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Abstract. FRI is a cryptographic protocol widely deployed today as a building
block of many efficient SNARKs that help secure transactions of hundreds of
millions of dollars per day. The Fiat-Shamir security of FRI—vital for understanding
the security of FRI-based SNARKs—has only recently been formalized and
established by Block et al. (ASIACRYPT ’23).
In this work, we complement the result of Block et al. by providing a thorough
concrete security analysis of non-interactive FRI under various parameter settings
from protocols deploying (or soon to be deploying) FRI today. We find that these
parameters nearly achieve their desired security targets (being at most 1-bit less
secure than their targets) for non-interactive FRI with respect to a certain security
conjecture about the FRI Protocol. However, in all but one set of parameters, we
find that the provable security of non-interactive FRI under these parameters is
severely lacking, being anywhere between 21- and 63-bits less secure than the
conjectured security. The conjectured security of FRI assumes that known attacks
are optimal, the security of these systems would be severely compromised should
a better attack be discovered. In light of this, we present parameter guidelines
for achieving 100-bits of provable security for non-interactive FRI along with a
methodology for tuning these parameters to suit the needs of protocol designers.

1 Introduction

Fast verification of computation and statements from untrusted parties is a key problem at
the heart of proof systems and complexity theory. Given the vast amount of high-impact
applications in verifiable computing, there has been a Cambrian explosion of research on
Succinct Non-interactive ARguments of Knowledge (SNARKs) and their applications. A
common blueprint for SNARK construction is: (1) construct a public-coin3 interactive
protocol; and (2) remove interaction via the Fiat-Shamir (FS) transformation [19].

However, it is well-known that the FS transformation is not secure [3,20,11] when
applied to many-round (i.e., super-constant) protocols, even in the random oracle model.
When considering an 𝑟-round protocol with 𝜆-bits of interactive security, the non-
interactive protocol built from the FS transformation of this interactive protocol often
has roughly 𝜆 − 𝑟 bits of non-interactive security—a significant loss.4 Moreover, the
number of rounds 𝑟 can be large enough to rival 𝜆, potentially resulting in a completely
insecure non-interactive protocol. Therefore, it does not suffice to prove and provide

3 An interactive protocol is public-coin if all messages sent by the verifier are sampled uniformly
at random and are independent of all prior protocol messages.

4 See Remark 2 for a discussion on the difference between these notions.



security analysis only for interactive versions of protocols and then disregard the impact of
Fiat-Shamir, as many protocols have, including all FRI-based SNARKs. A non-interactive
security analysis is necessary before the deployment of such protocols in settings where
protocol failure can have significant financial impacts.

Once a protocol’s non-interactive security has been determined, a number of additional
key considerations need to be made before deployment, including adversarial capabilities,
outcomes, and motivations for attacking the protocol. In financial applications specifically,
this can often be analyzed as follows: does breaking the protocol’s security cost more
than the monetary benefit possible from doing so? A rational actor analysis would always
want to answer this question in the affirmative. However, with the growing complexity of
protocols and the reduced cost of computational resources, concrete security analysis of
protocols requires more attention.

A recent work of Block et al. [12] has begun to address this gap (a similar analysis
for ethSTARK [28] was also published concurrently and independently) for the FRI (Fast
Reed-Solomon Interactive Oracle Proof of Proximity) Protocol [6] and related SNARKs
by analyzing FS security of FRI. This was an important step forward since FRI serves as
a low-degree proximity testing subroutine for many practical proof systems deployed
today, including several that secure millions of dollars of transactions per day [24].

However, current protocols deploying FRI determine parameters based on interactive
security. Moreover, parameters are selected based on conjectured (information theoretic)
security of FRI [28], rather than the best known provable (information-theoretic) security
bounds for FRI [7]. The conjectured security of FRI boils down to the assumption that
the best known attacks on an information-theoretic proof system related to FRI are
optimal [28]. If this conjecture holds, then FRI parameters under this conjecture have
many real-world performance benefits: (1) much smaller proof sizes in practice; and (2)
smaller field size requirements, increasing prover efficiency. These are the main reasons
many deployed implementations assume the conjecture to be true. However, our work
highlights the difference between conjectured and provable security. Though no known
attacks contradict this conjecture, there is a very large gap between this conjectured
security and the provable security of FRI. In particular, if an attack is ever found against
the conjectured security, there is a huge loss in security when reverting to provable
security guarantees of FRI.

There is another less aggressive security conjecture about the soundness of FRI given
in [7]. This conjecture is weaker than the conjecture assumed by practitioners today.
However, if the aggressive conjecture used today is proven false, one may still hope to
prove stronger bounds from a conjecture presented in [7]. This less aggressive conjecture
still has the benefits described above (though to a lesser extent) when compared with
provable security. However, the same problem remains if an attack was found against
this conjecture; i.e., there is still a huge loss in security between this less aggressive
conjecture and provable security guarantees of FRI.

1.1 Our Results

We build on and complement Block et al.’s results by analyzing the concrete security of
FRI-based protocols under a variety of parameter settings that are adopted in practice by
real-world systems that deploy (or will soon deploy) FRI in various Layer-2 Ethereum
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projects [30,26]. We examine these parameter settings under both the best provable
security bounds for FRI [7] along with a certain conjectured information theoretic
security bound for FRI given in [28]. We find that most of these protocols have identified
their deployment security parameters based purely on an analysis of the interactive
security of the chosen protocol, without accounting for the soundness loss inherent in the
non-interactive variant. We believe this happened because no formal treatment of FRI’s
concrete security has been put forward, which makes it challenging for practitioners
to determine the exact security of their protocols. The result is that the incentive for
attackers to improve on the best-known attacks is close to a billion dollars (Tab. 1).

As we note in this work, such an analysis is challenging for several reasons: (1)
multiple parameter choices (such as the field size, Reed-Solomon code parameters,
number of queries, etc.) all drastically affect the soundness of the resulting protocol
and the size of the resulting non-interactive proofs; (2) some (information theoretic)
soundness conjectures are poorly understood; and (3) many implementations incorporate
engineering optimizations that may have unpredictable impacts on protocol soundness.
We are the first work to address all of these issues. Our analysis aims to provide
practitioners with a ready reckoner to set their FRI parameters according to their desired
level of security.

Summary of Results. We summarize our results on the current state of deployed
non-interactive FRI protocols, with respect to their target security level, provable non-
interactive security level, and conjectured non-interactive security level, in Tab. 1. For
all settings of parameters in the projects we examine, the non-interactive conjectured
security of FRI achieved by these parameters is at most 1-bit below their security target.
In contrast, we found that only a single deployed project includes parameter settings that
achieve the designers’ desired security targets with respect to provable security (or are
at most 1-bit less than their target); all other systems have a gap between provable and
conjectured security that can range from 21 to 63-bits of security, in some cases placing
the security of the entire system at risk from realistic attackers. Following is a list of
applications where these protocols are used:

– zkEVMs/Rollups. FRI-based SNARKs are currently used in various Layer-2
Ethereum projects [30,26] to help secure hundreds of millions of dollars of assets
[24]. These protocols improve scalability by executing/processing multiple transac-
tions/smart contract logic off-chain and then submit an updated state as well as a
proof of correctness for the update. A malicious prover that can forge a proof for this
application means that invalid transaction/smart contract logic can be executed and
invalid state updates are accepted. This can result in a loss of funds.

– Non-Custodial Exchanges. Here, the protocol uses cryptographic proofs to attest to
the validity of a batch of transactions and updates a commitment to the state of the
exchange on-chain. A malicious prover that can forge a proof for this application
means that invalid transaction/asset trading logic can be executed and invalid state
updates are accepted. This can result in a loss of funds.

– Verifiable Computation & Delegation. In general, SNARKs allow one to prove the
correct execution of any computation. Some projects, such as RISC Zero [31], aim to
deploy FRI-based SNARKs to prove the correct execution of arbitrary computation,
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such as any application logic. A malicious prover that can forge a proof for this
application means that an invalid execution of computation is accepted. The impact
of this depends on the particular application.

Table 1. Security assessment of Various FRI-based SNARK Projects. The difference in the targeted
and provable security of non-interactive FRI is highlighted with bold text.

Org Repo Target FRI
Security Bits

Provable FS-FRI
Security

Conjectured
FS-FRI Security Impact

Polygon Plonky2 100 38 99 used by 100+
repositories

Starkware
stone-prover 96 54 99

$220M
(ImmutableX +

Sorare)★

SHARP Verifier 96 59 95 Smart contract
execution

dYdX dYdX Protocol 80 52 79 $318M on
exchange★

Polygon Miden Miden-VM 96/128 45/67 96/128 zkVM in testing

Lambda Class lambda works 80/100/128 81/99/127 81/101/129 Library for
SNARKs

RISC Zero RISC Zero 100 37 99 zkVM

Matter Labs era-boojum 100 50 99
To replace
zkSync-Era
($841M)★

★ As of May 6, 2024, 00:00 UTC.

Bits of Security. The number of bits of security for a protocol indicates the amount of
computational work/cost for an adversary to break the security. Usually, 𝜆-bit security
implies that the expected number of operations for an adversary to break soundness
is 2𝜆 for proof systems.5 The protocols that utilize FRI are usually IOPs compiled to
non-interactive SNARKs using cryptographic hash functions as random oracles. Given
this, our analysis also highlights the explicit trade-off between adversarial query/hashing
power and soundness error of the non-interactive FRI protocol.

Limitations of Our Analysis. Given that FRI is deployed as a sub-routine in the various
systems we examine in this work (and many other systems as well), our analysis indicates
the security level only for the FRI sub-routine. All parts of the protocol need to be
similarly analyzed to obtain an end-to-end concrete security analysis. We hope our work
encourages end-to-end concrete security analyses of non-interactive protocols deployed
in practice. We also do not make any progress on settling the conjectures on the security
of FRI, but hope that this work serves as a clear indication for why these conjectures
serve as honeypots to potential attackers. If an attacker comes up with a better attack,
they could potentially attack multiple deployed projects presented in Tab. 1.

