
Client-Aided Privacy-Preserving Machine Learning

Peihan Miao1, Xinyi Shi1, Chao Wu2, and Ruofan Xu3

1Brown University, Providence, USA
2University of California, Riverside, USA

3University of Illinois Urbana-Champaign, Urbana, USA

Abstract

Privacy-preserving machine learning (PPML) enables multiple distrusting parties to jointly
train ML models on their private data without revealing any information beyond the final trained
models. In this work, we study the client-aided two-server setting where two non-colluding
servers jointly train an ML model on the data held by a large number of clients. By involving the
clients in the training process, we develop efficient protocols for training algorithms including
linear regression, logistic regression, and neural networks. In particular, we introduce novel
approaches to securely computing inner product, sign check, activation functions (e.g., ReLU,
logistic function), and division on secret shared values, leveraging lightweight computation on
the client side. We present constructions that are secure against semi-honest clients and further
enhance them to achieve security against malicious clients. We believe these new client-aided
techniques may be of independent interest.

We implement our protocols and compare them with the two-server PPML protocols pre-
sented in SecureML (Mohassel and Zhang, S&P’17) across various settings and ABY2.0 (Patra
et al., Usenix Security’21) theoretically. We demonstrate that with the assistance of untrusted
clients in the training process, we can significantly improve both the communication and compu-
tational efficiency by orders of magnitude. Our protocols compare favorably in all the training
algorithms on both LAN and WAN networks.

Keywords: Privacy-Preserving Machine Learning, Secure Multi-Party Computation, Client-
Aided Protocols.

1 Introduction

In recent years, we have witnessed machine learning (ML) emerge as one of the most influential
technologies and rapidly expanding research domains. Its applications span a diverse spectrum,
ranging from recommendation systems to self-driving cars, large language models, and even medical
prediction and diagnosis. This is in part due to increasing amount of data being collected and
available in the Big Data era. Meanwhile, as these machine learning algorithms and applications
are deployed in various real-world scenarios, data privacy is becoming increasingly critical, especially
in domains dealing with sensitive or confidential data such as healthcare, finance, and government.
In cases where entities are hesitant or restricted from sharing their data due to privacy regulations,
the significance of protecting data privacy is further emphasized.

Addressing these concerns, privacy-preserving machine learning (PPML) has become a crucial
approach to training ML models in a distributed manner, which enables multiple distrusting parties
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to collaboratively train ML models on their private data while maintaining data privacy. The most
commonly considered setting in PPML, as proposed by Mohassel and Zhang [29], involves data
owners (e.g., clients) secret sharing their data among two non-colluding parties (e.g., servers), who
then jointly perform training on the secret-shared data.

At a high level, this approach can be conceptualized as two servers engaging in secure two-party
computation to train the ML model on secret-shared data. Importantly, the servers learn nothing
beyond the final trained model, ensuring the privacy of individual data points. Nevertheless, prior
work [16, 21, 27, 29, 30, 32, 33] has overlooked the fact that the data was initially owned by the
clients in the clear. In this work, we show that actively involving clients in the training process can
yield significant improvements in both communication and computational efficiency of the overall
protocol.

1.1 Our Contributions

We study two-server PPML training where the data is held by a large number of clients. Since the
clients initially hold the training data in the clear, they can assist in certain computations based on
their clear data to achieve better efficiency than computing on shared data. Additionally, we can
leverage techniques from secure two-party computation with the assistance of an untrusted third
party by treating the clients as the untrusted third party. This approach introduces a novel way
of computing activation functions as well as division in the training algorithms, which proves to
be much more efficient than the garbled circuit-based approaches commonly used in PPML. We
believe these client-aided techniques may be of independent interest.

Our Contributions. In this work, we

• develop a new client-aided inner product protocol that enables a client and two servers to
jointly compute the inner product of two private vectors ⟨x,y⟩, where x is secret shared
among the two servers and y is held by the client;

• develop a series of client-aided protocols that, with the assistance of an untrusted client, allow
two servers

– to determine if their secret shared value is positive or not,

– to compute activation functions (e.g., ReLU, logistic function) on their secret shared
value, and

– to compute divisions on their secret shared values (for softmax);

• put these techniques all together into PPML training protocols for linear regression, logistic
regression, and neural networks, which are secure against semi-honest servers and clients;

• present techniques to enhance our security guarantees to protect against malicious clients;

• implement our protocols and demonstrate performance improvement compared with prior
work.

Experimental Results. We implement our two-server PPML protocols for both semi-honest
and malicious clients. We compare our performance with SecureML [29] in various settings and
compare with the state-of-the-art ABY2.0 [30] theoretically (their code is not available). For linear
regression, we achieve an improvement of 6.12−1047× over [29] in the LAN setting and 3.63−73.5×
in the WAN setting. For logistic regression, we achieve an improvement of 4.85−723× on LAN and
2.71−44.3× on WAN. For neural networks, we achieve an improvement of 3.19× on LAN and 3.92×
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on WAN. When enhancing our security guarantees to malicious clients, we incur a small constant
(2.55 − 4.95×) overhead compared to our semi-honest variant. This is orders of magnitude more
efficient than the OT- and LHE-based variants of [29]. We also give comprehensive comparisons
for the communication costs as well as the offline/online efficiency. See Section 6 for more details.

1.2 Related Work

Privacy-Preserving Machine Learning. In the PPML domain, secure multi-party computation
has been used for various ML algorithms such as decision trees [24], k-means clustering [5,15], and
SVM classification [35,39]. However, these solutions are far from practical due to the high overheads
that they incur. Mohassel and Zhang [29] introduced a practically-efficient PPML framework in
the two-server setting. Since then, there has been a rich body of research in PPML that follows the
same framework: data owners first secret share their data among two or more non-colluding parties
who then perform training on the secret-shared data. Prior work has studied this problem in various
settings, including secure training and inference, semi-honest and malicious security, with a focus on
a small number of servers (e.g., two-server [16,21,27,29,30,32,33], three-server [8,20,21,28,31,36],
and four-server [6, 9, 20]) where the adversary can corrupt at most one of them. In this work, we
focus on the two-server setting for ML training, and we anticipate that the client-aided techniques
developed here can be applied to ML inference.

Federated Learning. As a similar setting of PPML, federated learning (FL) [3,4,10,17,19,25] en-
ables multiple entities (e.g., mobile devices) to collaboratively train a model under the coordination
of a central server (e.g., service provider) while keeping the training data decentralized, protecting
the privacy of the individual users. The two-server setting has also been studied in FL [1,10]. Most
of the existing FL frameworks rely on a key building block known as secure aggregation [1,3,4,10],
which protects clients’ raw data (in particular, individual model updates) through secure aggre-
gation. However, they reveal the global model updates, particularly the mini-batch stochastic
gradient descent, to the central server(s) as well as all the clients. Recent work has shown that
this framework is vulnerable to various privacy attacks [13,26,34,37,40]. As a side product of this
work, we can apply client-aided PPML to two-server FL to enhance the privacy guarantee of FL,
revealing only the final model to the central servers.

1.3 Roadmap

We give a high-level overview of our new techniques in Section 2. We provide preliminaries including
the definitions of required cryptographic building blocks and machine learning algorithms in Section
3. In Section 4, we present our new client-aided protocols for inner product, sign check, activation
functions, and division over secret shared values. In Section 5, we assemble the building blocks to
present our client-aided PPML protocols that are secure against semi-honest clients. Additionally,
we enhance the security guarantees to protect against malicious clients in Appendix A. Finally, we
discuss our performance and experimental results in Section 6.

2 Technical Overview

During the training process, we keep the invariant that all the intermediate values (e.g., model
parameters, clients’ data, etc.) are additively secret shared among the two servers. Their secret
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shares are only revealed to each other when the training process is finished and they would like to
learn the final model. We discuss how to maintain the invariant for each type of operation in the
training algorithms. First, addition is almost free, which can be computed locally by the servers.
We discuss below how to deal with the operations that require more work, and how we can improve
the efficiency by involving an untrusted client in the computation. We refer the reader to Section
3.3 for the ML algorithms we consider in this work.

Client-Aided Inner Product. One of the key steps in linear regression is to compute the inner
product of two vectors, one vector w denoting the current model, and the other vector x denoting
the client’s data. In the existing PPML framework, the servers hold secret shares of both w
and x and they perform a secure two-party computation protocol to compute secret shares of the
inner product ⟨w,x⟩, e.g., by using Beaver multiplication triples [2] generated in an offline setup
phase [29].

We notice that since x is entirely known to the client, she can compute a masked inner product
with x and share the masking information with the two servers. This improves both the computation
and communication between the servers. Moreover, it does not require heavy computation on the
client side, nor does it require extra round of communication between the servers and the client.
In particular, the client still sends secret shares of x to the servers, along with which she will send
some extra masking values. We present the detailed protocol in Section 4.1.

When the vectors have dimension 1 (as a special case), this technique can be used to compute
multiplication of a value shared among the servers with another value held by the client. This will
be a key building block below.

Client-Aided Activation Functions. For logistic regression and neural networks, besides vector
inner product (and more generally matrix multiplication), we also need to perform activation
functions (e.g., logistic function, ReLU) on secret shared values. To do this, we need a way for
the two servers to jointly determine whether a secret shared value is positive or not (we view the
value as a two’s complement representation). This is not an arithmetic operation, and the existing
PPML frameworks [28–30] mainly rely on garbled circuits that compute the sum of two secret
shared values to determine its highest order bit.

In this work, we present a new approach that utilizes a client as an untrusted third party. For
two secret shares JxK0 and JxK1, the problem of determining if JxK0+ JxK1 > 0 is essentially a secure
comparison problem, namely determining whether JxK0 > − JxK1. Instead of relying on garbled
circuits [38], we reduce this problem to a special secure two-party computation problem, private set
intersection cardinality (PSI-CA), via a certain encoding of the input values. In particular, each
party generates a set of elements based on their input and they jointly compute the cardinality
of the intersection of the two sets. JxK0 > − JxK1 iff the set intersection cardinality is 1, and
JxK0 ≤ − JxK1 iff the set intersection cardinality is 0. With the assistance of an untrusted third
party (i.e., untrusted client), PSI-CA can be securely computed in an extremely efficient way
requiring only symmetric-key cryptographic operations.

There are two issues in this approach. First, the existing client-aided PSI-CA protocols reveal
the cardinality of the set intersection to either the client or one of the two servers. However, it is
crucial that the result is never revealed to any party in our PPML protocols. We develop a new
way to secret share the cardinality result between the client and the two servers. Another issue is
that the reduction above only works if values are both positive or both negative. We observe that
JxK0 and JxK1 have different signs with high probability throughout the training process, hence we
can ensure the comparison is only between values of the same sign in our protocol.
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To compute ReLU, we need to multiply the secret shared PSI-CA result with the secret shared
value x. We can utilize the aforementioned client-aided inner product (with dimension 1) to ef-
ficiently compute the multiplication. Putting it all together, we present the client-aided ReLU
protocol in Section 4.2. We further extend these ideas to the logistic function in Section 5.2.

Client-Aided Division. In neural network training, we additionally need to compute a softmax
function on secret shared values. We use the MPC-friendly variant of it (see Section 3.3) which
requires division of two secret shared values. We compute the quotient bit-by-bit sequentially
starting from the most significant bit. In every step, we need to compare the current dividend with
the divisor, which can be done using the client-aided sign check protocol described above. The
secret shared output needs to be multiplied with the secret shared divisor, which can be done using
the client-aided inner product with dimension 1. The protocol is presented in Section 4.4.

Security Against Malicious Clients. In the aforementioned client-aided protocols, it is critical
that the clients are semi-honest, namely they follow the protocol description honestly while trying
to extract more information from the protocol execution. This might not be a realistic assumption
in practice. Hence we further enhance the security guarantees of our protocol to protect against
malicious clients. The two main building blocks we need is the client-aided inner product and
client-aided sign check. To ensure security against malicious clients, we leverage the cut-and-choose
technique to verify that the results are computed correctly. See Appendix A for details. As it turns
out, our malicious variant only incurs a small constant overhead compared to our semi-honest
variant and is orders of magnitude more efficient than prior work (see Section 6.5).

3 Preliminaries

Notation. We use λ, σ to denote the computational and statistical security parameters, respec-
tively. We use JvK to denote an additive secret sharing of a value v ∈ Z2ℓ between two servers S0, S1.
In particular, server Si (i ∈ {0, 1}) holds JvKi such that v = JvK0 + JvK1. To sample a random addi-

tive secret sharing of v, we use the notation (JvK0 , JvK1)← Sharing(v). We use
$←− to denote random

sampling from a uniform distribution. We use [n] to denote the set {1, 2, . . . , n}. For a vector v,
we use v[i] to denote the i-th element of the vector. By negl(λ) we denote a negligible function,
i.e., a function f such that f(λ) < 1/p(λ) holds for any polynomial p(λ) and sufficiently large λ.

Fixed-Point Arithmetic. Throughout our protocols, we follow the prior work [29,30] to use the
two’s complement fixed-point representation to denote real numbers and keep at most ℓf bits in the
fractional part for all intermediate values during the training process. In particular, we transform
a real number x (with at most ℓf bits in its fractional part) into an integer in Z2ℓ by computing
x′ = 2ℓf ·x. Furthermore, we assume that all intermediate values have at most ℓw bits in the whole
number part and that ℓw + ℓf ≪ ℓ (this follows from prior work [29, 30]). To multiply two real
numbers x and y, we multiply x′ = 2ℓf · x with y′ = 2ℓf · y to obtain z′ = x′ · y′ ∈ Z2ℓ . Note that z′

has 2 · ℓf bits representing the fractional part of the product, so we truncate the least significant
ℓf bits of z′ such that it has ℓf bits in the fractional part. Since we keep the invariant that all
intermediate values are additively secret shared between the two servers and that ℓw + ℓf ≪ ℓ, we
can truncate z′ by truncating its shares Jz′K0 and Jz′K1 locally on the two servers [29].

We use the function RtoI (x) to denote the function of transforming a real number x to an
integer in Z2ℓ , namely RtoI (x) = 2ℓf · x. We use the function Trunc (x′) to denote the function of
truncating an integer in Z2ℓ by the lowest order ℓf bits, namely Trunc (x′) = ⌊x/2ℓf ⌋. When we
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compare x ∈ Z2ℓ with 0, we view x as a two’s complement representation and compare it with 0.
When we divide x by y, which are both positive real numbers represented in Z2ℓ , we compute the
quotient by Quotient (x, y) := ⌊x · 2ℓf /y⌋ ∈ Z2ℓ .

3.1 Secure Multi-Party Computation

Secure multi-party computation (MPC) [14, 38] allows multiple parties, each holding a private
input, to jointly compute a function on their private inputs without revealing anything beyond the
output of the function. In this work, we consider MPC protocols for three parties with honest
majority. In particular, the three parties are two servers and a client, where the adversary corrupts
either the client or one of the two servers. We say an adversary is semi-honest if it follows the
protocol description honestly while trying to extract more information from it, while a malicious
adversary may arbitrarily deviate from the protocol specification. In our work, we assume both
servers are semi-honest, and we consider both semi-honest and malicious clients. We follow the
Universal Composition (UC) security definition of MPC, and refer the reader to [7] for details.

