All papers in 2022 (Page 4 of 1781 results)

Last updated:  2023-08-17
Secure Messaging with Strong Compromise Resilience, Temporal Privacy, and Immediate Decryption
Cas Cremers, Mang Zhao
Recent years have seen many advances in designing secure messaging protocols, aiming at provably strong security properties in theory or high efficiency for real-world practical deployment. However, important trade-off areas of the design space inbetween these elements have not yet been explored. In this work we design the first provably secure protocol that at the same time achieves (i) strong resilience against finegrained compromise, (ii) temporal privacy, and (iii) immediate decryption with constant-size overhead, notably, in the postquantum (PQ) setting. Besides these main design goals, we introduce a novel definition of offline deniability suitable for our setting, and prove that our protocol meets it, notably when combined with a PQ offline deniable initial key exchange.
Last updated:  2022-10-27
A Pairing-Free Signature Scheme from Correlation Intractable Hash Function and Strong Diffie-Hellman Assumption
Benoit Chevallier-Mames
Goh and Jarecki (Eurocrypt 2003) showed how to get a signature scheme from the computational Diffie-Hellman assumption, and they introduced the name EDL for signatures of this type. The corresponding EDL family of signature schemes is remarkable for several reasons: elegance, simplicity and tight security. However, EDL security proofs stand in the random oracle model, and, to the best of our knowledge, extending this family without using an idealization of hash functions has never been successful. In this paper, we propose a new signature scheme belonging to the EDL family, which is simple, natural and efficient, without using the random oracle model. Our scheme is based on the very same assumption than the Boneh-Boyen scheme, namely the strong Diffie-Hellman assumption, with the precision that our groups are not bound to being bilinear. We also make use of a correlation-intractable hash function, for a particular relation related to discrete-logarithm. In addition to the theoretical interest of extending the EDL family with- out the random oracle model, our scheme is also one of the very few schemes which achieve discrete-log security properties without relying on pairings.
Last updated:  2023-07-31
A Note on Constructing SIDH-PoK-based Signatures after Castryck-Decru Attack
Jesús-Javier Chi-Domínguez
In spite of the wave of devastating attacks on SIDH, started by Castryck-Decru (Eurocrypt 2023), there is still interest in constructing quantum secure SIDH Proofs of Knowledge (PoKs). For instance, SIDH PoKs for the Fixed Degree Relation, aim to prove the knowledge of a fixed degree d isogeny ω between the elliptic curve E0 and the public keys E1, E2. In such cases, the public keys consist of only the elliptic curves (without image of auxiliary points), which suggests that the Castryck- Decru-like attack does not apply these scenarios. In this paper we focus on the SIDH proof of knowledge of De Feo, Dobson, Galbraith, and Zobernig (Asiacrypt 2022); more precisely, we focus on their first 3-special soundness construction. In this work, we explicitly describe an optimized recoverable Σ-protocol based on their 3-special soundness SIDH-PoK. We also analyze the impact of building a signature scheme based on the optimized protocol and study the impact of moving to B-SIDH and G2SIDH setups, on the signature sizes.
Last updated:  2022-10-27
Limits on revocable proof systems, with applications to stateless blockchains
Miranda Christ, Joseph Bonneau
Motivated by the goal of building a cryptocurrency with succinct global state, we introduce the abstract notion of a revocable proof system. We prove an information-theoretic result on the relation between global state size and the required number of local proof updates as statements are revoked (e.g., coins are spent). We apply our result to conclude that there is no useful trade-off point when building a stateless cryptocurrency: the system must either have a linear-sized global state (in the number of accounts in the system) or require a near-linear rate of local proof updates. The notion of a revocable proof system is quite general and also provides new lower bounds for set commitments, vector commitments and authenticated dictionaries.
Last updated:  2022-10-27
A Post-Quantum Digital Signature Scheme from QC-LDPC Codes
Christian Picozzi, Alessio Meneghetti, Giovanni Tognolini
We propose a novel post-quantum code-based digital signature algorithm whose security is based on the difficulty of decoding Quasi-Cyclic codes in systematic form, and whose trapdoor relies on the knowledge of a hidden Quasi-Cyclic Low-Density-Parity-Check (QC-LDPC) code. The utilization of Quasi-Cyclic (QC) codes allows us to balance between security and key size, while the LDPC property lighten the encoding complexity, thus the signing algorithm complexity, significantly.
Last updated:  2022-10-27
The EVIL Machine: Encode, Visualize and Interpret the Leakage
Valence Cristiani, Maxime Lecomte, Philippe Maurine
Unsupervised side-channel attacks allow extracting secret keys manipulated by cryptographic primitives through leakages of their physical implementations. As opposed to supervised attacks, they do not require a preliminary profiling of the target, constituting a broader threat since they imply weaker assumptions on the adversary model. Their downside is their requirement for some a priori knowledge on the leakage model of the device. On one hand, stochastic attacks such as the Linear Regression Analysis (LRA) allow for a flexible a priori, but are mostly limited to a univariate treatment of the traces. On the other hand, model-based attacks require an explicit formulation of the leakage model but have recently been extended to multidimensional versions allowing to benefit from the potential of Deep Learning (DL) techniques. The EVIL Machine Attack (EMA), introduced in this paper, aims at taking the best of both worlds. Inspired by generative adversarial networks, its architecture is able to recover a representation of the leakage model, which is then turned into a key distinguisher allowing flexible a priori. In addition, state-of-the-art DL techniques require 256 network trainings to conduct the attack. EMA requires only one, scaling down the time complexity of such attacks by a considerable factor. Simulations and real experiments show that EMA is applicable in cases where the adversary has very low knowledge on the leakage model, while significantly reducing the required number of traces compared to a classical LRA. Eventually, a generalization of EMA, able to deal with masked implementation is introduced.
Last updated:  2022-11-25
Quagmire ciphers and group theory: Recovering keywords from the key table
Thomas Kaeding
We demonstrate that with some ideas from group theory we are very often able to recover the keywords for a quagmire cipher from its key table. This would be the last task for a cryptologist in analyzing such a cipher.
Last updated:  2023-06-13
Quantum security of subset cover problems
Samuel Bouaziz--Ermann, Alex B. Grilo, Damien Vergnaud
The subset cover problem for $k \geq 1$ hash functions, which can be seen as an extension of the collision problem, was introduced in 2002 by Reyzin and Reyzin to analyse the security of their hash-function based signature scheme HORS. The security of many hash-based signature schemes relies on this problem or a variant of this problem (e.g. HORS, SPHINCS, SPHINCS+, $\dots$). Recently, Yuan, Tibouchi and Abe (2022) introduced a variant to the subset cover problem, called restricted subset cover, and proposed a quantum algorithm for this problem. In this work, we prove that any quantum algorithm needs to make $\Omega\left((k+1)^{-\frac{2^{k}}{2^{k+1}-1}}\cdot N^{\frac{2^{k}-1}{2^{k+1}-1}}\right)$ queries to the underlying hash functions with codomain size $N$ to solve the restricted subset cover problem, which essentially matches the query complexity of the algorithm proposed by Yuan, Tibouchi and Abe. We also analyze the security of the general $(r,k)$-subset cover problem, which is the underlying problem that implies the unforgeability of HORS under a $r$-chosen message attack (for $r \geq 1$). We prove that a generic quantum algorithm needs to make $\Omega\left(N^{k/5}\right)$ queries to the underlying hash functions to find a $(1,k)$-subset cover. We also propose a quantum algorithm that finds a $(r,k)$-subset cover making $O\left(N^{k/(2+2r)}\right)$ queries to the $k$ hash functions.
Last updated:  2024-01-10
Let's Meet Ternary Keys on Babai's Plane: A Hybrid of Lattice-reduction and Meet-LWE
Minki Hhan, Jiseung Kim, Changmin Lee, and Yongha Son
A cryptographic primitive based on the Learning With Errors (LWE) problem with variants is a promising candidate for the efficient quantum-resistant public key cryptosystem. As the parameters for such cryptosystems are chosen by the concrete attack cost for the corresponding LWE problem, improving LWE solving algorithm has a significant importance. In this paper, we present a new hybrid attack on the LWE problem. This new attack combines the primal lattice attack and an improved variant of the MitM attack, Meet-LWE, recently suggested by May [Crypto'21]. This resolves the major open problem posed in the same paper. To this end, we develop several technical tools for hybrid attacks; a new property of Babai's nearest plane algorithm with respect to projection, an approximate variant of Meet-LWE, and a locality-sensitive hashing-based near-collision finding algorithm. We also present a comprehensive analysis of the proposed attack, which involves the complicated arguments of both lattice and representation techniques. In particular, we take special care in specifying the relevant heuristics and also provide some experimental evidence for them. We finally estimate the concrete cost of our attack, and observe better cost for sparse LWE/NTRU keys than the other existing attacks. In particular, this result has a direct effect on the currently deployed parameter sets used in some fully homomorphic encryption libraries.
Last updated:  2023-11-07
Hardware-Supported Cryptographic Protection of Random Access Memory
Roberto Avanzi, Ionut Mihalcea, David Schall, Héctor Montaner, and Andreas Sandberg
Confidential Computing is the protection of data in use from access or modification by any unauthorized agent, including privileged software. For example, in Intel SGX (Client and Scalable versions) and TDX, AMD SEV, Arm CCA, and IBM Ultravisor this protection is implemented via access control policies. Some of these architectures also include memory protection schemes relying on cryptography, to protect against physical attacks. We review and classify such schemes, from academia and industry, according to protection levels corresponding of adversaries with varying capabilities, budget, and strategy. The building blocks of all memory protection schemes are encryption and integrity primitives and modes of operation, as well as anti-replay structures. We review these building blocks, consider their possible combinations, and evaluate the performance impact of the resulting schemes. We present a framework for performance evaluation in a simulated system. To understand the best and worst case overhead, systems with varying load levels are considered. We propose new solutions to further reduce the performance and memory overheads of such technologies. Advanced counter compression techniques make it viable to store counters used for replay protection in a physically protected memory. By additionally repurposing some ECC bits to store integrity tags, we can provide the highest levels of confidentiality, integrity, and replay protection at a hitherto unattained performance penalty, namely 3.32%, even under extreme load and at costs that make them reasonable in data centers. Combinations of technologies that are suitable for client devices are also discussed.
Last updated:  2023-07-06
Peer-to-Peer Energy Trading Meets Blockchain: Consensus via Score-Based Bid Assignment
Xiangyu Su, Xavier Défago, Mario Larangeira, Kazuyuki Mori, Takuya Oda, Yuta Okumura, Yasumasa Tamura, Keisuke Tanaka
The demand for peer-to-peer energy trading (P2PET) grows alongside the advancement of smart grids. A P2PET system enables its peers to trade energy as in a double-sided auction market by issuing auction bids to buy or sell energy. A robust public ledger, that satisfies the standard properties of persistence and liveness, is necessary for the system to record trading agreements, i.e., combinations between buy and sell bids which would form a \emph{transaction}. The Bitcoin based blockchain satisfies such properties as proven in the backbone protocol (EuroCrypt'15). However, existing blockchain-based P2PET approaches rely on general-purpose blockchains with smart contract capabilities, unavoidably incurring in high operational costs. Therefore, this work intends to design a dedicated blockchain for the ledger of P2PET. We first revisit the blockchain data structure to support auction bids. Then, we abstract the process of forming transactions, i.e., matching bids, with a score-based many-to-many Bid Assignment Problem (BAP). Leveraging our proposed BAP in addition to the corresponding scoring function, we propose a ``proof-of'' scheme, namely Proof-of-Bid-Assignment (PoBA), and design the corresponding blockchain aided protocol. The key difference from any previous work, we are aware of, is that our protocol selects blocks according to the score of their content, i.e., bids and transactions. Hence, a higher-scored block would be preferable to the underlying P2PET system regardless of whether the block's generator is honest, since, intuitively, it would increase the number of trading agreements. Finally, by modeling PoBA with a universal sampler (AsiaCrypt'16) and analyzing honest users' local chain dynamics, we prove the security of our design with respect to the standard ledger properties.
Last updated:  2022-10-27
Casting out Primes: Bignum Arithmetic for Zero-Knowledge Proofs
Daniel Lubarov, Jordi Baylina Melé
We describe a nondeterministic method for bignum arithmetic. It is inspired by the "casting out nines" technique, where some identity is checked modulo 9, providing a probabilistic result. More generally, we might check that some identity holds under a set of moduli, i.e. $f(\vec{x}) = 0 \mod m_i$ for each $m_i \in M$. Then $\DeclareMathOperator{\lcm}{lcm} f(\vec{x}) = 0 \mod \lcm(M)$, and if we know $|f(\vec{x})| < \lcm(M)$, it follows that $f(\vec{x}) = 0$. We show how to perform such small-modulus checks efficiently, for certain $f(\vec{x})$ such as bignum multiplication. We focus on the cost model of zero-knowledge proof systems, which support field arithmetic and range checks as native operations.
Last updated:  2023-02-24
Supersingular Curves You Can Trust
Andrea Basso, Giulio Codogni, Deirdre Connolly, Luca De Feo, Tako Boris Fouotsa, Guido Maria Lido, Travis Morrison, Lorenz Panny, Sikhar Patranabis, Benjamin Wesolowski
Generating a supersingular elliptic curve such that nobody knows its endomorphism ring is a notoriously hard task, despite several isogeny-based protocols relying on such an object. A trusted setup is often proposed as a workaround, but several aspects remain unclear. In this work, we develop the tools necessary to practically run such a distributed trusted-setup ceremony. Our key contribution is the first statistically zero-knowledge proof of isogeny knowledge that is compatible with any base field. To prove statistical ZK, we introduce isogeny graphs with Borel level structure and prove they have the Ramanujan property. Then, we analyze the security of a distributed trusted-setup protocol based on our ZK proof in the simplified universal composability framework. Lastly, we develop an optimized implementation of the ZK proof, and we propose a strategy to concretely deploy the trusted-setup protocol.
Last updated:  2022-10-26
Vulnerability Assessment of Ciphers To Fault Attacks Using Reinforcement Learning
Hao Guo, Sayandeep Saha, Satwik Patnaik, Vasudev Gohil, Debdeep Mukhopadhyay, Jeyavijayan (JV) Rajendran
A fault attack (FA) is one of the most potent threats to cryptographic applications. Implementing a FA-protected block cipher requires knowledge of the exploitable fault space of the underlying crypto algorithm. The discovery of exploitable faults is a challenging problem that demands human expertise and time. Current practice is to rely on certain predefined fault models. However, the applicability of such fault models varies among ciphers. Prior work discovers such exploitable fault models individually for each cipher at the expanse of a large amount of human effort. Our work completely replaces human effort by using reinforcement learning (RL) over the huge fault space of a block cipher to discover the effective fault models automatically. Validation on an AES block cipher demonstrates that our approach can automatically discover the effective fault models within a few hours, outperforming prior work, which requires days of manual analysis. The proposed approach also reveals vulnerabilities in the existing FA-protected block ciphers and initiates an end-to-end vulnerability assessment flow.
