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Abstract. Servan-Schreiber et al. (S&P 2023) presented a new notion
called private access control lists (PACL) for function secret sharing
(FSS), where the FSS evaluators can ensure that the FSS dealer is autho-
rized to share the given function. Their construction relies on costly non-
interactive secret-shared proofs and is not secure in post-quantum set-
ting. We give a construction of PACL from publicly verifiable secret shar-
ing (PVSS) under short integer solution (SIS). Our construction adapts
the Gentry et al’s scheme (Eurocrypt 2022) for post-quantum setting
based on learning with error assumption (LWE). The implementation of
our PACL with different files showed that it is feasible even at different
sizes, and should remain so even with large secret vectors. This construc-
tion has many applications for access control by applying FSS. We show
how to apply the proposed PACL construction to secure data retrieval.
We also present a scheme for secure data retrieval with access control,
which might be of independent interest.

Keywords: Access control · Function secret sharing · LWE · Data re-
trieval· Post-Quantum security

1 Introduction

In cloud computing, users can remotely store their data in the cloud to utilise
the on-demand applications and services from shared configurable computing
resources. Outsourcing data to the cloud causes a loss of control over outsourced
data and this loss of control is further exacerbated with the lack of the man-
agement of users’ access to the data retrieval from practical perspectives. We
present a novel post-quantum access control for data retrieval. In this method,
only users who have permission to access a specific database record can retrieve
it. Our constructions make black-box use of the underlying function secret shar-
ing (FSS) schemes. Secret sharing is a way of splitting a value into multiple
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shares such that the shares can be recombined to reveal the original value and
strict subsets of shares reveal nothing about the secret value. FSS [8] has the
similar requirement that the shares of f can be evaluated on a input x to obtain
shares of f(x) which can be combined to reveal f(x). FSS has many applications
for instance in the domain of cloud computing. Assume that a client wants to
run a function on data stored on servers without revealing the function to the
servers. The client applies FSS to share the function f with the servers and they
evaluate the secret-shared function f and return the secret-shared result f(x)
to the client. Finally, the client locally recombines the shares to obtain f(x).
FSS can be used in systems with many users who may have different access
rights regarding different functions. The challenge is that the servers should be
sure that clients with access rights to a function f can secretly share that. On
the other hand, the privacy of FSS must be maintained and the function secret
shared must be hidden. In other words, the privacy in access control should be
preserved.

Our goal is to develop a post-quantum secure access control scheme for FSS.
Such a scheme has many applications. For example, private information retrieval
(PIR) where access control prevents users from accessing records in the database
that they do not have permission to access [20]. Our approach can be utilized in
the cloud as an important platform for data storage and processing. The cloud
centralizes essentially unlimited resources (e.g., storage capacity) and delivers
elastic services to end users. However, some challenges, including concerns about
data security and users’ privacy, still exist. For example, the user’s electronic
health records (EHRs) are sensitive data and, if uploaded into the cloud, should
not be disclosed to the cloud administrators and any other unauthorized users
without data owners’ permission. Thus data confidentiality protection against
unauthorized parties and data access control are required when storing data in
the cloud. As healthcare is distributed in nature, ideally EHR data should be
available all the time, provided securely regardless of the application or device
that forwards the request. Privacy is a serious consideration and an important
challenge in healthcare, so access control is a primary mechanism to be deployed
in EHR systems to protect patient privacy. Protecting patient data is of utmost
importance, and the basic requirement to achieve it is through well-defined poli-
cies and access control mechanisms. Encryption is a commonly used method to
preserve data confidentiality. This methodology is extremely unpractical for tra-
ditional networks, especially for wireless networks e.g., wireless sensor networks
and mobile networks, seriously constrained by resources like energy and com-
putation capability. This paper describes the application of the proposed access
control for secure data retrieval in post-quantum setting.

1.1 Our Contributions

We present an innovative post-quantum access control mechanism for data re-
trieval, ensuring that only authorised users can access specific database records.
Our design utilises function secret sharing (FSS) schemes in a black-box man-
ner. Secret sharing involves dividing a value into multiple shares that can be
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combined to reveal the original value, while any subset of the shares provides
no information about the secret. Similarly, FSS allows the shares of a function
f to be evaluated on an input x, producing shares of f(x) that can be com-
bined to reveal f(x). This is especially useful in environments with many users
who have different access rights to various functions. The primary challenge is
ensuring that servers, acting as function evaluators, can verify that clients with
the correct access rights can perform secret sharing. At the same time, it is
essential to maintain the privacy of the FSS, ensuring that the function being
shared remains hidden. This requires preserving access control privacy. Our goal
is to develop a post-quantum secure access control scheme for FSS and apply it
to secure data retrieval in a post-quantum context. Servan-Schreiber et al. [29]
introduced a new concept called private access control lists (PACL) for FSS. This
innovation enables FSS evaluators to confirm that the FSS dealer is authorised
to distribute the given function. We propose a new PACL construction utilis-
ing publicly verifiable secret sharing (PVSS) based on the short integer solution
(SIS) problem. Our method builds on the scheme by Gentry et al. [17] to pro-
vide post-quantum security through the learning with errors (LWE) assumption.
In comparison with [29], our approach does not rely on expensive secret-shared
proofs and guarantees security in a post-quantum setting. Our PACL evaluation
with various files has shown its practicality across different sizes, indicating that
it is likely to perform well with large secret vectors as well. We also illustrate
how our PACL design can be used for secure data retrieval and present a secure
data retrieval scheme with access control which may be of independent interest.

