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Abstract

Payment channel networks (PCNs) are a layer-2 blockchain scalability solution, with
its main entity, the payment channel, enabling transactions between pairs of nodes
“off-chain,” thus reducing the burden on the layer-1 network. Nodes with multiple
channels can serve as relays for multihop payments by providing their liquidity and
withholding part of the payment amount as a fee. Relay nodes might after a while
end up with one or more unbalanced channels, and thus need to trigger a rebalancing
operation. In this paper, we study how a relay node can maximize its profits from fees
by using the rebalancing method of submarine swaps. We introduce a stochastic model
to capture the dynamics of a relay node observing random transaction arrivals and
performing occasional rebalancing operations, and express the system evolution as a
Markov Decision Process. We formulate the problem of the maximization of the node’s
fortune over time over all rebalancing policies, and approximate the optimal solution by
designing a Deep Reinforcement Learning (DRL)-based rebalancing policy. We build
a discrete event simulator of the system and use it to demonstrate the DRL policy’s
superior performance under most conditions by conducting a comparative study of
different policies and parameterizations. Our work is the first to introduce DRL for
liquidity management in the complex world of PCNs.

∗A version of this work appeared in the 4th International Conference on Mathematical Research for the
Blockchain Economy (MARBLE 2023) and received the best paper award.
This work was supported by a grant from JP Morgan Chase. The authors would like to thank Leonidas

Georgiadis, Nicholas Nordlund and Konstantinos Poularakis for helpful discussions.
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1 Introduction

Blockchain technology enables trusted interactions between untrusted parties, with financial
applications like Bitcoin and beyond, but with also known scalability issues [1]. Payment
channels are a layer-2 development towards avoiding the long confirmation times and high
costs of the layer-1 network: they enable nodes that want to transact quickly, cheaply and
privately to do so by depositing some balances to open a payment channel between them-
selves, and then trustlessly shifting the same total balance between the two sides without
broadcasting their transactions and burdening the network. Connected channels create a
Payment Channel Network (PCN), via which two nodes not sharing a channel can still pay
each other via a sequence of existing channels. Intermediate nodes in the PCN function as
relays: they forward the payment along its path and collect relay fees in return. As trans-
actions flow through the PCN, some channels get depleted, causing incoming transactions
to fail because of insufficient liquidity on their path. Thus, the need for channel rebalancing
arises.

In this paper, we study the rebalancing mechanism of submarine swaps, which allows a
blockchain node to exchange funds from on- to off-chain and vice versa. Since a swap in-
volves an on-chain transaction, it takes some time to complete. Taking this into account, we
formulate the following optimal rebalancing problem as a Markov Decision Process (MDP):
For a node relaying traffic across multiple channels, determine an optimal rebalancing strat-
egy over time (i.e. when and how much to rebalance as a function of the transaction arrival
rates observed from an unknown distribution and the confirmation time of an on-chain trans-
action), so that the node can keep its channels liquid and its profit from relay fees can be
maximized.

More specifically, our contributions are the following:

• We develop a stochastic model that captures the dynamics of a relay node with two
payment channels under two timescales: a continuous one for random discrete transac-
tion arrivals in both directions from distributions unknown to the node, and a discrete
one for dispatching rebalancing operations.

• We express the system evolution in our model as an MDP with continuous state and ac-
tion spaces and time-dependent constraints on the actions, and formulate the problem
of relay node profit maximization.

• We approximate the optimal policy of the MDP using Deep Reinforcement Learn-
ing (DRL) by appropriately engineering the states, actions and rewards and tuning a
version of the Soft Actor-Critic algorithm.

• We develop a discrete event simulator of the system, and use it to evaluate the per-
formance of the learning-based as well as other heuristic rebalancing policies under
various transaction arrival conditions and demonstrate the superiority of our policy in
a range of regimes.

In summary, our paper is the first to formally study the submarine swap rebalancing
mechanism and to introduce a DRL-based method for channel rebalancing in particular, and
for PCN liquidity management in general.
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The remainder of the paper is organized as follows. In Sec. 2 we introduce the operation
of payment channels and relay nodes, explain the need for rebalancing, and introduce the
submarine swap rebalancing mechanism. In Sec. 3 we describe our stochastic model of a
relay node with two payment channels and write the profit maximization problem using an
MDP. In Sec. 4 we present heuristic policies as well as design a DRL-based algorithm for an
approximately optimal solution to the problem, and in Sec. 5 we describe the experimental
setup and results. In Sec. 6 and 7 we discuss future directions and some related work.
Finally, Sec. 8 concludes the paper.

2 Background

2.1 Payment channel operation
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Figure 1: A payment channel between nodes
N1 and N2 and current balances of 3 and 4

A payment channel (Fig. 1) is created be-
tween two nodes N1 and N2 after they de-
posit some capital to a channel-opening on-
chain transaction. After this transaction
is confirmed, the nodes can transact com-
pletely off-chain (i.e. in the channel) with-
out broadcasting their interactions to the
layer-1 network, and without the risk of los-
ing funds, thanks to a cryptographic safety mechanism. The sum of their two balances in
the channel remains constant and is called the channel capacity. A transaction of amount α
from N1 to N2 will succeed if the balance of N1 at that moment suffices to cover it. In this
case, the balance of N1 is reduced by α and the balance of N2 is increased by α.

2.2 The role of relay nodes
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Figure 2: Processing of a transaction in a pay-
ment channel network: before (left) and after
(right)

As pairs of nodes create channels, a payment
channel network (Fig. 2) is formed, over
which multihop payments are possible: Con-
sider a transaction of amount 5 from N1 to
N3 via N2. Note that the amount 5 includes
the fees that will have be paid on the way,
e.g. 1% at each intermediate node. In the
N1N2 channel, N1’s local balance is reduced
by 5 and N2’s local balance is increased by
5. In the N2N3 channel, N2’s local balance is
reduced by 5−fees = 4.95 andN3’s local bal-
ance is increased by 4.95. N2’s total capital
in all its channels before the transaction was 2+1+7 = 10, while after it is 7+1+2.05 = 10.05,
so N2 made a profit of 0.05 by acting as a relay. If one of the outgoing balances did not
suffice, then the transaction would fail end-to-end, thanks to a smart contract mechanism,
the Hashed Time-Lock Contract (HTLC). The role of relay nodes is fundamental for the con-
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tinuous operation of a PCN. The most prominent PCN currently is the Lightning Network
[2] built on top of Bitcoin. More details on PCN operation can be found in [3, 4].

2.3 The need for rebalancing

Depending on the demand a payment channel is facing in its two directions, funds might
accumulate on one side and deplete on the other. This might happen due to asymmetric
demand inside single channels, the random nature of arrivals causing temporary depletions at
specific times (e.g. when a large transaction arrives), or even symmetric demand between two
endpoints of a multihop path which can cause imbalance due to fees withheld by intermediate
nodes (an example of this latter more subtle case is given in Appendix A). The resulting
imbalance is undesirable, as it leads to transaction failures and loss of profit from relay fees.
In fact, an entire PCN will stop being operational in finite time without external intervention,
creating the need for rebalancing mechanisms.

