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Abstract. Microarchitectural side-channel vulnerabilities in modern processors are
known to be a powerful attack vector that can be utilized to bypass common security
boundaries like memory isolation. As shown by recent variants of transient execution
attacks related to Spectre and Meltdown, those side channels allow to leak data from
the microarchitecture to the observable architectural state. The vast majority of
attacks currently build on the cache-timing side channel, since it is easy to exploit and
provides a reliable, fine-grained communication channel. Therefore, many proposals
for side-channel secure cache architectures have been made. However, caches are
not the only source of side-channel leakage in modern processors and mitigating the
cache side channel will inevitably lead to attacks exploiting other side channels. In
this work, we focus on defeating side-channel attacks based on page translations.
It has been shown that the Translation Lookaside Buffer (TLB) can be exploited in a
very similar fashion to caches. Since the main caches and the TLB share many features
in their architectural design, the question arises whether existing countermeasures
against cache-timing attacks can be used to secure the TLB. We analyze state-of-
the-art proposals for side-channel secure cache architectures and investigate their
applicability to TLB side channels. We find that those cache countermeasures are not
directly applicable to TLBs, and propose TLBcoat, a new side-channel secure TLB
architecture. We provide evidence of TLB side-channel leakage on RISC-V-based
Linux systems, and demonstrate that TLBcoat prevents this leakage. We implement
TLBcoat using the gem5 simulator and evaluate its performance using the PARSEC
benchmark suite.
Keywords: Microarchitecture · TLB · Side Channel · Randomization

1 Introduction
The ever-growing complexity of modern processors enables the ongoing acceleration of
computing power. Today’s processors feature a variety of performance optimizations like
forwarding mechanisms, speculation, and caches. The software stack that is built on top of
this often treats the hardware as a trust anchor. Although the clash between performance-
driven hardware with respect to secure software processes was demonstrated many times,
e.g., by demonstrating that cache-timing can leak secret key material [Ber05], advances in
this direction only recently gained momentum with the disclosure of transient execution
attacks. These attacks include Spectre [KHF+19], Meltdown [LSG+18], and successors (see
generally [CBS+19]) and utilize microarchitectural side-channel vulnerabilities to exploit
leakage and extract secrets from transient CPU states while other attacks profile the
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timing behavior of shared CPU components to leak cryptographic key material [Ber05,
GRBG18, PGM+16, YF14].

Most of the recent microarchitectural attacks focus on the cache side channel since it is
very reliable and fine-grained. Much effort has been put into preventing the exploitation of
cache side channels [WUG+19, TNF+21, TZBR21, SQ21, Qur18]. When these countermea-
sures are integrated into a new generation of processors, attacks will inevitably evolve and
exploit other vulnerable processor resources like the Translation Lookaside Buffer (TLB)
which stores frequently used page mappings, translating virtual to physical addresses. First
signs of this evolution are already visible — for example, the TLBleed attack [GRBG18]
was the first attack to demonstrate a timing side channel on TLBs by exploiting the
observable TLB access patterns of cryptographic software to reconstruct the secret key.
Tatar et al. [TTGB22] perform rigorous reverse engineering efforts on Intel TLBs and
demonstrate enhanced attacks building on the improved understanding of the hardware.
Due to the similarities in the architectural design of TLBs and caches, many cache attacks
are transferable to TLBs, for example Prime+Probe [OST06, TOS10]. However, the
resolution of the TLB side channel is much more coarse-grained since translations are
stored per page (usually 4 kB) opposed to per cache line (64 Bytes). To bypass this
limitation, the TLBleed attack exploits the temporal TLB access patterns instead of the
spatial information; i.e., the attacker observes when a page was accessed, not if. Follow up
work presented further attack vectors on CPU TLBs [DXS19] and GPU TLBs [NPGB21].
The former develops a three-step model that discloses TLB access patterns that might
lead to side-channel leakage. The latter reverse engineers the TLB hierarchy in Nvidia
GPUs and finds that the device under test features a TLB that is shared between multiple
Streaming Multiprocessors (SMs). This distinguishes TLBs in GPUs from those in CPUs,
which are typically shared between hyperthreads at most.

The architectural similarities of caches and TLBs may suggest that some countermea-
sures against cache-timing side channels can be directly transferred to TLBs. However,
until now, there has not been a thorough study on whether the adoption of existing cache
countermeasures is sufficient to prevent side-channel attacks on TLBs. To the best of
our knowledge, there is currently only one attempt at side-channel secure TLB designs.
Deng et al. [DXS19] propose two alternative candidates for secure TLB architectures which
are directly derived from corresponding cache countermeasures. The SP TLB design uses
static partitioning between security domains to avoid leakage throughout these domains,
while the second proposal, RF TLB, aims to leverage the spatial locality of accesses to
populate the TLB and hide the accessed pages from an attacker. The static partitioning
approach taken by SP TLB has limited flexibility and increases the TLB misses per kilo
instructions by 207.5% [DXS19]. The RF TLB design, which is directly derived from the
cache counterpart RandomFillCache [LL14], requires software developers to distinguish
secure- from not secure pages. Moreover, it is still feasible for an attacker to observe TLB
accesses, albeit with added spatial disturbance. Any TLB protection should not require
exposure of TLB internals to the programmer. Security should be provided without the
need to assign applications or separate pages to specific security domains. Otherwise this
would shift the burden to the programmer or the Operating System (OS), which have to
identify the pages that might be exploited by a side-channel attack. Furthermore, the
OS should not be required to explicitly manage the TLB for all applications, except for
small interactions such as initiating flushes, e.g., when access permissions are changed.
Since TLBs are placed directly in the critical path of CPU caches (i.e., when caches are
physically indexed), the performance overhead for the TLB access must be minimized.

Contributions. In this paper, we explore the applicability of state-of-the-art cache coun-
termeasures to TLBs and their effectiveness against various attack vectors. We find that
straightforward adoption of cache designs is not advisable to protect TLBs and present
TLBcoat (TLB Countermeasure against Attacks based on Timing), a novel TLB design
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which enables strong protection against attacks while only marginally affecting the per-
formance. We implement TLBcoat in gem5 [LPAA+20] and evaluate its security and
performance. We show that classic set-associative TLBs can leak information even using a
non-simultaneously shared setting in our simulation environment running a RISC-V Linux
by exploiting the recently implemented Process-Context Identifiers (PCIDs). Crucially,
we show that TLBcoat prevents the leakage of such information. Finally, we provide
a hardware implementation of TLBcoat to demonstrate the feasibility in real-world
systems.

2 Background
This section introduces background information on TLBs and virtual memory management.
We further introduce common attack vectors on caches that are also applicable to TLBs.

2.1 Virtual Memory and the Translation Lookaside Buffer
Modern CPUs execute multiple processes simultaneously, each of which requires space in
physical memory. Thus, each process has its own virtual address space, which acts as a
memory abstraction and is mapped to the physical memory by the Memory Management
Unit (MMU). This abstraction is usually implemented using paging. A page thereby maps
a fixed size chunk of virtual memory to an equally sized chunk of physical memory, a
so-called page frame. Typically, regular pages have a size of 4 kB although larger pages
are allowed in several Instruction Set Architectures (ISAs) which are usually only used in
special cases. Upon a memory access the MMU translates the provided virtual address
to a physical address using the page table, which stores the mapping location as well as
access rights for each page [Tan09].

Since searching the page table on every access is very slow, the most recently used
translations are stored in the TLB. Their internal structure can vary depending on the
CPU and the ISA; however, most TLBs are implemented as a set-associative structure.
Few vendors implement fully-associative TLBs for the small first-level TLBs. Since full
associative structures need to be searched entirely on every access, the performance does
not scale for larger TLBs. After a translation is placed in the TLB, subsequent memory
accesses will bypass the page table lookup to save performance. Modern CPUs often use a
TLB hierarchy to improve performance even further. For example, x86 CPUs commonly
separate the TLB into data (dTLB) and instruction TLBs (iTLB). Recent processors
also employ multiple levels of TLBs, comparable to L1 and L2 caches used for the main
CPU caches [Int16a, p. 2-6]. Intel refers to the second level TLB which combines data
and instructions as sTLB. A similar structure is also used in many RISC-V cores, such
as the Rocket Chip [AAB+16]. Architectures that support multiple page sizes may add
further TLB levels. Compared to contemporary data caches, TLBs are limited in size, as
it has been observed that in the general case, most programs only require a few pages
simultaneously [Tan09]. An overview of typical TLB parameters is shown in Table 1.

