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Abstract. A fully homomorphic encryption (FHE) scheme allows a
client to encrypt and delegate its data to a server that performs com-
putation on the encrypted data that the client can then decrypt. While
FHE gives con�dentiality to clients' data, it does not protect the server's
input and computation. Nevertheless, FHE schemes are still helpful in
building delegation protocols that reduce communication complexity, as
the ciphertext's size is independent of the size of the computation per-
formed on them.
We can further extend FHE by a property called circuit privacy, which
guarantees that the result of computing on ciphertexts reveals no infor-
mation on the computed function and the inputs of the server. Thereby,
circuit private FHE gives rise to round optimal and communication ef-
�cient secure two-party computation protocols. Unfortunately, despite
signi�cant e�orts and much work put into the e�ciency and practical
implementations of FHE schemes, very little has been done to provide
useful and practical FHE supporting circuit privacy. In this work, we ad-
dress this gap and design the �rst randomized bootstrapping algorithm
whose single invocation sanitizes a ciphertext and, consequently, serves
as a tool to provide circuit privacy. We give an extensive analysis, pro-
pose parameters, and provide a C++ implementation of our scheme. Our
bootstrapping can sanitize a ciphertext to achieve circuit privacy at an
80-bit statistical security level in between 1.3 and 0.9 seconds, depending
which Gaussian sampling algorithm is used, and whether the parameter
set targets a fast Fourier or a number theoretic transform-based imple-
mentation. In addition, we can perform non-sanitized bootstrapping in
around 0.27 or 0.14 seconds. Crucially, we do not need to increase the
parameters to perform computation before or after sanitization takes
place. For comparison's sake, we revisit the Ducas-Stehlé washing ma-
chine method. In particular, we give a tight analysis, estimate e�ciency,
review old, and provide new parameters.

1 Introduction

Fully homomorphic encryption (FHE) is an encryption scheme that allows per-
forming arbitrary computation on encrypted data. A client encrypts a message

⋆⋆ The work was mostly done while I was at CISPA Helmholtz Center for Information
Security.
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m and sends the ciphertext to a server which, given a function F , returns an-
other ciphertext that decrypts to F (m). The concept of FHE was �rst introduced
by Rivest, and Dertouzos [RAD78], and the �rst theoretical realization of that
concept is due to Gentry [Gen09b].

A critical property for FHE is circuit privacy (also called function privacy).
Roughly speaking, the ciphertext that is the product of the server computing a
function F on encrypted data should not reveal any information about F except
that the ciphertext decrypts to F (m). To prove circuit privacy, we need to show
a simulator that, on input F (m) and a public key, outputs a fresh encryption
of F (m), which is indistinguishable from the servers' computed ciphertext. In
particular, the distribution of an evaluated ciphertext should be close to or the
same as the distribution of a fresh encryption.

We can easily see that circuit private FHE gives us semi-honest two-party
computation with optimal communication [Nui22]. Namely, we only need one
round of communication. The �rst message can be reused, and the communica-
tion complexity is independent of the size of the computation. Furthermore, we
can reuse the ciphertexts output from the evaluation process and keep computing
on them. Since circuit private FHE gives us two-party computation, all applica-
tions for two-party computation protocols apply here as well. Among other these
are private set intersection [HFH99, Mea86, CLR17], oblivious pseudorandom
functions [BIP+18, ADDG23] neural network inference [DGBL+16, CdWM+17,
LJLA17, JKLS18, JVC18, BGGJ18, ABSdV19, CDKS19, RSC+19, BGPG20]
or analysis on genomic data [KSK+18, KSK+20, BGPG20]. Recently, Akavia,
Gentry, Halevi, and Vald [AGHV22] showed that circuit private IND-CPA secure
homomorphic encryption satis�es a relaxed notion of CCA2 security. Note that
circuit privacy is not always needed. Without circuit privacy FHE reduces to
secure delegation. For example, in (single-server) private information retrieval
we are only interested in protecting the user's query, but not in the con�dential-
ity of a potentially large database of the server. On the other hand, we believe
that for neural network inference, as an example, con�dentiality of the neural
network is essential. In contrast to PIR, it is di�cult to make an argument for
compressing the communication, as current FHE schemes require sending public
keys and ciphertexts that are an order of magnitude larger than the size of deep
neural networks.

Surprisingly, despite over a decade of advances in constructing scalable fully
homomorphic encryption schemes [GH11, BV11, BGV12, GHS12, AP13, GSW13,
BV14, AP14, HS15, DM15, CGGI16a, CH18, CGGI20, HS21], and numerous im-
plementations [PAL21, CGGI16b, CJL+20, Lat22] there is very little construc-
tions and nearly no implementation that we are aware of that natively provide
circuit privacy.

Current approaches to Circuit Privacy. In this paper, we are interested in
fully homomorphic encryption as in [Gen09b]. Namely, ciphertexts do not grow
with the size of computation, and evaluation results are reusable. A trivial way to
re-randomize a ciphertext is to create a fresh encryption of zero using the public
key and add it to the ciphertext resulting from the computation. Unfortunately,
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such an approach is insu�cient to provide circuit privacy in current FHE schemes
because all secure FHE schemes we know are based on noisy encryptions. This
noise may depend on the computed circuit and is the main obstacle to overcome
when re-randomizing (or sanitizing) a ciphertext to provide circuit privacy. Below
we summarize current approaches.

Noise Flooding: The technique requires adding a fresh ciphertext of zero and a
super-polynomially larger noise term to the sanitized ciphertext. Unfortunately,
in practice, this additional noise term is substantially large and requires us to
choose very big parameters. We note that it is required to take the noise super-
polynomially larger than the noise in the sanitized ciphertext. Hence, if the noise
in this ciphertext is already large due to some previous computation, then the
the magnitude of the additional noise must be chosen accordingly. Nevertheless,
the method has found some applications in leveled homomorphic computation
[CLR17] where we do not bootstrap the ciphertexts and can tolerate larger
parameters.

Ducas-Stehlé Washing Machine: Introduced by Ducas and Stehlé [DS16], requires
to run a sequence of re-randomization steps (�ooding cycles), each with a smaller
noise �ooding error, followed by invocations of a bootstrapping algorithm. The
paper only roughly estimates the number of times re-randomization and boot-
strapping must be invoked. However, as the authors admit, the estimates should
be taken with great caution and defer a concrete analysis to future work. For
example, they suggest running the FHEW [DM15] bootstrapping algorithm be-
tween 8 and 16 times. It is not entirely clear what security level they are able to
achieve and whether the parameter set of the FHEW algorithm proposed at the
time satis�es the given correctness constraints. To the best of our knowledge, no
concrete analysis or implementations have been done so far.

Secure Two-Party Computation: A few works [GHV10, CO17] proposed to use
garbled circuit-based techniques to provide circuit privacy. For example Gentry,
Halevi, Vaikuntanathan [GHV10] give a non-compact homomorphic encryption
scheme that can be thought of as a re-randomizable version of garbled circuits.
We are not aware of the scheme's implementation; however, we note that the
scheme is not compact. In particular, the communication complexity is linear in
the size of the computed circuit. Finally, Chongchitmate and Ostrovsky [CO17]
propose to use garbled circuits to compute the decryption step.

Rerandomizing Computation: Bourse, Pino, Minelli and Wee [BDPMW16]. ex-
ploits properties of the Gentry, Sahai, Waters (GSW) cryptosystem [GSW13] to
build a circuit private homomorphic encryption scheme. Speci�cally, when multi-
plying GSW ciphertexts, they use a randomized version of gadget decomposition
instead of a deterministic one. In [BDPMW16] the authors show that when gad-
get decomposition is implemented via Gaussian sampling [MP12, GM18] with
appropriate parameters, then we can build an FHE scheme for circuits in NC1

(circuit of depth logarithmic in the number of inputs). The results are asymp-
totic, without concrete parameter proposals nor implementation.
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1.1 Our Contributions.

We design a randomized FHEW/TFHE-style [DM15, CGGI16a] bootstrapping
algorithm that can sanitize a given ciphertext. In contrast to the Ducas-Stehlé
washing machine method [DS16], which we shortly refer to as DS-WM, we need
to run our bootstrapping algorithm only once. Our results solve an open problem
posted in [BDPMW16], in that we use their randomization concept in an FHEW-
style bootstrapping scheme. We note that porting the ideas from [BDPMW16]
to the ring setting is non-trivial since there are no analogues of the leftover hash
lemma [DRS04] and Gaussian leftover hash lemma [AGHS13, AR13, BDPMW16]
for the ring setting. Moreover, we can argue that designing a �leaky� analogue of
the regularity lemmas [SS11, LPR13] as in [DSGKS21], may result in practically
ine�cient bootstrapping. While we use some techniques from [BDPMW16], the
overall method departs from [BDPMW16]. In this work we show how to bypass
the need to port [BDPMW16] into the ring setting using simple techniques in
the right places by exploiting structural properties of FHEW/TFHE [DM15,
CGGI16a] instantiated over the ring RQ = ZQ[X]/(XN +1) where N is a power
of two. Along the way, we generalize the technical lemmas from [BDPMW16] to
support any modulus Q ∈ N, instead of moduli of the form Q = Lℓ for some
L, ℓ ∈ N.

We compare our method with DS-WM that is the most competitive. While
[DS16] gives a heuristic instantiation based on FHEW [DM15], they left a serious
analysis as an open problem. We resolve the problem and give a tight error
analysis, and provide scripts that automate noise and security estimations of our
randomized bootstrapping and DS-WM. We show that the parameters proposed
in [DS16] cannot be circuit private due to correctness issues. In general, we
show that instantiations over a ring of dimension 210, or smaller, cannot give
more than 30-bits of statistical security. Note that many e�cient bootstrapping
schemes [DM15, CGGI16a, CGGI20] are instantiated over rings of dimension
210.

Finally, we give an e�cient C++ implementation1 of our bootstrapping al-
gorithms. To the best of our knowledge, this is the �rst practical realization
of a circuit private FHEW/TFHE-style FHE scheme. Our implementation sup-
ports number theoretic transform-based (NTT) and fast Fourier transform-based
(FFT) multiplication of ring elements. Due to our versatile implementation, we
can experiment with di�erent moduli choices that lead to di�erent algorithm
variants. In particular, we can instantiate di�erent Gaussian samplers that are
optimized toward a speci�c choice of modulus. We choose di�erent parameters
targeting the di�erent representations. Nevertheless, we identify some drawbacks
to the FFT-based implementation due to the relatively low precision of the �oat-
ing point arithmetic.

Nevertheless, our algorithm sanitizes a ciphertext in about 1.3 seconds for
both the NTT and FFT-based implementations when using Karney's Gaussian
sampling algorithm [Kar16]. When sampling from the rounded continuous Gaus-
sian distribution via Box-Muller transform [BM58] we can reduce the times to

1 Available at https://github.com/FHE-Deck.
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1.0 and 0.9 seconds for NTT and FFT, respectively. Furthermore, with no addi-
tional public key, we can compute standard FHEW/TFHE-style bootstrapping
in around 0.14 and 0.27 seconds for NTT and FFT, respectively. We show that
the DS-WM method is between 1.56× to 7.88× slower than ours, depending on
the parameter sets and the implementation of the Gaussian sampling algorithm.
We compared parameters with the same key sizes, non-sanitized (deterministic)
computation time, and correctness level.

We also stress that Gaussian sampling in our method constitutes about
78% and 40% of the entire computation. Our implementation is linear and
doesn't take advantage of special vector instructions or parallelism. Based on
the speedups when using di�erent Gaussian samplers, we believe that an opti-
mized implementation could signi�cantly improve the execution times, while we
do not see much room for improvement in DS-WM as it simply repeats the base
bootstrapping algorithm.

1.2 Our Techniques.

In this section, we �rst give a high-level overview of FHEW/TFHE-style boot-
strapping and our circuit private version. Then we discuss the technical problems
to realize the idea and our solutions.
FHEW/TFHE-Style Bootstrapping. First, let us recall the symmetric key
version of Regev's encryption [Reg09]. The encryption algorithm chooses a vector
a ∈ Zn

q and a secret key s ∈ Zn
q , and computes an encryption of a message

m ∈ Zt as [b,a] ∈ Zn+1
q , where b = ⟨a, s⟩ + m̃ + e (mod q), m̃ = q

t · m, and
e < q

2·t . For simplicity, we assume that t | q. The decryption algorithm calculates⌊
t
q ·

(
b− ⟨a, s⟩

)⌉
=

⌊
t
q · (

q
t ·m+ e)

⌉
= m.

The scheme can also be instantiated over the cyclotomic ring RQ, where
R = Z[X]/(XN + 1) and RQ = R/QR. To encrypt a message m from the ring
Rt, the scheme selects a ∈ RQ and a secret key s ∈ RQ and computes the
encrypted message [b, a] where b = a · s+ q

t · m+ e, and e is a small error term
in RQ.

Now let us proceed to the ideas underlying the FHEW-style bootstrapping
scheme introduced by Ducas and Micciancio in [DM15]. We want to re-encrypt
an LWE ciphertext [b,a] ∈ Zn+1

q . Assuming that the LWE modulus is q = 2 ·N ,
the scheme sets up a homomorphic accumulator acc as an RLWE encryption of
arot ·Xb ∈ RQ. We refer to [DM15] on how to choose arot.

Next, the scheme multiplies acc with encryptions of X−a[i]·s[i] ∈ RQ for each
i ∈ [1, n]. Finally, the message in the accumulator will be:

arot ·Xb−
∑n

i=1 a[i]·s[i] = arot ·Xk·q+m̃+e = arot ·Xm̃+e mod 2·N ∈ RQ.

The last step is to extract an LWE encryption of the constant term from the
rotated accumulator. Denote this LWE ciphertext as [aout, bout], where b =
⟨aout, s⟩+mout + eout.
How to Get Circuit Privacy. Note that the output ciphertext is entirely
determined by the input ciphertext and the evaluation key. One solution is to
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use the noise �ooding technique [Gen09a]. Essentially, the technique involves
adding a fresh ciphertext and some uniform in an interval noise to the output
ciphertext. Although this makes the noise in the output ciphertext uniform and
independent, the magnitude of the noise term is exponential in the security
parameter. This means that a large modulus (over 110 bits) must be chosen and
the dimension must be increased to compensate for the security loss, resulting
in a large evaluation key and reduced e�ciency. We give sample estimates for
this technique in Supplementary Material E.

