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Abstract—Blockchain technology ensures accountability,
transparency, and redundancy in critical applications, includ-
ing IoT with embedded systems. However, the reliance on
public-key cryptography (PKC) makes blockchain vulnerable to
quantum computing threats. This paper addresses the urgent
need for quantum-safe blockchain solutions by integrating Post-
Quantum Cryptography (PQC) into blockchain frameworks.
Utilizing algorithms from the NIST PQC standardization pro-
cess, we aim to fortify blockchain security and resilience, partic-
ularly for IoT and embedded systems. Despite the importance
of PQC, its implementation in blockchain systems tailored for
embedded environments remains underexplored. We propose
a quantum-secure blockchain architecture, evaluating various
PQC primitives and optimizing transaction sizes through tech-
niques such as public-key recovery for Falcon, achieving up
to 17% reduction in transaction size. Our analysis identifies
Falcon-512 as the most suitable algorithm for quantum-secure
blockchains in embedded environments, with XMSS as a viable
stateful alternative. However, for embedded devices, Dilithium
demonstrates a higher transactions-per-second (TPS) rate
compared to Falcon, primarily due to Falcon’s slower sign-
ing performance on ARM CPUs. This highlights the signing
time as a critical limiting factor in the integration of PQC
within embedded blockchains. Additionally, we integrate smart
contract functionality into the quantum-secure blockchain,
assessing the impact of PQC on smart contract authentication.
Our findings demonstrate the feasibility and practicality of
deploying quantum-secure blockchain solutions in embedded
systems, paving the way for robust and future-proof IoT
applications.

I. Introduction
A Blockchain is a decentralized and distributed net-

work that stores information using distributed ledger
technology [1][2]. Information can be exchanged between
participating nodes without trust in a centralized organi-
zation. The technology provides accountability, resilience
and transparency by utilizing consensus algorithms and
cryptographic secure operations [3].

Besides some emerging blockchain applications in finan-
cial services and cryptocurrencies the Internet-of-Things
(IoT) is the dominant blockchain application and most
researchers today associate blockchain applications with
IoT [4]. Blockchain can secure IoT systems, e.g. in energy
cyber-physical systems, vehicular cyber-physical systems
for intelligent transportation systems and autonomous

driving, aviation systems, supply chain systems and sen-
sors [5]. Blockchains have specific benefits for applications
with embedded systems in IoT: With identity manage-
ment and governance mechanisms, IoT devices can simply
be registered and identified using a shared ledger to tag
devices to a specific user. Rights and ownership can be
easily and securely transferred between the participating
parties in the network. Blockchains allow for the simpli-
fication of security protocols. Solutions for industrial IoT
with blockchains are already available [6]. The IBM report
from 2025 points out that IoT would face trouble if there
is no migration toward a decentralized way of networking
and use a blockchain-like system to track and coordinate
devices [7]. Manufacturers of IoT devices must integrate
blockchain technology to track and coordinate the high
amount of connected devices [8]. However, IoT blockchain
applications are based on small and low-cost embedded
devices that are restricted in the computing power that is
needed to perform consensus and verification operations.
Embedded systems are limited in energy consumption,
data storage and have hardware limitations [9]. These
prerequisites make the implementation of blockchains on
embedded systems challenging. Foundational research on
blockchain frameworks in IoT is still ongoing.

In addition, quantum computers can break classical
cryptography in blockchains used to sign signatures and
perform verifications. Classical blockchain’s security lever-
ages classical public-key cryptography (PKC) to deploy
authenticated transactions. Widely used blockchains are
still based on generic classical cryptographic primitives.
This is also shown by the comprehensive analysis of the
top 30 mainstream cryptocurrencies by [10].

PKC schemes like Rivest–Shamir–Adleman (RSA) and
Elliptic Curve Digital Signature Algorithm (ECDSA) are
common primitives in blockchain protocols, relying on
complex mathematical problems such as factorization
large prime numbers (RSA) and finding the discrete
logarithm of a random elliptic curve element (ECDSA),
which are considered difficult for classical computers to
solve. However, the rapid progress in quantum computing
poses a significant threat to these systems. Shor’s quantum



algorithm [11] can efficiently solve these mathematical
problems in the future, rendering classical PKC vulner-
able. To ensure the long-term security of trust manage-
ment infrastructures, it’s imperative to develop quantum-
resistant blockchains. Post-quantum cryptography (PQC)
offers one such solution, relying on mathematical problems
resistant to quantum attacks and deployable on existing
electronic devices. Recognizing this, the National Institute
of Standards and Technology (NIST) has initiated the
transition towards PQC to counter the quantum threat
and is presently conducting the PQC standardization
initiative [12]. Initially, 69 post-quantum algorithms were
submitted by researchers worldwide in 2016, with only
7 algorithms advancing to the finalist stage [13]. By
2022, NIST identified four algorithms for standardiza-
tion, including CRYSTALS-Kyber for key-encapsulation
mechanism, along with CRYSTALS-Dilithium, Falcon,
and SPHINCS+ for digital signatures [14], [15], [16],
[17]. The first draft of the PQC NIST standard was
presented for publication in 2023 [18]. Each algorithm
offers distinct trade-offs concerning performance, key size,
and signature/ciphertext sizes. Additionally, two stateful
hash-based signature algorithms, XMSS and LMS, have
been standardized by the Internet Engineering Task Force
(IETF) and subsequently integrated into a special publi-
cation NIST SP 800-208 in October 2020 [19], [20], [21].

Given the lengthy development and long lifespan of
many blockchain applications, the integration of PQC
solutions is essential. Building and converting to quantum-
secure blockchains is necessary. Despite PQC primitives
are not yet being standardized, assessing the perfor-
mance characteristics and suitability of these algorithms
for blockchain in different applications is crucial to en-
sure future usability. Standardized PQC solutions must
cater to diverse blockchain application needs and require-
ments. While previous studies have benchmarked various
PQC crypto-primitives [22], comprehensive integration
into blockchain networks and thorough exploration and
evaluation are yet to be undertaken. Integrating PQC and
exploring different design options within existing classical
blockchains presents a complex challenge. Especially for
resource constraint environments like embedded systems
and IoT blockchain applications efficient solutions must
be developed.

The well known concept of public-key recovery (PKR)
mode with ECDSA has not been thoroughly explored
or analyzed within the context of PQC and blockchain.
Presently, blockchains utilize ECDSA in PKR mode,
enabling the derivation of a public key from an ECDSA
signature along with specific function domain parameters.
This approach offers the advantage of including only the
signature in transactions and saving memory, thereby
efficiently utilizing the limited bandwidth and storage
capacities of blockchain environments. It is plausible that
certain PQC algorithms could support this mode, poten-
tially facilitating the integration of smaller transaction

sizes within the blockchain.
In this work, we present for the first time a quantum-

secure blockchain platform for embedded and computer
systems able to integrate and explore the different
blockchain configurations enhanced with the PQC algo-
rithms Falcon, Dilithium, SPHINCS+ and XMSS. We also
analyzed for the first time and implemented PQC algo-
rithms in publik-key recovery (PKR) mode and integrated
them into our platform. Our quantum-secure blockchain
platform allows a fast and scalable exploration of different
configurations, allowing us to emulate the design and
operational conditions of well-known classical blockchains.
The contributions can be summarized as follows.

Our contribution: This work introduces a quantum-
secure blockchain architecture built upon Post-Quantum
Cryptography (PQC), detailing its design and evaluation
on embedded systems. Additionally, it provides the first
analysis of public key recovery within the context of PQC.
In summary, our contributions include:

• Design and implementation of a quantum-secure
blockchain for embedded systems able to support
a wide variety of standardized PQC algorithms (by
NIST and IETF);

• Performance and security exploration of PQC prim-
itives for the quantum-secure blockchain. We show
the different design alternatives, trade-offs and lim-
itations of running a quantum-secure blockchain on
embedded systems;

• First exploration of the PQC in Public Key Recovery
(PKR) mode;

• We demonstrate a quantum-secure blockchain for
authenticating users with smart contracts.

II. Related Work
The market offers over 20,000 cryptocurrencies, each

providing decentralized services to users [23]. However,
only a limited number of blockchains have taken steps
to address the quantum threat or utilize PQC to ensure
long-term security. Table I shows an overview of the most
relevant 10 coins according to their market capitalization
as listed by [24]. Tokens are not included since they
are based on other blockchain platforms and adopt their
cryptography.