Private Set Intersection. Private set intersection (PSI) is a special secure two-party computation
(2PC) protocol which allows two parties, each holding a private set of elements, to jointly compute
the intersection of their sets without revealing any other information. In this work, we will be
leveraging techniques from client-aided PSI [18, 22] where the two parties compute PSI (more
specifically, the cardinality of the set intersection, PSI-CA) with the assistance of an untrusted
client.

Yao’s Millionaires’ Problem. Yao’s millionaires’ problem [38] is another special secure 2PC
protocol that allows two parties, each holding a private input value, to jointly compare the two
values. In this works, we will be reduce this problem to PSI-CA [36].

3.2 Pseudorandom Function

A pseudorandom function (PRF) is a keyed function that can be computed efficiently (in polynomial
time) but looks like a random function without knowledge of the key. In particular, let F :
{0, 1}λ×{0, 1}n → {0, 1}m where λ is the security parameter, and let F = {f : {0, 1}n → {0, 1}m}.
We say F is a PRF if for any probabilistic polynomial time (PPT) A,∣∣∣∣∣∣ Pr

k
$←−{0,1}λ

[
AFk(·) = 1

]
− Pr

f
$←−F

[
Af(·) = 1

]∣∣∣∣∣∣ ≤ negl(λ).

3.3 Machine Learning Algorithms

In this section, we briefly review the ML algorithms considered in this work, including linear
regression, logistic regression, and neural networks. We refer the reader to prior work [29, 30] on
more details about these ML models. We consider a set of training data {xi, yi}i=1,...,n. All the
algorithms take the stochastic gradient descent (SGD) approach, which involves iteratively updating
a target coefficient vector/matrix by following the gradient of a particular loss function evaluated
on a random batch of training data. In the SGD method, we use B to denote the batch size, α to
denote the learning rate, E to denote the number of epochs, n to denote the size of training data,
and define t = E·n

B as the number of iterations.
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Linear Regression. In linear regression, we try to learn a coefficient vector w such that the
following loss function is minimized:

∑n
i=1 (⟨w,xi⟩ − yi)

2. Applying SGD to the linear loss function
gives that we update w in each iteration according to the following expression:

w← w − α

B

B∑
i=1

(⟨w,xi⟩ − yi) · xi.

Logistic Regression. The only difference between logistic regression and linear regression is that
the logistic (Sigmoid) function f(z) = 1

1+e−z is applied to the inner product z = ⟨w,xi⟩, and the
loss function needs to be adjusted accordingly so that the loss function is convex and SGD still
works. The SGD update step in this case is identical to linear regression except for applying the
logistic function to the inner product. In particular,

w← w − α

B

B∑
i=1

(f(⟨w,xi⟩)− yi) · xi.

The above logistic function is not MPC-friendly, and we follow the approach of [29] by con-
sidering a piecewise linear function instead, which they demonstrated yields comparable accuracy
in training. We refer the reader there for more details. In particular, we approximate the logistic
function by

f(z) =


0 if z < −1/2
z + 1/2 if z ∈ [−1/2, 1/2]
1 if z > 1/2

.

Neural Networks. Neural networks are a generalization of regression to learn more complex
relationships between high dimensional input and output data. A basic neural network can be
divided into m layers, each containing di nodes. Each node is a linear function composed with a
non-linear activation function. One of the most popular activation functions considered in neural
networks is the rectified linear unit (ReLU) function, which can be expressed as f(x) = max{0, x}.
To evaluate a neural network, the nodes at the first layer are evaluated on the input features. The
outputs of these nodes are then forwarded as inputs to the next layer of the network until all layers
have been evaluated in this manner. For classification problems with multiple classes, usually a
softmax function is applied at the output layer, and we use the MPC-friendly variant [29] of the

softmax function f(ui) =
ReLU(ui)∑dm

k=1 ReLU(uk)
. The training of neural networks is performed using SGD

in a similar manner to logistic regression except that each layer of the network should be updated
in a recursive manner, starting at the output layer and working backward.

4 Client-Aided Protocols

4.1 Client-Aided Inner Product

In this section, we present a protocol for computing the inner product of a vector x ∈ Zd
2ℓ

that

is additively secret shared among two servers and another vector y ∈ Zd
2ℓ

held by a client. As a
result, the two servers learn an additive secret sharing of the inner product ⟨x,y⟩ and the client
learns nothing. The ideal functionality for our client-aided inner product is presented in Figure
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1. Looking ahead, whenever we run this protocol, the vector y will also be shared among the
servers (either directly shared by the client or learned from another protocol), hence in the ideal
functionality we also let the servers input a secret share of y. This will make this protocol better
compile with our other protocols, especially in the case of malicious clients.

Functionality Fd
InnerProd:

Parties: Two servers S0, S1 and a client C.
Inputs: Each server Si (i ∈ {0, 1}) inputs two secret shared vectors JxKi , JyKi ∈ Zd

2ℓ
. The client C

inputs a vector y = JyK0 + JyK1.
Functionality: On receiving JxKi , JyKi from Si (i ∈ {0, 1}) and y from C:

• Recover x = JxK0 + JxK1 and compute the inner product v = ⟨x,y⟩.
• Sample a random secret sharing of v, namely (JvK0 , JvK1)← Sharing(v).

• Send JvKi to each server Si (i ∈ {0, 1}) and send ⊥ to the client C.

Figure 1: Ideal functionality Fd
InnerProd for computing the inner product.

Construction Overview. The client first samples a uniform random vector r
$←− Zd

2ℓ
. Viewing r

as a mask for the servers’ input x, the client generates a data-dependent multiplication triple by
computing the inner product of r and its input vector y, and sends the a secret share of the triple
to the two servers. By using the data-dependent triple generated by the client, the two servers
recover x− r and compute a secret share of ⟨x,y⟩. Our protocol is described in Figure 2. We state
the theorem below and give the security proof in Appendix B.1.

Protocol Πd
InnerProd:

1. The client C does the following:

(a) Sample JrK0 , JrK1
$←− Zd

2ℓ
and compute r = JrK0 + JrK1.

(b) Compute u = ⟨r,y⟩.
(c) Sample random secret sharings of u, namely (JuK0 , JuK1)← Sharing(u).

(d) Send (JrKi , JuKi) to server Si for i ∈ {0, 1}.
2. Each server Si (i ∈ {0, 1}) does the following:

(a) Compute JsKi = JxKi − JrKi and send it to the other server.

(b) Recover s = JsK0 + JsK1 and compute JvKi = ⟨s, JyKi⟩+ JuKi as the output.

Figure 2: Protocol Πd
InnerProd for computing the inner product.

Theorem 4.1. The protocol Πd
InnerProd (Figure 2) securely computes the ideal functionality Fd

InnerProd

(Figure 1) against a semi-honest adversary that corrupts either the client C or one of the two servers.

Communication and Optimizations. In our protocol, each party computes only one inner
product, so the servers and the client compute three inner products in total. The communication
between the client and two servers is (2d+ 2) ring elements in Z2ℓ and the communication among
the two servers is 2d ring elements. The total communication is (4d+ 2) ring elements.

We discuss some optimizations in our implementation. In Steps 1a, 1c, 1d, the client needs
to sample random vectors JrK0 , JrK1 as well as random secret shares of u, and send them to the
servers, leading to a total communication cost of (2d + 2) ring elements in Z2ℓ . To reduce this
communication, we let each server share a PRF key with the client. Then the client can use the
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PRF keys to generate (pseudo)random vectors JrK0 , JrK1 for the two servers without communication.
To generate a (pseudo)random secret sharing of u, the client can use the shared PRF key with one
server S0 to generate JuK0 without communication, and send the other share JuK1 to S1. That is,
apart from sharing the PRF keys, we can reduce the communication between the client and the
servers from (2d+ 2) to 1 ring element.

4.2 Client-Aided Sign Check

In this section, we present a protocol that allows two servers to jointly learn if a secret shared value
x ∈ Z2ℓ is positive or not (by viewing x as a two’s complement representation), with the assistance
of a client. The three parties will learn a binary secret sharing of the sign check outcome b. In
particular, the servers both learn one binary share bS and the client learns the other share bC such
that bS ⊕ bC = b. The ideal functionality is presented in Figure 3. Looking ahead, this protocol
will be used in computing activation functions as well as divisions (for softmax). In our learning
algorithms, we note that the absolute value of x is significantly less than 2ℓ throughout the training
process, hence JxK0 and JxK1 have opposite signs with overwhelming probability. In particular, we
assume x has at most ℓf bits in the fractional part and ℓw bits in the whole number part, and
that ℓw + ℓf ≪ ℓ (this follows from prior work [28–30]). Given that (JxK0 , JxK1) is a uniformly
random share of x ∈ Z2ℓ , the probability that JxK0 and JxK1 have the same sign is no greater than
2ℓw+ℓf−ℓ. The proof follows from the analysis in [29]. Therefore, we assume JxK0 and JxK1 in the
ideal functionality. In addition, we let the two servers learn a secret share of bC so that this protocol
can be incorporated more easily into other protocols.

Functionality FSignCheck:

Parties: Two servers S0, S1 and a client C.
Inputs: Each server Si (i ∈ {0, 1}) inputs a secret shared value JxKi ∈ Z2ℓ , where JxK0 and JxK1
have opposite signs. The client C has no input.
Functionality: On receiving JxKi from Si (i ∈ {0, 1}):

• Recover x = JxK0 + JxK1 and let b := (x > 0). That is, view x as a two’s complement
representation and let b be the indicator of weather x is a positive number.

• Sample bS
$←− {0, 1} and let bC := b⊕ bS.

• Sample a random secret sharing of bC, namely (
q
bC

y
0
,
q
bC

y
1
)← Sharing(bC).

• Send bS to both servers and
q
bC

y
i
to each server Si (i ∈ {0, 1}). Send bC to the client C.

Figure 3: Ideal functionality FSignCheck for determining if a secret shared value is positive or not.

Construction Overview. We first give an overview of our construction. The two servers hold
an additive secret share of a value x ∈ Z2ℓ , namely each server Si (i ∈ {0, 1}) holds JxKi such that
JxK0 + JxK1 = x. We additionally assume that JxK0 and JxK1 have opposite signs. Suppose without
loss of generality that JxK0 ≥ 0 and JxK1 < 0, then checking whether JxK0 + JxK1 > 0 is equivalent
to checking whether JxK0 > − JxK1, where both JxK0 and − JxK1 are non-negative values. We take
inspiration from [23] to reduce our problem to PSI and then leverage techniques from client-aided
PSI.

Let a = aℓ · · · a1 denote the binary representation of a non-negative value a. We denote its 0-
encoding by P0

a = {aℓ · · · ai+110 · · · 0|i ∈ [ℓ], ai = 0} and its 1-encoding by P1
a = {aℓ · · · ai0 · · · 0|i ∈
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[ℓ], ai = 1}. Note that all binary strings in the sets have the same length ℓ. We then pad the two
sets with dummy elements to be of size ℓ each. Define two sets G0

a and G1
a as follows. G0

a is a set
of size ℓ− |P0

a| where all the elements are random ℓ-bit strings starting with 10, and G1
a is a set of

size ℓ−|P1
a| where all the elements are random ℓ-bit strings starting with 11. Let the corresponding

augmented 0-encoding be defined as A0
a = P0

a ∪G0
a and augmented 1-encoding be A1

a = P1
a ∪G1

a.
Following the work [23], the set intersection A1

JxK0
∩A0

−JxK1
has size 1 if and only if JxK0 > − JxK1

and the intersection is empty otherwise. For the other case where JxK0 < 0 and JxK1 ≥ 0, we simply
swap the tasks of two parties and check whether − JxK0 < JxK1.

Now we reduce our problem to computing the size of the intersection of two private sets, namely
PSI-CA. With the assistance of an untrusted client, we can utilize techniques from client-aided PSI-
CA [18,22]. Nevertheless, we need an additional security guarantee that the servers and the client
only learn a binary secret share of the PSI-CA result.

We leverage the fact that the output of our PSI-CA can only be 0 or 1, and we randomly
choose to compare either JxK0 > − JxK1 or JxK0 < − JxK1 . In particular, the servers randomly
sample a bit bS and flip the comparison if bS = 1. To be more specific, S0 generates an augmented
(1−bS)-encoding of JxK0 and S1 generates an augmented bS-encoding of − JxK1. Then they perform
a client-aided PSI-CA protocol using a pseudorandom function (PRF). The client-aided sign check
protocol is presented in Figure 4. We state the theorem below and give the security proof in
Appendix B.2.

Protocol ΠSignCheck:

0. The two servers S0 and S1 agree on a computational security parameter λ and a
pseudorandom function F : {0, 1}λ × {0, 1}ℓ → {0, 1}λ.

1. S0 samples a random bit bS
$←− {0, 1} and random PRF key k

$←− {0, 1}λ, and sends (bS, k) to
S1.

2. Each server Si (i ∈ {0, 1}) does the following:

(a) View JxKi as a two’s complement representation. If JxKi ≥ 0, then let bi := 1⊕ bS;
otherwise let JxKi := − JxKi and let bi := bS.

(b) Generate an augmented bi-encoding of JxKi as Ai.

(c) Apply the PRF Fk to each element in Ai to obtain Ti = Fk(Ai).

(d) Randomly shuffle the elements in Ti and send the shuffled set T̃i to the client C.

3. Upon receiving T̃0 and T̃1 from the two servers, the client C sets bC = 0 if T̃0 ∩ T̃1 = ∅, and
sets bC = 1 otherwise.

4. The client C samples a random secret sharing of bC, namely
(q
bC

y
0
,
q
bC

y
1

)
← Sharing

(
bC
)
,

and sends
q
bC

y
i
to each server Si (i ∈ {0, 1}).

5. Each server Si (i ∈ {0, 1}) outputs (bS,
q
bC

y
i
). The client C outputs bC.

Figure 4: Protocol ΠSignCheck for determining if a secret shared value is positive or not.

Theorem 4.2. Assuming F is a secure PRF, the protocol ΠSignCheck (Figure 4) securely computes
the ideal functionality FSignCheck (Figure 3) against a semi-honest adversary that corrupts either
the client C or one of the two servers.

Communication and Optimizations. In our protocol, each server computes ℓ PRF opera-
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tions. The total communication cost is (2λℓ + λ + 1) bits with 2 ring elements. We can apply
the same optimization as in Section 4.1 to reduce communication by using shared PRF keys to
generate random values. In particular, in Step 1 the servers can use a shared PRF key to generate
(pseudo)random values (bS, k) together without communication; in Step 4 the client C can use
the shared PRF key to generate a (pseudo)random value with one server without communication.
Then, the communication can be reduced to 2λℓ bits with 1 ring elements.