5 A similar definition for bits of security is given in the ethSTARK documentation [28].
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1.2 Related Work

The work most related to ours is the updated ethSTARK documentation [28]. They show
both interactive and Fiat-Shamir security of FRI and their ethSTARK protocol, along
with various parameter settings to achieve a variety security levels. Next would be the
work of Block et al. [12], who give a formal analysis of the Fiat-Shamir of the FRI
protocol and some discussion on concrete parameter choices; our work expand greatly
upon thier discussion. Haböck [21] also gives an extensive parameter analysis for FRI,
but in the context of interactive security and the DEEP-FRI method [9]. Ben-Sasson et al.
[4,5] investigate the concrete security of probablistically checkable proofs (PCPs) and
PCPs of proximity, protocols that are closely related to interactive oracle proofs [8] and
IOPs of Proximity [6], with the goal of improving their concrete efficiency. Other works
examining the concrete security of cryptographic protcols include [23,22,18].

The Fiat-Shamir (FS) transformation [19] has been studied and used extensively
in the context of removing interaction from interactive protocols. It is known that the
FS transformation is secure when applied to secure protocols with a constant number
of interaction rounds in the random oracle model (ROM) [19,25,1]; however, it is also
well-known that there exist protocols which are FS-secure in the ROM but insecure for
any concrete instantiation of the random oracle [3,20,11]. Moreover, there are several
natural classes of secure interactive protocols that become insecure after applying the FS
transformation (e.g., sequential repetition of a protocol and parallel repetition of certain
classes of protocols) [14,33,2]. It is also often the case that real-world implementations
of the FS transformation are done incorrectly, leading to vulnerabilities of deployed
systems [10,17]. Nonetheless, the FS transformation is widely deployed and a critical
piece of the majority of SNARG or SNARK constructions.

2 Preliminaries

Throughout this work, we let F denote a finite field of prime 𝑝 elements and let
F× := F \ {0} denote the multiplicative group of F and we let F[𝑋] denote the set of all
univariate polynomials with coefficients in F and indeterminate 𝑋 , and we let F⩽𝑘 [𝑋]
(resp., F<𝑘 [𝑋]) denote the set of all univariate polynomials of degree at most 𝑘 (resp.,
degree less than 𝑘). We say that 𝐿 ⊆ F× is a multiplicative subgroup if it is closed under
multiplication; i.e., if 𝑥, 𝑦 ∈ 𝐿 then 𝑥 · 𝑦 ∈ 𝐿. For any finite set 𝑆, we let 𝑠 $← 𝑆 denote
the process of sampling an element of 𝑆 uniformly and independently at random.

For two vectors 𝑢, 𝑣 ∈ F𝑛, we let Δ(𝑢, 𝑣) denote the relative Hamming distance
between 𝑢 and 𝑣, defined as Δ(𝑢, 𝑣) := |{𝑢𝑖 ≠ 𝑣𝑖 | 𝑖 ∈ [𝑛]}| /𝑛. Moreover, for a set of
vectors 𝑆 ⊂ F𝑛 and any vector 𝑢 ∈ F𝑛, we define Δ(𝑢, 𝑆) = Δ(𝑆, 𝑢) := min𝑣∈𝑆{Δ(𝑢, 𝑣)}.
For 𝛿 ∈ (0, 1), we say that 𝑢 is 𝛿-far from 𝑆 if Δ(𝑢, 𝑆) ⩾ 𝛿; otherwise, we say that 𝑢 is
𝛿-close to 𝑆. Equivalently, 𝑢 is 𝛿-far from 𝑆 if Δ(𝑢, 𝑣) ⩾ 𝛿 for all 𝑣 ∈ 𝑆, and 𝑢 is 𝛿-close
to 𝑆 if there exists 𝑣∗ ∈ 𝑆 such that Δ(𝑢, 𝑣∗) < 𝛿.

2.1 Reed-Solomon Codes

Reed-Solomon (RS) codes [27] are a well-studied and widely used class of linear error
correcting codes. In this work, we consider RS codes parameterized by a finite field F, a
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multiplicative subgroup 𝐿 ⊆ F× , and a degree bound 𝑑 ∈ N. The code RS[F, 𝐿, 𝑑] is
defined as RS[F, 𝐿, 𝑑] := {( 𝑓 (𝑧))𝑧∈𝐿 ∈ F |𝐿 | | 𝑓 ∈ F<𝑘 [𝑋]}. Equivalently, RS[F, 𝐿, 𝑑]
is 𝑑-dimensional subspace of F |𝐿 | , where each vector is uniquely defined as the evaluation
of a polynomial in F<𝑑 [𝑋] at all points in 𝐿 (in some canonical order). We assume that
|𝐿 | = 2𝑛 and 𝑑 = 2𝑘 are integer powers of two with 𝑘 ⩽ 𝑛/2. The rate of the RS code is
defined as 𝜌 := 𝑑/|𝐿 | = 2−(𝑛−𝑘 ) . For our purposes, we require some additional structure
on the subgroup 𝐿: 𝑥 ∈ 𝐿 ⇐⇒ 𝜔𝑖

𝑛 · 𝑥 ∈ 𝐿 for all 𝑖 ∈ [𝑛] where 𝜔𝑛 is a primitive 𝑛-th
root of unity in F. We refer to such a subgroup as a smooth multiplicative subgroup.

2.2 Non-interactive Proofs and Concrete Security

In this work, we focus extensively on analyzing the concrete security of non-interactive
(random oracle) proofs, defined below.

Definition 1 (Non-interactive Random Oracle Proofs [8]). A non-interactive random
oracle proof (NIROP) for relation R with soundness error 𝜀 is a tuple Π = (P,V) of
probabilistic oracle algorithms such that the following two properties hold.

1. Completeness. For every (𝑥;𝑤) ∈ R and 𝜅 ∈ N,Pr[V𝐻 (𝑥, 𝜋) = 1 | 𝐻 $←U(𝜅), 𝜋 ←
P𝐻 (𝑥, 𝑤)] = 1.

2. Soundness. For every 𝑥 ∉ L(R), 𝑄-query ˜︁P, and 𝜅 ∈ N, Pr[V𝐻 (𝑥,˜︁𝜋) = 1 | 𝐻 $←
U(𝜅),˜︁𝜋 ← ˜︁P𝐻 (𝑥)] ⩽ 𝜀( |𝑥 |, 𝑄, 𝜅), where L(R) is the language corresponding to
the relation R.

Remark 1. In practice, the random oracle 𝐻 is heuristically replaced with a concrete
hash function (e.g., SHA256). However, for analysis purposes, we work in the random
oracle model.

In this work, we measure the concrete security of NIROPs using bits of security.

Definition 2 (Bits of Security [28]). Let Π be a non-interactive random oracle proof
with soundness error 𝜀(𝑄, 𝜅) relative to a random oracleH : {0, 1}∗ → {0, 1}𝜅 . Then
Π has 𝜆 bits of security if for any 𝑄 ∈ N we have 𝑄/𝜀(𝑄, 𝜅) ⩾ 2𝜆.

Remark 2. Intuitively, the bits of security of a system is (logarithm) of the expected
amount of work an attacker has to perform to break a system with probability close
to 1. In other words, in the random oracle model, a system has 𝜆-bits of security if
any adversary making log(𝑄) = 𝑜(𝜆) query succeeds in breaking the system. When
analyzing the Fiat-Shamir security (i.e., our setting of non-interactive security), this
intuition and Def. 2 happen to coincide, but this is not always the case. For example,
when analyzing the bits of security of hash functions, any hash function achieving 𝜆-bits
of security must at least have 2𝜆-bit digests due to Birthday attacks.

Moreover, this notion is different from bits of security for interactive protocols.
Roughly speaking, an interactive protocol has 𝜆-bits of security if the success probability
of any valid attacks (e.g., computationally unbounded or bounded) is at most 2−𝜆. This
is another implicit assumption made in practice, that 𝜆-bits of interactive security are
preserved under Fiat-Shamir, a statement that is not true in general.
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3 Non-interactive Security of the FRI Protocol

The FRI protocol is a logarithmic round interactive oracle proof of proximity [6] in
which a (computationally unbounded) prover P convinces a (computationally weak)
verifier V that a function 𝑔 ∈ F𝑁 known by P is 𝛿-close to RS[F, 𝐿, 𝑑], where |𝐿 | = 𝑁 .
FRI is widely deployed as a sub-protocol in many SNARKs (cf. Tab. 1) due to its poly-
logarithmic sized proofs (once compiled into a SNARK) and plausible post-quantum
security. For a complete description of the FRI protocol (taken from [12]), see the full
version of our work.

We are interested in the non-interactive security of various real-world deployments
of the FRI protocol. By non-interactive security, we mean specifically the bits of security
(Def. 2) achieved by various deployments of FRI. In practice, FRI transformed into a
non-interactive proof via a variant of the Fiat-Shamir transformation, known as the BCS
transformation [8]. Prior to the work of Block et al. [12], it was not known whether the
FRI protocol remained secure after applying the BCS transformation due to the fact
that FRI has a super-constant number of rounds (with respect to the length of the input).
Block et al. proved that the FRI protocol satisfied a stronger notion of security known
as round-by-round soundness [14], which implies non-interactive security of FRI after
applying the BCS transformation [16], as given by the following lemma.

Lemma 1 ([16]). Let (P,V) be an interactive protocol and let (P,V) be the non-
interactive random oracle proof obtained by applying the BCS transformation to (P,V).
If (P,V) has round-by-round (RBR) soundness error 𝜀, then for any query upper bound
𝑄 and random oracle output length 𝜅 ∈ N, (P,V) has (adaptive) soundness error
𝜀′ = 𝑄𝜀 + 3(𝑄2 + 1)/2𝜅 .

The exact definition of round-by-round soundness is not essential to understanding
this work; however, we include its definition (as well as a more thorough treatment of
interactive protocols) in the full version of our work.

One of the key contributions of Block et al. [12] was establishing bounds on the RBR
soundness error of the FRI protocol. In particular, the bounds they obtain vary depending
on two key contexts, which we discuss next. First, they establish bounds utilizing both the
best provable security analysis FRI (due to [7]), and the conjectured security of FRI (due
to [28]). Second, in the context of the batched FRI protocol (discussed in this section),
they obtain bounds that depend on the type of batching used.

3.1 Provable & Conjectured Security of FRI

The RBR soundness error of FRI, which we denote as 𝜀
(FRI)
(rbr) , changes drastically

depending on whether one utilizes the best-known provable soundness guarantees for the
FRI protocol, or if one utilizes the conjectured security of FRI. As such, we state two
separate theorems bounding 𝜀

(FRI)
(rbr) and use them in our security analyses. We begin with

the best provable bounds.