Another solution by Ducas and Stehlé [DS16] is to apply smaller �ooding
noise and repeat the bootstrapping process O(λ) times to achieve the desired
level of circuit privacy security. However, this approach has the immediate down-
side of having to repeat the expensive bootstrapping operation multiple times.
Nevertheless, in this paper we show new parameters and optimizations of [DS16]
applied to FHEW/TFHE-style bootstrapping, in order to give better insights
into the state of the art and a proper comparison with our method.

Our idea is to re-randomize the blind rotation algorithm so that the dis-
tribution of the extracted LWE ciphertext will already be independent of the
input ciphertext. To do this, we �rst need to construct a randomized algorithm
to multiply RLWE ciphertexts. Our starting point is the algorithm introduced
by Bourse et al. in [BDPMW16], who showed a randomized product of GSW
[GSW13] ciphertexts. It turns out, however, that there are multiple problems
that we need to overcome to apply this high level idea for the bootstrapping
algorithm.
Brief Overview of the Randomized GSW Product. First we de�ne a
gadget vector g = [1, 2, . . . , 2ℓ] and the matrix G = g⊗ In ∈ Zn×ℓn

Q , where In is
the n dimensional identity matrix. A GSW encryption of a message m ∈ ZQ is
given as

C =

[
A

s⊤A+ e⊤

]
+m ·G,

where s ∈ Zn
Q is the secret key, A ∈ Z(n−1)×ℓn

Q is public, and e ∈ Zℓn
Q is a noise

vector whose entries are from the discrete Gaussian distribution.
Now we are ready to recall the method from [BDPMW16]. De�ne a ran-

domized gadget decomposition algorithm X ← G−1
rand

(a ·G), where a ∈ ZQ and

the matrix X ∈ Zℓn×ℓn
Q is from the discrete Gaussian distribution such that

G ·X = a ·G. We can use G−1
rand

to multiply the GSW ciphertext C ∈ Zn×ℓn
Q by

a and randomize the outcome as follows.

C ·X+

[
0
y⊤

]
=

[
A ·X

s⊤A ·X+ e⊤X+ y⊤

]
+m · a ·G,

where y ∈ Zℓn
Q is chosen from the discrete Gaussian distribution. The main idea

and technical contribution in [BDPMW16] is to show that such a product already
gives us a ciphertext that is statistically independent of the input ciphertext. At
the heart of their proof is the core randomization lemma that states that a tuple
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(A · X, e⊤X + y⊤) is statistically indistinguishable from (Ā, ē⊤), where Ā ∈
Z(n−1)×ℓn
Q is from the uniform distribution and ē ∈ Zℓn

Q is an independent random
variable from the discrete Gaussian distribution with a slightly higher standard
deviation, given that X and y have su�ciently high standard deviations.

The �rst step to prove the core randomization lemma is to show that A ·X is
close to uniform from the generalized leftover hash lemma [DRS04]. To this end,
we need to analyze the entropy ofX given e⊤X+y⊤, and e. To show that e⊤X+
y⊤ is close to an independent discrete Gaussian random variable, [BDPMW16]
use an adaptation of the Gaussian leftover hash lemma [AGHS13, AR13].

In FHEW/TFHE-style bootstrapping, we need to perform external prod-
ucts of ring LWE ciphertexts. Hence the immediate problem is to translate the
randomization technique into the ring setting. But as we discuss later, such
translation may still be impractical.

Problems with Translating [BDPMW16] Into the Ring Setting. At the
heart of FHEW/TFHE-style bootstrapping algorithms is an algorithm called
blind rotation that outputs an RLWE ciphertext c = (a, b) ∈ R2

Q whose con-
stant coe�cient of the encrypted message encodes the decryption of an input
ciphertext. We can show that the ciphertext can be represented as (a⊤x, e⊤x+y)
as above but where y ∈ RQ, a,x, e ∈ Rm

Q and elements in x have coe�cients

from the discrete Gaussian distribution. Recall that RQ = ZQ[X]/(XN + 1).

If we want to follow the technique from [BDPMW16], we would need to
show that a = a⊤x is close to uniform given e⊤x+y and e. Unfortunately, there
is no analogue of the leftover hash lemma lemma for rings like RQ. Consider
the example where the j-th NTT coordinate of the elements in x and y leaks.
Clearly, x and y may still have high entropy, but anyone can distinguish a⊤x
from uniform just by looking at the j-th NTT coordinate. We may try to de�ne
a �leaky� version of the regularity lemma [LPR13] as in [DSGKS21]. But we
argue that even if we would ignore the leak, the regularity lemma from [LPR13]
produces a practically ine�cient (for our application) solution because it requires
us to choose a small decomposition basis resulting in high ℓ and, consequently,
in relatively slow (Ring) GSW products. Otherwise, we need to choose a high
standard deviation σx of x resulting in larger parameters or lower correctness.
Concretely, we must choose the standard deviation σx of x to be larger than
N · Q1/ℓ+2/Nℓ to achieve negligible security. The ℓ parameter is critical as it
a�ects the most time-consuming operation in the bootstrapping scheme. Hence
it is imperative to keep ℓ small in practical implementations. Another problem
is that we do not have a ring analogue of the Gaussian leftover hash lemma.

Our Solution. To bypass these problems, we exploit that in FHEW/TFHE-
style schemes, we extract an LWE ciphertext from c. In particular, observe that
(a′, b′) ∈ ZN+1

Q , where b′ = b[1] ∈ ZQ is b's constant coe�cient, and a′ ∈ ZN
Q

is such that a′[1] = a[1] and a′[i] = a[N − i] for i = 0 . . . N − 2, is a correct
LWE ciphertext with respect to the secret key s′ = s (the coe�cient vector of
s) encrypting the constant coe�cient of c's message. Note that we still cannot
claim that a′ is close to uniform, but what we can do is sample a fresh LWE
ciphertext of 0, add it to (a′, b′) obtaining a ciphertext (ā, b̄) of the same message
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where ā is statistically close to uniform. Finally, we can show that the error term
of (a′, b′) is already in the form required by the Gaussian leftover hash lemma
[AGHS13, AR13, BDPMW16]. To show this, we exploit the speci�c structure
of the ring RQ = ZQ[X]/(XN + 1) where the product of two ring elements is
a negacyclic convolution of two polynomials. Our analysis applies only to RQ,
but on the other hand, FHEW/TFHE-style bootstrapping exploits the structure
of RQ for correctness. To summarize, our construction completely bypasses the
need to adapt [BDPMW16] to the ring setting.

Concurrent Work. Concurrently and independently, Bourse and Izabachéne [BI22]
gave a circuit private FHEW/TFHE-style algorithm. However, the techniques
and practical e�ciency di�er signi�cantly. Roughly speaking, [BI22] build a mul-
tiplication algorithm between RLWE and RGSW ciphertexts that outputs an
RLWE ciphertext of the product, which is statistically close to a �fresh� cipher-
text. To randomize the bootstrapping algorithm, [BI22] needs to publish a saniti-
zation key that consists of ≥ 217 RLWE ciphertexts alongside the bootstrapping
key. Such key requires over 677 MB memory2. In contrast, our algorithm re-
quires less than 186 or 69 MB (depending on the parameter set) of additional
sanitization key. Furthermore, [BI22] needs to sample a �fresh� RLWE cipher-
text for every external product in the blind rotation step. As reported in [BI22]
sampling a single RLWE ciphertext takes approximately 45 seconds, and they
need to sample 612 to perform a single bootstrapping operation. That gives us
7.6 hours to perform the sampling. To overcome the timing issue, the authors
assume that the RLWE ciphertexts and Gaussian are precomputed, and the
machine has unrestricted memory and precomputation. However, to make the
computation feasible on a laptop they test the algorithm by reusing a single
RLWE ciphertext. Even with the precomputed values, deterministic bootstrap-
ping takes 3.15 seconds, and sanitization bootstrapping takes between 21 and
4.68 seconds depending on how many Gaussian samples were precomputed. In
comparison, our deterministic bootstrapping takes 0.14 or 0.27 seconds, saniti-
zation takes between 0.9 and 1.3 seconds. Most importantly, we do not need any
precomputation for our algorithms to be e�cient, and all random variables are
generated on-the-�y.

2 Background and Notation

We denote as RQ the ring of polynomials ZQ[X]/(XN + 1) where N is a power
of two. We only use Q and N in the context of the ring RQ. We denote vectors
with bold lowercase letters, e.g., v, and matrices with uppercase letters V. We
denote an n dimensional column vector as [f(., i)]ni=1, where f(., i) de�nes the
i-th coordinate. For brevity, we will also denote as [n] the vector [i]ni=1, and more
generally [i]mi=n the vector [n, . . . ,m]. We address the ith entry of a vector v by
v[i]. For matrices we address the ith row and jth column as A[i, j]. Sometimes

2 Assuming each integer is stored in a byte array. If integers are stored in 64-bit
registers, then the key size grows to ≈ 0.9 GB of memory.
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we view ring elements a ∈ RQ as vectors of coe�cients and we address the
coe�cients as vector coordinates. For a random variable x ∈ Z we denote as
Var(x) the variance of x, as stddev(x) its standard deviation and as E(x) its
expectation. For a ∈ RQ, we de�ne Var(a), stddev(a) and E(a) to be the largest
variance, standard deviation and expectation respectively among the coe�cients
of the polynomial a. By Ha(a) we denote the hamming weight of the vector a,
i.e., the number of of non-zero coordinates of a. We represent numbers in ZQ as
integers in [−Q/2, Q/2).

We say that an algorithm is PPT if it is a probabilistic polynomial-time
algorithm. We denote any polynomial as poly(.). We denote as negl(λ) a negligible
function in λ ∈ N. That is, for any positive polynomial poly(.) there exists c ∈ N
such that for all λ ≥ c we have negl(λ) ≤ 1

poly(λ) . Given two distributions X,

Y over a �nite domain D, their statistical distance is de�ned as ∆(X,Y ) =
1
2

∑
v∈D |X(v) − Y (v)|. We say that two distributions are statistically close if

their statistical distance is negligible.
Lattices. An m-dimensional lattice Λ is a discrete additive subgroup of Rm. For
an integer k < m and a rank matrix B ∈ Rm×k, Λ(B) =

{
Bx : x ∈ Zk

}
is the

lattice generated by the columns of B. We denote Λ⊥q (B) =
{
v ∈ Zm : B⊤v = 0

mod q}.
Gaussian distribution. For any σ > 0, the spherical Gaussian function with

parameter σ is de�ned as ρσ(x) = exp
(−π||x||2

σ2

)
, for any x ∈ Rm. Given a

lattice Λ ⊆ Rm, a parameter σ ∈ R and a vector c ∈ Rm the spherical Gaussian
distribution with parameter σ and support Λ+ c is de�ned as

DΛ+c,σ(x) =
ρσ(x)

ρσ(Λ+ c)
,∀x ∈ Λ+ c

where ρσ(Λ+ c) denotes
∑

x∈Λ+c ρσ(x).
We write x←$ DΛ+c,σ do denote that x is sampled from the discrete Gaus-

sian distribution with support Λ+ c and parameter σ. We write y←$ DZN ,σ or
y ←$ DZn,σ when sampling the coe�cients of y ∈ R or components of y ∈ ZN

from DZ,σ. For a set S we write x←$ S to denote the uniform distribution over S
unless said otherwise. Throughout the paper we denote Cδ,m =

√
ln(2m(1+1/δ))

π .

Learning With Errors. We recall the learning with errors assumption by
Regev [Reg05]. Our description is a generalized version due to Brakerski, Gentry,
and Vaikuntanathan [BGV12].

De�nition 1 (Generalized Learning With Errors). Let Dsk be a (not nec-
essarily uniform) distribution over RQ, and σ > 0, n ∈ N and N ∈ N be a
power of two, that are chosen according to a security parameter λ. We de�ne a
Generalized Learning With Errors (GLWE) sample of a message m ∈ RQ with
respect to a secret key s ∈ Dn

sk, as

GLWEσ,n,N,Q(s,m) =

[
a⊤

b = a⊤ · s+ e

]
+

[
0
m

]
∈ R(n+1)

Q ,
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where a←$ Rn
Q and e←$ DR,σ. We say that the GLWEσ,n,N,Q-assumption holds

if for any PPT adversary A we have∣∣Pr[A(GLWEσ,n,N,Q(s, 0))]− Pr[A(U (n+1)×1
Q )]

∣∣ ≤ negl(λ)

where U (n+1)×1
Q is the uniform distribution over R(n+1)

Q .

We denote a Learning With Errors (LWE) sample as LWEσ,n,Q(s, m) =
GLWEσ,n,1,Q, which is a special case of a GLWE sample where the ring is
Zq[X]/(X +1). Similarly we denote a Ring-Learning with Errors (RLWE) sam-
ple as RLWEσ(s,m) = GLWEσ,1,N,Q which is the special case of an GLWE sample
with n = 1. For simplicity, we omit to state the modulus and ring dimension
for RLWE samples because we always use RQ = ZQ[X]/(XN + 1) where N is a
power of two. For LWE samples, we will be switching between di�erent moduli
and di�erent dimensions; hence we will indicate the current modulus in the no-
tation. Sometimes we use the notation c ∈ GLWEσ,n,1,Q(s, m) (resp. LWE and
RLWE) to indicate that a vector c is a GLWE (resp. LWE and RLWE) sample
of the corresponding parameters and inputs. Sometimes we leave the inputs un-
speci�ed and substitute them with �.� when it is not necessary to refer to them
within the scope of a function. We de�ne the phase of c = GLWEσ,n,N,Q(s,m),
as Phase(c) = [1,−s] · c. We de�ne the error of c as Error(c) = Phase(c)−m.
Fully Homomorphic Encryption. Below we recall the de�nition of fully ho-
momorphic encryption [RAD78, Gen09b].

De�nition 2 (Fully Homomorphic Encryption). A fully homomorphic en-
cryption FHE consists of algorithms (Setup, Enc, Eval, Dec) with the following
syntax.

Setup(λ): This PPT algorithm takes as input a security parameter λ and out-
puts an evaluation key ek and a secret key sk.

Enc(sk,m): This PPT algorithm takes as input a secret key sk, and a message
m, and returns a ciphertext ct.

Eval(ek, [cti]
n
i=1, C): Given as input an evaluation key ek, a set of ciphertexts

[cti]
n
i=1, and a circuit C, this (non-)deterministic algorithm outputs a ci-

phertext ct.
Dec(sk, ct): Given a secret key sk and a ciphertext ct, this deterministic algo-

rithm outputs a message m.