4.3 Client-Aided ReLU

In this section, we present a protocol that allows two servers to jointly compute the ReLU function
of an integer x ∈ Z2ℓ that is additively secret shared among them, with the assistance of the client.
Looking ahead, this protocol is a crucial component in computing activation functions. The ideal
functionality for our client-aided ReLU is presented in Figure 5.

Functionality FReLU:

Parties: Two servers S0, S1 and a client C.
Inputs: Each server Si (i ∈ {0, 1}) inputs JxKi ∈ Z2ℓ . The client C inputs nothing.
Functionality: On receiving JxKi from Si (i ∈ {0, 1}):

• Recover x = JxK0 + JxK1. View x as a two’s complement representation and compute
y = max{x, 0}.

• Sample a random secret sharing of y, namely (JyK0 , JyK1)← Sharing(y).

• Send JyKi to each server Si (i ∈ {0, 1}) and send ⊥ to the client C.

Figure 5: Ideal functionality FReLU for computing the ReLU function.

Construction Overview. The servers hold a secret share of an integer x ∈ Z2ℓ and want to
jointly learn a secret share of ReLU(x) = max{0, x} = (x > 0) · x. Observe that the ReLU
function simply consists of a sign check operation and a multiplication operation, which can be
computed by using the protocols in Sections 4.2 and 4.1, respectively. To combine these two
protocols, the challenge is that the output of the sign check is a binary share among the servers
and the client, while the input of the inner product should be additive secret shares. Observe that
x · (bS ⊕ bC) = x · bS + (x · bC) · (1− 2bS) and the servers have bS in clear, we only need to use the
inner product protocol (with dimension 1) to compute a secret share of x · bC, and then let each
server Si (i ∈ {0, 1}) compute

q
x · (bS ⊕ bC)

y
i
= JxKi · bS +

q
x · bC

y
i
· (1 − 2bS). Our protocol is

described in Figure 6. We state the theorem below and defer the proof to Appendix B.3.

Theorem 4.3. The protocol ΠReLU (Figure 6) securely computes the ideal functionality FReLU

(Figure 5) in the (FSignCheck,F1
InnerProd)-hybrid model against a semi-honest adversary that cor-

rupts either the client C or one of the two servers.

Communication and Optimization. The communication of a ReLU function consists of the
communication of a sign check and an inner product of vectors with dimension 1. Applying the
optimizations we mentioned, the communication between the client and the servers is 2λℓ bits
with 2 ring elements and the communication between the two servers is 2 ring elements. The
computational cost on each server mainly contains ℓ PRF (AES) operations.
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Protocol ΠReLU:

1. S0,S1 and C call FSignCheck to compute((
bS,

r
bC

z

0

)
,
(
bS,

r
bC

z

1

)
, bC

)
← FSignCheck(JxK0 , JxK1 ,⊥).

2. S0,S1 and C call F1
InnerProd to compute

(JαK0 , JαK1 ,⊥)← F
1
InnerProd

((
JxK0 ,

r
bC

z

0

)
,
(
JxK1 ,

r
bC

z

1

)
, bC

)
.

3. Each server Si (i ∈ {0, 1}) outputs JyKi = JxKi · bS + JαKi · (1− 2bS).

Figure 6: Protocol ΠReLU for computing ReLU in the (FSignCheck,F1
InnerProd)-hybrid model.

4.4 Client-Aided Division

In this section, we present a client-aided protocol that computes division of two shared values.
Assume the servers hold secret shares of x, y ∈ Z2ℓ such that 0 ≤ x ≤ y and y ̸= 0, they jointly
compute an additive secret share of the quotient Quotient (x, y) = ⌊x · 2ℓf /y⌋ with the assistance of
the client. See Figure 7 for the ideal functionality. Looking ahead, the division protocol is used to
approximate the softmax function in the output layer of neural networks.

Functionality FDiv:

Parties: Two servers S0, S1 and a client C.
Inputs: Each server Si (i ∈ {0, 1}) inputs two secret shared values JxKi ∈ Z2ℓ and JyKi ∈ Z2ℓ

subject to the constraint that 0 ≤ x ≤ y and y ̸= 0. The client C inputs nothing.
Functionality: On receiving JxKi and JyKi from Si (i ∈ {0, 1}):

• Recover x = JxK0 + JxK1, y = JyK0 + JyK1 and compute the quotient q = Quotient (x, y).

• Sample a random secret sharing of q, namely (JqK0 , JqK1)← Sharing(q).

• Send JqKi to each server Si (i ∈ {0, 1}) and send ⊥ to the client C.

Figure 7: Ideal functionality FDiv for computing division of two secret shared values.

Construction Overview. Inspired by the division protocol of SecureNN [36], we compute the
quotient bit by bit. Let ki (i ∈ {ℓf , . . . , 0}) be every bit of the quotient. In our protocol, the
servers compute a secret share of each bit step by step and then combine them together to get
a secret share of the quotient. In particular, the servers store a secret share of an intermediate
variable u ∈ Z2ℓ (the dividend) initiated to be x. We start with the most significant bit kℓf by
computing the sign check of u− y. Afterwards, we replace u by u = 2 · (u− kℓf · y). Then we can
compute the next bit in exactly the same way, i.e., kℓf−1 is equal to the sign of u − y. We can
simply repeat the above two steps for the remaining bits. The main idea is that when we compute
the i-th bit ki (i ∈ {ℓf − 1, . . . , 0}) after getting kℓf , . . . , ki+1, we are actually computing the sign

of x · 2ℓf − y ·
ℓf∑

j=i+1
kj · 2j − y · 2i. Our protocol is described in Figure 8. We state the theorem

below and give the security proof in Appendix B.4.
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Protocol ΠDiv:

1. Each server Si (i ∈ {0, 1}) sets
q
uℓf+1

y
i
= JxKi.

2. For j from ℓf downto 0:

(a) Each server Si (i ∈ {0, 1}) computes JzjKi = Juj+1Ki − JyKj + i.

(b) S0, S1 and C call FSignCheck to compute((
bSj ,

r
bCj

z

0

)
,
(
bSj ,

r
bCj

z

1

)
, bCj

)
← FSignCheck(JzjK0 , JzjK1 ,⊥).

(c) S0, S1 and C call F1
InnerProd to compute(

JvjK0 , JvjK1 ,⊥
)
← F1

InnerProd

((
JyK0 ,

r
bCj

z

0

)
,
(
JyK1 ,

r
bCj

z

1

)
, bCj

)
.

(d) Each server Si computes

JkjKi = i · bSj +
r
bCj

z

i
· (1− 2bSj ),

q
v∗j

y
i
= JyKi · b

S
j + JvjKi · (1− 2bSj ),

JujKi = 2 ·
(
Juj+1Ki −

q
v∗j

y
i

)
.

3. Each server Si (i ∈ {0, 1}) outputs JqKi =
∑ℓf

j=0 2
j · JkjKi.

Figure 8: Protocol ΠDiv for computing division in the (FSignCheck,F1
InnerProd)-hybrid model.

Theorem 4.4. The protocol ΠDiv (Figure 8) securely computes the ideal functionality FDiv (Figure
7) in the (FSignCheck,F1

InnerProd)-hybrid model against a semi-honest adversary that corrupts either
the client C or one of the two servers.

Communication. Considering all the computation among secret shared values, the servers and
the client jointly compute (ℓf + 1) sign checks and multiplications in our division protocol. We
can naturally use the protocols proposed in Sections 4.1 and 4.2. The total communication is
2(ℓf + 1) · λ · ℓ bits with 4 · (ℓf + 1) ring elements.

5 Client-Aided PPML

In this section, we present our client-aided two-server privacy-preserving machine learning protocols
for linear regression, logistic regression, and neural networks. All the training algorithms follow the
stochastic gradient descent (SGD) method, and we present a single ideal functionality FML SGD in
Figure 9.

5.1 Linear Regression

In this section, we present a protocol for an SGD iteration in linear regression training, where
servers update the model w with the assistance of the clients in the mini-batch:

w′ ← w − α

B

B∑
i=1

(⟨w,xi⟩ − yi) · xi.
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Functionality FML SGD:

Parties: Two servers S0, S1 and a set of clients C1, . . . ,Cm.
Inputs: Each client Cj (j ∈ [m]) inputs a data point (xj , yj) where xj ∈ Zd

2ℓ
and yj ∈ Z2ℓ . The

servers have no input.
Functionality: On receiving (xj , yj) from Cj (j ∈ [m]):

• Initialize the model w randomly.

• In each SGD iteration:

– Pick a mini-batch of B clients (public information).
– Use these clients’ data to update the model and obtain a new model w′.
– Sample a random secret sharing of w′, namely (Jw′K0 , Jw

′K1)← Sharing(w′).
– Send Jw′Ki to each server Si (i ∈ {0, 1}) and send ⊥ to all the clients.

Figure 9: Ideal functionality FML SGD for two-server PPML.

Construction Overview. The most important steps in the process are two multiplications, one
in forward propagation and one in backward propagation. Both can be computed by utilizing the
client-aided inner product methodology we proposed. The servers first compute ⟨w,xi⟩ by simply
using the client-aided inner product for vectors of dimension d. The multiplication in the backward
propagation can be viewed as d inner products for vectors of dimension 1. We need to truncate the
results of the inner products since all elements in the vectors represent real numbers. The protocol
is described in Figure 10.

Theorem 5.1. The protocol ΠLinearSGD (Figure 10) securely computes the ideal functionality
FML SGD (Figure 9) for linear regression in the FInnerProd-hybrid model against a semi-honest
adversary that corrupts either one of the two servers S0,S1, or an arbitrary subset of the clients.

Proof Sketch. First we prove correctness of the protocol. Note that in each iteration of linear
regression, the model should be updated as w ← w − α

B

∑B
j=1 (⟨w,xj⟩ − yj) · xj . For each client

Cj in a mini-batch: in Step 1b the servers learn a secret sharing of ⟨w,xj⟩ (without truncation); in
Step 1d they learn a secret sharing of ⟨w,xj⟩ − yj (with truncation); in Step 1e they learn secret
shares of (⟨w,xj⟩ − yj) · xj , which are truncated and combined into a vector JujK in Step 1f. The
correctness of truncation for fixed-point arithmetic is proved in [29]. Finally, in Step 2 the servers
perform a linear combination of the current model JwK and the gradient descent {JujK}j∈[B] to

obtain an updated secret shared model Jw′K.
In terms of privacy, any corrupted client does not learn any information from the protocol

because it does not receive any message. This also holds for an arbitrary subset of corrupted and
colluding clients. For a corrupted server, it only receives secret shared values in Steps 1a, 1b, 1c,
1e, which information theoretically hides the clients’ data. The formal proof is similar to the proofs
of Theorems 4.3 and 4.4.
Communication and Optimizations. In our linear regression protocol, the communication
among the servers is 4Bd ring elements and that between the servers and the clients is 3Bd+ 3B
ring elements. Hence the total communication for an SGD iteration is 7Bd+ 3B ring elements.

To further improve the communication, we can take advantage of the batched training. Consider
the inner product in the forward propagation (Step 1b). The communication between the servers
can be reduced by a factor of B if different clients share the same vectors (JrK0 , JrK1) in protocol
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Protocol ΠLinearSGD:

1. For each client Cj (j ∈ [B]) in a mini-batch:

(a) The client Cj samples a random secret sharing of xj , namely
(JxjK0 , JxjK1)← Sharing(xj), and sends JxjKi to Si (i ∈ {0, 1}).

(b) S0,S1 and Cj call Fd
InnerProd to compute(

JvjK0 , JvjK1 ,⊥
)
← Fd

InnerProd

(
(JwK0 , JxjK0), (JwK1 , JxjK1),xj

)
.

(c) The client Cj samples a random secret sharing of yj , namely
(JyjK0 , JyjK1)← Sharing(yj), and sends JyjKi to Si (i ∈ {0, 1}).

(d) Each server Si (i ∈ {0, 1}) computes
r
y∗j

z

i
= Trunc

(
JvjKi

)
− JyjKi.

(e) For each k ∈ [d], the two servers S0, S1 and Cj call F1
InnerProd to compute(r

ukj

z

0
,
r
ukj

z

1
,⊥

)
← F1

InnerProd

(
(
q
y∗j

y
0
, JxjK0 [k]), (

q
y∗j

y
1
, JxjK1 [k]),xj [k]

)
.

(f) Each server Si (i ∈ {0, 1}) combines
{r

ukj

z

i

}
k∈[d]

into a vector, namely JujKi ∈ Zd
2ℓ

where Juj [k]Ki = Trunc
(r

ukj

z

i

)
.

2. Each server Si (i ∈ {0, 1}) outputs Jw′Ki = JwKi −
α
B

∑B
j=1 JujKi.

Figure 10: Protocol ΠLinearSGD (in the FInnerProd-hybrid model) for a single SGD iteration of
linear regression.

Πd
InnerProd (Figure 2). Thus servers can reconstruct the same w − r for all the clients in Step 2a

of Πd
InnerProd. Notice that it does not leak any information about the clients’ data. Although the

clients use the same r to compute uj := ⟨r,xj⟩ (for j = 1, . . . , B), they will be sent to servers in
the form of arithmetic secret sharing. As mentioned above, we use PRF to generate ri without
communication. Thus in Step 1b of ΠLinearSGD (Figure 10), the communication between the two
servers is 2d ring elements and the communication between the clients and the servers is B ring
elements for each iteration.

Similarly, the optimization can also be applied in the backward propagation. For each k ∈ [d],
the two servers S0, S1 and Cj call F1

InnerProd in Step 1e. Observe that during this step, y∗j is the
same for all the dimensions of xj , so the client Cj can use the same (JrK0 , JrK1) in the protocol
Π1

InnerProd to mask y∗j for each k ∈ [d] in order to reduce the communication between the two
servers. That is, each client Cj can actually compute a triple for the product of an integer and a
vector, y∗j · xj , instead of d irrelevant inner products with dimension 1. As a result, in Step 1e of
ΠLinearSGD (Figure 10), the communication between the two servers is reduced to 2B ring elements
and the communication between the clients and the servers is B · d ring elements.

As mentioned earlier, we can use PRF to reduce communication. In Steps 1a and 1c, the client
needs to sample random secret sharings of xj and yj . This communication can be reduced from
(2d+ 2) to (d+ 1) ring elements by using PRF.

Furthermore, in Steps 1a and 1c, the client needs to send the secret sharings of its data to the
servers, which leads to a total communication of B · (d+1) · t ring elements. In our implementation,
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we let all the clients share this with the servers at the beginning, so each data sample is shared only
once and reused across different epochs. The communication becomes n · (d+ 1) ring elements.

In summary, the total communication between the two servers can be reduced to 2(B + d) · t
ring elements, and the total communication between all the clients and the servers can be reduced
to n · (d+ 1) +B · d · t+B · t ring elements.