Theorem 1 ([12]). Let F be a finite field, 𝐿0 ⊂ F× be a smooth multiplicative subgroup
of size 2𝑛, 𝑑0 = 2𝑘 , 𝜌 = 𝑑0/|𝐿0 | = 2−(𝑛−𝑘 ) , and ℓ ∈ N. For any integer 𝑚 ⩾ 3,
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𝜂 ∈ (0,√𝜌/(2𝑚)), and 𝛿 ∈ (0, 1 − √𝜌 − 𝜂), with respect to RS[F, 𝐿0, 𝑑0], the FRI
protocol has round-by-round soundness error

𝜀
(FRI)
(rbr) = max

{︃
(𝑚 + 1/2)7 · |𝐿0 |2

3𝜌3/2 · |F|
, (1 − 𝛿)ℓ

}︃
. (1)

Next, we state the RBR soundness error of FRI with respect to the ethSTARK
conjecture about the security of FRI.

Conjecture 1 ([28]). Let F be a finite field, 𝐿0 ⊂ F× a smooth multiplicative subgroup
of size 2𝑛. For any 𝜌 ∈ (0, 1 − 1/|F|), 𝑑0 = 𝜌 · |𝐿0 |, ℓ ∈ N, and any 𝛿 ⩽ 1 − 𝜌,
for any function 𝐺0 : 𝐿0 → F that is 𝛿-far from RS[F, 𝐿0, 𝑑0], the FRI protocol has
round-by-round soundness error

𝜀
(FRI)
(rbr) = max

{︁
1/|F|, (1 − 𝛿)ℓ

}︁
. (2)

Remark 3. The actual ethSTARK conjecture [28] is related to another protocol and “Toy
Problem” related to FRI, and not the actual FRI protocol itself. However, the parameters
of FRI in various deployments are with respect to this specific conjecture (whether
these deployments actually use the variant of FRI the conjecture relates to). As such,
[12] directly adapt the ethSTARK conjecture to the RBR soundness analysis of the
FRI protocol. For completeness, we include the discussion from [12] about the actual
ethSTARK conjecture in the full version of our work.

With respect to Thm. 1, Conj. 1 differs in two key ways. First, the proximity parameter
𝛿 in Conj. 1 can be as large as 1 − 𝜌, in contrast to 𝛿 < 1 − √𝜌 in the provable security
setting. In every system we examined, 𝛿 is taken to be exactly 1 − 𝜌, which decreases
proof sizes by allowing for fewer verifier queries to reach targeted bits of security. Second,
the error term 1/|F| is orders of magnitude less than the provable security error term
(𝑚 + 1/2)7 |𝐿0 |2/(3𝜌3/2 |F|).

3.2 Grinding

A common proof-size optimization technique used with FRI is called grinding. Grinding
is the process of having an honest prover perform a (mildly hard) proof of work during
any round of the protocol, which is captured by a grinding parameter 𝑧. In the FRI
protocol, grinding adds one more round of interaction just before the final round of
the protocol. During this round, the prover sends some message 𝑚pow to the verifier,
who then responds with a random string 𝑐pow ∈ {0, 1}𝑧 . Then the prover and verifier
proceed with the remainder of the protocol, and the verifier now accepts if and only if
(1) the original FRI verifier accepts; and (2) 𝑐pow = 0𝑧 (i.e., is the all-zeros string). Now
when compiling the protocol into a non-interactive argument via the Fiat-Shamir/BCS
transformation, this grinding corresponds to the prover computing multiple values of
𝑚pow and querying the random oracle at 𝑚pow until the first 𝑧-bits of the random oracle
output are identically 0. See [28, Section 6.3] for more details.

As shown by ethSTARK [28], performing 𝑧-bits of grinding in round 𝑖 of an interactive
protocol reduces the round-by-round soundness error of that round by 2−𝑧 ; in the context
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of FRI, this reduces the round-by-round soundness error of the query phase from (1− 𝛿)ℓ
down to (1 − 𝛿)ℓ · 2−𝑧 (cf. [28, Theorem 6]). We use this fact in our analysis since
nearly all works we examined incorporate grinding into their implementation of FRI
because grinding reduces the number of verifier queries ℓ that need to be performed,
directly reducing the proof sizes of non-interactive FRI. We refer the reader to [28] for
an extensive analysis of how grinding affects the soundness of interactive protocols.

3.3 Other FRI Optimizations

There are three optimization techniques which are widely used in practice that we do not
consider in our analysis, but mention here for completeness.

Batched FRI. Often in practice, one needs to run FRI on many different functions
𝐹1, . . . , 𝐹𝑡 ∈ F[𝑋] and prove their proximity simultaneously. Batched FRI allows one
to prove simultaneously that all 𝑡 functions 𝐹𝑖 are 𝛿-close to the same RS code (e.g.,
see [7,28]), rather than run 𝑡 independent instances of FRI. The Batched FRI protocol
essentially adds one more round to the FRI protocol where the verifier will send uniformly
random challenges 𝛼𝑖 ∈ F and then run the FRI protocol on the new function𝐺 =

∑︁
𝑖 𝛼𝑖𝐹𝑖 .

A common way to save on communication cost/proof size is to sample a single 𝛼 and set
the rest of the randomness as 𝛼𝑖 = 𝛼𝑖 .

In our analysis, we do not consider the Batched FRI protocol in order to provide both
a simple and best-case analysis, since:

– the number of functions 𝑡 batched in different projects widely varies;
– for both Batched FRI variants (𝛼𝑖 vs 𝛼𝑖), batching only increases the proof sizes by

(roughly) an additive factor proportional to 𝑡 (i.e., Batched FRI amortizes well); and
– communication-saving Batched FRI (𝛼𝑖) has roughly log(𝑡)-bits less security than

plain FRI or regular Batched FRI [7,28,12].

Note that the above security loss is present in any project that uses Batched FRI with
a single random challenge, and occurs for both the provable and conjectured security
bounds for FRI. Thus, to simplify our analysis, as well as present the best-case bits of
security, we omit analyzing Batched FRI in systems currently deploying it.

Larger FRI Folds. In the FRI protocol, every round essentially reduces a claim about
a degree 𝑑 polynomial to one about a degree 𝑑/2 polynomial; this continues for a
logarithmic number of rounds until the degree is constant (i.e., a constant polynomial).
This degree reduction can be thought of as “folding together” the even and odd halves of
a polynomial via a random linear combination specified by the verifier. However, one can
incorporate larger folds; for example, many configurations will reduce degree 𝑑 to degree
𝑑/4 or 𝑑/8. Asymptotically, these folds still result in a logarithmic round protocol, but
concretely reduce the proof sizes by large factors (e.g., 2× or 4× smaller). Unfortunately,
these savings also result in some losses in security. In particular, larger folding looks like
the communication-saving batching we discussed previously; i.e., for reducing 𝑑 to 𝑑/4,
a function 𝑓 is divided into 4 parts, say 𝑓1, . . . , 𝑓4, and then are “folded” as 𝑓 ′ =

∑︁
𝑖 𝛽

𝑖 𝑓𝑖
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for 𝛽 randomly sampled by the verifier (see [21]). So by performing a FRI fold of size
𝑘 ⩾ 3, there is roughly a log(𝑘) loss in security. Thus, we omit this from our analysis to
present the best-case bits of security of parameters for FRI in practice. Moreover, every
project specifies different fold sizes, so omitting this greatly simplifies our analysis.

Early Protocol Termination. The original FRI protocol specifies termination once the
degree bound has been reduced to 1 (i.e., when the polynomial is a constant). At this
point in the protocol, the final prover message is a single constant 𝐶 ∈ F corresponding
to this polynomial. However, in practice, the protocol is often terminated at a larger (but
still constant) degree bound; e.g., 𝑑 = 28 is a choice in many systems. In this case, the
protocol remains secure so long as the prover sends the 28 coefficients directly to the
verifier. For non-interactive FRI, this translates to less prover and verifier computation,
but the same/comparable proof sizes, as when terminating at degree 𝑑 = 1. Moreover,
this does not affect the soundness and/or bits of security of the overall protocol; therefore,
we omit this optimization in our analysis.

4 Concrete Security Analysis of Non-interactive FRI

We now turn to analyzing the concrete security achieved by compiling the FRI protocol
with the BCS transformation [8] in the random oracle model; for ease of presentation,
we refer to this protocol as FS-FRI. Our analysis will determine both the bits of security
given by various parameter settings of FS-FRI in practice, as well as give a more
fine-grained trade-off analysis between the non-interactive soundness error of FS-FRI
and the adversarial computational power (measured in number of random oracle queries).
In particular, we provide a methodology for determining FRI parameters (i.e., field size,
message length, code rate, etc.) such that soundness error 𝜀 (FRI)

(fs) = 2−𝜈 is achieved when
an attacker can make 𝑄 queries to the random oracle (i.e., roughly the number of hashes
an attacker can perform). This more fine-grained analysis can capture the following
scenario that is not always captured by bits of security. Consider a system with 80-bits of
security that versus a 𝑄 = 260 query adversary has non-interactive soundness error 220.
Then, in this case, a group of 220 parties with 𝑄 = 260 hashing power could expect to
break the system (i.e., at least one of them is expected to be successful in an attack if
they coordinate properly). With real-world hashing power continuing to rise, we believe
that considering these types of attacks will be important in the future and is something
that bits of security alone do not capture.

Let 𝜀 (FRI)
(rbr) be the RBR soundness error of FRI (given in Thm. 1 or Conj. 1). Given

𝜀
(FRI)
(rbr) , the query parameter 𝑄, and target non-interactive soundness error 𝜈, we analyze

𝜀
(FRI)
(fs) under the following constraints (induced by Lem. 1):

𝑄𝜀
(FRI)
(rbr) ⩽ 2−(𝜈+1) (3) 3(𝑄2 + 1)/2𝜅 ⩽ 2−(𝜈+1) . (4)

So long as the above constraints are satisfied, then we have 𝜀
(FRI)
(fs) ⩽ 2−𝜈 .
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Remark 4. In general, one can choose 𝛼, 𝛽 ∈ (0, 1) such that 𝑄𝜀
(FRI)
(rbr) ·𝛼+3(𝑄2 +1)/2𝜅 ·

𝛽 ⩽ 2−𝜈 . Then, intuitively, 𝛼 determines how heavily the adversary tries to break the
RBR soundness of FRI, and 𝛽 determines how heavily the adversary tries to find a
collision in the random oracle. Note that above, we are (a) putting equal weight on both
cases by setting 𝛼 = 𝛽 = 1/2; and (b) assuming that finding even a single collision in
the random oracle completely breaks security of the entire protocol. However, we are
unaware of any attack against FRI that can exploit a single random oracle collision, and
leave it as an open question to determine if such attacks exist.