2.4 The submarine swap rebalancing mechanism

In this work, we study submarine swaps, introduced in [5] and used commercially by Boltz1

and Loop2. At a high level, a submarine swap works as follows (Fig. 3): Node N1 owns some
funds in its channel with node N2, and some funds on-chain. At time t0, the channel N1N2

is almost depleted on N1’s side (balance = 5). N1 can start a swap-in by paying an amount
(50) to a Liquidity Service Provider (LSP) – a wealthy node with access to both layers – via
an on-chain transaction, and the LSP will give this amount back (reduced by a 10% swap
fee, so 45) to N1 off-chain via a path that goes through N2. The final amount that is added
at N1 (and subtracted at N2) is 45− ε due to the relay fees spent on its way from the LSP.
Thus, at time t1 the channel will be almost perfectly balanced. The reverse process is also
possible (a reverse submarine swap or swap-out) in order for a node to offload funds from
its channel, by paying the server off-chain and receiving funds on-chain3.

Layer 2

Layer 1 50

: 200
: 150

N1’s on-chain 
funds

LSP

: 5
: 50 -

: 95
: 50 + 45

Figure 3: A submarine swap (swap-in)

A sketch of the technical protocol fol-
lowed during a successful swap-in (a swap-
out is similar) is shown in Fig. 4 and subse-
quently modeled in Sec. 3.1.3. First, a node-
client initiates the swap by generating a hash
preimage, creating an invoice of the desired
swap amount r tied to this hash and with a
certain expiration time Texp, and sends it to
an LSP that is willing to make the exchange.

The LSP then quotes what it wants to be paid on-chain in exchange for paying the client’s
invoice off-chain, say α+Fswap(α), where Fswap(α) is the LSP’s swap service fee. If the client
accepts the exchange rate, it creates a conditional on-chain payment of amount α+Fswap(α)

1https://boltz.exchange
2https://lightning.engineering/loop
3In both cases, the layer-2 channel balances are altered with the help of an on-chain (layer-1, one layer

below the channel) transaction, hence the characterization “submarine.”
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to the LSP based on an HTLC with the same preimage as before and broadcasts the pay-
ment to the blockchain network. The payment can only be redeemed if the LSP knows the
preimage, and the client will only reveal the preimage once it has received the LSP’s funds
on-chain. Thus, the LSP pays the off-chain invoice. This forces the client to reveal the
preimage, and now the LSP can redeem the on-chain funds and the swap is complete. The
entire process happens trustlessly thanks to the HTLC mechanics. More technical details
can be found in [6, 7].

① Client generates a hash preimage 
and sends invoice of amount 

to LSP �ed to the hash
② LSP quotes desired 

on-chain payment 
 ③ Client accepts and broadcasts 

a condi�onal on-chain payment 
of to the LSP, 
HTLC-ed with the preimage ④ LSP pays the invoice 

off-chain to the 
hash-locked output

⑤ Client automa�cally reveals preimage
⑥ LSP sweeps the hash-

locked on-chain transac�on 
using the preimage

�m
e

Figure 4: A swap-in step-by-step

There is an important tradeoff the node
has to make, which is to strike a balance in
terms of how often and how much it should
rebalance: it can choose to not rebalance
a lot to avoid paying swap fees, but then
it forfeits profits from relay fees of trans-
actions dropped due to imbalance. On the
other hand, it can choose to rebalance a lot
so as not to drop any transaction, but then
incurs high rebalancing fee costs. This ob-
servation motivates us to study the problem
of demand-aware and timely dispatching of
swaps of the right amount by a node aim-
ing to maximize its total fortune, which is
presented in the next section.

3 Problem formulation

3.1 System evolution

In this section, we introduce a stochastic model of a PCN relay nodeN that has two channels,
one with node L and one with node R, and wishes to maximize its profits from relaying
payments from L to R and vice versa (Fig. 5). Let bLN(τ), bNL(τ), bNR(τ), bRN(τ) be the
channel balances and BN(τ) be the on-chain amount of N at time τ . Let Cn be the total
capacity of the channel Nn, n ∈ N ≜ {L,R}. Events happen at two timescales: a continuous
one for arriving transactions, and a discrete one for times when the node is allowed to
rebalance.

3.1.1 The transaction timescale

Transactions arrive as a marked point process and are characterized by their direction (L-
to-R or R-to-L), time of arrival and amount. We consider node N to not be the source or
destination of any transactions itself, but rather to only act as a relay. At each moment
in continuous time (denoted by τ), (at most) one transaction arrives in the system. All
transactions are admitted, but some fail due to insufficient balances.

Let f(α) be the fee that a transaction of amount α pays to a node that relays it. We
assume all nodes charge the same fees. f can be any fixed function with f(0) = 0. In
practice, for α > 0, f(α) = fbase + fprop · α, where the base fee fbase and the proportional
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fee fprop are constants. We state our model for a general relay fee function; however, as
currently about 50% of Lightning nodes have set the base fee to zero [8], in our experiments
we too consider f(α) = fprop · α.

Figure 5: System model

Let ALR(τ), ARL(τ) be the externally arriving
amounts coming from node L in the L-to-R direction
and from node R in the R-to-L direction at time τ re-
spectively, each drawn from a distribution that is fixed
but unknown to node N . An arriving transaction of
amount ALR(τ) = α is feasible if and only if there is
enough balance in the L-to-R direction in both channels,
i.e. bLN(τ) ≥ α and bNR ≥ α − f(α), and similarly for
the R-to-L direction. The successfully admitted and pro-
cessed amounts by node N at time τ are4:

SLR(τ) =

{
ALR(τ) , if ALR(τ) ≤ bLN(τ) and ALR(τ)− f(ALR(τ)) ≤ bNR(τ)

0 , otherwise
(1)

SRL(τ) =

{
ARL(τ) , if ARL(τ) ≤ bRN(τ) and ARL(τ)− f(ARL(τ)) ≤ bNL(τ)

0 , otherwise
(2)

Then the profit of node N at time τ is f(SLR(τ)) + f(SRL(τ)), and the lost fees (from
transactions that potentially failed to process) are f

(
ALR(τ)−SLR(τ)

)
+f

(
ARL(τ)−SRL(τ)

)
.

The balance processes at time τ evolve as follows:

bLN(τ) → bLN(τ) + (SRL(τ)− f(SRL(τ)))− SLR(τ) (3)

bNL(τ) → bNL(τ) + SLR(τ)− (SRL(τ)− f(SRL(τ))) (4)

bNR(τ) → bNR(τ) + SRL(τ)− (SLR(τ)− f(SLR(τ))) (5)

bRN(τ) → bRN(τ) + (SLR(τ)− f(SLR(τ)))− SRL(τ) (6)

The on-chain amount BN(τ) is not affected by the processing of off-chain transactions.