Table 1: Overview of typical TLB parameters using the example of some recent processors.
The Nvidia L2- and L3-TLB feature a victim slot where the least recently evicted entry is
held (denoted as +1 ). 3: Shared between cores, m: Shared between hyperthreads, 7: Not
shared

Intel Skylake AMD Zen2 Nvidia Pascal
[Int16a, Tab. 2-5] [AMD17, p.25] [NPGB21]

iTLB dTLB sTLB L1i L2i L1d L2d L1 L2 L3
Entries 128 64 1536 64 512 64 1536 16 64+1 1024+1
Assoc. 8 4 12 full 8 full 12 full 8 8
Shared? 7 m m m m m m 7 7 3



4 Risky Translations: Securing TLBs against Timing Side Channels

A set-associative TLB can be imagined as a table-like structure with ways and sets,
corresponding to columns and rows respectively. Since TLBs translate virtual to physical
addresses, all TLBs are indexed using virtual addresses. A simple set addressing scheme
may divide the virtual address into log2(page_size) offset bits, log2(#sets) index bits,
and the remaining Virtual Page Number (VPN) bits. When a process makes an access to
a virtual address, the index bits of the address are used to determine a set of the TLB,
i.e., the row in the table analogy. In a w-way set-associative TLB, each set thus contains
w entries. Upon access, these entries are searched for the VPN which is part of the virtual
address. If the VPN matches one of the entries from the set, the request results in a TLB
hit and the translation information from that entry is returned. Otherwise, the request
results in a TLB miss and the page table is searched for the translation data. Once the data
is returned from the page table, the TLB selects one entry of the set and replaces it with
the new data. Often, the replacement policy is a variant of Least-Recently-Used (LRU),
i.e., the entry that has not been used for the longest time is replaced. In recent Intel
CPUs, the replacement policy is still based on LRU but includes more complex aspects as
reverse engineered in [TTGB22]. Next to the actual translation of the virtual to physical
address, a TLB entry also stores the access rights to the respective page as well as some
flags [Tan09].

Since the mapping of each program’s virtual memory is isolated, it is necessary to
manage the TLB and invalidate entries that contain mappings for processes that are not
currently scheduled. Therefore, on each context switch the OS has to change the MMU’s
configuration accordingly and invalidate the TLB. A straightforward way of handling
this task is a complete TLB flush. The invalidation of the whole TLB ensures that each
process starts with an empty TLB. This method was, for example, used by Intel until
the Westmere microarchitecture [Kan10]. However, this creates a high overhead which
can be avoided if the next scheduled process only requires a few pages and does not
utilize the entire TLB. Therefore, since Westmere and similarly on other architectures
such as RISC-V [WLA+16], each translation can also be tagged with a PCID (or Address
space Identifier (ASID) in case of RISC-V and ARM1). By giving each process a unique
ID (e.g., 12-bit ID on x86), the translation entries can be unambiguously assigned to a
process. The TLB can stay intact and only remove entries based on its replacement policy.
So-called global pages can be accessed by all processes and are often used for shared kernel
functionalities. Even in case of a complete TLB invalidation it is possible to leave these
entries valid [Int16b, Tab. 3-11].

2.2 Side-Channel Attacks on the TLB
The set-associative design of most TLBs is also very common in the main CPU caches.
Hence many cache attacks can be transferred to the TLB. Unlike caches, TLBs are usually
not shared between physical cores, but CPUs that use hyperthreading share the TLB
between those hyperthreads. Furthermore, the CPU schedules different processes on each
core which causes a time-division sharing of the TLB between multiple processes. With
the introduction of PCIDs, the TLB is no longer flushed upon context switching which
allows entries from descheduled processes to survive until the next time they are scheduled.

One of the most popular attacks on caches is Prime+Probe [OST06, TOS10]. Because
of the set-associative design, a given address can only be mapped to a single TLB-set
which consists of w entries where w is the associativity. By observing that the victim
makes a secret dependent access to a given address, the attacker can construct w addresses
from their address space that map to the same set. By accessing these addresses, the
attacker can evict the victim translation from the TLB. Hence, these addresses form an
eviction set. More importantly, as soon as the victim accesses the page again, one of the
addresses from the eviction set will be removed. This can be observed by the attacker and

1For the remainder of this paper we will use the term PCID to refer to any type of context identifiers.
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hence, the secret can be recovered. The fact that TLBs are virtually indexed facilitates
this attack since the attacker can simply mirror virtual addresses used by the victim and
add a suitable offset to form an eviction set.

However, since the TLB stores entries with page granularity (e.g., 4 kB) opposed
to cache line granularity (e.g., 64 Bytes), the attack on the TLB has a reduced spatial
resolution; that is, the attacker can only observe accesses within a 4 kB range instead
of a 64 Byte range. The work presented by Gras et al. [GRBG18] exploits the temporal
access patterns instead. With this, the information used to recover the secret is when the
page was accessed, not if. This is made possible by the likes of hyperthreading and similar
technologies, as multiple processes can simultaneously manipulate and observe the state
of the TLB. By design, the temporal information is very coarse on TLBs that are not
simultaneously shared between processes or threads since the attacker can only examine
the TLB state after a context switch. However, as shown by Deng et al. [DXS19], these
configurations may also be vulnerable. In Section 6.2 we demonstrate spatial information
leakage as part of our security evaluation. By reverse engineering the TLB on recent Intel
CPUs, Tatar et al. [TTGB22] improved the performance of some of these attacks.

Another common attack against caches is Flush+Reload [YF14]. However, this
attack requires an unprivileged instruction to flush data from the set-associative structure.
While the clflush instruction allows this for caches on x86 processors, the TLB counterpart
invlpg is privileged and therefore not useful for most real-world attacks. To the best of
our knowledge, there exists no major ISA with an unprivileged TLB flush instruction.

Recent proposals in side-channel secure cache architectures increasingly build upon
index randomization [WUG+19, TZBR21, WL07] which makes finding eviction sets much
more complicated. However, the Prime+Prune+Probe attack [PGGV21] and deriva-
tives [BDY+20] assemble generalized eviction sets which evict a target address with high
probability. We cover these attacks later in this paper when we discuss index-randomization
in TLBs.

3 Attacker Model
For our attacker, the ultimate goal is the extraction of page access information from the
TLB which depend on a secret, thus allowing them to reconstruct it. For this, in accordance
with prior research by Gras et al. [GRBG18], we assume that an attacker can execute
unprivileged code on the target system and can employ an instruction to extract timing
information, e.g., such as a cycle counter. The timing information can be used to measure
the overhead created by TLB hits/misses, which in turn allows for reverse-engineering the
mapping function of the TLB and creating an eviction set. Additionally, by analyzing
the victim application, the virtual addresses may be retrieved, which allow for an attack.
Specifically, if more than one core is present, the attacker is able to move the execution of
code to the same physical core as the victim using system calls. Furthermore, we assume
that the OS is trusted, as a malicious OS has full memory access and can trivially extract
secrets from all running processes, thus removing the necessity for a TLB-based attack.

Since the implementation details of TLBs differ vastly for modern processor designs
and ISAs, the threat model still needs to be tailored to the given circumstances. Properties
which require increased attention during the security analysis are (1) the usage of PCIDs
and (2) whether Simultaneous Multi-Threading (SMT) is available and enabled. We can
thus, in general, differentiate between four scenarios:

Isolated TLBs. In this setting, each physical core has its own TLB and the CPU is
not capable of SMT. Therefore, no logical cores exist which share processor resources.
Furthermore, the TLB does not employ PCIDs. After each context switch the CPU has
to flush all cached translations. In this scenario, only process-internal attacks are feasible.
Such attacks can be useful for example in the context of web browsers, which may execute
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(malicious) code delivered by the attacker’s website in the same process as the browser.
Non-simultaneously shared TLBs. This case describes most modern processors, which
do not employ SMT. To avoid unnecessary slowdowns due to flushing, each translation is
tagged with a PCID. Thus, processes can evict each other’s entries and therefore exploit
spatial access information after context switches. We demonstrate the leakage in our
evaluation environment in Section 6.2 on a simulated RISC-V Linux system. Since the TLB
is not simultaneously shared, the attack cannot extract fine-grained temporal information.
Simultaneously shared TLBs with PCIDs. If SMT is enabled, logical cores can
share physical resources such as the TLB. Translations are tagged with PCIDs, which
make flushing upon a context switch unnecessary. Gras et al. [GRBG18] attacked this
configuration on Intel CPUs to extract temporal information by observing page accesses of
the victim from a simultaneously running attacker thread. It is also possible to extract
spatial information in this setting.
Simultaneously shared TLBs without PCIDs. In this scenario, hardware threads
share a TLB, but do not employ PCIDs. Therefore, after a context switch the whole or
parts of the TLB have to be invalidated. Additionally, some form of hardware tagging is
required to prevent multiple threads from accessing each other’s translations. Like the
previous setting, this configuration allows leaking temporal and spatial access information
from the co-located process, but not across context switches.

