a simple and polynomial-time al-
gorithm exploiting the structure can be used to solve Equation (1) for any s as
input and for weights such that the best generic decoding algorithm is still expo-
nential (when the parity-check matrix H is regarded as random). However, the
decoding algorithm works for weights such that there are an exponential num-
ber of solutions opening the possibility of security issues. Indeed, any signature
(here the solution e) is intended to be made public. In such case, the decoding
algorithm computes one of the solutions and, if no precautions are taken, it can
choose one of them in a way that reveals the underlying structure. This issue was
clearly identified in the case of SURF [DST17b, §5.1]. Fortunately by tweaking
the decoding algorithm and performing an appropriate rejection sampling, it was
shown [DST17b, §5] how to produce signatures whose distribution is independent
of the underlying (U,U + V )-structure, i.e., the secret. It was the key to prove
that SURF security relies on the hardness (i) of decoding a random linear codes
and (ii) distinguishing a permuted (U,U + V )-code from a random code. Unfortu-
nately there is a fatal issue. The second assumption turns out to be false: it is easy
to distinguish a permuted (U,U + V )-code from a random code in the regime of
parameters needed for the SURF scheme to work (codes U and V have to be binary
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codes and their respective dimensions kU and kV need to verify kU > kV ). The
key observation [DST17a] was that the hull (the intersection of the primal code
with its dual) of permuted (U,U +V )-codes does not behave as the hull of random
codes, thus providing a distinguisher. But even worse, the hull is full of permuted
codewords (u,u) where u ∈ U from which the secret permutation can easily be
retrieved and then breaking the scheme.

(Enhanced) pqsigRM: a Hash-and-Sign Based on the (U,U + V )-Codes. In
light of the history of SURF, it may seem that using a (U,U+V )-structure to design
hash-and-sign schemes is a dead-end. However, this idea has been pursued. In ’17,
it has been submitted to the NIST call for post-quantum cryptographic primitives
the code-based hash-and-sign pqsigRM scheme [LKLN17]. It also takes advantage
of some (U,U + V )-structure to decode. However, to avoid SURF pitfall, authors
of pqsigRM [LKLN17] proposed to add some structure: choosing some variation of
Reed-Muller codes for U and V as well as puncturing some positions of the code.
These two choices were made to avoid classical attacks against Reed-Muller codes
and to increase the size of the hull in such a way that permuted (u,u) codewords
become hard to find. This approach enabled to avoid the attack breaking SURF
even if the public-code remains distinguishable from random codes for which the
hull has typically dimension 0. However, pqsigRM has been broken in an official
comment [ASP18] of the NIST forum. It has been first shown that one can locate
the punctured positions using the hull of the code. Then it has been noticed that
this information enables to run attacks that originally broke McEliece cryptosys-
tem instantiated with Reed-Muller codes [Sid94]. Ultimately, this attack broke
pqsigRM by only using the public-key. Despite this, it has been few years later
proposed a variation, Enhanced pqsigRM [NCL+22]. Some other variation of the
used (U,U + V )-code were proposed to defeat the attack from [ASP18]. This novel
hash-and-sign has then been submitted [CNL+23] to the second NIST call for stan-
dardizing signature schemes.

Our Contribution: Breaking Enhanced pqsigRM by Exploiting Signature
Leakage. Our contribution is that, despite the fact that Enhanced pqsigRM was
designed to thwart known attacks exploiting the structure of the public-code, we
show how to retrieve from the public-key for a security level of 128 bits of classical
security and 100, 000 signatures an equivalent secret key that would enable to forge
new signatures. Our key observation has been that signatures in Enhanced pqsigRM
are coming from a (U,U + V )-decoder which has not been designed to ensure that
signatures distribution is independent of the secret-key. Therefore, as outlined in
the case of SURF for which a proper rejection sampling was designed, signatures of
pqsigRM are biased and they reveal information on the secret-key as its associated
decoding algorithm is based on the (U,U + V )-structure. Our attack is based
on simple empirical probabilities and we have developed two scripts available at
https://github.com/vvasseur/pqsigRM. The first script is designed for rapid
execution. It effectively illustrates the biases in the signature distribution. The
second script, though more time-consuming, leverages these biases to reveal almost
all the whole (U,U + V )-structure of the secret.