We break down our analysis into two parts. In the first part (Section 4.1), we examine
FRI parameters F, 𝑘 , 𝜌, and 𝛿 used today in several projects (Tab. 1) and analyze what
values of 𝜈 are achievable under certain fixed values of 𝑄 with respect to Thm. 1 and
Conj. 1; we also give the bits of security (Def. 2) achieved by these projects under
provable and conjectured security. In the second part (Section 4.3), we set targets for
the soundness error 𝜈 and the FRI parameters F, 𝑘 , and 𝜌 and analyze: (1) the upper
bound on the number of RO queries 𝑄 given by Eq. (4); and (2) for various settings
of 𝑄 less than or equal to the computed upper bound, whether or not the constraint in
Eq. (3) is satisfiable or not. The satisfiability of Eq. (3) for fixed values of 𝜈, F, 𝑘 , 𝜌, and
𝑄 depends on how 𝜀

(FRI)
(rbr) is computed (i.e., either via provable security or conjectured

security). For both parts of our analysis, we also analyze the size of the non-interactive
proofs produced under these parameters, given in kilobytes or megabytes.

Notation. As a reminder, we use the following notation in the remainder of this section.
F denotes a finite field; 𝜌, 𝑑0 = 2𝑘 , and 𝑁 = 2𝑛 are the rate, degree bound (i.e., message
length), and domain size of the RS code; 𝑄 is an upper bound on the number of random
oracle queries made by an adversary; ℓ is the number of verifier queries; 𝑧 is the number
of grinding bits.

Sagemath Code. All calculations performed in the remainder of this section were
done in Sagemath version 9.5 using Python 3.10.12, running on Pop!_OS 22.04 LTS
with Kernel 6.8.0-76060800daily20240311-g on a laptop with an Intel i7-1165G7 (4
cores, 8 threads) and 16GB of RAM. The code used can be found at the following link:
https://github.com/alexander-r-block/FRI-Parameter-Testing-Sagemath.

4.1 Non-interactive Security of FRI Parameters in Practice

We turn towards understanding the achievable non-interactive security of FRI under
parameters being deployed today by various projects. We will examine the trade-offs
between the adversarial power𝑄 and the non-interactive soundness error 𝜈 (i.e., soundness
error 2−𝜈). Examining Eqs. (3) and (4), we see that 𝜈 has the following constraints:

𝜈 ⩽

⌊︄
log

(︄
1

2 · 𝑄 · 𝜀 (FRI)
(rbr)

)︄⌋︄
(5) 𝜈 ⩽

⌊︃
log

(︃
2𝜅−1

3 · (𝑄2 + 1)

)︃⌋︃
. (6)

Therefore in what follows, we always set 𝜈 = min{Eq. (5), Eq. (6)}.
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Recall that 𝜀 (FRI)
(rbr) has two different values depending on whether we use provable

(Thm. 1) or conjectured (Conj. 1) security. By incorporating 𝑧-bits of grinding at the
end of the FRI protocol, combining Eq. (5) with Eqs. (1) and (2) gives us the following
constraints for 𝜈:

(provable) 𝜈 ⩽
⌊︃
log

(︃
1

2𝑄
·min

{︃
3𝜌3/2 |F|

(𝑚 + 1/2)7 · |𝐿0 |2
,

2𝑧

(1 − 𝛿)ℓ

}︃)︃⌋︃
; (7)

(conjectured) 𝜈 ⩽
⌊︃
log

(︃
1

2𝑄
·min

{︃
|F|, 2

𝑧

𝜌ℓ

}︃)︃⌋︃
. (8)

We use the constraints Eqs. (6) to (8) in our analysis (i.e., in the Sagemath code).

Bits of Security. For bits of security, rewriting Def. 2, to achieve 𝜆-bits of security we
analyze the bound 𝜀

(FRI)
(fs) /𝑄 ⩽ 2−𝜆. Expanding the left-hand side, we have

𝜀
(FRI)
(fs) /𝑄 = [𝑄𝜀

(FRI)
(rbr) + 3(𝑄2 + 1)/2𝜅 ]/𝑄 ⩽ 𝜀

(FRI)
(rbr) + 3(𝑄 + 1)/2𝜅 ⩽ 2−𝜆.

Thus, to achieve 𝜆-bits of security, it suffices to choose parameters satisfying

𝜀
(FRI)
(rbr) ⩽ 2−(𝜆+1) (9) 3(𝑄 + 1)/2𝜅 ⩽ 2−(𝜆+1) . (10)

Random Oracle Output Length and Queries. Eq. (10) depends on the output length of
the random oracle. To simplify the analysis, we would like to choose 𝜅 such that Eq. (10)
is not the bottleneck to soundness; i.e., for values of 𝜆 we consider, we want Eq. (9) ⩾
Eq. (10). Analyzing this equation, we have

3(𝑄 + 1)/2𝜅 ⩽ 4𝑄/2𝜅 ⩽ 2−(𝜆+1) =⇒ 𝑄 ⩽ 2𝜅−𝜆−3 =⇒ log(𝑄) ⩽ 𝜅 − 𝜆 − 3.

Choosing 𝜅 = 256 gives us the constraint log(𝑄) ⩽ 253 − 𝜆. In our parameter analysis
for the remainder of this section, the largest value of 𝜆 considered is 𝜆 = 128, giving
log(𝑄) ⩽ 125. Thus, for the remainder of this section and our analysis, we consider
log(𝑄) ∈ {20, 40, 60, 80, 100, 120} and 𝜅 = 256 to ensure that Eq. (9) is the bottleneck
for bits of security.

Proximity Parameter 𝜹 Selection. In all of our tests, we choose 𝛿 maximally in order
to satisfy the corresponding theorems. In particular, for provable security, we choose
𝛿 = 1 − 7√𝜌/6 (given by setting 𝑚 = 3 in Thm. 1); for conjectured security, we choose
𝛿 = 1 − 𝜌 (given in Conj. 1).6

Proof Sizes. We also include an upper bound on the proof sizes achieved by the FS-FRI
proofs of every system we consider. For a detailed description of how these proof sizes
are calculated, see the full version of our work.

6 To the best of our knowledge, all projects using this conjecture set 𝛿 = 1 − 𝜌.
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Remark 5. As noted in [32], there are numerous ways that practitioners attempt to
reduce the size of FS-FRI proofs. These techniques are applicable to both provable and
conjectured security. Moreover, the application of these techniques varies widely from
project to project, so for simplicity we simply give the worst-case sizes of FS-FRI proofs
under our parameters.

4.2 Parameter Analysis

We now turn to our parameter analysis. In Tab. 2, we give an overview of all the
parameters we tested in our experiments. Parameters were either relatively easy to find
in the source code of these projects, or they required extensive code tracing due to lack
of documentation. We discuss how we found difficult to extract parameters in the full
version of our work.

Given these parameters, we present graphs analyzing the trade-offs between a𝑄-query
adversary attacking the system and the achievable soundness error 2−𝜈 . Included in each
graph is: (1) trade-offs between provable and conjectured security, with and without
grinding; (2) the proximity parameter 𝛿 achieved by the parameters; (3) the estimated
proof sizes (with grinding); and (4) the achievable bits of security of the stated parameters
(indicated as bold points that intersect the 𝑄-axis).

Table 2. Parameters we assess in our analysis of various systems running FRI. |F| is the size of the
finite field, 𝜌 is the rate, 𝑘 = log(𝑑0) for degree bound 𝑑0, ℓ is the number of verifier queries, 𝑧 is the
number of grinding bits, and Sec. Target is the target security level. 𝑝𝑠𝑡𝑎 = 2251+17 ·2192+1 is one
of Starkware’s 252-bit primes, 𝑝𝑔𝑜𝑙 = 264−232 +1 is the Goldilocks prime, and 𝑝𝑏𝑏 = 15 ·227 +1
is the BabyBear prime. All parameters are current as of May 6, 2024, 19:30 UTC.

|F | 𝜌 𝑘 ℓ 𝑧 Sec. Target

Plonky2 𝑝2
𝑔𝑜𝑙

1/2 31 84
16 100

1/8 29 28

stone-prover 𝑝𝑠𝑡𝑎 1/16 30 18 24 96

SHARP 𝑝𝑠𝑡𝑎 1/32 26 13 31 96
dYdX 𝑝𝑠𝑡𝑎 1/16 31 12 32 80

Midden 𝑝2
𝑔𝑜𝑙

1/8
30 27 16 96

VM 𝑝3
𝑔𝑜𝑙

1/16 21 128

lambda-
𝑝𝑠𝑡𝑎 1/4 40

80
20

80
works 104 100

(provable) 140 128
lambda-

𝑝𝑠𝑡𝑎 1/4 40
31

20
80

works 41 100
(conj.) 55 128

RISC Zero 𝑝2
𝑔𝑜𝑙 1/4 24 50 0 100
𝑝4
𝑏𝑏

era-boojum 𝑝2
𝑔𝑜𝑙

1/4 19 40 20 100
1/8 30 34 0

Due to space constraints, we show all of our findings for each system in Tab. 2 in
Fig. 1. We also briefly discuss where/how we found the parameters given in Tab. 2.
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Plonky2 Paramters. Configuration 1 (Params. 1) is taken from here and Configuration
2 (Params. 2) is taken from here. Information on their finite fields can be found here.
Note that the PolygonZero zkEVM uses Configuration 1 above (see here).

stone-prover Parameters. We use the example configuration given here. The field they
use is one of Starkware’s 252-bit prime fields; information here.