5.2 Logistic Regression

Compared to linear regression, logistic regression merely adds a logistic function in each iteration.
We use the MPC-friendly logistic function from [29]:

f(z) =


0 if z < −1/2
z + 1/2 if z ∈ [−1/2, 1/2]
1 if z > 1/2

We observe that this function can be computed via two ReLU functions. In particular,

ReLU(z + 1/2) =

{
0 if z < −1/2
z + 1/2 if z ≥ −1/2

ReLU(1−ReLU(z + 1/2)) =


1 if z < −1/2
1/2− z if z ∈ [−1/2, 1/2]
0 if z > 1/2

1−ReLU(1−ReLU(z + 1/2)) = f(z)

Our protocol is represented in Figure 11.

Theorem 5.2. The protocol ΠLogisticSGD (Figure 11) securely computes the ideal functionality
FML SGD (Figure 9) for logistic regression in the (FInnerProd,FSignCheck)-hybrid model against a
semi-honest adversary that corrupts either one of the two servers S0, S1, or an arbitrary subset of
the clients.

Proof Sketch. First we prove correctness of the protocol. Note that in each iteration of logistic
regression, the model should be updated as w← w− α

B

∑B
j=1 (f(⟨w,xj⟩)− yj) ·xj . For each client

Cj in a mini-batch: in Step 1b the servers learn a secret sharing of vj = ⟨w,xj⟩ (without truncation),
which is truncated in Step 1c. Next they jointly perform f(·) on the shared value JvjK. In Step 1d
they learn a secret sharing of ReLU(vj +1/2); in Step 1e they learn a secret sharing of ReLU(1−
ReLU(vj +1/2)); in Step 1g they obtain a secret sharing of 1−ReLU(1−ReLU(vj +1/2))− yj ,
namely f(⟨w,xj⟩) − yj . Next, in Step 1h they learn secret shares of (f(⟨w,xj⟩) − yj) · xj , which
are truncated and combined into a vector JujK in Step 1f. Finally, in Step 2 the servers perform
a linear combination of the current model JwK and the gradient descent {JujK}j∈[B] to obtain an

updated secret shared model Jw′K.
In terms of privacy, any corrupted client does not learn any information from the protocol

because it does not receive any message. This also holds for an arbitrary subset of corrupted and
colluding clients. For a corrupted server, it only receives secret shared values in Steps 1a, 1b, 1d,
1e, 1f, 1h, which information theoretically hides the clients’ data. The formal proof is similar to
the proofs of Theorems 4.3 and 4.4.

Communication and Optimizations. Since the logistic function simply contains two ReLU
operations, the communication overhead compared to linear regression is 4B · λ · ℓ bits with 8B
ring elements for each SGD iteration.
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Protocol ΠLogisticSGD:

1. For each client Cj (j ∈ [B]) in a mini-batch:

(a) The client Cj samples a random secret sharing of xj , namely
(JxjK0 , JxjK1)← Sharing(xj), and sends JxjKi to Si (i ∈ {0, 1}).

(b) S0,S1 and Cj call Fd
InnerProd to compute

(JvjK0 , JvjK1 ,⊥)← F
d
InnerProd

(
(JwK0 , JxjK0), (JwK1 , JxjK1),xj

)
.

(c) Each server Si (i ∈ {0, 1}) truncates the output JvjKi := Trunc
(
JvjKi

)
.

(d) S0,S1 and Cj call FReLU to compute

(JαjK0 , JαjK1 ,⊥)← FReLU(JvjK0 , JvjK1 + RtoI (1/2) ,⊥).

(e) S0,S1 and Cj call FReLU to compute

(JβjK0 , JβjK1 ,⊥)← FReLU(− JαjK0 ,RtoI (1)− JαjK1 ,⊥).

(f) The client Cj samples additive secret sharings of yj , namely
(JyjK0 , JyjK1)← Sharing(yj), and sends

(
JyjKi

)
to Si (i ∈ {0, 1}).

(g) Each server Si (i ∈ {0, 1}) computes
r
y∗j

z

i
= RtoI (i)− JβjKi − JyjKi.

(h) For each k ∈ [d], the two servers S0,S1 and the client Cj call F1
InnerProd to compute(r

ukj

z

0
,
r
ukj

z

1
,⊥

)
← F1

InnerProd

(
(
q
y∗j

y
0
, JxjK0 [k]), (

q
y∗j

y
1
, JxjK1 [k]),xj [k]

)
.

(i) Each server Si (i ∈ {0, 1}) combines
{r

ukj

z

i

}
k∈[d]

into a vector, namely JujKi ∈ Zd
2ℓ

where Juj [k]Ki = Trunc
(r

ukj

z

i

)
.

2. Each server Si (i ∈ {0, 1}) outputs Jw′Ki = JwKi −
α
B

∑B
j=1 JujKi.

Figure 11: Protocol ΠLogisticSGD for a single update iteration of logistic regression in the
(FInnerProd,FSignCheck)-hybrid model.

5.3 Neural Networks

To train an m-layer neural network with di (i ∈ {0, . . . ,m}) nodes in the i-th layer, the servers
update the coefficients of all nodes in each SGD iteration. All techniques we proposed for linear
and logistic regression naturally extend to support neural network training.

All the functions in forward and backward propagation include additions, multiplications (inner
product), and activation functions. For the multiplications that involve clients’ data, we utilize our
client-aided inner product protocol. For the multiplications that do not involve clients’ data, we
let the clients generate Beaver multiplication triples [2], similarly as in the client-aided variant
of [29]. To evaluate the activation function ReLU and its derivative, we can simply run the
client-aided ReLU twice in each iteration. Finally, for the MPC-friendly softmax function f(ui) =
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ReLU(ui)∑dm
k=1 ReLU(uk)

, we first run the client-aided ReLU to compute secret shared values of ReLU(uk),

sum up all the shares, and then perform the client-aided division.

Optimizations. After the first layer of the neural network, the input to the remaining layers is
shared among the two servers and not held by the clients, so we use the same approach as the client-
aided variant of [29] to implement the remaining layers. In each layer, the three multiplications we
need to calculate are X ·W, X⊤ ·G, and G ·W⊤. Notice that each matrix X,W,G is used twice,
and the clients can use the same random matrix to mask the same matrix twice, which can halve
the communication among the servers and reduce half of the PRF operations for generating masks.

Note that there is no need to run separate sign checks for ReLU and its partial derivative, since
they are exactly the same comparison. The (secret shared) comparison result will be multiplied by
two different values, so the clients should generate two multiplication triples.

6 Performance Evaluation

We implement our two-server PPML protocols for training algorithms including linear regression,
logistic regression, and neural networks, against both semi-honest and malicious clients. We re-
port our performance in comparison with SecureML [29] in the semi-honest model in this section
and defer the performance against malicious clients to Section 6.5. We did not compare the con-
crete performance with the state-of-the-art ABY2.0 [30] because their code for ML training is not
available, but we did theoretical comparisons with their work.

We did not compare our protocols to prior works on PPML with three or more non-colluding
servers because we believe our model differs from theirs in several key aspects. While the clients
in our model could be considered as an additional server, the requirements on them are much
weaker. Specifically, in prior works with three or more non-colluding servers, all the servers jointly
hold secret shares of all the intermediate values. They participate in every step of the computation
throughout the entire protocol. Nevertheless, our approach does not require the clients to stay online
or hold any secret state. In client-aided sign check, activation functions, and division protocols,
each time the servers may choose an arbitrary client for assistance while other clients are offline.
After each iteration, the client may completely go offline without having to keep any secret state.
Furthermore, the clients initially hold their data in the clear, which can be leveraged in client-aided
inner product.

6.1 Implementation Details

We implement our protocols in C++. The only cryptographic primitive we need is PRF, which
is instantiated with AES. We set the computational security parameter λ = 128 and statistical
security parameter σ = 40.

Experiment Settings. Our experiments are performed on a single Amazon Web Services (AWS)
Elastic Compute Cloud (EC2) c4.8xlarge virtual machine with 18-core 2.9GHz Intel Xeon CPU
and 60 GB of RAM which is the same as [29]. We simulate the network connection using the Linux
tc command. For the experiments on a LAN network, we set the round-trip time (RTT) latency
to be 0.34 ms and network bandwidth to be 8192 Mbps, same as [29]. For the experiments on a
WAN network, we set the RTT latency to be 60 ms and the network bandwidth to be 60 Mbps.
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Dataset and Parameters. In our experiments, we train our algorithms on the MNIST dataset
[11], which contains images of handwritten digits from 0 to 9. Each training sample has 784 features
representing 28× 28 pixels in the image.

In our training protocols, we have the number of features d = 784; we set the mini-batch size
B = 128 and the number of epochs E = 2 (all the samples are used twice in training). The total
number of training samples n varies between 10,240 and 100,352. The total number of training
iterations is t = E·n

B .
For fixed-point arithmetic, we set ℓ = 64, ℓf = 13, ℓw = 6. That is, all the values are represented

in Z264 , where the lowest order 13 bits are the fractional part, and we assume there are at most 32
bits in the whole number part. These parameters are taken from [29].

Offline vs. Online. In the protocols of [29], there is an offline and an online phase, where the
offline phase includes all the computation and communication that can be done without presence
of data while the online phase consists of all data-dependent steps of the protocols. In the offline
phase, they proposed three different approaches, one based on oblivious transfer (OT), one based
on linearly homomorphic encryption (LHE), and one client-aided. The OT-based and LHE-based
offline protocols are performed among the two servers to generate multiplication triples, while the
client-aided offline protocol relies on a client to generate the triples.

Our protocols, on the other hand, only have an online phase, where the clients are heavily
involved in the protocol execution. In particular, they will generate data-dependent triples in
the client-aided inner product protocol. Getting rid of the offline phase allows us to reduce the
offline storage on the servers as well as the amount of communication between the servers. In our
experiments below, we give comprehensive comparisons to [29] in both offline and online phases.

6.2 Linear Regression

In this section, we compare the performance of our semi-honest linear regression training to [29]
instantiated with an OT-based, LHE-based, or client-aided offline phase. We report the running
time in both LAN and WAN settings in Table 1 and the communication costs in Table 2.

n
Offline Time (s) Online Time (s) Total Time (s)

LAN WAN LAN WAN LAN WAN

Our work
10,240 0 0 1.32 52.1 1.32 52.1
100,352 0 0 13.2 505 13.2 505

OT-based [29]
10,240 266 3,733 2.42 57.8 268 3,791
100,352 2,667 36,600* 25.8 557 2,692 37,157*

LHE-based [29]
10,240 1,414 1,435 2.42 57.8 1,416 1,493
100,352 13,800* 14,000* 25.8 557 13,826* 14,557*

Client-aided [29]
10,240 4.69 94.9 3.39 94.4 8.08 189
100,352 52.0 749 35.3 1,126 87.3 1,875

Table 1: Running time of semi-honest linear regression on LAN and WAN networks comparing our protocol
to [29] instantiated with different offline approaches. * indicates estimated running time.

In Table 1, we report the running time for both the offline and online phases in [29] as well as the
total time. Our protocol does not incur any offline cost, and our online phase is also more efficient
as our computation overhead is lower. In particular, in the online phase we achieve 1.83 − 2.67×
improvement over [29] in the LAN setting and 1.11− 2.23× improvement in the WAN setting. For
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n
Offline Comm (MB) Online Comm (MB) Total

S− S C− S S− S C− S Total Comm

Our work
10,240 0 0 2.23 185 187 187
100,352 0 0 21.8 1,814 1,836 1,836

OT-based [29]
10,240 24,151 0 125 123 248 24,399
100,352 236,607 0 1,224 1,204 2,428 239,034

LHE-based [29]
10,240 115 0 125 123 248 362
100,352 1,120* 0 1,224 1,204 2,428 3,548*

Client-aided [29]
10,240 0 614 368 123 491 1,105
100,352 0 6,016 3,609 1,204 4,813 10,829

Table 2: Communication cost of semi-honest linear regression comparing our protocol to [29] instantiated
with different offline approaches. “S − S” and “C − S” denote the communication between the two servers
and the communication between the clients and servers, respectively. * indicates estimated communication.

the total running time (offline + online), we achieve 6.12− 1047× improvement in the LAN setting
and 3.63− 73.5× improvement in the WAN setting.

In Table 2, we report both the communication between the two servers and the communication
between the clients and servers, which are denoted by “S−S” and “C−S” respectively in the table.
Again, our protocol does not incur any offline cost. In the online phase, our communication cost
between the two servers is significantly lower than [29]. In particular, our S−S online communication
is 2(B + d) · t ring elements. The S − S online communication of the OT-based and LHE-based
protocols in [29] is 2n · d + 2(B + d) · t ring elements, and that of the client-aided variant is
2n · d + 2(Bd + B) · t ring elements. Although our online communication between the clients and
servers is higher than [29], the total communication is still much lower than [29]. In particular,
in the online phase our S − S communication achieves 56.1 − 165× improvement over [29], and
our total online communication achieves 1.32− 2.63× improvement. For the total communication
(offline + online), we achieve 1.93− 130× improvement.

Increasing Mini-Batch Size. If we increase the mini-batch size B, we can achieve lower commu-
nication, and hence the performance also improves especially in the WAN setting. This is because
some part of the communication grows with the number of iterations. If the number of epochs and
n remain the same and the mini-batch size is increased, then the number of iterations decreases
and the communication is lowered as well. See Figure 12 for the performance of the online phase
in the WAN setting with different mini-batch sizes. We only compare with the client-aided variant
of [29] because they achieve the most comparable overall running time.

Comparison with ABY2.0 [30]. We compare our performance with [30] theoretically as their
code is not available. Since [30] uses the same OT-based and LHE-based multiplication triples
generation as [29] in the offline phase, as seen in Tables 1 and 2, their offline time and communication
are already much higher than our total time and communication.

Although not mentioned in their paper, we observe that a similar client-aided approach can be
applied to [30] to improve the efficiency of the offline phase while introducing some overhead in
the online phase. Nevertheless, we expect our work to still outperform [30] in that case. With a
client-aided offline phase, the total communication (offline + online) of [30] is (12Bd+ 6B + 4d) · t
ring elements. If using all the optimizations we mentioned, its communication can be reduced
to n · (3d + 1) + (Bd + 3B + 2d) · t ring elements. In comparison, our total communication is
n · (d+1)+ (Bd+3B+2d) · t ring elements and our computation cost is roughly half of [30]. This
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Figure 12: Total running time of semi-honest linear regression over WAN with different mini-batch sizes.

is because each server computes two matrix multiplications for a private inner product in [29, 30],
while they each compute one matrix multiplication in our protocol.