4 On the Effectiveness of Cache Countermeasures for TLBs
A vast variety of side-channel secure cache designs have been proposed in recent years.
From the architectural similarities of caches and TLBs, one could conclude that simply
applying the already proposed countermeasures is sufficient for a side-channel secure TLB.
In this section we show how the unique properties of TLBs interfere with the security and
performance of existing countermeasures.

4.1 Partitioning
Cache-timing side channels exploit the shared nature of caches in which a potential victim
shares the resource with the attacker. Therefore, splitting the cache into two or more
domains for secure and insecure processes and thus separating resources, can be an effective
defense against such attacks. We differentiate between static and dynamic partitioning
schemes.

Static Partitioning. Caches that employ static partitioning split the shared cache into
multiple domains during design time. An identifier is required to select the appropriate
cache partition for each access. If the attacker and the victim belong to different security
domains, they are therefore strictly separated and cannot interfere with each other. As
mentioned by He and Lee [HL17], security is achieved at the cost of cache performance,
because the cache size is effectively smaller. Furthermore, the number of partitions is fixed
during design time which causes problems when the number of mutually untrusted processes
executed on the CPU exceeds the number of available partitions. HybCache [DFS20] aims
to reduce the performance overhead of partitioning by instantiating a fully-associative
subcache within the usual set-associative cache for code running in trusted environments
like SGX.

Dynamic Partitioning. In dynamic partitioning schemes a monitor (e.g., the OS) can
partition the cache at run-time. Unlike static partitioning, this allows the cache to adapt
to various situations in which, for example, no secure partition is required. Like before,
an identifier is required for selecting each partition. Page [Pag05] uses a directly-mapped
cache with additional configuration data attached. The configuration stores the start and
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size of each partition as well as other relevant information. The cache is exposed to the
software via the ISA, which allows for the creation, deletion and flushing of partitions.
Once a partition is created, the size is fixed and cannot be changed. Other schemes, for
example, by Qureshi and Patt [QP06], use a monitoring circuit to gather information that
is used by a partitioning algorithm to continuously adjust partition sizes. However, as
pointed out by Wang et al. [WFZ+16] resizing capabilities can decrease the security of a
cache, because of two side effects. Firstly, the size of a partition increases proportionally
to the demand of the application. Via probing, attackers can learn the partition size
and infer information about the confidential application. Secondly, schemes as shown by
Qureshi and Patt [QP06] do not flush left-over cache lines after making a partition smaller.
Other processes can use these left-over cache lines to perform classic timing side-channel
attacks, because their content depends on the accesses of the confidential application.
Therefore, careful design of the partitioning algorithm as well as partition enforcement
are required to create a secure dynamically partitioned cache. Townley et al. propose a
dynamic partitioning cache for secure enclaves in [TAL+22].

Partitioning in TLBs. Partitioning was explored by Deng et al. [DXS19] as a possible
countermeasure against timing side-channel attacks in TLBs. Their design, SP TLB, is
split at design time into a secure part, which is only accessible by one application that
requires protection, and an insecure part, which is shared between all other processes.
The PCID is used to differentiate between the two security domains. The division is
way-based and done during design time, making it a static partitioning scheme. Thus, at
any time a subset of ways is reserved for a secure application. SP TLB provides inherent
security against attacks across security domains. However, its static nature is also a
downside. Since 50% of the TLB are reserved for secure applications, the other processes
have to compete for a half-sized TLB. This is even the case, when no secure application
is running, leaving the allocated ways unused. Furthermore, it is not possible to execute
multiple mutually untrusted secure applications at the same time as they would compete
for the secure partition of the TLB in an insecure manner. Deng et al. report an increased
TLB miss rate of up to a factor of 3 per kilo instruction for SP TLB. Hence, the design
lacks scalability for many real-world applications since the workload on the TLB changes
dynamically throughout the execution of various programs. Therefore, static partitioning
is only an option if the designer knows specific execution characteristics at design time.

To the best of our knowledge no dynamic partitioning scheme exists for TLBs. In
general, dynamic partitioning requires some kind of monitoring to balance the requirements
of the secure and insecure domain. We assess that this would lead to a high overhead as
the OS or a separate hardware component would have to constantly monitor the utilization.
Additionally, reassigning ways between domains is not trivial as left-over information can
in fact leak information as shown before by Wang et al. [WFZ+16].

4.2 Randomization
Next to partitioning, randomizing the mapping of addresses to cache entries is one of the
most widespread measures to thwart cache-timing side channels. Prime+Probe attacks
rely on the attacker’s ability to construct small eviction sets, that is, a set of addresses
that map to the same cache entries. In traditional caches, this can easily be achieved by
choosing the index bits in a certain way. By randomizing the address to cache mapping,
the attacker can no longer deterministically construct such eviction sets.

Early index-randomization schemes [WL07, WL08] utilize lookup tables to store the
randomized address to cache mapping. While this results in an effectively fully-associative
cache, the complexity of a lookup is significantly increased. The CEASER [Qur18] design
was the first to propose address encryption for efficient address to cache randomization.
By using a trapdoor one-way-function, the design randomizes the mapping of addresses
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to cache sets without the need to store the mapping for each address. Since the number
of sets within the cache is limited, CEASER requires frequent re-randomization to avoid
attacks that reverse engineer the mapping of certain addresses to the cache. Changing the
key of the randomization function is not trivial as it effectively causes an implicit cache
flush. That is, since after re-randomization a given address maps to a different set of
entries with high probability and existing entries for that address are then no longer found
upon lookup. Entries that have been modified (dirty) need to be written back to main
memory prior to the re-randomization.

In the prospect of making re-randomization dispensable, CEASER-S [Qur19] and
ScatterCache [WUG+19] improve the index-randomization by relaxing the concept of cache
sets. In both designs, each cache way uses an independent addressing function, and hence,
addresses that collide in one way no longer collide in all cache ways. The randomization
function is either built from a low latency block cipher or hash-based. To further protect
against attacks like Flush+Reload that exploit shared memory between processes,
ScatterCache introduces domain separation by tweaking the randomization function with
a security domain identifier. This results in separate cache entries of shared memory
addresses for each process. Since Flush+Reload relies on the ability of the attacker to
evict shared cache entries using the clflush instruction, duplicating the entries for each
process mitigates the attack. A similar approach is taken by PhantomCache [TZBR21],
which relaxes the traditional concept of cache sets even further. The addressing function
allows entries to be mapped to multiple indices in each way. To limit the performance
overhead, the number of positions is strictly limited. While the PhantomCache approach
enlarges the randomization space, the increased search space also affects the lookup
complexity.

Recent work [PGGV21] generalizes the index-randomization schemes and investi-
gates the security properties against a profiling attacker. The authors present the
Prime+Prune+Probe attack which constructs probabilistic eviction sets by observing
conflicts between attacker controlled addresses and a target address. The attack challenges
the assumption that index-randomization is sufficient to achieve side-channel security. The
authors propose implementing re-randomization periods which depend on the cache size
and the desired security level. Further analysis of index randomization [BDY+20] showed
that complexity trade-offs between the profiling and the attack phase are feasible. By
observing the probability distribution of cache hit and miss events, it is even possible to
distribute the attack over multiple re-randomization periods, thus limiting the effectiveness
of re-keying. To counter the new attack vectors, [TNF+21] proposes a combination of
cache decay and index-randomization while [SQ21] adds a layer of indirection to the cache
lookup and thereby emulates a fully associative cache without needing to search the entire
cache upon lookup.

Another approach at randomization is taken by Random Fill Cache [LL14]. Liu and
Lee utilize the spatial locality of cache accesses and instead of caching data upon access,
data from adjacent memory addresses is cached. This effectively hides the accessed memory
addresses and therefore prevents leakage of this very information.

Randomization in TLBs. While the concept of index-randomization is easily transferable
to TLBs, the characteristics of TLBs make for some interesting possibilities and limitations.
In [Sez04, PTSM15, Sel04], skewed-associative TLBs are used to support multiple page sizes
in a single TLB and hence, gain performance advantages. However, since the mapping is
not randomized, these designs do not affect the security against side-channel attacks. From
a security perspective, the most important observation is that TLBs are much smaller than
the main data caches. For example, the reasonably recent Intel Skylake microarchitecture
features TLBs with 64 (4 ways) and 1,536 entries (12 ways) for the first level data TLB
and the second level TLB respectively [Int16a, Tab. 2-5]. In comparison, the Last Level
Caches (LLCs) for which the cache randomization schemes are intended, commonly feature
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several hundred thousand entries which greatly increases the randomization space. Pure
randomization schemes like ScatterCache and PhantomCache will not yield a sufficient
security level for TLBs without very frequent re-randomization since very few addresses
need to be accessed to observe the first collisions in the TLB. In addition, benign programs
usually cause very few TLB collisions in a short time period due to spatial locality. However,
for an attacker it is trivial to cause a large number of collisions in the same time frame,
by accessing addresses from several pages. Hence, the re-randomization threshold would
have to aim for the attacker capabilities rather than the characteristics of benign programs
which renders this approach highly inefficient for TLBs.