The German Federal Office for Information Security
(BSI) already addressed the need for quantum-secure
cryptography in blockchains in [25]. Additionally, [26][27]
presented how quantum computers put blockchain security
at risk. [28] discussed the quantum-secure capabilities
for Bitcoin and the results show that Bitcoin’s PoW
algorithm is resistant enough to a quantum computer
attack; however, the elliptic curve signature scheme is
at risk. It was pointed out that hash and lattice-based
cryptography schemes are the only reasonable options
concerning the sum of signature and public key lengths.
Until now there is no final quantum-secure solution for
Bitcoin.



TABLE I: Cryptocurrencies and blockchain platforms state-of-the-art. Presents the properties of having smart contracts
(SC), being post-quantum secure (PQ) and the type of public-key cryptography (PKC)

Abbreviation Name Consensus mechanism Smart contracts PQ PKC
BTC Bitcoin PoW no no ECDSA
ETH Ethereum PoS yes no ECDSA
SOL Solana PoS yes no EdDSA
BNB BNB PoW no no ECDSA
XRP XRP Federated Consensus yes no ECDSA
AVAX Avalance PoS yes no ECDSA
ADA Cardano PoS yes no EdDSA
DOGE Dogecoin PoW no no ECDSA
DOT Polkatdot NPoS yes no ECDSA
TON Toncoin PoS yes no ECDSA

Hyperledger Fabric variety yes no ECDSA
R3 CORDA variety yes yes/no ECDSA, SPHINCS

NEX Nexus PoW & nPoS yes yes ECDSA, Falcon-512
BitcoinPQ PoW no yes XMSS

QRL Quantum Resistant Ledger PoW no yes XMSS
IOTA IOTA FPC yes yes/no EdDSA (W-OTS+)

Some blockchains have already explored quantum-
secure capabilities: In [29], the blockchain IOTA an-
nounced its quantum-resistance capability due to the
integration of Winternitz One-Time Signature (W-OTS).
However, this modification was undone due to implemen-
tation issues that forced the use of EdDSA. Therefore,
the current IOTA implementation is no longer quantum-
secure [29]. In 2018 [30] the cryptocurrency Quantum-
Resistant Ledger (QRL) proposed an alternative to Bit-
coin. QRL uses XMSS [19], an IETF specified PQC
algorithm. While QRL is quantum-secure it is not possible
to explore other stateless PQC NIST alternatives. In the
same year the experimental branch of Bitcoin presented
the BitcoinPQ network, a quantum-secure Bitcoin alter-
native based also based on XMSS [31]. The mainnet of
the blockchain launched in 2018, but currently, there is
no activity on the network anymore. Nexus and R3 Corda
are non-quantum-secure blockchains but offer PQC as an
optional feature to their users (e.g., SPHINCS+-256 and
Falcon-512) but claim these PQC algorithms impractical
for many blockchain applications because of its relatively
slow signing speed and huge signature output [32], [33].

Some works that refer to quantum-secure blockchains
explore the PQC primitives theoretically without their full
integration into a blockchain setup. The authors of [34]
provide a broad review of blockchains and explore the
performance of the NIST PQC round 2 standardization
candidates for digital signatures and public-key encryption
schemes. Results show that there is no large academic ini-
tiative on the application of quantum-secure implementa-
tions to blockchain and no single PQC algorithm provides
all requirements e.g. small key size, short signature sizes,
fast execution and low energy consumption to be a suitable
successor to classical cryptography. A similar work was
presented in [35].

Previous works also explore tailor-made PQC con-
structions for Bitcoin. In [36] a post-quantum secure

algorithm was implemented in a Bitcoin like instance.
The construction is based on a quantum-secure signature
scheme that combines a hash-based one-time signature
with Naor-Young chaining [37]. A comparison with XMSS
and SPHINCS+ was performed. Results show a huge
performance overhead, which turns the use of the new
construction for blockchain applications impractical. This
results in smaller signatures and better performance of the
algorithm compared to hash-based signature schemes.

In [38], the authors present a post-quantum blockchain
(PQB) construction for smart city applications. They pro-
posed a post-quantum PoW consensus protocol and used
a lightweight public key-reduced identity-based signature
scheme. The transaction protocol for the post-quantum
blockchain is designed with the identity-based signature
scheme Rainbow, which is already broken and no longer
considered secure [39]. This work does not create a real
blockchain to perform analysis and performance evalua-
tion. Instead, they used theoretical analysis and simulation
experiments with Magma [40], a system language for
computational algebra. Certificateless IBE with lattices
was also explored in [41]. The paper presents a new post-
quantum-resistant blockchain framework with a consensus
algorithm based on aggregated signatures.

In [42] the NIST PQC algorithms are compared with
ECDSA in a Bitcoin exchange scheme. However, this work
only focused on the NIST Level 5 implementations. The
results showed that Falcon-1024 is a suitable choice for
blockchain cryptography. It is unsure if this also applies
for levels 1 and 3, and for blockchain implementations
with small embedded devices.

Some works proposed completely new PQC algorithms
that are not part of the standardization process by
NIST [43][44]. Since they are not NIST-approved the trust
in the security is unsure.

Besides using PQC to secure blockchain cryptography,
researcher proposed solutions using quantum-key distri-



bution and utilizing the quantum advantage [45][46][47].
However, this requires urban fiber networks and is be-
sides an experimental realization not suitable for broadly
embedded blockchains.

A theoretical exploration of the capabilities of PQC in
Blockchain for IoT is shown in [48]. The work is based on
the Helium blockchain but provides no measurements.

There is a lack of research in the development of post-
quantum-resistant blockchain frameworks with PQC and
embedded systems. Until now no known research and
implementation has been performed on quantum-secure
blockchain with embedded systems. There are no results
for a comparison of all NIST PQC algorithms in an
embedded systems environment for blockchains. Moreover,
the behavior and feasibility of PQC and smart contracts
are evaluated in this work.

III. Quantum threat in Blockchain
A blockchain is known as a chain of data that links

blocks together in a queue. Every node in the network
has a copy of this chain in a file called a ledger. It
implements a peer-to-peer (P2P) communication network
between multiple nodes. Figure 1 illustrates a schematic
overview of a blockchain.

Fig. 1: Blockchain technology schematic.
Different participants can agree on a course of action via

an insecure channel. To archive a distributed consensus
in an unsafe environment blockchains use a consensus
algorithm. One of the most used algorithms is the Proof-
of-Work (PoW) algorithm which creates trust using com-
putation power. Miner try to find a nonce Hn such that
the relation 1 is satisfied [49]:

m = Hm∧n ≤
2256

Hd
with (m,n) = PoW (H ̸n,Hn, d) (1)

The PoW function calculates two values: m the mixHash
and n a pseudorandom number. H ̸n is the new block

header, d is a large data, Hd is the new block’s diffi-
culty. To improve blockchain sustainability, alternative
consensus algorithms are integrated in Blockchains (e.g.,
Proof-of-Stake/PoS, Proof-of-History/PoH, Proof-of-Burn
/PoB or Proof-of-Transfer/PoT). Ethereum uses PoS since
2022 [50]. It has been shown in [50] that the adoption of
this algorithm saves up to 95% of energy when compared
to PoW. Nevertheless, the integration of PoS might
increase the complexity in the blockchain implementation.

The blockchain is characterized by a sequence of dif-
ferent events. A transaction is initiated by defining the
value of the transaction fields which include the recipient
address and transaction value. As in [51], a transaction is
performed through the following steps:

1) Sender generates a new transaction.
2) New transaction is broadcast to all nodes and

miners.
3) Miner nodes collect new transactions into a block.
4) Each miner node works on finding a nonce with

proof-of-work for its block.
5) When a node finds the correct nonce, it broadcasts

the block to all other nodes.
6) Nodes accept the block only if all transactions are

valid and not already spent.
7) Nodes express their acceptance and attach the block

to the ledger.
8) Nodes working on creating the next block in the

chain, using the hash of the accepted block as the
previous hash.

The transaction for a three-node setup is shown in
Figure 2. Only when a block is mined and accepted it
will be attached to the ledger.

Alice Wallet A Wallet B Bob Miner 

Generate Wallet Generate Wallet

Wallet Address A,  
Public key A,  
Private key A

Wallet Address B,  
Public key B,  
Private key B

Wallet Address B

Wallet Address B

Tx creation
New Tx

Mining
New Block New Block

Accept Accept Accept

Update Ledger Update Ledger Update Ledger

1

2
3 4

5

6

7

Fig. 2: Detailed flow describing a transaction between two
users (Alice and Bob) and a miner node.

