
Side-Channel Attack Countermeasures Based On

Clock Randomization Have a Fundamental Flaw

Martin Brisfors∗ Michail Moraitis∗ Elena Dubrova

Department of Electrical Engineering,
Royal Institute of Technology (KTH)

Electrum 229, 196 40 Stockholm, Sweden
{brisfors, micmor, dubrova}@kth.se

Abstract

Clock randomization is one of the oldest countermeasures against side-
channel attacks. Various implementations have been presented in the
past, along with positive security evaluations. However, in this paper we
show that it is possible to break countermeasures based on a randomized
clock by sampling side-channel measurements at a frequency much higher
than the encryption clock, synchronizing the traces with pre-processing,
and targeting the beginning of the encryption. We demonstrate a deep
learning-based side-channel attack on a protected FPGA implementation
of AES which can recover a subkey from less than 500 power traces. In
contrast to previous attacks on FPGA implementations of AES which tar-
geted the last round, the presented attack uses the first round as the attack
point. Any randomized clock countermeasure is significantly weakened by
an attack on the first round because the effect of randomness accumulated
over multiple encryption rounds is lost.

keywords: Side-channel attack, Random Execution Time , Random-
ized Clock , Countermeasure, Oversampling, Deep Learning, FPGA, AES,
Correlation Power Analysis.

1 Introduction

The idea of randomizing the execution time of cryptographic algorithms to pro-
tect implementations against side-channel attacks is as old as the attacks them-
selves [KJJ99, KJJ]. There have been numerous papers exploring the topic in
the past, mostly for software implementations [KJJR11]. Several papers have

∗Both authors contributed equally to this manuscript.

1

also suggested ways of implementing randomized clocks to protect FPGA imple-
mentations. Their security evaluations have shown that the proposed counter-
measures are resistant to Differential Power Analysis (DPA)/Correlation Power
Analysis (CPA) [BLGT05, LOM08, ZH08, ZPH10, BHL+10, BLOW10, GM11,
RBBC18, CK09, CK10, JIP19, HDL+20], or Deep Learning (DL)-based EM
analysis [HDL+20].

However, in this paper we show that it is possible to break countermea-
sures based on clock randomization by using a sampling frequency that is much
higher than the clock of the cryptographic implementation, synchronizing the
traces with pre-processing, and carefully selecting the attack point. The main
contributions of the paper are:

• We highlight the importance of oversampling in side-channel analysis by
demonstrating how a seemingly secure countermeasure can be broken
when the oversampling rate is sufficiently high. Ignoring oversampling
may lead to an overestimation of security of randomized clock counter-
measures.

• We present a deep learning-based side-channel attack on a protected FPGA
implementation of AES which targets the first round. To the best of
our knowledge, all previous attacks on an FPGA implementation of AES
with randomized clock targeted the last round [BLGT05, LOM08, ZH08,
ZPH10, BHL+10, BLOW10, GM11, RBBC18, CK09, CK10, JIP19, HDL+20].
Attacking the first round significantly weakens any randomized clock coun-
termeasure because the effect of randomness accumulated over the multi-
ple encryption rounds is lost.

• We propose a randomized clock implementation in which the varying fre-
quency is achieved by an asynchronous switching between four stable fre-
quencies using a fifth frequency and a random number generator.

The rest of the paper is organized as follows. Section 2 reviews the previous
work on randomized clock countermeasures. Section 3 presents our randomized
clock implementation. Section 4 describes the methods which we use to break
the randomized clock countermeasure. Section 5 summarizes the experimental
results. Finally, Section 6 concludes the paper.

2 Previous work

Various techniques for randomizing the execution time of cryptographic algo-
rithms have been proposed over the years to protect implementations against
side-channel attacks, including using randomized clocks, the addition of ran-
dom delays or dummy operations, random execution re-ordering, and random
branching [KJJR11]. In hardware, the majority of countermeasures focus on
inserting random delays, or randomizing the clock.

To the best of our knowledge, the first hardware-based random delay inser-
tion method was presented in [BLGT05]. The main idea is to insert random

2

delays in the datapath of a cryptographic processor in order to randomize its
power consumption profile. To realize that, a gate-level implementation of a
random delay and a random wait flip-flop were proposed. In [LOM08] the con-
cept is transferred to FPGAs and the resistance of the resulting countermeasure
to Differential Power Analysis (DPA) is evaluated.