2. Preliminaries

Basic Notation. The notation x
def
= y means that x is being defined as equal

to y. We let Ja, bK denote the set of the integers between a and b. Vectors are
in row notation and are written with bold letters (such as x). Uppercase bold
letters are used to denote matrices (such as H). Given a matrix H = (Hi,j)i,j

https://github.com/vvasseur/pqsigRM
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with n columns and a permutation σ of J1, nK, we let Hσ denote the matrix whose
columns are permuted according to σ, i.e., Hσ = (Hi,σ(j)). The canonical inner
product

∑n
i=1 xiyi between two vectors x and y of Fn

2 is denoted by ⟨x,y⟩ where F2

denotes the binary field. The concatenation of two vectors x and y is denoted by
(x,y). The Hamming weight of a vector x ∈ Fn

2 is defined as the number of its
non-zero coordinates,

|x| def
= ♯ {i ∈ J1, nK, xi ̸= 0}

where ♯A stands for the cardinality of a finite set A.

Coding Theory. A binary linear code C of length n and dimension k is a subspace
of the vector space Fn

2 of dimension k. We say that it has parameters [n, k] or that
it is an [n, k]-code. A generator matrix G for C is a full rank k×n matrix over Fk×n

2

such that,
C =

{
xG : x ∈ Fk

2

}
.

In other words, the rows of G form a basis of C. A parity-check matrix H for C is
a full-rank (n− k)× n matrix over F(n−k)×n

2 such that,

C =
{
c ∈ Fn

2 : Hc⊤ = 0
}
.

In other words, C is the null space of H. The code whose generator matrix is the
parity-check matrix of C is called the dual code of C. It is an [n, n−k]-code defined
as,

C⊥ def
= {h ∈ Fn

2 : ∀c ∈ C, ⟨h, c⟩ = 0} .

The hull of a code C is defined as the intersection with its dual, i.e., hull (C) def
= C∩C⊥.

3. The Enhanced pqsigRM Signature Scheme

We recall in this section basic facts about Enhanced pqsigRM [CNL+23]. It is
roughly speaking a hash-and-sign scheme: the message m to be signed is first hashed
by a hash function Hash and then the signature is equal to f−1(Hash(m)) where
f is a trapdoor one-way function. Therefore, the pair (m, f−1(Hash(m))) forms a
valid signature. Code-based cryptography provides the following one way-function,

fH : e ∈ S≤w 7−→ eH⊤ ∈ Fn−k
2

where S≤w denotes the words of Fn
2 of Hamming weight ≤ w and H is a parity-check

matrix of size (n − k) × n. To introduce a trapdoor in fH authors of [CNL+23]
proposed to use parity-check matrices from a family of codes derived from Reed-
Muller codes. The proposed codes are rather involved in order to avoid structural
attacks, i.e., recovering from H its underlying structure enabling to invert fH. Our
aim in the following two subsections is to describe how the matrix H is chosen in
the reference implementation of [CNL+23]1.

3.1. Reed-Muller Codes. The Reed-Muller codes are a family of (U,U+V )-codes
which are constructed in a recursive way. First we will introduce the (U,U + V )
construction which is a way to construct a new code based on two given codes U
and V of the same length.

Definition 1 ((U,U + V )-Codes). Let U , V be linear binary codes of length n/2
and dimension kU , kV . We define the subset of Fn

2 :

(U,U + V )
def
= {(u,u+ v) such that u ∈ U and v ∈ V }

1It differs slightly from the specifications [CNL+23, §3.3] without incidence on our attack (our
attack relies on signatures produced by the reference implementation).
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which is a linear code of length n and dimension k = kU + kV . A generator matrix
of such a code is given by, (

GU GU

0 GV

)
where GU ∈ FkU×n/2

2 (resp. GV ∈ FkV ×n/2
2 ) is a generator matrix of U (resp. V ).

We are now ready to recall how Reed-Muller codes are built by recursively ap-
plying the (U,U + V ) construction.

Definition 2. Let m ∈ N and r ∈ J0,mK. The Reed-Muller code RM(r,m) is the
[2m, k]-code, where,

k
def
=

r∑
j=0

(
m

j

)
,

built recursively as a (U,U + V )-code with generator matrix,

G(r,m)
def
=

[
G(r,m− 1) G(r,m− 1)

0 G(r − 1,m− 1)

]
(2)

G(0,m)
def
=

(
1 · · · 1

)
∈ F2m

2 and G(m,m)
def
= I2m

3.2. Key Generation. It is proposed in Enhanced pqsigRM [CNL+23] to choose
a parity-check matrix of some code C after making a series of modification over
RM(6, 13). The code C is defined from a generator matrix which is built as follows.