6.3 Logistic Regression

In this section, we compare the performance of our semi-honest logistic regression training to [29]
in Tables 3 and 4. Compared to linear regression, the only overhead of logistic regression is the
cost of the activation function. In each iteration, each client and the two servers run ΠReLU twice.

n
Offline Time (s) Online Time (s) Total Time (s)

LAN WAN LAN WAN LAN WAN

Our work
10,240 0 0 1.96 87.6 1.96 87.6
100,352 0 0 19.8 850 19.8 850

OT-based [29]
10,240 266 3,733 3.86 108 270 3,841
100,352 2,667 36,600* 40.0 1,056 2,707 37,656*

LHE-based [29]
10,240 1,414 1,435 3.86 108 1,418 1,543
100,352 13,800* 14,000* 40.0 1,056 13,840* 15,056*

Client-aided [29]
10,240 4.71 95.4 4.81 142 9.52 237
100,352 55.9 941 46.3 1,398 102 2,339

Table 3: Running time of semi-honest logistic regression on LAN and WAN networks comparing our protocol
to [29] instantiated with different offline approaches. * indicates estimated running time.

Our computation cost of one ReLU mainly consists of ℓ PRF operations and sorting these ℓ PRF
results for each server. As shown in Table 3 for the running time, in the online phase we achieve
1.97−2.45× improvement over [29] in the LAN setting and 1.23−1.64× improvement in the WAN
setting. For the total running time (offline + online), we achieve 4.85− 723× improvement in the
LAN setting and 2.71− 44.3× improvement in the WAN setting.

In terms of communication, our total communication overhead in ΠReLU is 4B · t ·λ · ℓ bits with
8B ·t ring elements, while the communication overhead in [29] is 2B ·t·(2λ·(2ℓ−1)+3ℓ) bits. In [30],
the online communication for one ReLU is 3ℓ+230 bits and the offline communication is 1337λ+5ℓ+
1332 bits, so its total communication overhead for logistic regression is 2B · t · (1337λ+ 8ℓ+ 1562)
bits. As shown in Table 4, in the online phase our S − S communication achieves 90.1 − 176×
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n
Offline Comm (MB) Online Comm (MB) Total

S− S C− S S− S C− S Total Comm

Our work
10,240 0 0 2.85 266 269 269
100,352 0 0 28.0 2,605 2,633 2,633

OT-based [29]
10,240 24,151 0 257 123 380 24,531
100,352 236,607 0 2,524 1,204 3,728 240,335

LHE-based [29]
10,240 115 0 257 123 380 495
100,352 1,120* 0 2,524 1,204 3,728 4,848*

Client-aided [29]
10,240 0 614 502 123 625 1,239
100,352 0 6,016 4,424 1,204 5,628 11,644

Table 4: Communication cost of semi-honest logistic regression comparing our protocol to [29] instantiated
with different offline approaches. “S − S” and “C − S” denote the communication between the two servers
and the communication between the clients and servers, respectively. * indicates estimated communication.

improvement over [29], and our total online communication achieves 1.41 − 2.32× improvement.
For the total communication (offline + online), we achieve 1.84− 91.3× improvement.

6.4 Neural Networks

We train a neural network consisting of three fully connected layers while the cross entropy function
is employed as the loss function. The neural network has 128 neurons in each hidden layer and
10 in the output layers. We use the ReLU activation function for the two hidden layers and the
MPC-friendly variant of the softmax function (see Section 3.3) for the output layer.

n
Offline Time (s) Online Time (s) Total Time (s)

LAN WAN LAN WAN LAN WAN

Our work
10,240 0 0 257 5875 257 5875
100,352 0 0 2,510* 57,500* 2,510* 57,500*

Client-aided [29]
10,240 674 16,350* 147 6,690* 821 23,040*
100,352 6,600* 160,200* 1,440* 65,600* 8,040* 225,800*

Table 5: Running time of semi-honest neural networks on LAN and WAN networks comparing our protocol
to client-aided [29]. * indicates estimated running time.

n
Offline Comm (MB) Online Comm (MB) Total

S− S C− S S− S C− S Total Comm

Our work
10,240 0 0 664 35,798 36,462 36,462
100,352 0 0 6,500* 351,000* 357,500* 357,500*

Client-aided [29]
10,240 0 112,114 43,659 124 43,783 155,897
100,352 0 1,099,000* 427,900* 1,220* 429,100* 1,528,000*

Table 6: Communication cost of semi-honest neural networks comparing our protocol to client-aided [29].
“S − S” and “C − S” denote the communication between the two servers and the communication between
the clients and servers, respectively. * indicates estimated communication.

We compare the performance of our semi-honest neural network training to [29] in Tables 5 and
6. We only compare with the client-aided variant of [29] because it achieves the most comparable
performance to ours. The neural network has two hidden layers with 128 neurons in each layer.
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As shown in Table 5, in the online phase we achieve an improvement of 1.14× on WAN. For the
total running time (offline + online), we achieve an improvement of 3.19× on LAN and 3.92× on
WAN. As shown in Table 6, our S−S communication in the online phase achieves an improvement
of 65.8× and our total online communication achieves an improvement of 1.20×. We achieve a
4.28× improvement for the total communication (offline + online).

6.5 Security Against Malicious Clients

In this section, we report the performance of our protocols against malicious clients in Tables 7,
8, 9 for linear regression, logistic regression, and neural networks, respectively. When comparing
with [29], we notice that OT-based and LHE-based variants are also secure against malicious clients
because clients do not participate in the offline phase and only secret share their inputs in the online
phase. We report the total running time on LAN and WAN networks for n = 100, 352, B = 128, d =
784, E = 2.

Malicious Offline Time (s) Online Time (s) Total Time (s)

Clients LAN WAN LAN WAN LAN WAN

Our malicious work ✓ 0 0 65.3 2,082 65.3 2,082

Our semi-honest work 0 0 13.2 505 13.2 505

OT-based [29] ✓ 2,667 36,600* 25.8 557 2,692 37,157*

LHE-based [29] ✓ 13,800* 14,000* 25.8 557 13,826* 14,557*

Client-aided [29] 52.0 749 35.3 1,126 87.3 1,875

Table 7: Running time of malicious linear regression on LAN and WAN networks comparing our protocol
to [29] instantiated with different offline approaches. * indicates estimated running time.

For linear regression, the total time of our malicious protocol incurs a 4.95× overhead compared
to our semi-honest protocol on LAN and a 4.12× overhead on WAN. This is consistent with our
choice of δ = 4 for verifying multiplication triples. Compared to OT-based and LHE-based variants
of [29], we achieve an improvement of 41.2 − 212× in the total time on LAN and 6.99 − 17.8× in
the total time on WAN.

Malicious Offline Time (s) Online Time (s) Total Time (s)

Clients LAN WAN LAN WAN LAN WAN

Our malicious work ✓ 0 0 90.3 2,860 90.3 2,860

Our semi-honest work 0 0 19.8 850 19.8 850

OT-based [29] ✓ 2,667 36,600* 40.0 1,056 2,707 37,656*

LHE-based [29] ✓ 13,800* 14,000* 40.0 1,056 13,840* 15,056*

Client-aided [29] 55.9 941 46.3 1,398 102 2,339

Table 8: Running time of malicious logistic regression on LAN and WAN networks comparing our protocol
to [29] instantiated with different offline approaches. * indicates estimated running time.

For logistic regression, the overhead of our malicious protocol compared to our semi-honest
protocol is 4.56× on LAN and 3.36× on WAN. This is consistent with our choice of δ = 3 for
the activation function. Compared to OT-based and LHE-based variants of [29], we achieve an
improvement of 30.0− 153× in the total time on LAN and 5.26− 13.2× in the total time on WAN.
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Malicious Offline Time (s) Online Time (s) Total Time (s)

Clients LAN WAN LAN WAN LAN WAN

Our malicious work ✓ 0 0 6,400* 154,000* 6,400* 154,000*

Our semi-honest work 0 0 2,510* 57,500* 2,510* 57,500*

Client-aided [29] 6,600* 160,200* 1,440* 65,600* 8,040* 225,800*

Table 9: Running time of malicious neural networks on LAN and WAN networks comparing our protocol
to client-aided [29]. * indicates estimated running time.

For neural networks, the overhead of our malicious protocol compared to our semi-honest proto-
col is 2.55× on LAN and 2.68× on WAN. Compared to [29], we even outperform their semi-honest
client-aided protocol (so we did not compare with the OT-based or LHE-based variant). In par-
ticular, we achieve an improvement of 1.26× on LAN and 1.49× on WAN in the total time. We
expect the improvement to be even higher compared to their OT-based and LHE-based variants.
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Ayfer Özgür, Rasmus Pagh, Mariana Raykova, Hang Qi, Daniel Ramage, Ramesh Raskar,
Dawn Song, Weikang Song, Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian
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A Security Against Malicious Clients

In this section, we enhance the security of our protocols to protect against malicious clients. At a
high level, we only need to verify that the client-aided inner product and the client-aided sign check
are computed correctly, which we present in Sections A.1 and A.2 respectively. The client-aided
ReLU, client-aided division, and linear/logistic regression only rely on these two building blocks.
For neural networks, we additionally need to guarantee that the Beaver multiplication triples are
generated correctly, which we show in Section A.3. Finally, we present the performance evaluation
in Section 6.5

A.1 Client-Aided Inner Product

We present a general protocol for verifying the correctness of matrix multiplication for any dimen-
sion (instead of only for vectors). This allows for optimizations that we discuss at the end of this
section.

Construction Overview. First, we present a subprotocol Πa,b,c
OpenTriple to verify whether a secret

shared triple (X ∈ Za×b
2ℓ

,Y ∈ Zb×c
2ℓ

,Z ∈ Za×c
2ℓ

) is correct by revealing the triple in the clear. Here
one triple (X,Y,Z) is correct means X ·Y = Z. In this subprotocol, each server Si has the secret
sharing of the triple (JXKi , JYKi , JZKi) as input. Since the servers are both semi-honest, we simply
let each server send the secret shares to each other, reconstruct the triple, and check whether
X ·Y = Z. The communication cost between the two servers is 2(a · b+ b · c+ a · c) ring elements
in total. The subprotocol is described in Figure 13.

Protocol Πa,b,c
OpenTriple:

Parties: Two servers S0, S1.
Inputs: Each server Si (i ∈ {0, 1}) inputs secret shared matrices
JXKi ∈ Za×b

2ℓ
, JYKi ∈ Zb×c

2ℓ
, JZKi ∈ Za×c

2ℓ
.

Protocol: Each server Si (i ∈ {0, 1}) does the following:
1. Send JXKi ∈ Za×b

2ℓ
, JYKi ∈ Zb×c

2ℓ
, JZKi ∈ Za×c

2ℓ
to the other server.

2. Recover X = JXK0 + JXK1, Y = JYK0 + JYK1, Z = JZK0 + JZK1.

3. Outputs 1 if X ·Y = Z and 0 otherwise.

Figure 13: Subprotocol Πa,b,c
OpenTriple for verifying a multiplication triple by revealing the matrices

in the clear. Each server outputs 1 if X ·Y = Z and 0 otherwise.

We present another subprotocol Πa,b,c
TwoTriples to verify one multiplication triple (X,Y,Z) using

another multiplication triple (A,B,C) without opening. Through the protocol, the servers can
get the result of (X · Y − Z) − (A · B − C). Then the servers can gain some information from
this result, in particular, if the result is non-zero, then the two triples cannot be both correct. In
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this subprotocol, each server Si has the secret sharings of the two triples (JXKi , JYKi , JZKi) and
(JAKi , JBKi , JCKi) as input. Then the servers reconstruct E = X−A and F = Y−B and use these
to recover and output A ·F+E ·B+E ·F−Z+C, which is equal to (X ·Y −Z)− (A ·B−C).
The communication cost between the two servers is 2(a · b+ b · c+ a · c) ring elements in total. The
subprotocol is described in Figure 14.

Protocol Πa,b,c
TwoTriples:

Parties: Two servers S0, S1.
Inputs: Each server Si (i ∈ {0, 1}) inputs secret shared matrices
JXKi , JAKi ∈ Za×b

2ℓ
; JYKi , JBKi ∈ Zb×c

2ℓ
; JZKi , JCKi ∈ Za×c

2ℓ
.

Protocol: Each server Si (i ∈ {0, 1}) does the following:
1. Compute JEKi = JXKi − JAKi and JFKi = JYKi − JBKi, and send (JEKi , JFKi) to the other

server.

2. Recover E = JEK0 + JEK1 and F = JFKi + JFK1.

3. Compute JSKi = i ·E · F+ JAKi · F+E · JBKi − JZKi + JCKi, and send it to the other server.

4. Output S = JSK0 + JSK1.

Figure 14: Subprotocol Πa,b,c
TwoTriples for verifying one multiplication triple using another multipli-

cation triple without opening. Each server outputs (X ·Y − Z)− (A ·B−C).

With these two subprotocols, we use cut-and-choose to design a protocol Πa,b,c,M
VerifyTriple to verify

M multiplication triples together. The ideal functionality is described in Figure 15.

Functionality Fa,b,c,M
VerifyTriple:

Parties: Two servers S0, S1 and a clients C.
Inputs: The client C inputs nothing. Each server Si (i ∈ {0, 1}) inputs M additively secret

shared triples
{(q

Xj
y
i
∈ Za×b

2ℓ
,
q
Yj

y
i
∈ Zb×c

2ℓ
,
q
Zj

y
i
∈ Za×c

2ℓ

)}
j∈[M ]

.

Functionality: On receiving
{(q

Xj
y
i
,
q
Yj

y
i
,
q
Zj

y
i

)}
j∈[M ]

from each server Si (i ∈ {0, 1}):
• For each j ∈ [M ], recover Xj =

q
Xj

y
0
+

q
Xj

y
1
,Yj =

q
Yj

y
0
+

q
Yj

y
1
,Zj =

q
Zj

y
0
+

q
Zj

y
1
.

• Compute Dj = Xj ·Yj − Zj for all j ∈ [M ] and send
{
Dj

}
j∈[M ]

to each server. Send ⊥ to

the client.

Figure 15: Ideal functionality Fa,b,c,M
VerifyTriple for verifying M multiplication triples that are secret

shared among the servers.

Intuitively, the client C generates N = δ ·M + µ new multiplication triples. To ensure these
triples are generated correctly, the servers first randomly pick µ triples to open (in Step 4). Once
these checks are passed, the servers randomly partition the remaining triples into M groups, each
of size δ, and each group is used to verify one triple. The protocol is described in Figure 16.

Theorem A.1. For the parameters we choose below, the protocol Πa,b,c,M
VerifyTriple (Figure 16) securely

computes the ideal functionality Fa,b,c,M
VerifyTriple (Figure 15) against an adversary that corrupts either

one of the two servers S0, S1 in a semi-honest way, or the client C maliciously.

Proof Sketch. For security against a semi-honest server S0 (the proof for a semi-honest S1 is
almost identical), note that S0 receives random secret shares in Step 1c, verifies the randomly
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Protocol Πa,b,c,M
VerifyTriple:

0. The two servers S0 and S1 and the client C agree on parameters δ, µ. Let N := δ ·M + µ.

1. The client C does the following:

(a) For each k ∈ [N ], sample random matrices Ak $←− Za×b
2ℓ

,Bk $←− Zb×c
2ℓ

and compute

Ck = Ak ·Bk.