Last updated:  2024-01-24
A Cipher-Agnostic Neural Training Pipeline with Automated Finding of Good Input Differences
Emanuele Bellini, David Gerault, Anna Hambitzer, and Matteo Rossi
Neural cryptanalysis is the study of cryptographic primitives throughmachine learning techniques. Following Gohr’s seminal paper at CRYPTO 2019, afocus has been placed on improving the accuracy of such distinguishers against specific primitives, using dedicated training schemes, in order to obtain better key recovery attacks based on machine learning. These distinguishers are highly specialized and not trivially applicable to other primitives. In this paper, we focus on the opposite problem: building a generic pipeline for neural cryptanalysis. Our tool is composed of two parts. The first part is an evolutionary algorithm for the search of good input differences for neural distinguishers. The second part is DBitNet, a neuraldistinguisher architecture agnostic to the structure of the cipher. We show thatthis fully automated pipeline is competitive with a highly specialized approach, inparticular for SPECK32, and SIMON32. We provide new neural distinguishers forseveral primitives (XTEA, LEA, HIGHT, SIMON128, SPECK128) and improve overthe state-of-the-art for PRESENT, KATAN, TEA and GIMLI.
Last updated:  2023-09-13
I want to ride my BICYCL: BICYCL Implements CryptographY in CLass groups
Cyril Bouvier, Guilhem Castagnos, Laurent Imbert, and Fabien Laguillaumie
We introduce BICYCL an Open Source C++ library that implements arithmetic in the ideal class groups of imaginary quadratic fields, together with a set of cryptographic primitives based on class groups. It is available at https://gite.lirmm.fr/crypto/bicycl under GNU General Public License version 3 or any later version. BICYCL provides significant speed-ups on the implementation of the arithmetic of class groups. Concerning cryptographic applications, BICYCL is orders of magnitude faster than any previous pilot implementation of the CL linearly encryption scheme, making it faster than Paillier’s encryption scheme at any security level. Linearly homomorphic encryption is the core of many multi-party computation protocols, sometimes involving a huge number of encryptions and homomorphic evaluations: class group-based protocols become the best solution in terms of bandwidth and computational efficiency to rely upon.
Last updated:  2023-02-23
Private Collaborative Data Cleaning via Non-Equi PSI
Erik-Oliver Blass, Florian Kerschbaum
We introduce and investigate the privacy-preserving version of collaborative data cleaning. With collaborative data cleaning, two parties want to reconcile their data sets to filter out badly classified, misclassified data items. In the privacy-preserving (private) version of data cleaning, the additional security goal is that parties should only learn their misclassified data items, but nothing else about the other party's data set. The problem of private data cleaning is essentially a variation of private set intersection (PSI), and one could employ recent circuit-PSI techniques to compute misclassifications with privacy. However, we design, analyze, and implement three new protocols tailored to the specifics of private data cleaning that significantly outperform a circuit-PSI-based approach. With the first protocol, we exploit the idea that a small additional leakage (the size of the intersection of data items) allows for runtime and communication improvements of more than one order of magnitude over circuit-PSI. The other two protocols convert the problem of finding a mismatch in data classifications into finding a match, and then follow the standard technique of using oblivious pseudo-random functions (OPRF) for computing PSI. Depending on the number of data classes, this leads to either total runtime or communication improvements of up to two orders of magnitude over circuit-PSI.
Last updated:  2022-10-26
Parallel Isogeny Path Finding with Limited Memory
Emanuele Bellini, Jorge Chavez-Saab, Jesús-Javier Chi-Domínguez, Andre Esser, Sorina Ionica, Luis Rivera-Zamarripa, Francisco Rodríguez-Henríquez, Monika Trimoska, Floyd Zweydinger
The security guarantees of most isogeny-based protocols rely on the computational hardness of finding an isogeny between two supersingular isogenous curves defined over a prime field $\mathbb{F}_q$ with $q$ a power of a large prime $p$. In most scenarios, the isogeny is known to be of degree $\ell^e$ for some small prime $\ell$. We call this problem the Supersingular Fixed-Degree Isogeny Path (SIPFD) problem. It is believed that the most general version of SIPFD is not solvable faster than in exponential time by classical as well as quantum attackers. In a classical setting, a meet-in-the-middle algorithm is the fastest known strategy for solving the SIPFD. However, due to its stringent memory requirements, it quickly becomes infeasible for moderately large SIPFD instances. In a practical setting, one has therefore to resort to time-memory trade-offs to instantiate attacks on the SIPFD. This is particularly true for GPU platforms, which are inherently more memory-constrained than CPU architectures. In such a setting, a van Oorschot-Wiener-based collision finding algorithm offers a better asymptotic scaling. Finding the best algorithmic choice for solving instances under a fixed prime size, memory budget and computational platform remains so far an open problem. To answer this question, we present a precise estimation of the costs of both strategies considering most recent algorithmic improvements. As a second main contribution, we substantiate our estimations via optimized software implementations of both algorithms. In this context, we provide the first optimized GPU implementation of the van Oorschot-Wiener approach for solving the SIPFD. Based on practical measurements we extrapolate the running times for solving different-sized instances. Finally, we give estimates of the costs of computing a degree-$2^{88}$ isogeny using our CUDA software library running on an NVIDIA A100 GPU server.
Last updated:  2022-10-26
How to Obfuscate MPC Inputs
Ian McQuoid, Mike Rosulek, Jiayu Xu
We introduce the idea of input obfuscation for secure two-party computation ($\textsf{io2PC}$). Suppose Alice holds a private value $x$ and wants to allow clients to learn $f(x,y_i)$, for their choice of $y_i$, via a secure computation protocol. The goal of $\textsf{io2PC}$ is for Alice to encode $x$ so that an adversary who compromises her storage gets only oracle access to the function $f(x,\cdot)$. At the same time, there must be a 2PC protocol for computing $f(x,y)$ that takes only this encoding (and not the plaintext $x$) as input. We show how to achieve $\textsf{io2PC}$ for functions that have virtual black-box (VBB) obfuscation in either the random oracle model or generic group model. For functions that can be VBB-obfuscated in the random oracle model, we provide an $\textsf{io2PC}$ protocol by replacing the random oracle with an oblivious PRF. For functions that can be VBB-obfuscated in the generic group model, we show how Alice can instantiate a "personalized" generic group. A personalized generic group is one where only Alice can perform the algebraic operations of the group, but where she can let others perform operations in that group via an oblivious interactive protocol.
Last updated:  2022-12-29
RTL-FSMx: Fast and Accurate Finite State Machine Extraction at the RTL for Security Applications
Rasheed Kibria, M. Sazadur Rahman, Farimah Farahmandi, Mark Tehranipoor
At the early stage of the design process, many security vulnerability assessment solutions require fast and precise extraction of the finite state machines (FSMs) present in the register-transfer level (RTL) description of the design. FSMs should be accurately extracted for watermark insertion, fault injection assessment of control paths in a system-on-chip (SoC), information leakage assessment, control-flow reverse engineering in RTL abstraction, logic obfuscation, etc. However, it is quite unfortunate that, as of today, existing state-of-the-art synthesis tools cannot provide accurate and reliable extraction of all FSMs from the provided high-level RTL code. Precise identification of all FSM state registers and the pure combinational state transition logic described in the RTL code with numerous registers and other combinational logic makes it quite challenging to develop such a solution. In this paper, we propose a framework named RTL-FSMx to extract FSMs from high-level RTL codes written in Verilog HDL. RTL-FSMx utilizes node-based analysis on the abstract syntax tree (AST) representation of the RTL code to isolate FSM state registers from other registers. RTL-FSMx automatically extracts state transition graphs (STGs) for each of the detected FSM state registers and additional information of the extracted FSMs. Experimental results on a large number of benchmark circuits demonstrate that RTL-FSMx accurately recovers all control FSMs from RTL codes with various complexity and size within just a few seconds.
Last updated:  2023-08-08
ACORN: Input Validation for Secure Aggregation
James Bell, Adrià Gascón, Tancrède Lepoint, Baiyu Li, Sarah Meiklejohn, Mariana Raykova, Cathie Yun
Secure aggregation enables a server to learn the sum of client-held vectors in a privacy-preserving way, and has been successfully applied to distributed statistical analysis and machine learning. In this paper, we both introduce a more efficient secure aggregation construction and extend secure aggregation by enabling input validation, in which the server can check that clients' inputs satisfy required constraints such as $L_0$, $L_2$, and $L_\infty$ bounds. This prevents malicious clients from gaining disproportionate influence on the computed aggregated statistics or machine learning model. Our new secure aggregation protocol improves the computational efficiency of the state-of-the-art protocol of Bell et al. (CCS 2020) both asymptotically and concretely: we show via experimental evaluation that it results in $2$-$8$X speedups in client computation in practical scenarios. Likewise, our extended protocol with input validation improves on prior work by more than $30$X in terms of client communiation (with comparable computation costs). Compared to the base protocols without input validation, the extended protocols incur only $0.1$X additional communication, and can process binary indicator vectors of length $1$M, or 16-bit dense vectors of length $250$K, in under $80$s of computation per client.
Last updated:  2024-01-23
Towards Practical Multi-key TFHE: Parallelizable, Key-Compatible, Quasi-linear Complexity
Hyesun Kwak, Seonhong Min, and Yongsoo Song
Multi-key homomorphic encryption is a generalized notion of homomorphic encryption supporting arbitrary computation on ciphertexts, possibly encrypted under different keys. In this paper, we revisit the work of Chen, Chillotti and Song (ASIACRYPT 2019) and present yet another multi-key variant of the TFHE scheme. The previous construction by Chen et al. involves a blind rotation procedure where the complexity of each iteration gradually increases as it continuously operates on ciphertexts under different keys. Hence, the complexity of gate bootstrapping grows quadratically with respect to the number of associated keys. Our scheme is based on a new blind rotation algorithm which consists of two separate phases. We first split a given multi-key ciphertext into several single-key ciphertexts, take each of them as input to the blind rotation procedure, and obtain accumulators corresponding to individual keys. Then, we merge these single-key accumulators into a single multi-key accumulator. In particular, we develop a novel homomorphic operation between single-key and multi-key ciphertexts to instantiate our pipeline. Therefore, our construction achieves an almost linear time complexity since the gate bootstrapping is dominated by the first phase of blind rotation which requires only independent single-key operations. It also enjoys with great advantages of parallelizability and key-compatibility. We implement the proposed scheme and provide its performance benchmark. For example, our 16-key gate bootstrapping takes about 5.65s, which is 4.38x faster compared to the prior work.
Last updated:  2024-03-08
Circuit Privacy for FHEW/TFHE-Style Fully Homomorphic Encryption in Practice
Kamil Kluczniak
A fully homomorphic encryption (FHE) scheme allows a client to encrypt and delegate its data to a server that performs computation on the encrypted data that the client can then decrypt. While FHE gives confidentiality to clients' data, it does not protect the server's input and computation. Nevertheless, FHE schemes are still helpful in building delegation protocols that reduce communication complexity, as the ciphertext's size is independent of the size of the computation performed on them. We can further extend FHE by a property called circuit privacy, which guarantees that the result of computing on ciphertexts reveals no information on the computed function and the inputs of the server. Thereby, circuit private FHE gives rise to round optimal and communication efficient secure two-party computation protocols. Unfortunately, despite significant efforts and much work put into the efficiency and practical implementations of FHE schemes, very little has been done to provide useful and practical FHE supporting circuit privacy. In this work, we address this gap and design the first randomized bootstrapping algorithm whose single invocation sanitizes a ciphertext and, consequently, serves as a tool to provide circuit privacy. We give an extensive analysis, propose parameters, and provide a C++ implementation of our scheme. Our bootstrapping can sanitize a ciphertext to achieve circuit privacy at an 80-bit statistical security level in between 1.3 and 0.9 seconds, depending which Gaussian sampling algorithm is used, and whether the parameter set targets a fast Fourier or a number theoretic transform-based implementation. In addition, we can perform non-sanitized bootstrapping in around 0.27 or 0.14 seconds. Crucially, we do not need to increase the parameters to perform computation before or after sanitization takes place. For comparison's sake, we revisit the Ducas-Stehl\'e washing machine method. In particular, we give a tight analysis, estimate efficiency, review old, and provide new parameters.
Last updated:  2022-12-05
Speeding-Up Elliptic Curve Cryptography Algorithms
Diana Maimut, Alexandru Cristian Matei
During the last decades there has been an increasing interest in Elliptic curve cryptography (ECC) and, especially, the Elliptic Curve Digital Signature Algorithm (ECDSA) in practice. The rather recent developments of emergent technologies, such as blockchain and the Internet of Things (IoT), have motivated researchers and developers to construct new cryptographic hardware accelerators for ECDSA. Different types of optimizations (either platform dependent or algorithmic) were presented in the literature. In this context, we turn our attention to ECC and propose a new method for generating ECDSA moduli with a predetermined portion that allows one to double the speed of Barrett's algorithm. Moreover, we take advantage of the advancements in the Artificial Intelligence (AI) field and bring forward an AI-based approach that enhances Schoof's algorithm for finding the number of points on an elliptic curve in terms of implementation efficiency. Our results represent algorithmic speed-ups exceeding the current paradigm as we are also preoccupied by other particular security environments meeting the needs of governmental organizations.
Last updated:  2022-10-25
Secure Non-Interactive Reducibility is Decidable
Kaartik Bhushan, Ankit Kumar Misra, Varun Narayanan, Manoj Prabhakaran
Secure Non-Interactive Reductions (SNIR) is a recently introduced, but fundamental cryptographic primitive. The basic question about SNIRs is how to determine if there is an SNIR from one 2-party correlation to another. While prior work provided answers for several pairs of correlations, the possibility that this is an undecidable problem in general was left open. In this work we show that the existence of an SNIR between any pair of correlations can be determined by an algorithm. At a high-level, our proof follows the blueprint of a similar (but restricted) result by Khorasgani et al. But combining the spectral analysis of SNIRs by Agrawal et al. (Eurocrypt 2022) with a new variant of a "junta theorem" by Kindler and Safra, we obtain a complete resolution of the decidability question for SNIRs. The new junta theorem that we identify and prove may be of independent interest.
Last updated:  2022-10-25
Resistance of Ascon Family against Conditional Cube Attacks in Nonce-Misuse Setting
Donghoon Chang, Deukjo Hong, Jinkeon Kang, Meltem Sönmez Turan
Ascon family is one of the finalists of the National Institute of Standards and Technology (NIST) lightweight cryptography standardization process. The family includes three Authenticated Encryption with Associated Data (AEAD) schemes: Ascon-128 (primary), Ascon-128a, and Ascon-80pq. In this paper, we study the resistance of the Ascon~family against conditional cube attacks in nonce-misuse setting, and present new state- and key-recovery attacks. Our attack recovers the full state information and the secret key of Ascon-128a using 7-round Ascon-permutation for the encryption phase, with $2^{117}$ data and $2^{116.2}$ time. This is the best known attack result for Ascon-128a as far as we know. We also show that the partial state information of Ascon-128 can be recovered with $2^{44.8}$ data. Finally, by assuming that the full state information of Ascon-80pq was recovered by Baudrin et al.'s attack, we show that the 160-bit secret key of Ascon-80pq can be recovered with $2^{128}$ time. Although our attacks do not invalidate designers' claim, those allow us to understand the security of Ascon in nonce-misuse setting.