1.2 Technical Overview

FSS [8] allows a dealer to share a function f with two or more evaluators. Given
secret shares of a function f , the evaluators can locally compute secret shares
of f(x) for any input x, without learning information about f . In this paper,
we investigate the problem of access control for FSS. Given the shares of f , the
evaluators can ensure that the dealer is authorised to learn f(x). For a func-
tion family F and an access control list defined over the family, the evaluators
receiving the shares of f ∈ F can efficiently check that the dealer knows the
access key for f . The main building block behind our method for access control
over FSS is a LWE-based zero-knowledge proof-of-knowledge over secret-shared
elements, which may be of independent interest. [33] presents a solution to ac-
cess control for FSS. They applied FSS for anonymous communication where
users privately write messages into mailboxes using a distributed point function
(DPF). To prevent malicious users from corrupting mailboxes belonging to hon-
est users, the system requires a form of access control applied over DPFs, which
is enforced through a secure computation protocol. This method for access con-
trol requires a large output range and leads to large computational overhead
for the evaluators and the secure computation protocol imposes extra commu-
nication between evaluators and the dealer. Recent work [29] suggests a method
for private access control list for FSS. Their construction is for black-box DPF.
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However, their scheme relies on costly secret-shared proofs and is not quite effi-
cient in practice. Also the scheme is not secure in the post-quantum setting. Ji
et al. [22] proposed more fine-grained policy constraints for DPF. Their scheme
allows an attribute-based access control that is secure based on the decisional
Bilinear Diffie-Hellman (BDH) assumption.
We present a method for PACL to retrieve data in post-quantum setting. The
approach is based on PVSS and DPF to get access to the data to only autho-
rised users. We consider a set of access and verification keys to prove the access
rights for the function under the verification keys. The access key is shared be-
tween the evaluators by running secret sharing. Then, the user runs PVSS on
the shared values. The evaluators audit the verification key and the proofs of the
user from PVSS. Our construction adapts the PVSS scheme of Gentry et al. [17]
for post-quantum setting based on LWE. We utilize the proposed PACL for se-
cure data retrieval based on FSS. We assume that a proxy server with massive
computational power and storage capacity is deployed for evaluating the input
on the garbled deterministic finite automata (DFA) matrix of server Sk. Let |Σ|
denote the size of the alphabet being used, let |Q| denote the number of states
of DFA and let nu denote the size of user’s input. The symmetric computation
is the pseudorandom generator (PRG) invocations. The asymmetric commuta-
tion is for oblivious transfers (OTs). We have taken advantage of the concept of
Proxy OT (POT) [14] in our scheme to improve efficiency. The communication
overhead of our scheme consists of OT communication and garbled DFA matrix
transfer. In our scheme, the proxy S obtains the keys by running a few 1-out-of-2
OTs and XOR operations. In our construction, the parties should run Proxy OT,
which is described in Appendix A.1 such that in offline phase, any server Sk,
k ∈ [1, ns], where ns denotes the number of servers, computes the related key for
OT and sends the encoded messages to proxy. So, in the online phase any user
can only send a message to proxy which is encoded format of his/her input. Also,
user computes O(n) PRGs to compute the matched result. For communication,
the server transmits O(|Q|out · inp) bits, note that Q is the number of states
of DFA, out and inp denote the maximum number of output and input edges
in DFA graph representation, respectively. For each cell the server performs one
PRG G invocation. On the other hand, the client invokes one PRG for each row
of the garbled matrix.
The rest of the paper is organized as follows. Section 2 and Section 3 present
the primitives and the concepts used in our constructions, respectively. Next,
the proposed PACL scheme is described in Section 4 and its application for data
retrieval is detailed. The evaluation results of PACL scheme are presented in
Section 5.

2 Preliminaries

Notation. Throughout the paper, we denote the security parameter by λ. We use
bold upper-case letters like M to denote matrices, and bold lower-case letters
like v to denote vectors. We use x

$← D to denote a random sample from a
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distribution D. We denote a set of secret shares of x (function secret shares of f
respectively) as ([x]1, . . . , [x]n) (([f ]1, . . . , [f ]n) respectively) and [x]i (resp. [f ]i)
as the ith secret share.

Secret sharing. Linear secret sharing [31] is parameterised by a threshold 2 ≤
t ≤ n and consists of the algorithm Share(F,t,n) which generates shares of a secret
value in the field F such that any subset of at least t shares can be combined by
the algorithm Recover to reveal the secret value. It should be mentioned that no
subset of less than t shares obtains any information about the secret.

Function secret sharing (FSS). FSS introduced by Boyle et al. [8], provides a way
for additively secret-sharing a function f from a given function family F . FSS is
a generalisation of secret sharing which targets secret sharing a function rather
than secret sharing a value. A (t, n)−FSS scheme for a function f : {0, 1}n → G
(G is an Abelian group) consists of the following algorithms:
– (k1, . . . , kn)← Gen(1λ, f): inputs a security parameter λ and function f and

outputs the evaluation keys (k1, . . . , kn).
– [y]i ← Eval(ki, x): inputs an evaluation key ki and x ∈ {0, 1}n and outputs

secret share [y]i.

Distributed point function (DPF). DPF is a special case of FSS where F is the
family of point functions, namely functions fα,β that evaluate to β on the input
α and to 0 on all other inputs.

Short Integer Solution (SIS). Let q = q(λ), n = n(λ) and m = m(λ). We say
that the SIS assumption holds if for any probabilistic polynomial time (PPT)
adversary A the following holds: Pr[A · z = 0 |A ← Rn×m

q , z ← A(A)] ≤
negl(λ).

Learning with error (LWE) problem. For a prime number q, the LWE problem
with secret s ∈ Zk

q is defined as follows: given polynomially random, noisy linear
equations in s, find s. More precisely, given (ai,ai · s + ei), where ai ∈ Zk

q is
uniformly random, and ei is drawn from a random distribution, the problem
is to find s. We denote m samples from the LWE distribution compactly as
(A,As+e), where A ∈ Zm×k

q and e is sampled from discrete Gaussian noise, or
noise sampled uniformly from [−b, b] where b≪ q is a bound on the magnitude.

Proxy OT . The notation of POT is defined by Naor et al. [25] in which there
are three parties: a sender that holds inputs (x0,x1), a chooser that holds input
b, and a proxy that, at the end of the protocol, learns xb and nothing else. The
details of a non-interactive POT [14] are described in Appendix A.1.

Deterministic finite automaton (DFA). In computer science, a DFA is a finite-
state machine that accepts or rejects a given string of symbols, by running
through a state sequence uniquely determined by the string. A DFA, denoted
by the five-tuple Γ = (Σ,Q, σ, q0, Fq), consists of 1) Σ, a finite set of input
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symbols. 2) Q, a finite set of states. 3) σ, a transition function that takes as
arguments a state and an input symbol and returns a state. 4) q0 ∈ Q, a start
state. 5) Fq ⊂ Q, a set of final or accepting states [21].

3 Definitions

Definition 1. A Publicly Verifiable Secret-Sharing Scheme (PVSS) enables a
dealer to share a secret among a committee of shareholders in a manner that
allows everyone, not just the shareholders, to verify that the secret was shared
correctly and it can be assured that it is recoverable. A non-interactive PVSS
scheme allows the sender to broadcast just a single message, enabling sharehold-
ers to receive their shares and enabling everyone to verify that the sharing was
done correctly [32]. The idea of PVSS is that the parties should be able to verify
that the shares they receive are compatible with some shared secret. In the PVSS
setting, the parties do not necessarily trust each other. Therefore, we can extend
the verifiability of the shares so that any party can verify any of the shares, even
if they are assigned to another party. In fact, the verification process should be
carried out without any private information from the dealer or the parties. A
verifier who has no such information should be capable of checking the shares.
A PVSS scheme consists of the following algorithms [12].
– Setup
• pp← Setup(1λ, ip) outputs public parameters pp. The initial parameters
ip include information about the number of parties, privacy and recon-
struction thresholds and spaces of secrets and shares. The public param-
eters pp contain a description of spaces of private and public keys SK
and PK and the relation RKey ⊆ SK× PK describing valid key pairs.