(b) For each k ∈ [N ], generate additive secret sharings (
q
Ak

y
0
,
q
Ak

y
1
)← Sharing(Ak),

(
q
Bk

y
0
,
q
Bk

y
1
)← Sharing(Bk), (

q
Ck

y
0
,
q
Ck

y
1
)← Sharing(Ck).

(c) Send
{(q

Ak
y
i
,
q
Bk

y
i
,
q
Ck

y
i

)}
k∈[N ]

to each server Si (i ∈ {0, 1}).

2. Server S0 randomly samples a permutation π : [N ]→ [N ] and sends it to S1.

3. Each server Si (i ∈ {0, 1}) uses π to shuffle its triples and obtain{(r
Âk

z

i
,
r
B̂k

z

i
,
r
Ĉk

z

i

)}
k∈[N ]

. In particular,(r
Âk

z

i
,
r
B̂k

z

i
,
r
Ĉk

z

i

)
:=

(q
Aπ(k)

y
i
,
q
Bπ(k)

y
i
,
q
Cπ(k)

y
i

)
.

4. The two servers run Πa,b,c
OpenTriple on each of the first µ shuffled triples, namely{(r

Âk
z

i
,
r
B̂k

z

i
,
r
Ĉk

z

i

)}µ

k=1
. The servers abort the protocol if any Πa,b,c

OpenTriple instance

outputs 0.

5. For each j ∈ [M ]:

(a) For each t ∈ [δ], let k := µ+ δ · (j − 1) + t, and let the two servers run Πa,b,c
TwoTriples on(q

Xj
y
i
,
q
Yj

y
i
,
q
Zj

y
i

)
and

(r
Âk

z

i
,
r
B̂k

z

i
,
r
Ĉk

z

i

)
to learn Dj

t .

(b) If Dj
t is the same for all t ∈ [δ], then let Dj := Dj

1; otherwise abort the protocol.

6. Both servers output
{
Dj

}
j∈[M ]

.

Figure 16: Protocol Πa,b,c,M
VerifyTriple for verifying M multiplication triples that are secret shared

among the servers.

generated multiplication triples in Step 4, and learns Dj for each j ∈ [M ] in Step 5. Simulation

involves generating random shares in Step 1c, revealing consistent shares in Πa,b,c
OpenTriple in Step 4,

and revealing Dj (from the ideal functionality) in Πa,b,c
TwoTriples in Step 5. Note that in Πa,b,c

TwoTriples,
the recovered E,F are both random matrices and do not reveal any information. The correctness
of the protocol is also easy to verify.

For security against an adversary A that corrupts the client C maliciously, note that it only
sends randomly generated shares in Step 1c. We construct a simulator that on receiving the triples
from A, verifies the correctness of all the triples, namely, Ak · Bk = Ck for all k ∈ [M ]. If all
these triples are valid, then the simulator tells the ideal functionality to continue; otherwise, it
tells the ideal functionality to abort. The only difference between the real-world execution and
the simulation is when the malicious client succeeds in cheating, which happens with negligible
probability for the parameters we choose below.

Parameters. As discussed in the protocol, we use N = δ ·M +µ newly generated triples to check
M triples. We need to calculate the probability that the malicious client succeeds in generating
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incorrect triples without being caught, and we would like to make this probability negligible in the
statistical security parameter σ. In particular, our goal is to choose appropriate parameters M, δ, µ
such that the probability is no more than 2−σ.

We consider a malicious client A’s best strategy and bound the success probability. We start
by defining the following balls-and-buckets game for the newly generated triples.

Game(A,M, δ, µ) :

1. The adversary A prepares N = δ ·M + µ balls. Each ball can be either good or bad.

2. µ random balls are chosen and opened. If one of the µ balls is bad, then output 0. Otherwise,
the game proceeds to the next step.

3. The remaining δ ·M balls are randomly divided into M buckets of equal size δ. We say that
a bucket is fully good if all balls inside it are good. Similarly, a bucket is fully bad if all balls
inside it are bad.

4. The output of the game is 1 if and only if each bucket is either fully good or fully bad, and
there exists at least one fully bad bucket.

Game′(A,M, δ, µ) :

1. The adversary A prepares M balls to be checked and N = δ ·M +µ new balls. Each ball can
be either good or bad.

2. µ random balls among N new balls are chosen and opened. If one of the µ balls is bad, then
output 0. Otherwise, the game proceeds to the next step.

3. The remaining δ ·M balls are randomly divided into M buckets of equal size δ. The M balls
to be checked are also randomly assigned to these M buckets, one per bucket. We say that a
bucket is fully good if all balls inside it are good. Similarly, a bucket is fully bad if all balls
inside it are bad.

4. The output of the game is 1 if and only if each bucket is either fully good or fully bad, and
there exists at least one fully bad bucket.

Note that the output condition in the last step of Game and Game′ enforces the adversary to
choose at least one bad ball if it wishes to win. We first observe that for A to win the game, the
number of bad balls A chooses must be a multiple of M , the size of a bucket.

Lemma A.2. Let T be the number of bad balls chosen by the adversary A. Then a necessary
condition for Game(A,M, δ, µ) = 1 is that T = δ · t for some t ∈ [M ].

Let t be the number of buckets A has chosen to corrupt. Then for any 0 < t ≤ B, it holds that

Pr [Game(A,M, δ, µ) = 1] =

(
M

t

)(
δM + µ

tδ

)−1

.

Pr[Game′(A,M, δ, µ) = 1] = Pr[Game(A,M, δ, µ) = 1] ·
(
M

t

)−1

=

(
δ ·M + µ

tδ

)−1

.
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If µ ≤ δ, the best strategy of A is to corrupt M buckets. In this case, when M and δ remain
the same, the upper bounds of Pr [Game(A,M, δ, µ) = 1] and Pr[Game′(A,M, δ, µ) = 1] increase
exponentially as µ decreases. However, increasing δ is more costly than increasing µ, concerning
both communication and computation overhead. From the honest parties’ perspective, the optimal
strategy is to set a greater µ so that δ can be smaller when the adversary’s success probability is
fixed. Hence we will assume µ ≥ δ.

Given that µ ≥ δ, the best strategy of A is to corrupt exactly one bucket. This allows us to
derive an upper bound of the success probability of the adversary.

Theorem A.3. If µ ≥ δ, then for any adversary A, it holds that

Pr
[
Game′(A,M, δ, µ) = 1

]
≤

(
δ ·M + µ

δ

)−1

.

Proof. Since µ ≥ δ, we can easily see that

Pr
[
Game′(A,M, δ, µ) = 1

]
≤ min

t≥1

{(
δ ·M + µ

tδ

)−1
}

= min

{(
δ ·M + µ

δ

)−1

,

(
δ ·M + µ

δ ·M

)−1
}

= min

{(
δ ·M + µ

δ

)−1

,

(
δ ·M + µ

µ

)−1
}

=

(
δ ·M + µ

δ

)−1

.

Therefore, to guarantee that Pr
[
Game′(A,M, δ, µ) = 1

]
≤ 2−σ, we only need to guarantee that(

δ·M+µ
δ

)−1 ≤ 2−σ, which is equivalent to
(
δ·M+µ

δ

)
≥ 2σ.

From the above formula, we observe that the change of µ has little influence on the adversary’s
success probability when µ ≥ δ. Therefore, we set µ := δ to minimize δ·M+µ

M and achieve a minimum
communication overhead. In Table 10, we present the minimum M (power of 2) for σ = 40 and
different δ and µ values.

δ µ M N = δ ·M + µ

6 6 128(27) 774

5 5 256(28) 1,285

4 4 1,024(210) 4,100

3 3 8,192(213) 24,579

2 2 1,048,576(220) 1,048,578

Table 10: Parameters for verifying multiplication triples and sign check results for σ = 40.

Communication and Optimizations. We can use PRF to reduce communication similarly as
discussed earlier. In Steps 1b and 1c, the client can use the shared PRF key with one server S0 to
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generate
(q
Ak

y
0
,
q
Bk

y
0
,
q
Ck

y
0

)
without communication, and send the other share

(q
Ak

y
1
,
q
Bk

y
1
,
q
Ck

y
1

)
to S1. This can reduce the communication between the client and the servers to N · (a · c) ring
elements. Besides, in Step 2, the two servers can share a PRF key with each other and then use
the PRF key to generate a random permutation π : [N ]→ [N ] without communication.

Moreover, in Step 5, we let the servers only verify whether Dj
t is equal to 0 for all j ∈ [M ], t ∈ [δ]

and use linear combinations and PRF to reduce communication in our implementation. To be more
specific, we first let the servers use the shared PRF key to randomly sample δ ·M shared values
η1, . . . , ηδ·M ∈ Z2ℓ without communication, then each server Si uses these as δ ·M coefficients to

construct a linear combination of
r
Dj

t

z

i
for all j ∈ [M ], t ∈ [δ]. Finally, each server Si sends∑M

j=1

∑δ
t=1 ηδ·(j−1)+t ·

r
Dj

t

z

i
to the other server and checks whether the sum is equal to 0. The

probability of failure is negligible. This can reduce the communication of Step 5 between the two
servers to 2(δ ·M) · (a · b+ b · c) + 2(a · c) ring elements.

Hence the final communication between the two servers is 2(δ ·M+µ)·(a·b+b·c)+2(µ+1)·(a·c)
ring elements and the communication between the client and the servers is (δ ·M + µ) · (a · c) ring
elements.

In our implementation, we further improve communication and storage when the verification
protocol is applied to linear regression, logistic regression, and neural networks. In one iteration
of semi-honest linear regression and logistic regression, each client in the mini-batch generates two
multiplication triples. With the optimizations we mentioned in Section 5.1, the clients’ data x
is used twice in two multiplication triples and all the clients use the same mask of w. We can
apply similar optimizations during the verification phase. In particular, we pack these 2B triples
into a large triple in which these 2B triples are combined into two matrix multiplications, namely
X×wmask and X⊤ ×Y′

mask, where X denotes the matrix of clients’ data, wmask and Y′
mask denote

the mask of w and the mask of X × w −Y. In the large triple, all the reused values are stored
only once. We can directly verify the large triple instead of verifying 2B triples separately. More
specifically, we let the clients generate new large triples with the same dimension to verify the
previously computed large triples. In this case, we only have one large triple to be verified in each
iteration, but we improve approximately 4× of the communication in the verification phase. The
communication among the servers is 2(δ ·M + µ) · (Bd+B + d) + 2(µ+ 1) · (B + d) ring elements
and the communication between the client and the servers is (δ ·M + µ) · (B + d) ring elements.
Similarly, in each layer of neural networks, we also pack all the multiplication triples into one large
triple.

Taking the servers’ storage cost into consideration, we do not expect M and N to be too large.
We also need to consider the total number of the multiplication triples that need to verify since
M shouldn’t exceed this. In our experiment for linear regression, logistic regression, and neural
networks with n = 100, 352, we pick M = 1024, δ = 4, µ = 4, which means we call the protocol
Πa,b,c,M

VerifyTriple every 1024 iterations.

A.2 Client-Aided Sign Check

Construction Overview. In this section, we use similar ideas to verify sign check results. First,
For bS ∈ {0, 1} and bC ∈ Z2ℓ , we define a function

Diff(bS, bC) := bS + (1− 2bS) · bC.
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Note that Diff(bS, bC) = bC if bS = 0 and Diff(bS, bC) = 1−bC if bS = 1. In other words, Diff(bS, bC) =
bS ⊕ bC if bC ∈ {0, 1}.

Similar to client-aided inner product, we present a protocol ΠTwoSignCheck to verify one sign
check result (bS, bC) using another sign check result (cS, cC) without opening. From the protocol,
the servers can get the value of bS ⊕ bC − cS ⊕ cC = Diff(bS, bC) − Diff(cS, cC). Then the servers
can gain some information from it, in particular, if the result is non-zero, then the two sign check
results cannot be both correct. In this protocol, each server Si has the input of two sign check
results: (bS,

q
bC

y
i
) and (cS,

q
cC

y
i
). Then the servers reconstruct and output bS − cS + (1 − 2bS) ·

bC− (1−2cS) ·cC, which is equal to Diff(bS, bC)−Diff(cS, cC). The communication is 2 ring elements
between the servers. The protocol is described in Figure 17.

Protocol ΠTwoSignCheck:

Parties: Two servers S0, S1.
Inputs: Each server Si (i ∈ {0, 1}) inputs bS, cS ∈ {0, 1} and additively secret shared valuesq
bC

y
i
,
q
cC

y
i
∈ Z2ℓ .

Protocol: Each server Si (i ∈ {0, 1}) does the following:
1. Compute JeKi = i · (bS − cS) + (1− 2bS) ·

q
bC

y
i
− (1− 2cS) ·

q
cC

y
i
and send it to the other

server.

2. Output e = JeK0 + JeK1.

Figure 17: Protocol ΠTwoSignCheck for verifying one sign check result using another result. Each
server outputs Diff(bS, bC)− Diff(cS, cC).

Given the subprotocol ΠTwoSignCheck, we use cut-and-choose to design a protocol ΠM
VerifySignCheck

to verify M sign check results together. The ideal functionality is described in Figure 18.

Functionality FM
VerifySignCheck:

Parties: Two servers S0, S1 and a clients C.
Inputs: The client C inputs nothing. Each server Si (i ∈ {0, 1}) inputs M tuples{(q

xj
y
i
∈ Z2ℓ , b

j,S ∈ {0, 1},
q
bj,C

y
i
∈ Z2ℓ

)}
j∈[M ]

.

Functionality: On receiving
{(q

xj
y
i
, bj,S,

q
bj,C

y
i

)}
j∈[M ]

from each server Si (i ∈ {0, 1}):
• For each j ∈ [M ], recover xj =

q
xj

y
0
+

q
xj

y
1
, bj,C =

q
bj,C

y
0
+

q
bj,C

y
1
.

• If ∃j ∈ [M ] where bj,C ̸= 0 or 1, or bj,S ⊕ bj,C ̸= (xj > 0), then send (error, j) along with
e := Diff(bj,S, bj,C)− (xj > 0) to each server and halt.

• Send correct to each server.

Figure 18: Ideal functionality FM
VerifySignCheck for verifyingM sign check results with the assistance

of a client.

Intuitively, for each input (JxKi , b
S,

q
bC

y
i
) that needs to be verified, the servers first generate

δ equivalent instances to check. Specifically, for each instance the servers sample a random value
d ∈ Z2ℓ , then S0 computes JxK0+d and S1 computes JxK1−d, which becomes a fresh secret sharing
of x. Then they perform a client-aided sign check on this new secret sharing. Moreover, the servers
randomly sample µ new values, for which they know the sign check result, and then perform the
sign check with the client.
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The servers randomly shuffle all these N = δ ·M+µ instances and run sign check with the client.
Afterwards, for the µ new values, the servers can simply verify if their results are correct by opening
the results. Once these checks are passed, we can think of it as the servers randomly partitioning
the remaining triples into M groups, each of size δ. They run the protocol ΠTwoSignCheck to check
each sign check result using δ newly computed results. The protocol is described in Figure 19.