The second proposed design for a side-channel secure TLB by Deng et al. [DXS19]
transfers the idea of Random Fill Cache [LL14] to TLBs. However, since TLBs store page
translations which usually refer to 4 kB memory chunks, an access to a certain page is
not necessarily followed by an access to an adjacent page. In fact, the opposite behavior
is true, i.e., an access to a certain page will likely be followed by more accesses to the
same page. Hence, not storing that translation will result in degraded performance. The
performance of RF TLB is therefore highly dependent on the range, random pages —
which also includes the original page — are loaded from. A smaller range will lead to
a higher probability that the requested page will be loaded, but degrades security. A
larger range increases security, but decreases performance. Furthermore, modifications
to the page table are necessary to provide dummy pages, if not enough real (e.g., user-
or kernel-owned) pages exist to pick from. The authors measured a 9% performance
degradation in their experiments compared to set-associative TLBs.

5 A Side-Channel Secure TLB Design
After finding that neither partitioning, nor current randomization schemes are a good
fit for a side-channel secure TLB design, we present TLBcoat (TLB Countermeasure
against Attacks based on Timing), a novel timing side-channel resistant TLB architec-
ture. TLBcoat combines the strengths of the previously discussed measures while
ironing out the TLB-specific weaknesses which are mostly due to the small size. For
our security analysis, we consider recent attacks on randomized cache architectures in-
cluding Prime+Prune+Probe [PGGV21]. Our design builds upon the well-established
index-randomization approach and adds per-process domain separation. We modify the
randomization mechanism to be well-suited for typical TLB access patterns and introduce
per-process re-randomization thresholds that minimize the performance impact of re-keying
while ensuring that an attacker cannot gather sufficient information to perform efficient
attacks.

5.1 TLBcoat in a nutshell
To efficiently exploit timing side channels in TLBs, the attacker needs to be able to reliably
evict entries from the TLB. While straightforward randomization of the address-to-set
mapping prevents attackers from naively constructing eviction sets, the aforementioned
attacks [PGGV21, BDY+20] create probabilistic eviction sets by profiling the address-to-
cache mapping. Especially given the small size of TLBs, these attacks are even more
relevant than in the traditional cache scenario.

TLBcoat leverages the usually very high hit-rate of TLBs. The reason for the high
hit-rate is the spatial locality of software, meaning that an access to an address will likely
be followed by an access in close proximity which is mapped within the same page. This
holds for data, e.g., when accessing arrays or stack variables, and also for instructions
since instructions are subsequent in memory and branches often have only a small branch
offset. Since TLB conflicts are the only potential opportunities for an attacker to learn
secret information, TLBcoat aims to limit conflicts below a threshold before changing the
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mapping, such that the attacker cannot perform the necessary profiling of the TLB before
re-randomization is initiated. Therefore, TLBcoat implements a per-process miss-counter
that triggers re-randomization solely for that process if the threshold is reached.

To maintain the traditional access performance, TLBcoat uses a randomized set-
associative design to store the address translations. We use a low latency randomization
function that takes the virtual address as input and returns one index in each way at which
the translation may be stored. The exact instantiation of the randomization function is
arbitrary. Several related works [TNF+21, SQ21] use variants of the lightweight block
cipher PRINCE [BCG+12]. The latency of the randomization function can likely be further
reduced using a purpose-built function. To provide a unique mapping for each process, the
randomization function in TLBcoat is tweaked by the PCID and a randomization value
rid. This allows efficient per-process re-randomization without affecting other processes as
shown in Figure 1.

Randomization Function

key

virtual address way indices

pcid rid

Figure 1: Randomization function of TLBcoat which uses a global processor key and
process-related information to generate possible positions inside the TLB.

Implementing complex replacement policies for randomized set-associative structures is
not trivial since there are an exponential number of set-combinations for each entry. Hence,
replacement policies like LRU would require a replacement-controller that knows the age
relation for any entry in a way to any other entry in all the other ways. Since this is not
practical in real-world hardware implementations, we approximate the behavior of LRU
with a new replacement policy dubbed Randomized-Pseudo-Least-Recently-Used (RPLRU)
described later in this paper.

The most important factor for the security of TLBcoat is naturally the miss threshold
used for re-randomization. This threshold depends on the size and associativity of the
TLB and is further investigated in Section 6.3. The process specific miss counter (TLBCNT)
is initialized to the threshold value. On every TLB miss, the counter is reduced by one.
When the counter reaches zero, the rid is set to a random value and the TLBCNT register is
reset to the threshold value. Since the mapping function changes, the previously stored
translations are with high probability no longer found on a lookup which effectively flushes
the entries from the current process in the TLB. A general overview of the whole system
is shown in Figure 2.

TLBcoat is minimally intrusive in software and only requires a few changes in the
OS to function properly. The state of a process now also includes the TLBCNT register and
a register holding the rid, which must be saved in the Process Control Block (PCB) upon
a context switch. Both must only be read-write accessible from machine mode to prevent
unprivileged code from changing them or extracting information. Therefore, neither the
programmer nor OS have to identify pages or processes that require protection and tag
them. Unlike RF TLB and SP TLB [DXS19], TLBcoat does not require a differentiation
between secure and insecure processes and is therefore capable of executing mutually
untrusted code.

5.2 Design Rationale
In the following, the design of TLBcoat is presented in more detail and we provide reason-
ing behind the choices made in the design process. First, we describe the randomization of
the mapping function and then we discuss the counter-based re-randomization mechanism.
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Figure 2: An example of TLBcoat showing the added randomization module. The
randomization is done for every way, which may require multiple parallel instantiations of
the randomization function.

5.2.1 Randomization

Randomizing the address mapping is a common design feature of side-channel secure cache
architectures; see [WUG+19, TZBR21, WL07]. Recent attacks [PGGV21, BDY+20] have
challenged the assumption that index-randomization alone is sufficient to prevent timing
side-channel attacks. However, index-randomization still increases the attack complexity.
There are more recent randomization-based architectures that maintain security in the
face of the new attacks; see for example [TNF+21, SQ21]. However, the dynamic Time to
live (TTL) scheduling mechanism proposed by Thoma et al. [TNF+21] does not scale for
very small designs like TLBs since a few accesses are sufficient to fill the entire structure.
On the other hand, the work presented by Saileshwar and Qureshi [SQ21] adds complexity
on the critical path of the lookup which does not suit the access characteristics of TLBs
which need to be accessed very frequently.

TLBcoat uses a keyed randomization function that takes the virtual address minus
the page offset bits2 as input and returns an index in each way of the set-associative
TLB. The randomization function is further tweaked by a PCID and rid, the details
on which we will cover later in this paper. Formally, the function can be described as
fk ∶ (a, t)→ {i0, ..., iw−1} where a is the address and t = (PCID, rid) is the tweak in a w-
way set-associative TLB. We further require that the indices in each way are independent,
i.e., given an address mapping f(a) = {i0, ..., iw−1}, there is no polynomial attacker A that
can predict the mapping of an address b ≠ a with Pr[(x, ix)← A(a, i0, ..., iw−1) ∶ f(b)[x] =
ix] ≥ w

N
+ negl(n). We propose using a lightweight block cipher for the randomization

function. Since the attacker cannot observe the output of the randomization function,
a full block cipher is not required from a security perspective allowing the use of round
reduced variants as proposed in [TNF+21]. Purpose-built randomization functions like
Scarf [CGL+22] could further reduce the latency and the area overhead.

Since TLBs are virtually indexed, it is necessary that the randomization function yields
different results for different processes to prevent trivial collisions by mirroring the virtual
addresses used by the victim. By tweaking the randomization function with the PCID,
we make sure that each process experiences a different address mapping behavior. This
also prevents cross process profiling attacks since the attacker cannot learn the mapping
function of another process by observing unrelated processes.

As stated earlier, especially in small TLBs, randomization cannot prevent an attacker
from learning conflicting addresses and using them to perform, e.g., Prime+Prune+-
Probe attacks [PGGV21]. To thwart this, we must frequently change the randomization

2Addresses which differ only in the offset must be mapped to the same index for a functional TLB.
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mapping. Therefore, we now describe how the re-randomization is performed. From a
performance perspective, changing the address mapping is similar to a TLB flush. Though
the entries still reside in the TLB, they are with high probability not found upon lookup
since the address mapping will return different indices. To minimize the performance effect
of frequent re-randomization on processes that simultaneously share the TLB, we perform
the re-randomization on a per-process basis using the randomization value rid in the tweak.
Every time a re-randomization is triggered, the rid is set to a new random value which
by the design of the randomization function changes the mapping without affecting other
processes. While it would be sufficient to increment the rid on each re-randomization,
assigning a random value prevents the attacker from keeping track of the ID and predicting
when the counter wraps around and hence, when the randomization function repeats.