In [BHL+10] a key scheduler controlled by a True Random Number Genera-
tor (TRNG) is introduced to create the effect of a randomized clock. To achieve
that, the scheduler randomly selects between the output of a set of positive edge
and negative edge flip-flops. The approach is further extended in [BLOW10] by
injecting dummy data during the idle periods.

In [ZH08] a design that uses a different frequency to encrypt each 128-bit
plaintext block of an AES-128-CTR FPGA implementation is presented (CTR
stands for the counter mode operation of a block cipher). In this design, multiple
frequencies f1, . . . , fn are generated by dividing a base frequency f given by a
single-input ring oscillator. In addition, four out of the n generated frequencies
are phase shifted using Digital Clock Managers (DCMs) to obtain their phase
shifted copies {fi 0◦ , fi 90◦ , fi 180◦ , fi 270◦}, for i ∈ {1, 2, 3, 4}. The selection
among multiple frequencies is performed pseudo-randomly using a multiplexer
controlled by a Linear Feedback Shift Register (LFSR). Later, in [ZPH10] it
is suggested that performing frequency switching in every clock cycle instead
of every new plaintext block offers greater security. In [GM11], following the
same idea, a base clock frequency f is phase shifted through DCMs to create n
new frequencies, each shifted by 360/n degrees. The selection among multiple
frequencies is performed using a clock multiplexer tree controlled by a TRNG.
In [RBBC18], the design presented in [GM11] is improved by incorporating the
floating mean method [CK09, CK10] to generate uniform random numbers.

In [JIP19] an implementation that leverages the ability of Mixed-Mode Clock
Management (MMCMs) to be reconfigured at runtime is presented. The FPGA
Block RAMs (BRAMs) are utilized to store different MMCM configurations that
define selected sets of frequencies. For each MMCM, m possible configurations,
with n output frequencies defined in each, are stored. The implementation pro-
posed in [JIP19] uses n = 3 and m = 1024, resulting in 3, 072 different clock
frequencies in total. Since the reconfiguration of MMCMs takes a considerable
amount of time (equivalent to 82 encryptions in their case), at least two MMCMs
have to be deployed so that one is working while the other one is being reconfig-
ured to achieve runtime frequency tuning. As in [GM11], the selection among
frequencies is performed using a multiplexer controlled by an RNG. The authors
use the number of different cumulative completion times generated by their ap-
proach as a metric of its resilience. With an AES-128 implementation that takes
r = 10 clock cycles to complete an encryption, the number of different cumula-
tive times to completion is calculated as r+n−1Cr ×m = 66× 1024 = 67, 584.

In [HDL+20] a more lightweight and scalable solution that can generate even
more different times to completion is presented. To generate different frequen-
cies, MMCMs apply a scaling factor to an input clock. Thus, in a constant
MMCM configuration, different input frequencies produce different output fre-
quencies. Taking that into consideration, the authors of [HDL+20] propose a

3

design that consists of a software-based clock randomizer that generates frequen-
cies in a given range that are fed into an MMCM with constant configuration.
The clock randomizer module consists of a processing system core (available in
modern FPGAs such as Xilinx Ultrascale) that controls the configuration of two
programmable clock dividers. A Phase-Locked Loop (PLL) creates a stable clock
frequency that passes through the clock dividers and is subsequently fed into an
MMCM through a glitch-free clock gate. The MMCM generates n different fre-
quencies by applying the preset scaling factors to the input frequency. Finally,
the selection among these n frequencies is done using an RNG-controlled clock
multiplexer (that allows glitch-free switching between clocks) which outputs the
randomized clock used for the encryption.

The advantage of this approach over the one in [JIP19] is that it does not
require the use of BRAMs to store different MMCM configurations1 and that
it is more agile since the input frequencies are controlled in software. The
authors adopted the number of cumulative completion times metric to evaluate
their approach. They tested two implementations, one with n = 4 MMCM
output frequencies and one with n = 8. Their AES-128 implementation takes
r = 13 clock cycles to complete an encryption and uses m = 257 different base
frequencies. This results in r+n−1Cr ×m = 560× 257 = 143, 920 for n = 4 and
77, 520× 257 = 19, 922, 640 different cumulative times to completion for n = 8.

In [JIP21], a lightweight countermeasure offering resistance to remote power
attacks for up to one million encryptions is presented. The idea is to add
noise to the timing measurements of digital converters which are used in the
remote attacks. This is realized by adding a random delay in the magnitude of
picoseconds to each clock cycle.