Theorem A.4. For the parameters we choose below, the protocol ΠM
VerifySignCheck (Figure 19)

securely computes the ideal functionality FM
VerifySignCheck (Figure 18) against an adversary that

corrupts either one of the two servers S0,S1 in a semi-honest way, or the client C maliciously.

Proof Sketch. For security against a semi-honest server S0 (the proof for a semi-honest S1 is almost
identical), note that in Step 5 the two servers perform ΠSignCheck on their randomly sample values
and compare with their pre-computed output. Simulation for this step only needs to generate
a random

q
ck,C

y
0
in ΠSignCheck and reveal e = 0 in ΠTwoSignCheck. In Step 6 the two servers

perform ΠSignCheck on xj and compare with their pre-computed output. To simulate this step, the
simulator first generates a random

q
ck,C

y
0
in ΠSignCheck. If the output from the ideal functionality

is (error, j) for some j along with some e, then the simulator reveals this e in ΠTwoSignCheck for
this j (on all t ∈ [δ]); otherwise it reveals e = 0. The simulated view is indistinguishable from the
real-world execution because S0 only receives a random share of bC from the client in ΠSignCheck,
and ΠTwoSignCheck reveals nothing beyond the output e. Correctness follows naturally from the
cross check done in ΠTwoSignCheck.

For security against an adversary A that corrupts the client C maliciously, note that it only
sends randomly generated shares for ck,C in ΠSignCheck (in Steps 5 and 6). We construct a simulator
that emulates the simulator for a semi-honest client in ΠSignCheck. On receiving the shares from
A, it verifies the correctness of the shares, namely,

q
ck,C

y
0
+

q
ck,C

y
1
is correct. If all these shares

are correct, then the simulator tells the ideal functionality to continue; otherwise it tells the ideal
functionality to abort. The only difference between the real-world execution and the simulation is
when the malicious client succeeds in cheating, which happens with negligible probability for the
parameters we choose below.

Parameters. The analysis for the probability that the malicious client succeeds in cheating is
exactly the same as in Section A.1. We refer to Table 10 for the choice of parameters.

Communication and Optimizations. Similarly as discussed earlier, we can use PRF to reduce
the communication in Step 3 and use linear combinations to reduce the communication in Step 6.
In Steps 1a and 2a, we can let the two servers share a PRF key at the beginning, then use the
PRF key to generate a (pseudo)random value d without communication. In Step 6, we combine
ejt − ej1 (t ∈ {2, . . . , δ}) for all j ∈ [m] by using linear combination and open the result to check
whether it is 0, reducing the communication from 2M · δ ring elements to 2 ring elements. Thus
the communication of the protocol ΠM

VerifySignCheck between the two servers is 2µ+2 ring elements
and that between the client and the servers is 2(δ ·M+µ) · (λ ·ℓ) bits with (δ ·M+µ) ring elements.

In the semi-honest ReLU protocol, each sign check operation is followed with a multiplication.
Similar to the optimizations we mentioned in Section A.1, we can pack each comparison and its
corresponding multiplication together to verify. This also applies to the division protocol.

In logistic regression, after each iteration there will be B sign checks that need to be verified.
In our experiment for n = 100, 352, we pick δ = µ = 3,M = 8192 according to the total number of
sign checks, which means we run the protocol ΠM

VerifySignCheck every 64 iterations. In an m-layer
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Protocol ΠM
VerifySignCheck:

0. The two servers S0 and S1 and the client C agree on parameters δ, µ. Let N := δ ·M + µ.

1. For each j ∈ [M ], t ∈ [δ], let k := δ · (j − 1) + t and let the two servers do the following:

(a) S0 samples a random d
$←− Z2ℓ and sends d to S1.

(b) S0 sets
q
ak

y
0
=

q
xj

y
0
+ d, b̃k,S = bj,S, and

r
b̃k,C

z

0
=

q
bj,C

y
0
;

S1 sets
q
ak

y
1
=

q
xj

y
1
− d, b̃k,S = bj,S, and

r
b̃k,C

z

1
=

q
bj,C

y
1
.

2. For each k ∈ {δ ·M + 1, . . . , δ ·M + µ}, the two servers do the following:

(a) S0 samples a random d
$←− Z2ℓ and sends d to S1.

(b) S0 sets
q
ak

y
0
= d, b̃k,S = 0, and

r
b̃k,C

z

0
= 0.

(c) S1 samples a random r ∈ Z2ℓ such that |r| < 2ℓw+ℓf and sets
q
ak

y
1
= r − d, b̃k,S = 0, andr

b̃k,C
z

1
= (r > 0).

3. Server S0 randomly samples a permutation π : [N ]→ [N ] and sends it to S1.

4. Each server Si (i ∈ {0, 1}) uses π to shuffle its tuples
{(q

ak
y
i
, b̃k,S,

r
b̃k,C

z

i

)}
k∈[N ]

and obtain{(q
âk

y
i
, b̂k,S,

r
b̂k,C

z

i

)}
k∈[N ]

. In particular,
(q

âk
y
i
, b̂k,S,

r
b̂k,C

z

i

)
:=

(q
aπ(k)

y
i
, b̃π(k),S,

r
b̃π(k),C

z

i

)
.

5. For each k′ ∈ {δ ·M + 1, . . . , δ ·M + µ}, let k := π(k′).

(a) S0,S1 and C run ΠSignCheck to compute(
(ck,S,

q
ck,C

y
0
), (ck,S,

q
ck,C

y
1
), ck,C

)
← ΠSignCheck(

q
âk

y
0
,
q
âk

y
1
,⊥).

(b) The two servers S0,S1 run ΠTwoSignCheck on
{(

b̂k,S, ck,S,
r
b̂k,C

z

i
,
q
ck,C

y
i

)}
i∈{0,1}

, and abort

the protocol if the output is not 0.

6. For each j ∈ [M ]:

(a) For each t ∈ [δ], let k := π(µ+ δ · (j − 1)+ t), and let the two servers run ΠSignCheck to compute(
(ck,S,

q
ck,C

y
0
), (ck,S,

q
ck,C

y
1
), ck,C

)
← ΠSignCheck(

q
âk

y
0
,
q
âk

y
1
,⊥),

and then run ΠTwoSignCheck on
{(

b̂k,S, ck,S,
r
b̂k,C

z

i
,
q
ck,C

y
i

)}
i∈{0,1}

to learn ejt .

(b) If ejt is not the same for all t ∈ [δ], then abort the protocol. If ejt is the same for all t ∈ [δ] but is
not 0, then output (error, j) along with ej1 and halt the protocol.

7. Both servers output correct.

Figure 19: Protocol ΠM
VerifySignCheck for verifying M sign check results with the assistance of a

client.
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neural network, the number of sign checks is B ·
∑

di + B · (ℓf + 1) · dm (i ∈ {1, . . . ,m}) in each
iteration. In our experiment for n = 100, 352, we pick δ = µ = 2,M = 1, 048, 576.

A.3 Client Generated Multiplication Triples

In neural networks, after the first layer, we use the same approach as the client-aided variant of [29],
where the clients generate multiplication triples. In this section, we present a protocol to generate
M correct multiplication triples with the assistance of a potentially malicious client. The ideal
functionality is described in Figure 20.

The protocol Πa,b,c,M
GenerateTriple is similar to protocol Πa,b,c,M

VerifyTriple (presented in Section A.1).

The main difference is that in Πa,b,c,M
VerifyTriple the client generates N new multiplication triples to

verify whether the existing M triples are correct, while in the new protocol Πa,b,c,M
GenerateTriple the

client generates N multiplication triples, uses them to verify each other, and finally selects M
correct triples from them. The protocol is described in Figure 21.

Note that an alternative approach is to first perform the multiplication using the triples gener-
ated by the client, and then perform the verification for the multiplication results using the protocol
Πa,b,c,M

VerifyTriple. The difference between the two protocols that we discussed above makes it possible

to achieve better parameters in Πa,b,c,M
GenerateTriple.

Functionality Fa,b,c,M
GenerateTriple:

Parties: Two servers S0, S1 and a clients C.
Inputs: None.
Functionality:

• For each j ∈ [M ], sample random matrices Aj $←− Za×b
2ℓ

,Bj $←− Zb×c
2ℓ

and compute

Cj = Aj ·Bj . Sample random secret shares of Aj ,Bj ,Cj , namely
(
q
Aj

y
0
,
q
Aj

y
0
)← Sharing(Aj), (

q
Bj

y
0
,
q
Bj

y
0
)← Sharing(Bj),

(
q
Cj

y
0
,
q
Cj

y
0
)← Sharing(Cj).

• Send
{(q

Aj
y
i
∈ Za×b

2ℓ
,
q
Bj

y
i
∈ Zb×c

2ℓ
,
q
Cj

y
i
∈ Za×c

2ℓ

)}
j∈[M ]

to each server Si (i ∈ {0, 1}).

Figure 20: Ideal functionality Fa,b,c,M
GenerateTriple for generating of M multiplication triples.

Theorem A.5. For the parameters we choose below, the protocol Πa,b,c,M
GenerateTriple (Figure 21)

securely computes the ideal functionality Fa,b,c,M
GenerateTriple (Figure 20) against an adversary that

corrupts either one of the two servers S0,S1 in a semi-honest way, or the client C maliciously.

Proof Sketch and Parameters. Our protocol is very similar to PROTOCOL 3.2 (Generating
Multiplication triples) in [12], except that they assume three parties with one malicious party
while we assume two semi-honest servers along with a malicious client. The security proof and the
analysis for the parameters are almost the same as [12], and we refer the reader to that paper for
more details. Here we only present the result.

Let t be the number of buckets A has chosen to corrupt. Then for every 0 < t ≤ M , it holds
that

Pr [Game(A,M, δ, µ) = 1] =

(
M

t

)(
δ ·M + µ

tδ

)−1

.
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Protocol Πa,b,c,M
GenerateTriple:

0. The two servers S0 and S1 and the client C agree on parameters δ, µ. Let N := δ ·M + µ.

1. The client C does the following:

(a) For each k ∈ [N ], sample random matrices Ak $←− Za×b
2ℓ

,Bk $←− Zb×c
2ℓ

and compute

Ck = Ak ·Bk.

(b) For each k ∈ [N ], generate additive secret sharings (
q
Ak

y
0
,
q
Ak

y
1
)

← Sharing(Ak), (
q
Bk

y
0
,
q
Bk

y
1
)← Sharing(Bk), (

q
Ck

y
0
,
q
Ck

y
1
)← Sharing(Ck).

(c) Send
{(q

Ak
y
i
,
q
Bk

y
i
,
q
Ck

y
i

)}
k∈[N ]

to each server Si (i ∈ {0, 1}).

2. Server S0 randomly samples a permutation π : [N ]→ [N ] and sends it to S1.

3. Each server Si (i ∈ {0, 1}) uses π to shuffle its triples and obtain{(r
Âk

z

i
,
r
B̂k

z

i
,
r
Ĉk

z

i

)}
k∈[N ]

. In particular,(r
Âk

z

i
,
r
B̂k

z

i
,
r
Ĉk

z

i

)
:=

(q
Aπ(k)

y
i
,
q
Bπ(k)

y
i
,
q
Cπ(k)

y
i

)
.

4. The two servers run Πa,b,c
OpenTriple on each of the first µ shuffled triples, namely{(r

Âk
z

i
,
r
B̂k

z

i
,
r
Ĉk

z

i

)}µ

k=1
. The servers abort the protocol if any Πa,b,c

OpenTriple instance

outputs 0.

5. For each j ∈ [M ], let l := µ+ δ · (j − 1) + 1.

(a) For each t ∈ [δ − 1], let k := µ+ δ · (j − 1) + t+ 1, and let the two servers run

Πa,b,c
TwoTriples on

(r
Âl

z

i
,
r
B̂l

z

i
,
r
Ĉl

z

i

)
and

(r
Âk

z

i
,
r
B̂k

z

i
,
r
Ĉk

z

i

)
to learn Dj

t .

(b) If Dj
t = 0 for all t ∈ [δ − 1], then each server Si stores O

j
i :=

(r
Âl

z

i
,
r
B̂l

z

i
,
r
Ĉl

z

i

)
,

namely they store these shares in the j-th entry of Oi. Otherwise abort the protocol.

6. Each server Si outputs
{
Oj

i

}
j∈[M ]

.

Figure 21: Protocol Πa,b,c,M
GenerateTriple for generating M multiplication triples.

δ µ M N = δ ·M + µ

6 6 128(27) 774

5 5 512(29) 2,565

4 4 8,192(213) 32,772

3 3 524,288(219) 1,572,867

Table 11: Parameters for generating multiplication triples for σ = 40.

If µ ≥ δ, then for every adversary A, it holds that

Pr [Game(A,M, δ, µ) = 1] ≤M

(
δ ·M + µ

δ

)−1

.

If µ = δ and δ,M are chosen such that σ ≤ log
(

(δ·M+δ)!
δ·M !·(δ·M)!

)
, then for every adversary A it holds
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that Pr [Game(A,M, δ, µ) = 1] ≤ 2−σ. In Table 11, we present the minimum M (power of 2) for
σ = 40 and different δ and µ values.

Communication and Optimizations. Similar to the protocol Πa,b,c,M
VerifyTriple, the communication

of this protocol between the two servers is 2(M · (δ − 1) + µ) · (a · b+ b · c) + 2(µ+ 1) · (a · c) ring
elements and that between the client and the servers is (δ ·M + µ) · (a · c) ring elements.

In neural network training, we use the same optimizations as in Section A.1 to combine 2B
multiplication triples into one triple. Considering the total number of the triples need to generate,
we select δ = µ = 5 and M = 512, which means we call the protocol Πa,b,c,M

GenerateTriple every 512
iterations.

B Deferred Security Proofs

B.1 Proof of Theorem 4.1

Corrupted C: In the case of a semi-honest client, the construction of its simulator is trivial as
its view contains only messages it sends. We only need to prove the correctness of the protocol,
namely by executing the protocol the output is consistent with the ideal functionality. Upon
receiving (JrKi , JuKi) from the client, the servers first compute JsKi = JxKi − JrKi, and then recover
s = JsK0+JsK1 = JxK0+JxK1−(JrK0+JrK1) = x−r. Hence JvKi = ⟨s, JyKi⟩+JuKi = ⟨x− r, JyKi⟩+JuKi.
Note that u = ⟨r,y⟩, so we have JvK0 + JvK1 = (⟨x− r, JyK0⟩ + JuK0) + (⟨x− r, JyK1⟩ + JuK1) =
⟨x− r,y⟩ + ⟨r,y⟩ = ⟨x,y⟩. Since JuK0 and JuK1 are additive secret shares of u, the outputs JvK0
and JvK1 are additive secret shares of v, which is the same distribution as the ideal functionality.