Last updated:  2023-06-20
Cuckoo Hashing in Cryptography: Optimal Parameters, Robustness and Applications
Kevin Yeo
Cuckoo hashing is a powerful primitive that enables storing items using small space with efficient querying. At a high level, cuckoo hashing maps $n$ items into $b$ entries storing at most $\ell$ items such that each item is placed into one of $k$ randomly chosen entries. Additionally, there is an overflow stash that can store at most $s$ items. Many cryptographic primitives rely upon cuckoo hashing to privately embed and query data where it is integral to ensure small failure probability when constructing cuckoo hashing tables as it directly relates to the privacy guarantees. As our main result, we present a more query-efficient cuckoo hashing construction using more hash functions. For construction failure probability $\epsilon$, the query overhead of our scheme is $O(1 + \sqrt{\log(1/\epsilon)/\log n})$. Our scheme has quadratically smaller query overhead than prior works for any target failure probability $\epsilon$. We also prove lower bounds matching our construction. Our improvements come from a new understanding of the locality of cuckoo hashing failures for small sets of items. We also initiate the study of robust cuckoo hashing where the input set may be chosen with knowledge of the hash functions. We present a cuckoo hashing scheme using more hash functions with query overhead $\tilde{O}(\log \lambda)$ that is robust against poly$(\lambda)$ adversaries. Furthermore, we present lower bounds showing that this construction is tight and that extending previous approaches of large stashes or entries cannot obtain robustness except with $\Omega(n)$ query overhead. As applications of our results, we obtain improved constructions for batch codes and PIR. In particular, we present the most efficient explicit batch code and blackbox reduction from single-query PIR to batch PIR.
Last updated:  2022-10-24
Unjamming Lightning: A Systematic Approach
Clara Shikhelman, Sergei Tikhomirov
Users of decentralized financial networks suffer from inventive security exploits. Identity-based fraud prevention methods are inapplicable in these networks, as they contradict their privacy-minded design philosophy. Novel mitigation strategies are therefore needed. Their rollout, however, may damage other desirable network properties. In this work, we introduce an evaluation framework for mitigation strategies in decentralized financial networks. This framework allows researchers and developers to examine and compare proposed protocol modifications along multiple axes, such as privacy, security, and user experience. As an example, we focus on the jamming attack in the Lightning Network. Lightning is a peer-to-peer payment channel network on top of Bitcoin. Jamming is a cheap denial-of-service attack that allows an adversary to temporarily disable Lightning channels by flooding them with failing payments. We propose a practical solution to jamming that combines unconditional fees and peer reputation. Guided by the framework, we show that, while discouraging jamming, our solution keeps the protocol incentive compatible. It also preserves security, privacy, and user experience, and is straightforward to implement. We support our claims analytically and with simulations. Moreover, our anti-jamming solution may help alleviate other Lightning issues, such as malicious channel balance probing.
Last updated:  2022-10-24
Philipp Muth, Stefan Katzenbeisser
Since their introduction in the 1970s, multi-party computation protocols have become the prevalent method for two or more parties to jointly compute an agreed upon function on private inputs without revealing them to other parties. While some efficiency gains in the offline phase of MPC protocols have been achieved, most works in the past have focused on optimising the online phase. Improvements to the online phase typically shifted significant workload to the offline phase. In this work we explore a novel approach to streamline the offline phase of secret sharing based MPC protocols by introducing a helper party that executes the preprocessing for the parties engaged in the online phase. We prove, that the security guarantees provided by the MPC protocols stay unchanged and demonstrate the efficiency of our approach in two sets of benchmarks. We furthermore give three examples of real world instantiations of the helper party to demonstrate that our approach is not only of a theoretical nature.
Last updated:  2022-10-24
A Side-Channel Attack on a Hardware Implementation of CRYSTALS-Kyber
Yanning Ji, Ruize Wang, Kalle Ngo, Elena Dubrova, Linus Backlund
CRYSTALS-Kyber has been recently selected by the NIST as a new public-key encryption and key-establishment algorithm to be standardized. This makes it important to assess how well CRYSTALS-Kyber implementations withstand side-channel attacks. Software implementations of CRYSTALS-Kyber have been already analyzed and the discovered vulnerabilities were patched in the subsequently released versions. In this paper, we present a profiling side-channel attack on a hardware implementation of CRYSTALS-Kyber with the security parameter $k = 3$, Kyber768. Since hardware implementations carry out computation in parallel, they are typically more difficult to break than their software counterparts. We demonstrate a successful message (session key) recovery by deep learning-based power analysis. Our results indicate that currently available hardware implementations of CRYSTALS-Kyber need better protection against side-channel attacks.
Last updated:  2022-10-24
Attribute-Based Signatures for Range of Inner Product and Its Applications
Masahito Ishizaka, Kazuhide Fukushima
In attribute-based signatures (ABS) for inner products, the digital signature analogue of attribute-based encryption for inner products (Katz et al., EuroCrypt'08), a signing-key (resp. signature) is labeled with an $n$-dimensional vector $\mathbf{x}\in\mathbf{Z}_p^n$ (resp. $\mathbf{y}\in\mathbf{Z}_p^n$) for a prime $p$, and the signing succeeds iff their inner product is zero, i.e., $ \langle \mathbf{x}, \mathbf{y} \rangle=0 \pmod p$. We generalize it to ABS for range of inner product (ARIP), requiring the inner product to be within an arbitrarily-chosen range $[L,R]$. As security notions, we define adaptive unforgeablity and perfect signer-privacy. The latter means that any signature reveals no more information about $\mathbf{x}$ than $\langle \mathbf{x}, \mathbf{y} \rangle \in[L,R]$. We propose two efficient schemes, secure under some Diffie-Hellman type assumptions in the standard model, based on non-interactive proof and linearly homomorphic signatures. The 2nd (resp. 1st) scheme is independent of the parameter $n$ in secret-key size (resp. signature size and verification cost). We show that ARIP has many applications, e.g., ABS for range evaluation of polynomials/weighted averages, fuzzy identity-based signatures, time-specific signatures, ABS for range of Hamming/Euclidean distance and ABS for hyperellipsoid predicates.
Last updated:  2023-07-08
Deterministic Wallets for Adaptor Signatures
Andreas Erwig, Siavash Riahi
Adaptor signatures are a new cryptographic primitive that binds the authentication of a message to the revelation of a secret value. In recent years, this primitive has gained increasing popularity both in academia and practice due to its versatile use-cases in different Blockchain applications such as atomic swaps and payment channels. The security of these applications, however, crucially relies on users storing and maintaining the secret values used by adaptor signatures in a secure way. For standard digital signature schemes, cryptographic wallets have been introduced to guarantee secure storage of keys and execution of the signing procedure. However, no prior work has considered cryptographic wallets for adaptor signatures. In this work, we introduce the notion of adaptor wallets. Adaptor wallets allow parties to securely use and maintain adaptor signatures in the Blockchain setting. Our adaptor wallets are both deterministic and operate in the hot/cold paradigm, which was first formalized by Das et al. (CCS 2019) for standard signature schemes. We introduce a new cryptographic primitive called adaptor signatures with rerandomizable keys, and use it to generically construct adaptor wallets. We further show how to instantiate adaptor signatures with rerandomizable keys from the ECDSA signature scheme and discuss that they can likely be built for Schnorr and Katz-Wang schemes as well. Finally, we discuss the limitations of the existing ECDSA- and Schnorr-based adaptor signatures w.r.t. deterministic wallets in the hot/cold setting and prove that it is impossible to overcome these drawbacks given the current state-of-the-art design of adaptor signatures.
Last updated:  2022-11-02
ParaDiSE: Efficient Threshold Authenticated Encryption in Fully Malicious Model
Shashank Agrawal, Wei Dai, Atul Luykx, Pratyay Mukherjee, Peter Rindal
Threshold cryptographic algorithms achieve robustness against key and access compromise by distributing secret keys among multiple entities. Most prior work focuses on threshold public-key primitives, despite extensive use of authenticated encryption in practice. Though the latter can be deployed in a threshold manner using multi-party computation (MPC), doing so incurs a high communication cost. In contrast, dedicated constructions of threshold authenticated encryption algorithms can achieve high performance. However to date, few such algorithms are known, most notably DiSE (distributed symmetric encryption) by Agrawal et al. (ACM CCS 2018). To achieve threshold authenticated encryption} (TAE), prior work does not suffice, due to shortcomings in definitions, analysis, and design, allowing for potentially insecure schemes, an undesirable similarity between encryption and decryption, and insufficient understanding of the impact of parameters due to lack of concrete analysis. In response, we revisit the problem of designing secure and efficient TAE schemes. (1) We give new TAE security definitions in the fully malicious setting addressing the aforementioned concerns. (2) We construct efficient schemes satisfying our definitions and perform concrete and more modular security analyses. (3) We conduct an extensive performance evaluation of our constructions, against prior ones.
Last updated:  2023-09-26
Towards Practical Sleepy BFT
Dahlia Malkhi, Atsuki Momose, and Ling Ren
Bitcoin's longest-chain protocol pioneered consensus under dynamic participation, also known as sleepy consensus, where nodes do not need to be permanently active. However, existing solutions for sleepy consensus still face two major issues, which we address in this work. First, existing sleepy consensus protocols have high latency (either asymptotically or concretely). We tackle this problem and achieve $4\Delta$ latency ($\Delta$ is the bound on network delay) in the best case, which is comparable to classic BFT protocols without dynamic participation support. Second, existing protocols have to assume that the set of corrupt participants remains fixed throughout the lifetime of the protocol due to a problem we call \emph{costless simulation}. We resolve this problem and support growing participation of corrupt nodes. Our new protocol also offers several other important advantages, including support for arbitrary fluctuation of honest participation as well as an efficient recovery mechanism for new active nodes.
Last updated:  2024-04-22
flookup: Fractional decomposition-based lookups in quasi-linear time independent of table size
Ariel Gabizon and Dmitry Khovratovich
We present a protocol for checking the values of a committed polynomial $\phi(X)$ over a multiplicative subgroup $H\subset \mathbb{F}$ of size $m$ are contained in a table $T\in \mathbb{F}^N$. After an $O(N \log^2 N)$ preprocessing step, the prover algorithm runs in *quasilinear* time $O(m\log ^2 m)$. We improve upon the recent breakthrough results Caulk[ZBK+22] and Caulk+[PK22], which were the first to achieve the complexity sublinear in the full table size $N$ with prover time being $O(m^2+m\log N)$ and $O(m^2)$, respectively. We pose further improving this complexity to $O(m\log m)$ as the next important milestone for efficient zk-SNARK lookups.
Last updated:  2023-07-16
Radical isogenies and modular curves
Valentina Pribanić
This article explores the connection between radical isogenies and modular curves. Radical isogenies are formulas designed for the computation of chains of isogenies of fixed small degree $N$, introduced by Castryck, Decru, and Vercauteren at Asiacrypt 2020. One significant advantage of radical isogeny formulas over other formulas with a similar purpose is that they eliminate the need to generate a point of order $N$ that generates the kernel of the isogeny. While radical isogeny formulas were originally developed using elliptic curves in Tate normal form, Onuki and Moriya have proposed radical isogeny formulas of degrees $3$ and $4$ on Montgomery curves and attempted to obtain a simpler form of radical isogenies using enhanced elliptic and modular curves. In this article, we translate the original setup of radical isogenies in Tate normal form into the language of modular curves. Additionally, we solve an open problem introduced by Onuki and Moriya regarding radical isogeny formulas on $X_0(N).$
Last updated:  2022-10-23
Minimizing Even-Mansour Ciphers for Sequential Indifferentiability (Without Key Schedules)
Shanjie Xu, Qi Da, Chun Guo
Iterated Even-Mansour (IEM) schemes consist of a small number of fixed permutations separated by round key additions. They enjoy provable security, assuming the permutations are public and random. In particular, regarding chosen-key security in the sense of sequential indifferentiability (seq-indifferentiability), Cogliati and Seurin (EUROCRYPT 2015) showed that without key schedule functions, the 4-round Even-Mansour with Independent Permutations and no key schedule $EMIP_4(k,u) = k \oplus p_4 ( k \oplus p_3( k \oplus p_2( k\oplus p_1(k \oplus u))))$ is sequentially indifferentiable. Minimizing IEM variants for classical strong (tweakable) pseudorandom security has stimulated an attractive line of research. In this paper, we seek for minimizing the $EMIP_4$ construction while retaining seq-indifferentiability. We first consider $EMSP$, a natural variant of $EMIP$ using a single round permutation. Unfortunately, we exhibit a slide attack against $EMSP$ with any number of rounds. In light of this, we show that the 4-round $EM2P_4^{p_1,p_2} (k,u)=k\oplus p_1(k \oplus p_2(k\oplus p_2(k\oplus p_1(k\oplus u))))$ using 2 independent random permutations $p_1,p_2$ is seq-indifferentiable. This provides the minimal seq-indifferentiable IEM without key schedule.
Last updated:  2022-10-23
Finding Three-Subset Division Property for Ciphers with Complex Linear Layers (Full Version)
Debasmita Chakraborty
Conventional bit-based division property (CBDP) and bit- based division property using three subsets (BDPT) introduced by Todo et al. at FSE 2016 are the most effective techniques for finding integral characteristics of symmetric ciphers. At ASIACRYPT 2019, Wang et al. proposed the idea of modeling the propagation of BDPT, and recently Liu et al. described a model set method that characterized the BDPT propagation. However, the linear layers of the block ciphers which are analyzed using the above two methods of BDPT propagation are restricted to simple bit permutation. Thus the feasibility of the MILP method of BDPT propagation to analyze ciphers with complex linear layers is not settled. In this paper, we focus on constructing an automatic search algorithm that can accurately characterize BDPT propagation for ciphers with complex linear layers. We first introduce BDPT propagation rule for the binary diffusion layer and model that propagation in MILP efficiently. The solutions to these inequalities are exact BDPT trails of the binary diffusion layer. Next, we propose a new algorithm that models Key-Xor operation in BDPT based on MILP technique. Based on these ideas, we construct an automatic search algorithm that accurately characterizes the BDPT propagation and we prove the correctness of our search algorithm. We demonstrate our model for the block ciphers with non-binary diffusion layers by decomposing the non-binary linear layer trivially by the COPY and XOR operations. Therefore, we apply our method to search integral distinguishers based on BDPT of SIMON, SIMON(102), PRINCE, MANTIS, PRIDE, and KLEIN block ciphers. For PRINCE and MANTIS, we find (2 + 2) and (3 + 3) round integral distinguishers respectively which are longest to date. We also improve the previous best integral distinguishers of PRIDE and KLEIN. For SIMON, SIMON(102), the integral distinguishers found by our method are consistent with the existing longest distinguishers.
Last updated:  2023-01-03
DOT-M: A Dual Offline Transaction Scheme of Central Bank Digital Currency for Trusted Mobile Devices
Bo Yang, Yanchao Zhang, Dong Tong
In recent years, many major economies have paid close attention to central bank digital currency (CBDC). As an optional attribute of CBDC, dual offline transaction is considered to have great practical value under the circumstances for payment without network connection. However, there is no public report or paper on how to securely design or implement the dual offline transaction function specifically for CBDC. In this paper, we propose DOT-M, a practical dual offline transaction scheme designed for the mobile device user as either a payer or a payee. Precisely, adopting secure element (SE) and trusted execution environment (TEE), the architecture of trusted mobile device is constructed to protect security-sensitive keys and execution of the transaction protocol. According to the trusted architecture, the data structure for offline transaction is designed as well. On this basis, we describe the core procedures of DOT-M in detail, including registration, account synchronization, dual offline transaction, and online data updating. We also enumerate the exceptional situations that may occur during the dual offline transaction, and give specific handling methods for each situation. Moreover, six security properties of the scheme are analyzed under realistic assumptions. A prototype system is implemented and finally tested with possible parameters. The security analysis and experimental results indicate that our scheme could meet the practical requirement of CBDC offline transaction for mobile users from both aspects of security and efficiency.