The classical cryptographic primitives used in
blockchain technology are based on hashing and
digital signature algorithms. Hash functions are used
in two phases. The first is at the consensus algorithm
(PoW) where hashes generate the block digest value. The
second one is in the wallet generation and transaction



process. Bitcoin uses Keccak-256 [52], the predecessor of
SHA-3 hash algorithm [53]. Keccak-256 and SHA-3 are
commonly used in most of the blockchains.

A. The Quantum Threat
When cryptographically-relevant quantum computers

are available, the quantum algorithms of Grover [54] and
Shor [11] can be used to half the security of symmetric
cryptography and break PKC, respectively. While classical
computing will find the answer in O(N) steps, where
N is the size of the function’s domain, the quantum
computer executing the Grover’s algorithm will need
only O(

√
N) steps. Grover affects the algorithm AES

(Advanced Encryption Standard) and hashing algorithms
(e.g., SHA-2, SHA-3). However, the classical symmetric
algorithms are considered secure as long as the key sizes
are long enough. In practice, this means we need to double
the key size to reach the same security strength. AES-256
and SHA3-256 are considered quantum-secure.

In contrast, Shor’s algorithm can solve the hard problem
of traditional PKC in polynomial time [55]. This means
algorithms such as RSA and ECDSA will be broken [56].
These algorithms are used for signing information and
key exchange by many applications. It is estimated that
a cryptographically-relevant quantum computer will im-
pact thirty-six percent of all Bitcoins that are on wallet
addresses with exposed public keys [57].

Quantum computing can not get a significant expo-
nential advantage in brute-force searching and collision-
finding problems. Therefore, the hash functions are con-
sidered to be quantum-secure to exponential speedup.
Bitcoin’s hash function SHA-256 can be partially reduced
in security by the quantum attack, but it is enough to
double up the digest size to be safe in the future. Quantum
computing is unlikely to impact the Bitcoin’s PoW system.
To strengthen this point: Optimistic estimates for 2028
for the speed of a quantum computer with 4,400,000
Qubits and a low error rate results in 13.8 GHashes/s [28].
Nowadays, ASICs used for blockchain mining are already
able to perform 14 THashes/s which is a lot faster than
what a single quantum computer could be able to calculate
in the future [28]. A powerful quantum computer has
the potential to undermine the hash function (used in
the PoW and wallet generation/transaction processes) as
well to break and forge the signature schemes. While
quantum computers are not able to provide an exponential
advantage in collision-finding problems [35] and therefore
by doubling the hash size (e.g., from SHA-128 to SHA-
256) the hashes can be patched and continue being secure,
the signatures must be modified. Post-quantum signatures
are required [58][59].

Digital signatures are the public-key cryptographic
primitives used for authenticating communication parties,
to provide data integrity and to avoid communication
repudiation. The signature value is calculated based on the
data and a secret key known only by the signer. Usually,

key pairs sk and pk are generated (key generation). The
keys used for encryption/decryption and signing/verifying
are commonly different. The private key used for signing
is known as the signature key, while the public key is
the verification key. The signer uses the signing key and
the sign algorithm to generate a signature (sign). The
authenticity of the message is checked through the verifi-
cation process (verify). Since a digital signature is created
by the private key sk of the signer, a signed transaction
cannot be repudiated in the future. Different classical
digital signature algorithms are used in Blockchain. It
includes the Elliptic Curve Digital Signature Algorithm
(ECDSA) and Edwards-Curve Digital Signature Algo-
rithm (EdDSA) with curves secp256k1, curve25519 or
ed25519 and RSA. Table II lists the key sizes of classical
signing algorithms used in blockchains that are threatened
by quantum computers.

TABLE II: Classical algorithms: Key sizes for 128-bit
security level that threatened by quantum computers. The
values in brackets are the uncompressed version. All sizes
in bytes.

SIG Parameter Set Secret key Public key Signature

ECDSA Secp256k1 32 33 (65) 64
ECDSA curve25519 32 32 64
EdDSA ed25519 32 32 64
RSA 3072 384 384 384

ECDSA, with a security level of 256 bit, has a 32
bit long private key. The public key consists of two
points x,y on the elliptic curve, each 32 byte long and
an additional prefix of 1 byte (pu = prefix [1 byte] +
x [32 bytes] + y [32 bytes]). This prefix is used for
serialization as defined by the Standards for Efficient
Cryptography Group (SECG) [60].

IV. Post-Quantum Cryptography
New mathematical hardness assumptions are required

to construct quantum-secure PKC schemes. PQC refers to
a set of algorithms that rely on mathematical problems
that are believed to be hard to break using a large-
scale quantum computer. Current PQC algorithms can
be executed on traditional computers and offer security
against both classical and quantum attacks. There are five
post-quantum families:

• Codes: Based on the hardness of decoding a general
linear code (e.g., Classic McEliece, BIKE, HQC);

• Hash-trees: Based on the hardness of the security of
hash functions (e.g., SPHINCS+);

• Multivariate: Based on the hardness of solving sys-
tems of multivariate polynomials over finite fields
(e.g., Rainbow, GeMSS, Picnic);

• Isogeny: Based on the hardness of finding the isogeny
mapping between two super singular elliptic curves
with the same number of points (e.g., SIKE); and



• Lattices: Based on hard problems described in lattices
(e.g., short-vector-problem (SVP), closest-vector-
problem (CVP) and Learning-with-Errors (LWE)
(e.g., Kyber, NTRU, SABER, FrodoKEM, NTRU
Prime, Dilithium, Falcon).

A. NIST Standardization Process
In 2017, the NIST announced a standardization process

for PQC [12]. The goal of this process is to standardize at
least one KEM (Key exchange mechanism) and at least
one signature scheme. While for the first round of the
standardization competition 69 submissions were selected,
in the second round 26 submissions remained. In July
2020, the third round of this competition was announced.
The remaining PQC candidates were classified into two
categories: i) finalist, which includes the set of PKE/KEM
and signatures that are candidates for the NIST standard-
ization of 2022; and ii) alternate, which are considered
by the NIST as promising solutions but require further
development for possible future standardization. For the
category of PKE/KEM, four finalists (Classic McEliece,
Kyber, NTRU, SABER) and five alternate candidates
(BIKE, FrodoKEM, HQC, NTRU Prime, SIKE), and
for the category of signatures, three finalists (Dilithium,
Falcon, Rainbow) and three alternate candidates (GeMSS,
Picnic, SPHINCS+) were announced.

NIST has defined five different security levels (from 1 to
5). Each security level is defined by a comparatively easy-
to-analyze classical reference primitive (e.g., AES, SHA)
as follows [12]:

• Level 1: Equivalent to AES-128
• Level 2: Equivalent to SHA-256
• Level 3: Equivalent to AES-192
• Level 4: Equivalent to SHA-512
• Level 5: Equivalent to AES-256
Each post-quantum cryptosystem is instantiated

through different parameter sets.
In 2022, NIST announced that the PQC standard will

include Kyber [14] as a KEM and Dilithium [61] Fal-
con [16] and SPHINCS+ [62] as signatures. In the selection
are two lattice-based algorithms (Dilithium and Falcon)
and a hash-based algorithm (SPHINCS+). The complete
set of algorithms is composed by Dilithium2, Dilithium3,
Dilithium5, Falcon-512, Falcon1024, SPHINCS+-SHA256-
128, SPHINCS+-SHA256-192 and SPHINCS+-SHA256-
256. The two stateful hash-based signature algorithms
XMSS and LMS have been standardized by IETF and
further integrated in the NIST SP 800-208.

SPHINCS+ has a variety of configuration options. The
SPHINCS+-simple is faster as no pseudorandom function
(PRF) is used to generate bitmasks. In addition, a user
can select between SHA-256, Shake-256 and Haraka as
hash functions (note that Haraka is not a NIST-approved
hash function). In addition, the SPHINCS+ can be set
to small (s) or fast (f) options, which corresponds to the
size-optimized or speed-optimized code, respectively. The

signature sizes differ between the two options (for the fast
(level 1,3,5): 17088 Byte, 35664 Byte, 49856 Byte and for
small(level 1,3,5): 7856 Byte, 16224 Byte, 29792 Byte). In
table III we focus only on the small versions.

