Abstract. We provide an expressive framework that allows analyzing and generating provably secure, state-of-the-art Byzantine fault-tolerant (BFT) protocols. Our framework is hierarchical, including three layers. The top layer is used to model the message pattern and abstract key functions on which BFT algorithms can be built. The intermediate layer provides the core functions with high-level properties sufficient to prove the security of the top-layer algorithms. The bottom layer carefully defines predicates according to which we offer operational realizations for the core functions. All three layers in our framework are extensible and enable innovation. One may modify or extend any layer to theoretically cover all BFT protocols, known and unknown. Indeed, unlike prior BFT frameworks, our framework can analyze and recast BFT protocols in an exceedingly fine-grained manner. More importantly, our framework can readily generate new BFT protocols by simply enumerating the parameters in the framework. In this paper, we show that the framework allows us to fully specify and formally prove the security for 23 BFT protocols, including protocols matching HotStuff, Fast-HotStuff, Jolteon, and Marlin, and among these protocols, seven new protocols outperforming existing ones or achieving meaningful trade-offs among various performance metrics.

1 Introduction

Byzantine fault tolerance (BFT) is the only generic software approach that tolerates arbitrary failures and malicious attacks. BFT is now known as the core building block for permissioned blockchains and is increasingly used in permissionless blockchains. As a classic primitive that regained its prominence in recent years, a myriad of BFT protocols has been proposed. The situation, together with the common belief that there is no one-size-fits-all BFT, unfortunately, quickly turns into a nightmare for scientists, practitioners, and especially for new learners. Indeed, people would have to compare and implement many protocols to convince others their protocols are superior. Reviewers, for instance, would have a hard time telling if a BFT protocol is both valid and novel. Meanwhile, practitioners are easily overwhelmed by the increasing number of protocols and implementations. The situation is only exacerbated by various other issues, such
as the re-invention of existing techniques, subtle design errors (e.g., [1, 11, 31]), and insecure extensions and optimizations to existing protocols (see [11]).

At first glance, the problems discussed above appear inevitable: the BFT protocols are notoriously complex and the BFT techniques are inherently versatile. This paper, however, proposes a new, "unified" framework for BFT replication. First, our framework is highly expressive, capturing and recasting several existing protocols. In all cases, we gain in modularity and simplicity. More important, unlike prior frameworks focusing primarily on explaining existing protocols, our framework can systematically generate novel BFT protocols that outperform existing protocols or offer interesting trade-offs among key metrics, all with rigorous proofs of security. In this work, we study leader-based partially synchronous BFT. As illustrated in Fig. 1, our BG framework is hierarchical and includes three layers. Each layer is extensible.

Layer 1. The top layer models the message pattern (e.g., all-to-all communication, one-to-all communication, chained communication) and abstracts core functions on which BFT protocol can be built. The layer also models some key parameters, such as thresholds. As in prior works, our algorithms have a normal-case protocol and a view change protocol. We define two core functions: the $\text{fsb}(\cdot)$ and $\text{vv}(\cdot)$ functions for the epicenter of partially synchronous BFT—the view change protocol. As we show in layer 2 and layer 3, the two functions are crucial to the correctness of the protocols and enabling innovation.

The syntax we use to describe Layer 1 algorithms has a circumscribed focus: BFT replication over graph of nodes [31] formalized in HotStuff, where safety is specified through voting and commit graph rules, and liveness is modeled through extending graph with new nodes. HotStuff is a 3-phase (7-step) BFT protocol with optimal linear communication complexity even during view changes. As in HotStuff, all the instantiations in our framework support the chained (pipelined) optimization and the leader rotation strategy.

Layer 2. The intermediate layer specifies the core functions and security properties which are sufficient to prove the security of our Layer 1 algorithms. In this layer, we reduce the safety and liveness of a BFT protocol to the correctness of the properties of the core functions, making it easy to reason about the correctness of the protocol. We introduce a dichotomy for BFT protocols: $\text{BG}[x,z]$ and $\text{BG}[x,y,z]$. $\text{BG}[x,z]$ models protocols without lock state, where the view change rules rely purely on the information collected in the view change messages. $\text{BG}[x,y,z]$ represents protocols with lock state, where the view change rules depend on both the information collected during view changes and on the block locked in the y-th phase of the normal case (for some $y < z$).
Layer 3. The bottom layer carefully defines dominant predicates of the core functions, according to which we provide operational realizations. In this layer, we show that by defining different concrete rules of the core functions (i.e., the dominant predicates) that satisfy the security properties defined in layer 2, one could realize the core functions in a novel way, enabling the generation of new protocols. With the above paradigm, we provide five such dominant predicates (\mathcal{DP}_1 to \mathcal{DP}_5), each of which can lead to novel BFT protocols. With our framework specified and key theorems proved, we can generate BFT protocols by simply enumerating the parameters.

Instantiations. For each dominant predicate, one could enumerate the parameters x, y, and z for $\text{BG}[x, z]$ and $\text{BG}[x, y, z]$ ($z \leq 3$) to generate BFT protocols. In total, we obtain from our framework 23 candidate BFT protocols. Among them, seven are strictly better than others, improving some existing protocols in at least one aspect, as illustrated in Table 3.

For 3-phase protocols, $\text{BG}[1, 2, 3]$ with the predicate \mathcal{DP}_3 is similar to HotStuff (with only minor differences) and achieves the same complexity as HotStuff.