Sharp Verifier & dYdX Parameters. Distilling the SHARP Verifier and dYdX param-
eters required extensive code analysis, beginning by looking at posted transactions
on etherscan.io then examining solidity code from Starkware. We distil both the
SHARP parameters and the dYdX paramters in Tab. 2 the following transactions on
Etherscan.

– SHARP. Etherscan Address. Transactions we use: 1, 2, 3, 4, 5.
– dYdX. L2 On-Chain Etherscan Address. Transactions we use: 1, 2, 3, 4, 5.

Miden-VM Parameters. We use the configurations found here. Information on what
these parameters mean is found here.

lambdaworks Parameters. All parameters we use are defined in this file.
RISC Zero Parameters. We use the configuration found here. Information on the fields

they use is found here.
era-boojum Parameters. We use the default configuration found here. The second

configuration we use is found here.

Overall, our analysis finds significant gaps between the provable and conjectured
security achieved by all systems, except for lambdaworks, under their current FRI
parameters; these findings are higlighted in Tab. 1. These gaps (unsurprisingly) held
regardless of grinding. Note that if one is comfortable with Conj. 1, then our results serve
to show that current systems today are achieving their security targets (or are at most
1-bit away from their targets). However, we remark that Conj. 1 is not a cryptographic
conjecture; i.e., it is not a conjecture about some problem (e.g., factoring) being difficult
for computationally bounded adversaries. It is an information theoretic conjecture,
positing that the best-known attack against an information theoretically secure protocol
is optimal. That is, there do not exist any adversarial strategies, regardless of adversarial
run-time, that can beat this attack. Our work, in this light, can be viewed as highlighting
how heavily FRI-based systems are relying on this conjecture. Unsurprisingly, the reliance
is very heavy (all in order to reduce the proof sizes of FRI). Thus, if others (apart from
ourselves) are hesitant to make aggressive information theoretic conjectures about the
security of FRI, our work highlights how lacking most FRI-based systems are in provable
security, serving as a warning to those uncomfortable with these aggressive conjectures.

4.3 Parameter Suggestions for FS-FRI

We now switch gears and turn towards giving parameter suggestions for achieving various
levels of security. That is, we set various targets for 𝜈, fix the parameters F, 𝑘 , and 𝜌 of
FRI, and analyze both the upper bound on 𝑄 given by Eq. (4) and whether or not Eq. (3)
is satisfiable for certain fixing of 𝑄 within the upper bound. We perform this analysis
with respect to provable security (Thm. 1) and conjectured security (Conj. 1).
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etherscan.io
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Fig. 1. Graphs plotting the trade-off between 𝑄 and 𝜈 for the FRI parameters taken from Tab. 2.
|𝜋 | indicates the proof size and 𝛿 the proximity parameter. Bold points on the graph indicate the
achieved bits of security by these parameters.
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Now notice that the constraint given by Eq. (4) is independent of the round-by-round
soundness. Thus, under this constraint, we can upper bound the number of queries 𝑄 as

3(𝑄2 + 1)/2𝜅 ⩽ 2−(𝜈+1) =⇒ 𝑄 ⩽
⌊︂ (︁
2𝜅−𝜈−1/3 − 1

)︁1/2⌋︂
. (11)

Thus Eq. (11) is an upper bound on the number of RO queries any adversary is allowed
to make when attacking the non-interactive proof system. Note we take the floor as the
upper bound since the number of queries is an integer. Given this upper bound on 𝑄, we
can turn to analyzing the other constraint given by Eq. (3), which we rewrite as:

𝜀
(FRI)
(rbr) ⩽ 1/(𝑄 · 2𝜈+1). (12)

Now Eq. (12) give us an upper bound for 𝜀 (FRI)
(rbr) .

Given these constraints, we can now proceed with setting various values of 𝜈, F, 𝑘 ,
and 𝜌, and analyzing 𝑄 and 𝜀

(FRI)
(rbr) . For the remainder of this section, we consider the

following parameters:

– Hashes of length 𝜅 = 256;
– Finite fields F of bit length log( |F|) ∈ {128, 192, 256};
– Message lengths 𝑑0 = 2𝑘 such that 𝑘 ∈ {10, 15, 20, 25};
– Rates 𝜌 ∈ {1/2, 1/4, 1/8, 1/16}; and
– 𝜈 = 20 (i.e., soundness error at most 2−𝜈 versus a 𝑄-query adversary).

Due to space constraints, we only analyze 𝜈 = 20 and, as we will see, settings for 𝑄 that
roughly translate to 80-bits and 100-bits of security.

Remark 6. In what follows, we are only discussing the feasibility of parameters with
respect to the parameters outlined above. It is entirely possible to find other feasible
parameters for different settings of 𝑘 , log |F|, and 𝜌. We do not exhaustively consider all
such feasible parameters and only consider our setting of parameters as a guide to get a
quick grasp on how certain settings of parameters behave.

Moreover, one can additionally modify Eq. (14) to include 𝑧-bits of grinding during
the final round of FRI. In this case, the left-hand side of this equation becomes (1−𝛿)ℓ/2𝑧 .
For simplicity, we do not perform our analysis with grinding but note that one could
suitably reduce ℓ by roughly 𝑧-bits if 𝑧-bits of grinding were included in the analysis.

Provable Security. We first analyze the above parameters in the context of the provable
RBR soundness of FRI given by Thm. 1. Before we begin, we first obtain constraints
on 𝜀

(FRI)
(rbr) under provable security guarantees. Recall that 𝜀 (FRI)

(rbr) is given in Eq. (1).
Combining this equation with Eq. (12), obtain the constraints:

(𝑚+1/2)7 |𝐿0 |2/3𝜌3/2 |F | ⩽ 1/𝑄2𝜈+1 (13) (1 − 𝛿)ℓ ⩽ 1/𝑄2𝜈+1. (14)

Recall that in FRI, we have |𝐿0 | = 2𝑘/𝜌, so under our fixing of 𝑘 and 𝜌, the parameter
|𝐿0 | is fixed as well. For provable security, we always consider maximal 𝛿, i.e., we set
𝛿 = 1 − √𝜌(1 + 1/(2𝑚)) for 𝑚 = 3.
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Table 3. Numerical calculations for non-interactive soundness error 𝜈 = 20 via Thm. 1, where
log |F| represents the bit-length of the field size, 𝑑0 = 2𝑘 , |𝐿0 | = 𝑑0/𝜌, ℓ is the number of
repetitions during the Query Phase, 𝑄 is the allowed number of random oracle queries made by a
malicious prover, and |𝜋 | is the proof size. The table for 𝑄 = 260 roughly represents 80-bits of
security, and the table for 𝑄 = 280 roughly represents 100-bits of security.

𝜈 = 20 Thm. 1
𝑄 = 260 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
192 10 (0.293, 163, 840 KiB) (0.500, 82, 474 KiB) (0.646, 55, 352 KiB) (0.750, 41, 288 KiB)

15 (0.293, 163, 1.60 MiB) (0.500, 82, 903 KiB) (0.646, 55, 657 KiB) (0.750, 41, 529 KiB)
20 (0.293, 163, 2.64 MiB) (0.500, 82, 1.43 MiB) (0.646, 55, 1.02 MiB) (0.750, 41, 833 KiB)
25 (0.292, 163, 3.92 MiB) (0.499, 82, 2.10 MiB) (0.645, 55, 1.49 MiB) (0.749, 41, 1.17 MiB)

256 10 (0.293, 163, 866 KiB) (0.500, 82, 487 KiB) (0.646, 55, 361 KiB) (0.750, 41, 295 KiB)
15 (0.293, 163, 1.64 MiB) (0.500, 82, 923 KiB) (0.646, 55, 670 KiB) (0.750, 41, 538 KiB)
20 (0.293, 163, 2.69 MiB) (0.500, 82, 1.45 MiB) (0.646, 55, 1.04 MiB) (0.750, 41, 846 KiB)
25 (0.293, 163, 3.98 MiB) (0.500, 82, 2.13 MiB) (0.646, 55, 1.51 MiB) (0.750, 41, 1.19 MiB)

𝜈 = 20
𝑄 = 280 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
192 10 (0.293, 203, 1.02 MiB) (0.500, 102, 590 KiB) (0.646, 68, 435 KiB) (0.750, 51, 358 KiB)

15 (0.292, 203, 2.00 MiB) (0.499, 102, 1.10 MiB) (0.645, 68, 813 KiB) (0.749, 51, 657 KiB)
20 (0.290, 205, 3.32 MiB) (0.497, 102, 1.77 MiB) (0.644, 68, 1.27 MiB) (0.747, 51, 1.01 MiB)
25 (0.285, 209, 5.02 MiB) (0.492, 104, 2.66 MiB) (0.639, 69, 1.87 MiB) (0.742, 52, 1.49 MiB)

256 10 (0.293, 203, 1.05 MiB) (0.500, 102, 605 KiB) (0.646, 68, 446 KiB) (0.750, 51, 366 KiB)
15 (0.293, 203, 2.04 MiB) (0.500, 102, 1.12 MiB) (0.646, 68, 829 KiB) (0.750, 51, 669 KiB)
20 (0.293, 203, 3.35 MiB) (0.500, 102, 1.81 MiB) (0.646, 68, 1.29 MiB) (0.750, 51, 1.03 MiB)
25 (0.293, 203, 4.96 MiB) (0.500, 102, 2.65 MiB) (0.646, 68, 1.87 MiB) (0.750, 51, 1.48 MiB)

log |F | 𝑘 (𝛿, ℓ, | 𝜋 | )

Notice that for any fixed values of 𝑄 and 𝜈, the constraint of Eq. (14) is always
satisfiable by taking ℓ =

⌈︁
log(1/(𝑄 · 2𝜈+1))/log(1 − 𝛿)

⌉︁
. Notice also that for fixed values

of 𝑄 and 𝜈, the constraint of Eq. (13) gives an upper bound on the Johnson proximity
parameter 𝑚. Given that 𝑚 ⩾ 3 is required and Eq. (13) gives an upper bound on 𝑚, it is
possible that under certain parameters F, 𝑘 , 𝜌, 𝑄, and 𝜈 we have 𝑚 < 3. In this case, we
conclude that these parameters are infeasible.