3 Proposed randomized clock implementation

The block diagram of the proposed randomized clock is shown in Fig. 1. It
consists of an MMCM block, five global clock simple buffers (BUFG), two FDRE
D flip flops, a 4-to-1 multiplexer and a 2 input AND gate. A detailed description
of the Xilinx 7 series FPGA components referenced in this work is available in
the user guide UG953 [Xil22].

The MMCM block has one clock input, four clock outputs and a locked
signal to indicate when the generated clocks are ready to be used. The generated
clocks pass through one BUFG each and then connect to the 4-to-1 multiplexer.
In the implementations presented in the related work [JIP19, HDL+20], the
multiplexers are implemented through a tree of 2-to-1 global clock MUX buffers
(BUFGMUX CTRL). A BUFGMUX CTRL is a primitive of Xilinx 7 series
FPGAs that allows a clean, glitch-free switching between two input frequencies.
To achieve that, whenever setup/hold conditions are about to be violated by
the switching of the select signal, the output clock appears one clock later. In
our implementation, we do not want to have this functionality because our aim

1An alternative design with dynamically reconfigurable MMCMs is mentioned, but not
implemented.

4

BUFG

BUFG

BUFG

BUFG

FF

D Q

FF

D Q

RNG

MMCM
BUFG

Locked

�base fenc

f₁

f₂

f₃

f₄
SEL

Figure 1: The block diagram of the proposed randomized clock implementation.

is to have the selector signal forcefully change between frequencies to create
a randomized clock. Such a design choice leads to a clock whose cycles are
occasionally too short for the AES core to complete the encryption in time.
Therefore, the multiplexer in our design can be implemented either by three
BUFGMUXs set to asynchronous switching,2 or a single 6-input 2-output look
up table (LUT6).

The selector signal comes from two FDRE D flip flops that are clocked with
the base frequency and store values from a random number generator (RNG).
The RNG can be a TRNG or a PRNG (e.g. an LFSR). In our experiments
we used a set sequence of pre-generated pseudo-random numbers. By adding
these two registers, the random numbers arrive at the multiplexer with half the
frequency of the base clock, regardless of the frequency of the RNG implemen-
tation. This assures a stable select signal.

Finally, the randomized frequency created at the output of the multiplexer
is combined with the locked signal of the MMCM (high when the MMCM fre-
quencies are ready to be used) using a 2-input AND gate. Its output passes
through a BUFG which outputs the randomized clock used for encryption.

In Fig. 2 the randomized clock generation of the presented implementation
is illustrated. On every positive edge of the base clock, fbase, the randomized
clock’s value, fenc, switches asynchronously to the value of one of the four clocks,
f1, f2, f3, f4, depending on the value of the select signal, SEL, generated by

2A BUFGMUX CTRL is a Global Clock Control Buffer (BUFGCTRL) with the clock
enable (CE) inputs set to constant 1 and select inputs (S) connected to the selection signal.
When the select signal is connected to the CE inputs, the glitch-free functionality is lost and
the switching occurs asynchronously.

5

f₁

f₂

f₃

f₄

�base

fenc

₀₁

₀₀

₀₁

₁₁ ₀₀ ₁₀ ₁₁

₁₁

₁₀

SEL

Figure 2: Proposed randomized clock generation.

the TRNG. To assess how many different frequencies our implementation can
generate, we performed a simulation. In the simulation, each base clock cycle
is represented with a precision of 100K samples and the clocks are simulated
3.7M times. The results show that our randomized clock implementation can
generate pulses of at least 403 different frequencies. Therefore, assuming an
AES implementation with r = 10, the number of cumulative completion times
of our randomized clock is r+n−1Cr ×m = 10+403−1C10 × 1 ≈ 3.478× 1019.

4 Side-channel analysis in the presence of a ran-
domized clock

In this section we describe the methods we use to break the randomized clock
countermeasure: oversampling, trace pre-processing, and CPA and DL-based
side-channel analysis.

6

0 500 1000 1500 2000
−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

Figure 3: 100 randomly selected power traces captured with 40× oversampling
representing a complete encryption.

4.1 Oversampling

In signal processing, oversampling is the process of sampling a signal at a sam-
pling frequency significantly higher than the Nyquist rate3. A signal is said
to be oversampled by a factor of N if it is sampled at N times the Nyquist
rate. It is known that oversampling can improve resolution and signal-to-noise
ratio [Sch00].

4.2 Pre-processing

Several pre-processing methods have been proposed to combat trace misalign-
ment and re-enable a successful analysis. These methods include dynamic time
wrapping (DTW)/elastic alignment [vWWB11], pattern matching [ACPJ17],
fast Fourier transform (FFT) [SDB+10], principal component analysis (PCA) [HB10],
rapid alignment method (RAM) [MvWB11] and sliding window (SW) [FW18].