• (sk, pk)← KeyGen(pp), generates a pair of private and public key, where
(sk, pk) ∈ RKey.

– Distribution
• ((Ci)i∈[n],PfSh) ← Dist(pp, (pki)i∈[n], s) where s ∈ S is a secret, outputs

encrypted shares and a proof PfSh of sharing correctness.
– Distribution Verification
• 0/1← VerifySharing(pp, (pki,Ci)i∈[n],PfSh) determines whether the shar-

ing is valid or not.
– Reconstruction
• (di,PfDeci)← DecShare(pp, pki, ski,Ci) outputs a decrypted share di and

a proof PfDeci of correct decryption.
• Rec(pp, {di : i ∈ T }) for some T ⊆ [n] outputs an element of the secret

space s′ ∈ S or an error symbol ⊥.
– Reconstruction Verification
• 0/1 ← VerifyDec(pp, pki,Ci, di,PfDeci) determines whether di is a valid

decryption of Ci.
• Rec(pp, {di : i ∈ T }) for some T ⊆ [n]} outputs an element of the secret

space s′ ∈ S or an error symbol ⊥.

Security properties [12]:
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Correctness with t-reconstruction. This requirement guarantees that if all par-
ticipants act honestly, all proofs will be validated, and any group of at least
t participants can reconstruct the secret using their shares. Each participant
must first decrypt their share, after which they collectively apply the recon-
struction algorithm Rec.

Verifiability. This property ensures that if the verification procedures VerifySharing
and VerifyDec are passed, then the key pairs are properly constructed, the set
of encrypted shares represents a correct sharing of the secret, and the shares
have been accurately decrypted.

Definition 2. A private access control list (PACL) [29] applied to FSS is initi-
ated between a prover and a set of s verifiers. The prover holds an access key
ak and the function f . The verifiers hold secret-shares [f ]i and have the access
control Λ for the function f . The verifiers check whether or not CheckAccess
outputs yes, without learning f .

Definition 3. Let f : {0, 1}n → {0, 1}∗ be a function. Set 2 ≤ t ≤ s and let
(Gen,Eval) instantiate a (t, s)-FSS scheme for f . A (t, s)-PACL scheme consists
of the algorithms KeyGen,Prove,Audit and Verify as follows.
– (ak, vk) ← KeyGen(1λ, f). Inputs a security parameter λ and a function f .

The output is a pair of access and verification keys (ak, vk).
– (π1, . . . , πs) ← Prove(f, ak). Inputs a function f and an access key ak and

outputs proofs of s shares.
– τi ← Audit(Λ, [f ]i, πi). Inputs access control Λ = vk, function secret share

[f ]i of f and a proof of share πi. The audit token τi is the output.
– 0/1← Verify(T = {τi | i ∈ I}). Inputs a set of at least t audit tokens indexed

by the set I ⊆ {1, . . . , s} and outputs 0 or 1.

The above functionality should satisfy these requirements [29]:

– Completeness. A (t, s)-PACL scheme is complete if for all subsets I ⊆
{1, . . . , s} with |I| ≥ t and Λ = (vk) where vk is sampled according to KeyGen
algorithm and for all secret shares ([f ]1, . . . , [f ]s) of f sampled according to
Setup(1λ, f) algorithm, it holds that

Pr


(π1, . . . , πs)← Prove(f, ak);
{τi ← Audit(Λ, [f ]i, πi) |i ∈ I } :
0/1← Verify(T = {τi | i ∈ I} =

CheckAccess(Λ, f, ak))

 = 1

– Privacy. For all subsets I ⊂ {1, . . . , s}, |I| < t, define J = {1, . . . , s}\I and
DI,J to be the distribution over {(πi, τ

∗
i ) | i ∈ I} ∪ {τj | j ∈ J} where each

πi is sampled according to Prove(f, ak), each τ∗i is sampled arbitrary, and
τj ← Audit(Λ, [f ]j , πj) for all j ∈ J . A (t, s)-PACL is private if there exists
an efficient simulator Sim such that DI,J ≈c Sim(1λ, I, {τ∗i | i ∈ I}).

– Soundness. There exists a negligible function negl such that for all efficient
algorithms A and subsets I ⊆ {1, . . . , s} where |I| ≥ t, Pr[soundness(PACL,A,I)(λ)
] = yes ≤ negl(λ), where soundness(PACL,A,I)(λ) is defined in Fig. 1. In more
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detail, no efficient adversary A without knowledge of an access key for fβ,
can forge a proof π that verifies with non-negligible probability.
• Oracle GetShareKey(j):

1. T = T ∪ {j}, return sj
• Game soundness(PACL,A,I)(λ):

1. (ak, vk)← KeyGen(1λ, fβ)
2. Λ = vk, T = {}
3. ([fβ ]j , (πβ)j)← A

GetShareKey(1λ, Λ)
4. fβ ← Recover([fβ ]i)
5. for i ∈ I : τi ← Audit(Λ, [fβ ]i, (πβ)i)

Fig. 1. PACL soundness game [29]

4 Post-Quantum Access Control scheme

In this section, we propose (the first) post-quantum PACL based on SIS assump-
tion for FSS. Our model and definitions for post-quantum PACL for FSS are
derived from [30]. This scheme is a requirement for several existing applications
of access control for FSS [16, 26, 30] and demands a stringent set of efficiency
requirements that closely align with the goals of FSS. To achieve this goal, we
initially built a non-interactive PVSS scheme from the LWE assumption, which is
supposed to be the first post-quantum PVSS. Subsequently, using PVSS, we con-
struct our post-quantum PACL scheme. In Section 4.1, we first revisit the PVSS
construction by Gentry et al. [17], then present our non-interactive post-quantum
PVSS, constructed upon Gentry et al.’s work, leveraging the LWE assumption.
Then, we introduce our post-quantum PACL in Section 4.2.

4.1 Post-Quantum Non-Interactive PVSS

To build our post-quantum non-interactive PVSS, we initially consider the PVSS
scheme by Gentry et al. [17], which relies on both the Discrete Logarithm (DL)
and LWE assumptions. We then transition it into a construction solely based on
the LWE assumption.