3.1.2 The rebalancing decision (control) timescale

The evolution of the system can be controlled by node N using submarine swap rebalancing
operations. Rebalancing may start at times ti = i · Tcheck, i = 0, 1, ..., and takes a (fixed)
time Tconf to complete (on average 10 minutes for Bitcoin)5. We consider the case where
Tcheck ≥ Tconf (to avoid having concurrent rebalancing operations in the same channel that
could be combined into one).

4Since in the sequel we focus on the discrete and sparse time scale of the periodic times at which the
node rebalances, we make the fair assumption (as e.g. in [9]) that off-chain transactions are processed
instantaneously across their entire path and do not fail in their subsequent steps after they cross the two
channels (if a transaction were to fail outside the two channels, it can be viewed as of zero value by the
system).

5In practice, completion happens when the miners solve the random puzzle and produce the Proof-of-
Work for the next block that includes the rebalancing transaction. The time for this to happen fluctuates,
though only slightly, so we use a fixed value for the sake of tractability.
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The system state is defined only for the discrete rebalancing decision timescale as the
collection of the off- and on-chain balances:

S(ti) =
(
bLN(ti), bNL(ti), bNR(ti), bRN(ti), BN(ti)

)
(7)

At each time ti, node N can decide to request a swap-in or a swap-out in each channel.
Call the respective amounts rinL (ti), r

out
L (ti), r

in
R (ti), r

out
R (ti). At any time ti, in a given channel,

either a swap-in or a swap-out or nothing will requested, but not both a swap-in and a swap-
out6.

Let F in
swap(α) and F out

swap(α) be the swap fees that the LSP charges for an amount α for
a swap-in and a swap-out respectively, where F in

swap(·) and F out
swap(·) are any nonnegative

functions with Fswap(0) = 0. For ease of exposition, we let all types of fees the node will
have to pay (relay fees for the off-chain part, on-chain miner fees, server fees) be part of the
above swap fees, and be the same for both swap-ins and swap-outs when a net amount rnet
is transferred from on- to off-chain or vice versa: F in

swap(rnet) = F out
swap(rnet) = Fswap(rnet) ≜

rnetF + M , where the proportional part F includes the server fee and off-chain relay fees,
and M includes the miner fee and potential base fees.

Note that the semantics of the swap amounts r are such that they represent the amount
that will move in the channel (and not necessarily the net change in the node’s fortune). As
a result of this convention and based on the swap operation as described in section 3.1.3,
the amount rin of a swap-in coincides with the net amount rinnet by which the node’s fortune
decreases (as rin does not include the swap fee), while the amount rout of a swap-out includes
the swap fee and the net amount by which the node’s fortune decreases is routnet = ϕ−1(rout),
where ϕ(rnet) ≜ rnet+Fswap(rnet), and ϕ−1 is the generalized inverse function of ϕ(·) (it always
exists: ϕ−1(y) = min{x ∈ N : ϕ(x) = y}). For our Fswap(·) it is ϕ(rnet) = rnet(1 + F ) +M
for rnet > 0, ϕ(0) = 0, so ϕ−1(y) = (y −M)/(1 + F ) for y > 0 and ϕ−1(0) = 0.

3.1.3 A submarine swap step-by-step

We now describe how a rebalancing operation on the Nn channel is affecting the system
state. First, we describe a swap-in of amount rinn initiated by node N to refill N ’s local
balance in the Nn channel:

• At time ti, node N locks the net rebalancing amount plus fees and subtracts it from
its on-chain funds: BN → BN − (rinn + F in

swap(r
in
n ))

• At time ti + Tconf , the on-chain transaction is confirmed, so the LSP sends a payment
of rinn to node N off-chain7. The rebalancing payment reaches node n:

If bnN ≤ rinn (i.e. n does not have enough balance to forward it), then the off-chain
payment fails. The on-chain funds are unlocked8 and refunded back to the on-chain
amount: BN → BN + (rinn + F in

swap(r
in
n ))

6The other two nodes (L and R) are considered passive, i.e. they perform no swap operations themselves.
7The LSP is a well-connected node owning large amounts of liquidity, so we reasonably assume that it

can always find a route from itself to N , possibly via splitting the amount across multiple paths.
8In practice, the on-chain funds are unlocked after a time Texp to prevent malicious clients from requesting

many swaps from an LSP and then defaulting. However, since we are concerned with online and cooperative
clients with on-chain amounts usually quite larger than the amounts in their channels (and thus than their
swaps), and also there is currently a community effort to reduce or even eliminate Texp, we ignore it.

7



Otherwise (if the transaction is feasible), n forwards the payment to N : bnN → bnN−rinn
and bNn = bNn + rinn

A swap-out of amount routn , initiated by node N to offload some of its local balance to
the chain, works as follows:

• At time ti, node N locks the net rebalancing amount plus fees and sends it to the LSP
via the off-chain network: bNn → bNn − routn . Note that routn includes the fees.

• At time ti + Tconf , the on-chain transaction is confirmed, so node N receives the funds
on-chain: BN → BN + ϕ−1(routn ), and the funds are also unlocked in the channel and
pushed towards the remote balance: bnN → bnN + routn

3.1.4 Rebalancing constraints

Based on the steps just described, swap operations will succeed if and only if their amounts
satisfy the following constraints:

• Rebalancing amounts must be non-negative:

rinn (ti), r
out
n (ti) ≥ 0 for all i ∈ N, n ∈ N (8)

• A swap-in and a swap-out cannot be requested in the same channel at the same time9:

rinn (ti) · routn (ti) = 0 for all i ∈ N, n ∈ N (9)

• The swap-out amounts (which already include the swap fees) must be greater than the
fees themselves:

routn (ti)− F out
swap(r

out
n (ti)) ≥ 0 for all i ∈ N, n ∈ N (10)

• The respective channel balances must suffice to cover the swap-out amounts (which
already include the swap fees):

routn (ti) ≤ bNn(ti) for all i ∈ N, n ∈ N (11)

• The on-chain balance must suffice to cover the total swap-in amount plus fees:∑
n∈N

(
rinn (ti) + F in

swap(r
in
n (ti))

)
≤ BN(ti) for all i ∈ N (12)

9This fact allows us to express the decision per channel as a single variable taking both positive and
negative values, instead of two non-negative variables. We do so in Section 4.2, but we retain two action
variables per channel in the present section for the sake of clarity.
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3.1.5 State evolution equations

Now we are able to write the complete state evolution equations. The amounts added to
each balance due to successful transactions during the interval (ti, ti+1) are

d
(ti,ti+1)
NL ≜

∫
τ∈(ti,ti+1)

(
SLR(τ)− (SRL(τ)− f(SRL(τ)))