Corrupted S0: In the case of a semi-honest server, assume without loss of generality that the
adversary corrupts S0 as the two servers are symmetric in the protocol. We construct a simulator
S to simulate its view. We construct S given inputs (JxK0 , JyK0) and output JvK0 as follows:

1. Sample uniform random vectors JrK0
$←− Zd

2ℓ
in Step 1d and JsK1

$←− Zd
2ℓ

in Step 2a.

2. Set JuK0 := JvK0 − ⟨JxK0 − JrK0 + JsK1 , JyK0⟩ in Step 1d.

3. Follow the protocol description of S0 and output its view.

Next we prove that for any inputs (JxK0 , JyK0), (JxK1 , JyK1), JyK,(
ViewΠ

S0 ((JxK0 , JyK0), (JxK1 , JyK1), JyK) ,OutΠS1 ((JxK0 , JyK0), (JxK1 , JyK1), JyK)
)

s≡
(
S
(
1λ, (JxK0 , JyK0), fS0 ((JxK0 , JyK0), (JxK1 , JyK1), JyK)

)
, fS1 ((JxK0 , JyK0), (JxK1 , JyK1), JyK)

)
via the following hybrid argument, where

s≡ denotes that the two distributions are statistically
identical.

Hyb0 S0’s view along with S1’s output in the real-world protocol execution.

Hyb1 Same as Hyb0 except that we randomly sample JsK1
$←− Zd

2ℓ
and set JrK1 := JxK1 − JsK1. This

hybrid is statistically identical to Hyb0.

Hyb2 Same as Hyb1 except that we replace S1’s output with JvK1 = ⟨x,y⟩ − JvK0. This hybrid is
statistically identical to Hyb1 because of the perfect correctness of the protocol that we show
above.
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Hyb3 Same as Hyb2 except that we randomly sample JvK0
$←− Z2ℓ and set JuK0 := JvK0 − ⟨s, JyK0⟩

in Step 1d. This hybrid is statistically identical to Hyb2 because JuK0 is uniform randomly
sampled in Sharing(u).

Hyb4 Same as Hyb3 except that we sample uniform random JrK0
$←− Zd

2ℓ
in Step 1d. This hybrid is

statistically identical to Hyb3, and is exactly S’s output along with S1’s output in the ideal
world.

B.2 Proof of Theorem 4.2

Corrupted C: For security against a semi-honest client, we construct SC as follows. Given the
client’s output bC, if bC = 0, then SC samples two sets T̃0, T̃1, each of size ℓ, where all the elements
are sampled from a uniform distribution over {0, 1}λ; if bC = 1, then SC samples the two sets T̃0, T̃1
in the same way except that they share a common element. SC follows the protocol description of
C, sets (T̃0, T̃1) as the two sets received from the servers in Step 2d, and output the view of C.

Next we prove that for any JxK0 , JxK1 ∈ Z2ℓ that have different signs,(
ViewΠ

C (JxK0 , JxK1 ,⊥) ,Out
Π
S0,S1 (JxK0 , JxK1 ,⊥)

) c
≈

(
SC

(
1λ, fC (JxK0 , JxK1 ,⊥)

)
, fS0,S1 (JxK0 , JxK1 ,⊥)

)
via the following hybrid argument, where

c
≈ denotes that the two distributions are computationally

indistinguishable.

Hyb0 C’s view along with the two servers’ outputs in the real-world protocol execution.

Hyb1 Same as Hyb0 except that we replace the PRF Fk by a truly random function. This hybrid
is computationally indistinguishable to Hyb0 because otherwise we can break the security of
PRF. Specifically, if there exists a PPT D that can distinguish Hyb1 from Hyb0, then we can
construct a PPT B that breaks the PRF security. The adversary B runs the protocol as in
Hyb0 but when it needs to compute Fk(x) for some x, it queries the PRF challenger C on
x. Finally B runs D on the client C’s view along with the two servers’ outputs. If C returns
outputs of a Fk, then D receives Hyb0; otherwise D receives Hyb1. If D can distinguish Hyb0
and Hyb1, then B can distinguish a PRF and a truly random function.

Hyb2 Note that our construction of augmented sets guarantees that there is at most common
element in (A0,A1). Hyb2 is the same as Hyb1 except we replace T̃0, T̃1 by randomly sampled
sets. In particular, if |A0 ∩A1| = 0, then we sample all the elements in T̃0, T̃1 from a uniform
distribution over {0, 1}λ; if |A0 ∩ A1| = 1, then we sample all the elements in the same
way except that we reuse a value in T̃0 and T̃1. This hybrid is statistically identical to Hyb1
because of the way a random function works.

Hyb3 Same as Hyb2 except that |A0 ∩A1| is computed as (x > 0)⊕ bS. This hybrid is statistically
identical to Hyb2, which follows from the construction of augmented sets and the correctness
of our protocol.

For two non-negative values a, b ∈ Z2ℓ , if we let A
1
a be the augmented 1-encoding of a and let

A0
b be the augmented 0-encoding of b, then a > b iff |A1

a∩A0
b | = 1 and a ≤ b iff |A1

a∩A0
b | = 0.

Without loss of generality we assume JxK0 ≥ 0 and JxK1 < 0. S0 generatesA0 as an augmented
(1⊕ bS)-encoding of JxK0 and S1 generates A1 as an augmented bS-encoding of − JxK1.
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If bS = 0, then JxK0 > − JxK1 iff |A0 ∩A1| = 1 and JxK0 ≤ − JxK1 iff |A0 ∩A1| = 0, hence
|A0 ∩A1| = (x > 0). If bS = 1, then − JxK1 > JxK0 iff |A0 ∩A1| = 1 and − JxK1 ≤ JxK0 iff
|A0 ∩A1| = 0, hence |A0 ∩A1| = (x > 0)⊕ 1. In both cases, |A0 ∩A1| = (x > 0)⊕ bS.

Hyb4 Same as Hyb3 except that we replace |A0∩A1| by the client’s output bC in the ideal world and
replace the server’s outputs with their outputs in the ideal world. This hybrid is statistically
identical to Hyb3, and is exactly SC’s output along with the two servers’ outputs in the ideal
world.

Corrupted S0: For a semi-honest adversary that corrupts one of the two servers, we consider
the case where the adversary corrupts S0, and the proof for a corrupted S1 is almost identical.

Simulation for S0 is simple as we only need to randomly sample
q
bC

y
0

$←− Z2ℓ in Step 4, which is

a random share of bC. The rest of the proof follows from the correctness of the protocol, which is
shown above.

B.3 Proof of Theorem 4.3

Corrupted C: For a semi-honest adversary that corrupts the client C, the construction of its

simulator follows the protocol as an honest client, and only needs to sample a random bC
$←− {0, 1}

as the output from FSignCheck in Step 1. The simulated view of C is statistically identical to its
view in ΠReLU.

To prove security in this case, it only remains to show correctness of the protocol, namely by
executing the protocol the outputs of the servers are consistent with the ideal functionality. Let
b := (JxK0+JxK1 > 0), namely a predicate of whether x is positive or not. Note thatReLU(x) = x·b.
From FSignCheck, it holds that b

S ⊕ bC = b.
If bS = 0, then ReLU(x) = x · bC. The servers learn a random secret sharing of x · bC, in

particular (JαK0 , JαK1), from F1
InnerProd. Then they compute JyKi = JαKi, which results in a secret

sharing of x · bC.
If bS = 1, then ReLU(x) = x · (1 − bC) = x − x · bC. Again, the servers learn a random secret

sharing of x · bC, in particular (JαK0 , JαK1), from F1
InnerProd. Then they compute JyKi = JxKi− JαKi,

which results in a secret sharing of x− x · bC.
In both cases, the two servers output random secret shares of ReLU(x), which is statistically

identical to the ideal functionality.

Corrupted S0: For a semi-honest adversary that corrupts one of the two servers, assume without
loss of generality that the adversary corrupts S0 as the two servers are symmetric in the protocol.
We construct a simulator S to simulate its view. Given the input JxK0 and output JyK0 from the
ideal functionality FReLU, S is constructed as follows:

1. Sample uniform random bS
$←− {0, 1} and

q
bC

y
0

$←− Z2ℓ as the output from FSignCheck.

2. If bS = 0, then let JαK0 := JyK0; otherwise compute JαK0 := JxK0−JyK0. Set JαK0 as the output
from F1

InnerProd.

3. Follow the protocol description of S0 and output its view.

Next we prove that for any JxK0 , JxK1 ∈ Zd
2ℓ
,(

ViewΠ
S0 (JxK0 , JxK1 ,⊥) ,Out

Π
S1 (JxK0 , JxK1 ,⊥)

) s≡
(
S
(
1λ, JxK0 , fS0 (JxK0 , JxK1 ,⊥)

)
, fS1 (JxK0 , JxK1 ,⊥)

)
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via the following hybrid argument.

Hyb0 S0’s view along with S1’s output in the real-world protocol execution.

Hyb1 Same as Hyb0 except that S1’s output is replaced with JyK1 = max{x, 0} − JyK0. This hybrid
is statistically identical to Hyb1 because of the perfect correctness of the protocol that we
show above.

Hyb2 Same as Hyb1 except that we first sample JyK0
$←− Z2ℓ and then compute JαK0 in Step 2 as

follows: if bS = 0, then let JαK0 := JyK0; otherwise compute JαK0 := JxK0 − JyK0. This hybrid
is statistically identical to Hyb1.

Hyb3 Same as Hyb2 except that in Step 1 we sample uniform random bS
$←− {0, 1} and

q
bC

y
0

$←− Z2ℓ

as the output from FSignCheck. This hybrid is statistically identical to Hyb2, which follows
from the functionality of FSignCheck. This hybrid is exactly S’s output along with S1’s output
in the ideal world.

B.4 Proof of Theorem 4.4

Corrupted C: For a semi-honest adversary that corrupts the client C, the construction of its

simulator follows the protocol as an honest client, and only needs to sample a random bCj
$←− {0, 1}

as the output from FSignCheck in Step 2b for all j. The simulated view of C is statistically identical
to its view in ΠDiv. To prove security in this case, it only remains to show correctness of the
protocol, namely by executing the protocol the outputs of the servers are consistent with the ideal
functionality.

The division is done bit by bit for (ℓf + 1) times. We show that for each j from ℓf downto
0, (Juj+1K0 , Juj+1K1) is a secret sharing of the dividend in that step, and (JkjK0 , JkjK1) is a secret
sharing of the quotient bit in that step.

We can prove this by induction. First,
q
uℓf+1

y
i
is initialized as JxKi, which is the dividend to

be used for j = ℓf . For each j from ℓf downto 0, let bj := (uj+1 − y ≥ 0), namely a predicate of
whether the dividend is greater than or equal to y. In fact, the quotient bit in this step should be
exactly bj and the remainder should be uj+1 − y · bj .

Note that (JvjK0 , JvjK1) is a secret sharing of uj+1 − y + 1. From FSignCheck, it holds that
bSj ⊕ bCj = bj . Next, from F1

InnerProd the servers learn (JvjK0 , JvjK1), which are random secret shares

of vj = y · bCj . Similarly as in the proof of Theorem 4.3, we can analyze the two cases of bSj = 0

and bSj = 1. We omit the details here but in both cases, the two servers learn (JkjK0 , JkjK1), which
are secret shares of kj = bSj + bCj · (1− 2bSj ) = bj , exactly the quotient in this step. They also learn(r

v∗j

z

0
,
r
v∗j

z

1

)
, which are secret shares of v∗j = y · bj , and

(
JujK0 , JujK1

)
, which are secret shares

of 2 · (uj+1 − y · bj), exactly the dividend to be used in the next step.

Finally, the quotient q is computed as
∑ℓf

j=0 2
j · kj , in a secret shared manner.

Corrupted S0: For a semi-honest adversary that corrupts one of the two servers, we consider the
case where the adversary corrupts S0, and the proof for a corrupted S1 is almost identical. We
construct a simulator S to simulate its view. Given the input (JxK0 , JyK0) and output JqK0 from
the ideal functionality FDiv, S is constructed as follows:

1. For j from ℓf downto 1: sample uniform random bSj
$←− {0, 1} and

r
bCj

z

0

$←− Z2ℓ as the
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output from FSignCheck in Step 2b; sample uniform random JvjK0
$←− Z2ℓ as the output from

F1
InnerProd in Step 2c; compute JkjK0 :=

r
bCj

z

0
· (1− 2bSj ).

2. For j = 0: sample uniform random bS0
$←− {0, 1}, compute

q
bC0

y
0
:= (JqK0−

∑ℓf
j=1 2

j ·JkjK0)/(1−
2bS0), and set

(
bS0 ,

r
bCj

z

0

)
as the output from FSignCheck in Step 2b; sample uniform random

Jv0K0
$←− Z2ℓ as the output from F1

InnerProd in Step 2c.

3. Follow the protocol description of S0 and output its view.

Next we prove that for any JxK0 , JxK1 ∈ Zd
2ℓ
,(

ViewΠ
S0 (JxK0 , JxK1 ,⊥) ,Out

Π
S1 (JxK0 , JxK1 ,⊥)

) s≡
(
S
(
1λ, JxK0 , fS0 (JxK0 , JxK1 ,⊥)

)
, fS1 (JxK0 , JxK1 ,⊥)

)
via the following hybrid argument.

Hyb0 S0’s view along with S1’s output in the real-world protocol execution.

Hyb1 Same as Hyb0 except that S1’s output is replaced with JqK1 = Quotient (x, y) − JqK0. This
hybrid is statistically identical to Hyb1 because of the perfect correctness of the protocol that
we show above.

Hyb2 Same as Hyb1 except that we first sample JqK0
$←− Z2ℓ and then compute

(
bSj ,

r
bCj

z

0

)
in Step 2b

as follows. For j from ℓf downto 1, sample uniform random bSj
$←− {0, 1} and

r
bCj

z

0

$←− Z2ℓ

as the output from FSignCheck, and compute JkjK0 :=
r
bCj

z

0
· (1 − 2bSj ). For j = 0, sample

uniform random bS0
$←− {0, 1}, compute

q
bC0

y
0
:= (JqK0 −

∑ℓf
j=1 2

j · JkjK0)/(1 − 2bS0), and set(
bS0 ,

r
bCj

z

0

)
as the output from FSignCheck. The indistinguishability of Hyb2 and Hyb1 follows

from the functionality of FSignCheck, namely
(
bSj ,

r
bCj

z

0

)
are all random shares. Note that

Jk0K0 randomly masks the secret share JqK0 in the protocol, hence this hybrid is statistically
identical to Hyb1.

Hyb3 Same as Hyb2 except that in Step 2c we sample uniform random JvjK0
$←− Z2ℓ as the out-

put from F1
InnerProd for all j. This hybrid is statistically identical to Hyb2 because of the

functionality of F1
InnerProd, and is exactly S’s output along with S1’s output in the ideal

world.
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