XMSS is a stateful quantum-secure signing algorithm.
XMSS uses the Winternitz One-Time-Signature scheme
(W-OTS) and hash trees to generate public keys. In
contrast to traditional signature schemes, XMSS is based
on a tree structure characterized by the parameter height
h. This value determines the number of messages that
can be signed with one key pair. A higher value of h
will increase the number of signatures nsig allowed for
a single key pair nsig = 2h, e.g., a three hight h = 20
can sign 220 with one key pair. However, the signature
size is increased and the key generation is slowed down.
XMSS in QRL [30] (with a 128-bit of security level) uses
the Winternitz parameter w = 16 and a tree of height
h = 10. They report in [63] a verification time of 15 ms
when only a single thread is used. A XMSS signature has
a length 4 + n + (len + h) ∗ n [bit] for n = 32, h = 20
and len = 67. XMSS-MT-SHA2_20/2_256 is used in the
QRL blockchain [30]

The private key, public key and signatures sizes for all
algorithms are displayed in table III.

TABLE III: PQC algorithms: Configuration parameters.
All sizes in bytes.

SIG Parameter Set Public key Secret key Signature

Falcon-512 897 1281 690
Falcon-1024 1793 2305 1330
Dilithium2 1312 2528 2420
Dilithium3 1952 4000 3293
Dilithium5 2592 4864 4595
SPHINCS+-SHA256-128s 32 64 7856
SPHINCS+-SHA256-192s 48 96 16224
SPHINCS+-SHA256-256s 64 128 29792
XMSS-MT-SHA2_20/2_256 213 35 352

PQC key sizes are bigger than classical ECDSA key
sizes. SPHINCS+ secret key size doubles the public size
since the secret key also stores an instance of the public
key. In this construction the signing function uses the
public seed and the root for fault attack mitigation.

V. Quantum-Secure Blockchain
The quantum threat will impact digital signatures used

in classical blockchain frameworks. While hashes can be
patched by increasing the key sizes, digital signature
algorithms must be changed. Our solution to a quantum-
secure blockchain integrates different post-quantum sig-
nature primitives from the NIST standardization process.
While NIST and IETF already selected the PQC signature
algorithms (Dilithium, Falcon, SPHINCS+, XMSS) the
integration on the blockchain and its impact on the overall
system has not yet been widely performed. To present a
useful exploration of the impact of the PQC integration
in blockchain, our quantum-secure blockchain implements



all the core concepts and implementation criteria of Bit-
coin and Ethereum. Bitcoin (40%) and Ethereum (19%)
together represent about 60% of the current blockchain
market [24]. The implementation criteria of our quantum-
secure blockchain are summarized as follows:

• Decentralization: Property of the system to resist
the failures of the Byzantine Generals’ problem.
The system should be designed to reach the correct
consensus if more than 50 % of the mining nodes are
honest.

• Immutability: The ability for a blockchain ledger
to remain an indelible, permanent and unchanging
history of transactions.

• Shared Ledger: A Database, called Ledger, stores the
blockchain in a file. Each full node should have a copy
of the ledger.

• Peer-to-Peer Network: A network between all nodes
needs to be established that can handle data traffic
between wallets and miner clients.

• Smart Contract Functionality: The blockchain should
be enabled for smart contracts to execute and store
them on the blockchain. These smart contracts can
later be used for other blockchain applications, e.g.
for IoT applications.

• Exchange of Value: Coins represent a digital currency
that can be used to pay transaction costs or can be
exchanged between wallet accounts.

• Post-Quantum Cryptography: PQC should be used
to make the blockchain quantum-secure. It should be
possible to use the NIST-selected PQC algorithms
in the blockchain to test and compare them to each
other.

• Owner-Controlled Asset: Only the owner of an asset
can transfer that asset. The owners are the holders of
a particular set of keys. Not even a node operator can
transfer an asset because only the user is in charge
of the private key.

Some production-level requirements are left out of the
scope of the paper. The security against public attackers
is left as future work.
A. Transactions and Blocks

Transactions (T) hold sets of information that are
needed to perform a transaction of coins between two
parties. It includes information about the sender (Tt), the
sending amount (Tv), Data (Td), the gas limit (Tg), the gas
price (Tp), a signature (Tr, TS) and a Nonce (Tn). The gas
price refers to the amount of value that must be paid to the
miner for processing transactions and the gas limit is the
amount of work estimated a miner does. A transaction
is T = {Tt, Tv, Td, Tg, Tp, Tr, Ts, Tn}. Figure IV presents
an overview of all components of a EIP-27181 transaction
type. An Ethereum Improvement Proposal (EIP) specifies
a standard and potential new features for Ethereum.

1https://github.com/ethereum/EIPs/blob/master/EIPS/eip-
2718.md

TABLE IV: Contents of an EIP-2718 transaction.

Short Name Description
Tt Address 20 Byte of hash value of the public key
Tpu Public Key Public key of the sender
Tv Value Amount of Value sent from sender [Wei]
Td Data Data field for e.g. smart contract code
Tg gasLimit maximum amount of gas that should be

used for execution (usually 21000 gas for
one transaction)

Tp gasPrice Price per unit of gas for execution [Wei]
Tr,Ts Signature Signature to determine the sender
Tn Nonce Number of transactions of this account

A wallet address is encoded with 20 bytes since it
corresponds to the hashed value of the public key. The
receiver is identified by its 20 bytes-long wallet address.

Figure V shows the chosen structure of transactions and
blocks for our quantum-secure blockchain. A block stores
the previous hash, the transactions and a nonce. The nonce
for the block is different from the transaction nonce and
is a value that is needed for mining. The block format
differs between different blockchain platforms. Bitcoin is
composed by a block header (existing in the previous
hash), the Merkle Root of the transactions in the block,
a timestamp and a nonce. The block header and the
Merkle tree hash enable the participation of lightweight
nodes in the blockchain, avoiding the need to store all
transactions on the devices. Ethereum’s block structure
is more complex. The Block includes three Merkle trees
and each one is composed of 15 distinct fields. It is made
of a header that contains the metadata, followed by the
transaction list that makes up the bulk of the block
size. Since the Merkle tree scheme remains secure from
quantum computer attacks, we use the structure from
Bitcoin.

The block size is typically limited by the blockchain.
This is necessary because if the size is not restricted, less-
performing nodes in the network cannot keep up with the
block computation due to speed and storage requirements.
This would lead to more centralized computing perfor-
mance, which is against the decentralization characteristic
of the blockchain. Bitcoin has a block limit of 2 MB in
size[64]. Ethereum restricts the block size not in terms of
the maximum data size per block but rather by using a
block gas limit. It is usually set to 30 million gas, which is
two times the target block size of 15 million gas. We expect
large blocks because of the huge signature sizes and the
addition of the public keys in the transactions. Therefore
a high value of 10 MB was chosen for the quantum-secure
blockchain.

B. Integration of PQC
PKC is used in blockchains to generate wallets, sign

messages and verify signatures. These operations are
shown in figure 3. Digital signatures algorithms must be
replaced by PQC signatures algorithms. The quantum-
secure blockchain integrates PQC at all cryptographic



TABLE V: Transaction format (left) and block format
(right). All sizes are in byte

Name Size
Recipient address 20
Value 8
Data 0
gasLimit 2
gasPrice 5
Signature sig
Sender pu_key
Nonce 1

Name Size
Previous Hash 32
Transactions tx
Nonce 4

calculation steps and modifies the signing and verification
operations by using a PQC primitive instead of the
PKC signing operation and integrates the PQC signing
algorithms selected by the NIST competition and IETF.
Figure 3 shows the detailed flow describing the wallet gen-
eration, signing and verification operations. It includes the
different functionalities of the applicant, wallet, random
number generator, SHA-3 and PQC algorithms.

In the first operation, the wallet generation, the appli-
cant requests a new wallet address. The random number
generator produces a random string of bits which is used
as a private key. The private key is used as input for the
PQC signature algorithm. The PQC algorithm prodces the
public key from the provided secret key. This public key
gets hashed by a SHA-3 function into a 20-byte long wallet
address. The second operation, signing, is triggered by a
request of the applicant to the wallet. The transaction is
serialized and hashed. The PQC algorithm uses this value
to produce a signature of this corresponding message. The
transaction signature together with the hash is sent back
to the wallet. This signature is used during the verification
of a transaction. Finally, in the verification operation, the
hash of the transaction is calculated. The second hash
is calculated using the provided signature and the public
key. When the PQC in public-key recovery mode is used,
the public key must be calculated from the signature.
This operational step needs to be added and requires
the signature (marked in grey in Figure 3). Finally, both
hashes are checked and compared to check the validity.

Section III-A identifies that the security of hash func-
tions is partially reduced by quantum attacks through
the execution of the Grover’s algorithm. To develop a
quantum-secure blockchain a long enough hash digest
can be used. This will ensure a quantum-secure PoW
algorithm. SHA-256 is considered long enough to be
quantum-secure and will be used in this blockchain as
a secure hash function.