)
dτ (13)

d
(ti,ti+1)
NR ≜

∫
τ∈(ti,ti+1)

(
SRL(τ)− (SLR(τ)− f(SLR(τ)))

)
dτ (14)

and d
(ti,ti+1)
nN ≜ −d

(ti,ti+1)
Nn . Then for actions taken subject to the constraints (8)–(12), the

state evolves as follows:

bnN(ti+1) = bnN(ti) + d
(ti,ti+1)
nN − (rinn (ti)− zn(ti)) + routn (ti) (15)

bNn(ti+1) = bNn(ti) + d
(ti,ti+1)
Nn + (rinn (ti)− zn(ti))− routn (ti) (16)

BN(ti+1) = BN(ti)−
∑
n∈N

(
rinn (ti)− F in

swap(r
in
n (ti))

)
+

∑
n∈N

ϕ−1(routn (ti)) +
∑
n∈N

wn(ti) (17)

where zn(ti) and wn(ti) are the refunds of the swap-in amount off- and on-chain respectively
in case a swap-in operation fails:

zn(ti) = rinn (ti)1{bnN(ti) + d
(ti,ti+Tconf)
nN < rinn (ti)} (18)

wn(ti) = zn(ti) + F in
swap(zn(ti)) (19)

3.2 Writing the problem as a Markov Decision Process

The objective function the node wishes to maximize in the real world is its total fortune
both in the channels and on-chain. The fortune increase due to the action (the 4-tuple) r(ti)
taken at step ti is:

D(ti, r(ti)) ≜

(∑
n∈N

bNn(ti+1) +BN(ti+1)

)
−
(∑

n∈N

bNn(ti) +BN(ti)

)
(20)

Equivalently, the node can minimize the total fee cost, which comes from two sources:
from lost fees because of dropped transactions10, and from fees paid for rebalancing opera-
tions:

L(ti, r(ti)) =

∫
τ∈(ti,ti+1)

(
f(ALR(τ)− SLR(τ)) + f(ARL(τ)− SRL(τ))

)
dτ

+
∑
n∈N

(
F in
swap(r

in
n (ti)) + F out

swap(r
out
n (ti))

) (21)

10Note that we assume the node knows not only about the transactions that reach it, but also about the
transactions that are supposed to reach it but never do because of insufficient remote balances. This is not
strictly true in practice, but the node can approximate it by observing the transactions during an interval
in which the remote balances are both big enough so that no incoming transaction would fail, and create an
estimate based on this observation.
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The two objectives at each timestep sum to
∫
τ∈(ti,ti+1)

(f(ALR(τ) + f(ARL(τ)) dτ (the fees

that would be collected by the node if the total arriving amount had been processed), which
is a quantity independent of the control action, and therefore maximizing the total fortune
and minimizing the total fee cost are equivalent.

A control policy π = {(ti, rπ(ti))}i∈N consists of the times ti and the corresponding
actions rπ(ti) =

(
rinL (ti), r

out
L (ti), r

in
R (ti), r

out
R (ti)

)
taken from the set of allowed actions R =

[0, CL]
2 × [0, CR]

2, and belongs to the set of admissible policies

Π =
{
{(ti, r(ti))}i∈N such that r(ti) ∈ R for all i ∈ N

}
Ultimately, the goal of node N is to find a rebalancing policy that maximizes the long-

term average expected fortune increase D (equivalently, minimizes the long-term average
expected fee cost L) over all admissible rebalancing policies:

maximize
π∈Π

lim
H→∞

1

tH

H∑
i=0

E [D(ti, r
π(ti))] (22)

subject to the constraints (8)–(12).

4 Heuristic and deep reinforcement learning-based re-

balancing policies

In this section, we describe the steps we took in order to apply DRL to approximately
solve the formulated MDP. We first outline two heuristic policies, which we will use later to
benchmark our DRL-based solution.

4.1 Heuristic policies

Algorithm 1: Autoloop rebalancing policy

Input: state as in Eq. (7)
Parameters: Tcheck, low, high

1 every Tcheck do
2 foreach neighbor n ∈ N do
3 midpoint = Cn · (low + high)/2
4 if bNn < low · Cn then
5 Swap-in amount = midpoint− bNn

6 else if bNn > high · Cn then
7 Swap-out amount = bNn −midpoint

8 else
9 Perform no action
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Autoloop [10, 11] is a policy that allows a node to schedule automatic swap-ins (resp.
swap-outs) if its local balance falls below a minimum (resp. rises above a maximum) thresh-
old expressed as a percentage of the channel’s capacity (Alg. 1)11. The initiated swap is of
amount equal to the difference of the local balance from the midpoint, i.e. the average of the
two thresholds. We expect Autoloop to be suboptimal with respect to profit maximization
in certain cases, as it does not take the expected demand into account and thus possibly
performs rebalancing at times when it is not necessary.

This motivates us to define another heuristic policy that incorporates the empirical de-
mand information. We call this policy Loopmax (Alg. 2), as its goal is to rebalance with the
maximum possible amount and as infrequently as possible (without sacrificing transactions),
based on the demand at each time. Loopmax keeps track of the total arriving amounts,
and estimates the net change of each balance per unit time using the difference of the total
amounts that arrived in each direction:

Ânet
LN(τ) = −Ânet

NL(τ) ≜
1

τ

∫
t∈[0,τ ]

(
ARL(t)− f(ARL(t))− ALR(t)

)
dt (23)

Ânet
RN(τ) = −Ânet

NR(τ) ≜
1

τ

∫
t∈[0,τ ]

(
ALR(t)− f(ALR(t))− ARL(t)

)
dt (24)

For each channel, we first calculate the estimated time to depletion (ETTD) or satura-
tion (ETTS) of the channel, depending on the direction of the net demand and the current
balances, and using this time we dispatch a swap of the appropriate type not earlier than
Tcheck + Tconf before depletion/saturation, and of the maximum possible amount. The ra-
tionale is that if e.g. ETTD ≥ Tcheck + Tconf , the policy can leverage this fact to postpone
starting a swap until the next check time, since until then no transactions will have been
dropped. If ETTD < Tcheck + Tconf though, the policy should act now, as otherwise it will
end up dropping transactions during the following interval of Tcheck + Tconf . The maximum
possible swap-out is constrained by the local balance at that time, while the maximum pos-
sible swap-in is constrained by the remote balance at that time12 and the on-chain amount:
an on-chain amount of BN can support (by including fees) a net swap-in amount of at most
ϕ−1(BN).

Compared to Autoloop, Loopmax has the advantage that it rebalances only when it
is absolutely necessary and can thus achieve savings in swap fees. On the other hand,
Loopmax’s aggressiveness can lead it to extreme rebalancing decisions when traffic is quite
skewed in a particular direction (e.g. it can do a swap-in of almost the full capacity, which
is very likely to fail due to randomness in the transaction arrivals). A small modification
we can use on top of Alg. 2 to alleviate this is to define certain safety margins of liquidity
that Loopmax should always leave intact on each side of the channel, so that incoming
transactions do not find it depleted due to a large pending swap.