1) Pick two permutations σ1 and σ2 of J1, n/4K and consider
G(6, 11)σ1 G(6, 11)σ1 G(6, 11)σ1 G(6, 11)σ1

0 G(5, 11) 0 G(5, 11)
0 0 G(5, 11) G(5, 11)
0 0 0 G(4, 11)σ2


Notice that it is not anymore a generator matrix of a Reed-Muller code RM(6, 13)
but it is still a generator matrix of a (U,U + V )-code. The design rationale of this
permutation choice is to make the dimension of hull (C) \ RM(r,m) big.

2) All the matrices G(6, 11)’s appearing above are decomposed via the recursive
(U,U + V )-construction. After these five recursive steps, the top 26 rows of the
matrix consist of 4 · 25 = 27 permuted (according to σ1) identity matrices. Then

each of them are replaced by the same random matrix M ∈ F(2
6−2)×26

2 with the
property that the dual of the code generated by M contains at least one vector with
odd Hamming weight. Notice that the resulting matrix has k− 2 rows where k de-
notes the dimension of G(6, 13).

3) Ultimately, two rows are appended to the matrix. They are chosen as random
vector coordinates (linearly independent of the existing rows) with one of them
having an odd weight.

After these steps, the following matrix is obtained,

Gf
def
=

A B
U U
0 V

 ∈ Fk×213

2 with k
def
=

6∑
j=0

(
13

j

)
(3)

and where blocks A and B contain 26 rows. Therefore, the code contains a
(U,U + V )-code and the U, V codes are themselves (U,U + V )-codes. This fact
is important as the decoding algorithm and our attack are based on these two
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properties.

Secret-Key. A parity-check matrix Hf of the code generated by Gf is computed.
Then a random permutation P is picked up to the moment that HfP can be put in
systematic form, i.e., there exists a non-singular matrix S such that SHfP = (I,H′)
where denote I the identity matrix of the right size. The secret-key consists in the
invertible matrix S, the permutation P and the above permutations σ1, σ2 as well
as the two appended rows to build Gf .

Public-Key. It consists of H def
= (Id,H

′) and w = 1370.

3.3. Signing Process, i.e., Inverting fH. We now briefly describe how the de-
coding algorithm works. We refer to [CNL+23] for more details, in particular the
proof of its correctness. Our aim in this subsection is to show how this decoding
algorithm (based on [Dum04] approach) takes advantage of the (U,U+V )-structure.

The decoding algorithm takes as input the public parity-check matrix H, the
syndrome to decode and the secret-key. It uses as main subroutine the function
RecursiveDecode using the recursive (U,U+V )-structure of the code. In order to
be consistent, we made the choice to describe RecursiveDecode as in [CNL+23].
Particularly, vectors’ coordinates are seen as elements of {−1, 1} and all operations
are done in Q. We let ⋆ denote the component-wise multiplication. The terminating
cases use a function MaximumDecoding corresponding to a decoding algorithm
which can be a majority voting (when the underlying code is the repetition-code)
or a naive decoding algorithm using linear algebra, e.g. one iteration of Prange
algorithm [Pra62] (when the code is random). The permutation being used in

Algorithm 1 Tweaked decoding algorithm

1: function Decode(s,H)
2: Compute via linear algebra r such that rH⊤ = s
3: while True do
4: c← Random codeword from the code with parity-check matrix H
5: r← r+ c
6: c′ ← RecursiveDecode(rP−1, 6, 13)P
7: if |r+ c′| ≤ w then return r+ c′

8: function RecursiveDecode(y,r,m):
9: y← yσ−1

▷ σ is σ1, σ2 or Id depending on the current block
10: if r = 0 or r = m then
11: Maximum decoding on RM(r,m)
12: ▷ With potentially the 26 modified rows.
13: else
14: Write y← (y′,y′′)
15: yV ← y′ · y′′

16: v← RecursiveDecode(yV , r − 1,m− 1)

17: yU ← y′+y′′⋆v
2

18: u← RecursiveDecode(yU , r,m− 1)
19: return (u,u ⋆ v)σ

the last recursive step of RecursiveDecode is the identity. Using notation of
Algorithm 1, let (in additive notation),

eU
def
= yV − v and eV

def
= yV − u

where yV ,yU ,u,v are the computed vectors in this last iteration.
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Figure 1. Empirical estimation of the P(ei ̸= ej)’s by using 5,000
signatures. For 1,024 points i in the x-axis, we draw empirical
estimations P(ei ̸= ej) for j = i + n/2 (in red) and four other
random coordinates (in blue).