5.2.2 Re-Randomization Counter

A unique feature of TLBs relates to context switching. We observe that during a single
scheduling interval of a typical process, only a small number of pages are accessed. On
processors that do not use PCIDs, the TLB is flushed entirely on each context switch. In
this case, changing the randomization function is effectively free since the next time the
process is scheduled, all entries will be populated from scratch. However, more and more
processors implement PCIDs since it makes TLB flushes on context switches unnecessary.
This also implies that entries may survive scheduling intervals of other processes and
hence, the context switch no longer presents a free opportunity for changing the address
mapping. A further problem that arises when using context switches for re-randomization
is, that while benign applications usually do not encounter a large number of TLB conflicts
during a scheduling interval, malicious applications can easily trigger such large number of
conflicts in a small time interval, and thus may be able to complete an attack before a
context switch is initiated.

Therefore, TLBcoat provides a different measure to initiate re-randomization that is
based on the number of conflicts experienced. Each process is assigned a counter (TLBCNT)
that is decremented every time a TLB conflict occurs. The initial value of the counter
value is thereby dependent on the TLB size. We will explore the limit as a function of the
TLB size in Section 6.3. When the counter reaches zero, the rid is reset to a random value,
initiating the re-randomization. The TLBCNT register is reset to the threshold value to
restart the randomization procedure. Intuitively, it might seem beneficial to set TLBCNT to
a random value in a range close to the threshold to hide the exact time when rid is updated.
However, this does not add any security benefit since attackers can easily probe their own
process for a re-randomization by alternately accessing a known cached page and a new
unknown page. Importantly, attackers can only do this with their own randomization
function, not with other processes.

5.2.3 Replacement Policy

Randomized designs pose new challenges for replacement policies since each entry can
be combined in a large number of combinations with other entries to form a set. The
simplest replacement policy would be to randomly replace one of the candidate entries.
However, most deployed cache and TLB architectures use (pseudo-) LRU to replace entries
as it reduces the miss rate and therefore increases the performance compared to random
replacements [AMM04]. Implementing (pseudo-) LRU for randomized architectures is not
trivial since the replacement policy must be able to determine the least-recently used entry
within each random set of entries. This could be achieved by storing timestamps for each
entry. However, the hardware overhead of such a solution would be immense.

For TLBcoat we therefore designed RPLRU, a new replacement policy well suited for
randomized set-associative architectures that approximates LRU. An overview of RPLRU
is shown in Figure 3. In a nutshell, the entries are assigned with an age indicator that
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Figure 3: Overview of the Randomized-Pseudo-Least-Recently-Used replacement policy.

gives their respective age compared to other entries with the same index. The indexing
function selects w entries in which the translation information of the accessed page can
be stored. In the figure, these entries are colored gray. To select the entry that will be
replaced by the access, the relative ages of the candidate entries are compared and the
oldest entry is selected for replacement. If several entries share the greatest age, one of
those entries is randomly selected for replacement. The age indicator is only updated
at the index where the new entry was inserted. That is, the new entry becomes the
most recently used and the others are adjusted accordingly. Since the replacement policy
prioritizes the eviction of entries that have less recently been touched, it can be seen
as a form of Pseudo-Least-Recently-Used (PLRU). Opposed to many traditional PLRU
implementations that use a pointer-based approach (Tree-PLRU), RPLRU still requires
storing age indications alongside the entries. However, these only need to indicate the age
respective to the other entries with the same index and can therefore be very small.

The complexity of RPLRU is comparable to a PLRU implementation with log2(w)
status bits per entry. The candidate entries are selected by the randomized indexing
function. When a TLB hit occurs, the replacement information is only updated in the
entries that share the same index — i.e., what would be a set in the non-randomized
setting. Hence, in this case, RPLRU behaves exactly the same as the log2(w)-Bit PLRU.
If a TLB miss occurs, the replacement policy needs to select one of the candidate entries
to be replaced. Therefore, the age indicators of the candidate entries need to be compared.
Since it may happen that multiple entries share the highest age, the replacement policy
must then select one of those entries randomly. Finally, the updating of the replacement
information of the replaced entry is exactly the same as in the hit scenario. The additional
comparison occurs only in the miss case which is not as timing critical as the hit case.
That is, since the translation needs to be fetched from another TLB level or the page
table anyway. This can be done in parallel. Hence, overall the complexity is similar to
log2(w)-Bit PLRU.

Figure 4: Distribution of the number of TLB misses until the eviction of the target
address is achieved for random vs. LRU vs. RPLRU replacement policy. Simulated 4-way
set-associative TLB with index randomization and 64 entries. 50,000 traces recorded for
each policy.
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The incentive to approximate LRU for TLBcoat goes beyond performance reasons.
Figure 4 depicts the number of TLB accesses until a given entry is replaced for each
replacement policy. It is clear that random replacements reduce the average number of
accesses required to evict the given entry. LRU significantly narrows the distribution and
increases the average. This facilitates a higher threshold for re-randomization in TLBcoat.
While RPLRU does not quite match the distribution of LRU, it does significantly improve
over the random replacement policy. We discuss the security implications of RPLRU in
Section 6.3.

6 Evaluation
In this section, we evaluate the security and performance of TLBcoat. We first describe
our evaluation setup and demonstrate the leakage of current set-associative TLBs in our
simulation environment. Then, we discuss how TLBcoat defends against state-of-the-art
attacks and show that the leakage found in classical TLBs no longer exists. Finally, we
benchmark TLBcoat using the PARSEC benchmark suite and analyze the hardware
overhead.

6.1 Evaluation Setup
For the evaluation, we use two different simulation tools which are described in the following.
Both the functional simulator as well as the gem5 source code are provided online3.

Functional Simulation. Since the security parameters of TLBcoat are dependent on
many factors of the TLB, including the number of available sets and the replacement
policy, we developed a purely functional simulator of TLBcoat in Python. Precisely, the
software simulates the address to TLB-entry mapping and replaces the entries based on
the chosen replacement policy which can be chosen either as random, true LRU, or the
new RPLRU. Addresses are represented as 64 bit integers which allows generating new
addresses randomly without needing to worry about conflicts. For the index randomization,
we use Python’s hashlib which enables faster simulation compared to simulating a, e.g.,
PRINCE-based [BCG+12] randomization function. Since the objective is to simulate a
random mapping, for the functional simulator these methods are interchangeable. The
lower bits of the resulting hash digest are used as the index in the given way. This ensures
an efficient pseudorandom address to TLB mapping. Opposed to full CPU simulators, our
simulation tool gives easy access to important data, like the candidate entries for a given
address, which provides more detailed insights in relevant design decisions. However, note
that this simulator is explicitly not designed for a performance analysis.

Timing-Accurate Simulation. For the performance evaluation, we implemented TLB-
coat in gem5, which allows us to simulate a real-world RISC-V Linux system without
the need to modify the actual Linux kernel. Additionally, we can check its security, see
Section 6.3, and its performance in a highly controlled setting. We base our implementation
on Intel’s vulnerable 4-way 16-set set-associative configuration and build TLBcoat on
top of it. We added a 3-round PRINCE [BCG+12] variant as the randomization function
as well as registers holding the global encryption key, the miss count (TLBCNT) and the
rid. Both the TLBCNT and rid are emulated internally in the TLB module as 32-bit arrays
with a capacity of 65,536 elements (corresponding to the 16-bit ASID on RISC-V). Since
the ASID is provided by the software for each translation, we can efficiently store this
information in gem5 without modifying the process state in Linux. The re-randomization
threshold is set to 64 in accordance with our results in Section 6.3.

3Available at https://github.com/Chair-for-Security-Engineering/TLBCoat.

https://github.com/Chair-for-Security-Engineering/TLBCoat
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6.2 Demonstrating Leakage in gem5
To demonstrate the security of TLBcoat, we used gem5 to implement both Intel’s
vulnerable TLB as described by Gras et al. [GRBG18] and TLBcoat and tested them
using a Linux OS. Unlike the original attack by Gras et al. [GRBG18], we cannot simulate a
SMT environment. However, Deng et al. [DXS19] demonstrated via bare-metal benchmarks
on RISC-V that SMT is not a requirement if PCIDs are employed. In this section we show
that Intel’s TLB design leaks spatial information on a RISC-V Linux.