Given the above constraints, we can now turn to analyzing what provable security
guarantees are achievable under the setting of parameters we are considering. As stated
before, we fix 𝜈 = 20, analyze the query upper bound via Eq. (11), then analyze
whether or not Eq. (13) is satisfiable under certain fixings of 𝑄. For 𝜈 = 20 and the
constraint of Eq. (11) along with 𝜅 = 256 tells us that the upper bound of 𝑄 lies in the
interval [2116, 2117] (represented as powers of two for ease of presentation). Thus, in our
parameter analysis below, we consider two cases: 𝑄 = 260 and 𝑄 = 280 since for 𝜈 = 20,
𝑄 = 260 roughly corresponds to 80-bits of security and 𝑄 = 280 roughly corresponds to
100-bits of security. We present our parameter analysis in Tab. 3.

Examining the given table, we can conclude that for target soundness error 𝜈 = 20 and
query range 𝑄 ∈ {260, 280}, all the parameters we consider are feasible for both 192-bit
and 256-bit finite fields, whereas none of the parameters we consider were feasible in the
case of 128-bit finite fields. Our analysis highlights that larger fields, smaller messages,
and larger rates (i.e., 𝜌 is larger) are necessary for the feasibility of parameters under
𝜈 = 20. None of the parameters we considered were feasible for 128-bit finite fields,
though there may be finite fields between 128 and 192-bits in size where parameters are
feasible (similarly for between 192 and 256-bit finite fields).

17



Conjectured Security. We conclude our analysis of the parameters we consider in
the context of the conjectured RBR soundness given by Conj. 1. To begin, under this
conjecture, the RBR soundness error of FRI is given by 𝜀

(FRI)
(rbr) = max{1/|F|, 𝜌ℓ }, where

𝛿 = 1 − 𝜌 is the FRI proximity parameter. Combining this expression with Eq. (3), we
have the constraints

𝑄 · 2𝜈+1 ⩽ |F| (15) 𝜌ℓ ⩽ 1/𝑄2𝜈+1. (16)

Again here we set |𝐿0 | = 2𝑘/𝜌, so fixing 𝑘 and 𝜌 fixes |𝐿0 | as well.

Table 4. Numerical calculations for non-interactive soundness error 𝜈 = 20 via Conj. 1, where
𝑑0 = 2𝑘 , |𝐿0 | = 𝑑0/𝜌, ℓ is the number of repetitions during the Query Phase, 𝑄 is the allowed
number of random oracle queries made by a malicious prover, and |𝜋 | is the proof size. The table
for 𝑄 = 260 roughly represents 80-bits of security, and the table for 𝑄 = 280 roughtly represents
100-bits of security.

𝜈 = 20 Conj. 1
𝑄 = 260 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
128 10 (0.500, 81, 405 KiB) (0.750, 41, 230 KiB) (0.875, 27, 169 KiB) (0.938, 21, 144 KiB)

15 (0.500, 81, 797 KiB) (0.750, 41, 442 KiB) (0.875, 27, 316 KiB) (0.938, 21, 266 KiB)
20 (0.500, 81, 1.29 MiB) (0.750, 41, 718 KiB) (0.875, 27, 506 KiB) (0.938, 21, 420 KiB)
25 (0.500, 81, 1.92 MiB) (0.750, 41, 1.03 MiB) (0.875, 27, 739 KiB) (0.938, 21, 607 KiB)

192 10 (0.500, 81, 417 KiB) (0.750, 41, 237 KiB) (0.875, 27, 173 KiB) (0.938, 21, 147 KiB)
15 (0.500, 81, 816 KiB) (0.750, 41, 452 KiB) (0.875, 27, 323 KiB) (0.938, 21, 271 KiB)
20 (0.500, 81, 1.31 MiB) (0.750, 41, 730 KiB) (0.875, 27, 515 KiB) (0.938, 21, 427 KiB)
25 (0.500, 81, 1.95 MiB) (0.750, 41, 1.05 MiB) (0.875, 27, 749 KiB) (0.938, 21, 616 KiB)

256 10 (0.500, 81, 430 KiB) (0.750, 41, 243 KiB) (0.875, 27, 177 KiB) (0.938, 21, 151 KiB)
15 (0.500, 81, 835 KiB) (0.750, 41, 461 KiB) (0.875, 27, 329 KiB) (0.938, 21, 276 KiB)
20 (0.500, 81, 1.34 MiB) (0.750, 41, 743 KiB) (0.875, 27, 523 KiB) (0.938, 21, 433 KiB)
25 (0.500, 81, 1.98 MiB) (0.750, 41, 1.06 MiB) (0.875, 27, 760 KiB) (0.938, 21, 624 KiB)

𝜈 = 20
𝑄 = 280 𝜌 = 1/2 𝜌 = 1/4 𝜌 = 1/8 𝜌 = 1/16
128 10 (0.500, 101, 505 KiB) (0.750, 51, 287 KiB) (0.875, 34, 212 KiB) (0.938, 26, 179 KiB)

15 (0.500, 101, 994 KiB) (0.750, 51, 550 KiB) (0.875, 34, 398 KiB) (0.938, 26, 329 KiB)
20 (0.500, 101, 1.60 MiB) (0.750, 51, 893 KiB) (0.875, 34, 638 KiB) (0.938, 26, 520 KiB)
25 (0.500, 101, 2.39 MiB) (0.750, 51, 1.28 MiB) (0.875, 34, 930 KiB) (0.938, 26, 752 KiB)

192 10 (0.500, 101, 521 KiB) (0.750, 51, 295 KiB) (0.875, 34, 218 KiB) (0.938, 26, 183 KiB)
15 (0.500, 101, 1018 KiB) (0.750, 51, 562 KiB) (0.875, 34, 406 KiB) (0.938, 26, 335 KiB)
20 (0.500, 101, 1.63 MiB) (0.750, 51, 909 KiB) (0.875, 34, 648 KiB) (0.938, 26, 528 KiB)
25 (0.500, 101, 2.43 MiB) (0.750, 51, 1.30 MiB) (0.875, 34, 943 KiB) (0.938, 26, 762 KiB)

256 10 (0.500, 101, 536 KiB) (0.750, 51, 303 KiB) (0.875, 34, 223 KiB) (0.938, 26, 187 KiB)
15 (0.500, 101, 1.02 MiB) (0.750, 51, 574 KiB) (0.875, 34, 414 KiB) (0.938, 26, 341 KiB)
20 (0.500, 101, 1.67 MiB) (0.750, 51, 925 KiB) (0.875, 34, 659 KiB) (0.938, 26, 536 KiB)
25 (0.500, 101, 2.47 MiB) (0.750, 51, 1.32 MiB) (0.875, 34, 957 KiB) (0.938, 26, 772 KiB)

log |F | 𝑘 (𝛿, ℓ, | 𝜋 | )

As in the case of prior sections, for any fixed 𝑄 and 𝜈, the constraint of Eq. (16) is
always satisfied by taking ℓ =

⌈︁
log(1/(𝑄 · 2𝜈+1))/log(𝜌)

⌉︁
. Given these constraints, we

can now turn to analyzing what conjectured security guarantees are achievable under the
setting of parameters we are considering. As stated before, we fix 𝜈 = 20, analyze the
query upper bound via Eq. (11), then analyze whether or not Eq. (13) is satisfiable under
certain fixings of 𝑄. For 𝜈 = 20 and the constraint of Eq. (11) along with 𝜅 = 256 tells
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us that the upper bound of 𝑄 lies in the interval [2116, 2117] (represented as powers of
two for ease of presentation). As before, we choose to consider 𝑄 = 260 and 𝑄 = 280 in
our calculations, with for 𝜈 = 20 roughly corresponds to 80-bits and 100-bits of security,
respectively. Note that we additionally have the constraint 𝑄 ⩽ |F|/2𝜈+1, which may
be smaller than 260 or 280. In this case, we consider the parameters as being infeasible
and indicate them appropriately. We present our analysis in Tab. 4. The constraint of
Eq. (15) gives us a lower bound on |F| of 𝑄 · 2𝜈+1, so feasibility only depends on having
a sufficiently large field. Notice also that Eq. (15) gives an additional upper bound on 𝑄

as well, along with the constraint of Eq. (11).
Examining the table, all parameter settings are feasible for all finite field sizes, for

both 𝑄 = 260 and 𝑄 = 280 query bounds. Under the conjectured security of FRI given
in Conj. 1, our analysis highlights that larger fields, smaller messages, and larger rates
lead to the feasibility of parameters for 𝜈 = 20. In contrast with both provable security
given under Thm. 1, the more aggressive conjecture of Conj. 1 allows us to have feasible
parameters for 128-bit finite fields for 𝜈 = 20.
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Appendix

A Additional Preliminaries

In this section, we add some additional preliminaries for completeness. A relation R is
a subset of pairs (x,w) ∈ {0, 1}∗ × {0, 1}∗. The strings x are called inputs (these are
often called also statements or instances), and the stringsw are called witnesses. To each
relation R there corresponds a language LR ⊆ {0, 1}∗ consisting of all statements x such
that (x,w) ∈ R for some w; i.e., LR := {x : ∃w s.t. (x,w) ∈ R}. When (x,w) ∈ R,
we say that w is a valid witness for x. We assume our relations to be in the class NP.

A.1 Interactive Oracle Proofs

Definition 3 (Interactive Proofs (IP)). A 𝜇-round interactive proof for a relation R is
a pair of interactive algorithms Π = (P,V) such that:

– For x ∈ 𝐿R and w such that (x,w) ∈ R, before the start of the protocol, P receives
both (x,w) as input and V receives x as input.

– P(x,w) and V(x) exchange 2𝜇( |x|) + 1 messages, where P sends the first and last
message, and during any round of interaction P sends message 𝑚𝑖 to V. After P
sends 𝑚𝜇 ( |x | )+1, V either accepts (outputs 1) or rejects (outputs 0).

We require the following properties to hold:
– Completeness: for all (x,w) ∈ R, we have

Pr [⟨P(w),V⟩(x) = 1] = 1,

where ⟨P(w),V⟩(x) denotes the output of P and V interacting on common input x
where P is additionally given w as input, and the above probability holds over the
random coins of V.

– 𝜖-Soundness: for any x ∉ LR and any unbounded interactive algorithm P∗, we have

Pr [⟨P∗,V⟩(x) = 1] ⩽ 𝜖,

where the probability is taken over the random coins of V.
We say that Π is public-coin if all messages sent by V are independent uniform random
strings of some bounded length and the output of V does not depend on any secret state.