In this paper, we test two pre-processing methods: (1) sliding window [FW18]
with a window size of 20 and (2) trace synchronisation based on deviation from
mean. We apply trace synchronisation on sufficiently oversampled power mea-
surements using the following simple approach.

By setting a threshold based on the deviation from the mean of the value
being more than 1.5σ, we identify peaks corresponding to the rising edge of the
randomized clock which is used for encryption. As one can see from Fig. 5, traces
captured with a high oversampling factor have distinct power peaks. These
peaks can be used to synchronize traces for a specific round of the algorithm.
The lower the oversampling factor is, the less distinct the peaks are. So, traces

3The Nyquist rate is defined as twice the bandwidth of the signal.

7

0 10 20 30 40 50
−0.4

−0.3

−0.2

−0.1

0.0

0.1

Figure 4: A zoomed-in interval of traces from Fig. 3 representing the first round
of AES after synchronization. This interval is given as input to MLPs.

captured with a high oversampling factor are easier to synchronize. They are
also more likely to accurately reflect the power consumption.

Using the threshold, we synchronize traces for the first round of AES by
finding, for each trace, the first point where the trace crosses the threshold after
setup instructions are completed. Selecting a window around this point yields
a good synchronization as one can see in Fig. 4.

A similar synchronization strategy can be applied to the last round of AES
by going backwards.

4.3 Correlation Power Analysis

We perform the CPA in a usual way [BCO04], by assigning a power hypothesis
to every trace in the data set, for every subkey guess, with the subkey size being
a byte. The Hamming distance between the states of round 9 and round 10 is
used as a power hypothesis:

Pi = HW (ShiftRows−1(ci)⊕ Sbox−1(ci ⊕RK10i)),

where ci is the ith byte of the ciphertext, RK10i is the guess for 10th round
subkey i, and HW is the Hamming weight, for i ∈ {1, 2, . . . , 16}.

To recover each subkey, we calculate the Pearson correlation coefficient for
the corresponding power hypotheses and trace measurements and choose the
subkey guess which maximizes the absolute value of the correlation coefficient.

4.4 Deep Learning-Based Analysis

It is known that deep learning-based side-channel analysis can handle trace
misalignment caused by jitter without any pre-processing [RQL19]. This makes

8

Figure 5: Comparison of traces captured with 40× and 4× oversampling using
the same threshold for identifying peaks. Insufficient oversampling may lead to
an incorrect sampling/measurement of peak power consumption.

it a good choice for dealing with temporal noise introduced by randomized
clocks.

We use the profiling approach in which, at the profiling stage, a neural
network model is trained to learn the power profile of the target algorithm
implementation for all possible values of the subkey and, at the attack stage,
the model is used to classify traces captured from the device under attack.

We train multilayer perceptron (MLP) neural networks of type Ni : R
n →

I256 for the subkey i ∈ {1, 2, . . . , 16}, where n is the number of data points in
traces, R is the set of real numbers, and I := {x ∈ R | 0 ≤ x ≤ 1}. The MLP
architecture is listed in Table 1. Sbox output values in the first round were used
as labels for traces.

For training, we use a set of 10M traces captured for random messages. From
this set, 70% is used for training and 30% for validation. The training is carried
out using Nadam optimizer with the learning rate of 0.002. The maximum
number of epoch is set to 12 with a batch size of 1024. Only the model with

9

the best validation accuracy is saved.
To test the models, we use two metrics:

1. Accuracy of subkey prediction from a single trace, and

2. Average number of traces required for the subkey recovery.

Note that the single-trace prediction accuracy metric is not applicable to CPA
since single-trace CPA is impossible. The average number of required traces is
defined as the average number of traces required to recover the subkey in the
majority of tests performed on a randomly permuted test data set.

4.5 Importance of using the first round as the attack point

In previous work, the last round of AES is used as the attack point. This is
because for a typical4 FPGA implementation of AES, DPA/CPA attacks on the
first round are not successful.

However, as our experiments show, the DL-based analysis can recover the key
from the first round. Despite of the weaker leakage of the first round as compared
to the last, such an approach is preferable when a randomized clock is used as a
countermeasure for the following reasons. In a first round attack, the cumulative
times to completion metric is reduced to the number of different frequencies.
This considerably weakens any randomized clock countermeasure. For example,
for a first round attack with r = 1 in [HDL+20], the number of different times
to completion gets reduced from 67, 584 to r+n−1Cr × m = 3 × 1024 = 3, 072
and from 19, 922, 640 to r+n−1Cr ×m = 8 × 257 = 2, 056. Furthermore, when
attacking the first round, the overall effect of randomness accumulated5 over
multiple encryption rounds is lost.