As we will show now, our attack crucially uses the fact that an output signature
has the form,

(eU , eU + eV )P.

4. Signature Leakage

Produced signatures in [CNL+23], which are intended to be made public, are
outputs of Algorithm 1. Our key observation is that they have the form eP, where
(here n = 213)

e
def
= (eU , eU + eV ) ∈ Fn

2

and (eU , eV ) ∈ Fn/2
2 are the output vectors of the recursive decoding algorithm be-

fore its last step. These signatures leak information about the secret permutation P:
they enable to recover the image by P of the pairs

(i, i+ n/2) or (i+ n/2, i)

that we will call matched pairs. Indeed,

P
(
ei ̸= ei+n/2

)
= P ((eV )i = 1) ≈ E (|eV |)

n/2
. (4)

On the other hand, if we take non-matched pairs (i, j), then we expect (signatures
have Hamming weight ≈ w),

P (ei ̸= ej) ≈
2
(
n−2
w−1

)(
n
w

) . (5)

If we suppose that our approximations are good enough, then we expect to be
able to distinguish between pairs of positions which are matched or not by mak-
ing naive empirical statistics. In Figure 1 we compare these approximations with
the empirical probabilities of P(ei ̸= ej) whether (i, j) are matched or not. To
draw this figure we used signatures output by the signing algorithm from the refer-
ence implementation (which can be found at https://csrc.nist.gov/projects/
pqc-dig-sig/round-1-additional-signatures) for some known permutation P
(we also used these iterations to estimate E(|eV |)).

https://csrc.nist.gov/projects/pqc-dig-sig/round-1-additional-signatures
https://csrc.nist.gov/projects/pqc-dig-sig/round-1-additional-signatures
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As we can appreciate, we can easily differentiate between matched or not pairs,
i.e., images by the permutation P of pairs of the form (i, i + n/2), (i + n/2, i) or
not. In other words, given genuine Enhanced pqsigRM signatures we can recover
matched pairs. It explains why signatures leak information about the secret key.
In the following section we explain how to exploit this knowledge.

5. Recovering the code structure

The attack begins with the extraction of matched pairs from the signatures using
standard correlation statistics. After this step, the obtained matched pairs are
unordered: each post-permutation matched pair corresponds either to (i, i + n/2)
or (i + n/2, i) pre-permutation for some i ∈ J1, n/2K. Now if one manages to
distinguish these two cases, then the (U,U + V )-structure of the code is exposed.
This is achieved by applying linear algebra to the generator matrix which is derived
from the public-key, using the matched pairs information. The final stage of the
attack involves systematically deconstructing the (U,U + V )-recursive structure
layer by layer until classic Reed-Muller attacks [CB14,MS07] apply to recover the
full structure.

5.1. Recovering the Matched Pairs. In order to recover the matched pairs,
we propose to compute the Pearson correlation coefficients ρi,j between (−1)si
and (−1)sj for each pair of signature bits si and sj with a dataset of N samples.
These coefficients form the weighted adjacency matrix P of a graph where each
vertex is a signature bit. By solving the maximum weight matching problem on
this graph, we efficiently identify the pairs exhibiting the strongest correlation. This
technique is particularly effective with a sample size N = 105.

5.2. Ordering the Matched Pairs Without Appended Rows. We now need
to turn our attention on the generator matrix of the Enhanced pqsigRM public-code.
For the sake of simplicity we will first proceed as if there were no appended rows
in the key generation (blocks A and B in Equation (3)). Let us suppose that a

generator matrix of the public code has the following form G
def
= S ·

[
U U
0 V

]
P for

some non-singular matrix S and a permutation matrix P.

Recovering Permuted U and V Codes. First, one can rearrange the columns
of the public generator matrix such that the matched pairs are n/2 places apart.
After this step, we obtain a matrix that follows the form:

S ·
[
UP′ UP′

V′P′ V′′P′

]
. (6)

Here, V′ and V′′ partition the columns of V into two parts so their sum is V,

and P′ is a permutation matrix. Now, multiplying (6) by the matrix J
def
=

[
I I
I 0

]
,

we obtain

S ·
[

0 UP′

VP′ V′P′

]
. (7)

Using straightforward Gaussian elimination, we identify UP′ and VP′ up to mul-
tiplication on the left by non-singular matrices. But at this point, we have no
information about what should be on the left or on the right.
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What is on the Left, What is on the Right. We would like to find a permu-
tation Q that right-multiplied to (6) gives:

S ·
[
UP′ UP′

0 VP′

]
. (8)

Then by multiplying by J, we will obtain,

S ·
[

0 UP′

VP′ 0

]
.