Correctness: We say that FHE = (Setup,Enc,Eval,Dec) is correct, if for all
security parameters λ ∈ N, circuits C :Mn 7→ M over the message spaceM
of depth poly(λ), and messages [mi ∈M]ni=1 we have

Pr
[
Dec(sk, ctout) = C([mi]

n
i=1)

]
= 1− negl(λ),

where sk← Setup(λ),
[
Dec(sk, cti) = mi

]n
i=1

and ctout ← Eval(ek, [cti]
n
i=1, C).

E�ciency: We require that Setup, Enc and Dec run in poly(λ) time, and Eval
runs in poly(λ, |C|) time. Finally, we say that fully homomorphic encryption
is compact if the size of the output of Eval is independent of C. Namely, if
|Eval(ek, [cti]ni=1, C)| is poly(λ, |M|).
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Indistinguishability Under Chosen Plaintext Attack is de�ned in the usually
way. For completeness we recall the formal de�nition in Supplementary mate-
rial A.

Circuit Privacy: Let C : Mn 7→ M be a polynomial size circuit. A fully ho-
momorphic encryption scheme FHE is said to be circuit private if for �xed
(ek, sk) ← Setup(λ) and all c1, . . . , cn such that [mi ← Dec(sk, ci)]

n
i=1 and

mout ← C(m1, . . . ,mn) there exists a PPT simulator Sim such that

∆((sk,Sim(ek,mout)), (sk,Eval(ek, c1, . . . , cn, C))) ≤ negl(λ).

Our simulation-based de�nition of circuit privacy is stronger than [IP07,
BDPMW16] in two aspects. First, our simulator does not require us to know
the size of the circuit as in [IP07]. In fact, our simulator only needs to know
the outcome of the circuit and nothing else. Second, we only assume that the
ciphertexts input to the evaluator decrypt to the messages input to the circuit.

3 Sanitization Bootstrapping

We describe all algorithms necessary to build the sanitization bootstrapping. For
algorithms that are part of the sanitization bootstrapping but are not crucial as
for the circuit privacy analysis in Section 4, we only de�ne the interfaces and
state their correctness and functionality. In Supplementary Material C we give
the full speci�cation and correctness proofs of these algorithms.
Gadgets and Gaussian Sampling. Let us �rst denote ℓ = ⌈logL Q⌉ for some
radix L ∈ N. In particular we denote Lbr for the blind rotation key de�ned
by Figure 2. We also use LksK as a decomposition base of the key-switching
procedure which interface we recall in Lemma 6 but device the full speci�cation
of this algorithm to Supplementary Material C.

Let gL,Q = [1, L, . . . , Lℓ−1] be the gadget vector parameterized by L andQ. We
use di�erent decomposition algorithms but refer to all with the same interface.
In particular, we have the decomposition algorithm x = G−1ver (c, L;σ) ∈ Rℓ that
takes as input a ring element c ∈ RQ, a radix L, and optionally a Gaussian
parameter σ, and outputs a low norm vector x ∈ Rℓ such that c = g⊤L,Q · x ∈
RQ. Note that G−1ver also takes the modulus Q implicitly as input. A special
case of the above is when G−1ver takes as input a single element from ZQ instead
of a polynomial from RQ. We use a parameter ver that takes a value from
{simul, det}. If ver = simul then we apply the algorithm from Lemma 1 coe�cient
wise. In particular, in our implementation we implement two algorithms from
[MP12, GM18]. One for a general Q < Lℓ and one specialized for Q = Lℓ. We
recall both in Supplementary Material A, but in Lemma 1 we refer only to the
case with Q < Lℓ since, for the other case, we found it hard to �nd e�cient
parameters (despite the Gaussian sampling for Q = Lℓ being more e�cient).
We give more details on the parameters in Section 5. Note that for ver = simul,
we take the additional σx as input. For ver = det, we take the deterministic
decomposition algorithm like binary decomposition but generalized to any radix
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L ≥ 2 and apply it coe�cient-wise to elements fromRQ. We note that for the det-
mode, we may also use randomized algorithms, e.g., the subgaussian sampling
algorithms [GMP19]. We can generalize the gadget vector for some w ∈ N to a
matrix GL,Q,w = gL,Q ⊗ Iw ∈ Zw·ℓ×w

Q . Then the decomposition algorithm takes

as input vectors a ∈ Rw
Q and outputs x ∈ Rw·ℓ

L such that a = x⊤ ·GL,Q,w.

Lemma 1 (Gaussian Sampling [GM18]). There exists a sampling algorithm
G−1simul(a, L, σx) that on input a ∈ ZQ, L ∈ N and a Gaussian parameter σx,
outputs y ∈ Zℓ such that

∆
(
y,x[i] ∈ DΛ⊥

Q(gL,Q)+G−1
det (a[i],L),σx

)
≥ ℓ · δ,

if σx ≤
√
2L · (2L+ 1) · Cδ,ℓ.

Depending on the ver parameter, the distribution of the image of G−1ver may
greatly di�er. In the correctness analysis we denote the noise of G−1ver 's output as
B(G−1(., L)). For example, for deterministic base-L decomposition, we take L2,
or when the decomposition returns a discrete Gaussian, we take its variance. We
concretize this quantity when estimating correctness in Section 5.
Ring GSW Encryption.We recall the ring-version of the RGSW cryptosystem
[GSW13] on Figure 1. We also recall the external product [CGGI16a, CGGI20],
that multiplies an RGSW ciphertexts with an RLWE ciphertext. Below we state
the functionality of the external product, but we limit our exposition to the case
of binary plaintexts, which is the relevant case in our application.

RGSW(s,mG):

Input:

Secret key s ∈ RQ.

Message mG ∈ RQ.

1 : For i ∈ [ℓbr]:

2 : CG[∗, i]← RLWEσG(s,mG · Li−1
br ).

3 : For i ∈ [ℓbr + 1, 2ℓbr]:

4 : CG[∗, i]← RLWEσG(s,−s ·mG · Li−1−ℓbr
br ).

5 : Return CG ∈ R2×2ℓbr
Q .

extProdver(c,CG;σx):

Input:

Ciphertext c ∈ RLWEσ(s,m).

Ciphertext CG ∈ RGSWσG(s,mG).

[If simul] A Gaussian param. σx.

1 : cout ← CG · G−1
ver (c, Lbr;σx).

2 : Return cout ∈ R2
Q

Fig. 1. RGSW Encryption and External Product.

Lemma 2 (The External Product). Let c and CG be as in Figure 1. If
cout ← extProdver(CG, c;σx) and mG ∈ {0, 1} then cout ∈ RLWEσout(s,mout),
where mout = m ·mG and

σout ≤
√

2ℓbr ·N · σ2
br · B(G

−1
ver (., Lbr;σx)) +mGσ2.
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Mux Gate. Informally, the Mux gate takes as input a control RGSW sample
C and two RLWE samples d and h. The gate outputs an RLWE encoding one
of the message from d or h depending on the bit encoded in C.

Lemma 3 (Homomorphic Mux Gate). The Mux algorithm takes as input
C ∈ RGSWσC

(s,mC), d ∈ RLWEσ(s,md) and h ∈ RLWEσ(s,mh), where mC ∈
{0, 1} and md,mh ∈ RQ. Optionally it also takes a Gaussian parameter σx.
In particular, the gate computes and outputs extProdver(CG,d − h;σx) + h. If
cout ← Mux(C,d,h;σx), then cout ∈ RLWEσout(s,mout), where mout = mh for
mC = 0 and mout = md for mC = 1, and

σout ≤
√
2ℓbr ·N · σ2

br · B(G
−1
ver (., Lbr;σx)) + σ2

Modulus Switching and Sample Extraction. The modulus switching tech-
nique [BV11] allows us to change the modulus of a given ciphertext without the
knowledge of the secret key.

Lemma 4 (Modulus Switching). Let c = LWEσ,n,Q(s,m). The modulus switch-

ing algorithm is de�ned asModSwitch(c, q) =
[⌊ q·c[i]

Q

⌉]
. If cout ← ModSwitch(c, q),

then cout ∈ LWEσout,n,q(s, m ·
q
Q ), where

σout ≤
√( q

Q
· σ

)2
+

1

4
· Ha(s) · Var(s).

Furthermore, the expectation of Error(cout) satis�es∣∣E(Error(cout))∣∣ ≤ ∣∣ q
Q
· E(Error(c))

∣∣+ 1

2

(
1 + Ha(s) · |E(s)|

)
Finally, if m = m′ · Qt , then m · q

Q = m′ · qt .

Sample extraction, allows extracting an LWE from an RLWE sample that
encodes the constant coe�cient of the RLWE sample's message.

Lemma 5 (Sample Extraction). Let KeyExtract(s) be an algorithm that on
input a key s ∈ RQ outputs its coe�cient vector. The sample extraction algorithm
LWE-Ext(c) takes as input c ∈ RLWEσ(s,m) and outputs cout = [a, b] ∈ ZN+1

Q

where b = b[1], and for all i ∈ [N − 1] we set a[i] ← −a[N − i + 1] and set
a[1]← a[1].

Denote the message encoded in c as m =
∑N

i=1 m[i]·Xi−1. If s′ ← KeyExtract(s)
and cout ← LWE-Ext(c), then cout ∈ LWEσout,N,Q(s

′,m[k]), where σout = σ.

Key Switching. By having a key switching key, the evaluator can map a given
LWE sample to an LWE sample of a di�erent key and dimension. We recall the
interface for key switching and state its functionality by Lemma 6. We recall the
full speci�cation in Supplementary Material C.
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Lemma 6 (Key Switching). We de�ne the key-switching key generation pro-
cedure ksK ← KeySwitchSetup(σksK, s, s

′), to take as input a noise parameter
σksK, and LWE secret keys s ∈ Zn

Q and s′ ∈ ZN
Q of (possibly) distinct dimensions

n,N ∈ N. The key-switch procedure cout ← KeySwitch(c, ksK) takes as input a
LWE ciphertext c ∈ LWEσ,N,Q(s

′,m) and the key-switching key ksK, and outputs
a LWE sample cout ∈ LWEσout,n,Q(s, m), where

σout ≤
√
ℓksK ·N · B(G−1det(., LksK)) · σ2

ksK + σ2.

Randomized Blind Rotation and Sanitization Bootstrapping. In Fig-
ure 3 we show our sanitization bootstrapping. We give the sanitizing blind ro-
tation and its key generation algorithm in Figure 2. In short the algorithm is
given a LWE sample which phase is m + e (e is the noise term) and outputs
a RLWE sample of arot · Xm+e ∈ RQ. We choose the rotation polynomial arot
such that the constant coe�cient of arot ·Xm+e is set to f(m+ e) ∈ ZQ for any
function f that is negacyclic, i.e., satis�es f(x +N mod 2N) = −f(x) mod Q.
We stress that the restriction on f is imposed by structural properties of the
ring RQ = ZQ[X]/(XN + 1). In Supplementary Material C we recall a version
of the algorithm that applies a trick from [YXS+21, LMP21], which resolves
the negacyclicity restriction on the functions that we can compute on the input
plaintext at the cost of two blind rotation operations. Namely, we can program
the polynomial arot such that F (m + e) = arot ·Xm+e[1] ∈ ZQ, where F is any
function in ZN . Such full domain functional bootstrapping got recently much
attention [KS22, YXS+21, CLOT21, LMP22, Klu22], as it allows to compute
any function on �nite �elds, conveniently switch from �nite �eld plaintexts to
binary and back, etc.

Lemma 7 (Correctness of Bootstrapping). Let br, c and all other pa-
rameters be as in Figure 3, ksK be generated as described by Lemma 6, where
s′ ← KeyExtract(s).

Let arot be such that f(m + e) = arot · Xm+e[1] ∈ RQ, where m + e =
Phase(c) and f : Z2N 7→ ZQ. If cout = Bootstrapver(br, ksK, c, arot), then cout ∈
LWEσout,N,Q

(
s′, f(m+ e)

)
, withσout ≤

√
2n · ℓbr ·N · σ2

br · B
(
G−1det(., Lbr)

)
if ver = det

σout ≤
√
2n · ℓbr ·N · σ2

br · B
(
G−1simul(., Lbr;σx)

)
+ h · σ2

R · σ2
rand

if ver = simul

Additionally, we have that cin from step 2 on Figure 3 is such that cin =
LWEσin,n,2N (s, .), where

σin ≤
√( q

Q
· σ1

)2
+

1

4
· Ha(s) · Var(s)

with σ1 ≤
√

N · ℓksK · B(G−1ver (., LksK)) · σ2
ksK + σ2

out.

The full cryptosystem. Below we brie�y describe how the complete cryptosys-
tem �ts into De�nition 2.
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BRKeyGen(σbr, s, s):

Input:

An error distribution σbr.

A RLWE secret key s ∈ RQ.

A LWE secret key s ∈ Zn
t .

1 : For i ∈ [n]

2 : Set br[i] = RGSWσbr(s, s[i]).

3 : Output br ∈ RGSWσbr(s, .)
n.

BlindRotatever(br, arot, c;σx):

Input:

A blind rotation key br = RGSWσbr(s, .)
n.

An rotation polynomial arot ∈ RQ.

A ciphertext c ∈ LWEσ,n,2N (s, .).

[If simul] A Gaussian param. σx.

1 : Let c = [a, b] ∈ Zn+1
2N .

2 : Set cacc,0 ← [0, arot ·Xb] ∈ R2
Q

3 : For i ∈ [n]:

4 : cacc,i ← Muxver(br[i],

cacc,i−1 ·X−a[i],

cacc,i−1;

σx).

5 : Output cacc,n ∈ R2
Q.

Fig. 2. TFHE-style Blind Rotation and its Setup.

Setup: We choose the modulus Q, a power-of-two dimension N of the ring RQ

and LWE dimension n ∈ N. Then we choose s ∈ RQ for the RLWE key, set
s′ ← KeyExtract(s), and s ∈ {0, 1}n for the LWE key3. Choose the radices
Lbr, LksK ∈ N and the Gaussian parameters σ, σksK, σbr, σR, σrand, σx >
0. Run br ← BRKeyGen(σbr, s, s), ksK ← KeySwitchSetup(σksK, s, s

′), and
v← LWEσR,N,Q(s

′, 0)h. Finally, set the evaluation key ek = (br, ksK, v) and
the secret key sk = (s, s′, s).

Encryption: To encrypt a message m′ ∈ Zt we compute c = LWEσ,N,Q(s
′,

m) ∈ ZN+1
Q , where m = Q

t ·m
′ ∈ ZQ. Note that we can also use the vector

v to obtain a LWE sample that is close to a �fresh� one, and then we simply
add m.