5 Experimental Results

This section presents the results of our experiments.

5.1 Equipment

The equipment used for our experiments is a CW1173 ChipWhisperer-Lite and
a CW305 Artix 7 FPGA target board.

ChipWhisperer [Newa] is a fully open-source, low-cost toolkit for hardware
security evaluation. It handles power trace acquisition and communication of
target devices with a computer, making side-channel attacks easier to perform.
The power measurements are taken over a shunt resistor connected between the

4Here by “typical´´ we mean the AES implementation in which one round is computed
per clock cycle and the state is stored at the end of the round.

5The cumulative effect of randomness can described by a random walk and the variance
of a random walk increases with the walk length. Thus, if the timing shifts are randomly
distributed, the uncertainty in the first round is provably smaller than the uncertainty in the
last.

10

Table 1: MLP Architecture.
Layer (type) Output Shape Param #

batch normalization 1 (None, 50) 200
dense 1 (Dense) (None, 1024) 52224

batch normalization 2 (None, 1024) 4096
relu 1 (ReLU) (None, 1024) 0
dense 2 (Dense) (None, 512) 524800

batch normalization 3 (None, 512) 2048
relu 2 (ReLU) (None, 512) 0
dense 3 (Dense) (None, 256) 131328

batch normalization 4 (None, 256) 1024
relu 3 (ReLU) (None, 256) 0
dense 4 (Dense) (None, 256) 65792

softmax 1 (Softmax) (None, 256) 0
Total params: 781,512

Trainable params: 777,828
Non-trainable params: 3,684

power supply and the target device. ChipWhisperer-Lite employs a synchronous
capture method, which greatly improves trace synchronization while also lower-
ing the required sample rate and data storage. ChipWhisperer-Lite has a buffer
size of up to 24,400 samples that can be captured at a maximum sampling rate
of 105 MS/sec.

The CW305 target board used in our experiments is equipped with an Artix
7 XC7A35T-2FTG256 FPGA. The cryptographic algorithm implementation in
which we integrated our randomized clock countermeasure is Google’s AES-128
implementation which can be found in the Vault Project repository [Pro]. The
AES core module is integrated into the ChipWhisperer interface [Newb]. The
design synthesis and bitstream generation is performed with Vivado 2019.1.

5.2 Trace acquisition with oversampling

Side-channel analysis with a high oversampling rate requires the use of measur-
ing equipment that allows high sampling frequencies. Our equipment, ChipWhisperer-
Lite, can handle sampling rates of only up to 105 MS/sec. Therefore, the FPGA
must run at 5.25 MHz to approximate a 20× oversampling or at 2.6 MHz to
approximate a 40× oversampling. This goes against the MMCM specification
which requires an input frequency in the range of 10-800 MHz.

To overcome this limitation imposed by our equipment, we use a 10Mhz
base frequency and add a clock divider after each frequency with the division
parameter d = 10. The frequencies generated by the MMCM are: f1 = 11.9713
MHz, f2 = 7.7315 MHz, f3 = 9.2778 MHz, f4 = 12.6515 MHz, with an fmean

= 10.408 MHz. When oversampling, we assume an FPGA base frequency of 1
Mhz, e.g. for 20× oversampling we sample at 20 Mhz. Since the frequency of

11

the randomized clock is unknown, not all traces are oversampled by this nom-
inal degree. Furthermore, the asynchronous frequency switching (discussed in
Section 3) causes about 3% of ciphertexts to be incorrect. Incorrect encryptions
are typically acceptable in applications in which re-encryption is possible, e.g.
the encryption of a nonce for challenge-response authentication.

In a real attack, slowing down the clock of an FPGA implementation would
require a different approach, especially if countermeasures to prevent it, e.g. the
clock manipulation detector [GM11], are present. In our threat scenario, we do
not consider such attacks. We assume that, to oversample, the adversary will
use an oscilloscope which can capture traces at a much higher rate than the
frequency of the clock used in the encryption core of the FPGA.

5.3 Overhead evaluation

We compared our randomized clock implementation with two state-of-the-art
architectures that offer the highest level of side-channel resistance: the Run-
time Frequency Tuning Countermeasure (RFTC) [JIP19] and the Dynamic Fre-
quency Randomization (DFR) [HDL+20].