Last updated:  2023-06-18
FairPoS: Input Fairness in Permissionless Consensus
James Hsin-yu Chiang, Bernardo David, Ittay Eyal, Tiantian Gong
In permissionless consensus, the ordering of transactions or inputs in each block is freely determined by an anonymously elected block leader. A rational block leader will choose an ordering of inputs that maximizes financial gain; the emergence of automatic market makers in decentralized finance enables the block leader to front-run honest trade orders by injecting its own inputs prior to and after honest trades. Front-running is rampant in decentralized finance and reduces the utility of the system by extracting financial value from honest trades and increasing demand for block-space. Current proposals to prevent input order attacks by encrypting user inputs are not permissionless, as they rely on small static committees to perform distributed key generation and threshold decryption. Such committees require party authentication, knowledge of the number of participating parties or do not permit player replaceability and are therefore not permissionless. Moreover, alternative solutions based on sequencing inputs in order of their arrival cannot prevent front-running in an unauthenticated peer-2-peer network where message arrival is adversarially controlled. We present FairPoS, the first consensus protocol to achieve input fairness in the permissionless setting with security against adaptive adversaries in semi-synchronous networks. In FairPoS, the adversary cannot learn the plaintext of any client input before it is included in a block in the chain's common-prefix. Thus, input ordering attacks that depend on observing pending client inputs in the clear are no longer possible. In FairPoS, this is achieved via Delay Encryption (DeFeo et al., EUROCRYPT 2021), a recent cryptographic primitive related to time-lock puzzles, allowing all client inputs in a given round to be encrypted under a key that can only be extracted after enough time has elapsed. In contrast to alternative approaches, the key extraction task in delay encryption can, in principle, be performed by any party in the permissionless setting and requires no distribution of secret key material amongst authenticated parties. However, key extraction requires highly specialized hardware in practice. Thus, FairPoS requires resource-rich staking parties to insert extracted keys into blocks, enabling light-clients to decrypt past inputs and relieving parties who join the execution from decrypting all inputs in the entire chain history. Realizing this in proof-of-stake is non-trivial; naive application of key extraction to proof-of-stake can result in chain stalls lasting the entire key extraction period. We overcome this challenge with a novel key extraction protocol, which tolerates adversarial delays in block delivery intended to prevent key extraction from completing on schedule. Critically, this also enables the adoption of a new longest-extendable-chain rule which allows FairPoS to achieve the same guarantees as Ouroborous Praos against an adaptive adversary.
Last updated:  2023-01-28
Tighter Post-quantum Proof for Plain FDH, PFDH and GPV-IBE
Yu Liu, Haodong Jiang, Yunlei Zhao
In CRYPTO 2012, Zhandry developed generic semi-constant oracle technique and proved security of an identity-based encryption scheme, GPV-IBE, and full domain hash (FDH) signature scheme in the quantum random oracle model (QROM). However, the reduction provided by Zhandry incurred a quadratic reduction loss. In this work, we provide a much tighter proof, with linear reduntion loss, for the FDH, probabilistc FDH (PFDH), and GPV-IBE in the QROM. Our proof is based on the measure-and-reprogram technique developed by Don, Fehr, Majenz and Schaffner.
Last updated:  2022-11-08
An Efficient and Decentralized Blockchain-based Commercial Alternative (Full Version)
Marwan Zeggari, Renaud Lambiotte, Aydin Abadi, Louise Axon, Mohamad Kassab
While online interactions and exchanges have grown exponentially over the past decade, most commercial infrastructures still operate through centralized protocols, and their success essentially depends on trust between different economic actors. Digital advances such as blockchain technology has led to a massive wave of Decentralized Ledger Technology (DLT) initiatives, protocols and solutions. This advance makes it possible to implement trustless systems in the real world, which, combined with appropriate economic and participatory incentives, would foster the proper functioning and drive the adoption of a decentralized platform among different actors. This paper describes an alternative to current commercial structures and networks by introducing Lyzis Labs, which is is an incentive-driven and democratic protocol designed to support a decentralized online marketplace, based on blockchain technology. The proposal, Lyzis Marketplace, allows to connect two or more people in a decentralized and secure way without having to rely on a Trusted Third Party (TTP) in order to perform physical asset exchanges while mainly providing transparent and fully protected data storage. This approach can potentially lead to the creation of a permissionless, efficient, secure and transparent business environment where each user can gain purchasing and decision-making power by supporting the collective welfare while following their personal interests during their various interactions on the network.
Last updated:  2023-10-25
Cryptographic Smooth Neighbors
Giacomo Bruno, Maria Corte-Real Santos, Craig Costello, Jonathan Komada Eriksen, Michael Meyer, Michael Naehrig, and Bruno Sterner
We revisit the problem of finding two consecutive $B$-smooth integers by giving an optimised implementation of the Conrey-Holmstrom-McLaughlin ``smooth neighbors'' algorithm. While this algorithm is not guaranteed to return the complete set of $B$-smooth neighbors, in practice it returns a very close approximation to the complete set, but does so in a tiny fraction of the time of its exhaustive counterparts. We exploit this algorithm to find record-sized solutions to the pure twin smooth problem. Though these solutions are still not large enough to be cryptographic parameters themselves, we feed them as input into known methods of searching for twins to yield cryptographic parameters that are much smoother than those given in prior works. Our methods seem especially well-suited to finding parameters for the SQISign signature scheme, particularly those that are geared towards high-security levels.
Last updated:  2024-03-12
Plug-and-play sanitization for TFHE
Florian Bourse and Malika Izabachène
Fully Homomorphic encryption allows the evaluation of any circuits over encrypted data while preserving the privacy of the data. However, without any additional properties, no guarantee is provided for the privacy of the circuits which are evaluated. A sanitization algorithm allows to destroy all previous information about how a ciphertext was obtained, ensuring that the circuit which was evaluated remains secret. In this paper, we present two techniques to randomize RLWE ciphertexts, and show how they can be used to achieve ciphertext sanitization for the TFHE scheme proposed by Chilotti et al (Asiacrypt 2016), by modifying the bootstrapping procedure internally. The first technique is a generalization of the strategy proposed by Bourse et al (Crypto 2016) to the ring setting. While this approach adapts well in theory, we show evidence that it fails to provide a practical solution. To improve over this strategy, we relax the circuit privacy property to its computational counterpart, and make use of an efficient public randomizer composed of an RLWE-based public key encryption with additional properties on the ciphertexts distribution. This randomizer can also be used in the soak-and-spin paradigm of Ducas and Stehlé (Eurocrypt 2016). Using a backward induction over the circuit size, we also improve on the proof technique from Bourse et al to avoid randomization at each step of the computation, enabling faster randomization and smaller noise growth. As a proof of concept, we provide a C implementation of our sanitization strategy, which shows that a sanitized LWE ciphertext can be obtained almost for free compared to a bootstrapped LWE ciphertext assuming many discrete Gaussian samples at hand.
Last updated:  2023-09-10
Secure Multiparty Computation from Threshold Encryption Based on Class Groups
Lennart Braun, Ivan Damgård, and Claudio Orlandi
We construct the first actively-secure threshold version of the cryptosystem based on class groups from the so-called CL~framework (Castagnos and Laguillaumie, 2015). We show how to use our threshold scheme to achieve general universally composable (UC) secure multiparty computation (MPC) with only transparent set-up, i.e., with no secret trapdoors involved. On the way to our goal, we design new zero-knowledge (ZK) protocols with constant communication complexity for proving multiplicative relations between encrypted values. This allows us to use the ZK proofs to achieve MPC with active security with only a constant factor overhead. Finally, we adapt our protocol for the so-called "You-Only-Speak-Once" (YOSO) setting, which is a very promising recent approach for performing MPC over a blockchain. This is possible because our key generation protocol is simpler and requires significantly less interaction compared to previous approaches: in particular, our new key generation protocol allows the adversary to bias the public key, but we show that this has no impact on the security of the resulting cryptosystem.
Last updated:  2022-10-21
Efficient and Generic Transformations for Chosen-Ciphertext Secure Predicate Encryption
Marloes Venema, Leon Botros
Predicate encryption (PE) is a type of public-key encryption that captures many useful primitives such as attribute-based encryption (ABE). Although much progress has been made to generically achieve security against chosen-plaintext attacks (CPA) efficiently, in practice, we also require security against chosen-ciphertext attacks (CCA). Because achieving CCA-security on a case-by-case basis is a complicated task, several generic conversion methods have been proposed. However, these conversion methods may incur a significant efficiency trade-off. Notably, for ciphertext-policy ABE, all generic conversion methods provide a significant overhead in the key generation, encryption or decryption algorithm. Additionally, many generic conversion techniques use one-time signatures to achieve authenticity, which are also known to significantly impact the efficiency. In this work, we present a new approach to achieving CCA-security as generically and efficiently as possible, by splitting the CCA-conversion in two steps. The predicate of the scheme is first extended in a certain way, which is then used to achieve CCA-security generically e.g., by combining it with a hash function. To facilitate the first step efficiently, we also propose a novel predicate-extension transformation for a large class of pairing-based PE---covered by the pair and the predicate encodings frameworks---which incurs only a small constant overhead for all algorithms. In particular, this yields the most efficient generic CCA-conversion for ciphertext-policy ABE.
Last updated:  2024-05-01
Eagle: Efficient Privacy Preserving Smart Contracts
Carsten Baum, James Hsin-yu Chiang, Bernardo David, and Tore Kasper Frederiksen
The proliferation of Decentralised Finance (DeFi) and Decentralised Autonomous Organisations (DAO), which in current form are exposed to front-running of token transactions and proposal voting, demonstrate the need to shield user inputs and internal state from the parties executing smart contracts. In this work we present “Eagle”, an efficient UC-secure protocol which efficiently realises a notion of privacy preserving smart contracts where both the amounts of tokens and the auxiliary data given as input to a contract are kept private from all parties but the one providing the input. Prior proposals realizing privacy preserving smart contracts on public, permissionless blockchains generally offer a limited contract functionality or require a trusted third party to manage private inputs and state. We achieve our results through a combination of secure multi-party computation (MPC) and zero-knowledge proofs on Pedersen commitments. Although other approaches leverage MPC in this setting, these incur impractical computational overheads by requiring the computation of cryptographic primitives within MPC. Our solution achieves security without the need of any cryptographic primitives to be computed inside the MPC instance and only require a constant amount of exponentiations per client input.
Last updated:  2022-11-16
Weightwise almost perfectly balanced functions: secondary constructions for all $n$ and better weightwise nonlinearities
Agnese Gini, Pierrick Méaux
The design of FLIP stream cipher presented at Eurocrypt $2016$ motivates the study of Boolean functions with good cryptographic criteria when restricted to subsets of $\mathbb F_2^n$. Since the security of FLIP relies on properties of functions restricted to subsets of constant Hamming weight, called slices, several studies investigate functions with good properties on the slices, i.e. weightwise properties. A major challenge is to build functions balanced on each slice, from which we get the notion of Weightwise Almost Perfectly Balanced (WAPB) functions. Although various constructions of WAPB functions have been exhibited since $2017$, building WAPB functions with high weightwise nonlinearities remains a difficult task. Lower bounds on the weightwise nonlinearities of WAPB functions are known for very few families, and exact values were computed only for functions in at most $16$ variables. In this article, we introduce and study two new secondary constructions of WAPB functions. This new strategy allows us to bound the weightwise nonlinearities from those of the parent functions, enabling us to produce WAPB functions with high weightwise nonlinearities. As a practical application, we build several novel WAPB functions in up to $16$ variables by taking parent functions from two different known families. Moreover, combining these outputs, we also produce the $16$-variable WAPB function with the highest weightwise nonlinearities known so far.
Last updated:  2022-10-25
BG: A Modular Treatment of BFT Consensus
Uncategorized
Xiao Sui, Sisi Duan, Haibin Zhang
Show abstract
Uncategorized
We provide an expressive framework that allows analyzing and generating provably secure, state-of-the-art Byzantine fault-tolerant (BFT) protocols. Our framework is hierarchical, including three layers. The top layer is used to model the message pattern and abstract key functions on which BFT algorithms can be built. The intermediate layer provides the core functions with high-level properties sufficient to prove the security of the top-layer algorithms. The bottom layer carefully defines predicates according to which we offer operational realizations for the core functions. All three layers in our framework are extensible and enable innovation. One may modify or extend any layer to theoretically cover all BFT protocols, known and unknown. Indeed, unlike prior BFT frameworks, our framework can analyze and recast BFT protocols in an exceedingly fine-grained manner. More importantly, our framework can readily generate new BFT protocols by simply enumerating the parameters in the framework. In this paper, we show that the framework allows us to fully specify and formally prove the security for 23 BFT protocols, including protocols matching HotStuff, Fast-HotStuff, Jolteon, and Marlin, and among these protocols, seven new protocols outperforming existing ones or achieving meaningful trade-offs among various performance metrics.
Last updated:  2022-10-21
A Lattice-based Ring Signature Scheme Secure against Key Exposure
Xiaoling Yu, Yuntao Wang
A ring signature scheme allows a group member to generate a signature on behalf of the whole group, while the verifier can not tell who computed this signature. However, most predecessors do not guarantee security from the secret key leakage of signers. In 2002, Anderson proposed the forward security mechanism to reduce the effect of such leakage. In this paper, we construct the first lattice-based ring signature scheme with forward security. Our scheme combines the binary tree and lattice basis delegation technique to realize a key evolution mechanism, where secret keys are ephemeral and updated with generating nodes in the binary tree. Thus, the adversary cannot forge the past signature even if the users' present secret keys are revealed. Moreover, our scheme can offer unforgeability under standard models. Furthermore, our proposed scheme is expected to realize post-quantum security due to the underlying Short Integer Solution (SIS) problem in lattice-based cryptography.
Last updated:  2023-12-21
Half-Tree: Halving the Cost of Tree Expansion in COT and DPF
Xiaojie Guo, Kang Yang, Xiao Wang, Wenhao Zhang, Xiang Xie, Jiang Zhang, and Zheli Liu
GGM tree is widely used in the design of correlated oblivious transfer (COT), subfield vector oblivious linear evaluation (sVOLE), distributed point function (DPF), and distributed comparison function (DCF). Often, the cost associated with GGM tree dominates the computation and communication of these protocols. In this paper, we propose a suite of optimizations that can reduce this cost by half. • Halving the cost of COT and sVOLE. Our COT protocol introduces extra correlation to each level of a GGM tree used by the state-of-the-art COT protocol. As a result, it reduces both the number of AES calls and the communication by half. Extending this idea to sVOLE, we are able to achieve similar improvement with either halved computation or halved communication. • Halving the cost of DPF and DCF. We propose improved two-party protocols for the distributed generation of DPF/DCF keys. Our tree structures behind these protocols lead to more efficient full-domain evaluation and halve the communication and the round complexity of the state-of-the-art DPF/DCF protocols. All protocols are provably secure in the random-permutation model and can be accelerated based on fixed-key AES-NI. We also improve the state-of-the-art schemes of puncturable pseudorandom function (PPRF), DPF, and DCF, which are of independent interest in dealer-available scenarios.