11The original Autoloop algorithm defines the thresholds in terms of inbound liquidity in a node’s channel.
We adopt an equivalent balance-centric view instead.

12Actually, it is constrained by the remote balance at the time of the swap-in’s completion. We will
improve this later using estimates of future balances.
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Algorithm 2: Loopmax rebalancing policy

Input: state as in Eq. (7)
Parameters: Tcheck

1 every Tcheck do

2 Update {Ânet
Nn}n∈N according to Eqs. (23)–(24)

3 foreach neighbor n ∈ N do

4 if Ânet
Nn < 0 then

5 ETTD = bNn/|Ânet
Nn| /* estimated time to depletion */

6 if ETTD < Tcheck + Tconf then
7 Swap-in amount = max{ϕ−1(BN), bnN} /* maximum possible swap in

*/

8 else
9 Perform no action

10 else if Ânet
Nn > 0 then

11 ETTS = bnN/Â
net
Nn /* estimated time to saturation */

12 if ETTS < Tcheck + Tconf then
13 Swap-out amount = bNn /* maximum possible swap out */

14 else
15 Perform no action

16 else
17 Perform no action

4.2 Deep reinforcement learning algorithm design

Having formulated the problem as an MDP, we now need to find an (approximately) optimal
policy. The problem is challenging for a number of reasons:

• The problem dynamics are not linear.

• The state and action spaces are continuous and thus tabular approaches are not appli-
cable.

• There are time-dependent constraints on the actions.

• Choosing to not rebalance at a specific time requires special treatment, as otherwise
the zero action will be sampled from a continuous action space with zero probability.

To tackle these challenges, we resort to approximate methods, and specifically Reinforce-
ment Learning (RL). In the standard RL framework, an agent makes decisions based on a
policy that is represented as a probability distribution over states and actions: p : p(s, a) →
[0, 1], with p(s, a) being the probability that action a will be taken when the environment is
in state s. Since our problem has continuous state and action spaces and the policy cannot be
stored in tabular form, we need to use function approximation techniques. Neural networks
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serve well the role of function approximators in many applications [12]. Some algorithms
appropriate for this type of problems are Deep Deterministic Policy Gradient (DDPG) [13]
and Soft Actor-Critic (SAC) [14]. We decided to use the latter, as DDPG is known to exhibit
extreme brittleness and hyperparameter sensitivity [15].

We now describe our methodology around how we engineer our DRL algorithm based on
the vanilla SAC in order to arrive at a solution that deals with all the above challenges.

For the RL agent’s environment, we use as state the five balances (off- and on-chain) and
the estimates of the remote balances at the time of the swap completion, each normalized
appropriately: by the respective channel’s capacity, or by a total target fortune in the on-
chain amount’s case. Thus, our state space is [0, 1]7. As actions, instead of the 4-tuple of
Section 3, we use a 2-tuple (rL, rR), i.e. a single variable for each channel that can take
both positive (swap-in) and negative (swap-out) values. Raw actions are sampled from the
entire continuous action space; before the raw action is applied, it undergoes some processing
described in the sequel.

As mentioned, an action with a coordinate equal to zero would be selected with zero
probability. In reality, though, performing zero rebalancing in a channel when a swap is not
necessary is important for maximizing the fortune/minimizing the costs, and an action the
agent should learn to apply. To this end, if the raw action coordinate is less than a threshold
ρ0 (e.g. 20%) of the channel capacity, we force the respective applied action to be zero.
This way, we make the zero action selectable with positive probability, and at the same time
prevent the agent from performing swaps too small in size (which would increase the cost).

Moreover, in order to guide the algorithm to respect the constraints, we perform an
additional processing step. The vanilla SAC algorithm [14] operates on an action space that
is a compact subset of Rk for all decision times. In our case, though, the allowed actions
vary due to the time-dependent constraints (8)–(12). We therefore define the action space to
be [−1, 1]2, where each coordinate denotes the percentage not of the entire channel capacity,
but of the maximum amount available for the respective type of swap at that moment. We
now focus on deriving these maximum amounts from the constraints.

All constraints are decoupled per channel, except for (12). However, we observe that
given some traffic, mostly in the L-to-R direction or mostly in the R-to-L direction or equal
in both directions, the local balances of node N will either deplete in one channel and
accumulate in the other, or accumulate in both, but never both deplete. Thus, a swap-in in
both channels in general will not be a good action. Therefore, for the RL solution’s purposes
we can split (12) into two constraints, one for each channel, with the right-hand side of each
being the entire amount BN(ti). In case the agent does take the not advisable decision of
swap-ins in both channels and their sum exceeds the on-chain amount, one of the two will
simply fail.

Another useful observation is that when a swap-in is about to complete time Tconf after
it commenced, the remote balance in the respective channel needs to suffice (otherwise the
swap-in will fail and a refund will be triggered as in Eqs. (18)–(19)):

rinn (ti) ≤ bnN(ti) + d
(ti,ti+Tconf)
nN for all i ∈ N, n ∈ N (25)

Although (25) are not hard constraints when the decision is being made like the ones of
Section 3.1.4, we would like to guide the agent to respect them. An obstacle is that the
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swap-in decision is made at time ti, when the node does not yet know the arriving amount
d
(ti,ti+Tconf)
nN . To approximate the right-hand side of (25) in terms of quantities known at

time ti, we can use the difference of the total (and not the successful as in dnN ’s definition)
amounts that arrived in each direction (Eqs. (23)–(24)):

bnN(ti) + d
(ti,ti+Tconf)
nN ≈ b̂nN(ti + Tconf) ≜

(
min{bnN(ti) + Ânet

nN · Tconf , Cn}
)+

(26)

A better estimate can be obtained by using the empirical amounts that succeeded in
either direction:

ŜLR(τ) ≜
1

τ

∫
t∈[0,τ ]

SLR(t)dt and ŜRL(τ) ≜
1

τ

∫
t∈[0,τ ]

SRL(t)dt (27)

Then the amount ŜLR (resp. ŜRL) will be flowing in the L-to-R (resp. R-to-L) direction
for either the entire duration of Tconf , or until one of the balances in the respective direction
is depleted:

b̂LN(ti + Tconf) ≜

(
min

{
bLN(ti)− ŜLR(ti)min

{
Tconf ,

bLN

ŜLR(ti)
,

bNR

ŜLR(ti)

}
+ (1− fprop)ŜRL(ti)min

{
Tconf ,

bRN

ŜRL(ti)
,

bNL

ŜRL(ti)

}
, CL

})+

(28)

b̂RN(ti + Tconf) ≜

(
min

{
bRN(ti)− ŜRL(ti)min

{
Tconf ,

bRN

ŜRL(ti)
,

bNL

ŜRL(ti)

}
+ (1− fprop)ŜLR(ti)min

{
Tconf ,

bLN

ŜLR(ti)
,

bNR

ŜLR(ti)

}
, CR

})+

(29)

Thus, the approximate version of (25) becomes:

rinn (ti) ≤ b̂nN(ti + Tconf) for all i ∈ N, n ∈ N (30)

Note that we have given the agent more flexibility compared to Autoloop and Loopmax:
it is allowed to perform swap-ins of amount bigger than the one allowed by the current
balances, under the expectation that by the time of their completion the balances will be
adequate.