Definition 4 (Interactive Oracle Proof). An Interactive Oracle Proof (IOP) for a
relation R is a 𝜇-round IP (P,V) for R such that for all x, at the start of each round of
interaction 𝑖 ∈ [𝜇( |x|)], P sends 𝑚𝑖 and V receives oracle access to 𝑚𝑖 . Crucially, at
the end of the interactive phase, V does not necessarily need to read the whole 𝑚𝑖 in
order to decide whether to accept or reject.
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A.2 Round-by-round Soundness

Round-by-round soundness [14] is a stronger notion of interactive protocol soundness
that is sufficient for arguing Fiat-Shamir security of interactive protocols [14,15,16].
Informally, RBR soundness captures the notion that a cheating prover has to get “lucky in
a single round” in an IOP: if the protocol is initiated in a state with a false statement and
should be rejected by the verifier (i.e., a “doomed state”), then no matter how cleverly
the prover responds in subsequent rounds, the protocol will “forever remain doomed”
(except with negligible probability). More formally, invoking the following (generalized)
RBR soundness definition from [13].

Definition 5 (Round-by-round Soundness). An IOP Π = (P,V) for a relation R
has round-by-round soundness with error 𝜀 if there exists a (not necessarily efficiently
computable) “doomed set” D of partial transcripts such that the following hold:

1. If x ∉ LR, then (x, ∅) ∈ D, where ∅ denotes the empty transcript.
2. For any x and any 𝜇-round partial transcript (x, 𝜏) and any last prover message

𝑚 ∈ M𝜇+1, if (x, 𝜏) ∈ D then 𝑉 (x, 𝜏, 𝑚) = 0.
3. If (x, 𝜏) is a (𝑖 − 1)-round partial transcript for some 𝑖 ∈ [𝜇] and (x, 𝜏) ∈ D, then

for all 𝑚 ∈ M𝑖 we have Pr
𝑐

$←C𝑖
[(𝜏, 𝑚, 𝑐) ∉ D] ⩽ 𝜀, where M𝑖 and C𝑖 are the

prover and verifier message spaces in round 𝑖, respectively.

A.3 The BCS Transformation

The BCS transformation [8] turns any IOP Π = (P,V) into a non-interactive argument.
Informally speaking, this is achieved by giving access to P and V to a random oracle 𝜌.
Then, every time that P would send to V oracle access to a map 𝑚 : 𝑆 → {0, 1}∗, instead
it sends the Merkle tree root of the vector (𝑚(𝑠))𝑠∈𝑆 , using 𝜌 as the “hash function”.
Then, when V wants to query 𝑚 at some point 𝑠 ∈ 𝑆, the prover sends the value 𝑚(𝑠) to
V, along with a Merkle tree path certifying that 𝑚(𝑠) is a correct opening. Finally, to
protocol is made non-interactive via the Fiat-Shamir transformation using the random
oracle 𝜌. We refer to [8] for a formal description of this transformation.

It turns out that applying the BCS construction to a round-by-round sound IOP Π with
round-by-round knowledge soundness yields a SNARK; i.e., a succinct non-interactive
argument of knowledge [15]. Moreover, if Π is zero-knowledge, then so is the resulting
SNARK. Specifically, BCS compiles round-by-round sound IOPs into non-interactive
random oracle proofs.

Below we state a “meta” theorem from [12] which captures all the relevant properties
of the BCS transformation used in our analysis.

Theorem 2 ([8,15,16]). There exists a polynomial-time transformation BCS such that
for every relation R, random oracle H : {0, 1}∗ → {0, 1}𝜅 , and random oracle query
bound 𝑄 ∈ N, if (P,V) is a public-coin IOP for R with

– proofs of length ℓ(x);
– verifier query complexity 𝑞(x); and
– round-by-round soundness error 𝜀 (𝑟𝑏𝑟 ) (x),
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then (P,V) := BCSH (P,V) is a non-interactive random oracle proof system for R with
adaptive soundness error 𝜀 ( 𝑓 𝑠) (x, 𝑄, 𝜅) = 𝑄𝜀 (𝑟𝑏𝑟 ) (x) + 3(𝑄2 + 1)/2𝜅 against 𝑄-query
adversaries.

B Formal Description of the FRI Protocol

Algorithm 1: FRI-IOPP
Input: Finite field F, smooth multiplicative subgroup 𝐿0 ⊂ F× of size 2𝑛, degree bound

𝑑0 = 2𝑘 , and ℓ ∈ N.
𝑃 has function 𝐺0 : 𝐿0 → F and 𝑉 has oracle (𝐺0 (𝑧))𝑧∈𝐿0

.
Output: The verifier 𝑉 outputs accept or reject.

1 foreach 𝑖 ∈ [𝑘] do // Fold Phase
2 𝑉 sends 𝑥𝑖−1

$← F to 𝑃.
3 𝑃 and 𝑉 set 𝑑𝑖 := 𝑑𝑖−1/2 and 𝐿𝑖 := {𝑧2 : 𝑧 ∈ 𝐿𝑖−1}.
4 𝑃 computes unique bi-variate polynomial 𝑄𝑖−1 (𝑋,𝑌 ) such that

1. deg𝑋 (𝑄𝑖−1) = 1;
2. deg𝑌 (𝑄𝑖−1) < 𝑑𝑖 ; and
3. 𝐺𝑖−1 (𝑟) = 𝑄𝑖−1 (𝑟, 𝑟2) for all 𝑟 ∈ 𝐿𝑖−1.

5 𝑃 defines 𝐺𝑖 (𝑌 ) := 𝑄𝑖−1 (𝑥𝑖−1, 𝑌 ).
6 if 𝑖 = 𝑘 then 𝑃 sends 𝐺𝑘 = 𝐶 ∈ F to 𝑉 .
7 else 𝑃 sends oracle (𝐺𝑖 (𝑧))𝑧∈𝐿𝑖

to 𝑉 .
8 forall 𝑗 ∈ [ℓ] do // Query Phase; processed in parallel
9 𝑉 samples 𝑠0, 𝑗

$← 𝐿0.
10 foreach 𝑖 ∈ [𝑘] do
11 𝑉 computes 𝑠𝑖, 𝑗 = (𝑠𝑖−1, 𝑗 )2 and 𝑠′

𝑖−1, 𝑗 ≠ 𝑠𝑖−1, 𝑗 such that (𝑠′
𝑖−1, 𝑗 )

2 = 𝑠𝑖, 𝑗 .
12 𝑉 queries and obtains 𝑞𝑖−1, 𝑗 = 𝐺𝑖−1 (𝑠𝑖−1, 𝑗 ) and 𝑞′

𝑖−1, 𝑗 = 𝐺𝑖−1 (𝑠′𝑖−1, 𝑗 ).
13 𝑉 computes linear polynomial ˜︁𝑄𝑖−1, 𝑗 (𝑋) via Lagrange interpolation on the set

{(𝑠𝑖−1, 𝑗 , 𝑞𝑖−1, 𝑗 ), (𝑠′𝑖−1, 𝑗 , 𝑞
′
𝑖−1, 𝑗 )}.

1515 if 𝐺𝑖 (𝑠𝑖, 𝑗 ) ≠ ˜︁𝑄𝑖−1, 𝑗 (𝑥𝑖−1) then 𝑉 outputs reject.

16 𝑉 outputs accept.

C Proof Sizes of FS-FRI

Here, we give a detailed overview on how we calculate the FS-FRI proof sizes. As a
reminder, FS-FRI is the non-interactive protocol obtained by compiling the FRI IOPP
with the BCS transformation. We remark that this version of FS-FRI may or may not be
the non-interactive version of FRI used in practice, as there are many optimizations that
can be made to reduce concrete proof sizes. We do not take into consideration any of
these optimizations; for example, Merkle capping,which shortens the length of Merkle
authentication paths at the cost of increasing commitment size (i.e., sending multiple
Merkle roots per round), or terminating FRI early and sending the coefficients of a
constant-degree polynomial rather than a single field element, which reduces the number
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of Merkle authentication paths needed to be sent by the prover at the cost of verifier
complexity. Thus our proof size analyses are overestimates; we believe that the proof
sizes here can be reduced by roughly 33% via optimizations used in practice [32].

We briefly discuss how Alg. 1 is transformed into FS-FRI via the BCS transformation
[8]. The BCS transformation incorporates a random oracleH . During every round of the
IOPP where the prover sends an oracle 𝐺𝑖 , this oracle is instead replaced with a Merkle
commitment 𝑀𝑖 over the vector 𝐺𝑖 (𝐿𝑖), where 𝐿𝑖 is the domain used during round 𝑖.
Next, instead of querying oracle 𝐺𝑖 at some point 𝑧, the verifier instead sends 𝑧 to the
prover, and the prover responds with the value 𝐺𝑖 (𝑧) along with a Merkle authentication
path 𝜋𝑖 that is consistent with Merkle commitment (or root) 𝑀𝑖 . Finally, this above
interaction is compressed via the classic Fiat-Shamir transformation; i.e., every message
sent by the verifier is instead replaced with the hash (i.e., random oracle output) of all
prior prover messages and the input instance (x) (to the underlying relation).

Let 𝜅 be the output length of the random oracle H , let F be a finite field, let 𝐿0

be the evaluation domain of size 2𝑛, let 𝑑0 = 2𝑘 be the degree bound, and let ℓ be the
number of times the verifier repeats the Query Phase of FRI. Now first consider an
intermediate version of FS-FRI, where instead of using the random oracle to compute
verifier challenges and queries, there is still interaction with the verifier for its challenges.
In particular, the prover sends Merkle roots of its various oracles to the verifier and
responds to verifier queries to these oracles with Merkle authentication paths. We refer
to this protocol as FRI-ARG. In this case, the transcript of the interaction consists of the
following.

– During the Folding Phase:

• Merkle roots 𝑀0, 𝑀1, . . . , 𝑀𝑘−1 and field element 𝐺𝑘 sent by the prover; and
• Field elements 𝑥0, 𝑥1, . . . , 𝑥𝑘−1 sent by the verifier.