Gentry et al. [17] presented a non-interactive PVSS scheme, which we refer
to as GHL-PVSS, that leverages the Peikert-Vaikuntanathan-Waters (PVW) en-
cryption scheme in a multi-receiver setting. We will now recall a brief description
of the PVW encryption scheme as outlined in [28]. Let A be a public random
matrix. Each party i sets Bi = Si · A + ei as its public key, where the ma-
trix Si is secret. The parties’ public keys are collected into a matrix B. The

public key of the PVSS system is
[
A
B

]
. The encryption of message m ∈ Zk

q is[
A
B

]
· r+

[
e1
e2

]
+

[
0
m

]
=

[
c1
c2

]
where r, e1, e2 are small vectors. A member from

the committee will apply PVSS scheme to encrypt k re-shares of this share to the
next committee with k members, e1, e2 ∈ Zk

q ,A,B ∈ Zk×m
q , r ∈ Zm

q . GHL-PVSS
uses Bulletproofs [11] to get compact proofs of correct encryption/decryption
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of shares. In particular, bulletproofs enable efficient exact range proofs, which
enable to show that the vectors used within the key generation and encryption
process are indeed short. Gentry et al. left the construction of a post-quantum
PVSS as an open problem, inviting exploration into potential replacements for
a variant of bulletproofs based on lattice problems [15].

Theorem 1 (GHL-PVSS). Let bulletproofs be a ZK argument of knowledge over
a DL-group. Let PVW an encryption scheme based on the LWE assumption. Then
GHL-PVSS is a non-interactive PVSS.

Our Proposed Non-Interactive PVSS from LWE. We adopt the concept of
GHL-PVSS while incorporating a post-quantum proof system for verifying the
correctness of the encryption and decryption of the associated shares in the PVSS
scheme. Specifically, we employ a ZK proof system from the STARK [5] family
of protocols, known as the RISC Zero protocol [10] (denoted by RISC0), enabling
a shareholder to prove that incoming and outgoing PVW ciphertexts accurately
encrypt re-shares associated with its share. For the sake of readability, we present
our proposed post-quantum non-interactive PVSS, so-called GHL+ as follows:

– GHL+.Setup(1λ, ip):
• pp ← Setup(1λ, ip) outputs public parameters pp. Specify a set of pair-

wise distinct points {α1, . . . , αm, γ1, . . . , γn} ⊂ Zq. Let pp = (q, k, t, n, (αj)j∈[m], , (γi)i∈[n]).
The initial parameters ip contain information about the number of par-
ties, privacy and reconstruction thresholds and spaces of secrets and
shares.

• (ski, pki) ← PVW.KeyGen(pp, id), where sk and pk are the secret and
public key of PVW encryption scheme.

• ppRISC0 ← RISC0.KeyGen(pp, id), where ppRISC0 is the public parameter
of the RISC zero protocol.

– GHL+.Dist(ski, s):
• ([s]1, · · · , [s]n)← Secret.Share(s) where s ∈ S is a secret.
• (Ci)i∈[n] ← PVW.Enc(ski, [s]i) where Ci is a PVW ciphertext of the shares

[s]i.
• (πi,RISC0)i∈[n] ← RISC0.Prover(ppRISC0, [s]i, s,Ci) where πi,RISC0 is a RISC

zero protocol proof of sharing correctness.
– GHL+.VerifySharing(pp, ppRISC0, (pki,Ci, πi,RISC0)i∈[n]):
• 0/1← RISC0.Verify(pp, ppRISC0, (pki,Ci, πi,RISC0)i∈[n]) (checks Ci are well-

formed and indeed encrypt the shares)
– GHL+.DecShare(pp, ppRISC0, pki, ski,Ci) :
• di ← PVW.Dec(ski,Ci) outputs a decrypted share.
• πDeci,RISC0 ← RISC0.Prover(ppRISC0, di,Ci): outputs a proof of correct de-

cryption.
• Rec(pp, {di : i ∈ T }): for some T ⊆ [n] outputs an element of the secret

space s′ ∈ S or an error ⊥.
– GHL+.VerifyDec(ppRISC0, pki,Ci, di, πDeci,RISC0):
• 0/1← RISC0.Verfiy(ppRISC0, pki,Ci, di, πDeci,RISC0) as a verdict on whether

di a valid decryption of Ci.
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As we noted before, the bulletproof proof system, as used in [17], relies on the
hardness of the DL assumptions, and is thus not secure against a quantum ad-
versary. While there exist lattice variants of bulletproofs [7], the consensus is
that they do not lead to concretely efficient proof systems. Another line of work
that achieves post-quantum security is that initiated by [6], which is secure in
the quantum random oracle model [13]. Our proof system of choice was the
RISC Zero proof system, which is based on the STARK [5] family of protocols.
We did consider recent linear-time proof systems such as Brakedown [19] and
Orion [34], but ultimately decided for a proof system with better proof sizes and
whose tooling would facilitate our implementation.

Theorem 2. Let ΠRISC0 be the RISC Zero protocol. Let PVW be an encryption
scheme based on LWE assumption. Then, our proposed GHL+-PVSS is a non-
interactive PVSS.

Proof. Let λ be the security parameter and q > 2λ prime. Let m (size of the
secret), t (privacy threshold) and n (number of parties). The scheme consists of
the following algorithms.

We show that the GHL+ scheme guarantees the security properties from
Definition 1. We prove that GHL+ is a correct PVSS with t+m-reconstruction.
If all parties in [n] honestly create keys, then for all i we have pki for some
ski. If the dealer is honest the values Ci are computed correctly where p(X) is of
degree t+m−1 and p(αj) = sj are the coordinates of the secret, a set of pairwise
distinct points {α1, . . . , αm}. Then clearly DecShare, when honestly applied to
Ci, computes di. Therefore given a set T of parties of size at least t + m who
correctly decrypted their shares, and a subset T ′ of exactly t + m parties, we
have that the reconstructed values are Πi∈T ′p(γi)Li(αj) = p(αj) = sj , for each
j ∈ [m], by Lagrange interpolation, where Li is a polynomial degree at most
n−1. On the other hand, if RISC0 is a proof with soundness error negligible in λ
then GHL+ has verifiability of sharing distribution. Also, if RISC0 with soundness
error negligible in λ then GHL+ has verifiability of share decryption. The proof
is trivial as the statements proved by the ZK proofs exactly guarantee correct
sharing distribution and share decryption, respectively.