Now we can write all constraints (8)–(12), (30) in terms of the 2-tuple (rL, rR) as follows:

rn ∈
[
−bNn,−ρoutmin

]
∪
[
0,min{b̂nN(ti + Tconf), ϕ

−1(BN(ti)), Cn}
]
, n ∈ N

where ρoutmin ≜ M/(1− F ) is the minimum solution of (10).
If ρ0Cn ≫ ρoutmin, which should hold in practice as ρoutmin is very small, we can write

rn ∈
[
−bNn,min{b̂nN(ti + Tconf), ϕ

−1(BN(ti)), Cn}
]
, n ∈ N (31)
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Table 1: Mapping of raw actions sampled from the learned distribution to final swap amounts
requested for channel Nn, n ∈ N

Raw action rn ∈ [−1, 1] Corresponding absolute amount r̃n Final requested swap amount
rn < 0 |rn|bNn swap out r̃n1{r̃n ≥ ρ0Cn}
rn ≥ 0 rn min{b̂nN(ti + Tconf), ϕ

−1(BN(ti)), Cn} swap in r̃n1{r̃n > ρ0Cn}

The final mapping of raw actions (sampled from the distribution on the entire action
space) to the finally applied actions is shown in Table 1.

We craft the reward signal to guide the agent towards optimizing the objective: we
add the node’s fortune increase (20) until the next check time, subtract the fee losses from
transactions dropped until the next check time, and also subtract a fixed penalty for every
swap the algorithm initiates and which eventually fails. A high-level description of the most
important components of the final learning process is given in Alg. 3. We call the emerging
policy “RebEL”: Rebalancing Enabled by Learning.

Algorithm 3: RL algorithm for RebEL policy

Input: state as in Eq. (7)
Parameters: Tcheck, various learning parameters, penalty

1 every Tcheck do

2 Update estimates ŜLR, ŜRL and b̂LN , b̂RN according to Eqs. (27)–(29)
3 Perform SAC gradient step to update policy distribution as in [14] based on

replay memory
4 Fetch state ∈ [0, 1]7

5 Sample rawAction from [−1, 1]2 according to policy distribution
6 processedAction = process(rawAction) where process(·) is described in Table 1
7 Apply processedAction and wait for its completion
8 reward = fortuneAfter − fortuneBefore − lostFees − penalty · #OfFailedSwaps
9 Fetch nextState ∈ [0, 1]7

10 Store transition (state, rawAction, reward, nextState) to replay memory

5 Evaluation

5.1 Simulator

In order to evaluate the performance of different rebalancing policies, we build a discrete
event simulator of a relay node with two payment channels and rebalancing capabilities using
Python SimPy [16]. The simulator treats each channel as a resource allowed to undergo at
most one active swap at a time, and allows for parameterization of the initial balances,
the transaction generation distributions (frequency, amount, number) in both directions,
the different fees, the swap check and confirmation times, the rebalancing policy and its
parameters13.

13The code is publicly available at https://github.com/npapadis/payment-channel-rebalancing.
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5.2 Experimental setup

We simulate a relay node with two payment channels, each of a capacity of $1000 split equally
between the channel’s nodes. Transactions arrive from both sides as Poisson processes. We
evaluate policies Autoloop, Loopmax and RebEL defined in Sec. 4, as well as the None
policy that never performs any rebalancing. We use Tcheck = Tconf = 10 minutes, miner fee
M = $2/on-chain transaction (tx), swap fee F = 0.5%, 0.3 and 0.7 as the low and high
liquidity thresholds of Autoloop, and 2 minutes worth of estimated traffic as safety margins
for Loopmax. We run all experiments on a regular consumer laptop.

We experimented with different hyperparameters for the original SAC algorithm14 as well
as for RebEL parameters and reward shapes, and settled with the ones shown in Appendix B.
We performed experiments for the transaction amount distribution being Uniform in [0, 50]
and Gaussian with mean 25 and standard deviation 20, and the results were very similar.
Therefore, all plots shown below are for the Gaussian amounts.

5.3 Results

5.3.1 The role of fees

Current median fee rates for transaction forwarding are in the order of 3 · 10−5 ($/$) or
0.003%15, while swap server fees are in the order of 0.5%16 and miner fees are in the order
of 2 $/tx17. In order to see if a relay node can make a profit with such fees, we perform
the following back-of-the-envelope calculation: A swap-in of amount r will cost the node
rF +M in fees and will enable traffic of at most value r to be processed, which will yield
profits rfprop from relay fees. Therefore, the swap-in cannot be profitable if rF +M ≥ rfprop.
Solving this inequality, we see that no positive amount r can be profitable if fprop ≤ F , while
if fprop > F a necessary (but not sufficient) condition for profitability is r > M/(fprop − F ).
The respective inequality for a swap-out of amount r is r − r−M

1+F
≥ rfprop, which shows

that for fprop ≤ F
1+F

no amount can be profitable and for fprop > F
1+F

a necessary condition

for profitability is that r > M
fprop(1+F )−F

. With the current fees, we are in the non-profitable

regime. Although the above inequalities are short-sighted in that they focus only on a specific
action time, they do confirm the observation made by both the Lightning and the academic
communities [17] that in order for relay nodes to be a profitable business, relay fees have to
increase.