Eval: We can represent homomorphic computation as a circuit with gates of the
form f(b+

∑k
i=1 xi · ai ∈ Zt1) ∈ Zt2 where the ai's and b are scalars known

by the evaluator and the xi's are the encrypted plaintexts. We compute
the a�ne function using the additive homomorphism of the LWE samples,
and the function f : Zt1 7→ Zt2 by applying the bootstrapping algorithm
from Figure 3. We compute all gates with ver = det except for the output
gates, where we run the sanitization bootstrap with ver = simul. Crucially,
the evaluator should �nish the computation with a sanitization bootstrap to
achieve circuit privacy.

3 Other distributions for the LWE secret key are possible. See [MP21] for an excelent
summary.
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Bootstrapver(br, ksK, c, arot,v, σrand, σx):

Input:

A blind rotation key br = RGSWσbr(s, .)
n.

A key switch key ksK ∈ LWEσksK,n,Q(s, .)
ℓksKN .

Ciphertext c = LWEσ,n,q(s
′, .) ∈ ZN+1

Q , where s′ = KeyExtract(s).

A rotation polynomial arot ∈ RQ.

A vector v = LWEσR,N,Q(s
′, 0)h.

[If simul] Gaussian parameters σrand, σx.

1 : Run cksK ← KeySwitch(c, ksK) ∈ Zn+1
Q .

2 : Run cin ← ModSwitch(cksK, 2N) ∈ Zn+1
2N .

3 : Run cacc ← BlindRotatever(br, arot, cin, σx).

4 : Run cext ← LWE-Ext(cacc).

5 : If ver = simul:

6 : Choose r←$ DZh,σrand
and y ←$ DZ,σx .

7 : Set crand ← v⊤ · r.
8 : Set cout ← cext + crand + y.

9 : Otherwise set cout ← cext.

10 : Return cout ∈ ZN+1
Q .

Fig. 3. Bootstrapping.

Decryption: Do decrypt a LWE sample cout = [aout, bout] we run Phase(cout) =

c⊤out[1,−s] = b− a⊤outs =
Q
t m
′
out + e ∈ Zt, and round the result

⌈
t
Q

(
Q
t m
′
out +

e
)⌋

= m′out if |e| ≤
Q
2t .

4 Analysis of Circuit Privacy

This section contains our core analytical contribution. First, in Section 4.1, we
state a few technical lemmas needed for the circuit-privacy analysis in Sec-
tion 4.2.

4.1 Generalized (Gaussian) Leftover Hash Lemma.

Below we give our �xed and generalized version of the Gaussian Leftover hash
lemma from [BDPMW16].

Lemma 8 (Gaussian Leftover Hash Lemma (Generalized Lemma 3.6
from [BDPMW16])). Let δ, σx > 0. Let L = {v = Λ̂ : ê⊤ · v = 0}, where
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ê = [e, 1] ∈ Zm+1, Λ̂ = Λ̂⊥Q(GL,Q,w)×Z, m = w ·ℓ and Lℓ ≤ Q. Let qL,Q = [qi]
ℓ
i=1

be the base-L decomposition of Q for Q < Lℓ, and qL,Q = [0, L] for Q = Lℓ. For
any e ∈ Zm and c ∈ Rm, if

σx ≥
√

1 + ||ê||∞ ·max
(
||qL,Q||,

√
L2 + 1

)
· Cδ,m, then

∆(e⊤x+ y, e′) < 2δ,

where x←$ DΛ⊥
Q(GL,Q,w)+c,σx

, y ←$ DZ,σx , e
′ ←$ DZ,σx·

√
1+||e||2 , and m = w · ℓ

with ℓ ∈ N. Note that the distribution of e′ is independent of the coset c, and if
e←$ DZ,σbr

, then e′ ←$ DZ,σx·
√

1+mσ2
br

.

The proof of the lemma follows from a technical lemma (Corollary 2.8 in
[GPV08]), and a lemma (Lemma 3.7 in [BDPMW16]) that bounds the smoothing
parameter ηδ for the lattice L = {v = Λ̂ : ê⊤ · v = 0}, where ê = [e, 1] ∈ Zm+1.
In [BDPMW16], the authors prove the lemma for a modulus Q that is a power
of two. We generalize the lemma to modulus of form Q ≤ Lℓ. For completeness,
we recall the proof in Supplementary Material B and the necessary background
in Supplementary Material A. Below we state our generalized version of Lemma
3.7 from [BDPMW16].

Lemma 9 (Generalized Lemma 3.7 from [BDPMW16]). Let δ > 0. Let
L = {v = Λ̂ : ê⊤ · v = 0}, where ê = [e, 1] ∈ Zm+1, Λ̂ = Λ̂⊥Q(GL,Q,w) × Z,
m = w·ℓ and Lℓ ≤ Q. Furthermore, let qL,Q = [qi]

ℓ
i=1 be the base-L decomposition

of Q for Q < Lℓ, and qL,Q = [0, L] for Q = Lℓ. Then we have

ηδ ≥
√
1 + ||ê||∞ ·max

(
||qL,Q||,

√
L2 + 1

)
· Cδ,m.

We defer the additional background to Supplementary Material A.

Proof. We use Lemma 15 to bound the smoothing parameter of L. Since Λ̂ =
Λ̂⊥Q(G

⊤
L,Q,w) × Z is of dimension m + 1 and L is a sub-lattice of Λ̂ made of the

vectors that are orthogonal to e, we have that L is of dimension m. We thus
exhibit m independent short vectors of L to obtain an upper bound on λm(L).
We �rst de�ne the matrix

B̄ =



L q1
−1 L q2

−1
. . .

...
. . . L qℓ−1
−1 qℓ

 ∈ Zℓ×ℓ,

where qL,Q = [qi]
ℓ
i=1 is the base-L decomposition of the modulus Q if Q < Lℓ,

and qℓ = L and qi = 0 for i < ℓ if Q = Lℓ. Note that B̄ is a basis for the lattice
Λ⊥Q(gL,Q). The lattice Λ̂ is then generated by the columns of the matrix:

B = [b1| . . . |bm+1] =

[
Iw ⊗ B̄ 0
0⊤ 1

]
∈ Z(m+1)×(m+1)
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For k ≤ m let uk = bk−bm+1 · ê⊤ ·bk. Since ê
⊤ ·bm+1 = 1 we directly have

e⊤ · uk = 0 and thus uk ∈ L. The vectors u1, . . . ,um are linearly independent
since span(u1, . . . ,um,bm+1) = span(b1, . . . ,bm,bm+1) = Rm+1 (which comes
from the fact that B is a basis of an (m+ 1)-dimensional lattice).

We now bound the norm of uk. Note that bm+1 · ê⊤ ≤ ||ê||∞, because
bm+1 = [0, 1]. Then we have

||uk|| = ||bk − bm+1 · ê⊤ · bk||
≤ ||bk + ||ê||∞ · bk||
= ||(1 + ||ê||∞)bk||

=
√

1 + ||ê||∞ · ||bk||.

What is left to do is to bound the norm of bk. Note that for k < m + 1
the vector bk has L in its kth position, −1 in position k + 1, and 0 in all other
positions. Furthermore, the vectors bk for k = 0 mod logL(Q) contain the vector
qL,Q and are zero at all other positions. Hence, we can bound the norm by ||bk|| ≤
max

(
||qL,Q||,

√
L2 + 1

)
. In particular, for Lℓ+1 = Q the norm of bk is bounded

by
√
L2 + 1, while for Lℓ+1 > Q the bound depends on the decomposition of Q.

To summarize we obtain

λm(L) ≤ max
k≤m
||uk|| ≤

√
1 + ||ê||∞ ·max

(
||qL,Q||,

√
L2 + 1

)
.

Below we give our version of the leftover hash lemma, which is an instantia-
tion of the lemma from [DRS04, DORS08].

Lemma 10 (Leftover Hash Lemma). Let ϵ > 0 and Q be a odd prime. For
any e ∈ Zm

Q and C ∈ Rm, if σrand ≥ Cϵ,m then

∆
(
(Ar,A, e⊤r), (u,A, e⊤r)

)
≤ 1

2

√
2(n+1) log(Q)

2log(1−ϵ)+m log(σrand)

where r←$ DZm+c,σrand
, A←$ Zn×m

Q and u←$ Zn
Q.

In Supplementary Material A we recall the background for the proof of this
lemma.

Proof. From Lemma 13 we have that

∆
(
(Ar,A, e⊤r), (u,A, e⊤r)

)
≤ 1

2

√
2n log(Q) · 2−H̃∞(r|e⊤r),

and from Lemma 14 we have that

1

2

√
2n log(Q) · 2−H̃∞(r|e⊤r) ≤ 1

2

√
2(n+1) log(Q) · 2−H∞(r)

because H̃∞(r|e⊤r) ≥ H∞(r)−log(Q) since e⊤r takes values in ZQ (see Lemma 14
in Supplementary Material A).
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What is left is to analyse the min entropy H∞(r). Note that for any x ∈
Zm we have that ρσrand

(x) ≤ ρσrand
(0) = 1. Furthermore, from Lemma 16 we

have that ρσrand
(Zm + c) ≥ (1 − ϵ)

σm
rand

det(Zm) , where ϵ > 0 and and assuming that

σm
rand
≥ ηϵ(Zm). From the fact that Im is the basis of Zm we have that det(Zm) =

det(Im) = 1, and from Lemma 15 we have that ηϵ(Zm) ≤ Cϵ,m.
Putting the above together we have that for all x ∈ Zm

DZm+c,σrand
(x) ≤ ρσrand

(x)

ρσrand
(Zm + c)

≤ 1

ρσrand
(Zm + c)

≤ 1

(1− ϵ) · σm
rand

Then from De�nition 4 we have

H∞(r) ≥ − log

(
1

(1− ϵ) · σm
rand

)
= log(1− ϵ) +m log(σrand).

4.2 Distribution of Our Randomized Bootstrapping and Circuit
Privacy

Below we state and prove the core theorem on the distribution of bootstrapped
ciphertexts. Circuit privacy, that we prove at the end of this section, follows
nearly immediately from the theorem below.

Theorem 1 (Distribution of the Bootstrap). Let br be the blind rotation
key, arot ∈ RQ a rotation polynomial, and c ∈ LWEσ(s,m) a LWE sample as
de�ned in the Bootstrap algorithm in Figure 2. Assume that arot is such that
f(m) = (arot ·XPhase(cin))[1] where cin is the LWE sample obtained at Step 2 of
the Bootstrap algorithm. Let cout be the LWE sample returned by the Bootstrap
algorithm for ver = simul and Gaussian parameters σrand and σx where the Gaus-
sian sampling algorithm G−1simul is as in Lemma 1. Assume that σrand ≥ Cϵ,h and

σx ≥
√

1 +Bbr ·max
(
||qLbr,Q||,

√
L2br + 1

)
· Cδ,2·n·N ·ℓbr ,

where Bbr is a bound on the in�nity norm of the noise terms in the blind rotation
key br. Then we have

∆(cout, cfresh) ≤ max
(
2δ,

1

2

√
2(N+1) log(Q)

2log(1−ϵ)+h log(σrand)

)
,

where cfresh = [afresh, bfresh], bfresh = ⟨afresh, s′⟩ + f(m) + erand + eout, eout ←$

DZ,σx·
√

1+||e||, erand ←$ ẽ⊤ · r, r ←$ DZh,σrand
and where e ∈ Z2·n·N ·ℓbr is the

vector of error coe�cients in the blind rotation key, and ẽ ∈ Zh are the error
terms in the vector of LWE samples v.
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Proof. The proof consists of two parts. First we analyze the LWE sample that
is extracted after blind rotation. In particular, we give a concise representation
of the �nal noise term. Furthermore, we show that each noise coe�cient and
decomposition term of the randomized decomposition appears only once in the
�nal noise term. The second part of the proof consists of a hybrid argument,
where we argue step-by-step that the distribution of the extracted and �masked�
LWE sample is statistically close to a �freshly� sampled LWE sample of the same
message.

Below we give the �rst part of the proof. But to further tame complexity
we split this part in three more sub-parts. First we analyze a single external
product, then a single MUX gate and we �nalize this part with blind rotation
and extraction.
Single External Product. First let us remind that for j ∈ [ℓbr] we have

CG[∗, j] = RLWEσ(s,mG · Lj−1br ) and

CG[∗, j + ℓbr] = RLWEσ(s,−s ·mG · Lj−1br ).

Denote CG = [aj , bj ]
2ℓbr
j=1, and d = [ad, bd] where bd = ad ·s+ed+md. We analyze

the sample cprod ← extProdsimul(CG,d). Then in Steps 1 and 2 of the extProdsimul

algorithm we compute cprod = CG · G−1simul(d, Lbr) = [aprod, bprod]. Let us denote

the vector [xj ]
2ℓbr
j=1 = G−1simul(d, Lbr). We can write

aprod =

2ℓbr∑
j=1

aj · xj .

Furthermore, we can write

bprod = aprod · s+mG · ed + ê+mG ·mg, (1)

where ê =
∑2ℓbr

j=1 ej · xj . Equation 1 holds because we have

2ℓbr∑
j=1

bj · xj = aprod · s+
ℓbr∑
j=1

(ej +mG · Lj−1) · xj +
ℓbr∑
j=1

(ej+ℓbr − s ·mG · Lj−1) · xj+ℓbr

= aprod · s+
2ℓbr∑
j=1

xj · ej +mG ·
( ℓbr∑
j=1

xj · Lj−1 − s ·
2ℓbr∑

j=ℓbr+1

xj · Lj−1−ℓbr
)

and in particular from the properties of the Gaussian sampling algorithm (Lemma 1)
we have that

mG ·
( ℓbr∑
j=1

xj · Lj−1 − s ·
2ℓbr∑

j=ℓbr+1

xj · Lj−1−ℓbr
)
= mG(bd − ad · s) = mG(ed +md).

Single MUX Gate. Let us analyze a single execution of the MUX gate cout ←
Mux(CG,d,h), where CG and d are RGSW and RLWE samples as above, and
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h ∈ RLWEσ(s,mh) = [ah, bh]. Since cout ← extProdsimul(CG,d − h) + h, we can
write cout = [aprod, bprod] + [ah, bh]. Remind that the message encoded in CG is a
single bit mG ∈ {0, 1}. That is, we are only interested in the special case where
the RGSW message is a single bit. We have two cases:

� The case with mG = 0. In this case we can write bprod = aprod · s+ e. In other
words, the error from d−h cancels out. And we have that bout = bprod+bh =
aout · s+ e+mh + eh.