For 2-phase protocols, $\text{BG}[1, 2]$ with \mathcal{DP}_3 is similar to Fast-HotStuff [20] and Jolteon [16], both of which can be viewed as a 2-phase version of HotStuff. Besides, we generate three novel protocols. $\text{BG}[1, 1, 2]$ with \mathcal{DP}_1 requiring $5f + 1$ replicas has linear authenticator complexity and message complexity but has one less phase (two steps) than HotStuff. $\text{BG}[1, 1, 2]$ with \mathcal{DP}_2 requiring $4f + 1$ replicas has linear authenticator complexity and message complexity. The other $\text{BG}[1, 1, 2]$ instantiation for \mathcal{DP}_5 with $n \geq 3f + 1$ replicas has optimal complexities for both the normal-case and the view change. The protocol has $O(n)$ authenticator complexity during view changes by default and $O(n^2)$ complexity only in rare cases. The protocol strictly outperforms Fast-HotStuff, especially when a rotating leader strategy is used. We also show how \mathcal{DP}_5 leads to Marlin [30] ($\text{BG}[1, 1, 2]^*$), a BFT protocol with linearity and only 2 phases in normal cases.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Protocol</th>
<th>Predicates</th>
<th>Replicas</th>
<th>Message Pattern</th>
<th>Steps</th>
<th>Authenticator Complexity</th>
<th>Message Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-phase</td>
<td>FaHStu[25]</td>
<td>—</td>
<td>$5f + 1$ AtoA</td>
<td>2</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\text{BG}[1, 1]$</td>
<td>\mathcal{DP}_1</td>
<td>$5f + 1$</td>
<td>1toA</td>
<td>3</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td>2-phase</td>
<td>PHSStu[22]</td>
<td>—</td>
<td>$3f + 1$ AtoA</td>
<td>3</td>
<td>$O(n^2)$</td>
<td>$O(n^2)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fast-HotStuff[20]</td>
<td>—</td>
<td>$3f + 1$ 1toA</td>
<td>5</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\text{BG}[1, 1, 2]$</td>
<td>\mathcal{DP}_1</td>
<td>$5f + 1$</td>
<td>1toA</td>
<td>5</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td></td>
<td>$\text{BG}[1, 1, 2]$</td>
<td>\mathcal{DP}_2</td>
<td>$4f + 1$</td>
<td>1toA</td>
<td>5, f</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td></td>
<td>$\text{BG}[1, 1, 2]$</td>
<td>\mathcal{DP}_3</td>
<td>$3f + 1$</td>
<td>1toA</td>
<td>5</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
<tr>
<td></td>
<td>$\text{BG}[1, 1, 2]^*$</td>
<td>\mathcal{DP}_5</td>
<td>$3f + 1$</td>
<td>1toA</td>
<td>5, f</td>
<td>$O(n)$</td>
<td>$O(n)$</td>
</tr>
</tbody>
</table>

Table 1: Representative BG BFT protocols generated using $\text{BG}[x, z]$ and $\text{BG}[x, y, z]$ for $z \leq 3$. One can have many instantiations for the same parameters (e.g., $\text{BG}[1, 1, 2]$), by using different dominant predicates. AtoA denotes all-to-all communication and 1toA represents one-to-all or all-to-one (linear) communication.
As a 1-phase protocol, BG[1, 1] with DP1 improves FaB5 [23] in terms of all complexity metrics for both normal case and view change. BG[1, 1] has 3 steps (the minimum number of steps that is derived from our framework). Both BG[1, 1] and FaB5 assume $n \geq 5f + 1$.

Besides, our framework can capture protocols with weak liveness (in DP4), a property achieved by some existing protocols (e.g., Tendermint [8], Casper [9]). The notion is known as a "bad practice." We show that, by adopting another dominant predicate (DP5), we could transform protocols with weak liveness to ones with optimistic responsiveness.

Discussion. While our work is not the first to propose a generic framework for fault-tolerant distributed computing, our framework goes far beyond previous approaches. The HotStuff framework focuses on *syntactically* a casting of four existing protocols and one of their own. Regarding Byzantine agreement protocols, a number of *generic* algorithms have been proposed for both benign failures (e.g., [25, 18, 22]) and Byzantine failures [28, 26, 19, 24]. Our framework has much more fine-grained modeling on various parameters, *systematically* leading to a large number of interesting and cleanly specified protocols, including the state-of-the-art BFT protocols with linearity. We believe our framework is right in the sweet spot of what is required for an *efficient* BFT framework.

2 System Model

BFT Model. We consider a BFT system consisting of n replicas, where f of them may fail arbitrarily (Byzantine failures). Let C be the set of correct replicas in the system. We consider the partially synchronous model [15], where there exists an unknown global stabilization time (GST) such that after GST, messages sent between two correct replicas arrive within a fixed delay.

Cryptographic building blocks. We use a (t, n) threshold signature scheme consisting of the following algorithms ($tgen$, $tsign$, $tcombine$, $tverify$) [27, 7]. $tgen$ outputs a system public key and a vector of n private keys. A partial signature signing algorithm $tsign$ takes as input a message m and a private key sk_i and outputs a partial signature σ_i. A combining algorithm $tcombine$ takes as input pk, a message m, and a set of t valid partial signatures, and outputs a signature σ. A signature verification algorithm $tverify$ takes as input pk, a message m, and a signature σ, and outputs a bit. We also use a collision-resistant hash function $hash$ mapping a message of arbitrary length to a fixed-length output.

3 Syntax and Properties for BFT over Graphs

The first layer in our BG framework to be described extends the syntax of the BFT replication over graphs (trees) of nodes [31]. A leader-based, partially synchronous BFT protocol has a normal-case protocol and a view change protocol (triggered periodically or when the leader appears faulty). The BFT protocols proceed in a succession of views numbered by monotonically increasing view numbers. The view number maintained by a replica is denoted as $cview$. Each view has a unique leader. Every replica can obtain the identity of the leader by calling Leader($cview$). Each replica stores a tree of nodes, as in Fig. 2. Each
node is also known as a block, denoted as \(b \). We use nodes and blocks interchangeably. A block contains a batch of client requests \(req \), a parent link \(pl \), and their metadata. A parent link for \(b \) is a unique identifier to its parent node, e.g., a hash digest of a parent node. A branch led by a given block \(b \) is the path from \(b \) all the way to the root of the tree. The metadata for a block \(b \) include \textit{height} and \textit{view}: \textit{height} for \(b \) is the number of blocks on the branch led by \(b \), while \textit{view} for \(b \) is the view during which \(b \) is added to the tree. The \textit{view} for \(b \) is equal to or greater than that of the parent block of \(b \). Two branches are conflicting, if neither one is an extension of the other. Two nodes are conflicting if the branches led by them are conflicting. In BFT, a monotonically growing branch becomes committed. Each time a block extends the branch led by its parent block. A block \(b' \) is an extension of \(b \) if \(b \) is on the branch led by \(b' \).