C. PQC in Blockchain Virtual Machines.
A VM can also perform computations in a blockchain

platform, thus making it possible to use cryptographic
operations in smart contracts. Note that a smart contract
does not have any privacy requirement since everyone is
able to have access to the transactions and the deployed
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Fig. 3: Detailed flows describing wallet generation, trans-
action signing and verification with PQC algorithms.

code on the blockchain. If a private key is generated in
a smart contract, the key can be seen by everyone who
has access to the blockchain. All data sent to the VM
in a transaction can be de-compiled by everyone. Signing
in a smart contract scenario would necessarily expose the
private key. Therefore the cryptographic functionality is
executed outside the VM and only the hash, signatures
and public keys are sent to the VM. Public key operations
like checking signatures, proofs and hashes are useful in
some smart contract applications. To perform crypto-
graphic operations with this data in the VM, algorithms
need to be deployed in the VM. PQC algorithms are
very data-intensive and are considered expensive (in terms
of the gas price). Moreover, a blockchain has a block
size limit which limits the size of the algorithm code
lines. Pre-deployed smart contracts with cryptography
algorithms can be developed before their release. These
smart contracts are available to everyone and can be
implemented with the consensus of all participants in the
blockchain network. Cryptographic algorithms (e.g., Kec-
cak256, SHA-256, public-key-recovery and EC-recovery)
are pre-deployed in the VM. In order to transition to PQC,
the verification functions must be correctly implemented
in the VM. In our quantum-secure blockchain, we pre-
deployed the smart contracts SHA-256 and public-key-
recovery for Falcon.
D. Quantum-secure Blockchain Implementation

The system has two main software containers: A wallet
client and a miner client. These can be executed on
different devices and run apart from each other. Figure 4
and Figure 5 show the dependencies between the different
software modules for the miner and wallet container.

The wallet container handles the user accounts and
requests to the blockchain. A user interacts with his wallet,



Fig. 4: Architecture design of the wallet client.

e.g., to initiate transactions. The wallet container executes
a wallet client application which does all operations. The
block validity checks, ledger updates and simultaneous
block attachments are done by a wallet server module.
This module waits for new incoming mined blocks and
checks the block’s correctness before attaching blocks to
the blockchain. There are two objects for transactions and
block objects. The transaction object has the structure
of EIP-2718 shown in table IV. The block object stores
the hash value H, the transactions Tn and the nonce N
referring to table V (B = {H,T0, T1, ..., Tn, N}). A net-
work connects all participating wallet and miner clients.
The network functionalities are handled by the component
SocketUtils. The cryptographic functionalities are imple-
mented in a software component called cryptography. For
a clean and secure implementation of the PQC algorithms,
the library liboqs from the Open-Quantum-Safe project
(OQS) [22] is implemented in the cryptography software
component. The algorithms are written in C and based
on the pqclean [65] implementation. The Falcon public
key recovery (PKR) functionality is written in C based
on the NIST submission documents [16]. The blockchain
is stored in a JSON database file, which is called Ledger.

Fig. 5: Architecture design of the miner client.
The miner container uses similar software components

to the wallet client. There are two main scripts: the miner
server and the nonce finder. The nonce finder task operates
the consensus algorithm. The quantum-secure blockchain
uses the Proof-of-work consensus algorithm. This PoW

algorithm is integrated in the TxBlock component. The
miner server handles new incoming transactions and
creates blocks with new transactions. Depending on the
predefined block size limit Bmax transactions are wrapped
in a block before they are processed by the nonce finder
task.

VI. Public-Key Recovery
To minimize the transaction payload, different

blockchains (e.g., Bitcoin and Ethereum) use a special
mode of ECDSA called public-key-recovery (PKR). PQC
in PKR mode has not been discussed nor exploited to build
efficient quantum-secure blockchains. The PKR reduces
the total key size in transactions which is relevant for
the communication efficiency in blockchain environments.
In order to verify the signature, the signature and the
signer public key are required by the verifier. In a typical
public-key infrastructure (PKI), the public key is stored in
a certificate that is signed by a certificate authority and
can be requested by the receiver. However, due to the
high amount of public keys, this is no longer possible in a
blockchain environment. The public key and the signature
are transmitted together in a transaction, resulting in big
transmitted packets. A classical transaction would have
a signature sig = {r, s} and a public key pk. ECDSA in
PKR mode eliminates the need of adding the public key
because the public key can be recovered from an extended
signature. This is very beneficial in bandwidth-constrained
environments like blockchains where the transmission of
public keys can not be afforded. The public key can be
recovered by calculating [60]:

pk = r−1 ∗ (sR− eG) (2)

To perform PKR, the elliptic curve domain parameters
T = {p, a, b,G, n, h}, a message M and the ECDSA
signature {r, s} are required. G is part of the description
of the elliptic curve. From the message M the e can
be computed in a similar way to the ECDSA signature
verification. R is a elliptic curve point that has r as the
x-coordinate. However, the elliptic curve can have 0, 1
or 2 points (R and R′) with the x-coordinate r. These
points can be valid public keys candidates. To find the
correct point, a byte v with the parity and finiteness of the
coordinates of the curve point is added to the signature.
The exchanged information corresponds to the extended
signature sig = {r, s, v} and the signed message. It is
required that the sender’s public key and the signature
are integrated on a single transaction.

c = NTT−1(NTT(a)⊙NTT(s)) (3)

Where ⊙ denotes a coefficient-wise multiplication and
NTT−1 is the inverse NTT.

PKR mode for PQC algorithms has not yet been
explored. If a PQC-PKR mode is used, the overall size
overhead of the transaction can be reduced. This will



enable the implementation of efficient quantum-secure
systems. We are going to discuss the PKR possibilities
for different NIST PQC candidates.

Dilithium. Dilithium is based on the Fiat-Shamir with
Aborts approach [61]. Dilithium mathematical operations
are performed in the ring Rq = Zq[x]/ (xn + 1), where n
and q are both integers. For the Dilithium’s key genera-
tion, the signer samples a matrix with k × l polynomials
in the ring Rq where q = 223 − 213 + 1 and n = 256.
Two vectors s1 and s2 are sampled with coefficients in the
range of Rq and maximum size η. The final step computes
t = As1 + s2. Such that the public key pk is (A, t) and
the vectors s1 and s2 form the secret key sk. The signing
key is used to sign a message of 32 bytes. Two values are
calculated, the signature z and a value c. The resultant
signature z can be rejected if a dependency to the secret
key is detected. Then a new signature must be calculated.
The verifier validates the signature if the coefficients of
z satisfy some boundary conditions and if c correspond
to the hash of an intermediate calculated valued w′

1 as
follows.

w1 = HighBits(Az − ct, 2γ2) (4)

[||z||∞ < γ1 − β] and [c = H(M ||w1)] (5)

Note that the w′
1 can be used to retrieve the public key

(A, t). However, retrieving w′
1 from c is impossible since

it is used in a hash function that can not be reversed.
Dilithium can not be used to perform public key recovery
from the signature.

Falcon. Falcon did not propose PKR as part of the
specification for NIST but describes the possibility to
perform PKR mode in their own specification [16]. The
mathematical operations in Falcon [16] are performed in
the NTRU ring. The key generation is based on solving
the so-called NTRU equation, which includes the gaussian
sampling of elements of the polynomials. Four polynomials
are created and integrated in the matrix B. Then an LDL
tree T is computed and normalized. To sign a message m,
the hash to a point c← H(r||m, q, n) is performed and the
vector t is computed as t = (FFT(c),FFT(0))∗FFT(B)−1.
With z generated by a Fast-Fourier sampler, the signature
s is set to s = (t − z)B. The signature’s elements
are Gaussian distributed and s will rejected, if does
not meet a boundary condition. To verify the Falcon
signature, two checks are performed. First, it is verified
that the signature is not perpendicular to some condition.
Secondly, a boundary condition is also verified. If both
conditions are met, the signature is accepted. Otherwise,
it is rejected.

The signature of the Falcon algorithm is sig = {r, s}
with s = s2. The second part s = s1 is not added to the
signature because it is unnecessary in the normal mode. In
order to use the public key recovery mode, the signature
sig = (s1, s2, r) must be extended with both s1 and s2.

This doubles the total signature size when compared to
the normal Falcon mode. However, it makes the public key
very compact because only requires to send the hash of
the public key pk = H(h) instead of the whole key. This
makes the public key extremely compact |pk| = 2λ. The
combination of both |pk| + |sig| is in theory about 15%
shorter. The reduction results from the trade of h with s1.
While h cannot be reduced in size, s1 can be compressed
using the same function as for s2 (si = Compress(si))
which results in a 35% reduction in size.