Table 2 lists the FPGA resources and timing overhead. One can see that
the presented implementation has the smallest hardware and timing overhead.

5.4 Comparison considerations

To compare countermeasures properly, one has to take into account the number
of traces required to break the unprotected implementation, as well as the sam-
pling and operating frequency of the implementations. The number of traces
for CPA is shown in Table 4. When comparing these numbers it should be
taken into account that [HDL+20] uses EM side-channels while [JIP19] and the
presented method use power. EM side-channels are usually noisier and typically
attacks require an order of magnitude more traces.

Regarding sampling and operating frequencies, in [JIP19], power measure-
ments are collected using an oscilloscope with a 100 Mhz bandwidth and a
maximum sampling rate of 1 Gs/s. The randomized clock frequencies are in the
range of 12-48 MHz.

In [HDL+20] an oscilloscope with a bandwidth of 500 Mhz and maximum
sampling rate of 5 Gs/s is used. The frequencies of the randomized clock are in
the range of 17.5-213.3 Mhz for the implementation based on four clocks, and
17.5-426.5 MHz for the one based on eight clocks.

No information about the sampling frequency is given in [JIP19, HDL+20].
We can make a rough estimation as follows. Taking into account the maximum
sampling frequency of their equipment, and considering the mean operating
frequency as nominal, in [JIP19] up to 41× oversampling can be achieved while
in [HDL+20] up to 43× and 23× for the four and eight clock implementations,
respectively. Since there is a big gap between their lowest and highest operating
frequencies, these numbers are certainly not accurate. However, they are our
best estimate.

12

Table 2: Overhead comparison with the state-of-the-art implementations of
randomized clock.

Method
FPGA resources Timing

BRAM # MMCM # BUFG overhead

RFTC [JIP19] 20 2 N/A 1.72×
DFR [HDL+20] 0 1 12-23 1.54-58.9×

Presented 0 1 5 1.27×

Table 3: CPA and MLP subkey recovery results for different oversampling fac-
tors (average of 10 tests).

Over- Last round attack First round attack

sampling CPA-SYNC SW-CPA MLP

factor # Traces # Traces single-trace acc,% # Traces

Unprotected 1× 400 1000 0.66 112

Protected 4× >10M >10M 0.39 >10M

Protected 10× 50k >10M 0.49 582

Protected 20× 5k >10M 0.51 319

Protected 40× 3k 5M 0.52 430

In our case, we sample 2n× data points per clock cycle, for n ∈ {4, 10, 20, 40}.
The frequencies of the randomized clock are in the range of 7.73-12.65 Mhz.

5.5 Attack results

Table 3 presents the results of our CPA and DL-based power analysis for dif-
ferent oversampling factors. In the table, we show results for the MLP net-
works only. We also performed experiments with Convolutional Neural Net-
works (CNN). The results were similar to the MLPs. This is probably because
we synchronized traces at the pre-processing stage.

We can see that both methods fail for the 4× oversampling case. This
is due to the poor synchronization and measurement quality caused by low
oversampling. For 10× oversampling, we can see that both the CPA and DL-
based attacks are able to recover the subkey and, as the oversampling factor
grows, fewer traces are required.

Fig. 6 shows the probability of recovering a subkey using the attack on the
first round of AES after synchronizing the traces. The 4× oversampling case is
omitted because the subkey cannot be recovered. Despite a slightly lower single-
trace accuracy, the 20× model recovers subkeys faster than the 40× model.
However, this may due to the fact that the number of tests was small.

The results of Table 3 highlight the importance of oversampling for side-
channel analysis and show that ignoring oversampling may lead to an overesti-

13

Table 4: Comparison of CPA results with previous work.

Method
Traces to recover full key Key How

Unprotected Protected Enumer. Evaluated

RFTC [JIP19] <2K >4M No not defined

DFR [HDL+20] 20-30K >1-5M < 225 avg of 20 tests

Presented <1.1K >10M* No avg. of 10 tests
∗For 4× oversampling factor

mation of the security of randomized clock countermeasures.

5.6 Comparison to previous DL-based attacks

Next, we compare our results to [HDL+20] where a DL-based analysis based on
MLP and CNN is also performed.

In one of their implementations, DFR-4-Ø, the MMCM has four output
frequencies and a constant input frequency. This implementation does not have
the best security/overhead trade-off, but it has a structure similar to ours.
The only difference is that, in DFR-4-Ø, the switching between frequencies is
done synchronously. Our implementation switches asynchronously to get a more
unpredictable output clock.