An example is illustrated in Fig. 2. \(b_1 \) is committed in view 1, while \(b_2 \) and \(b_3 \) are committed in view 2. A branch led by \(b_2 \) is the path from \(b_2 \) to \(b_0 \). \(b_3 \) is an extension of \(b_2 \) and also an extension of \(b_1 \). The height of \(b_3 \) is 4, equal to the depth of the tree. The parent link for a block \(b_2 \) is a hash of its parent block \(b_1 \). \(b_3 \) and \(d_3 \) are conflicting, as the branches led by them are conflicting.

Note that our syntax is more general than that of HotStuff. In HotStuff, the leader rotates and each replica proposes only one block in its turn. In our syntax, a leader may propose one block before it is replaced (if the leader rotation strategy is used) or many blocks (as in conventional BFT protocols).

We recast the safety definition for BFT replication in the language of graph of blocks. For liveness, we adopt the notion of optimistic responsiveness [31].

- **Safety I:** If \(b \) and \(d \) are conflicting blocks, then they cannot be both committed in the same view, each by at least a correct replica.
- **Safety II:** If \(b \) and \(d \) are conflicting blocks, then they cannot be committed in different views, each by at least a correct replica.
- **Optimistic responsiveness:** After GST, any correct leader needs just to wait for at most \(n - f \) responses to guarantee that it can create a proposal that will make progress.

4 **BG Framework: Layer 1**

4.1 **High-Level Overview**

As illustrated in Fig. 3, the normal-case protocol in our framework consists of \(z \) successive phases, where \(z \leq 3 \) and each phase involves only linear communication. After the \(z \) phases, there is a \textit{commit} step that involves only a best-effort broadcast. Among the \(z \) phases, the 1st phase deserves a careful specification,
as replicas need to decide whether to vote for a block. The view change protocol is triggered periodically or when the current leader is suspected to be faulty. As shown in Fig. 3, the new leader collects new-view messages signaling a view change, selects a safe branch using a fsb() function, extends the branch, and broadcasts the new block in a view-update message. Each replica verifies the new block by executing the vv() function. Replicas then switch to the normal-case operation.

4.2 Data Structures

Messages. We use \(\langle \text{type}, \text{view}, \text{height}, \text{block}, \text{justify} \rangle\) to denote the messages sent among replicas. Some fields can be set as \(\perp\). For the normal-case operation, \(m.\text{type} \in \{\text{msg-j, vote-j, commit}\}\), where \(j \in [1..z]\) is the phase number. As shown in Fig. 3, the \(j\)-th phase involves two steps: the leader broadcasts a \text{msg-}j message and replicas vote for it with a \text{vote-}j message. \(m.\text{height}\) is set as the height of \(m.\text{block}\). \(m.\text{justify}\) is an optional field that the leader uses to carry a quorum certificate \(QC\) (to be described shortly) in \text{msg-}j messages. For the view change protocol, \(m.\text{type} \in \{\text{new-view, view-update}\}\). When \(m.\text{type} = \text{new-view}\), \(m.\text{block}\) and \(m.\text{height}\) are set as \(\perp\). When \(m.\text{type} = \text{view-update}\), \(m.\text{block}\) is an associated block and \(m.\text{height}\) is the height of the block. In both cases, \(m.\text{justify}\) contains information needed for a correct view change.

Quorum certificates. A quorum certificate for a message (defined above) is a data type that combines a collection of signatures for the same tuple signed by \(t < n\) signatures. We use a \((t, n)\) threshold signature to reduce the authenticator complexity. In this setting, replicas run the \(tsign\) algorithm to generate partial signatures for a message. One can run the \(tcombine\) algorithm to combine the \(t\) partial signatures into a threshold signature. A quorum certificate for a message \(m\) is valid if the threshold signature is valid. To distinguish the authenticator using partial signatures, we let \(qc\text{Vote}(m)\) denote the output of the \(tsign\) algorithm for \(m\). Otherwise, we implicitly use a signature or a threshold signature for authentication. To hide the implementation detail, let \(qc\text{Create}(m)\) be a quorum certificate generated for \(m\).

For different messages, we may use different thresholds for their quorum certificates. The quorum certificate for a \text{vote-}j message \(m\) is denoted by \(QC_j\) and also by \(b.QC_j\) where \(m.\text{block} = b\). \(b.QC_j\) is also called a \(QC_j\) for \(b\). The threshold for \(QC_j\) is set as \(T_j\). For any quorum certificate \(qc\), if \(qc\) is a QC for block \(b\), we let \(qc\text{Block}(qc)\) denote \(b\).

Rank of QCs and blocks. We introduce a notion of rank for QCs and blocks, which is similar to that defined in [16]. For each block \(b\), \(\text{rank}(b)\) depends on \(b.\text{view}\) and \(b.\text{height}\). We only care if the rank of a block is higher than that of another one. Blocks are compared lexicographically by rank (i.e., first by the view number, then by the height). In addition, the rank of \(b.QC_j\) is defined the same as that of block \(b\).

Local state at replicas. Each replica maintains several state parameters, including the current view number \(cview\), the highest quorum certificates (received in different phases) \(QC_1, \cdots, QC_z\), and last voted block \(vb\). In protocols with
Algorithm 1: Normal-case protocol for p_i

1. **lclstate**: the current view $cview$, the last voted block vb, the locked block lb in $BG[x, y, z]$, certificates QC_1, QC_2, \ldots, QC_z.
2. **parameters**: thresholds for different voting phases T_1, T_2, \ldots, T_z.