4.2 The Proposed Post-Quantum PACL

Now, we introduce our construction of post-quantum PACL tailored for DPFs.
Our DPF-PACL construction for the matching predicate can be viewed as an
extension of the approach employed by Newman et al. [26] and Schreiber et
al. [30], based on the LWE and SIS assumptions, which are presumed to be post-
quantum secure.
Construction. In Fig. 2, we present the proposed construction for a DPF-PACL
with CheckAccess instantiated for the match predicate described in Section 2.
Our construction relies mainly on the following primitives: (i) a post-quantum
non-interactive verifiable secret sharing (GHL+-PVSS construction in Section
4.1) and (ii) a DPFs scheme (e.g., DPFs by Gilboa-Ishai [18]). Roughly speaking,
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the construction leverages the DPFs to locally select shares of the i-th verification
key in Λ. Two key facts enable this process: (1) all verifiers possess Λ = As, and
(2) the FSS key ki, encoding a DPF. The versifiers first evaluate the [yx]i ←
DPF.Eval(kx,i), x ∈ [1, z], i ∈ [1, n], and then compute the product as Bi ←
Σz

x=1(Asx) · [yx]i (Audit phase). To verify knowledge of s, utilizing the GHL+-
PVSS, the prover distributes additive secret shares of ak = −s to the verifiers
(described in the Prove phase). In our scheme, the secret value s is determined
based on the number of files to which the prover has access. In more details, if
we consider z files and the prove has only access to files f2, f7, f12, he/she gets
the sum of s2, s7 and s12, i.e., ak = −(s2 + s7 + s12) but the verification key is
vk. Each verifier computes τi := bi+A[s]i using the Audit algorithm and reveals
τi in a verifiable manner (using the GHL+.DecShare algorithm of the PVSS) to

all other verifiers. All verifiers proceed to check that |Σiτi|
?
≈ 0 (described in the

Verify phase).

Lemma 1. If adversary A can win the PACL soundness game described in Fig.
1 for our post-quantum PACL scheme with non-negligible probability γ(λ) for a
function f∗

β which is not sampled from FDPF and proof π∗, then there exists an
adversary A′ that wins the PACL soundness game with probability γ(λ), such
that A′ outputs fβ ∈ FDPF and π.

Proof. A property of our DPF-PACL scheme is the ability to aggregate proofs
across different DPFs and access control lists. In more details, for any integer
k that is polynomial in the security parameter λ and family of point functions
F it holds the following property. Let Λ be an ACL for the family F and let
f1, . . . , fk ∈ F have associated access keys s1, . . . , sk ∈ Λ, then s′ :=

∑k
i=1 aki

is an access key for f ′(x) :=
∑k

i=1 fi(x). Consider an efficient A that outputs
a not point function f∗

β and π∗. So, it holds that f∗
β =

∑
j∈S cjfj where Y ⊆

{0, 1, . . . , z}, each fj is a point function, and cj ’s are arbitrary non-zero scales in
Zp. We construct an adversary A′ that breaks the PACL soundness game with
a point function fβ as follows. First, run A to get function f∗

β . Then compute
fβ := f∗

β −
∑

j∈Y,j ̸=γ cjαj , note that A′ is allowed to query for all αj provided
j ̸= γ. Finally, output fβ and π. It must hold that γ ∈ Y , otherwise A does
not succeed since it queried all the necessary access keys akj for j ∈ Y . Based
on the aggregation property of our construction, it follows that fβ is a point
function and π is a valid access proof for fβ . Hence, A′ succeeds with the same
probability.

Theorem 3. Assume GHL+-PVSS is a non-interactive publicly verifiable secret
sharing from LWE assumption (in Section 4.1) . Let DPF be a distributed point
function, let Zq denote the ring of integers modulo q in which the SIS problem is
assumed to be computationally hard. Then, the proposed PACL in Fig. 2 satisfies
the completeness, efficiency, soundness, and privacy properties of Definition 3
as defined in Section 2.

Proof. The proof is as follows:
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– Completeness: Suppose that we have z files. If the requirements are sat-
isfied PACL can be passed as follows. In Audit step, Bi is computed as
Bi ← Σz

x=1(Asx) · [yx]i = AΣz
x=1sx · [yx]i. Also, the versifiers compute τi =

Bi +A[sj ]i. Verify phase will be done by computing Στi = Σi=1AΣz
x=1sx ·

[yx]i + Σi=1A[sj ]i = AΣi=1Σ
z
x=1sx · [yx]i + Σi=1A[sj ]i = AΣz

x=1sxΣi=1 ·
[yx]i +Σi=1A[sj ] = AΣz

x=1sx +Σi=1A[sj ]i = As−As.
– Privacy: The simulator Sim on input (1λ, I, {τ∗i |i ∈ I}) for any subset of

t − 1 verifiers acts as follows. Sim sets J = {1, . . . , s}\I. Next, Sim shares
the vector 0,([0]1, . . . , [0]s)← ShareFp,t,s(0), and computes the proofs of the
shares by (Ci,PfShi)i∈[n] ← GHL+.Dist(pp, (pki)i∈[n], ([0]i)i∈[n]). Then, Sim
sets τk = A[0]k for all k ∈ I ∪ J and outputs {(PfShi , τi) | i ∈ I} ∪ {τj | j ∈
J}. In the real world, the audit tokens are computed using the output of the
DPF and they are computationally-hiding additive secret shares of A[0] while
in the ideal execution Sim outputs information-theoretically hiding additive
shares. So, the difference of two real and ideal executions is this point. If an
efficient distinguisher can distinguish two views, that means that the FSS
scheme is not secure which is a contradiction.

– Soundness: Suppose there exists an efficient prover A and a non-negligible
function γ so that for all I ⊆ {1, . . . , s}, |I| ≥ t, Pr

[
soundness(PACL,A,I)(λ)

]
=

yes ≥ γ(λ). Based on Lemma 1, suppose that fβ is output by A in Fig.

1. Then adversary A′ proceeds as follows. On input y = As, selects β′ $←
{1, . . . , n} and (α1, . . . , αn)

$← (Zm
q )

n as shares and computes Aα1, . . . ,Aαn

but replace Aαβ′ with y. In the soundness game, the adversary A′ runs
AGetShareKey(1λ, Λ) and responses to each query with αj such that if j ̸= β′

aborts, and adds j to T . If β = β′ outputs s and sets ak = −s, otherwise
outputs fail. The probability that β = β′ is 1

n and so A′ succeeds with
probability at least 1

n · γ(λ) which is non-negligible. Hence A′ successfully
can solve the SIS in Zq which is a contradiction.

4.3 Secure Data Retrieval with Access Control

We apply our proposed DPF-PACL for secure data retrieval based on FSS with ac-
cess control. The scheme is described in Fig. 3 and the related protocol is denoted
by πDR−ACL. The scheme πDR−ACL is described in Fig. 4. Suppose that user owns
keyword wu. ns servers S1, . . . ,Sns

and data base DB = {(w1, d1), (w2, d2), . . . , (wns
, dns

)},
di ∈ {0, 1}m, i ∈ [1, ns].

Figure 5 describes the garbled DFA and the steps are as follows.