– During the Query Phase:

• Field elements 𝑠0,1, . . . , 𝑠0,ℓ sent by the verifier; and
• Field elements 𝑞𝑖, 𝑗 , 𝑞′𝑖, 𝑗 and Merkle authentication paths 𝜋𝑖, 𝑗 , 𝜋′𝑖, 𝑗 sent by the

prover for 𝑖 ∈ {0, 1, . . . , 𝑘 − 1} and 𝑗 ∈ [ℓ].

The size of this transcript is the proof size. From the above derivation, we have a transcript
that consists of

– 𝑘 + ℓ + 2𝑘ℓ + 1 field elements;
– 𝑘 hashes of size 𝜅; and
– 2𝑘ℓ Merkle authentication paths.

The size of the Merkle authentication paths differs for each 𝑖 ∈ {0, 1, . . . , 𝑘 − 1}. In
particular, Merkle root 𝑀𝑖 is constructed with |𝐿𝑖 | = 2𝑛−𝑖 many leaves, and thus the
Merkle authentication paths 𝜋𝑖, 𝑗 and 𝜋′

𝑖, 𝑗
consist of 𝑛 − 𝑖 + 1 hashes of size 𝜅 for all

𝑖 ∈ {0, 1, . . . , 𝑘 −1} and 𝑗 ∈ [ℓ]. Thus the total number of hashes given by all the Merkle
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authentication paths is

2ℓ
𝑘−1∑︂
𝑖=0

𝑛 − 𝑖 + 1 = 2ℓ
𝑛+1∑︂

𝑖=𝑛−𝑘+2
𝑖 = 2ℓ

(︄
𝑛+1∑︂
𝑖=1

𝑖 −
𝑛−𝑘+1∑︂
𝑖=1

𝑖

)︄
= 2ℓ

(︃
(𝑛 + 1) (𝑛 + 2)

2
− (𝑛 − 𝑘 + 1) (𝑛 − 𝑘 + 2)

2

)︃
= ℓ

(︁
(𝑛 + 1) (𝑛 + 2) − (𝑛 − 𝑘 + 1) (𝑛 − 𝑘 + 2)

)︁
.

Thus our total proof size for FRI-ARG is
– 𝑘 + ℓ + 2𝑘ℓ + 1 field elements; and
– 𝑘 + ℓ ·

(︁
(𝑛 + 1) (𝑛 + 2) − (𝑛 − 𝑘 + 1) (𝑛 − 𝑘 + 2)

)︁
hashes of size 𝜅.

Now when we compile FRI-ARG into a non-interactive argument via Fiat-Shamir,
the proof only consists of messages sent by the prover, and the verifier messages are
obtained via the random oracle. This means that the 𝑘 + ℓ verifier messages in F are not
included in the non-interactive proof. Again assuming a random oracleH with 𝜅 bits of
output, the non-interactive proof consists of

– 2𝑘ℓ + 1 field elements (the prover’s responses to the verifier queries and 𝐺𝑘); and
– 𝑘 + ℓ ·

(︁
(𝑛 + 1) (𝑛 + 2) − (𝑛 − 𝑘 + 1) (𝑛 − 𝑘 + 2)

)︁
hashes of size 𝜅.

Remark 7 (Grinding and Proof Sizes). When incorporating grinding (see Section 3.2)
into FS-FRI, it allows the verifier query complexity ℓ to become smaller while achieving
the same level of security. This directly reduces the proof size since smaller ℓ directly
reduces the number of field elements and hashes needed for the non-interactive proof.

D ethSTARK Conjecture

For completeness, we restate the overview of the ethSTARK conjecture that was originally
presented in [12]. The ethSTARK conjecture about a variant of FRI is actually a conjecture
about a “Toy Problem Protocol”. This Toy Problem Protocol operates as follows. Fix 𝜌

to be a positive constant and fix 𝐿 to be a multiplicative subgroup of a finite field F of
size 2𝑘/𝜌, where 𝑘 ⩾ 0. Then this toy protocol operates as follows:

– First a prover sends oracle access to some function 𝑓 : 𝐿0 → F (e.g., purported to
be an RS codeword).

– Next the verifier samples 𝛼 $← F and sends it to the prover.
– The prover and verifier run FRI with respect to the new function 𝑔(𝑥) = ( 𝑓 (𝑥) −𝛼)/𝑥.

The actual ethSTARK conjecture relates this toy problem to the ethSTARK IOP, which
invokes FRI. The actual conjecture is informally stated as follows.
Conjecture 2 (ethSTARK Conjecture, Informal). If a 𝑇-time malicious prover attacks the
toy problem over finite field F, rate 𝜌, and 𝑘 ⩾ 0, and succeeds with probability 𝜖 , then
the ethSTARK IOP invoking FRI over F, 𝜌, and 𝑘 can be attacked in time 𝑇 with success
probability 𝜖 .

Conversely, if a 𝑇-time malicious prover attacks the ethSTARK IOP using FRI over
finite field F, rate 𝜌, and 𝑘 ⩾ 0, and succeeds with probability 𝜖 , then the toy problem
with finite field F, rate 𝜌, and 𝑘 can be attacked in time 𝑇 with success probability 𝜖 .
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A key observation regarding the above conjecture and the toy problem is that FRI is not
being applied to the function 𝑓 but rather a function 𝑔 derived from 𝑓 in a randomized
manner by the verifier. Moreover, this also occurs in the case of Batched FRI as well: the
prover sends multiple 𝑓1, . . . , 𝑓𝑡 , and the verifier sends 𝛼1, . . . , 𝛼𝑡 , and the prover and
verifier engage in Batched FRI on the functions 𝑔𝑖 (𝑥) = ( 𝑓𝑖 (𝑥) − 𝛼𝑖)/𝑥.

The above conjecture posits that the soundness error of the toy problem characterizes
the soundness error of commonly deployed FRI-based SNARKs. The following conjecture
essentially states that known attacks on the toy problem are optimal. A conjecture in this
vein is implicit in [29].

E Extracting SHARP and dYdX Parameters

Here, we document the process of extracting parameters from the SHARP Verifier and
the dYdX L2 On-Chain Operator. Examining either of their addresses on Etherscan gives
you a list of transactions to examine. The ones we are interested in are transactions with
the labels Verify Proof and Register under the “Method” column. Examining any
of these transactions (by clicking on the transaction hash), one then needs to scroll down
to the row labeled “More Details” and press “+ Click to show more”. This opens a row
with the label “Input Data” with data about a function verifyProofAndRegister and
information about its input in hexadecimal. Just below the box with this information, one
can click “Decode Input Data” to get human-readable parameters.

Turning towards the function verifyProofAndRegister, this function comes from
the StarkEx Contracts, and has 5 parameters: proofParams, proof, taskMetadata,
cairoAuxInput, and cairoVerifierId. We are interested in proofParams and
cairoAuxInput. The inputproofParams is a list of integers, and withinverifyProofAndRegister,
the functionverifyProofExternal is called onproofParams. The functionverifyProofExternal
then calls verifyProof. All of this leads us to what the integers in proofParams rep-
resents; they are defined here. In particular, we find that

– proofParams[0] is the number ℓ of verifier queries;
– proofParams[1] is − log(𝜌) for code rate 𝜌;
– proofParams[2] is the number of grinding bits 𝑧;
– proofParams[3] is the log(𝑑∗), where 𝑑∗ represents the degree of the polynomial

sent during the final round of the FRI folding phase (just before the Query Phase; in
plain FRI, 𝑑∗ = 1, but in practice many systems set 𝑑∗ = 28);

– proofParams[4] specifies the number of folding rounds for the protocol; and
– proofParams[5 + 𝑖] specifies the degree reduction factor in round 𝑖 of the protocol.

The contract defines the bits of security of their system here, which is identical to Conj. 1
(i.e., they are using conjectured security).

Finally, we turn to the input cairoAuxInput. here it tells you that the log of trace
length = logNSteps + 4 (the second term is constant). logNSteps is the 0th index of
the public parameters. The public parameters are exactly everything in cairoAuxInput
except the last 2 entries. So the log of the trace length (and thus the input degree of FRI)
is given by cairoAuxInput[0] + 4.
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https://github.com/starkware-libs/starkex-contracts/blob/aecf37f2278b2df233edd13b686d0aa9462ada02/evm-verifier/solidity/contracts/gps/GpsStatementVerifier.sol#L71
https://github.com/starkware-libs/starkex-contracts/blob/aecf37f2278b2df233edd13b686d0aa9462ada02/evm-verifier/solidity/contracts/cpu/CpuVerifier.sol#L54
https://github.com/starkware-libs/starkex-contracts/blob/aecf37f2278b2df233edd13b686d0aa9462ada02/evm-verifier/solidity/contracts/StarkVerifier.sol#L500
https://github.com/starkware-libs/starkex-contracts/blob/aecf37f2278b2df233edd13b686d0aa9462ada02/evm-verifier/solidity/contracts/StarkVerifier.sol#L65-L70
https://github.com/starkware-libs/starkex-contracts/blob/aecf37f2278b2df233edd13b686d0aa9462ada02/evm-verifier/solidity/contracts/StarkVerifier.sol#L148-L151
https://github.com/starkware-libs/starkex-contracts/blob/aecf37f2278b2df233edd13b686d0aa9462ada02/evm-verifier/solidity/contracts/cpu/CpuVerifier.sol#L131
https://github.com/starkware-libs/starkex-contracts/blob/aecf37f2278b2df233edd13b686d0aa9462ada02/evm-verifier/solidity/contracts/cpu/layout4/StarkParameters.sol#L31
https://github.com/starkware-libs/starkex-contracts/blob/aecf37f2278b2df233edd13b686d0aa9462ada02/evm-verifier/solidity/contracts/cpu/CpuPublicInputOffsetsBase.sol#L8
https://github.com/starkware-libs/starkex-contracts/blob/aecf37f2278b2df233edd13b686d0aa9462ada02/evm-verifier/solidity/contracts/gps/GpsStatementVerifier.sol#L87-L91
https://github.com/starkware-libs/starkex-contracts/blob/aecf37f2278b2df233edd13b686d0aa9462ada02/evm-verifier/solidity/contracts/StarkVerifier.sol#L88-L90


With all of the above information, one can examine transactions posted on-chain
under the verifyProofAndRegister method to extract the parameters being used by
both the SHARP Verifier and the dYdX L2 On-chain operator.
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