So the right permutation Q renders V′ as zero. Our task is now to find the right
combination of swaps among the n/2 possibilities that achieves the form given in
Equation (8).

The main idea comes from realising that those swaps constitute linear operations.
Indeed, swapping the two columns at positions i and i + n/2 in G has the same
effect as multiplying on the right by the elementary matrix Ti,i+n/2. But,

Ti,i+n/2 · J = J · Li,i+n/2
2.

So swapping matched columns then multiplying by J has the same effect as multi-
plying by J then adding the ith column to the i+ n/2th column. For this reason,
we will now directly work on the matrix G′ def= G · J.

Let us now focus on the actual situation that we obtain after Gaussian elimina-
tion on G′: [

S1VP′ S1V
′P′

0 S2UP′

]
=

[
I SV 0 SV′

0 0 I SU

]
. (9)

A matched columns swap of G followed by a Gaussian elimination of G′ only
changes SV′ . Essentially, there are two possibilities: if the column at position i +
n/2, (i) contains a pivot for S2UP′ then the row corresponding to this pivot is added
to every row in the support of that column, otherwise (ii) the column at position i is
directly added to the column at position i+n/2. We should observe that this process
is a purely linear operation with a dimension of n/2 when considering all possible
swaps. We can indeed derive a matrix E with dimensions n/2× (dimV · n/2) such
that, after swapping columns i and i+n/2 for each i in the support of some vector x
within matrix G, the matrix G′ transforms to, after Gaussian elimination:[

I SV 0 SV′ + (IdimV ⊗ x) ·E⊤

0 0 I SU

]
. (10)

Consequently, a permutation that zeroes out SV′ can be identified by solving a
large system of linear equations. However, progressively zeroing rows of SV′ as in
Algorithm 2 is more fitting than addressing a fairly large system because it can
easily be adapted to handle the appended rows scenario.

5.3. Ordering Matched Pairs in the General Case. In §5.2, for the sake of
clarity, we only explain the method of ordering matched pairs using the generator
matrix in the simpler scenario where no additional rows are appended. In practice,
the actual attack begins with the scenario that includes appended rows. Upon
completing this phase, the version with no appended rows can be considered, as
the further knowledge of the structure of the matrix allows extracting the U and V
blocks, thus removing the appended rows.

The main idea of the algorithm remains consistent in both scenarios. However,
the presence of appended rows in the initial phase introduces additional complexity

2(Ti,j)m,n =


δm,n if m ̸= i,m ̸= j

δm,j if m = i

δm,i if m = j

and (Li,j)m,n =

{
1 if (m,n) = (i, j)

δm,n otherwise
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Algorithm 2 Column swap algorithm to nullify SV′ .

Require: Initial permutation P and matrix G′ as in Equation (9).
Ensure: Updated permutation P for G such that SV′ = 0.
1: Compute the matrix E as in Equation (10).
2: while SV′ ̸= 0 do
3: for all rows Ri in SV′ do
4: Solve x ·Ei

⊤ = Ri for x. ▷ Compute a swap vector
5: for all j in the support of x do
6: Swap column Pj with Pj+n/2.
7: G′

j+n/2 ← G′
j+n/2 +G′

j .
8: Echelonize G′.

return P

unnecessary for the understanding. We detail here an approach that has proven
effective in the Enhanced pqsigRM case.

We consider the full Enhanced pqsigRM generator matrix, with the appended
rows, (9) thus becomes,A1 A2 B1 B2

I SV + SA 0 SV′ + SB2

0 0 I SU + S′
B2

 . (11)

In this scenario, we lack direct access to SV′ ; instead, linear combinations of B2

are added in the block under consideration. To address this, we follow the heuristic
approach detailed in Algorithm 3.

Our strategy involves identifying rows that potentially contain components of B2,
aggregating them into a set denoted asA. Rather than attempting to cancel each in-
dividual row, our objective is now cancelling out the V′ component, leaving the B2

component intact. This is achieved by incorporating the rows from A into our
equation-solving process, while deliberately discarding the solution bits correspond-
ing to these rows that extend the matrix E. Moreover, should the initial iteration
fail to fully uncovering the structure, we iterate the process, after applying any
column-swap that reduces the rank of SB2 .