– Constructing the matrix. The server Sk computes a DFA using its keyword
wk and constructs a matrix M. For a state qi we use the notion of a character
group [27] to denote the set of characters in Σ that for them there exists
a transition from qi to the same destination state qj . In other words, c and
d are in the same character group if σ(qi, c) = σ(qi, d) = qj . The set of
character groups of a state qi is denoted by chi and chmax is the number of
unique character groups.
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– Setup:
• (ski, pki, ppRISC0, pp)i∈[n] ← GHL+.Setup(1λ, ip)
• Return (kx,1 . . . , kx,n, (ski, pki, ppRISC0, pp)i∈[n])

– KeyGen(1λ, fx) : x ∈ [1, z]

• sx
$← Zm

q , A ∈ Zk×m
q

• ak = −(s1, . . . , sz), access to z files f1, . . . , fz, vkx = Asx
• Return (ak, vk1, . . . , vkz)

– Prove(f, ak) :
• ([sj ]1, . . . , [sj ]n)← Share(Fp,t,n)(−sj), j ∈ [1,m], s = Σx∈[z]sx = (s1, . . . , sm)

• (Cj
i , π

j
i,RISC0)i∈[n]

← GHL+.Dist(pp, ppRISC0, ak, pki, [sj ]i)

• Return (Cj
i , π

j
i,RISC0)i∈[n]

– Audit(Λ, ppRISC0, pp, ([fx]i, ski, pki,C
j
i , π

j
i,RISC0)i∈[n]

) :

• 0/1← GHL+.VerifySharing(pp, ppRISC0, pki,C
j
i , π

j
i,RISC0)

• parse Λ = (As1, . . . ,Asz) and [fx]i = kx,i, x ∈ [1, z], i ∈ [1, n]
• [yx]i ← DPF.Eval(kx,i), x ∈ [1, z], i ∈ [1, n]
• Bi ← Σz

x=1(Asx) · [yx]i
• ([sj ]i, π

j
Deci,RISC0

)← GHL+.DecShare(ppRISC0, pki, ski,C
j
i )

• τi = Bi +A[sj ]i
• Return (τi, d

j
i := [sj ]i, π

j
Deci,RISC0

)

– Verify(T , ppRISC0, (pki,C
j
i , d

j
i , π

j
Deci,RISC0

)
i∈[n]

) :

• 0/1← GHL+.VerifyDec(ppRISC0, pki,C
j
i , d

j
i , π

j
Deci,RISC0

)
• parse T := {τ1, . . . , τt}
• Σiτi

?
≈ 0

• Return 1 if the both checking output 1. Otherwise 0.

Fig. 2. Post-Quantum DPF-PACL for Match Predicates.

user

.......

Proxy

.......

.......

Fig. 3. Scheme overview
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– Any server Sk, k ∈ [1, ns] constructs a DFA on its keyword wk, the algorithm is
described in Fig. 5, and sends a garbled matrix resulted from DFA protocol to the
proxy

– The servers collectively enforce access control by running the proposed DPF-PACL
described in Fig. 2. If this step is successful:
• the proxy evaluates the garbled on the input of the user and sends the result

to user, the protocol is described in Fig. 6
• Next, user using the scores obtained from the result can retrieve top relevant

data the servers S1, . . . , Sns , the algorithm is described in Fig. 7

Fig. 4. Data Retrieval with Access Control, πDR−ACL

– Generating random pads. The server Sk generates random pads r0
j , j ∈

[1, |ch0|] for the start state q0. For other state qj , inp random pads are
generated, denoted by padi

v, v = 1, . . . , |psi|. psi denotes the states for
which there exists a transition from them to the state qi. Suppose that inp
is the maximum number of previous states for any state.

– Generating random keys. The parties agree on a Proxy OT
|Σ|
1 denoted by

FPOT(K
′
1, . . . ,K

′
|Σ |) where K′

1, . . . ,K
′
|Σ | are the keys which are constructed

by each server. The server Sk assigns the keys to each character group. Then,
for any character yi ∈ Σ, Sk concatenates the keys of character groups of
which yi is a member of them.

– Computing the garbled matrix The server Sk constructs the garbled DFA
matrix through the following steps.
• Sk generates a random vector for the start state and a matrix for |Q|

states from randomly chosen pads where $← denotes the assignment of
a randomly selected element. Then Sk generates a permuted states for a
set {0, . . . , |Q|} using the permutation function PER(s)→ s′ and inputs
a state s ∈ {1, . . . , |Q|} outputs an unique state s′ ∈ {1, . . . , |Q|}.

• Next Sk garbles the DFA matrix according to the following algorithm.
Kj ’s are the random keys which are used in OTs. Note that PRG :

{0, 1}κ → {0, 1}κ
′
is a secure pseudorandom generator (PRG); note that

κ′ = 2κ + 2 log |Q| and out is the maximum number of outgoing edges
for a state of DFA. For any state, the next state is denoted by s and
the permuted next state is obtained by PER. perm(i, j) → s′ takes the
state i, j as the index of j-th character group as inputs and outputs a
vector which is a random permutation of values (1, . . . , inp). Note that,
PER and perm are used to hide the structure of the DFA on the keyword.
Any element of the garbled matrix is the resultant from xoring the con-
catenation of t′, PER(s), random pad and κ zeros and the corresponding
keys.

– Evaluating the matrix. In this phase, server Sk sends the random value
rk = Σ rki to the user and the garbled matrix to the proxy server S. Also n
Proxy OTs are run between S, Si, and user to evaluate the user’s input wu,
on the garbled matrix. This phase is described in Fig. 6. Finally, the server
S computes the scorek and send it to the user.
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– Retrieve data. The user computes the scores for any document. Then, user
retrieves the document with the maximum value of scores and sends a request
to the servers S1, . . . , Sns as follows. Assume that the client would like to
retrieve dataic . The client uses a DPF f : {0, 1}κ → {Z2}l into f1, . . . , fns

and sends each key to the corresponding server. Server Si sends back the
ansi =

⊕ns

j=1 dataijfi(ij), i = 1, 2. So
⊕ns

j=1 ansi outputs dataic .

This algorithm is run by the user
– scorek = rk − (scorek)10, where (scorek)10 denotes the decimal representation of

scorek

– index = inx | scoreinx = minns
i=1(scorei)

– DPF fK : {0, 1}κ → {Z2}l
– [f ]i ← ki, [y]i ← DPF.Eval(ki)
– ansi = datai[y]i, i ∈ [1, ns]
– dataindex ←

⊕ns
j=1 ansi

Fig. 7. Data Retrieval

Theorem 4. In the OT-hybrid model, given a computationally secure PRG, the
scheme πDR−ACL is secure in the presence of semi-honest setting.

The proof of Theorem 4 is presented in Appendix A.2.

5 Evaluation

We have employed a ZK proof system from the STARK (the acronym means
scalable transparent argument of knowledge). Scalable means that proving time
scales quasilinearly in |w| (the size of witness) and simultaneously, verification
times scales poly-logarithmically in |w|. In the Prove phase, the computations
are related to O(k2) matrix multiplications to generate the ciphertexts in PVW.
Then, in the Audit step O(nk) matrix multiplication is done to decrypt the
ciphertexts. The complexity of DPF is linear in the DPF’s domain size. The
concrete communication overheads on the prover and the verifiers are related to
DPF and the exchanged messages in PVW. nλ bits will be exchanged in PVW.
Independence of the DPF construction, assume that |r| denote the size of a DPF
with range r, n log(r) · (λ+ 2) bits [9] are communication overhead.