As a leader:

1. propose a block b extending $qcBlock(QC_2)$, broadcast (MSG-1) message m for b, where $m.justify \in QC_z$.
2. upon receiving T_j signed (VOTE-j) messages for block b: // $j \in [1, z]$
3. propose $b.QC_j$, update $QC_j \leftarrow b.QC_j$
4. broadcast a (MSG-(j+1)) message m for b, where $m.justify \in QC_z$
5. upon receiving T_i signed (VOTE-z) messages for block b':
6. propose $b.QC_i$, update $QC_i \leftarrow b.QC_i$
7. broadcast a COMMIT message m for b, where $m.justify \in QC_z$, propose another block

As a replica:

8. upon receiving a valid (MSG-1) message for a block k // $\text{rank}(b) > \text{rank}(vb)$
9. update $vb \leftarrow b$, $QC_x \leftarrow m.justify$ // vote for a new block
10. send a (VOTE-1) message for b to LEADER(cview)
11. upon receiving a valid (MSG-1) message m for b: // $j \in [1, z]$
12. update $QC_j \leftarrow m.justify$, send a (VOTE-j) message for b to LEADER(cview)
13. upon receiving a valid (MSG-(y+1)) for b in $BG[x, y, z]$: update $lb \leftarrow b$
14. upon receiving a valid COMMIT message m for b
15. update $QC_j \leftarrow m.justify$, commit b // execute the requests in b in order
16. wait for a (MSG-1) message for another block

lock state, replica need to store locked block lb. criticalState of a replica contains several parameters in local state, which contains information replicas send in the NEW-VIEW messages.

Note that the data structures for messages and quorum certificates are more general than those defined in HotStuff. In our framework, we introduce a system parameter $flag$. The $flag$ is used to specify whether vb should be taken into account in selecting the safe branch during view changes.

4.3 Normal-Case Protocol (Algorithm 1)

In the normal-case protocol, there are z phases. Each phase includes two steps with linear communication.

- In phase 1, the leader extends a branch in the tree it maintains with a new block b, and broadcasts a MSG-1 message m for b to all replicas, where $m.justify$ is set to QC_z. Upon receiving m, each replica verifies whether the rank of b is larger than that of the last voted block vb. If so, the replica updates its QC_x with $m.justify$ and then sends the leader a signed VOTE-1 message for b.
- In phase 2 to phase z, replicas repeat the same procedure. In particular, in the j-th phase, after collecting T_{j-1} matching threshold signature shares for b, the leader combines them into a $b.QC_{j-1}$, broadcasts $b.QC_{j-1}$ in a MSG-j to all replicas and enters the next phase. Upon receiving a valid MSG-j message, a replica updates its $QC_{j-1} and sends the leader a signed VOTE-j message for b. In $BG[x, y, z]$, if a replica voted for a block in the $(y+1)$-th phase, it sets its lb to the block at the same time.
- In the commit step, the leader broadcasts $b.QC_z$ in a COMMIT message. Upon receiving a valid COMMIT message, each replica commits the corresponding block.
Algorithm 2: View change protocol for p_i

\begin{algorithm}
\begin{algorithmic}
 \State criticalState: contains many variables in localState specified in layer 3.
 \State parameters: thresholds T_1, T_2, \ldots, and T_r, and the view change threshold T.
 \State \bullet upon timeout:
 \State - update $\text{cview} \leftarrow \text{cview} + 1$
 \State - send the criticalState in a new-view message to Leader(cview)
 \State $\leftarrow \text{Leader(cview)} = p_i$
 \State \bullet as a new leader:
 \State - upon receiving a set M of T signed new-view messages for view cview:
 \State \hspace{1em} - $(\text{criticalView}, \pi) \leftarrow \text{fsb}(M)$, propose a block b extending b'
 \State \hspace{1em} - broadcast a view-update message m for b, where $m.\text{justifies}$ is π
 \State \hspace{1em} - $(\text{flag} = 1)$: vote for b but does not update localState
 \State \bullet as a replica:
 \State - upon receiving a view-update message m from Leader(cview) for a block b:
 \State \hspace{1em} - if $vv(m, x) = 0$ in $BG[x, z]$ or $vv(m, lb) = 0$ in $BG[x, y, z]$, discard m
 \State \hspace{1em} - broadcast a (NOTE-1) message for b to Leader(cview)
 \State \bullet wait until $b.\text{QC} = 0$ is collected:
 \State \bullet wait until NOTE-1 message for a block b' extending b is received:
 \State \hspace{1em} - update $vb = b.\text{QC} = m.\text{justifies}$, send a (NOTE-1) message for b' to Leader(cview)
 \State - switch to normal-case protocol
\end{algorithmic}
\end{algorithm}

4.4 View Change Protocol (Algorithm 2)

We now present the view change protocol. Crucially, we introduce two key functions for the view change protocol, $\text{FSB}()$ and $\text{VV}()$. Intuitively, $\text{FSB}()$ is used for the leader to obtain a safe branch to extend during view changes. $\text{VV}()$ is used for replicas to decide whether to accept a VIEW-UPDATE message.

Similar to prior works, a timer is started when a replica enters a new view or when a replica waits for a message from the current leader. When the timer of replica p_i expires, p_i triggers view change by incrementing cview by one. Then p_i sends criticalState in a NEW-VIEW message to the next leader.\)

- The new leader collects a set of T NEW-VIEW messages, denoted as M. It then executes $\text{FSB}(M)$ to obtain (b', π), where b' is a block and π is a proof that b' is a safe block to extend. Then the leader extends the branch led by b' with a new block b and broadcasts b in a VIEW-UPDATE message m. There are two cases depending on the parameter flag (specified in Sec. 6). If $\text{flag} = 0$, the leader directly switches to normal-case protocol. If $\text{flag} = 1$, the leader still switches to phase 2 but does not update its lockState until $b.\text{QC} = 0$ is collected.