The public key h can be recovered by the following
equation from the signature (r, s1, s2):

h = s−1
2 (HashToPoint(r||m, q, n)− s1) (6)

To perform this calculation the hash of the public key
H(h) needs to be sent in addition to the signature.
Moreover, r = {0, 1}320 is a random salt, m is the signed
message, q is a modulus q ∈ N (in Falcon q = 12289) and
n is the ring degree (512 or 1024). The verifier accepts the
retrieved public key if both assumptions are fulfilled:

• (s1, s2) is short
• pk = H(s−1

2 (HashToPoint(r||m, q, n)− s1)

To verify that the pk is correct, the hash of the new
public key can be calculated and compared H(h) = H(pk).

TABLE VI: Falcon normal compared to public-key-
recovery mode. All sizes in bytes.

Version Pub key Signature Add Sum
h r s1 s2

∑
Falcon-512 897 40 625 1 1563
Falcon-512 PKR 40 625 625 1+32 1323
Falcon-1024 1793 40 1239 1 3073
Falcon-1024 PKR 40 1239 1239 1+32 2551

Table VI shows the different results. It can be observed
that the reduction for Falcon-512 is 15,36% and for Falcon-
1024 16,99%. The additional 1 byte corresponds to the
header.

SPHINCS+ and XMSS. In hash-based algorithms, it is
not natively possible to shrink the size of the public key.
Both algorithms, XMSS and SPHINCS+, use public key
recovery functions already in their basic code foundation.
It is not possible to reduce the public key for these two
algorithms similar to PKR.

VII. Experimental Results
In the experimental results section, we perform mea-

surements and calculations to understand the behavior,
constraints and benefits of a quantum-secure blockchain
with PQC. First, we describe our experimental setup.
Second, we measure the wallet, transaction and block size
for all algorithms. Third, we measure the speed of the
cryptographic algorithms. Fourth, we evaluate the perfor-
mance of the blockchain for the different configurations on



a computer-based setup and an embedded device-based
setup. Last, we measure the impact of PQC in smart
contracts.

Table VII gives an overview of the parameters we were
interested in.

TABLE VII: Test parameters with description for exper-
iments.

Symbol Parameter Description
tkeygen Keygen/sec Test the key generation time of all PQC

algorithms
tsig Signs/sec Perform example signing operations with

all PQC algorithms and measure the
time

tverify Verify/sec Perform example verification operations
with all PQC algorithms and measure
the time

lenW Wallet size Measure the size of a Wallet account for
a user

lenT Tx size Measure the transaction size for a 1 coin
transaction between two accounts

lenB Block size Measure the block size for different num-
bers of transaction

tps TPS Measure the speed of the blockchain by
calculating the Transactions-per-second
for each algorithm

A. Experimental Setup
The experimental results for the quantum-secure

blockchain were tested on a computer with a Skylake
processor Intel Core i7 6.Generation i7-9750H, configured
to use its 6-cores running at 2,6 GHz, and 16 GB
DDR4 RAM memory. A second setup was created to
run a blockchain on embedded devices. We used the
Raspberry Pi 3b with a ARM Cortex-A53 CPU running
at 1,2 GHz. For the software implementation of the
post-quantum algorithms, we used the open-source C
library ”liboqs” from the Open-Quantum-Safe project [66].
Python 3 bindings for liboqs are provided on GitHub for
this library2 The classical algorithm ECDSA was used
from the standard Python cryptography library which
is a package that provides cryptographic recipes and
primitives to Python developers. XMSS was used from the
xmss-reference implementation3, companying RFC 8391,
XMSS: eXtended Merkle Signature Scheme. For Falcon in
public key recovery mode, a Python implementation of the
signature scheme Falcon was used[67]. The Remix IDE4

for Ethereum was the software tool to create and deploy
smart contracts. These smart contracts were written in
the programming language Solidity and the correctness
was verified by a Remix virtual machine.

B. Wallet, Transaction and Block Sizes
Transaction size. We measured the size of the blockchain

transactions for the set of PQC algorithms. Figure 6

2https://github.com/open-quantum-safe/liboqs-python
3https://github.com/XMSS/xmss-reference
4https://remix.ethereum.org/

compares the required memory space for a blockchain
transaction. The transaction size was calculated for a
1-coin transaction between two accounts. The value
field was filled with a number equivalent to 1 Ether
(1000000000000000000 Wei = 0xDE0B6B3A7640000).
The data field is 0 bytes since no smart contract was
added to the transaction. The gas limit is set to 21000
(i.e., 0x5208) and the average gas price of 15 Gwei (i.e.,
0x37E11D600) is assumed. As this is the first transaction
a wallet account produces, the transaction counter (nonce)
is set to 1 (0x01).

0 10000 20000 30000 40000 50000
Transaction size [Bytes]

SECP256K1

SECP256K1_PKR

Falcon-512

Falcon-1024

Falcon-512_pkr

Falcon-1024_pkr

Dilithium2

Dilithium3

Dilithium5

SPHINCS+-SHA2-128f-simple

SPHINCS+-SHA2-128s-simple

SPHINCS+-SHA2-192f-simple

SPHINCS+-SHA2-192s-simple

SPHINCS+-SHA2-256f-simple

SPHINCS+-SHA2-256s-simple

XMSS_MT_SHA2_20/2_256

Al
go

rit
hm

171

106

1598

3108

1358

2586

3767

5280

7222

17155

7923

35747

16307

49955

29891

422

Fig. 6: Size of a transaction with a value equivalent to 1
Ethereum

The results show that transactions on a quantum secure
blockchain are bigger than transactions with ECDSA. The
size increases to more than 10 times the classical size.
The smallest transactions are achieved when using the
XMSS algorithm in the blockchain. The best stateless
PQC algorithm is Falcon. Moreover, Falcon in PKR mode
can reduce the size even further. Huge transactions are
created by the SPHINCS+ algorithm.

Block size. The structure of a block is shown in table IV
(right). Figure 7 shows the block size that depends on
parameters and the number of transactions. The trans-
action structure and size from the previous figure 6 was
used to calculate the block size holding different numbers
of transactions.

As mentioned in the previous paragraph SPHINCS+

creates huge transactions which leads also to huge blocks.
The results in 7 illustrate again that XMSS has the
smallest size followed by Falcon and Dilithium. Table VIII
compares the sizes of the public key, private key and
signature. Moreover, it displays the sizes of a wallet,
transaction and block. When compared to the classical
cryptography algorithm ECDSA, the private and public
key sizes from SPHINCS+ and XMSS achieve the smallest
sizes. However, small signatures are achieved with Falcon
and XMSS. Small wallets are possible with SPHINCS+.
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TABLE VIII: Size evaluation with different PQC Algorithms. All sizes are in bytes.

Algorithm Private-key Public-key Signature Wallet Transaction Block
ECDSA SECP256K1 32 65 71 97 171 238
ECDSA SECP256K1 PKR 32 65 71 97 106 238
Falcon-512 1281 897 666 2178 1598 3234
Falcon-1024 2305 1793 1280 4098 3108 6254
Falcon-512 PKR 1281 897 666 2178 1358 2754
Falcon-1024 PKR 2305 1793 1280 4098 2586 5210
Dilithium2 2528 1312 2420 3840 3767 7572
Dilithium3 4000 1952 3293 5952 5280 10598
Dilithium5 4864 2592 4595 7456 7222 14482

SPHINCS+-SHA-256-128f simple 64 32 17088 96 17155 15884
SPHINCS+-SHA-256-128s simple 64 32 7856 96 7923 15884
SPHINCS+-SHA-256-192f simple 96 48 35664 144 35747 32652
SPHINCS+-SHA-256-192s simple 96 48 16224 144 16307 32652
SPHINCS+-SHA-256-256f simple 128 64 49856 192 49955 59820
SPHINCS+-SHA-256-256s simple 128 64 29792 192 29891 59820
XMSS-MT-SHA2_20/2_256 213 35 352 248 422 123

The smallest transactions and blocks are achieved with
Falcon and XMSS. Falcon with public-key recovery mode
can reduce the transaction and block size.