� The case with mG = 1. In this case we can write bprod = aprod · s+ e+md −
mh + ed − eh. And we have that bout = bprod + bh = aout · s+md + e+ ed.

Finally, note that in blind rotation we have d = h·X l ∈ R2
Q for some l ∈ Z2N .

That is, the two ring LWE samples are negacyclic rotations of one another. This
means that ed = eh ·X l ∈ RQ.
Blind Rotation and Extraction. First we set the accumulator to cacc,0 = [0, arot ·
Xb]. Note that the �rst accumulator is special because its noise term is zero. Let
us denote the error term that is added in the ith iteration of the blind rotation
loop by êi. Particularly, this noise term is êi =

∑2ℓbr
j=1 ei,j · xi,j , where ei,j is the

noise term of the blind rotation keys, xi,j is the component from the randomized
decomposition algorithm. At the ith iteration we run a homomorphic MUX gate
that multiplies the input RLWE sample's noise and message by X−a[i]·s[i], and
adds a new noise term êi. Remind that the noise term of cacc,0 is zero, thus at
iteration i = 1, the resulting RLWE sample cacc,1 has noise term ê1. Then cacc,1
has noise term ê1 ·X−a[2]·s[2] + ê2. Finally after n iterations we have

Error(cacc) = Error(cacc,n) =
n∑

i=1

êi ·X
∑n

j=i+1−a[j]·s[j] (2)

and the message is arot ·XPhase(c).
Let us denote cacc = [aacc, bacc] and the extracted LWE sample cext = [aext, bext].

Note that aext ∈ ZN
Q and bext = bacc[1] = ⟨aacc, s′⟩+ arot ·XPhase(c)[1] + (

∑n
i=1 êi ·

X
∑n

j=i+1−a[j]·s[j])[1]. In particular, note that

Error(cext) =
( n∑
i=1

êi ·X
∑n

j=i+1−a[j]·s[j]
)
[1]

=

n∑
i=1

2ℓbr∑
j=1

(
ei,j ·X

∑n
j=i+1−a[j]·s[j] · xi,j

)
[1]

=

n∑
i=1

2ℓbr∑
j=1

N∑
k=1

ei,j [k] · xi,j [k]

where ei,j is a vector of discrete Gaussian random variables centered at zero
of parameter σbr. Note that in the ring RQ and assuming the coe�cients of

ei,j are centered at zero, we have that ei,j · X
∑n

j=i+1−a[j]·s[j] = e′i,j rotates the
coe�cients of ei,j negacyclicly, meaning that e′i,j has the same distribution as
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ei,j . Similarly, we have that the constant coe�cient of e′i,j · xi,j in RQ is (e′i,j ·
xi,j)[1] = xi,j [1] · e′i,j [1] +

∑N
k=2−e′i,j [N − k + 1] · xi,j [k]. Hence we can write

ei,j [k] = −e′i,j [N − k + 1] for k ∈ [2, N ] and ei,j [1] = e′i,j [1]. Therefore ei,j [k] is
from the discrete Gaussian distribution of the same parameter as ei,j given that
the distribution of the coe�cients are centered at zero.

Distribution of the Extracted LWE Sample. Now we are ready to argue that the
cout = cext + r⊤ ·v+ y sample is statistically close to a LWE sample of the same
message that is independent of the input ciphertext. The proof is due to the
following hybrid argument.

Hybrid 0. In this hybrid the sample is as in the original scheme. Speci�cally, we
have cout ← cext+crand+y, where crand ← v⊤ ·r with r←$ DZh,σrand

, y ←$ DZ,σx

and v is a vector of size h of LWE samples of zero with noise parameter σR.

Hybrid 1. As Hybrid 0, but we set the message in cout to f(m) instead of
arot ·XPhase(c)[1]. Assuming that Error(c) ≤ N

t and arot is such that f(m) = arot ·
XPhase(c)[1] this change is only syntactical by correctness of the bootstrapping
algorithm.

Hybrid 2. This hybrid is as Hybrid 1, but instead of computing crand ← r⊤ ·v =
[arand, brand], we take crand = [arand, brand] to be a fresh LWE encryption of zero.
In particular, we take arand ←$ ZN

Q from the uniform distribution and take

brand = ⟨arand, s
′⟩ + erand where erand ←$ ẽ⊤ · r with r ←$ DZh,σrand

and where ẽ
denotes the errors of the LWE samples in v.

Claim. Given that σrand ≥ Cϵ,h the statistical distance between Hybrid 2 and
Hybrid 1 is at most

1

2

√
2(N+1) log(Q)

2log(1−ϵ)+h log(σrand)

for some ϵ > 0.

Proof. Denote v = [av,i, bv,i]
h
i=1 where bv,i = ⟨av,i, s′⟩ + ev,i. Let b̃ = [bv,i]

h
i=1

and ẽ = [ev,i]
h
i=1. We can write Ã = [av,1, . . . ,av,h] ∈ ZN×h

Q , arand ← Ã · r and

brand ← b̃⊤ · r = ⟨arand, s
′⟩+ ẽ⊤ · r.

Now it is easy to see that the rest of the proof follows directly by applying
Lemma 10. Note that the notation in Lemma 10 is mostly already in place,
except that we set the m from the lemma to h and the n from the lemma to N .
Furthermore, the matrix A from the lemma is the matrix Ã in this hybrid and
the error e from the lemma is the error ẽ in this hybrid. Note that Lemma 10
requires Q to be an odd prime. In Remark 2 we discuss how we handle a non-
prime Q. Finally, the uniform vector u from the lemma corresponds to arand.

Hybrid 3. This hybrid is as Hybrid 2, except that we choose aout from the
uniform distribution. Note that both hybrids are in fact identical as from Hybrid
1, we have that arand is sampled from the uniform distribution over ZN

Q , and we

have aout = aext + arand ∈ ZN
Q . This hybrid is only a syntactic change.
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Hybrid 4. This hybrid is as hybrid 3 except that we compute bout = ⟨aout, s⟩+
f(m)+ erand + eout, where eout ←$ DZ,σx·

√
1+||e||. In particular, the noise term is

independent from the ciphertext c and the blind rotation key br.

Claim. Given that

σx ≥
√
1 +Bbr ·max

(
||qLbr,Q||,

√
L2br + 1

)
· Cδ,2·n·N ·ℓbr

the statistical distance between Hybrid 3 and Hybrid 4 is at most 2δ for some
δ > 0. The notation in Lemma 8 is mostly already in place, except we set
m = 2 · n ·N · ℓbr and L = Lbr.

Proof. Note that we have

Error(cext) =
n∑

i=1

2ℓbr∑
j=1

N∑
k=1

ei,j [k] · xi,j [k] =
n∑

i=1

N∑
k=1

2ℓbr∑
j=1

ei,j [k] · xi,j [k].

We will group the terms ei,j [k] · xi,j [k] into vectors by the j iterator. We write

êi,k =
[
ei,j [k]

]2ℓbr
j=1

and x̂i,k =
[
xi,j [k]

]2ℓbr
j=1

. Note that x̂i,k ∈ DΛ⊥
Q(GLbr,2

)+G−1
det (cacc,i[k]),σx

.

In other words x̂i,k is the Gaussian sampling of the kth coe�cient (where
k ∈ [2ℓbr], meaning that we take the concatenation of the two polynomials in the
accumulator cacc,i) in the ith iteration of the blind rotation algorithm. Now we
can write

Error(cout) = erand + Error(cext) + y = erand + y +

n∑
i=1

N∑
k=1

êi,k
⊤ · x̂i,k.

We can further represent Error(cext) as a product x⊤ · e of two vectors e =

[êi,k
⊤
]n,Ni=1,k=1 and x = [x̂i,k]

n,N
i=1,k=1. Note that

x ∈ DΛ⊥
Q(GLbr,Q,2·n·N )+G−1

det ([cacc,i[k]]
n,N
i=1,k=1),σx

since it is just a concatenation of n ·N vectors from DΛ⊥
Q(GLbr,2

)+G−1
det (cacc,i[k]),σx

.

Finally, note that aout and the message are independent of Error(cext). Therefore
we can apply Lemma 8 to x⊤ · e+ y with m = 2 · n ·N · ℓbr and L = Lbr.

Finally, we have that cout is distributed as in the theorem statement, and is
in particular independent of the input ciphertext c and bootstrapping key br.

Remark 1 (On FHEW Blind Rotation.). Theorem 1 works for the blind rotation
algorithm from [CGGI16a]. We chose to focus on this blind rotation algorithm as
it is currently faster in practice for binary and ternary LWE keys. We note, how-
ever, that it is even easier to prove an analogous theorem with the blind rotation
from FHEW [DM15] because it is a sequence of external products. Consequently,
we can omit the �Single MUX Gate� step in the proof of Theorem 1. We recall
FHEW [DM15] and give the proof in Supplementary Material D.
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Proof of Circuit Privacy. Remind that according to De�nition 2, to prove
circuit privacy we have to show a simulator that, on input ek and mout =
C(m1, . . . ,mn) outputs a ciphertexts of mout that is distributed as an output
of the Eval algorithm when evaluating C on encryptions of m1, . . . ,mn. We build
such simulator by sampling an encryption of zero, bootstrapping in simul mode
and adding mout to the resulting ciphertext. Circuit privacy then follows from
Theorem 1.

Theorem 2. Let C be a polynomial size circuit and ctout ← Eval(ek, [cti]
n
i=1, C),

where cti ← Dec(sk,mi) and Eval is as described in Section 3, where the boot-
strapping algorithm for of the output gate is set to ver = simul. If the parameters
of the FHE scheme are chosen such that ∆(cout, cfresh) ≤ negl(λ), where cfresh is
as in Theorem 1, then the evaluation process is circuit private.

Proof. To show circuit privacy, we need to show a simulator Sim that gets as
input ek andmout. The proof follows nearly immediately from Theorem 1. Denote
as cout the ciphertext returned by Eval. Recall that cout is distributed as given
by Lemma 1, because Eval ends with an invocation of Bootstrap in simulation
mode. Set c = 0 and arot = 0. The simulator runs and outputs

cfresh ← Bootstrapsimul(br, ksK, c, arot,v, σrand, σx) + [0,mout].

Denote cfresh = [afresh, bfresh]. From Lemma 1 we have that cout is distributed
as in Eval. Namely, afresh is statistically close to uniform, bfresh = ⟨afresh, s′⟩ +
mout + erand + eout with erand + eout distributed as in Lemma 1. Hence the cfresh
is statistically close to cout, and in particular independent from the circuit C.

5 Parameters, Implementation, and Experiments

In this section, we discuss our parameter choices, implementation, and experi-
ments for our method as well as for the washing machine method by Ducas and
Stehlé [DS16]. Remind that Ducas and Stehlé [DS16] left �nding correct param-
eters as an open problem. In this section, we address this problem and rule out
the possibility of instantiating FHEW/TFHE negligible statistical security over
low-degree rings that are often used for e�ciency. We give a comparison of both
methods when parameters are targeted towards an implementation over integers
modulo an NTT-friendly prime number and over integers modulo a power of two
represented as double-precision �oating point numbers.

Remark 2. In the case of a power of two modulus Q, we slightly modify the
scheme and choose the LWE samples with respect to a prime modulus that is
slightly larger than Q. Then, after Step 8 of Algorithm 3 we switch the modulus
to Q. This change is made because the leftover hash lemma (Lemma 10) requires
a universal hash function, which is satis�ed if the modulus is prime but not when
the modulus is a power of two.
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5.1 Parameters.

We choose our parameter sets to target 128-bit security for the (R)LWE samples
and 80-bits statistical security when running the bootstrapping in simul mode.
Remind that, in contrast to computational security, the advantage in break-
ing a property for statistical security does not increase with advances in high-
performance computing. Furthermore, since we measure the distance between
samples, the ability to distinguish two distributions depends on the number of
samples given.

The parameters are listed in Table 1. We estimate the (R)LWE security using
the latest commit of the LWE estimator [APS15]. We wrote a python script that
we published alongside our source code to estimate the statistical security. We
choose similar parameters to make a good comparison between our method and
the Ducas-Stehlé washing machine method [DS16] that we refer to as DS-WM.
For completeness we recall the relevant lemmas from [DS16] that we used for our
estimations in Supplementary Material A. For all parameters we chose the same
ring dimensionN = 211. The strategy is to choose the highest modulus such that:
(1) the RLWE problem remains 128-bit secure according to the LWE estimator
[APS15], (2) the modulus is below 50-bits for Ours-Int and DS-WM-Int to allow
for faster multiplication of ring elements, and (3) computing convolutions does
not introduce signi�cant numerical errors (see Supplementary Material C for
estimations). Furthermore, we choose the LWE parameters for the key switching
key and the masking key v, the same for all solutions. Then we choose the
decomposition bases. We chose the highest decomposition base that: (1) gives us
required correctness, (2) maximizes LBk-simul, (3) LBk-det = LBk-simulk for some
k ≥ 1 for deterministic gadget decomposition gives us the required correctness as
well. Note that the last condition allows us to signi�cantly optimize computation
when using deterministic gadget decomposition at no additional cost to the key
size. This is because, when using deterministic gadget decomposition we must
only use every k-th RLWE ciphertext of the gadget ciphertext when computing
the multisum in the external product. In other words, computing the external
product requires roughly k× fewer ring multiplications. Finally, we compute the
noise parameters for the Gaussian sampling and noise �ooding given the desired
security level and all other parameters.

As we can read from Table 1, we managed to �nd parameters where Ours-
Int method needs 7 = ℓbr + 1 ring multiplications per gadget multiplication
in simul mode, whereas DS-WM-Int requires 11 = ℓbr + 1. We stress that the
noise �ooding method is already incorrect for a decomposition base Lbr = 26

meaning that this is the best base choice for performance. Nevertheless, for the
�ooding set, we can use a similar decomposition basis in det mode as in our set
resulting in the same e�ciency for deterministic bootstrapping. This parameter
choice allows us to compare both methods better as we can now focus solely
on discussing the di�erences between the sets in simul mode. For the det mode
e�ciency of the sets is the same and correctness is very similar. In the case,
where the modulus is a power of Lbr and implementation uses double precision
�oating point arithmetic to compute polynomial multiplication, we need a much
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Method
log2(Param.)