We simulated a dual-core 64-bit RISC-V system using the SV39 page-based virtual-
memory system [WLA+16, p. 57], based on the HiFive platform [SiF]. As the side channel
is only dependent on the state of the TLB and the interactions with the memory subsystem,
we decided to use the TimingSimpleCPU model, which models a single-issue CPU without
any pipelining, but simulates all memory interactions. The TLB was modified to mimic
Intel’s 16-set 4-way set-associative configuration. As seen in Table 1, set-associative TLBs
are widely used even beyond Intel processors. We use the recent Linux 5.12 kernel, which
introduces ASID support for RISC-V. Using kernel boot parameters, we isolated one of the
cores to not be considered by the OS scheduler, allowing us to manually start the victim
and attacker process in a low-noise environment.

A victim process is spawned accessing a specific page in a loop. As we know what page
is accessed by the victim, we can calculate the corresponding set and create an adversary
process that accesses specific pages which create an eviction set. For example, in our
scenario and assuming 4 kB pages, the set is selected by calculating address >> 12 mod 16
as the lowest 12 bits are the same for both the physical and virtual address. Therefore,
the adversary can trivially map pages to addresses which will be placed in the same set as
the victim’s page. The required knowledge for this attack is in line with the capabilities
stated in Section 3 and was demonstrated by Gras et al. [GRBG18]. After allocating
pages that form an eviction set, a tight loop is entered which first accesses addresses
within these pages and measures the time to complete this task. Afterwards, the adversary
yields the execution, which forces the scheduler to switch to another process. Once the
adversary process continues, it starts at the beginning of the loop again. In our experiment
one measurement consists of 5,000 repetitions, which are used to calculate an average.
We observed that the access time will be higher, if the victim accessed a page inside
the eviction set. If no access occurs, the access time will be lower. In our scenario, a
TLB miss caused a delay of 1–3 cycles. To confirm the presence of a side channel we
additionally performed Welch’s t-test in a fixed vs. fixed configuration [DS16]. For this test
we performed 1,000 measurements on a victim, which does not access a page inside the
eviction set, and on a victim, which does access a page inside the eviction set. As seen in
Figure 5a, for traditional set-associative TLBs the t-value quickly rises above the threshold
of 4.5, which generally indicates a leakage. t-values above 4.5 correspond to confidence
levels > 0.99999 to reject the null-hypothesis, i.e., that the two measurement sets are from
the same population which would mean that no side channel exists [SM15]. We are thus
able to infer spatial information about the victim.

6.3 Security Analysis
In this section we evaluate the security aspects of TLBcoat.

Absence of leakage. TLBcoat utilizes index-randomization which is also a part of
many proposed side-channel secure cache architectures. In TLBcoat, the randomization
is unique to every process due to the PCID and rid, which are part of the input to the
randomization function. Thus, our approach makes it impossible for an adversary to
construct trivial eviction sets by mirroring the virtual addresses used by the victim process
or by constructing addresses that map to the same index in the TLB across processes.
This implies that traditional Prime+Probe attacks are no longer feasible, as they rely
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(a) t-statistic for a vulnerable TLB.
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(b) t-statistic for TLBcoat.

Figure 5: Leakage assessment for set-associative TLBs and TLBcoat using a set of
congruent addresses, i.e., aligned on the lower 12 bits.

on the deterministic mapping function. Therefore, TLBcoat does not only inherently
defend against TLBleed [GRBG18], but also against all potential attacks discovered by
Deng et al. [DXS19]. We confirmed that TLBcoat defends against Prime+Probe by
rerunning our experiment shown in Section 6.2. As seen in Figure 5b, our side-channel
analysis via a t-test did not indicate significant leakage, as it was not possible to predict
where the victim translation is placed inside the TLB.

Assembly of Eviction Sets. To this date, the best-known attack against randomized
cache architectures is Prime+Prune+Probe [PGGV21]. Since the attack surface of
randomized caches and TLBs is similar, Prime+Prune+Probe is the most relevant
attack against TLBcoat. The attack generally divides in two phases: First, a generalized
eviction set is constructed by extensively profiling conflicts, and secondly, the eviction set
is used to perform a Prime+Probe-like attack. By selecting an initial set of priming
addresses that each map to a different page, the TLB can be populated with attacker
controlled addresses for most parts (prime). Since it may happen that some translation
entries within the set evict each other, the priming set needs to be re-accessed until no
more TLB misses occur (prune). After pruning, the attacker triggers the access to the
victim. With some catching probability, the access performed by the victim replaces one of
the attacker’s page translation entries. By accessing all of the addresses from the priming
set, the attacker can learn a conflicting page translation (probe). The attacker needs to
repeat these steps several times to gather several such conflicting translations which form
a generalized eviction set.

In the following, we use our functional simulator to analyze the number of TLB misses
that occur during the profiling phase of Prime+Prune+Probe to establish a secure
re-randomization threshold. After changing the randomized mapping by updating the
rid-value, the progress of Prime+Prune+Probe is reset since collisions found under
the previous mapping will no longer lead to conflicts with the new mapping. Hence, we
find that the minimum requirement for a successful attack is the creation of a sound (not
necessarily minimal) eviction set within one randomization period, i.e., the addresses that
form the eviction set must be able to occupy all candidate entries of the victim page in the
TLB. To establish the upper bound for the re-randomization threshold of TLBcoat, we
measure the number of TLB misses that occur during the profiling phase until a functional
generalized eviction set is found. To ensure that our results represent the best-case scenario
for the attacker, we give the attacker two pieces of additional information that would not
be available in a real-world attack. First, we assume that the attacker knows when the
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eviction set is functional, i.e., when it can potentially occupy all candidate entries of the
victim page. Second, we give the attacker the information whether the victim translation
is currently stored in the TLB or not. A real-world attacker would not have access to this
information and would hence, need to guess. This will further increase the miss count
since more iterations of the profiling phase are required if the attacker’s guess is incorrect.
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Figure 6: Catching probability and average number of misses for the prime and prune
steps as a function of the initial probing set size for finding one translation conflict using
the Prime+Prune+Probe attack. The modeled TLB uses the RPLRU replacement
policy. It implements index-randomization but does not re-randomize the mapping during
the attack.

Using our functional simulator, we first evaluate the dependency between the initial
priming set size, the probability of observing a conflict when accessing the victim page
(catching probability), and the number of misses occurring during that process. Therefore,
we start by selecting a random target address which is not yet stored in the TLB. This
represents an address in the victim page. Then, a set of random priming addresses is
assembled and accessed which causes the translations to be stored in the TLB. The priming
set is accessed until no more conflicts within the set occur (i.e., upon access, all addresses
result in a TLB hit (prune step)). If prune yields repetitive misses due to conflicts within
the priming set, some of the conflicting entries are dropped from the set. Then, the target
address is accessed. If the access evicts an attacker controlled entry from the TLB, the
profiling iteration is successful since a conflicting address has been identified. Otherwise,
the profiling iteration is unsuccessful. The procedure is repeated 10,000 times for each
initial priming set size. By simulating only the I/O behavior of the TLB, the results are
independent of any software or benchmark that would be executed on a processor. The
results of this analysis on a 4-way, 64 entry TLB (mimicking Intel’s L1D TLB) are shown
in Figure 6a. For a typical L2 TLB with 1024 entries, the results are shown in Figure 6b.
Naturally, the catching probability increases with a larger initial priming set. However, the
TLB misses also increase with the size of the initial priming set. For very large priming
sets, the number of misses increases exponentially since translations within the priming
set are more likely to evict each other. This increases the complexity of the prune phase.
For the TLB configuration with 8 ways, the point of exponential growth starts later than
for the smaller configuration with 4 ways. We discuss the effect of associativity on the
security of TLBcoat in Appendix A.

The intuition is that if the first iteration of Prime+Prune+Probe profiling causes
k TLB misses with catching probability pc, each further iteration will result in a similar
number of misses. Hence, the overall number of misses would be w ∗ k and the probability
of success would be pw

c . However, we found that the number of misses can be drastically
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Figure 7: The blue line depicts the minimum experienced misses to obtain a functional
probabilistic eviction set during profiling of Prime+Prune+Probe over 100,000 trials
for each initial priming set size. Assuming a re-randomization threshold of N (the number
of entries available), the green line depicts the total number of successful runs out of the
100,000 iterations.

reduced by optimizing the profiling. In order to minimize the TLB misses that occur during
the profiling, we introduce some modifications to the algorithm. As shown in Figure 6,
the initial priming of the TLB causes a lot of misses since each of the addresses must first
be brought into the TLB. These initial misses cannot be avoided. After accessing the
victim page and probing the prime set, the victim page must be removed from the TLB to
allow starting the next iteration. A naive way of removing the victim translation would
be to access new random pages that will at some point evict the victim. However, this
would lead to a massive increase of TLB misses. Instead, we do three steps to increase the
chances of evicting the victim without causing many misses. First, we access all addresses
that are already part of the unfinished eviction set and therefore, known to collide with
the victim. After that, we access all addresses from the priming set and hence make sure
that they are all stored in the TLB. Since many of these address translations are still
stored, only few misses occur. In many cases, the victim translation is already replaced
after these two steps. If it is not, it is likely that other entries of the set have been accessed
and hence, the victim is the least recently used entry. If the victim is not removed yet, we
start by replacing one address from the priming set with a new random address. Then, the
whole priming set is accessed, resulting mostly in hit accesses. This process is repeated
until the victim is finally removed from the TLB. Then, the attack continues with the
next iteration. Since we already accessed the priming set repeatedly to evict the victim,
the prime and prune step are usually not required for the second iteration and result in
hit accesses only. The modified algorithm is shown in Appendix B.