C. Speed of Cryptographic Algorithms

The speed test includes 15 different configurations
of algorithms: the baseline classical signature algorithm
ECDSA, three Dilithium configurations (Dilithium2/3
and 5), four Falcon implementations (Falcon-521/1024
and Falcon-512/1024 PKR), six SPHINCS+ implementa-
tions (SPHINCS+-SHA256-128/193/256 in modes s and f
and the XMSS algorithm (XMS_MT_SHA2_20/2_256).
ECDSA was chosen with elliptic curve SECP256K1. A
modified version of the Falcon reference code was the basis
for Falcon in public-key recovery mode. We measured the
time required for key generation, signing and verification

of the twelve cryptographic configurations and reported
them in table IX.

The performance was evaluated for different PQC NIST
algorithms and security levels, from NIST Level 1 (lowest)
to NIST Level 5 (highest). The results are obtained after
executing each algorithm 1000 times. This number was
used in previous works to evaluate the performance of
the PQC in electronic devices [42]. SPHINCS+-SHA-256
seems to be implemented incorrectly for key generation in
level 5 because the speed increases between security levels
3 and 5. This seems to be a bug in the liboqs library
that will be reported. In table IX the incorrect values are
marked in red.

XMSS-reference library can not be built on ARM
machines since some registers are defined differently. Using
PKR on the embedded device reduces the computational
speed noticeably. Results show that PQC algorithms have



TABLE IX: Speed evaluation of PQC algorithms on i7-9750H CPU and Raspberry Pi 3b.

Algorithm i7-9750H CPU ARM Cortex-A72
Keygen/sec Signs/sec Verify/sec Keygen/sec Signs/sec Verify/sec

ECDSA SECP256K1 1123,6 1204,8 1388,89 158,5 181,6 224,6
Dilithium2 33898,3 13698,6 32258,1 418,4 138,6 413,6
Dilithium3 21276,6 9090,9 23310,0 245,9 113,0 246,1
Dilithium5 13698,6 7692,3 14705,9 147,7 76,8 144,7
Falcon-512 169,6 4524,9 21929,8 6,7 32,8 1398,7
Falcon-1024 59,5 2336,5 11764,7 2,9 14,8 746,0
Falcon-512 PKR 171,2 4522,1 8576,3 29,5 3,0 5,3
Falcon-1024 PKR 60,4 2332,3 6410,3 12,2 1.4 2.4

SPHINCS+-SHA-256-128f simple 3008,7 156,9 1701,6 67,8 3,0 49,5
SPHINCS+-SHA-256-128s simple 38,0 5,0 1083,4 1,1 0,1 152,2
SPHINCS+-SHA-256-192f simple 1975,3 92,6 1177,9 46,3 1,8 34,2
SPHINCS+-SHA-256-192s simple 26,9 2,7 704,2 0,7 <0,1 101,1
SPHINCS+-SHA-256-256f simple 924,3 43,0 1006,7 18,1 0,8 33,8
SPHINCS+-SHA-256-256s simple 41,9 3,4 495,1 1,2 <0,1 68,5
XMSS-MT-SHA2_20/2_256 0.4 193.7 697.8 - - -

different benefits and drawbacks compared to classical
ECDSA. Overall PQC algorithms are fast and especially
Dilithium is faster than any other parameter set. There
is a clear difference between the performance on the
i7 CPU and the ARM Cortex-A53 CPU. The limited
computing power on the ARM processor lead to very
slow cryptographic operations. Using Falcon in public-
key-recovery (PKR) mode does not have any influence on
the speed of key generation and signature creation. The
signature process is only changed to extract the value s1
from a function already integrated in Falcon normal mode.
However, the verification time increases since the public
key must be calculated before the start of the verification
process.

D. Blockchain performance
High TPS values are the design goal of many

blockchains [49] [68] [69].

TPS =
τ

t
(7)

Where τ stands for a typical transaction on the blockchain
and t is the average time in seconds that passes until a
new transaction can be placed.

To measure the TPS value and compare the results of
the different algorithms we created two blockchain setups.
One setup utilizes normal computational performance and
one that uses embedded system devices (Rapsberry Pi
3b). Both setups act in a private blockchain network. The
following graphs show the results of the measurements we
perform on both setups.

We measure the maximum TPS value, the block size
during each mining epoch, the time to sign all transactions
and the time to verify all transactions. To reach the
maximum TPS value we run the blockchain at block
creation time of 1 second and measure transactions-per-
second. Adjusting the difficulty value of the mining process
automatically keeps the block creation time stable so that

every second a new block is mined and attached to the
blockchain.

On the first setup (Figure 8), we increased the number
of transactions that need to be processed by the blockchain
by 10 each second. This leads to a linear increase of
transactions in the blocks: 10,20,30,40,...,n transactions
per block.

Figure 8 (a) presents the TPS rate for each selected
signature algorithm. Without limitations, the TPS rate
would increase linearly over time. However, the algorithms
are bound at specific TPS rates and follow a horizontal
trend. The limitation factor can be seen in the diagrams
(b),(c) and (d): In 8 (b) the measured blocksize is displayed
for the current block at a specific time. Since the maximum
blocksize is limited to 10MB and some algorithms reach
this boundary, the number of TPS can only be as high
as the number of transactions at the blocksize limit.
Figure 8 (c) and (d) present the duration for the signing
and verifying process. If the signing or verification process
exceeds one second the cryptographic operation takes too
long to hold the requirement to attach every second a new
block.

We perform the same measurements on the embedded
system setup (Figure 9). However, due to the lack of
computing performance on the devices we increase the
number of transactions only by 1 (1,2,3,..., n transactions
per block) each second.

From these two measurements (corresponding to figure 8
and figure 9), we can obtain the maximum TPS rate
for each set of algorithms. In table X we list for both
setups the maximum TPS value which can be achieved
with the selected algorithm. In addition, for this TPS
value we present the size of the block, the time for
signing and the time for the verification process. Since
TPS are not infinite high we can see the limitations of
each parameter set(values marked in red). We excluded
SPHINCS+ as a useful candidate on the embedded system
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Fig. 8: Performance results for the blockchain setup with computer-based network. Each second the transactions added
to the queue are increased by 10 transactions.

experiments since the measurements on the computer
setup were not sufficiently good enough. We only focused
on the promising algorithms Falcon and Dilithium in the
experiments with the embedded systems setup.

If a quantum-secure blockchain runs on a computer-
based system the best choice is the Falcon algorithm.
However, when using embedded devices Dilithium archives
a higher TPS rate. With the ”s” version of SPHINCS+

we are not able to run the blockchain because signing
operations take longer than the block creation time (time
for signing > 1 second). In this case is mining faster than
transactions can be signed and prepared for mining.

Dilithium is limited by the huge signature sizes. The
blocks are too big and reach the block size limit of 10
MB. On the embedded setup for Dilithium the time
to sign is the bottleneck. If more than 150 (Level 1),
97 (Level 3) and 73 (Level 5) blocks are added to a
block the signing process takes too long. However, the
1-second block creation limit is also the limitation for
Falcon parameter sets. With Falcon, we can only attach
up to 31 on the computer setup and 14 on the embedded
setup transactions in a block. Falcon in PKR mode has
no drawbacks in performance compared to normal Falcon,

but the block sizes are smaller. On the Raspberry Pi,
the time for the additional recovery operation during the
verification process limits the algorithm’s capabilities. The
transactions-per-second with XMSS are also limited by its
long signing times.

E. PQC in Smart Contracts
The quantum-secure blockchain can be used with smart

contracts. These smart contracts can be used to create
decentralized applications. Authentication of users is one
of the applications for smart contract platforms. It is
typically used to verify someone’s identity before giving
access to resources that only a specific person is allowed
to use. While this can be implemented by sharing secret
keys between the user and the authenticating party, or
by relying on users bio-metrics, a blockchain can be used.
Figure 10 shows the use of the blockchain for a sample
setup of user authentication. It relies on the Distributed
Single Sign-On (DSSO) concept [70]. It comprises two
steps: a registration procedure and ii) a login procedure.

In the registration procedure, the user’s wallet account
is used to deploy a smart contract that stores the public
key. If deployed, everyone can call the smart contract and
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Fig. 9: Performance results for the blockchain setup with embedded systems based (Raspberry Pi 3b) network. Each
second the transactions added to the queue are increased by 1 transaction.

TABLE X: Performance results of PQC algorithms on i7-9750H CPU and Raspberry Pi 3b.