Q LBk, ℓBk-simul LBk, ℓBk-det σKsk σx Ux σrand h ∆

Ours-Int 48 8, 6 24, 2 26 17.7 12.8 - 12.3 80
DS-WM-Int 48 8, 6 24, 2 26 - 41.2 12.3 12.8 16
Ours-Double 36 4, 9 12, 3 14 8.9 - 21.9 11.7 80

DS-WM-Double 36 4, 9 12, 3 14 - 30.8 21.9 11.7 6.6

Table 1. Parameter Sets. We list base-two logarithms of the parameters. For all sets
we set n = 912, N = 211, LKsk = 27 and σbr = 3.2. Note that the column LBk-simul
gives the decomposition base for ver = simul and LBk-det for ver = det. The column
Ux refers to the uniform distribution interval for the noise �ooding in DS-WM. The
column ∆ refers to the statistical distance from a random ciphertext after a single
bootstrapping operation. Consequently, for DS-WM-Int and DS-WM-Double, we have
to run the bootstrapping 5 and 12 times, respectively.

lower modulus, and decomposition bases. In this case we found sets where all
decomposition parameters are the same for our method on for DS-WM.

To estimate correctness, we compute the error function which is de�ned as
erf(x) = 2√

π

∫ z

0
e−t

2

dt, and which given standard deviation 1/
√
2 returns the

probability that a Gaussian distributed random variable with mean 0 lies within
the interval [−x, x]. Furthermore, we de�ne erfc(x) = 1− erf(x). Our estimator
must deal with random variables of mean ̸= 0 and standard deviations other
than 1/

√
2. Hence given mean c and standard deviation σ we compute erfc( x−c

σ·
√
2
),

where x = Q
2·t is the interval given by the modulus Q and message space modulus

t to obtain the probability that our noise exceeds the tolerable bound and �shifts�
the plaintext.

In Table 2, we list the probabilities of having an error while bootstrapping.
The errors are given as base-two logarithms for readability. As we may see,
our method has a di�erent characteristic when it comes to correctness than the
DS-WM. First observe that correctness of cin is lower than correctness of cout.
This is due to the modulus switching to a much smaller modulus 2N and the
rounding error. Then note that when increasing the message space, our method
is still correct for cout, while DS-WM's correctness collapses already at t = 5.
This is the consequence of needing to run the bootstrapping step numerous
times to sanitize a ciphertext. However, since our method requires only a single
bootstrapping invocation, we can output ciphertexts of larger precision.
Instantiation over degree N = 210 Rings. Numerous works like [DM15,
CGGI16a, CGGI20] choose parameters for the ring ZQ[X]/(XN +1) setting the
degree to N = 210. The obvious bene�t is that the timings are fast. What is
important is that when assessing correctness, these works often report only on
the correctness cout and ignore the correctness of cin. Notably, Ducas and Stehlé
[DS16] propose to instantiate their washing machine method on a parameter
set from the Ducas, and Micciancio's FHEW bootstrapping [DM15], albeit they
note that their instantiation is heuristic and leave a serious analysis as an open
problem. We investigated the possibility of choosing a parameter set for the rings
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of dimension N = 210, and, unfortunately, we found it to be infeasible. We chose
32 bit modulus and set all decomposition bases to 2 (smallest and least e�cient
possible) to maximize correctness. We set n = 810, and the LWE standard
deviations to 3.2, which gives us a low-security level of only 84 bits according to
the LWE estimator [APS15]. Our estimates show that the correctness of cin was
around the 2−33 level already for deterministic computation. We noticed that
increasing the modulus Q, and hence dropping LWE security below 80 bits, does
not change the correctness level. The reason for this is the rounding error when
modulus switching from Q to 2N . In other words, the ring degree is already
so small that ciphertexts modulo 2N cannot accommodate the rounding error
within the interval N/t. Note that we use binary keys here, which is even more
bene�cial for correctness than if we would use ternary or Gaussian distributed
keys as in FHEW-style schemes [DM15]. To conclude, our analysis shows that the
parameter choice in [DS16] for DS-WM cannot give circuit privacy is better than
30-bits, and we need to instantiate the method with a larger ring. Furthermore,
we also rule out the possibility of running parameters from [CGGI16a, CGGI20]
in simulation mode due to the small ring degree with statistical security larger
than 30-bits.

Ours-Int

t det simul

cout cin cout cin
4 −771 −239 −494 −154
5 −495 −99 −317 −64
6 −345 −40 −221 −26

...
10 −126 0.90 −82 0.82
11 −105 0.99 −68 0.97

Ducas-Stehlé: DS-WM-Int

t det simul

cout cin cout cin
4 −771 −239 −198 −198
5 −495 −99 −69 −69
6 −345 −40 −20 −20

...
10 −126 0 0 0
11 −105 0 0 0

Ours-Double

t det simul

cout cin cout cin
4 −841 −260 −307 −96
5 −540 −108 −198 −41
6 −376 −43 −138 −17

...
10 −137 0 −51 0
11 −114 0 −41 0

Ducas-Stehlé: DS-WM-Double

t det simul

cout cin cout cin
4 −841 −260 −96 −96
5 −613 −108 −38 −38
6 −376 −43 −14 −14

...
10 −137 0 0 0
11 −114 0 0 0

Table 2. Correctness Estimates. We give the probability of failure to correctly decrypt
cout and cin for a given message space t. We give the correctness estimates as base-
two logarithm. We mark failure probabilities below 2−80 with green, and above that
threshold with red.
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Total [s] BL [s]
G−1

simul

Ksk [MB] Bk [MB] v [MB]
det simul det simul 8-bit 64-bit 8-bit 64-bit 8-bit 64-bit

Ours-Int
0.14

1.36
0.14

1.36 79%
79 104 134 179 186 248Ours-Int-C 1.01 1.01 72%

DS-WM-Int 2.03 0.39 −
Ours-Double

0.27
1.33

0.27
1.33 59%

56 89 168 268 69 110Ours-Double-C 0.91 0.91 40%
DS-WM�Double 7.10 0.59 −

Table 3. Performance. The BL and KS columns give the blind rotation and key switch-
ing timings. The su�x �-C� in the parameter sets stands for using rounded continuous
Gaussian sampling. In the �Total� column we give the over time to run a bootstrapping
operation. The G−1

simul column represents the proportion of the Gaussian sampling in the
total computation. Remind that in the DS-WM, we must run bootstrapping several
times. The Ksk, Bk, and v columns give sizes of the respective public keys. We list the
size of public keys counted by storing an integer/�oat in an array of 8-bit or storing
an integer/�oat in a 64-bit register.

5.2 Implementation and Performance.

We implemented the schemes in C++11 and tested it on a machine with 11th
Gen Intel(R) Core(TM) i7-11850H 2.50GHz processor that supports AVX2 and
AVX-512 instructions. The timing results and the size of the evaluation keys
for the bootstrapping algorithms are given in Figure 3. To implement nega-
cyclic convolutions for Ours-Int and DS-WM-Int, we used the Intel Hexl library
[BKS+21]. The library gives a high-performance implementation of Number The-
oretic Transforms optimized for the ring ZQ[X]/(XN + 1) and takes full advan-
tage of Intel AVX instructions. To compute the negacyclic convolutions for Ours-
Double and DS-WM-Double we use the FFTW library [FJ21] that implements fast
Fourier transforms on IEEE-754 double precision �oating point arithmetic.

For the Gaussian sampling algorithm, we implemented two methods. For
the case where the modulus is a power of LBk we implement the simple and very
e�cient Gaussian sampler from [MP12]. For general moduli, which is the case for
Our-Int and DM-WM-Int, we implement a version of the method by Genise and
Micciancio [GM18, CDCG+18]. Both samplers are instantiated with either the
Karney method [Kar16] to sample for the exact discrete Gaussian distribution, or
(somewhat heuristically) we use the Box-Muller transform [BM58] with rounding
to the closest integer. The implementation using the Box-Muller transform serves
mostly for comparison and to showcase potential speedups. Our proofs require
a discrete Gaussian sampler for simplicity. Nevertheless, we note that in some
cases, proofs can be generalized [HLS17] to support rounded continuous Gaussian
distributions while preserving security. We leave such generalizations as future
work.

As we can see from Table 3, our method is faster when compared to both DS-
WM methods. In particular, Ours-Int is roughly 1.56× faster than DS-WM-Int
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(2.03× for rounded Box-Muller). Then, Our-Double is about 5.46× faster than
its DS-WM-Double analog (7.1× for rounded Box-Muller).

The �Double" parameters are slower than the �Int" parameters in det mode.
The reason for this is that the �Double" parameters require computing more
negacyclic convolutions than the �Int" parameters due to their di�erent modulus
and decomposition factors. It's important to note that all parameter sets should
achieve similar correctness levels. Therefore, for the �Double" parameter sets,
which are intended to be implemented using IEEE-754 double precision �oating
point format, we are constrained by the precision of the arithmetic.

When estimating the key size, we list two methods. One assumes storing
integers or (discretized) �oating point numbers in an array of 8-bit bytes. This
could potentially give an edge to the �Double" parameter sets since these sets use
a smaller modulus. However, these sets still require larger key material because
we need to store mode ring elements. Although the byte array representation can
be used when transmitting a key, when computing the bootstrapping operation,
the integers or �oats are stored in random access memory in 64-bit registers,
regardless of whether the modulus is a 48-bit or 36-bit number. In any case
the Our-Int parameter set outperforms all other sets. The size of a ciphertext
is the same for every parameter set. Note that in all sets we can send the �rst
ciphertexts with a modulus equal to 2 ·N = 212, and all sets have the same LWE
dimension n = 912. Consequently, the ciphertexts will take approximately 0.46
[MB].

Finally, note that in the case of Our-Int, sanitization is roughly 9× slower
(7× for rounded Box-Muller) than deterministic computation. For Our-Double,
sanitization is only 4.8× slower (3.3× for rounded Box-Muller) than determinis-
tic computation. Partially, the reason for this is that the sanitization algorithms
have smaller decomposition bases, but a notable portion of the computation is
spent on computing Gaussian sampling. For Gaussian sampling, in the special
case where the modulus is a power of the decomposition basis, as is the case in
Our-Double, approximately half of the computation is spent on sampling Gaus-
sians. In the general case, such as Our-Int, where the modulus is an NTT-friendly
prime number, Gaussian sampling constitutes approximately 78% of the entire
computation. We stress that the Gaussian sampling step is a straightforward
implementation of the method from [GM18, CDCG+18]. There is still much
room for improvement in the implementation. In particular, the method can be
parallelized over the N = 211 coe�cients of the ring. Furthermore, an optimized
implementation could take advantage of AVX vector processor extensions to par-
allelize parts or even the entire sampling algorithm. We do not see much room
for improvement in the washing machine method because its only di�erence from
a deterministic bootstrap is the choice of uniform �ooding noise.

6 Conclusions and Open Problems

We showed that it is practically feasible to build an e�cient FHE scheme with cir-
cuit privacy, that outperforms the Ducas-Stehlé washing machine method [DS16].
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Importantly, our experiments show that the major bottleneck in our implemen-
tation is Gaussian sampling. We believe that an optimized implementation of
Gaussian sampling exploiting AVX vector extentions like in Intel Hexl would
greatly the improve performance. Furthermore, using faster discrete Gaussian
sampling algorithms [MW17, DFW22] instead of Karney [Kar16] may further
improve the performance. Finally, an interesting problem is to analyze whether
we can use randomized gadget decomposition that has output from other distri-
butions and discrete Gaussian. In particular, it may be worth exploring the use
of more e�cient subgaussian samplers [GMP19, ZY22, JLP21] in place of the
Gaussian sampling algorithms [GM18, CDCG+18].
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Supplementary Material

A Additional Preliminaries

In this section we recall some useful lemmas and de�nitions.

De�nition 3 (Indistinguishability Under Chosen Plaintext Attack). Let
λ ∈ N be a security parameter and A = (A0,A1) be a PPT adversary. We de�ne
the advantage AdvINDCPA

A,FHE (λ) We say that a FHE scheme is INDCPA-secure if for
all PPT adversaries A the following probability

Pr

A1(ctb, st) = b:

sk← Setup(λ),

(st,m0,m1)← A
O(sk,.)
0 (λ),

b←$ {0, 1},
ctb ← Enc(λ, sk,mb)

 ,

is at most negl(λ), where the oracle O on input a message m outputs ct ←
Enc(λ, sk,m).

A.1 Probability Theory

Lemma 11 (Smudging Lemma [AJL+12]). Let B1 and B2 be two be positive
integers and let e1 ∈ [−B1, B1] be a �xed integer. Let e2 ←$ [−B2, B2] be chosen
uniformly at random. Then the statistical distance between e2 and e2 + e1 is

∆(e2, e2 + e1) = B1/B2.

Lemma 12 (Lemma 2.3 from [DS16]). Let δ ∈ [0, 1] and f : S → S be a
randomized function such that ∆(f(a), f(b)) ≤ δ holds for all a, b ∈ S. Then

∀k ≤ 0,∀a, b ∈ S, ∆(fk(a), fk(b)) ≤ δk,

where fk denotes composing the function f k-times.

De�nition 4. The min-entropy of a random variable X is de�ned as

H∞(X) = − log

(
max

x
Pr[X = x]

)
Furthermore we recall the de�nition of average min-entropy A given B as

H̃∞(A|B) = − log
(
Eb←B

[
max

a
Pr[A = a|B = b]

])
= − log

(
Eb←B [2

−H∞(A|B=b)]
)
.

Lemma 13 (Generalized Leftover Hash Lemma [DRS04, DORS08]).
Assume {HX {0, 1}n 7→ {0, 1}ℓ}x∈X is a family of universal hash functions.
Then, for any random variables W and I,

∆
(
(HX(W ), X, I), (Uℓ, X, I)

)
≤ 1

2
·
√

2ℓ · 2−H̃∞(W |I)
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Lemma 14 (Lemma 2.2. in [DRS04, DORS08]). Let A, B and C be ran-
dom variables. Then

1. For any δ > 0, the conditional entropy H∞(A|B = b) is at least H̃∞(A|B)−
log(1/δ) with probability at least 1− δ over the choice of b.

2. If B has at most 2λ possible values, then

H̃∞(A|(B,C)) ≥ H̃∞((A,B)|C)− λ ≥ H̃∞(A|C)− λ.

In particular, H̃∞(A|B) ≥ H∞
(
(A,B)

)
− λ ≥ H∞(A)− λ.

A.2 Lattices

De�nition 5 (Smoothing Parameter). For a lattice Λ ⊆ Zm and positive
real δ > 0, the smoothing parameter ηδ is the smallest real r > 0 such that
ρ1/r(Λ

∗ \ {0}) ≤ δ, where Λ∗ = {x ∈ Rm|x⊤Λ ⊆ Z}.