Table 1 and Table 2 describe the evaluation of the PACL scheme described
in Section 4.2. Our implementation can be found at [2]. We used C++ for our
main protocol. For the ZK proofs we used the Risc0 framework [3] which is
implemented in Rust while implementing the ZK-proofs newer frameworks claim
to be faster than Risc0 where is released. To improve the times for calculation it
could be interesting to substitute the frameworks like [4], which could improve
the computation of the proofs. Further improvement proposals can be found
in our repository description. Our DPF implementation was integrated from [1]
and used as it is. Our application consists of a single program creating 3 threads
(user, data server 1, data server 2). They all run on one machine and use network
communication to exchange data between each other.
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This algorithm is run by the the server Sk

– Input: wk as keyword of Sk

– Ouput: the garbled matrix GMk, the vectors gm0,k, a
k
0 and the vectors {gak

i }i∈[|Q|]
– Constructing the matrix , i ∈ [0, |Q| − 1]
• mi ← σ(i, chi), mi = (mi(1), . . . ,mi(|chi|))
• mi(0)← 1 if i ∈ F , else mi(0)← 0
• m|Q| ←m0

• mi(j)← |Q| if mi(j) = 0, j ∈ [1, |chi|], i ≥ 1
– Random pads, i ∈ [0, |Q|], j ∈ [1, |chi|]
• generating random strings

∗ s← mi(j)

∗ if s ̸= 0: , s′ ← PER(s), ri−s′ $← {0, 1}κ

∗ if s = 0: ri−0 $← {0, 1}κ
• computing previous random pads, i ∈ [1, |Q|], psi = (psi(1), . . . , psi(|psi|))

∗ if psi(v) = 0: pdv
i ← r0−i, v = 1 to |psi|

∗ if psi(v) ̸= 0: s′′ ← PER(psi(v)), pdv
i ← rs

′′−i

∗ pdz
i

$← {0, 1}κ, z = |psi|+ 1 to inp
– Generating random keys
• Kj

i

$← {0, 1}κ
′
, i ∈ [0, |Q|], j ∈ [1, |chi|]

• t = 0,m ∈ [0, |Σ|], ym ∈ Σ
• if ym ∈ chj

i , i ∈ [0, |Q|], j ∈ |chi|:
∗ t++,K′t

m ← Kj
i

• K′
m ← K′

m||Kz(b)
m , b ∈ [1, t], z← permute(1, . . . , t)

• l = κ′ × chmax, if |K′
m| < l : k

$← {0, 1}κ
′×(chmax−|K′

m|),K′
m ← K′

m||k
– Garbling the matrix
• Start state: i = 0, j ∈ [1, |chi|]

∗ s← m0(j),
∗ if s ̸= 0: s′ ← PER(s), m′

0
j ← (s′||r0−s′ ||0κ+lg |Q|)⊕ Kj

i

∗ if s = 0: r0−0 $← {0, 1}κ , m′
0
j ← (s||r0−0||0κ+lg |Q|)⊕ Kj

i

∗ m′
0
z ← {0, 1}κ

′
, z = |chi|+ 1 to out

∗ ak
0 ← (rk0 )2 if m0(0) = 1, else ak

0 ← (rk0 + 1)2, where rk0 is a random value
with κ bits in binary format (rk0 )2

• Other states: i = 1 to |Q|, j = 1 to |chi|
∗ s← mi(j),
∗ s′ ← PER(s)
∗ Input edges for any state: v = 1 to inp

· t← perm(i, j)

· mmi
j,v ← (t(v)||s′||ri−s′ ||0κ)⊕ PRG(pdi

t(v))⊕ Kj
i

∗ mmz,1
i ← {0, 1}κ

′
, . . . ,mmz,inp

i ← {0, 1}κ
′
, z = |chi|+ 1 to out

∗ ak
i ← (rki )2 if mi(0) = 1, else ak

i ← (rki + 1)2, where rki is a random value
with κ bits in binary format (rki )2

– Permuting and constructing the matrix , i ∈ [1, |Q|]
• gm1,t

PER(i),k ←mm1,t
i , . . . ,gmout,t

PER(i) ←mmout,t
i , t = 1 to inp

• GMk ← {gmi,k}i∈[|Q|], gm0,k ←m
′
0, gak

PER(i) ← ak
i

Fig. 5. Constructing the garbled DFA matrix
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This algorithm is run by the proxy server S
– Input: the garbled matrix GMk, the vectors gm0,k, a

k
0 and {gak

i }i∈[|Q|]
– Output: random value scorek

Steps for any z ∈ [1, |wu|] where wu is input of the user
– parse GMk as {gmi,k}i∈[|Q|]
– K′′

1 , . . . ,K
′′
chmax

← FPOT(K
′
1, . . . ,K

′
|Σ|)

– Start state: (i = 0) , j ∈ [1, out]
• state||pad||taill← gm0,k ⊕ K′′

v , v ∈ [1, chmax]

∗ if tail = 0κ+lg |Q| :
· t′ ← 0
· scorek ← ak

0

· i← state
· pdi ← pad

– Other states:
• if t′ = 0:

∗ t ∈ [1, inp]
∗ t′∥state∥pad∥tail← gmi

j,t ⊕ K′′
v ⊕ PRG(pdi), v ∈ [1, chmax]

∗ if tail = 0κ:
· scorek ← scorek + gak

i

· i← state
· pdi ← pad

• if t′ ̸= 0:
∗ t← t′

∗ t′∥state∥pad∥tail← gmi
j,t ⊕ K′′

v ⊕ PRG(pdi), v ∈ [1, chmax]
∗ if tail = 0κ:

· scorek ← scorek + gak
i

· i← state
· pdi ← pad

Fig. 6. Evaluating the garbled matrix

Table 1. Performance results of DPF-PACL with Enc redundancy=20, LWE redun-
dancy=1 and secret vector size= 128.