Parameter Set i7-9750H CPU ARM Cortex-A72
TPS Block [Byte] tsign [sec] tverify [sec] TPS Block [Byte] tsign [sec] tverify [sec]

ECDSA SECP256K1 1220 213316 0.997 0.827 150 25664 0.875 0.673
Falcon-512 >3000 4765056 0.658 0.141 31 51204 0.982 0.021
Falcon-1024 2260 7088556 0.989 0.192 14 46671 0.952 0.017
Dilithium2 2640 10022916 0.186 0.077 150 561468 0.942 0.336
Dilithium3 1880 10033936 0.209 0.083 97 517574 0.926 0.360
Dilithium5 1380 10112236 0.190 0.093 73 534538 0.993 0.468

SPHINCS+-SHA-256-128f 160 3088116 0.995 0.096 - - - -
SPHINCS+-SHA-256-128s 0 158516 0.127 <0.001 - - - -
SPHINCS+-SHA-256-192f 80 3574836 0.818 0.067 - - - -
SPHINCS+-SHA-256-192s 0 326196 0.236 <0.001 - - - -
SPHINCS+-SHA-256-256f 40 2997396 0.827 0.031 - - - -
SPHINCS+-SHA-256-256s 0 597876 0.202 <0.001 - - - -
XMSS-MT-SHA2_20/2_256 60 33876 0.827 0.163 - - - -



Fig. 10: The concept for authentication with smart con-
tracts

get the user’s public key. If the user wants to log in, he uses
the contract ID and timestamp to generate a signature by
using his private key. The service provider can verify if
the signature is correct and compare calling the smart
contract to get the public key. If both match, he can give
access to the user. For the quantum-secure blockchain,
the sizes of the public keys and signatures increase. This
leads to more storage in block transactions and the smart
contract size and can influence the amount of gas needed
to deploy and call the smart contract.

Table XI shows the size of the code snipes. The public
key in the smart contract is PEM encoded, adding infor-
mation at the key’s beginning and end. Besides classical
cryptography (ECDSA) the shortest size is achieved using
SPHINCS+ and XMSS. This relates to the short public
key sizes of SPHINCS+. However, even with large key sizes
of Dilithium or Falcon, it is possible to run the code on the
quantum-secure blockchain, but the disadvantage is that
the deployment of the smart contract is more expensive
due to the sizes which are up to 6 times larger.

TABLE XI: Size comparison for a Smart Contract for
authentication. All sizes in bytes.

Algorithm Size of Smart Contract [bytes]

ECDSA SECP256K1 150
Dilithium2 1429
Dilithium3 2069
Dilithium5 2709
Falcon-512 1014
Falcon-1024 1910
Falcon-512 PKR 1014
Falcon-1024 PKR 1910

SPHINCS+-128s 149
SPHINCS+-192s 165
SPHINCS+-256s 181
XMSS-MT-SHA2_20/2_256 330

VIII. Discussion

In this study, our research aimed to uncover the primary
challenges associated with developing a quantum-secure
blockchain using embedded systems and Post-Quantum
Cryptography (PQC). Specifically, we determined which
PQC algorithms are most suitable for this application and
identify the limitations and constraints of each algorithm.
Our investigation also involved assessing the necessary
adaptations when transitioning from classical cryptogra-
phy to PQC. To achieve these objectives, we conducted an
in-depth analysis and devised a blockchain design to eval-
uate the behavior, performance, and sizes of a quantum-
secure blockchain implemented on embedded systems.
Additionally, we examined the impact of PQC on smart
contracts within a post-quantum blockchain framework.
Notably, we integrated the public-key recovery feature
with Falcon to reduce transaction sizes, further enhancing
the efficiency of the blockchain system. Overall, our
findings shed light on the complexities and considerations
involved in implementing a quantum-secure blockchain on
embedded systems, offering valuable insights for future
research and development in this field.

Our results show that XMSS has the smallest trans-
action and block sizes but being a stateful algorithm.
Falcon is the best stateless algorithm and has even
smaller transaction and block sizes with PKR mode. For
a blockchain, the verification time is more important than
the time for signing Results show that user only signs a
transaction once, while the signature is verified multiple
times by other network nodes. All measurements of the
PQC algorithms are aligned with the results reported in
the Open Quantum Safe project [22]. Comparing speed
results in table IX to the values of the OQS project,
we have a slightly better performance for all algorithms
with our computer setup. PQC algorithms are fast and
especially Dilithium is faster than any other parameter
set. The XMSS key generation is very slow. SPHINCS+ is
not useful on embedded systems because the algorithm
performs very slow for signing operations. The PKR
mode of Falcon reduces speed noticeably, especially on
embedded systems. Dilithium is fast and on the Raspberry
Pi 3b it achieves comparable results to classical ECDSA.

With high performance blockchain setups best results
are achieved by using the PQC algorithm Falcon. However,
when using embedded devices, Dilithium archives a higher
TPS rate. This is due to the slow signing performance
of the Falcon algorithm on the ARM CPU. During our
experiments we found out that Dilithium is limited by the
huge signature sizes.

Currently, blockchains employ ECDSA in public key
recovery mode, allowing for the derivation of the public
key from the signature alone, thus optimizing memory
usage. Falcon offers a similar public key recovery feature,
presenting a potential alternative. However, further re-
search is warranted to address security concerns, as this



mode is not part of the NIST standardization process.
While XMSS presents an appealing signature option due

to its configurable nature, its implementation complexity
poses challenges. Managing private key utilization is cru-
cial to prevent scheme insecurity, as XMSS implementa-
tions typically allow a maximum of 1024 signatures [30].
Integrating PQC into blockchain will significantly increase
block size and demand more resources, such as ledger
capacity and larger smart contracts. This results in fewer
transactions per block and a slowdown in transaction
processing rates. Despite XMSS’s smaller key sizes, its
signature sizes and implementation complexity hinder
widespread adoption in blockchain.

We demonstrate the authentication of users through
smart contracts on a quantum-secure blockchain, success-
fully executing verification operations within them. Due
to the large code size, pre-deployment of program code
(including cryptographic operations) in Virtual Machines
(VMs) is necessary. Expanding the block size limit may
alleviate issues caused by large transaction sizes. For
instance, Bitcoin Cash can increase its block size from 1
MB to 8 MB or 32 MB. However, arbitrary expansion
is impractical as it escalates bandwidth and storage
requirements, conflicting with decentralized computing
goals and slowing down transactions per second (TPS).

The transition of classical blockchains to future
quantum-secure variants must address data legacy. Ex-
isting coins or tokens stored on old addresses, protected
by outdated key pairs, require updating to new quantum-
resistant key pairs. Implementing PQC capabilities and
introducing new features to existing blockchains is com-
plex and requires hard forks, necessitating adoption of
new software versions by the network. While exploring
PQC with current blockchain solutions is challenging,
it’s crucial to develop strategies and mechanisms for a
smoother transition to quantum-secure mechanisms. Core
developer teams maintaining open-source networks should
commit to this task.

IX. Summary and Conclusions
A quantum-secure blockchain is imperative for ensuring

the enduring security of applications reliant on blockchain
technology. In this work, we introduce a quantum-secure
blockchain framework tailored for exploring various Post-
Quantum Cryptography (PQC) algorithms within embed-
ded systems, including the utilization of PQC algorithms
in public key recovery mode.

Our findings reveal that integrating PQC algorithms
into blockchain poses challenges due to the significantly
larger key sizes: PQC public key sizes incur overhead
ranging from 50% to 3988% compared to classical ECDSA
key sizes (65 bytes), while signature sizes experience
overhead ranging from 972% to 41961% of the ECDSA
signature size. Nonetheless, we demonstrate that the
public key recovery mode may facilitate the integration
of PQC into blockchain. Specifically, Falcon in public

key recovery mode reduces public key and signature sizes
by 15% for low security levels (level I) and by 17% for
high security levels (level V). Additionally, we evaluate
the performance of PQC algorithms for key generation,
signing, and verification operations on both computers and
embedded devices. Our results indicate that Dilithium sur-
passes other PQC algorithms (Falcon and SPHINCS+) on
embedded devices, even outperforming classical ECDSA
for signing and verification operations.

In summary, our investigation into blockchain perfor-
mance on embedded systems identifies Falcon-512 as the
most suitable algorithm, offering robust security and com-
putational efficiency, with XMSS serving as a viable state-
ful alternative. Dilithium exhibits superior transactions-
per-second (TPS) rates on embedded devices compared
to Falcon due to Falcon’s slower signing performance on
ARM CPUs. While Dilithium’s computational efficiency
is notable, its large signature sizes present challenges.
Moreover, we integrate smart contract functionality into
the quantum-secure blockchain, demonstrating the impact
of Post-Quantum Cryptography (PQC) on authentication
within smart contracts and highlighting the feasibility
of employing quantum-secure blockchain in embedded
system environments.
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