Lemma 15 ([MR04], Lemma 3.3). Let Λ be any rank-m lattice, and δ ∈ R+.
Then

ηδ ≤ λm(Λ) · Cδ,m,

where λm(Λ) is the smallest R such that the ball BR centered in the origin and
with radius R contains m linearly independent vectors of Λ. Remind that we

denote Cδ,m =
√

ln(2m(1+1/δ))
π .

Lemma 16 (Claim 3.8 in [Reg09]). For any lattice Λ, c ∈ Rn, ϵ > 0 and
σ ≥ ηϵ,

ρ(Λ+ c) ∈ σn

det(Λ)
(1± ϵ)

Lemma 17 (Corollary 2.8 in [GPV08]). Let Λ ⊆ Zm be a lattice, 0 < ϵ < 1,
σ > 0. For any vector c ∈ Rm, if σ ≥ ηϵ(Λ), then we have

ρ(Λ+ c) ∈
[1− ϵ

1 + ϵ
, 1
]
· ρσ(Λ)

A.3 Gaussian Sampling Algorithms

We recall the Gaussian sampling algorithm form [GM18] on Figure 5. For com-
pleteness, we also recall the Gaussian sampling algorithm from [MP12] on Figure
4 that is specialized for modulus in the form Q = Lℓ. We recall only the spec-
i�cation for sampling given a one-dimensional integer target. Remind that we
use the sampling algorithm separately on every coe�cient when given as input
a polynomial.

Note that for the special case modulus, the standard deviation can be bounded
by L · Cϵ,ℓ which is much smaller than for the general case of Q < Lℓ. Our cor-
rectness estimation scripts take all the decomposition algorithms into account.
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G−1
simul(a, L, σx):

Input:

Integers a ∈ ZQ and L s.t. Q = Lℓ where ℓ ∈ N.
A Gaussian parameter σx.

1 : For each j ∈ [0, ℓ− 1]:

2 : x[j] = DLZ+a,σx .

3 : a← (a− x[i][j])/L.

4 : Output x.

Fig. 4. Gaussian Sampling Algorithm [MP12].

In practice, however, a modulus of the form Q = Lℓ forces us to implement
negacyclic convolution of polynomials with fast Fourier transforms on �oating
point arithmetic. As discussed in Section 5, we found it infeasible to instantiate
the scheme such that no numerical errors are induced by ring multiplications.

The algorithm on Figure 5 takes additionally the following precomputed
vectors as input. The vector l is such that l[1]2 = L(1 + 1/ℓ) and l[i]2 = L(1 +
1/(ℓ−1)). The vector h is such that h[1] = 0 and h[i+1]2 = L(1+1/(ℓ−1)) for
i ∈ [2, ℓ]. Finally, we assume that any vector at index 0 and ℓ+ 1 is set to zero.
For more details on the correctness of the Gaussian sampling algorithm for any
Q < Lℓ we refer to [GM18]. furthermore, we refer to [MP12] for the analysis of
the Gaussian sampling algorithm on Figure 4 for the special case Q = Lℓ.

B Missing Proofs

Now we give our generalization of Lemma 3.6 from [BDPMW16], which itself is
an adaptation of lemma 3.3 from [AR13]. The proof is essentially a copy-paste
from the proof in [BDPMW16], except that we use a di�erent bound on the
smoothing parameter that we showed in Lemma 9.

Lemma 8 (Gaussian Leftover Hash Lemma (Generalized Lemma 3.6
from [BDPMW16])). Let δ, σx > 0. Let L = {v = Λ̂ : ê⊤ · v = 0}, where
ê = [e, 1] ∈ Zm+1, Λ̂ = Λ̂⊥Q(GL,Q,w)×Z, m = w ·ℓ and Lℓ ≤ Q. Let qL,Q = [qi]

ℓ
i=1

be the base-L decomposition of Q for Q < Lℓ, and qL,Q = [0, L] for Q = Lℓ. For
any e ∈ Zm and c ∈ Rm, if

σx ≥
√

1 + ||ê||∞ ·max
(
||qL,Q||,

√
L2 + 1

)
· Cδ,m, then

∆(e⊤x+ y, e′) < 2δ,

where x←$ DΛ⊥
Q(GL,Q,w)+c,σx

, y ←$ DZ,σx , e
′ ←$ DZ,σx·

√
1+||e||2 , and m = w · ℓ

with ℓ ∈ N. Note that the distribution of e′ is independent of the coset c, and if
e←$ DZ,σbr

, then e′ ←$ DZ,σx·
√

1+mσ2
br

.
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G−1
simul(a, L, σx):

Input:

Integers a ∈ RQ and L s.t. Q < Lℓ, and a Gaussian parameter σx.

1 : Set q← G−1
det (Q, L) and u← G−1

det (a, L).

2 : σ = σx/(L+ 1).

3 : p← Perturb(σ, σx).

4 : For each i ∈ [ℓ]

5 : c[i]← (c[i− 1]− u[i]− p[i])/L.

6 : z← SampleD(σ, c, σx).

7 : For each i ∈ [ℓ− 1]

8 : t[i]← L · z[i]− z[i− 1] + q[i] · z[ℓ− i] + u[i].

9 : t[ℓ]← q[ℓ] · z[ℓ]− z[ℓ− 1] + u[ℓ].

10 : Return t.

SampleD(σ, c, σx):

Input:

Gaussian parameters σ and σx, and a vector c ∈ Rℓ.

1 : z[ℓ]← ⌊−c[ℓ]/d[ℓ]⌋.
2 : z[ℓ]← z[ℓ] + SampleZt(σ/d[ℓ], ⌊−c[ℓ]/d[ℓ]⌋[0,1), σx).

3 : c← c− z[ℓ] · d.
4 : For all i ∈ [ℓ− 1].

5 : z[i]← ⌊−c[i]⌋+ SampleZt(σ, ⌊−c[i]⌉[0,1), σx).

6 : Return z.

Perturb(σ, σx):

Input:

A Gaussian parameters σ and σx.

1 : β ← 0.

2 : For i in [ℓ]:

3 : c← β/l[i] and σ[i]← σ/l[i]

4 : z← ⌊c[i]⌋+ SampleZt(σ[i], ⌊c[i]⌉[0,1), σx).

5 : β ← −z[i]h[i].
6 : p[1]← (2L+ 1)z[1] + Lz[1].

7 : For i in [2, ℓ]:

8 : p← L(z[i− 1] + 2z[i] + [i+ 1]).

9 : Return p.

Fig. 5. Gaussian Sampling Algorithm [GM18] for Q < Lℓ. We denote ⌊c⌉[0,1) = c−⌊c⌋.
The algorithm SampleZt(σ, c, σmax) is any Gaussian sampling algorithm that samples
over Z ∪ [c− t · σmax, c+ t · σmax] with mean c. We assume
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Proof. Let ĉ = [c, 0] ∈ Zm+1 and Λ̂ = Λ⊥Q(GL,Q,w)× Z. We want to show that

∆
(
ê⊤DΛ̂+ĉ,σx

,DZ,||ê||σx

)
≤ 2δ.

The support of ê⊤DΛ̂+ĉ is ê⊤Λ̂+ ê⊤ĉ = e⊤Λ⊥Q(GL,Q,w) + Z+ e⊤c = Z. Fix
some z ∈ Z. The probability mass assigned to z by ê⊤DΛ̂+ĉ,σx

is proportional

to ρσx(Lz), where

Lz =
{
v ∈ Λ̂+ ĉ : ê⊤v = z

}
.

We de�ne the lattice L = {v ∈ Λ̂ : ê⊤v = 0}; note that Lz = L+wz for any
wz ∈ Lz. Let uz = z

||ê||2σx
ê. Then uz is clearly proportional to ê. Observe that

uz is orthogonal to σ
−1
x Lz−uz. Indeed for any t ∈ σ−1x Lz we have ê

⊤(t−uz) = 0.
From this we have ρ(t) = ρ(uz) · ρ(t− uz), and by summing for t ∈ σ−1x Lz:

ρ(σ−1x Lz) = ρ(uz) · ρ(σ−1x Lz − uz).

Observe that we have σ−1x Lz−uz = σ−1x (L−c′) for some c′ in the vector span
of the lattice L (because Lz − σ−1x uz = L +wz − σxuz and ê⊤(wz − σxuz) =
0). Then using4 Lemma 17 and Lemma 9 that bounds σx as in the theorem
statement, we obtain

ρ(σ−1x Lz) = ρ(uz) · ρσx(L − c′)

∈
[1− δ

1 + δ
, 1
]
· ρσx(L) · ρ(uz)

∈
[1− δ

1 + δ
, 1
]
· ρσx(L) · ρ

( z

||ê||2σx
ê
)

∈
[1− δ

1 + δ
, 1
]
· ρσx(L) · ρ||ê||σx

.

This implies that the statistical distance between ê⊤DΛ̂+ĉ,σx
and DZ,||ĉ||σx

is at

most 1− 1−δ
1+δ ≤ 2δ.

C Error Analysis and Missing Algorithms

In this section we give the noise analysis and correctness proofs.

4 This is the place where our proof di�ers from [BDPMW16]. Namely, we use our
Lemma 9 to give a di�erent bound on σx.
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Proof. (External Product, Lemma 2). Denote x = G−1ver (c, Lbr) and c = [a, b].
Then we compute

CG · x =

ℓbr∑
i=1

RLWEσG
(s,mG · Li−1br ) · x[i]

+

2ℓbr∑
i=ℓbr+1

RLWEσ(s,−s ·mG · Li−1br ) · x[i]

=RLWEσ(s,mG · b) + RLWEσ(s,−s ·mG · a)
=RLWEσ1(s,mG · (m+ e))

=RLWEσout(s,mG ·m)).

The following σ2
1 ≤ 2ℓbr · N · σ2

G · B(G−1ver (., Lbr)) holds because we compute the

multisum
∑2ℓbr

i=1 ·ei · x[i] where ei is the error of the ith RLWE sample in CG.
Note that each coe�cient of ei ·x[i] in the ring RQ is a negacyclic convolution of
the coe�cients in ei and x[i]. Finally, σ2

out ≤ σ2 +mG · σ2
1 holds because, mG · e

is 0 or e depending on the bit mG.

Proof. (Mux Gate, Lemma 3). Note that the RGSW sample C encodes a bit
mc ∈ {0, 1}. As in the proof of Lemma 2 we have cout = RLWEσ1

(s,mc · (md −
mh + ed − ed) + h. Hence, for mC = 0, we get

cout = RLWEσ1
(s,mh + eh) = RLWEσout(s,mh),

and for mC = 1, we get

cout = RLWEσ1(s,md + eg) = RLWEσout(s,md).

In either case, we have that σ2
out ≤ 2ℓbr · N · σ2

G · Var(G−1ver (., Lbr)) + σ2, because
as we assumed the noise parameter for d and h is the same.

Proof. (Modulus Switching, Lemma 4). Denote c = (b,a), where b = a⊤ · s +
m+ e ∈ ZQ where e has variance σ2. Then we have the following:

Phase(⌊ q
Q
· c⌉) = ⌊ q

Q
· b⌉ − ⌊ q

Q
· a⊤⌉ · s

=
q

Q
· b+ r − q

Q
· a⊤ · s+ r⊤ · s

=
q

Q
·m+

q

Q
· e+ r + r⊤ · s
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where r ∈ R and r ∈ Rn are in [− 1
2 ,

1
2 ]. Then we have

σ2
out = Var(

q

Q
· e+ r + r⊤ · s)

= Var(
q

Q
· e) + Var(r⊤ · s))

=
q2

Q2
· σ2 +

n∑
i=1

Var(r[i] · s[i])

≤ q2

Q2
· σ2 +

1

4
· Ha(s) · Var(s).

The expectation of the output noise satis�es

| q
Q
· E(Error(c)) + E(

q

Q
· e+ r + r⊤ · s)|

= | q
Q
· E(Error(c))|+ |E(r + r⊤ · s)|

= | q
Q
· E(Error(c))|+ |E(r) +

n∑
i=1

E(r · s)|

≤ | q
Q
· E(Error(c))|+ 1/2 + 1/2 · Ha(s) · |E(s)|

given that the expectation of e is 0.

Proof. (Sample Extraction, Lemma 5). Denote s = s ∈ ZN
Q and b = b[1] ∈ ZQ.

Denote b = a · s + m + e ∈ RQ, m =
∑N

i=1 m[i] ·Xi−1 and e =
∑N

i=1 e[i] ·Xi−1

then it is easy to see, that b = (a · s)[1] + m[1] + e[1]. Furthermore, denote

a =
∑N

i=1 a[i] ·Xi−1 and s =
∑N

i=1 s[i] ·Xi−1. Denote s · a = (
∑N

i=1 a[i] ·Xi−1) ·
(
∑N

i=1 s[i]·Xi−1). By expanding the product we have that the constant coe�cient

is given by (s · a)[1] = s[1] · a[1]−
∑N

i=2 s[i] · a[N − i+ 2].
If we set s = s and a such that a[1] = a[1] and a[i] = −a[i] for i = 2 . . . N ,

then (b,a) is a valid LWE sample with respect to s.

Proof. (Key Switching, Lemma 6). Let us �rst note that for all i ∈ [n] we have

x⊤ · ksK =

N∑
i=1

ℓksK∑
j=1

x[ℓksK(i− 1) + j] · ksK[ℓksK(i− 1) + j]

= LWEσ1,n,Q(s,

N∑
i=1

a[i] · s′[i])

where

σ2
1 ≤

ℓksK∑
i=1

N · B(G−1det(., LksK)) · σ
2
ksK

≤ N · ℓksK · B(G−1det(., LksK)) · σ
2
ksK.
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KeySwitchSetup(σksK, s, s
′):

Input:

A bound σksK ∈ N.

Secret keys s ∈ Zn
Q, and s′ ∈ ZN

Q .

1 : For i ∈ [N ], j ∈ [ℓksK]

2 : Set ksK[ℓksK(i− 1) + j]← LWEσksK,n,Q(s, s
′[i] · Lj−1

ksK ).

3 : Output ksK ∈ LWEσksK,n,Q(s
′, .)NℓksK .

KeySwitch(c, ksK):

Input: A LWE ciphertext c = [b,a] ∈ LWEσ,N,Q(s
′,m)

A key switching key ksK ∈ LWEσksK,n,Q(s, .)
NℓksK .