We now perform an experiment confirming this finding with the currently used fee values.
We simulate a workload of demand in the L-to-R direction: 60000 L-to-R and 15000 R-to-
L transactions under a high (10 tx/minute L-to-R, 2.5 tx/minute R-to-L) and a low (1
tx/minute L-to-R, 0.25 tx/minute R-to-L) intensity. The node’s total fortune over time
for high and low intensity are shown in Figs. 6(a) and 6(c) respectively. We see that
regardless of the (non-None) rebalancing policy, the node’s fortune decreases over time,
because rebalancing fees surpass any relay profits, which are small because of the small fprop

14We used the PyTorch implementation in https://github.com/pranz24/pytorch-soft-actor-critic.
15https://1ml.com/statistics
16https://lightning.engineering/loop
17https://ycharts.com/indicators/bitcoin_average_transaction_fee
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compared to F . In this regime, the node is better off not rebalancing at all. Still, our
RebEL policy manages to learn this fact and after some point exhibits the desired behavior
and stops rebalancing as well. Autoloop and Loopmax keep trying to rebalance and end up
exhausting their entire on-chain balance, so the total fortune under them gets stuck after
some point.
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Figure 6: Experiments with different proportional relay fee
fprop

Taking a higher level view,
we also conduct multiple ex-
periments with the same de-
mand as before but now while
varying fprop. The results of
the total final fortune of each
experiment (run for the same
total time and averaged over
10 runs; error bars show the
maximum and minimum val-
ues) are shown in Fig. 6(b)
under high demand and in Fig.
6(d) under low demand. We
see that no rebalancing pol-
icy is profitable (i.e. better
than None) as long as fprop <
0.5% = F , which confirms
our back-of-the-envelope cal-
culation. For higher values of
fprop, the node is able to make
a profit. Although RebEL per-
forms better for fprop = 1%
for reasons discussed in Sec.
5.3.2, Autoloop and Loopmax
sometimes perform better for
even higher (and thus even far-
ther from the current) fees, be-
cause the RebEL policy used
in this experiment is the one we tuned to operate best for the experiments of the next sec-
tion that use fprop = 1%. In principle though, with different tuning, RebEL could outperform
the other policies for higher values of fprop as well.

5.3.2 The role of the demand

We now stay in the fee regime of possible profitability, i.e. by keeping fprop = 1%, and try
to understand the role of the demand (and indirectly of the depletion frequency) on the
performance of the different policies. The results for the same high and low workload of
skewed demand in the L-to-R direction as before are shown in Figs. 7 and 8.

RebEL outperforms all other policies under both demand regimes (Figs. 7(a), 8(a)),
as it manages to strike a balance in terms of frequency and amount of rebalancing and
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(b) Transaction fee losses over time
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Figure 7: Total fortune, transaction fee losses and rebalancing fees over time under high
demand skewed in the L-to-R direction
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(b) Transaction fee losses over time
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Figure 8: Total fortune, transaction fee losses and rebalancing fees over time under low
demand skewed in the L-to-R direction

transaction fee profits. This happens in a few 10-minute iterations under high demand
(corresponding to a few hours in real time), because balance changes are more pronounced
in this case and help RebEL learn faster, while it takes about 1200 iterations under low
demand, translating in 8.3 days of training. Both these training times are reasonable for
a relay node investing its capital to make a profit. We see that under both regimes the
system without rebalancing (None policy) at some point reaches a state where almost all
the balances are accumulated locally and no transactions can be processed anymore (hence
the flattening in the None curve). Under high demand, Autoloop and Loopmax rebalance a
lot (Fig. 7(c)) in order to minimize transaction fee losses (Fig. 7(b)), while RebEL sacrifices
some transactions to achieve higher total fortune. Under low demand, RebEL rebalances
only when necessary (Fig. 8(c)), even if this means sacrificing many more transactions (Fig.
8(b)), simply because rebalancing is not worth it at that low demand regime, in the sense that
the potential profits during the 10-minute rebalancing check times are too low to justify the
frequent rebalancing operations that the other policies apply. Loopmax eventually achieves a
profit (although much lower than RebEL) because it tends to rebalance with higher amounts.
On the contrary, Autoloop rebalances with small amounts, thus incurring significant costs
from constant miner fees and eventually even making a loss compared to the initial node’s
fortune (Fig. 8(a)). Under high demand, there is a point around time 2700 where RebEL
stalls for a bit, and the same happens under low demand between times 14000-22000. Upon
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more detailed inspection, this happens because all balances temporarily accumulate on the
local sides of the channels. RebEL takes some steps to again bring the channels to some
balance (either actively by making a swap or passively by letting transactions flow) and
subsequently completely recovers.
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(a) High demand
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Figure 9: Total fortune over
time under equal demand in-
tensity from both sides

We now explore the special case of equal demands, by
applying 60000 transactions arriving on each side in high (10
tx/minute) and low (1 tx/minute) intensity. Tuning some hy-
perparameters and making the penalty for failed swaps non-
zero as shown in Appendix B gave better results for even de-
mand specifically, so we use this configuration for the results
of Fig. 9. We observe that all policies (except None) achieve
higher total fortunes than before. This happens because the
almost even traffic automatically rebalances the channel to
some extent and therefore more fees can be collected in both
directions and for larger amounts of time before the channels
get stuck. RebEL is not as good for even traffic, because
the net demand constantly oscillates around zero and this
does not allow the agent to learn a good policy. It still man-
ages though to surpass Autoloop pretty quickly under low
demand, while if we run the simulation for longer times (not
shown in the figure), we see that after time 78000 RebEL
surpasses Loopmax as well. This translates to about 54 days
of operation, which is a big time interval in practice, but is
justified by the fact that the traffic is low and therefore more
time is needed in order for the node to make a profit. How-
ever, even demand from both sides is a special case that is
not likely to occur in practice, as usually the traffic follows
some patterns, e.g. from clients to merchants. So the skewed
demand scenario, where RebEL is superior, is also the most natural.

5.3.3 The role of initial conditions

We now examine how the initial conditions (capacities, balances) affect the performance.
We evaluate all rebalancing policies for the skewed demand in the L-to-R direction scenario
as before, but this time for channels of uneven capacities or initial balances. The results
for high and low demand are shown in Figs. 10(a) and 11(a) respectively for CL = 1000,
CR = 500 and the initial balances evenly distributed, in Figs. 10(b) and 11(b) respectively
for CL = 500, CR = 1000 and the initial balances evenly distributed, and in Figs. 10(c) and
11(c) respectively for CL = CR = 1000 but bNL = bNR = 1000 (and so bLN = bRN = 0). We
see that RebEL performs well in all these cases as well. Depending on the exact arriving
transactions, the little plateaus of RebEL happen at different points in time for the same
reason as before, but in the end the learning algorithm recovers.
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(a) Total fortune over time when
CL = 1000, CR = 500
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(b) Total fortune over time when
CL = 500, CR = 1000
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(c) Total fortune over time when
initial balances are only local

Figure 10: Total fortune, transaction fee losses and rebalancing fees over time under high
demand skewed in the L-to-R direction for different initial conditions
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Figure 11: Total fortune, transaction fee losses and rebalancing fees over time under low
demand skewed in the L-to-R direction for different initial conditions

6 Discussion and future work

We now make some remarks on the design and the practical applicability of our DRL-based
policy and discuss future extensions of our work.

Design choices : The objectives of Section 3.2 were defined as long-term expected average
ones in order to match what a relay node would intuitively want to optimize, while the SAC
algorithm works for long-term discounted objectives with a discount factor (usually set very
close to 1), and including a maximum entropy term to enhance exploration18. We expect
this difference to not be significant, and indeed the results show that the SAC-based policy
performs well in practice. Furthermore, in Sec. 5 we presented results for specific parameters
and rewards for the RL algorithm. Further tuning specific to the demand regime might lead
to even higher returns for the RebEL policy. Additionally, improving the estimates of future
balances by having the agent perform a “mini-simulation” of the transactions arriving in the
following time interval based on past statistics could help the policy produce more informed
decisions. Techniques from Model Predictive Control could also be applied [18].