We now assume a threshold for TLBcoat that matches the number of available entries
in the TLB. This threshold is chosen as a rough estimation of how many accesses are
required to construct a minimal eviction set in the best case, based on the observations
made in Figure 6. In Figure 7, we plot the minimum number of TLB misses that occurred
over 100,000 trials for each priming set size (blue line). For the evaluation we use a small
4-way set-associative TLB with 64 entries (Figure 7a) and a large TLB with 1,024 entries
and 8 ways (Figure 7b). The profiling stops as soon as a functional eviction set is obtained,
i.e., the set of addresses can populate all possible locations of the victim translation. While
the average number of misses during the profiling is much higher, the relevant metric is
the lower bound since the attacker can restart the profiling many times.

For our small evaluation configuration, it shows that the ideal priming set size is



Florian Stolz, Jan Philipp Thoma, Pascal Sasdrich and Tim Güneysu 19

between 20 and 40 addresses. During our profiling, the minimal number of misses occurred
until a functional eviction set was constructed is about 40. The green line in Figure 7a
depicts the number out of 100,000 attempts where the total number of misses was below
the threshold of 64. Of all the 64 ∗ 100, 000 profiling attempts, less than 0.01% resulted in
fewer than 64 misses. We extend our analysis by setting the initial priming set size to 24
which led to the best results in Figure 7a. We run the profiling 1,000,000 times. Only 50
of these profiling attempts resulted in a success which corresponds to a profiling success
rate of about 0.005%.

For the larger TLB, the results are even more clear. No profiling attempt created a
functional eviction set with less than 1,300 misses which lies above the re-randomization
threshold. Hence, none of these attempts would have led to a successful profiling. We
found that for very small initial priming set sizes, the profiling did not yield functional
eviction sets. That is, since the probability that any set of addresses occupies a randomized
target set increases with the size of the set.

In our experiment, the attacker is artificially provided with the information if the
probabilistic eviction set is theoretically functional. In a real-world environment, the
attacker cannot know this without testing it. However, testing the eviction set for
functionality causes even further TLB misses, accelerating re-randomization. Dropping
the ideal assumptions — i.e., accounting for noise and not giving the attacker additional
information about the state of the profiling — it is clear that the attacker cannot perform
a successful attack below the threshold.

Replacement Policy. Since LRU is not a practical replacement policy for randomized
caches, we designed RPLRU which approximates the behavior of LRU. Therefore, we
must make sure that the new replacement policy does not facilitate efficient replacement
of specific entries. This would be the case, if an attacker could increase the probability
of evicting the target entry on access. To achieve this, they would have to increase the
relative age of the target entry compared to those entries that share the index in the TLB.
However, due to the index randomization, it is not possible for the attacker to simply
choose such addresses that share the index with the target translation. Obtaining such
addresses requires the same profiling steps as constructing an eviction set. We have shown
above that this is not feasible below a given threshold value.

6.4 Performance
We validated our design using the gem5-adapted version of the PARSEC 3.0 benchmark
suite by Peter Yuen [Yue]. Note that at the time of writing, not all benchmarks could
successfully run on RISC-V, because of, for example, compilation errors or problems
interacting with the gem5 internal statistics framework. Thus, our evaluation subset
excludes all non-working benchmarks. We recorded the total number of accesses to the

Table 2: PARSEC benchmark results comparing regular set-associative TLBs to TLBcoat
by their respective miss ratio. Each benchmark is the only program running on the system
apart from some background tasks. Benchmarks marked with a * were run using the
simsmall input, the others with simmedium.

Benchmark Set-Associative TLB LRU TLBcoat RPLRU TLBcoat LRU
blackscholes 10.99% 0.02% 0.02%
canneal 7.20% 9.20% 8.73%
dedup 0.05% 0.04% 0.04%
fluidanimate* 0.41% 0.45% 0.44%
freqmine 0.17% 0.23% 0.21%
streamcluster* 0.22% 0.61% 0.21%
swaptions <0.01% <0.01% <0.01%
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TLB, the number of misses as well as re-randomization requests in case of TLBcoat. All
benchmarks were run on a simulated single core Linux 5.12 system.

Table 2 shows the results for a system without any additional processing intensive load.
Each run was supplied with the simmedium input except for two benchmarks, which did
not successfully finish because of processing and memory constraints. It demonstrates that
TLBcoat only slightly affects the TLB miss-rate, and hence, the overall performance. On
the one side, we were also able to observe performance increases for some benchmarks
such as blackscholes. These can be explained by suboptimal access patterns for the set-
associative implementation. If a set of pages, which is greater than the available ways
but all mapping to the same internal TLB set, are repeatedly accessed this will inevitably
lead to evictions. TLBcoat solves this problem by breaking the static structure up and
selecting different ways for each requested page. On the other side, some benchmarks
experienced a slight performance decrease. This may happen, as addresses which would
normally not compete for the same set in standard TLBs may now do so because of the
randomization. Furthermore, re-randomizations can also be triggered by normal program
behavior, which is then equivalent to an unnecessary TLB flush for a specific process. On
average a re-randomization is triggered after 665,219 accesses. The miss rate of TLBcoat
with LRU is only slightly increased with 0.43% of the accesses resulting in a TLB miss
compared to 0.41% for a set-associative TLB. The impact to the overall runtime of the
benchmarks is therefore negligible.

In addition to the evaluation on the idling system, we tested TLBcoat on a system
running an additional workload by executing the blackscholes benchmark in an endless
loop in the background. Blackscholes was chosen because it is the first one alphabetically.
It would have also been possible to choose any other load. Then, we started different
benchmarks and measured the overall TLB miss rate, which is now affected by the TLB
usage of the background application. We choose the miss rate as a metric since it allows
directly comparing the TLB performance. Using the cycle count, it would be harder to
actually draw conclusions about the TLB performance since running two benchmarks on
a single core obviously increases the run time and the more or less random scheduling
decisions can impact the results severely.

Table 3 shows the results for a system under load. Each run was supplied with the
simsmall input. We note that only a subset of all benchmarks ran successfully, because of
memory as well as processing constraints. The results indicate that the overall miss rate is
similar to the results shown in Table 2. That is, since most of the benchmarks only rely on
a few pages that remain cached even with two benchmarks running. Moreover, it shows
that the miss rate remains similar for set-associative TLBs and TLBcoat. The reason for
this is that the re-randomization is done per process by changing the rid and therefore, a
high miss rate in one process does not cause re-randomization in the other process.

6.5 Hardware Requirements
We now evaluate the hardware requirements for TLBcoat. The exact values depend
heavily on a multitude of parameters, including the technology, and the chosen TLB
configuration, e.g., the number of entries and ways, and the randomization function. In

Table 3: PARSEC benchmark results for system under load comparing regular set-
associative TLBs to TLBcoat by their respective miss ratio. The system constantly
executes the blackscholes benchmark in the background to generate noise.

Benchmark Set-Associative TLB LRU TLBcoat RPLRU
blackscholes 0.021% 0.028%
dedup 0.046% 0.055%
canneal 3% 3.7%
freqmine 0.21% 0.30%
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any case, TLBcoat requires 3 new registers: the key register, TLBCNT and the rid. We
also require a source of randomness for re-randomization via the rid and optionally for the
key register, as the processor specific key may be randomly set after each reboot. We note
that modern desktop- and server-grade CPUs usually integrate a True Random Number
Generator (TRNG) [Int18] that can be used for this purpose. Furthermore, to keep the
latency of TLBcoat low, the randomization function should ideally complete in one clock
cycle, which requires an unrolled implementation.