5.4. Finishing the Attack—Recovering an Equivalent Private Key. Our
attack effectively finds a (U,U + V )-decomposition into two codes, namely codes
U and V admitting as generator matrices U′ = UP′ and V′ = VP′. These are
equivalent to the original codes generated by U and V with the same permutation.
Therefore, identifying a permutation that further decomposes the code U′ will also
decompose the code V′.

The technique for deconstructing the generator matrix can be successively ap-
plied to progress along recursive paths of the code construction. To this aim it is
necessary during the process to use signatures to obtain the matched pairs corre-
sponding to each recursive level. It can be done because the signature bits can be
reordered according to the matched pairs, giving vectors of the form (eU , eU +eV ).
Applying a XOR operation to these two components isolates eV . Conversely, an
AND operation yields a subset of eU .3.

Once the recursive (U,U+V )-structure down to two levels has been recovered, an
equivalent global permutation for P can be recovered using [CB14,MS07]. Indeed,
by applying these techniques, we can easily recover a permutation that exposes the
Reed-Muller code G(5, 11) from which we derive a global permutation Q. This

3We use an AND operation as the support of eV is treated like erasures by the U -decoder We
cancel these positions to avoid adding correlation noise.
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Algorithm 3 Column swap algorithm to nullify SV′ with appended rows.

Require: Initial permutation P and matrix G′ as in Equation (11).
Ensure: Updated permutation P for G such that SV′ = 0.
1: Calculate the matrix E as in Equation (10).
2: while SV′ ̸= 0 do
3: A ← ∅
4: for all rows Ri in SV ′ do
5: E′

i ← Ei extended with A-indexed rows of SV′ .
6: Solve x ·E′

i
⊤
= Ri for x. ▷ Compute a swap vector

7: if it fails then
8: A ← A∪ {i}
9: for all j in the support of x do

10: if j < n/2 then ▷ Ignore components from A
11: Swap column Pj and Pj+n/2.
12: G′

j+n/2 ← G′
j+n/2 +G′

j .
13: Echelonize G′.
14: for k = 0, . . . , n/2− 1 do
15: Swap columns Pk and Pk+n/2 provisionally.
16: G′

k+n/2 ← G′
k+n/2 +G′

k provisionally.
17: if rank(SV′ + SB2) decreases then
18: Confirm the provisional operations.
19: Exit for loop.
20: else
21: Undo the provisional operations.

approach can similarly be applied to G(4, 11)σ2 , enabling the derivation of a cor-
responding permutation, σ′

2. Regarding G(6, 11)σ1 , [CB14,MS07] are not directly
applicable, as G(6, 6) has been replaced by a random code. However, by descending
one additional recursive level, we can target the Reed-Muller code G(5, 10).

6. Conclusion

We have presented our attack against [CNL+23] which has been submitted to
the NIST call for standardizing signatures. Some comments can be made.

How to Avoid our Attack. Our crucial remark has been to notice that the
distribution of (ei ̸= ej) depends on (i, j) being matched or not as illustrated
by Equations (4), (5) and Figure 1. A way to circumvent our attack would be
to compute the eV ’s to equalize both approximations. However doing so would
not remove biases of order 2, i.e., standard deviations would not a priori be the
same. It is necessary to ensure that at this step, distributions of the (ei ̸= ej)’s
are identically distributed by performing an appropriate rejection sampling as done
in [DST17b] which also uses (U,U + V )-codes. However, [CNL+23] involves many
recursive layers of (U,U +V ) which makes it very difficult to design (even one level
of recursion makes that task difficult as illustrated by the rather involved analysis
from [DST17b, §5]).

Another Attack. Our attack presented all along this paper has been announced
on the NIST forum [DLV23]. Few months later another attack has also been an-
nounced [BBRST23]. It differs from ours because it does not require access to
signatures, it only exploits the structure of the public-key. However, beyond the
merits of [BBRST23] which uses less information than us, we believe that our attack
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is particularly relevant. The design rationale behind Enhanced pqsigRM (and its an-
cestor pqsigRM) has been to avoid such structural attacks by tweaking the code’s
structure as illustrated by the two submissions at the first and second NIST calls. It
is likely that some other tweaks would avoid [BBRST23]. Our attack demonstrates
that [CNL+23] approach suffers from the same issue given its design (our attack
also applies similarly to pqsigRM): signatures coming from a (U,U + V )-decoder
are biased unless a proper rejection sampling is performed.
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