- A replica accepts a VIEW-UPDATE message m in view v from the new leader only if $\text{VV}(m)$ outputs 1 in $BG[x, z]$ or $\text{VV}(m, lb)$ outputs 1 in $BG[x, y, z]$. Then the replica sends a NOTE-1 message for $m.\text{block}$. Similar to the two cases for the leader, according to the flag parameter, the replica may take different actions. If $\text{flag} = 0$, the replica switches to normal-case protocol. If $\text{flag} = 1$, the replica still votes for the first block b proposed by the new leader but does not update localState or commit b. If later the replica receives a MSG-1 message for b' that extends b, the replica then votes for b' and switches to normal-case protocol.

We present pseudocode and discuss the details of layer one in Appendix B.
5 BG Framework: Layer 2

Overview of layer 2 in BG. This section specifies properties for the core functions—FSB() and VV(). These properties are sufficient to prove the security of our Layer 1 algorithms. However, one can define other appropriate properties that may lead to secure BFT protocols.

When defining properties for our functions, we explicitly distinguish safety properties and liveness properties, which correspond to the safety and liveness of the BFT protocols. The fine-grained characterization of function properties allows us to better understand our framework and generate novel BFT protocols. We then introduce a dichotomy for BFT protocols: BG\[x, z\] and BG\[x, y, z\]. The two kinds of BFT protocols are different in terms of the information each replica maintains in its local state, which could lead to novel BFT protocols. We then define properties of FSB() and VV() for BG\[x, z\] and BG\[x, y, z\], respectively. Finally, we show that with these properties properly defined in Layer 2 of our framework, any protocol generated by our framework is safe and live.

BG\[x, z\] and BG\[x, y, z\]. As mentioned earlier, we introduce both BG\[x, z\] (\(x \leq z\)) and BG\[x, y, z\] (where \(x \leq y < z\)) in the normal-case protocol. The two kinds of BFT protocols have rather different features.

Both BG\[x, z\] and BG\[x, y, z\] are z-phase protocols. BG\[x, z\] models protocols without lock state, where the view change rules rely purely on the information provided by replicas during the view change. BG\[x, y, z\] represents protocols with lock state, where the view change rules rely on the information collected during the view change and the information on the block locked in the y-th phase (for some \(y < z\)).

The parameter \(x\) applies to both BG\[x, z\] and BG\[x, y, z\]. Let \(b\) be a block and \(m\) be a MSG-1 message for \(b\). Justify is set as \(b'.QC_x\), where \(b'\) is the parent block of \(b\) and \(QC_x\) is the QC formed in the \(x\)-th phase for \(b'\).

The parameter \(y\) in BG\[x, y, z\] represents the phase where a replica updates its state parameter lockState in the normal-case protocol. We say \(b\) a locked block, if at least one correct replica has updated its lockState to \(b\). Intuitively, lockState is crucial for a replica in BG\[x, y, z\] to decide whether to accept a VIEW-UPDATE message.

A key lemma and defining \(b^v\). We now present Lemma 1, a key lemma to specify the properties of FSB() and VV(). The lemma essentially claims that before a view \(v\), there exists a unique block \(b^v\) committed with the highest rank. The existence of block \(b^v\) is essential in defining function properties. Intuitively, from the protocol perspective, the core functions should ensure that block \(b^v\) stills remain committed after the view change.

Lemma 1. Let \(B^v = \{ b | \text{block } b \text{ has been committed before view } v \}\). If \(T_j > f \) for \(j \in [1..z]\), and \(T_1 \geq \left\lceil \frac{3f+1}{2} \right\rceil\), then there exists \(b^v \in B^v\) such that for all \(b' \in B^v\) and \(b' \neq b^v\), we have \(\text{snk}(b') > \text{snk}(b^v)\).

FSB() and VV() for BG\[x, z\]. We now elaborate the properties of FSB() and VV() functions for BG\[x, z\]. There is flexibility in defining the properties of the functions. These properties are just some sufficient conditions to prove the algorithms in the Layer 1 framework. Given a set \(M_v\) of \(T\) new-view messages (where we call the set \(M_v\) a view change snapshot), FSB() takes as input
M_v and outputs some (b, π). For $\text{fsb}(\cdot)$, we consider two properties: FSB-safety and FSB-liveness. FSB-safety ensures that a correct leader selects the longest committed branch in the tree to extend. On the other hand, FSB-liveness is relatively straightforward. Here we emphasize that the threshold T cannot be more than $n - f$, as there are f faulty replicas. T could be less than $n - f$ for some protocols.

Given a view-update message m, let b denote the parent block of $m.block$, and let v denote $m.view$. $\text{vv}(\cdot)$ takes as input m and outputs a binary value, representing whether a replica will accept m in view v. We consider VV-safety and VV-liveness properties for $\text{vv}(m)$. Intuitively, VV-safety requires that a correct replica will not vote for a conflicting block of b^v. Our definition is actually stronger: it requires there exists a set M_v that is the input of $\text{fsb}(\cdot)$. Essentially, VV-safety ensures that a committed block by any correct replica will remain committed after the view change.

- **FSB-safety**: If $\text{fsb}(M_v)$ outputs (b, π), then π is a proof that b is either b^v or an extension of b^v.
- **FSB-liveness**: Let $T \leq n - f$. $\text{fsb}(M_v)$ outputs some (b, π).
- **VV-safety**: $\text{vv}(m)$ outputs 1 by a correct replica only if there exists a set M_v such that $(b, m.justify)$ is the output of $\text{fsb}(M_v)$.
- **VV-liveness**: If $\text{fsb}(M_v)$ outputs $(b, m.justify)$, $\text{vv}(m)$ outputs 1.

Both $\text{fsb}(\cdot)$ properties and $\text{vv}(\cdot)$ properties are carefully defined. Several alternative approaches to defining properties fail to "work." All these properties are defined in a way that is neither too restricted nor too broad. We comment, however, that one can define other appropriate properties for the two functions.

FSB() and VV() for BG[x, y, z]. We now turn to BG[x, y, z]. Compared to BG[x, z], $\text{vv}(\cdot)$ in BG[x, y, z] takes as input an additional value lockState locally maintained by each replica. To distinguish the properties in BG[x, y, z] from those in BG[x, z], we add an "L" (standing for "Lock state") for all the properties.