To evaluate TLBcoat in practice we implemented TLBcoat on an Field Pro-
grammable Gate Array (FPGA) by extending a standard set-associative design. A
stand-alone implementation allows us to observe our TLB’s functionality and debug
errors. In the following, we briefly describe the structure of TLBcoat as shown in
Figure 8. First, the cache controller loads the virtual address into the address register.
Afterwards, the randomization function determines the set for each way. The output of
each way consisting of the data, tag and set is then forwarded to the comparator where
the selected tags are compared to the expected tag. Depending on the comparison result
either the hit or miss signal is asserted. The output of the comparator is also used to
select the correct RPLRU set and way for the age update if the hit signal is active. In
case of a miss, the cache controller can manually provide the data to write, as well as the
set and way. When the miss signal is asserted, the cache controller can read the sets
output to determine which sets to query for the age of the respective way.

After verifying the correctness of our implementation in simulation and on the FPGA,
we synthesized TLBcoat with a 4-way 16-set configuration using the Synopsys Design
Compiler and Silvaco’s Open-Cell 45nm and 15nm FreePDKs [Sil] to estimate the area
overhead that would occur on a real CPU. The results are shown in Table 4. Most of
the area is consumed by the storage elements which are included in the ways. Overall,
the entries need to store various information for each of the 64 pages, such as the ASID
or permission bits. TLBcoat does not require modifications to the ways, but rather
to the unit which selects the individual set in each way. Hence the four ways utilize
the identical area as in a standard set-associative TLB. The randomization function, in
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Figure 8: Simplified block diagram of the hardware implementation. For simplification the
image shows a 2-set 2-way associative randomized TLB.
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our case a 3-round PRINCE, represents one of the main modifications and only requires
2.93% (45nm) or 3.89% (15nm) of the overall area. The area required varies depending
on the randomization function. In our case, we use the 64-bit output of PRINCE to index
all ways by extracting four nibbles. Thus only one unrolled implementation needs to
be placed in the cache. Furthermore, we store RPLRU information for each traditional
cache set in a separate unit, which in sum take up 4.13% (45nm) or 5.07% (15nm) of the
total area. Regarding the latency of TLBcoat, Table 4 shows that we only exhibit a
delay of 143 ps (15nm) until the cache can determine a hit or a miss. In case of a hit,
the corresponding RPLRU unit will be updated in parallel. In case of a miss, the cache
controller can determine the respective ages of all selected entries and select the entry to
be evicted while the L2 TLB or page table is queried. Intel or AMD do not publish the
TLB latency for their processors. Additionally, the TLB latency overlaps with the latency
for the L1 cache as the cache is virtually indexed and physically tagged, which requires a
TLB lookup in parallel. Velten et al. [VSIH22] benchmarked the AMD EPYC 7702, which
uses a 7nm process, and the Intel Xeon Gold 6248, which is manufactured in 14nm. The
results show that the latency for the L1 cache is between 1.6ns and 2ns. Thus, TLBcoat
does not affect the overall latency or area significantly and is a competitive candidate for
a side-channel secure TLB.

Table 4: Hardware overhead and time delay added by TLBcoat for different manufacturing
nodes.

45nm 15nm
Randomization 1,493.66 GE 2,253.76 GE
4 Ways 45,951.87 GE 47,912.05 GE
16 RPLRU Units 2,104 GE 2,936 GE
Comparator 401 GE 501.5 GE
Other 953.71 GE 1,209.98 GE
Total Area 50,904.24 GE 57,813.29 GE
Total Delay 1.6 ns 0.143 ns

7 Conclusion
Timing side channels in CPUs have become a significant threat to the system security
and we foresee that the relevance of these side channels will only increase in the coming
decades. In this paper, we analyzed the current state of side-channel defenses on TLBs and
uncovered that despite the architectural similarities, cache side-channel defenses are not
necessarily suited to protect TLBs. We found that neither partitioning, nor current index-
randomization proposals are good candidates to secure TLBs. Therefore, we presented
TLBcoat, a novel randomization-based TLB design that protects against state-of-the-art
attacks including Prime+Prune+Probe. We demonstrated how TLBcoat removes
the side-channel leakage and renders attacks infeasible. Our analysis shows a minimal
performance and area overhead compared to traditional set-associative TLBs.
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A Influence of Associativity

In this section, we investigate the influence of the associativity on the re-randomization
threshold of TLBcoat. To extend the range of parameter sets covered in this paper we
use a TLB with 128 entries for this purpose.
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Figure 9: Catching probability and average number of misses for the prime and prune
steps as a function of the initial probing set size for finding one translation conflict using
the Prime+Prune+Probe attack. The modeled TLB uses the RPLRU replacement
policy. It implements index-randomization but does not re-randomize the mapping during
the attack.

Figure 9 shows the catching probability and the average number of misses for profiling
sets containing between 0 and 128 entries. The results were obtained using our functional
simulation tool. On the left, the TLB with 128 entries is divided in 4 ways, while the
right figure shows the results on a TLB with 128 entries and 8 ways. The figure clearly
shows that the success probability for the 8-way TLB is much lower for small priming sets
compared to the 4-way TLB. For large priming sets, the success probability on the 8-way
TLB outreaches the one from the 4-way TLB. The reason for this is that it is more likely
that a set of random addresses fills the four required entries in the 4-way TLB compared to
filling 8 ways in the 8-way TLB. At the same time, the 4-way TLB is more likely to cause
conflicts for the profiling set since fewer addresses are required to fill any given randomized
set. Therefore, the average number of misses is higher and conflicts start to appear earlier
in the 4-way TLB.

Now, the question arises how the different characteristics of TLBs with different
associativity affects the overall security against Prime+Prune+Probe attacks. Therefore,
we repeat the experiment from Section 6.3 for the TLBs with 128 entries. The results are
shown in Figure 10. The figures clearly show that the profiling produces fewer TLB misses
on the 4-way TLB. The most successful attempts for the 4-way TLB have been made
with a profiling set-size between 60 and 70 addresses. If we compare the results to the
experiment shown in Figure 9, it shows that the catching probability for the 8-way TLB is
very low in this range. Therefore, the profiling attempt depicted in Figure 10b yields the
best results for priming set sizes between 80 and 100 addresses. However, since in this
region the average number of TLB misses for observing a single conflict is much higher
than at 70 addresses in the 4-way TLB, the overall number of misses for the profiling in
the 8-way TLB is higher than in the 4-way TLB.
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Figure 10: The blue line depicts the minimum experienced misses to obtain a functional
probabilistic eviction set during profiling of Prime+Prune+Probe over 100,000 trials
for each initial priming set size. Assuming a re-randomization threshold of N (the number
of entries available), the green line depicts the total number of successful runs out of the
100,000 iterations.
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B Miss-Optimized Prime+Prune+Probe

Algorithm 1 Prime+Prune+Probe attack on the TLB optimized for low number of
TLB misses. Blue functions are not normally available to an attacker.

Input: target, memory, prime_size
e← {}
prime_adrs← {}
for i ∈ {1, prime_size} do

prime_adrs← prime_adrs ⋃ memory + i ∗ 4096
end for
while not is_functional(target, e) do

for a in prime_adrs do ▷ Prime
access(a)

end for
while true do ▷ Prune

conflicts← 0
for a in prime_adrs do

if probe(a) = miss then
conflicts← conflicts + 1

end if
end for
if conflicts = 0 then

break
end if

end while
access(target) ▷ Access
for a in prime_adrs do ▷ Probe

if probe(a) = miss then
e← e ⋃ a

end if
end for
for a in e do ▷ Remove target TLB entry

access(a)
end for
if not is_victim_removed(target) then

for a in prime_adrs do
access(a)

end for
end if
while not is_victim_removed(target) do

a← get_new_address()
access(a)
prime_adrs← prime_adrs / prime_adrs[0]
prime_adrs← prime_adrs ⋃ a

end while
end while
return e

Algorithm 1 shows the modified Prime+Prune+Probe [PGGV21] algorithm used to
construct eviction sets with reduced number of conflicts. Therefore, the attacker is given
additional information that would not be available to them in a real-world attack. This
information is highlighted in blue in the algorithm.
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In the first step, the attacker needs to prime the TLB using the addresses in the initial
priming set. Then, the addresses need to be pruned, i.e., the attacker must make sure that
there are no self-caused evictions by accessing addresses of the priming set. After this, the
TLB is in a prepared state for the attack and the access to the victim page is triggered.
Next, the attacker probes the initial priming set for a TLB miss. If such a miss occurs, the
address is added to the eviction set, since the access to the victim page has evicted this
entry. Finally, the attacker needs to remove the victim page translation from the TLB
to start the next profiling round. To reduce the conflicts during this process, first the
addresses that are already known to collide with the target are accessed. This increases the
chances of evicting the target translation quickly. As long as the victim translation is not
removed, the attacker needs to access further addresses. By re-accessing the priming set,
the attacker generates additional chances to evict the victim without causing many new
TLB misses - that is, since most of the priming address translations are still stored in the
TLB from the prime and prune step. If this also does not remove the victim translation,
the attacker needs to access new addresses which cause at least one TLB miss each until
the victim translation is evicted.
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