Last updated:  2022-10-20
Indistinguishability Obfuscation via Mathematical Proofs of Equivalence
Abhishek Jain, Zhengzhong Jin
Over the last decade, indistinguishability obfuscation (iO) has emerged as a seemingly omnipotent primitive in cryptography. Moreover, recent breakthrough work has demonstrated that iO can be realized from well-founded assumptions. A thorn to all this remarkable progress is a limitation of all known constructions of general-purpose iO: the security reduction incurs a loss that is exponential in the input length of the function. This ``input-length barrier'' to iO stems from the non-falsifiability of the iO definition and is discussed in folklore as being possibly inherent. It has many negative consequences; notably, constructing iO for programs with inputs of unbounded length remains elusive due to this barrier. We present a new framework aimed towards overcoming the input-length barrier. Our approach relies on short mathematical proofs of functional equivalence of circuits (and Turing machines) to avoid the brute-force ``input-by-input'' check employed in prior works. - We show how to obfuscate circuits that have efficient proofs of equivalence in Propositional Logic with a security loss independent of input length. - Next, we show how to obfuscate Turing machines with unbounded length inputs, whose functional equivalence can be proven in Cook's Theory $PV$. - Finally, we demonstrate applications of our results to succinct non-interactive arguments and witness encryption, and provide guidance on using our techniques for building new applications. To realize our approach, we depart from prior work and develop a new gate-by-gate obfuscation template that preserves the topology of the input circuit.
Last updated:  2022-11-13
Collusion Resistant Copy-Protection for Watermarkable Functionalities
Jiahui Liu, Qipeng Liu, Luowen Qian, Mark Zhandry
Copy-protection is the task of encoding a program into a quantum state to prevent illegal duplications. A line of recent works studied copy-protection schemes under ``1 -> 2 attacks'': the adversary receiving one program copy can not produce two valid copies. However, under most circumstances, vendors need to sell more than one copy of a program and still ensure that no duplicates can be generated. In this work, we initiate the study of collusion resistant copy-protection in the plain model. Our results are twofold: (*) The feasibility of copy-protecting all watermarkable functionalities is an open question raised by Aaronson et al. (CRYPTO' 21). In the literature, watermarking decryption, digital signature schemes and PRFs have been extensively studied. For the first time, we show that digital signature schemes can be copy-protected. Together with the previous work on copy-protection of decryption and PRFs by Coladangelo et al. (CRYPTO' 21), it suggests that many watermarkable functionalities can be copy-protected, partially answering the above open question by Aaronson et al. (*) We make all the above schemes (copy-protection of decryption, digital signatures, and PRFs) k bounded collusion resistant for any polynomial k, giving the first bounded collusion resistant copy-protection for various functionalities in the plain model.
Last updated:  2022-10-20
TrustBoost: Boosting Trust among Interoperable Blockchains
Xuechao Wang, Peiyao Sheng, Sreeram Kannan, Kartik Nayak, Pramod Viswanath
Currently there exist many blockchains with weak trust guarantees, limiting applications and participation. Existing solutions to boost the trust using a stronger blockchain, e.g., via checkpointing, requires the weaker blockchain to give up sovereignty. In this paper we propose a family of protocols in which multiple blockchains interact to create a combined ledger with boosted trust. We show that even if several of the interacting blockchains cease to provide security guarantees, the combined ledger continues to be secure – our TrustBoost protocols achieve the optimal threshold of tolerating the insecure blockchains. Furthermore, the protocol simply operates via smart contracts and require no change to the underlying consensus protocols of the participating blockchains, a form of “consensus on top of consensus”. The protocols are lightweight and can be used on specific (e.g., high value) transactions; we demonstrate the practicality by implementing and deploying TrustBoost as cross-chain smart contracts in the Cosmos ecosystem using approximately 3,000 lines of Rust code, made available as open source. Our evaluation shows that using 10 Cosmos chains in a local testnet, TrustBoost has a gas cost of roughly $2 with a latency of 2 minutes per request, which is in line with the cost on a high security chain such as Bitcoin or Ethereum.
Last updated:  2023-04-01
Improved Quantum Analysis of SPECK and LowMC (Full Version)
Kyungbae Jang, Anubhab Baksi, Hyunji Kim, Hwajeong Seo, Anupam Chattopadhyay
As the prevalence of quantum computing is growing in leaps and bounds over the past few years, there is an ever-growing need to analyze the symmetric-key ciphers against the upcoming threat. Indeed, we have seen a number of research works dedicated to this. Our work delves into this aspect of block ciphers, with respect to the SPECK family and LowMC family. The SPECK family received two quantum analysis till date (Jang et al., Applied Sciences, 2020; Anand et al., Indocrypt, 2020). We revisit these two works, and present improved benchmarks SPECK (all 10 variants). Our implementations incur lower full depth compared to the previous works. On the other hand, the quantum circuit of LowMC was explored earlier in Jaques et al.'s Eurocrypt 2020 paper. However, there is an already known bug in their paper, which we patch. On top of that, we present two versions of LowMC (on L1, L3 and L5 variants) in quantum, both of which incur significantly less full depth than the bug-fixed implementation.
Last updated:  2022-12-27
Decentralized Anonymous IoT Data Sharing with Key-Private Proxy Re-Encryption
Esra Günsay, Oğuz Yayla
Secure and scalable data sharing is one of the main concerns of the Internet of Things (IoT) ecosystem. In this paper, we introduce a novel blockchain-based data-sharing construction designed to ensure full anonymity for both the users and the data. To share the encrypted IoT data stored on the cloud, users generate tokens, prove their ownership using zk-SNARKs, and anonymously target the destination address. To tackle the privacy concerns arising from uploading the data to the cloud, we use key-private re-encryption and share as little information as possible with the proxy. Furthermore, we provide security proof of our construction.
Last updated:  2022-10-20
Towards Automating Cryptographic Hardware Implementations: a Case Study of HQC
Carlos Aguilar-Melchor, Jean-Christophe Deneuville, Arnaud Dion, James Howe, Romain Malmain, Vincent Migliore, Mamuri Nawan, Kashif Nawaz
While hardware implementations allow the production of highly efficient and performance oriented designs, exploiting features such as parallelization, their longer time to code and implement often bottlenecks rapid prototyping. On the other hand, high-level synthesis (HLS) tools allow for faster experimentation of software code to a hardware platform while demonstrating a reasonable extrapolation of the expected hardware behavior. In this work, we attempt to show a rapid, fast prototyping of the well known HQC algorithm, using HLS, and show how with a modification of certain parameters, varying degrees of comparable results can be obtained. These results, in turn, could be used as a guide for HDL-RTL developers to enhance their designs and better prototyping time in the future. Additionally, we also demonstrate that it is possible to benefit from HQC's versatility; by achieving a low hardware footprint whilst also maintaining good performances, even on low-cost FPGA devices, which we demonstrate on the well known Artix-7 xc7a100t-ftg256-1.
Last updated:  2023-08-11
DeFi That Defies: Imported Off-Chain Metrics and Pseudonymous On-Chain Activity
David W. Kravitz, Mollie Z. Halverson
Traditional finance quantifies risk by collecting and vetting reputation information for an individual, such as credit scores or payment history. While decentralized finance (DeFi) is an exceptionally well-suited application of permissionless blockchains, it is severely constrained in its ability to reconcile identities and quantify associated transaction risk directly on-chain. Opening the ecosystem to a broad range of use cases requires consistent pseudonymity and quantifiable reputation. This paper defies the status quo: exploring methods of assessing risk on-chain by efficiently integrating off-chain identity- and attribute- verification and on-chain transaction activity. We achieve this while preserving individual privacy within a competitive and fair environment and retaining compatibility with existing platforms such as Ethereum. Even though blockchains are inherently public, our solution gives users control over release of information that pertains to them. Consequently, our contribution focuses on customized methods that balance the degree of disclosure of provably-sourced user information against the likelihood of the user successfully gaining access to a desired resource, such as a loan under suitable terms. Our solution is consistent with the zero-trust model in that it imports explicit trust from recognized sources through relevant metrics that are subject to continuous update.
Last updated:  2022-10-20
The Superlinearity Problem in Post-Quantum Blockchains
Sunoo Park, Nicholas Spooner
The proof of work mechanism by which many blockchain-based protocols achieve consensus may be undermined by the use of quantum computing in mining—even when all cryptographic primitives are replaced with post-quantum secure alternatives. First, we offer an impossibility result: we prove that quantum (Grover) speedups in solving a large, natural class of proof-of-work puzzles cause an inevitable incentive incompatibility in mining, by distorting the reward structure of mining in proof-of-work-based protocols such as Bitcoin. We refer to such distortion as the Superlinearity Problem. Our impossibility result suggests that for robust post-quantum proof-of-work-based consensus, we may need to look beyond standard cryptographic models. We thus propose a proof-of-work design in a random-beacon model, which is tailored to bypass the earlier impossibility. We conclude with a discussion of open problems, and of the challenges of integrating our new proof-of-work scheme into decentralised consensus protocols under realistic conditions.
Last updated:  2023-02-13
Unlinkable Policy-based Sanitizable Signatures
Ismail Afia, Riham AlTawy
In CT-RSA 2020, P3S was proposed as the first policy-based sanitizable signature scheme which allows the signer to designate future message sanitizers by defining an access policy relative to their attributes rather than their keys. However, since P3S utilizes a policy-based chameleon hash (PCH), it does not achieve unlinkability which is a required notion in privacy-preserving applications. Moreover, P3S requires running a procedure to share the secret trapdoor information for PCH with each new sanitizer before sanitizing a new message. We further observe that in order to maintain the transparency in P3S’s multiple-sanitizers setting, the signature size should grow linearly with the number of sanitizers. In this work, we propose an unlinkable policy-based sanitizable signature scheme (UP3S) where we employ a rerandomizable digital signature scheme and a traceable attribute-based signature scheme as its building blocks. Compared to P3S, UP3S achieves unlinkability, does not require new secrets to be shared with future sanitizers prior to sanitizing each message, and has a fixed signature size for a given sanitization policy. We define and formally prove the security notions of the generic scheme, propose an instantiation of UP3S utilizing the Pointcheval-Sanders rerandomizable signature scheme and DTABS traceable attribute-based signature scheme, and analyze its efficiency. Finally, we compare UP3S with P3S in terms of the features of the procedures, scalability, and security models.
Last updated:  2022-10-19
Transparent Batchable Time-lock Puzzles and Applications to Byzantine Consensus
Shravan Srinivasan, Julian Loss, Giulio Malavolta, Kartik Nayak, Charalampos Papamanthou, Sri AravindaKrishnan Thyagarajan
Time-lock puzzles (TLP) are a fascinating type of cryptographic problem that is easy to generate, but takes a certain time to solve, even when arbitrary parallel speedup is allowed. TLPs have wide-ranging applications including fairness, round efficient computation, and more. To reduce the effort needed to solve large numbers of TLPs, prior work has proposed batching techniques to reduce the cost of solving. However, these proposals either require: (1) a trusted setup or (2) the puzzle size linear in the maximum batch size, which implies setting an a priori bound on the maximum size of the batch. Any of these limitations restrict the utility of TLPs in decentralized and dynamic settings like permissionless blockchains. In this work, we demonstrate the feasibility and usefulness of a TLP that overcomes all of the above limitations. Our construction is based on indistinguishable obfuscation and shows that there are no fundamental barriers in achieving such a TLP construction. As a main application of our TLP, we show how to improve the resilience of consensus protocols toward network-level adversaries in the following two settings: (1) We show a generic compiler that boosts the resilience of a Byzantine broadcast protocol $\Pi$ as follows: if $\Pi$ is secure against $t<n$ weakly adaptive corruptions, then the compiled protocol is secure against $t<n$ strongly adaptive corruptions. Here, `strong' refers to adaptively corrupting a party and deleting messages that it sent while still honest. Our compiler is round and communication preserving, and gives the first expected constant-round Byzantine broadcast protocol against a strongly adaptive adversary for the dishonest majority setting. (2) We adapt the Nakamoto consensus protocol to a weak model of synchrony where the adversary can adaptively create minority partitions in the network. Unlike prior works, we do not assume that all honest messages are delivered within a known upper bound on the message delay. To the best of our knowledge, this is the first work to show that it is possible to achieve consensus in the permissionless setting even after relaxing the standard synchrony assumption.
Last updated:  2022-10-19
Diamonds are Forever, Loss-Versus-Rebalancing is Not
Conor McMenamin, Vanesa Daza, Bruno Mazorra
The always-available liquidity of automated market makers (AMMs) has been one of the most important catalysts in early cryptocurrency adoption. However, it has become increasingly evident that AMMs in their current form are not viable investment options for passive liquidity providers. This is because of the cost incurred by AMMs providing stale prices to arbitrageurs against external market prices, formalized as loss-versus-rebalancing (LVR) [Milionis et al., 2022]. In this paper, we present Diamond, an automated market making protocol that aligns the incentives of liquidity providers and block producers in the protocol-level retention of LVR. In Diamond, block producers effectively auction the right to capture any arbitrage that exists between the external market price of a Diamond pool, and the price of the pool itself. The proceeds of these auctions are shared by the Diamond pool and block producer in a way that is proven to remain incentive compatible for the block producer. Given the participation of competing arbitrageurs, LVR is effectively prevented in Diamond. We formally prove this result, and detail an implementation of Diamond. We also provide comparative simulations of Diamond to relevant benchmarks, further evidencing the LVR-protection capabilities of Diamond. With this new protection, passive liquidity provision on blockchains becomes rationally viable, beckoning a new age for decentralized finance.
Last updated:  2022-10-19
Speed-Stacking: Fast Sublinear Zero-Knowledge Proofs for Disjunctions
Aarushi Goel, Mathias Hall-Andersen, Gabriel Kaptchuk, Nicholas Spooner
Building on recent disjunctive compilers for zero-knowledge (e.g. Goel et al. [EUROCRYPT'22]) we propose a new compiler that, when applied to sublinear-sized proofs, can result in sublinear-size disjunctive zero-knowledge with sublinear proving times (without meaningfully increasing proof sizes). Our key observation is that simulation in sublinear-size zero-knowledge proof systems can be much faster (both concretely and asymptotically) than the honest prover. We study applying our compiler to two classes of $O(\log n)$-round protocols: interactive oracle proofs, specifically Aurora [EUROCRYPT'19] and Fractal [EUROCRYPT'20], and folding arguments, specifically Compressed $\Sigma$-protocols [CRYPTO'20, CRYPTO'21] and Bulletproofs [S&P'18]. This study validates that the compiler can lead to significant savings. For example, applying our compiler to Fractal enables us to prove a disjunction of $\ell$ clauses, each of size $N$, with only $O((N+\ell) \cdot \text{polylog}(N))$ computation, versus $O(\ell N \cdot \text{polylog}(N))$ when proving the disjunction directly. We also find that our compiler offers a new lens through which to understand zero-knowledge proofs, evidenced by multiple examples of protocols with the same "standalone" complexity that each behave very differently when stacked.
Last updated:  2022-10-18
Da Yan Concentrator and Extender of Random Data (DYCE)
Anna M. Johnston, Puru Kulkarni
DYCE is a simple to analyze algorithm which converts raw entropy into usable cryptographic entropy using the Da Yan (commonly known as the ‘Chinese Remainder Theorem’). This paper describes and analyzes DYCE, giving its detailed algorithmic description.