$\text{fsb}(\cdot)$ takes as input M_v and outputs some (b, π). We find that we do not have to define the safety property, as BG[x, y, z] has the lockState that is crucial to ensure safety. Accordingly, we only define a liveness property that happens to be identical to that of BG[x, z], i.e., FSBL-liveness. Given a view-update message m, let b denote the parent block of $m.block$ and v denote $m.view$. $\text{vv}(\cdot)$ takes as an input m together with lockState of a replica and outputs a binary value. We define both safety and liveness properties for $\text{vv}(m, \text{lockState})$ in VVL-safety and VVL-liveness.

- **FSB-Liveness**: Let $T \leq n - f$. $\text{fsb}(M_v)$ outputs some (b, π).
- **VV-Liveness**: Let $P = \{p_i|p_i \in C\text{ (the set of correct replicas)}\}$, $\text{vv}(m, \text{lockState})$ outputs 1 by p_i in view v. If b is conflicting with b^v or $b.height$ is lower than $b^v.height$, then $\mid P\mid < T - f$.
- **VV-Liveness**: If $(b, m.justify)$ is the output of $\text{fsb}(M_v)$ function on some M_v, $\text{vv}(m, \text{lockState})$ outputs 1 at all correct replicas.

Above, VVL-safety intuitively requires that not so many correct replicas will vote for a conflicting block of b^v. VVL-safety ensures that a block b^v committed by any correct replica will remain committed after the view change. On the other
hand, VVL-d-liveness intuitively ensures that all correct replicas will move to the new view after receiving the view-update message from a correct leader.

Correctness for BG\([x, z]\) and BG\([x, y, z]\). We now present the following core theorems showing how the framework parameters and the properties of the core functions affect the safety and liveness of the BG\([x, z]\) or BG\([x, y, z]\) protocols.

Theorem 1. \(\text{BG}[x, z] \) achieves safety-I, if \(T_1 \geq \left\lfloor \frac{n+f+1}{2} \right\rfloor \) and \(T_j > f \) for all \(j \in [1..z] \).

Theorem 2. \(\text{BG}[x, z] \) achieves safety-II, if \(T_1 \geq \left\lfloor \frac{n+f+1}{2} \right\rfloor \), \(T_j > f \) for all \(j \in [1..z] \), and FSB-safety and VV-safety hold.

Theorem 3. \(\text{BG}[x, y, z] \) achieves optimistic responsiveness, if \(T_j \leq n-f \) for all \(j \in [1..z] \), \(T \leq n-f \), and FSB-liveness, and VV-liveness hold.

Theorem 4. \(\text{BG}[x, y, z] \) achieves safety-I, if \(T_1 \geq \left\lfloor \frac{n+f+1}{2} \right\rfloor \) and \(T_j > f \) for all \(j \in [1..z] \).

Theorem 5. \(\text{BG}[x, y, z] \) achieves safety-II, if \(T_1 \geq \left\lfloor \frac{n+f+1}{2} \right\rfloor \), \(T_j > f \) for all \(j \in [1..z] \), and VVL-safety holds.

Theorem 6. \(\text{BG}[x, y, z] \) achieves responsiveness, if \(T_j \leq n-f \) for all \(j \in [1..z] \), \(T \leq n-f \), and FSB-Liveness and VVL-liveness hold.

These theorems are find-grained: we pinpoint the conditions "needed" for safety-I, safety-II, and optimistic responsiveness of BFT. The results provide important insights on BFT protocols in our framework and facilitate the design of new BFT protocols. For instance, with Theorem 1 and Theorem 2, while designing a BFT protocol using our framework, one may set \(T_1 = \left\lfloor \frac{n+f+1}{2} \right\rfloor \) and try to set some \(T_j \) for \(j \in [2..z] \) as \(f+1 \).

6 **BG Framework: Layer 3**

This section provides the most technical and innovative part of our framework: the realizations of the \(\text{fsb}() \), and \(\text{vv}() \) functions satisfying the properties we define in our Layer 2 framework.

We find that directly working on \(\text{fsb}() \) and \(\text{vv}() \) for the set \(M_v \) (the view change snapshot for view \(v \)) is difficult. Intuitively, there are just many ways of forming \(M_v \), and it is hard to enumerate all meaningful choices. Thus, we take a detour and propose a real vs. virtual paradigm with the following steps:

- Rather than directly defining \(\text{fsb}() \) and \(\text{vv}() \) for \(M_v \) (a real view change snapshot), we introduce the concept of virtual view change snapshot \(M^b \) for a block \(b \). Intuitively, the information included in a virtual snapshot \(M^b \) is mainly decided by the state (committed or locked) of \(b \).
- We define for \(M^b \) dominant predicates that specify criticalState and the \(\text{fsb}() \) and \(\text{vv}() \) functions. We can show that realizations of \(\text{fsb}() \) when taking \(M^b \) as input—according to these dominant predicates—can satisfy the properties defined in layer 2.
We are finally able to prove that using our framework, as long as all committed blocks in $BG[x,z]$ (resp., locked blocks in $BG[x,y,z]$) satisfy a dominant predicate, then our realizations for $FSB()$ and $VV()$ when replacing M^b (virtual) using M_v (real) would also satisfy the properties defined in layer 2.

Under this paradigm, we design five interesting dominant predicates that realize $FSB()$ and $VV()$. In our framework, these realizations lead to useful BFT protocols achieving safety and optimistic responsiveness. One can, however, define new predicates, enabling novel BFT constructions.

6.1 Defining Virtual Snapshot M^b for a Block b

We begin by defining virtual (view change) snapshot on which our predicates and realizations of $FSB()$ and $VV()$ can be built.