According to [HDL+20], DFR-4-Ø can be attacked with 1M traces using
FFT-CPA, 200K traces using FFT-MLP, and 20K traces using CNN. All attacks
target the last round. Considering that EM-based attacks typically need an
order of magnitude more traces compared to power analysis, these numbers
translate to roughly 100K for the FFT-CPA, 20K for the FFT-MLP and 2K
for the CNN. Also, considering that they need approximately twice as many
traces as us to attack unprotected AES, these numbers are similar to the 10×
oversampling case in Table 3. Their attack use key enumeration up to 316 ≈ 225

(equivalent to key guessing entropy ≤ 2) while we do not use key enumeration.

6 Conclusion

We presented a powerful side-channel attack on an FPGA implementation of
AES with a randomized clock targeting the first round as the attack point. Such
an approach has a greater potential to break any randomized clock countermea-
sure than the attacks on the last round because the effect of randomness accu-
mulated over the multiple rounds is lost. We also demonstrated the importance
of high oversampling in the security analysis of randomized clock countermea-
sures. Our results show that these countermeasures have a fundamental flaw.
The oversampling enabled us to synchronize power traces which, in turn, made
the attacks successful.

14

100 101 102 103
Number of traces

0.0

0.2

0.4

0.6

0.8

1.0
Av

er
ag

e
pr
ed

ict
io
n
ac

cu
ra
cy

unprotected 1x
protected 10x
protected 20x
protected 40x

Figure 6: MLP subkey recovery success rate.

Acknowledgements

This work was supported in part by the Swedish Civil Contingencies
Agency (Grant No. 2020-11632), the Swedish Research Council (Grant
No. 2018-04482) and the Vinnova Competence Center for Trustworthy
Edge Computing Systems and Applications at KTH Royal Institute of
Technology.

References

[ACPJ17] Karim M Abdellatif, Damien Couroussé, Olivier Potin, and
Philippe Jaillon. Filtering-based CPA: a successful side-channel at-
tack against desynchronization countermeasures. In Proceedings of
the Fourth Workshop on Cryptography and Security in Computing
Systems, pages 29–32, 2017.

[BCO04] Eric Brier, Christophe Clavier, and Francis Olivier. Correlation
power analysis with a leakage model. In Marc Joye and Jean-
Jacques Quisquater, editors, Cryptographic Hardware and Embed-
ded Systems, pages 16–29. Springer, 2004.

[BHL+10] Kean Hong Boey, Philip Hodgers, Yingxi Lu, Maire O’Neill, and
Roger Woods. Security of AES Sbox designs to power analysis. In

15

2010 17th IEEE International Conference on Electronics, Circuits
and Systems, pages 1232–1235, 2010.

[BLGT05] M. Bucci, R. Luzzi, M. Guglielmo, and A. Trifiletti. A counter-
measure against differential power analysis based on random delay
insertion. In IEEE International Symposium on Circuits and Sys-
tems (ISCAS), pages 3547–3550 Vol. 4, 2005.

[BLOW10] Kean Hong Boey, Yingxi Lu, Maire O’Neill, and Roger Woods.
Random clock against differential power analysis. In 2010 IEEE
Asia Pacific Conference on Circuits and Systems, pages 756–759,
2010.

[CK09] Jean-Sébastien Coron and Ilya Kizhvatov. An efficient method
for random delay generation in embedded software. In Interna-
tional Workshop on Cryptographic Hardware and Embedded Sys-
tems, pages 156–170. Springer, 2009.

[CK10] Jean-Sébastien Coron and Ilya Kizhvatov. Analysis and improve-
ment of the random delay countermeasure of CHES 2009. In In-
ternational Workshop on Cryptographic Hardware and Embedded
Systems, pages 95–109. Springer, 2010.

[FW18] Dor Fledel and Avishai Wool. Sliding-window correlation attacks
against encryption devices with an unstable clock. In Interna-
tional Conference on Selected Areas in Cryptography, pages 193–
215. Springer, 2018.

[GM11] Tim Güneysu and Amir Moradi. Generic side-channel counter-
measures for reconfigurable devices. In International Workshop
on Cryptographic Hardware and Embedded Systems, pages 33–48.
Springer, 2011.

[HB10] Jip Hogenboom and Lejla Batina. Principal component analysis and
side-channel attacks-master thesis. Principal component analysis
and side-channel attacks-master thesis, pages 536–539, 2010.