Last updated:  2022-10-18
Efficient Dynamic Proof of Retrievability for Cold Storage
Tung Le, Pengzhi Huang, Attila A. Yavuz, Elaine Shi, Thang Hoang
Storage-as-a-service (STaaS) permits the client to outsource her data to the cloud thereby, reducing data management and maintenance costs. However, STaaS also brings significant data integrity and soundness concerns since the storage provider might not keep the client data intact and retrievable all the time (e.g., cost saving via deletions). Proof of Retrievability (PoR) can validate the integrity and retrievability of remote data effectively. This technique can be useful for regular audits to monitor data compromises, as well as to comply with standard data regulations. In particular, cold storage applications (e.g., MS Azure, Amazon Glacier) require regular and frequent audits but with less frequent data modification. Yet, despite their merits, existing PoR techniques generally focus on other metrics (e.g., low storage, fast update, metadata privacy) but not audit efficiency (e.g., low audit time, small proof size). Hence, there is a need to develop new PoR techniques that achieve efficient data audit while preserving update and retrieval performance. In this paper, we propose Porla, a new PoR framework that permits efficient data audit, update, and retrieval functionalities simultaneously. Porla permits data audit in both private and public settings, each of which features asymptotically (and concretely) smaller audit-proof size and lower audit time than all the prior works while retaining the same asymptotic data update overhead. Porla achieves all these properties by composing erasure codes with verifiable computation techniques which, to our knowledge, is a new approach to PoR design. We address several challenges that arise in such a composition by creating a new homomorphic authenticated commitment scheme, which can be of independent interest. We fully implemented Porla and evaluated its performance on commodity cloud (i.e., Amazon EC2) under various settings. Experimental results demonstrated that Porla achieves two to four orders of magnitude smaller audit proof size with 4× – 1,800× lower audit time than all prior schemes in both private and public audit settings at the cost of only 2× – 3× slower update.
Last updated:  2022-10-26
Side-Channel Attack Countermeasures Based On Clock Randomization Have a Fundamental Flaw
Martin Brisfors, Michail Moraitis, Elena Dubrova
Clock randomization is one of the oldest countermeasures against side-channel attacks. Various implementations have been presented in the past, along with positive security evaluations. However, in this paper we show that it is possible to break countermeasures based on a randomized clock by sampling side-channel measurements at a frequency much higher than the encryption clock, synchronizing the traces with pre-processing, and targeting the beginning of the encryption. We demonstrate a deep learning-based side-channel attack on a protected FPGA implementation of AES which can recover a subkey from less than 500 power traces. In contrast to previous attacks on FPGA implementations of AES which targeted the last round, the presented attack uses the first round as the attack point. Any randomized clock countermeasure is significantly weakened by an attack on the first round because the effect of randomness accumulated over multiple encryption rounds is lost.
Last updated:  2023-11-09
FABEO: Fast Attribute-Based Encryption with Optimal Security
Doreen Riepel and Hoeteck Wee
Attribute-based encryption (ABE) enables fine-grained access control on encrypted data and has a large number of practical applications. This paper presents FABEO: faster pairing-based ciphertext-policy and key-policy ABE schemes that support expressive policies and put no restriction on policy type or attributes, and the first to achieve optimal, adaptive security with multiple challenge ciphertexts. We implement our schemes and demonstrate that they perform better than the state-of-the-art (Bethencourt et al. S&P 2007, Agrawal et al., CCS 2017 and Ambrona et al., CCS 2017) on all parameters of practical interest.
Last updated:  2022-10-18
INT-RUP Security of SAEB and TinyJAMBU
Nilanjan Datta, Avijit Dutta, Shibam Ghosh
The INT-RUP security of an authenticated encryption (AE) scheme is a well studied problem which deals with the integrity security of an AE scheme in the setting of releasing unverified plaintext model. Popular INT-RUP secure constructions either require a large state (e.g. GCM-RUP, LOCUS, Oribatida) or employ a two-pass mode (e.g. MON- DAE) that does not allow on-the-fly data processing. This motivates us to turn our attention to feedback type AE constructions that allow small state implementation as well as on-the-fly computation capability. In CT- RSA 2016, Chakraborti et al. have demonstrated a generic INT-RUP attack on rate-1 block cipher based feedback type AE schemes. Their results inspire us to study about feedback type AE constructions at a reduced rate. In this paper, we consider two such recent designs, SAEB and TinyJAMBU and we analyze their integrity security in the setting of releasing unverified plaintext model. We found an INT-RUP attack on SAEB with roughly 232 decryption queries. However, the concrete analysis shows that if we reduce its rate to 32 bits, SAEB achieves the desired INT-RUP security bound without any additional overhead. Moreover, we have also analyzed TinyJAMBU, one of the finalists of the NIST LwC, and found it to be INT-RUP secure. To the best of our knowledge, this is the first work reporting the INT-RUP security analysis of the block cipher based single state, single pass, on-the-fly, inverse-free authenticated ciphers.
Last updated:  2023-02-23
How to Compress Encrypted Data
Nils Fleischhacker, Kasper Green Larsen, Mark Simkin
We study the task of obliviously compressing a vector comprised of $n$ ciphertexts of size $\xi$ bits each, where at most $t$ of the corresponding plaintexts are non-zero. This problem commonly features in applications involving encrypted outsourced storages, such as searchable encryption or oblivious message retrieval. We present two new algorithms with provable worst-case guarantees, solving this problem by using only homomorphic additions and multiplications by constants. Both of our new constructions improve upon the state of the art asymptotically and concretely. Our first construction, based on sparse polynomials, is perfectly correct and the first to achieve an asymptotically optimal compression rate by compressing the input vector into $\mathcal{O}(t \xi)$ bits. Compression can be performed homomorphically by performing $\mathcal{O}(n \log n)$ homomorphic additions and multiplications by constants. The main drawback of this construction is a decoding complexity of $\Omega(\sqrt{n})$. Our second construction is based on a novel variant of invertible bloom lookup tables and is correct with probability $1-2^{-\kappa}$. It has a slightly worse compression rate compared to our first construction as it compresses the input vector into $\mathcal{O}(\xi\kappa t /\log t)$ bits, where $\kappa \geq \log t$. In exchange, both compression and decompression of this construction are highly efficient. The compression complexity is dominated by $\mathcal{O}(n \kappa/\log t)$ homomorphic additions and multiplications by constants. The decompression complexity is dominated by $\mathcal{O}(\kappa t /\log t)$ decryption operations and equally many inversions of a pseudorandom permutation.
Last updated:  2022-10-23
Boolean Polynomial Evaluation for the Masses
Charles Bouillaguet
This article gives improved algorithms to evaluate a multivariate Boolean polynomial over all the possible values of its input variables. Such a procedure is often used in cryptographic attacks against symmetric schemes. More precisely, we provide improved and simplified versions of the Fast Exhaustive Search algorithm presented at CHES'10 and of the space-efficient Moebius transform given by Dinur at EUROCRYPT'21. The new algorithms require $\mathcal{O}(d 2^n)$ operations with a degree-$d$ polynomial and operate in-place. We provide the full C code of a complete implementation under the form of a ``user-friendly'' library called BeanPolE, which we hope could be helpful to other cryptographers. This paper actually contains all the code, which is quite short.
Last updated:  2023-08-07
Cryptographic Administration for Secure Group Messaging
David Balbás, Daniel Collins, Serge Vaudenay
Many real-world group messaging systems delegate group administration to the application level, failing to provide formal guarantees related to group membership. Taking a cryptographic approach to group administration can prevent both implementation and protocol design pitfalls that result in a loss of confidentiality and consistency for group members. In this work, we introduce a cryptographic framework for the design of group messaging protocols that offer strong security guarantees for group membership. To this end, we extend the continuous group key agreement (CGKA) paradigm used in the ongoing IETF MLS group messaging standardisation process and introduce the administrated CGKA (A-CGKA) primitive. Our primitive natively enables a subset of group members, the group admins, to control the addition and removal of parties and to update their own keying material in a secure manner. We embed A-CGKA with a novel correctness notion which provides guarantees for group evolution and consistency, and a security model that prevents even corrupted (non-admin) members from forging messages that add new users to a group. Moreover, we present two efficient and modular constructions of group administrators that are correct and secure with respect to our definitions. Finally, we propose, implement, and benchmark an efficient extension of MLS that integrates cryptographic administrators. Our constructions admit little overhead over running a CGKA and can be extended to support advanced admin functionalities.
Last updated:  2023-08-16
Breaking and Protecting the Crystal: Side-Channel Analysis of Dilithium in Hardware
Hauke Steffen, Georg Land, Lucie Kogelheide, Tim Güneysu
The lattice-based CRYSTALS-Dilithium signature scheme has been selected for standardization by the NIST. As part of the selection process, a large number of implementations for platforms like x86, ARM Cortex-M4, or – on the hardware side – Xilinx Artix-7 have been presented and discussed by experts. While software implementations have been subject to side-channel analysis with several attacks being published, an analysis of Dilithium hardware implementations and their peculiarities has not taken place. With this work, we aim to fill this gap, presenting an analysis of vulnerable operations and practically showing a successful profiled Simple Power Analysis (SPA) and a Correlation Power Analysis (CPA) on a recent hardware implementation by Beckwith et al. Our SPA attack requires 700 000 profiling traces and targets the first Number-Theoretic Transform (NTT) stage. After finishing profiling, we can identify pairs of coefficients with 1 101 traces. The full CPA attack finds secret coefficients with as low as 66 000 traces. In response, we present specific countermeasures and show that they effectively prevent both attacks.
Last updated:  2022-10-26
SNARGs and PPAD Hardness from the Decisional Diffie-Hellman Assumption
Yael Tauman Kalai, Alex Lombardi, Vinod Vaikuntanathan
We construct succinct non-interactive arguments (SNARGs) for bounded-depth computations assuming that the decisional Diffie-Hellman (DDH) problem is sub-exponentially hard. This is the first construction of such SNARGs from a Diffie-Hellman assumption. Our SNARG is also unambiguous: for every (true) statement $x$, it is computationally hard to find any accepting proof for $x$ other than the proof produced by the prescribed prover strategy. We obtain our result by showing how to instantiate the Fiat-Shamir heuristic, under DDH, for a variant of the Goldwasser-Kalai-Rothblum (GKR) interactive proof system. Our new technical contributions are (1) giving a $TC^0$ circuit family for finding roots of cubic polynomials over a special family of characteristic $2$ fields (Healy-Viola, STACS '06) and (2) constructing a variant of the GKR protocol whose invocations of the sumcheck protocol (Lund-Fortnow-Karloff-Nisan, STOC '90) only involve degree $3$ polynomials over said fields. Along the way, since we can instantiate Fiat-Shamir for certain variants of the sumcheck protocol, we also show the existence of (sub-exponentially) computationally hard problems in the complexity class $\mathsf{PPAD}$, assuming the sub-exponential hardness of DDH. Previous $\mathsf{PPAD}$ hardness results all required either bilinear maps or the learning with errors assumption.
Last updated:  2024-03-22
BRAKE: Biometric Resilient Authenticated Key Exchange
Pia Bauspieß, Tjerand Silde, Matej Poljuha, Alexandre Tullot, Anamaria Costache, Christian Rathgeb, Jascha Kolberg, and Christoph Busch
Biometric data are uniquely suited for connecting individuals to their digital identities. Deriving cryptographic key exchange from successful biometric authentication therefore gives an additional layer of trust compared to password-authenticated key exchange. However, biometric data are sensitive personal data that need to be protected on a long-term basis. Furthermore, efficient feature extraction and comparison components resulting in high intra-subject tolerance and inter-subject distinguishability, documented with good biometric performance, need to be applied in order to prevent zero-effort impersonation attacks. In this work, we present a novel protocol for Biometric Resilient Authenticated Key Exchange that fulfils the above requirements of biometric information protection compliant with the international ISO/IEC 24745 standard. In our protocol, we present a novel modification of unlinkable fuzzy vault schemes that allows their connection with oblivious pseudo-random functions to achieve resilient protection against offline attacks crucial for the protection of biometric data. Our protocol is independent of the biometric modality and can be implemented based on the security of discrete logarithms as well as lattices. We provide an open-source implementation of both instantiations of our protocol which achieve real-time efficiency with transaction times of less than one second from the image capture to the completed key exchange.
Last updated:  2023-05-26
Threshold Linear Secret Sharing to the Rescue of MPC-in-the-Head
Thibauld Feneuil, Matthieu Rivain
The MPC-in-the-Head paradigm is a popular framework to build zero-knowledge proof systems using techniques from secure multi-party computation (MPC). While this paradigm is not restricted to a particular secret sharing scheme, all the efficient instantiations for small circuits proposed so far rely on additive secret sharing. In this work, we show how applying a threshold linear secret sharing scheme (threshold LSSS) can be beneficial to the MPC-in-the-Head paradigm. For a general passively-secure MPC protocol model capturing most of the existing MPCitH schemes, we show that our approach improves the soundness of the underlying proof system from $1/N$ down to $1/\binom{N}{\ell}$, where $N$ is the number of parties and $\ell$ is the privacy threshold of the sharing scheme. While very general, our technique is limited to a number of parties $N \leq |\mathbb{F}|$, where $\mathbb{F}$ is the field underlying the statement, because of the MDS conjecture. Applying our approach with a low-threshold LSSS also boosts the performance of the proof system by making the MPC emulation cost independent of $N$ for both the prover and the verifier. The gain is particularly significant for the verification time which becomes logarithmic in $N$ (while the prover still has to generate and commit the $N$ input shares). We further generalize and improve our framework: we show how homomorphic commitments can get rid of the linear complexity of the prover, we generalize our result to any quasi-threshold LSSS, and we describe an efficient batching technique relying on Shamir's secret sharing. We finally apply our techniques to specific use-cases. We first propose a variant of the recent SDitH signature scheme achieving new interesting trade-offs. In particular, for a signature size of 10 KB, we obtain a verification time lower than $0.5$ ms, which is competitive with SPHINCS+, while achieving much faster signing. We further apply our batching technique to two different contexts: batched SDitH proofs and batched proofs for general arithmetic circuits based on the Limbo proof system. In both cases, we obtain an amortized proof size lower than $1/10$ of the baseline scheme when batching a few dozen statements, while the amortized performances are also significantly improved.
Last updated:  2023-04-12
Protecting Dilithium against Leakage: Revisited Sensitivity Analysis and Improved Implementations
Melissa Azouaoui, Olivier Bronchain, Gaëtan Cassiers, Clément Hoffmann, Yulia Kuzovkova, Joost Renes, Markus Schönauer, Tobias Schneider, François-Xavier Standaert, Christine van Vredendaal
CRYSTALS-Dilithium has been selected by the NIST as the new stan- dard for post-quantum digital signatures. In this work, we revisit the side-channel countermeasures of Dilithium in three directions. First, we improve its sensitivity analysis by classifying intermediate computations according to their physical security requirements. Second, we provide improved gadgets dedicated to Dilithium, taking advantage of recent advances in masking conversion algorithms. Third, we combine these contributions and report performance for side-channel protected Dilithium implementations. Our benchmarking results additionally put forward that the ran- domized version of Dilithium can lead to significantly more efficient implementations (than its deterministic version) when side-channel attacks are a concern.