Like a real view change snapshot, a virtual snapshot M^b also contains a set of $T_{NEW-VIEW}$ messages from replicas. The difference is that M^b is associated with a block b. In particular, M^b contains the information stored at replicas regarding b. Let v denote $b.view$. We show an example in Fig. 4, where blocks b', b, and b'' are all proposed in view v, b' is on the branch led by b, and b'' extends b. We distinguish three cases for the criticalState contained in each $m \in M^b$ from a correct replica p_i:

- **Case 1 (Fig. 4 (a))**: Block b is the highest block p_i has voted for in view v. Then the criticalState in m contains the block (and certificates) stored by p_i with the highest rank in view v. Specifically, criticalState could contain $b, b.QC_1, ..., b.QC_{z-1},$ and $b'.QC_z$.

- **Case 2 (Fig. 4 (b))**: Replica p_i has voted for b' and b'', but not b. Then the criticalState in m contains the block (and certificates) stored by p_i with a lower height than that of b in view v. In this case, while p_i has stored information for $b', criticalState$ could contain only b' and certificates for b'.

- **Case 3 (Fig. 4(c))**: Replica p_i has voted for $b', b,$ and b''. Then the criticalState in m contains the block (and certificates) stored by p_i with the same rank with b in view v. Specifically, criticalState could only contain b and certificates for b.

We consider the real state of b at a correct replica before the view change (i.e., locked, committed, neither locked nor committed). For a block b^v defined in layer 2, a correct protocol should ensure that the real state of b^v can be obtained from M_v. If there exists a correct $FSB()$ function satisfying the properties defined in layer 2, then the output of $FSB(M_v)$ should be b^v or an extension of b^v. Hence, b^v still remains committed after the view change.

M^{b^v}, emphasizing the information for block b^v, focuses on whether the real state of b^v can be obtained. Therefore, M^{b^v} can be viewed as a special case of M_v but includes more information about b^v. Indeed, criticalState in $m \in M^{b^v}$
sent by a correct replica always contains information the replica stored for block \textit{b}^v$, while the replica may have changed its \textit{localstate} when view change occurs. If $m \in M_i$ is sent at another moment, m may not directly include any evidence about the real state of \textit{b}^v. Accordingly, a correct \textit{FSB()} function should also output \textit{b}^v or an extension of \textit{b}^v taking M^b as input. Later on in this section, we define dominant predicates for virtual snapshots and show how they can be used to construct \textit{FSB()} and \textit{VV()} accordingly.

6.2 Dominant Predicates and Realizations of \textit{FSB()} and \textit{VV()}

We now present the five predicates we introduce in the paper. Depending on the information (\textit{criticalState}) each replica provides in the \textit{new-view} message, we could capture the properties of the virtual snapshots to define the predicates. We focus on two critical information: each replica's last voted block \textit{vb} and the highest QC. In DP1, the \textit{criticalState} contains \textit{vb} and QC_x. Via DP1, BFT protocols achieving optimal complexity with $5f + 1$ replicas can be derived. DP2 modifies DP1 and allows us to cover BFT protocols with $4f + 1$ replicas. In contrast, in DP3 and DP4, the \textit{criticalState} only contains QC_x and the corresponding \textit{FSB()} and \textit{VV()} functions are also simpler. Using DP3, we can obtain many interesting BFT protocols with $3f + 1$ replicas, including [20] and [31]. In DP4, we aim at formalizing protocols with weak liveness such as Tendermint [8, 9] and Casper [9]. DP5 is based on DP4 and the \textit{criticalState} contains \textit{vb} and QC_x. Compared with DP4, we elaborate the additional information (\textit{vb}) contained in \textit{criticalState} in DP5 and essentially \textit{turn} protocols with weak liveness property into ones with optimistic responsiveness. Below we describe DP1 in detail and briefly describe the rest of them. Here, for any snapshot, we let $M.vb$ and $M.QC_x$ denote all \textit{vb}'s and all QC_x's contained in M, respectively.

The pseudocode for all the core functions (i.e., \textit{FSB()} and \textit{VV()}) are summarized in Table 2.

Dominant predicate DP1. Given a block \textit{b} where the real state of \textit{b} is committed, we consider the following situation in DP1: "enough" correct replicas have already voted for \textit{b} but not "enough" correct replicas have received the quorum certificate. To simplify the description, we define $\text{Votes}(b, T, k)$ and $\text{Certs}(b, T, x, y)$. In $BG[x, z]$ and $BG[x, y, z]$, $\text{Votes}(b, T, k)$ represents the lower bound on the number of \textit{b} contained in $M^b.vb$ when a correct replica has received $b.QC_k$ in normal-case operations in view $b.view$. Similarly, $\text{Certs}(b, T, x, y)$ represents the lower bound on the number of $b.QC_x$ contained in $M^b.QC_x$ when a correct replica has received $b.QC_y$ in normal-case operations in view $b.view$.

We now define DP1 for $BG[x, z]$ and $BG[x, y, z]$. $BG[x, z]$ satisfies DP1 iff $\text{Votes}(b, T, z) > T/2$ (i.e., more than a half of elements in $M^b.vb$ are \textit{b} for a \textit{committed} block \textit{b}); $BG[x, y, z]$ satisfies DP1 iff $\text{Votes}(b, T, y) > T/2$ (i.e., more than a half of elements in $M^b.vb$ are \textit{b} for a \textit{locked} block \textit{b})

We show an example in Fig. 5 for a $BG[x, y, z]$ satisfying DP1 with 6 replicas in total (i.e., $f = 1$ and $n = 5f + 1$) and we set T to 5 (i.e., $4f + 1$). If a correct replica has committed \textit{b}, any virtual snapshot contains messages from at least 3 (i.e., $2f + 1$ and more than $T/2$) correct replicas whose \textit{vb} is \textit{b}. Accordingly, a
Table 2: Realization of \texttt{fsb}, \texttt{vv} and \texttt{criticalState} according to different dominant predicates. We use \texttt{num}(d, D) to denote the number of \texttt{d}'s in a set \texttt{D}.
correct $\texttt{FSB}(M^b)$ function should output block b if the number of b in $M^b.vb$ is larger than $T/2$, i.e., at least $T/2$ replicas have voted for b.