[HDL+20] Benjamin Hettwer, Kallyan Das, Sebastien Leger, Stefan Gehrer,
and Tim Güneysu. Lightweight Side-Channel Protection using Dy-
namic Clock Randomization. In 2020 30th International Conference
on Field-Programmable Logic and Applications (FPL), pages 200–
207, 2020.

[JIP19] Darshana Jayasinghe, Aleksandar Ignjatovic, and Sri
Parameswaran. RFTC: Runtime frequency tuning counter-
measure using FPGA dynamic reconfiguration to mitigate power
analysis attacks. In 2019 56th ACM/IEEE Design Automation
Conference (DAC), pages 1–6. IEEE, 2019.

16

[JIP21] Darshana Jayasinghe, Aleksandar Ignjatovic, and Sri
Parameswaran. Uclod: Small clock delays to mitigate re-
mote power analysis attacks. IEEE Access, 9:108411–108425,
2021.

[KJJ] Paul C. Kocher, Joshua Jaffe, and Benjamin Jun. Using unpre-
dictable information to minimize leakage from smartcards and other
cryptosystems. US Patent 6,327,661.

[KJJ99] Paul Kocher, Joshua Jaffe, and Benjamin Jun. Differential power
analysis. In Advances in Cryptology — CRYPTO’ 99, pages 388–
397. Springer Berlin Heidelberg, 1999.

[KJJR11] Paul C. Kocher, Joshua Jaffe, Benjamin Jun, and Pankaj Rohatgi.
Introduction to differential power analysis. Journal of Crypto-
graphic Engineering, 1:5–27, 2011.

[LOM08] Yingxi Lu, Maire P. O’Neill, and John V. McCanny. FPGA Im-
plementation and Analysis of Random Delay Insertion Counter-
measure against DPA. In 2008 International Conference on Field-
Programmable Technology, pages 201–208, 2008.

[MvWB11] Ruben A Muijrers, Jasper GJ van Woudenberg, and Lejla Batina.
RAM: Rapid Alignment Method. In International Conference on
Smart Card Research and Advanced Applications, pages 266–282.
Springer, 2011.

[Newa] NewAE Technology Inc. Chipwhisperer.
https://newae.com/tools/chipwhisperer.

[Newb] NewAE Technology Inc. CW305 Artix Target common sources.
https://github.com/newaetech/chipwhisperer/tree/develop
/hardware/victims/cw305 artixtarget/fpga/common.

[Pro] ProjectVault. Verilog implementation of AES-128.
https://github.com/ProjectVault/orp/tree/master/hardware/
mselSoC/src/systems/geophyte/rtl/verilog/crypto aes/rtl/verilog.

[RBBC18] Prasanna Ravi, Shivam Bhasin, Jakub Breier, and Anupam Chat-
topadhyay. PPAP and iPPAP: PLL-based protection against phys-
ical attacks. In 2018 IEEE Computer Society Annual Symposium
on VLSI (ISVLSI), pages 620–625. IEEE, 2018.

[RQL19] Pieter Robyns, Peter Quax, and Wim Lamotte. Improving CEMA
using correlation optimization. IACR Transactions on Crypto-
graphic Hardware and Embedded Systems, pages 1–24, 2019.

[Sch00] Dietrich Schlichthärle. Digital filters. Editorial Springer, 2000.

17

[SDB+10] Oliver Schimmel, Paul Duplys, Eberhard Boehl, Jan Hayek, Robert
Bosch, and Wolfgang Rosenstiel. Correlation power analysis in fre-
quency domain. In COSADE 2010 First International Workshop
on Constructive SideChannel Analysis and Secure Design, 2010.

[vWWB11] Jasper GJ van Woudenberg, Marc F Witteman, and Bram Bakker.
Improving differential power analysis by elastic alignment. In Cryp-
tographers’ Track at the RSA Conference, pages 104–119. Springer,
2011.

[Xil22] Xilinx. Vivado Design Suite 7 Series FPGA and Zynq-7000 SoC
Libraries Guide (UG953). April. 2022.

[ZH08] Y. Zafar and D. Har. A Novel Countermeasure Enhancing Side
Channel Immunity in FPGAs. In 2008 International Conference
on Advances in Electronics and Micro-electronics, pages 132–137,
2008.

[ZPH10] Yousaf Zafar, Jihan Park, and Dongsoo Har. Random clocking
induced DPA attack immunity in FPGAs. In 2010 IEEE Interna-
tional Conference on Industrial Technology, pages 1068–1070, 2010.

18