Last updated:  2022-10-16
Subverting Deniability
Marcel Armour, Elizabeth A. Quaglia
Deniable public-key encryption (DPKE) is a cryptographic primitive that allows the sender of an encrypted message to later claim that they sent a different message. DPKE's threat model assumes powerful adversaries who can coerce users to reveal plaintexts; it is thus reasonable to consider other advanced capabilities, such as the ability to subvert algorithms in a so-called Algorithm Substitution Attack (ASA). An ASA replaces a trusted algorithm with a subverted version that undermines security from the point of view of the adversary while remaining undetected by users. ASAs have been considered against a number of primitives including digital signatures, symmetric encryption and pseudo-random generators. However, public-key encryption has presented a less fruitful target, as the sender's only secrets are plaintexts and ASA techniques generally do not provide sufficient bandwidth to leak these. In this work, we show that subversion attacks against deniable encryption schemes present an attractive opportunity for an adversary. We note that whilst the notion is widely accepted, there are as yet no practical deniable PKE schemes; we demonstrate the feasibility of ASAs targeting deniable encryption using a representative scheme as a proof of concept. We also provide a formal model and discuss how to mitigate ASAs targeting deniable PKE schemes. Our results strengthen the security model for deniable encryption and highlight the necessity of considering subversion in the design of practical schemes.
Last updated:  2022-10-16
Reducing an LWE Instance by Modular Hints and its Applications to Primal Attack, Dual Attack and BKW Attack
Han Wu, Xiaoyun Wang, Guangwu Xu
An emerging direction of investigating the resilience of post-quantum cryptosystems under side-channel attacks is to consider the situations where leaked information is combined with traditional attack methods in various forms. In CRYPTO 2020, Dachman-Soled et al. integrated hints from side-channel information to the primal attack against LWE schemes. This idea is further developed in this paper. An accurate characterization of the information from perfect hints and modular hints is obtained through the establishment of an interesting decomposition of $\mathbb{Z}^n$. It is observed that modular hints with modulus $p$ produce some orthogonal projection of the secret in $\mathbb{Z}_p$, which is exactly an extension of the case of perfect hints in $\mathbb{R}$. Based on these, a new attack framework is described when some modular hints with modulus $q$ are available. In this framework, an adversary first reduces the LWE instance using such hints, and then performs various attacks on the new instance. One of the key characters of our framework is that the dimension of the secret in the new instance always decreases under some moderate conditions. A comparison with the previous work shows that our approach is in some sense more essential and applicable to various kinds of attacks. The new way of integrating modular hints to primal attack improves the existing work. The first attempt of using modular hints in dual attack and BKW attack is also discussed in the paper and better analysis results are produced. Experiments have been carried out and shown that multiple modular hints with modulus $q$ can indeed significantly reduce their attack costs. For examples, with just 100 hints, the blocksize can be reduced by 101 and the time complexity can be reduced by a factor of $2^{30}$ in both primal attack and dual attack against a Newhope1024 instance. As for the BKW attack, if 90 hints are available, the number of queries to the LWE oracle can be decreased by a factor of $2^{60}$, as do the time complexity and memory complexity when attacking an instance of Regev cryptosystem $(384,147457,39.19)$.
Last updated:  2022-10-16
On the Dual Attack of LWE Schemes in the Presence of Hints
Han Wu, Xiaoyun Wang, Guangwu Xu
Combining theoretical-based traditional attack method with practical-based side-channel attack method provides more accurate security estimations for post-quantum cryptosystems. In CRYPTO 2020, Dachman-Soled et al. integrated hints from side-channel information to the primal attack against LWE schemes. This paper develops a general Fourier analytic framework to work with the dual attack in the presence of hints. Distinguishers that depend on specific geometric properties related to hints are established. The Fourier transform of discretized multivariate conditional Gaussian distribution on $\mathbb{Z}_q^d$ is carefully computed and estimated, some geometric characteristics of the resulting distinguisher are explored and a new model of dual attack is proposed. In our framework, an adversary performs the BKZ algorithm directly in a projected lattice to find short projection components, and then recovers them by MLLL algorithm to make a distinction. This method relies on a reasonable assumption and is backed up by naturally formed mathematical arguments. The improvements and the assumption are validated by experiments. For examples, for a Kyber768 instance, with 200 hints, the blocksize can be reduced by at least 188 and the time complexity can be reduced by a factor of greater than $2^{55}$. After adding 300 hints to a FireSaber instance, even in the worst case, the blocksize drops from 819 to 542, and the cost drops from $2^{255.61}$ to $2^{174.72}$.
Last updated:  2023-03-07
Sorting Attacks Resilient Authentication Protocol for CMOS Image Sensor Based PUF
Chandan Kumar, Mahendra Rathor, Urbi Chatterjee
Physically Unclonable Functions (PUFs) have emerged as a viable and cost-effective method for device authentication and key generation. Recently, CMOS image sensors have been exploited as PUF for hardware fingerprinting in mobile devices. As CMOS image sensors are readily available in modern devices such as smartphones, laptops etc., it eliminates the need for additional hardware for implementing a PUF structure. In ISIC2014, an authentication protocol has been proposed to generate PUF signatures using a CMOS image sensor by leveraging the fixed pattern noise (FPN) of certain pixel values. This makes the PUF candidate an interesting target for adversarial attacks. In this work, we testify that a simple sorting attack and a win-rate (WR) based sorting attack can be launched in this architecture to predict the PUF response for given a challenge. We also propose a modified authentication protocol as a countermeasure to make it resilient against simple sorting and WR sorting attacks. The proposed work reduces the accuracy of prediction due to simple sorting attack and WR sorting attack by approximately 14% compared to the existing approach.
Last updated:  2023-11-13
PIRANA: Faster Multi-query PIR via Constant-weight Codes
Jian Liu, Jingyu Li, Di Wu, and Kui Ren
Private information retrieval (PIR) is a cryptographic protocol that enables a wide range of privacy-preserving applications. Despite being extensively studied for decades, it is still not efficient enough to be used in practice. In this paper, we propose a novel PIR protocol named PIRANA, based on the recent advances in constant-weight codes. It is up to 188.6× faster than the original constant-weight PIR (presented in Usenix SEC '22). Most importantly, PIRANA naturally supports multi-query. It allows a client to retrieve a batch of elements from the server with a very small extra-cost compared to retrieving a single element, which results in up to an 14.4× speedup over the state-of-the-art multi-query PIR (presented in Oakland '23). We also discuss a way to extend PIRANA to labeled private set intersection (LPSI). Compared with existing LPSI protocols, PIRANA is more friendly to the scenarios where the database updates frequently.
Last updated:  2023-05-17
EdMSM: Multi-Scalar-Multiplication for SNARKs and Faster Montgomery multiplication
Youssef El Housni, Gautam Botrel
The bottleneck in the proving algorithm of most of elliptic-curve-based SNARK proof systems is the Multi-Scalar-Multiplication (MSM) algorithm. In this paper we give an overview of a variant of the Pippenger MSM algorithm together with a set of optimizations tailored for curves that admit a twisted Edwards form. We prove that this is the case for SNARK-friendly chains and cycles of elliptic curves, which are useful for recursive constructions. Our contribution is twofold: first, we optimize the arithmetic of finite fields by improving on the well-known Coarsely Integrated Operand Scanning (CIOS) modular multiplication. This is a contribution of independent interest that applies to many different contexts. Second, we propose a new coordinate system for twisted Edwards curves tailored for the Pippenger MSM algorithm. Accelerating the MSM over these curves is critical for deployment of recursive proof systems applications such as proof-carrying-data, blockchain rollups and blockchain light clients. We implement our work in Go and benchmark it on two different CPU architectures (x86 and arm64). We show that our implementation achieves a 40-47% speedup over the state-of-the-art implementation (which was implemented in Rust). This MSM implementation won the first place in the ZPrize competition in the open division “Accelerating MSM on Mobile” and will be deployed in two real-world applications: Linea zkEVM by ConsenSys and probably Celo network.
Last updated:  2022-10-15
Low-latency implementation of the GIFT cipher on RISC-V architectures
Gheorghe Pojoga, Kostas Papagiannopoulos
Lightweight cryptography is a viable solution for constrained computational environments that require a secure communication channel. To standardize lightweight primitives, NIST has published a call for algorithms that address needs like compactness, low-latency, low-power/energy, etc. Among the candidates, the GIFT family of block ciphers was utilized in various NIST candidates due to its high-security margin and small gate footprint. As a result of their hardware-oriented design, software implementations of GIFT require additional optimization techniques such as bitslicing and fixslicing to achieve optimal performance. Even though the performance of these methods has been assessed for several ISA families such as x86 and ARM, there is currently a lack of data with regards to their acceleration capabilities for RISC-V. Since this ISA is an important element of the growing open-hardware movement, our goal is to address this knowledge gap. Therefore, we have developed several assembly implementations for both GIFT-64 and GIFT-128, using the RV32I ISA, and performed a quantitative assessment of their performance using a physical board i.e., Hifive1 Rev B. Our study has shown that by using bitslicing the number of clock cycles can be reduced by 69.33% for GIFT-64 and 71.38% for GIFT-128, compared to a naive assembly implementation, while fixslicing decreases the number of clock cycles by 85.7% (GIFT-64) and 81.28% (GIFT-128). Nonetheless, the preferred technique is fixslicing with key pre-computation, which can achieve a reduction of 88.69% (GIFT-64) and 95.05% (GIFT-128), while maintaining relatively low memory requirements of 938 bytes (GIFT-64) and 1388 bytes (GIFT-128), respectively.
Last updated:  2023-08-17
MILP-aided Cryptanalysis of the FUTURE Block Cipher
Murat Burhan İlter and Ali Aydin Selcuk
FUTURE is a recently proposed, lightweight block cipher. It has an AES-like, SP-based, 10-round encryption function, where, unlike most other lightweight constructions, the diffusion layer is based on an MDS matrix. Despite its relative complexity, it has a remarkable hardware performance due to careful design decisions. In this paper, we conducted a MILP-based analysis of the cipher, where we incorporated exact probabilities rather than just the number of active S-boxes into the model. Through the MILP analysis, we were able to find differential and linear distinguishers for up to 5 rounds of FUTURE, extending the known distinguishers of the cipher by one round.
Last updated:  2023-10-09
Synchronous Perfectly Secure Message Transmission with Optimal Asynchronous Fallback Guarantees
Giovanni Deligios and Chen-Da Liu-Zhang
Secure message transmission (SMT) constitutes a fundamental network-layer building block for distributed protocols over incomplete networks. More specifically, a sender $\mathbf{S}$ and a receiver $\mathbf{R}$ are connected via $\ell$ disjoint paths, of which at most $t$ paths are controlled by the adversary. Perfectly-secure SMT protocols in synchronous and asynchronous networks are resilient up to $\ell/2$ and $\ell/3$ corruptions respectively. In this work, we ask whether it is possible to achieve a perfect SMT protocol that simultaneously tolerates $t_s < \ell/2$ corruptions when the network is synchronous, and $t_a < \ell/3$ when the network is asynchronous. We completely resolve this question by showing that perfect SMT is possible if and only if $2t_a + t_s < \ell$. In addition, we provide a concretely round-efficient solution for the (slightly worse) trade-off $t_a + 2t_s < \ell$. As a direct application of our results, following the recent work by Appan, Chandramouli, and Choudhury [PODC'22], we obtain an $n$-party perfectly-secure synchronous multi-party computation protocol with asynchronous fallback over any network with connectivity $\ell$, as long as $t_a + 3t_s <n$ and $2t_a + t_s < \ell$.
Last updated:  2022-10-14
FPGA Acceleration of Multi-Scalar Multiplication: CycloneMSM
Kaveh Aasaraai, Don Beaver, Emanuele Cesena, Rahul Maganti, Nicolas Stalder, Javier Varela
Multi-Scalar Multiplication (MSM) on elliptic curves is one of the primitives and bottlenecks at the core of many zero-knowledge proof systems. Speeding up MSM typically results in faster proof generation, which in turn makes ZK-based applications practical. We focus on accelerating large MSM on FPGA, and we present speed records for $\texttt{BLS12-377}$ on FPGA: 5.66s for $N=2^{26}$, sub-second for $N=2^{22}$. We developed a fully-pipelined curve adder in extended Twisted Edwards coordinates that runs at 250MHz. Our architecture incorporates a scheduler to reorder curve operations, that's suitable not just for hardware acceleration, but also for software implementations using affine coordinates with batch inversion. The software implementation achieves +$10-20$\% performance improvement over the state-of-the-art $\texttt{gnark-crypto}$ library.
Last updated:  2023-09-23
Non-Interactive Anonymous Router with Quasi-Linear Router Computation
Rex Fernando, Elaine Shi, Pratik Soni, Nikhil Vanjani, and Brent Waters
Anonymous routing is an important cryptographic primitive that allows users to communicate privately on the Internet, without revealing their message contents or their contacts. Until the very recent work of Shi and Wu (Eurocrypt’21), all classical anonymous routing schemes are interactive protocols, and their security rely on a threshold number of the routers being honest. The recent work of Shi and Wu suggested a new abstraction called Non-Interactive Anonymous Router (NIAR), and showed how to achieve anonymous routing non-interactively for the first time. In particular, a single untrusted router receives a token which allows it to obliviously apply a permutation to a set of encrypted messages from the senders. Shi and Wu’s construction suffers from two drawbacks: 1) the router takes time quadratic in the number of senders to obliviously route their messages; and 2) the scheme is proven secure only in the presence of static corruptions. In this work, we show how to construct a non-interactive anonymous router scheme with sub-quadratic router computation, and achieving security in the presence of adaptive corruptions. To get this result, we assume the existence of indistinguishability obfuscation and one-way functions. Our final result is obtained through a sequence of stepping stones. First, we show how to achieve the desired efficiency, but with security under static corruption and in a selective, single-challenge setting. Then, we go through a sequence of upgrades which eventually get us the final result. We devise various new techniques along the way which lead to some additional results. In particular, our techniques for reasoning about a network of obfuscated programs may be of independent interest.
Last updated:  2022-10-14
Risky Translations: Securing TLBs against Timing Side Channels
Florian Stolz, Jan Philipp Thoma, Pascal Sasdrich, Tim Güneysu
Microarchitectural side-channel vulnerabilities in modern processors are known to be a powerful attack vector that can be utilized to bypass common security boundaries like memory isolation. As shown by recent variants of transient execution attacks related to Spectre and Meltdown, those side channels allow to leak data from the microarchitecture to the observable architectural state. The vast majority of attacks currently build on the cache-timing side channel, since it is easy to exploit and provides a reliable, fine-grained communication channel. Therefore, many proposals for side-channel secure cache architectures have been made. However, caches are not the only source of side-channel leakage in modern processors and mitigating the cache side channel will inevitably lead to attacks exploiting other side channels. In this work, we focus on defeating side-channel attacks based on page translations. It has been shown that the Translation Lookaside Buffer ( TLB) can be exploited in a very similar fashion to caches. Since the main caches and the TLB share many features in their architectural design, the question arises whether existing countermeasures against cache-timing attacks can be used to secure the TLB. We analyze state-of-the-art proposals for side-channel secure cache architectures and investigate their applicability to TLB side channels. We find that those cache countermeasures are not directly applicable to TLB s, and propose TLBcoat, a new side-channel secure TLB architecture. We provide evidence of TLB side-channel leakage on RISC-V-based Linux systems, and demonstrate that TLBcoat prevents this leakage. We implement TLBcoat using the gem5 simulator and evaluate its performance using the PARSEC benchmark suite.