1 : Compute x← G−1
det (a, LksK) ∈ ZN

LksKℓksK.

2 : Output cout ← [b,0]− x⊤ · ksK ∈ Zn+1
Q .

Fig. 6. Key switching algorithm and its setup.

The bound follows from the fact that we have a multisum of scalars in x and
LWE samples from the key switching key.

Let us denote b = a⊤ ·s′+m+e and x⊤ ·ksK = [b̂, â] where b̂ = â⊤s+a⊤ ·s′+ê
then

cout = [b, 0]− x⊤ · ksK

= [b− b̂,−â]
= [−â⊤s+m+ e− ê,−â]

Hence, cout is a valid LWE sample of m with respect to key s and

σ2
out ≤ N · ℓksK · B(G−1det(., LksK)) · σ

2
ksK + σ2.

Proof. (Bootstrapping, Lemma 7). The correctness of blind rotation follows from
two observations. First, is that multiplying a RLWE sample with Xk for some
k ∈ ZN does not change the parameter of its noise, because the error polynomial
is only rotated, and we change the sign of some of the coe�cients. Second, we
run n times the homomorphic CMux gate, thus the variance of the output noise
follows from Lemma 3. Finally, note that each iteration rotates the message by
X−a[i]·s[i]. Denote c = [a, b], where b = a⊤s+m+e ∈ Z2N . After n iterations we

obtain arot·Xb−a⊤s = arot·Xm+e. What follows is (arot·Xm+e)[1] = f(m+e) ∈ ZQ

from the assumption on arot.
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FunctionalBootstrapver(br,u, ksK, c, arot, t):

Input:

A blind rotation key br = RGSWσbr(s, .)
n.

A key switch key ksK ∈ LWEσksK,n,Q(s, .)
ℓksKN .

A LWE sample c = LWEσ,n,q(s, .) = [b, a] ∈ ZN+1
Q .

A polynomial arot ∈ RQ.

An integer t ∈ N.

1 : cksK ← KeySwitch(c, ksK) ∈ Zn+1
Q .

2 : cpre ← ModSwitch(cksK, N) +
[⌊N

2t

⌉
,0

]
.

3 : accsgn ← BlindRotatedet(br, asgn, cpre).

4 : cmsb ← LWE-Ext(accsgn, 1).

5 : cmsb,ksK ← KeySwitch(cmsb, ksK) ∈ Zn+1
Q .

6 : cm̂sb ← ModSwitch(cmsb,ksK, 2N) ∈ Zn+1
2N .

7 : cin ← cpre + cm̂sb −
2N

4
∈ Zn+1

2N .

8 : accout ← BlindRotatever(br, arot, cin).

9 : Return cout ← LWE-Ext(accout, 1).

Fig. 7. Bootstrapping: The full domain functional bootstrapping from [YXS+21,
LMP21]. For the functional bootstrapping we additionally use a rotation polynomial
asgn that is chosen such that the blind rotation computes a special msb(.) function of
the input.
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Correctness of bootstrapping trivially follows from the correctness of the
underlying algorithms. In particular, the noise parameter of the cin ciphertext
follows from the fact that we run the key switching procedure on c and then
switch the modulus to 2N . Finally, the noise parameter of cout follows from
the correctness of blind rotation, Lemma 6, Lemma 5 and Lemma 4. Finally,
if ver = simul, then we additionally compute a linear combination of of LWE
samples of zero from the vector v. Hence the additional part h · σ2

R · σ2
rand

of the
noise follows from linear homomorphism of LWE samples and the fact that all
error terms are uncorrelated.

Correctness of the full domain functional bootstrapping is as follows. Denote
cpre = [apre, bpre] such that bpre = a⊤pre · s + mpre + epre+ ∈ ZN . Note that since

we add
[⌊

N
2t

⌉
,0

]
we ensure that 0 ≤ mpre + epre < N . Note that this shifting

operation is important as otherwise we would not be able to choose an appro-
priate rotation polynomial. Assuming, that the phase of cpre is in [0, N), we
set all coe�cients of the rotation polynomial asgn to Q/4. We blind rotate cpre
modulo 2N with asgn, so bpre − a⊤pre · s = mpre + epre + kN mod 2N for some
k ∈ {0, 1}, where mpre is the modulus switching of the message m that is en-
coded in c. From correctness of blind rotation we have that, and then key and
modulus switching we have that c

m̂sb
decrypts to 2N

4 if k = 0 and 3·2N
4 if k = 1.

We can write the decryption of c
m̂sb

as k · 6N4 + (1 − k) · 2N4 . So when we add

cpre + c
m̂sb
− 2N

4 , the term kN + k · 6N4 + (1 − k) · 2N4 −
2N
4 is zero for both

k ∈ {0, 1}. Hence we have bin = a⊤ ·s+mpre+ein mod 2N , where mpre+e < N .
Therefore, we can can choose the coe�cients of the rotation polynomial such
that arot = F (⌊Nt mpre + e⌉). Note that we will only multiply the rotation poly-
nomials by Xmpre+e, where 0 ≤ mpre + e < N . In particular, the negacyclicity
problem never occurs. In other words, we directly set the coe�cient to encode
the lookup table, and we do not worry that the rotation exceeds the number
of coe�cients and changes the sign of the output. Finally, the variance Var(ein)
follows from the error analysis of blind rotation, key switching, and modulus
reduction. And σout follows from the analysis of blind rotation.

Numerical Error. Finally, let us address the issue of numerical errors when
performing ring operations. In particular, we focus on computing products of
ring elements (or negacyclic convolutions of polynomials for our ring choice). We
measured the numerical error when computing products of ring elements with
the �tw library [FJ21]. The result is depicted in Table 4. Based on this table,
we ruled out choosing certain moduli and decomposition bases while preserving
correctness.

Note that Table 4 gives only the error of polynomial multiplication. Note that
the impact on the ciphertext error of an external product is much higher and
dependent on the secret norm of the secret key. Let (a, b) by a RLWE ciphertext
such that b− a · s = e, where e is small. Denote

(a′, b′) = (Mul(a, c),Mul(c, b))

= (a · c+ r2, b · c+ r1),
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log2(B)
log2(Q)

32 34 36 38 40 42 44 46 48

4 0 0 0 0.5 1.14 5.5. 17.3 77.7 346.91

6 0 0 0.23 1.25 4.1 24.1 72.4 325.9 -

8 0 0.5 1.9 4.2 17.5 108.1 263.3 - -

10 0.6 1.4 4.1 19.1 74.7 290.2 - - -

12 1.3 3.9 19.0 78.1 326 - - - -

14 4.6 17.8 68.2 505.7 - - - - -

16 15.8 87.8 282.2 - - - - - -

18 78.2 490.9 - - - - - - -

Table 4. The standard deviation of the numerical errors when multiplying degree
N = 211 polynomials. One polynomial has coe�cient modulus Q, and the other one
has coe�cient modulus B. We choose both polynomials uniformly at random. We
denote by �-� when the log2(Q) + log( B) + log+2(N) ≥ 64, in which case we exceed
64 bits and end up with random-looking polynomials.

where r1 and r2 is the numerical error introduce by the multiplication algorithm
Mul. Then we can see that the phase b′ − a′ · s = e − r2 · s + r1. We obtain an
additional error which in�nity norm is

||r2 · s+ r1|| ≤ NB(Q, c) · (||s||∞ + 1),

where ||r1||∞, ||r1||∞ < B(Q, c) and B(Q, c) being an error function determined
by the modulus Q and the polynomial c. If the external product is implemented
using such errorenous multiplication algorithm then we need to add 2ℓbr · N ·
B(Q, c) · (||s||∞+1) to the variance σ1 assuming that the error function B(Q, c)
is modeled by a discrete Gaussian. Consequently we need to update the bound
on σout on the cout error of the bootstrapping algorithm as follows. For ver = det
we have √

2n · ℓbr ·N · (σ2
br · B(G

−1
det(., Lbr)) +B(Q, c) · (||s||∞ + 1)),

and for ver = simul we have√
2n · ℓbr ·N · (σ2

br · B(G
−1
simul(., Lbr;σx)) + ·B(Q, c) · (||s||∞ + 1)) + h · σ2

R · σ2
rand

.

D Circuit Privacy for FHEW-style Blind Rotation

We recall the FHEW blind rotation algorithm [DM15] at Figure 8. Theorem 3
gives the distribution of the blind rotation when we plug the FHEW blind ro-
tation algorithm into the bootstrapping procedure from Figure 3, instead of
the TFHE blind rotation algorithm from Figure 2. We highlight the di�erences

between Theorem 1 and Theorem 3 with a red box .
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BRKeyGen(σbr, LFHEW, s, s):

Input:

An error distribution σbr.

A decomposition base LFHEW, where ℓFHEW = ⌈logLFHEW 2 ·N⌉.
A RLWE secret key s ∈ RQ.

A LWE secret key s ∈ Zn
t .

1 : For i ∈ [n], v ∈ [0, LFHEW − 1] and j ∈ [ℓFHEW]

2 : Set br[i, j, v] = RGSWσbr(s, X
v·s[i]·Lj−1

FHEW).

3 : Output br ∈ RGSWσbr(s, .)
n×ℓFHEW×LFHEW .

BlindRotatever(br, arot, c;σx):

Input:

A blind rotation key br = RGSWσbr(s, .)
n×ℓFHEW×LFHEW .

An rotation polynomial arot ∈ RQ.

A ciphertext c ∈ LWEσ,n,2N (s, .).

[If simul] A Gaussian param. σx.

1 : Let c = [b,a] ∈ Zn+1
2N .

2 : Set cacc,0 ← [arot ·Xb, 0] ∈ R2
Q

3 : Let V← G−1(s) ∈ Zn×ℓFHEW
LFHEW

.

4 : For i ∈ [n]:

5 : For j ∈ [ℓFHEW]:

6 : cacc,ℓFHEW·(i−1)+j−1 ← extProd(br[i, j,V[i, j]], cacc,ℓFHEW·(i−1)+j−2;σx).

7 : Output cacc,n·ℓFHEW ∈ R2
Q.

Fig. 8. FHEW-style Blind Rotation and its Setup.
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Theorem 3 (Distribution of the Bootstrap with FHEW-Style Blind
Rotation). Let br be the blind rotation key, arot ∈ RQ a rotation polynomial,
and c ∈ LWEσ(s,m) a LWE sample as de�ned in the Bootstrap algorithm in
Figure 2. Assume that arot is such that f(m) = (arot ·XPhase(cin))[1] where cin is
the LWE sample obtained at step 2 of the Bootstrap algorithm. Let cout be the
LWE sample returned by the Bootstrap algorithm for ver = simul and Gaussian
parameters σrand and σx where the Gaussian sampling algorithm G−1simul is as in
Lemma 1. Assume that σrand ≥ Cϵ,h and

σx ≥
√

1 +Bbr ·max
(
||qL,Q||,

√
L2br + 1

)
· Cδ,2·n·ℓFHEW·N ·ℓbr ,

where Bbr and BR are bounds on the in�nity norm of the noise terms in the
blind rotation key br and the masking vector v. Then we have

∆(cout, cfresh) ≤ max
(
2δ,

1

2

√
2(N+1) log(Q)

2log(1−ϵ)+h log(σrand)

)
,

where cfresh = [afresh, bfresh], bfresh = ⟨afresh, s′⟩+f(m)+erand+eout, erand ←$ ẽ⊤ ·r,
r←$ DZh,σrand

and ẽ ∈ Zh are the error terms in the vector of LWE samples v.

And �nally eout ←$ DZ,σ
x
√

1+2nℓFHEWNσbr
.

Proof (Sketch). The proof is nearly the same as the proof for Theorem 1. The
di�erence is that the FHEW blind rotation consists of a sequence of external
products, whereas the TFHE algorithm consists of a sequence of MUX gates.
Thereby, for TFHE, an important part of the proof is to show that after the
sequence of MUX gates, the error term is in the form as given by Equation 2.
For the FHEW algorithm, we have that the error is already in the required form,
which follows from Equation 1 in Section 4. In particular, we have

Error(cacc) = Error(cacc,ℓFHEW·n−1) =

n∑
i=1

ℓFHEW∑
j=1

êi,j ·X−
∑n

k=i

∑ℓFHEW
l=j V[k,l]·s[k]·Ll−1

FHEW .

To summarize, the error term after FHEW blind rotation and extraction is

Error(cext) =
n∑

i=1

ℓFHEW∑
j=1

2ℓFHEW∑
k=1

N∑
l=1

ei,j,k[l] · xi,j,k[l].

The di�erence with TFHE is the number of external products. The rest of the
proof follows the same hybrids as in the proof of Theorem 1.

E Discussion on Additional Parameters

E.1 Estimate Parameters for the Noise Flooding Technique

Here we give a rough parameter estimate for TFHE using noise �ooding. We use
our estimator for the DS-WM method setting the number of washing cycles to 1.
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In fact the noise �ooding method is a special case of the DS-WM method. In fact
we will start by modifying the DS-WM-Int parameter set. Let's set the modulus
to 2110 and ring to 212. Note that the ring is bigger that the rings that we used,
but security is below 128-bit, according to the FHE-Standard [ACC+18]! So the
parameter set doesn't satisfy out conditions, but let's make it easier. The blind
rotation error is already above B = 26 bits, so we need at least B ∗ 280 = 2106

bits of �ooding noise according to the smudging lemma (Lemma 11). A 110-
bits modulus should be large enough to accommodate the message. All other
parameters (the decomposition base etc.) stay the same so that we don't need
to increase the modulus anymore. Then we need (14 + 1) · 2 convolutions per
external product (912 · 30 = 27360 total in a larger ring), a masking key of size
3977 MB (in comparison to 186 MB), a 1464 MB bootstrapping key (we have
134 MB), and 837 MB Key switching key (we have 79 MB). Quadruple precision
FFT or Intel Hexl don't handle such big numbers. But we can use the RNS
representation at the cost of roughly 2times more convolutions. In total, we get
27360 · 2 = 54720 convolutions, in comparison to 12768 convolutions in Our-Int
parameter set. To summarize, naive �ooding has 4.28 times more convolutions
with a ring that is twice as large and requires 6278 MB of key material in
comparison to our 399 MB. Remind that this parameter set doesn't give 128-bit
security, but is close to. To satisfy our security constraint we would actually
need to take a 213 dimension ring! Note that the number of convolutions is just
an indication of how much slower an implementation can be in best case. To
implement RNS there is much more e�ort necessary, that is going to slow down
computation due to composition, memory access, cache related issue etc.
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