Time(sec)
Parameter User Server
# of .files GHL+.Dist GHL+.Setup GHL+.VerifySharing GHL+.DecShare

32 503 458 0.44 737
1024 510 459 0.39 738
32768 510 459 0.4 736

For our benchmarks, we run our program on a server with an Intel Xeon
Gold 5317 with 32 cores @ 3.00 GHz and 256 GB of RAM. To evaluate the
numbers it is important to understand that our implementation in C++ uses
only one thread and the Risc0 application performs on all 32 cores. Therefore
the computation of the DPF-PACL could be improved significantly. The results
show that on the client side the setup of DPF and secret sharing is really fast
and calculations only need time because of the ZK-proof, DPF-PACL part would
be really fast. On the server side, setup of GHL+ takes time. But it only needs
to be executed once on startup. The number of files has a linear impact on the
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PACL reconstruction but is compared to the other values negligible fast. The
size of the secret vector defines the security of the system but also has a strong
impact on the computational times. It should be mentioned that redundancy
of PVW encryption to determine the exact secret key of the user is crucial for
granting access. Increasing it this encoding linearly scales the times required for
the ZK-proofs. Therefore this process needs to be optimised.
Table 2. Performance results of DPF-PACL with 1024 files, Enc redundancy=20 and
LWE redundancy=1.

Time(sec)
Parameter User Server

size of secret vector GHL+.Dist GHL+.Setup GHL+.VerifySharing GHL+.DecShare

64 250 205 0.25 369
128 510 459 0.4 743
256 1018 918 0.78 1476
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A Appendix

A.1 Proxy OT

A POT consists of the following algorithms [14] from non-interactive key ex-
change (NIKE) protocol allows two parties to generate a shared key based on
their respective public keys (and without any direct interaction) [14]. In our
scheme, n 1-out-of-256 OT should be run where n is the number of characters of
the user’s input. We use the construction of Naor and Pinkas [24] to efficiently
reduce n invocations of the 1-out-of-256 OT to 8n invocations of 1-out-of-2 OT.
So, 8n invocations of Proxy OT [14] are required. Every time, the parties need to
run the setup algorithm to generate their key pairs. To reduce the key generation
process, we designed a new protocol for choosing the keys related to the input
of the user. We can use batch oblivious pseudorandom function (OPRF) [23] in-
stead of running 8n NIKE. In more detail, in the Proxy OT the sender and the
chooser obtain the outputs of the batch OPRF. We can assume that they are run
in the offline phase and the sender and the chooser use the outputs of the offline
phase. We can rewrite the scheme [14] as follows. Assume that t = 8n where n
is the length of the user’s input.
– Offline:
• The sender and the chooser share the random values rb,1, . . . , rb,t

$←
{0, 1}∗, πj

$← {0, 1}, b ∈ [0, 1], j ∈ [1, t].
• (zb,1, . . . , zb,t)← FOPRF(rb,1, . . . , rb,t)
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– Online
• αi ← Snd(i,x0,i,x1,i). In the i-th POT execution the sender, holding

input x0,i,x1,i ∈ {0, 1}κ, runs this algorithm to generate a single encoded
message αi to be sent to the proxy. απi,i = z0,i⊕x0,i, α1⊕πi,i = z1,i⊕x1,i

• βi ← Chs(i, bi). In the i-th POT protocol, the chooser, holding input
bi ∈ {0, 1}, runs this algorithm to generate a single encoded message βi

to be sent to the proxy. βi ← (bi ⊕ πi, zbi,i)
• yi := Prx(i, αi, βi). In the i-th POT protocol, the proxy runs this al-

gorithm using the sender message αi and the chooser message βi, and
computes the value yi = xbi . parse αi as (α0,i, α1,i) and βi as (b′i, z

′
i),

yi = αb′i,i
⊕ zb′i .

A.2 Proof of Theorem 4

Proof. The proof is based on the POT hybrid model. Hence, we consider three
cases a adversary corrupts Sk, proxy S and user in the following.
– user is corrupted. Suppose that a PPT adversary A controls Sk. The sim-

ulator Sim behaves as follows that simulates the view of A. Sim emulates
FPOT and obtains the keys used in POT’s. Then, Sim garbles the matrix
constructed from the server’s keyword. The simulator inherits the property
of the underlying POT protocol and therefore the adversary is unable to
distinguish between the ideal world and real-world executions.

– proxy S is corrupted. Suppose that a PPT adversary A controls S and the
simulator Sim behaves as follows that simulates the view of A.
• Sim emulates the functionality FPOT and gets the input of the server Sk.
• Sim runs A on the input wk which A forwards it after receiving from
Sk in the real execution. Then, Sim generates chmax random keys for
running OTs on wk and sends them to the trusted authority.
• Sim sends the server’s input, wk, to the trusted authority and gets back

the evaluation of DFA on it, the set of corresponding states denoted by
Γwk

.
• Sim generates the garbled DFA matrix as the following steps which are

for any character of input, and forwards it to A. Let n denotes the length
of wk and κ′ = 2κ+ 2 log |Q|.

• Initialize:
∗ {s1, s2, . . . , snk}

$← {1, . . . , |Q|}, start← 0, i← start, t $← {1, . . . , inp}
• Start state:

∗ s′
$← {s1, s2, . . . , snk}, r

$← {0, 1}κ,
∗ {K1,K2, . . . ,Kchmax}

$← {0, 1}κ
′
; generate chmax random keys

∗ col
$← {1, . . . , out}, m′

0
col ← (s′∥r∥0κ+log |Q|)⊕ Kcol

∗ m′
0
j $← 0κ

′
, j = 1, . . . , |Q|, j ̸= col

∗ a0
$← {0, 1}κ

∗ t′
$← {1, . . . , inp}, i← s′, pdi

t′ ← r
• Other states:

∗ i← s′, pdi
t′ ← r, col $← {1, . . . , out}
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∗ gmi
col ← (t′∥s′∥r∥0κ)⊕ Kcol ⊕ PRG(pdi

t)

∗ gmi
j,1 $← 0κ

′
,gmi

j,2 $← 0κ
′
, . . . ,gmi

j,inp $← 0κ
′
, j = 1, . . . , |Q|, j ̸= col

∗ ai
$← {0, 1}κ, t← t′, i← s′, pdi

t′ ← r

We now prove that A cannot distinguish between its view during the real
execution and its interaction with Sim. Suppose that a distinguisher D dis-
tinguishes the distributions of the real and ideal world transcripts with non-
negligible probability. Let gmi be in the i-th element of in the garbled
matrix. Relying on a hybrid argument, we define the hybrid distributions
Hi

def
= (gm1,re, . . . ,gmi,re,gmi+1,id, . . . ,gmz,id), i = 0, . . . , nk z = |Q|out.

Note that H0 is the view of A in the real execution and Hnk is his interac-
tion with Sim. Hence, D distinguishes Hi−1 from Hi for some i in polynomial
time with non-negligible probability. But Hi−1 and Hi are generated in the
same way. Moreover, random strings for all values in row i are uniformly
chosen except for one value that appears on the transit path of input. So,
due to the security of PRG used in matrix construction, this contradicts the
security of PRG. Hence we can argue that Hi−1

c
≈ Hi. So, the view of A

when interacting with Sim is the same as Hnk.
– The server Sk is corrupted. The only message from user is during the POT

protocol execution, user’s privacy against Sk follows from the privacy of POT
used.
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