Last updated:  2022-11-07
Efficient Zero-Knowledge Proofs on Signed Data with Applications to Verifiable Computation on Data Streams
Dario Fiore, Ida Tucker
We study the problem of privacy-preserving proofs on streamed authenticated data. In this setting, a server receives a continuous stream of data from a trusted data provider, and is requested to prove computations over the data to third parties in a correct and private way. In particular, the third party learns no information on the data beyond the validity of claimed results. A challenging requirement here, is that the third party verifies the validity with respect to the specific data authenticated by the provider, while communicating only with the server. This problem is motivated by various application areas, ranging from stock-market monitoring and prediction services; to the publication of government-ran statistics on large healthcare databases. All of these applications require a reliable and scalable solution, in order to see practical adoption. In this paper, we identify and formalize a key primitive allowing one to achieve the above: homomorphic signatures which evaluate non-deterministic computations (HSNP). We provide a generic construction for an HSNP evaluating universal relations; instantiate the construction; and implement a library for HSNP. This in turn allows us to build SPHINX: a system for proving arbitrary computations over streamed authenticated data in a privacy-preserving manner. SPHINX improves significantly over alternative solutions for this model. For instance, compared to corresponding solutions based on Marlin (Eurocrypt'20), the proof generation of SPHINX is between $15\times$ and $1\,300\times$ faster for various computations used in sliding-window statistics.
Last updated:  2022-10-14
A Faster Third-Order Masking of Lookup Tables
Anju Alexander, Annapurna Valiveti, Srinivas Vivek
Masking of S-boxes using lookup tables is an effective countermeasure to thwart side-channel attacks on block ciphers implemented in software. At first and second orders, the Table-based Masking (TBM) schemes can be very efficient and even faster than circuit-based masking schemes. Ever since the customised second-order TBM schemes were proposed, the focus has been on designing and optimising Higher-Order Table-based Masking (HO-TBM) schemes that facilitate masking at arbitrary order. One of the reasons for this trend is that at large orders HO-TBM schemes are significantly slower and consume a prohibitive amount of RAM memory compared to circuit-based masking schemes such as bit-sliced masking, and hence efforts were targeted in this direction. However, a recent work due to Valiveti and Vivek (TCHES 2021) has demonstrated that the HO-TBM scheme of Coron et al. (TCHES 2018) is feasible to be implemented on memory-constrained devices with pre-processing capability and a competitive online execution time. Yet, currently, there are no customised designs for third-order TBM that are more efficient than instantiating a HO-TBM scheme at third order. In this work, we propose a third-order TBM scheme for arbitrary S-boxes that is secure in the probing model and under compositions, i.e., 3-SNI secure. It is very efficient in terms of the overall running time, compared to the third-order instantiations of state-of-the-art HO-TBM schemes. It also supports the pre-processing functionality. For example, the overall running time of a single execution of the third-order masked AES-128 on a 32-bit ARM-Cortex M4 micro-controller is reduced by about 80% without any overhead on the online execution time. This implies that the online execution time of the proposed scheme is approximately eight times faster than the bit-sliced masked implementation at third order, and it is comparable to the recent scheme of Wang et al. (TCHES 2022) that makes use of reuse of shares. We also present the implementation results for the third-order masked PRESENT cipher. Our work suggests that there is a significant scope for tuning the performance of HO-TBM schemes at lower orders.
Last updated:  2022-10-14
Efficient Noise Generation Protocols for Differentially Private Multiparty Computation
Reo Eriguchi, Atsunori Ichikawa, Noboru Kunihiro, Koji Nuida
To bound information leakage in outputs of protocols, it is important to construct secure multiparty computation protocols which output differentially private values perturbed by the addition of noise. However, previous noise generation protocols have round and communication complexity growing with differential privacy budgets, or require parties to locally generate non-uniform noise, which makes it difficult to guarantee differential privacy against active adversaries. We propose three kinds of protocols for generating noise drawn from certain distributions providing differential privacy. The two of them generate noise from finite-range variants of the discrete Laplace distribution. For $(\epsilon,\delta)$-differential privacy, they only need constant numbers of rounds independent of $\epsilon,\delta$ while the previous protocol needs the number of rounds depending on $\delta$. The two protocols are incomparable as they make a trade-off between round and communication complexity. Our third protocol non-interactively generates shares of noise from the binomial distribution by predistributing keys for a pseudorandom function. It achieves communication complexity independent of $\epsilon$ or $\delta$ for the computational analogue of $(\epsilon,\delta)$-differential privacy while the previous protocols require communication complexity depending on $\epsilon$. We also prove that our protocols can be extended so that they provide differential privacy in the active setting.
Last updated:  2022-10-14
Multiplicative and Verifiably Multiplicative Secret Sharing for Multipartite Adversary Structures
Reo Eriguchi, Noboru Kunihiro, Koji Nuida
$d$-Multiplicative secret sharing enables $n$ players to locally compute additive shares of the product of $d$ secrets from their shares. Barkol et al. (Journal of Cryptology, 2010) show that it is possible to construct a $d$-multiplicative scheme for any adversary structure satisfying the $Q_d$ property, in which no $d$ sets cover the whole set of players. In this paper, we focus on multipartite adversary structures and propose efficient multiplicative and verifiably multiplicative secret sharing schemes tailored to them. First, our multiplicative scheme is applicable to any multipartite $Q_d$-adversary structure. If the number of parts is constant, our scheme achieves a share size polynomial in the number $n$ of players while the general construction by Barkol et al. results in exponentially large share size in the worst case. We also propose its variant defined over smaller fields. As a result, for a special class of bipartite adversary structures with two maximal points, it achieves a constant share size for arbitrary $n$ while the share size of the first scheme necessarily incurs a logarithmic factor of $n$. Secondly, we devise a more efficient scheme for a special class of multipartite ones such that players in each part have the same weight and a set of players belongs to the adversary structure if and only if the sum of their weights is at most a threshold. Thirdly, if the adversary structure is $Q_{d+1}$, our first scheme is shown to be a verifiably multiplicative scheme that detects incorrect outputs with probability $1$. For multipartite adversary structures with a constant number of parts, it improves the worst-case share and proof sizes of the only known general construction by Yoshida and Obana (IEEE Transactions on Information Theory, 2019). Finally, we propose a more efficient verifiably multiplicative scheme by allowing small error probability $\delta$ and focusing on a more restricted class of multipartite adversary structures. Our scheme verifies computation of polynomials and can achieve a share size independent of $\delta$ while the previous construction only works for monomials and results in a share size involving a factor of $\log\delta^{-1}$.
Last updated:  2023-04-24
Practical Asynchronous High-threshold Distributed Key Generation and Distributed Polynomial Sampling
Sourav Das, Zhuolun Xiang, Lefteris Kokoris-Kogias, Ling Ren
Distributed Key Generation (DKG) is a technique to bootstrap threshold cryptosystems without a trusted party. DKG is an essential building block to many decentralized protocols such as randomness beacons, threshold signatures, Byzantine consensus, and multiparty computation. While significant progress has been made recently, existing asynchronous DKG constructions are inefficient when the reconstruction threshold is larger than one-third of the total nodes. In this paper, we present a simple and concretely efficient asynchronous DKG (ADKG) protocol among $n=3t+1$ nodes that can tolerate up to $t$ malicious nodes and support any reconstruction threshold $\ell\ge t$. Our protocol has an expected $O(\kappa n^3)$ communication cost, where $\kappa$ is a security parameter, and only assumes the hardness of Discrete Logarithm. The core ingredient of our ADKG protocol is an asynchronous protocol to secret share a random polynomial of degree $\ell\ge t$, which has other applications such as asynchronous proactive secret sharing and asynchronous multiparty computation. We implement our high-threshold ADKG protocol and evaluate it using a network of up to 128 geographically distributed nodes. Our evaluation shows that our high-threshold ADKG protocol reduces the running time by $90\%$ and reduces the bandwidth usage by $80\%$ over state-of-the-art.
Last updated:  2022-10-13
MIPS Assembly Language Implementation of GIFT-64-128 Encryption
William Diehl
The GIFT-64-128 block cipher encryption is implemented in MIPS assembly language. The program is assembled and simulated using the QtSPIM simu-lator and produces functionally correct results. This implementation requires 22,764 clock cycles per 64-bit block encryption, as well as 1,296 bytes of code, and 192 bytes of data memory. The major functional units of the im-plementation are analyzed in terms of cycle count and bytes of code.
Last updated:  2023-03-25
AIM: Symmetric Primitive for Shorter Signatures with Stronger Security (Full Version)
Seongkwang Kim, Jincheol Ha, Mincheol Son, Byeonghak Lee, Dukjae Moon, Joohee Lee, Sangyub Lee, Jihoon Kwon, Jihoon Cho, Hyojin Yoon, Jooyoung Lee
Post-quantum signature schemes based on the MPC-in-the-Head (MPCitH) paradigm are recently attracting significant attention as their security solely depends on the one-wayness of the underlying primitive, providing diversity for the hardness assumption in post-quantum cryptography. Recent MPCitH-friendly ciphers have been designed using simple algebraic S-boxes operating on a large field in order to improve the performance of the resulting signature schemes. Due to their simple algebraic structures, their security against algebraic attacks should be comprehensively studied. In this paper, we refine algebraic cryptanalysis of power mapping based S-boxes over binary extension fields, and cryptographic primitives based on such S-boxes. In particular, for the Gröbner basis attack over $\mathbb{F}_2$, we experimentally show that the exact number of Boolean quadratic equations obtained from the underlying S-boxes is critical to correctly estimate the theoretic complexity based on the degree of regularity. Similarly, it turns out that the XL attack might be faster when all possible quadratic equations are found and used from the S-boxes. This refined cryptanalysis leads to more precise algebraic analysis of cryptographic primitives based on algebraic S-boxes. Considering the refined algebraic cryptanalysis, we propose a new one-way function, dubbed $\mathsf{AIM}$, as an MPCitH-friendly symmetric primitive with high resistance to algebraic attacks. The security of $\mathsf{AIM}$ is comprehensively analyzed with respect to algebraic, statistical, quantum, and generic attacks. $\mathsf{AIM}$ is combined with the BN++ proof system, yielding a new signature scheme, dubbed $\mathsf{AIMer}$. Our implementation shows that $\mathsf{AIMer}$ outperforms existing signature schemes based on symmetric primitives in terms of signature size and signing time.
Last updated:  2022-10-13
A multivariate noise-free HE proposal
Gerald Gavin, Sandrine Tainturier
Recently, new ideas to build homomorphic noise-free encryption schemes have been proposed. The starting point of these schemes deals with private-key encryption schemes whose secret key is a rational function. By construction, these schemes are not homomorphic. To get homomorphic properties, nonlinear homomorphic operators are derived from the secret key. In this paper, we adopt the same approach to build a HE. We obtain a multivariate encryption scheme in the sense that the knowledge of the CPA attacker can be turned into an over-defined system of nonlinear equations. The factoring assumption is introduced in order to make a large class of attacks based on Groebner basis irrelevant. While we did not propose a formal security proof relying on a classical cryptographic assumption, we hopefully provide convincing evidence for security.
Last updated:  2023-10-08
Deep Reinforcement Learning-based Rebalancing Policies for Profit Maximization of Relay Nodes in Payment Channel Networks
Nikolaos Papadis and Leandros Tassiulas
Payment channel networks (PCNs) are a layer-2 blockchain scalability solution, with its main entity, the payment channel, enabling transactions between pairs of nodes "off-chain," thus reducing the burden on the layer-1 network. Nodes with multiple channels can serve as relays for multihop payments by providing their liquidity and withholding part of the payment amount as a fee. Relay nodes might after a while end up with one or more unbalanced channels, and thus need to trigger a rebalancing operation. In this paper, we study how a relay node can maximize its profits from fees by using the rebalancing method of submarine swaps. We introduce a stochastic model to capture the dynamics of a relay node observing random transaction arrivals and performing occasional rebalancing operations, and express the system evolution as a Markov Decision Process. We formulate the problem of the maximization of the node's fortune over time over all rebalancing policies, and approximate the optimal solution by designing a Deep Reinforcement Learning (DRL)-based rebalancing policy. We build a discrete event simulator of the system and use it to demonstrate the DRL policy's superior performance under most conditions by conducting a comparative study of different policies and parameterizations. Our work is the first to introduce DRL for liquidity management in the complex world of PCNs.
Last updated:  2022-10-13
Non-uniformity and Quantum Advice in the Random Oracle Model
Qipeng Liu
QROM (quantum random oracle model), introduced by Boneh et al. (Asiacrypt 2011), captures all generic algorithms. However, it fails to describe non-uniform quantum algorithms with preprocessing power, which receives a piece of bounded classical or quantum advice. As non-uniform algorithms are largely believed to be the right model for attackers, starting from the work by Nayebi, Aaronson, Belovs, and Trevisan (QIC 2015), a line of works investigates non-uniform security in the random oracle model. Chung, Guo, Liu, and Qian (FOCS 2020) provide a framework and establish non-uniform security for many cryptographic applications. In this work, we continue the study on quantum advice in the QROM. We provide a new idea that generalizes the previous multi-instance framework, which we believe is more quantum-friendly and should be the quantum analogue of multi-instance games. To this end, we match the bounds with quantum advice to those with classical advice by Chung et al., showing quantum advice is almost as good/bad as classical advice for many natural security games in the QROM. Finally, we show that for some contrived games in the QROM, quantum advice can be exponentially better than classical advice for some parameter regimes. To our best knowledge, it provides some evidence of a general separation between quantum and classical advice relative to an unstructured oracle.
Last updated:  2023-04-17
Sublinear-Round Broadcast without Trusted Setup against Dishonest Majority
Andreea B. Alexandru, Julian Loss, Charalampos Papamanthou, Giorgos Tsimos
Byzantine broadcast is one of the fundamental problems in distributed computing. Many practical applications from secure multiparty computation to consensus mechanisms for blockchains require increasingly weaker trust assumptions, as well as scalability for an ever-growing number of users, which rules out existing solutions with linear number of rounds or trusted setup requirements. In this paper, we propose the first sublinear-round and trustless Byzantine broadcast protocol. Unlike previous sublinear-round protocols, our protocol does not assume the existence of a trusted dealer who honestly issues keys and common random strings to the parties. Our protocol is based on a new cryptographic protocol called verifiable graded consensus, designed to act as an untrusted online setup, enabling $n$ parties to almost agree on shared random strings. We propose an implementation of the verifiable graded consensus protocol using transparent setup verifiable delay functions and random oracles, which is then used to run a committee-based Byzantine protocol, similar to Chan et al. (PKC 2020), in an unbiased fashion. Finally, we obtain a polylog-round trustless Byzantine broadcast with amortized communication complexity of $\tilde O(n^2)$, which can be further improved to $\tilde O(n)$ per instance for multiple instances of parallel broadcast.
Last updated:  2022-10-12
Quagmire ciphers, group theory, and information: Key amplification in crib-based attacks
Thomas Kaeding
We demonstrate how to apply some ideas from group theory to quagmire ciphers. Techniques are shown for amplifying one's knowledge of the keys. This is useful when breaking a ciphertext with a crib. The basic idea is that only a small amount of information goes into building a key table for a quagmire cipher, so we should only need that much information to reconstruct it.
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.