Theoretically, a class of policies that could result in even higher fortune than the class

18The exact formula for the SAC objective can be found in Appendix A of [14].
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(3.2) would be one that would allow rebalancing to happen at any point in continuous time
instead of periodically. Optimization in such a model however would be extremely difficult,
as an action taken now would affect the state both now and in the future (when rebalancing
completes). Considering that practical policies like Autoloop applied today only check for
rebalancing periodically, we follow the same path for the sake of tractability.

Practical applicability : An actual PCN node could use our simulator with samples from
its past demand, and try to tune the RL parameters and the reward to get better performance
than the heuristic policies we defined or the one it is currently using; then, it would apply
the policy learned in the simulator environment to the real node. Alternatively, a node
may not use a simulator at all and directly learn a pre-parameterized policy on the fly from
the empirical transaction data. In either case, the node can do occasional retraining with
updated data to account for time-variance in the distribution of the arriving demand.

Future directions : Our two-channel DRL solution was a proof of concept that DRL can
indeed be applied for liquidity management in PCNs. Armed with this knowledge, in future
research we intend to study the more general case of a node being the center of a star graph
of channels and trying to make a profit while rebalancing all of them appropriately. Another
extension would be to allow the node to batch rebalancing operations into one on-chain
transaction to save on on-chain fees. Moreover, in our work we considered the neighboring
nodes L and R to be passive. Future work can investigate a game-theoretic framework where
all PCN nodes are rational and compete against each other towards making a profit. Finally,
it would also be interesting to compare the performance of different rebalancing methods,
depending on the demand and channel conditions.

7 Related work

Rebalancing methods : Rebalancing via payments from a node to itself via a circular path
of channels has been studied by [19, 20, 21, 22, 23, 24]. Some of them take relay fees into
account as we did, and some do not. [25] in particular performs circular rebalancing cou-
pled with a rerouting scheme based on a metric that accounts for the average demand in a
simple way (we did so too in defining the different balance estimates). [26, 27] describe fee
strategies that incentivize the balanced use of payment channels. [9] uses a game-theoretic
lens to study the extent to which nodes can pay lower transaction fees by waiting patiently
and reordering transactions instead of pursuing maximum efficiency. Perhaps the only work
on submarine swaps, [28], shows that there is a possibility of liquidity arbitrage of Lightning
liquidity providers by users, which in turn determines a market rate for acquiring liquidity,
and then develops fee structures for properly pricing liquidity without overcharging regu-
lar users. In [29], a more holistic view is attempted regarding an optimization decision a
blockchain node with an initial budget has to make: how to maximize the average gain per
incoming transaction from a known distribution by choosing which channels to open, with
what capacities and with what fees. However, the model ignores the channel opening costs by
assuming it is possible to extend the channel’s lifetime arbitrarily, without though detailing
how this would be done (e.g. via rebalancing). A recent development similar to submarine
swaps is PeerSwap [30, 31]: instead of buying funds from an LSP, a node can exchange funds
on-/off-chain with its channel neighbor directly. Splicing is another mechanism that replaces
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a channel with a new one with a different capacity while allowing transactions to flow in the
meantime [32].

Techniques : Stochastic modeling and optimization in the blockchain space has been used
both in layer-1 [33, 34, 35, 36] for performance characterization, and in layer-2 for routing
[37] and scheduling [38] of payments. Deep Reinforcement Learning has been broadly applied
to approximately solve challenging optimization problems from various areas and to build
systems that learn to manage resources directly from experience. For example, [12] applies
DRL to the resource allocation problem of packing tasks under multiple resource demands,
while [39] describes a DRL framework for solving a complex MDP underlying the incentives
around selfish mining attacks in Bitcoin-like blockchains. Our profitable rebalancing problem
resembles problems appearing in stochastic inventory control, without or with a positive lead
time for replenishment. The so-called (s, S) threshold policies (if inventory level x < s, order
S − x; if x > s, do not order) can be proved to be optimal in certain settings [40, 41, 42].
Autoloop resembles these policies; however, our problem presents additional complexities
due to the fact that there are more than one channels, with the balances of each affecting
transaction processing in the other, leading us to a DRL-based approach. (Deep) RL has
been applied extensively to inventory management problems as well [43, 44], although usually
extensive tuning is necessary [45].

8 Conclusion

In this paper, we studied the problem of relay node profit maximization using submarine
swaps, and demonstrated the feasibility of applying state-of-the-art DRL techniques for
solving it, with our experiments showing that a SAC-based policy can outperform heuristic
policies in most cases. We hope that this research will inspire further interest in design-
ing capital management strategies in the complex world of PCNs based on learning from
experience as an alternative to currently applied heuristics, and will be a step towards guar-
anteeing the profitability of the relay nodes and, consequently, the viability and scalability
of the PCNs they sustain.
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A Example of channel depletion under symmetric de-

mand

Symmetric demand on two endpoints of a multihop path can cause imbalance due to fees
withheld by intermediate nodes. Fig. 12 shows the evolution over time of a subnetwork
of three channels with symmetric demand of amount 20 arriving alternately from either
side of the path. When each transaction is relayed by node B, a 50% fee is withheld and
the remaining amount of 10 is forwarded to the next channel in the path. We see that
even though the end-to-end path demand is symmetric, after a few steps the channels get
unbalanced and stop being able to process any more transactions19.
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Figure 12: An example of a PCN getting stuck even though the demand is symmetric.
Demand is shown in red, forwarded amounts after a 50% fee withholding are shown in green,
and channel balances are shown in black.

19The 50% fee is not realistic and is only used for the purposes of this example. With the real much lower
fees the channels will similarly get stuck after a larger number of steps.
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B Hyperparameters and rewards

Table 2: SAC hyperparameters used for the different experiments of Sec. 5

SAC hyperparameter

policy

optimizer

learning rate 0.0003 0.006

discount

replay buffer size

number of hidden units per layer

number of samples per minibatch

temperature 0.05 0.005

nonlinearity

target smoothing coefficient

target update interval

gradient steps

automatic entropy tuning False True

initial random steps

Parameter value
for skewed demand

experiments

Parameter value
for even demand

experiments

Gaussian

Adam

0.99

105

number of hidden layers
(all neural networks)

2

256

10

ReLU

0.005

1

1

10

Table 3: Parameters used in RebEL’s representation or processing of the states, actions, and
rewards

RebEL parameter

minimum swap threshold ρ0

penalty per swap failure 0 10

Parameter value
for skewed demand

experiments

Parameter value
for even demand

experiments

on-chain amount
normalization constant

60

0.2
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