We now specify $\texttt{FSB}()$ and $\texttt{VV}()$ functions. The pseudocode of core functions for $\texttt{DP1}$ is presented in lines 1-17 in Table 2. For $\texttt{DP1}$, we set \texttt{flag} as 1.

$\texttt{FSB()}$ takes as input a snapshot M_v for view v and outputs (b, π). Based on M_v, we can obtain two intermediate blocks b_1 and b_2. If there exist a b such that $\text{num}(b, M_v.vb) > T/2$, b_1 is set as b (lines 02-03). Then $\texttt{FSB()}$ outputs (b_1, M_v) in $\texttt{BG}[x, z]$ and (b_1, M_v, vb) in $\texttt{BG}[x, y, z]$ (lines 06-1 and 06-2). Otherwise, we have $b_1 = \texttt{null}$. Block b_2 (lines 04-05) is the block with the highest rank such that $b_2.QC_x$ is included in M_v. $\texttt{FSB()}$ returns $(b_2, b_2.QC_x, M_v)$ in $\texttt{BG}[x, z]$ and $(b_2, b_2.QC_x)$ in $\texttt{BG}[x, y, z]$ (lines 07-1 and 07-2).

As the output of $\texttt{FSB()}$ is different for $\texttt{BG}[x, z]$ and $\texttt{BG}[x, y, z]$, the $\texttt{VV()}$ function is also different. For $\texttt{BG}[x, z]$, $\texttt{VV()}$ takes as input a $\texttt{VIEW-UPDATE}$ message m and outputs a binary value. According to the output of $\texttt{FSB()}$ function for $\texttt{BG}[x, z]$, $m.\texttt{justify}$ should be M_v. Let b denote the parent block of $m.\texttt{block}$ and v be the view of the replica. $\texttt{VV}(m)$ outputs 1 if $(b, \pi) = \texttt{FSB}(M_v)$ and $b.view < v$, i.e., the replica has to verify whether the leader indeed extends a safe branch given M_v. Otherwise, $\texttt{VV()}$ outputs 0.

For $\texttt{BG}[x, y, z]$, the $\texttt{VV()}$ function additionally takes as input $\texttt{lockState}$ (i.e., \texttt{lb}). $\texttt{VV}(m, \texttt{lb})$ outputs 1 if one of the following conditions holds: 1) $m.\texttt{justify}$ is M_v, more than $T/2$ elements in $M_v.vb$ are b, $b.view < v$, and $\text{rank}(b) \geq \text{rank}(\text{lb})$, i.e., $T/2$ replicas have voted for a higher block than lb; 2) $m.\texttt{justify}$ is $b.QC_x$, $b.view < v$, and $\text{rank}(b) \geq \text{rank}(\text{lb})$, i.e., a QC_x has been formed for b and the rank of b is no less than that of lb. Otherwise, $\texttt{VV()}$ outputs 0.

For $\texttt{DP1}$, we obtain the following theorems.

Lemma 2. If $T - (n - T_1 + f) > T/2$, then $\texttt{BG}[x, z]$ or $\texttt{BG}[x, y, z]$ satisfies $\texttt{DP1}$.

Theorem 7. $\texttt{BG}[x, z]$ (in Table 2) achieves safety and optimistic responsiveness if the following are satisfied: 1) $\texttt{BG}[x, z]$ satisfies $\texttt{DP1}$; 2) $2f < T \leq n - f$; 3) $\left\lfloor \frac{n+f+1}{2} \right\rfloor \leq T_1 \leq n - f$; and 4) $f < T_j \leq n - f$ for $j \in [1..z]$.

Theorem 8. $\texttt{BG}[x, y, z]$ (in Table 2) achieves safety and optimistic responsiveness if the following are satisfied: 1) $\texttt{BG}[x, y, z]$ satisfies $\texttt{DP1}$; 2) $2f < T \leq n - f$; 3) $\left\lfloor \frac{n+f+1}{2} \right\rfloor \leq T_1 \leq n - f$; 4) $f < T_j \leq n - f$ for $j \in [1..z]$; and 5) $n - T_1 + f + 1 \leq T_{y+1}$.

We present the proofs of these theorems in Appendix F and Appendix G.

Dominant predicate $\texttt{DP2}$. $\texttt{DP1}$ has restricted on the number of replicas that vote for certain block, i.e., $\texttt{VOTES}(b, T, y) > T/2$. An interesting question to answer is whether we could relax the $T/2$ threshold for a meaningful predicate. So we relax the threshold from $T/2$ to $f + 1$ in $\texttt{DP2}$. For $\texttt{BG}[x, y, z]$, it satisfies...
If \(\text{rank}(b_0) > \text{rank}(b_3) \) and \(\text{rank}(b_1) = \text{rank}(b_2) \), \(\text{FSB}() \) outputs \((b_3, \pi)\) where \(\pi = (b_3, \text{QC}_x, M_v, \text{QC}_x) \) (see lines 26-28).

2) If \(\text{rank}(b_0) > \text{rank}(b_3) \) and \(\text{rank}(b_1) \neq \text{rank}(b_2) \), \(\text{FSB}() \) outputs \((b_0, \pi)\) where \(\pi = (M_v, vb) \) (see lines 26-29).

3) Otherwise, \(\text{FSB}() \) outputs \(b_3 \) and a proof \(\pi \) where \(\pi = b_3, \text{QC}_x \) (see line 30).

In case 1), the parent block of \(b_1 \) and \(b_2 \) must be the same block \(b \). More than \(2f + 1 \) replicas set their \(\text{QC}_x \) to the \(\text{QC}_x \) for \(b \). Therefore, neither \(b_1 \) nor \(b_2 \) was committed and \(M_v, \text{QC}_x \) is a proof that \(b \) is a safe block to extend. In case 2), \(b_0 \) is the locked block with the highest rank or \(b_0 \) has a higher rank than any locked block by a correct replica. In case 3) \(b_3 \) has the same of a higher rank than any locked block by a correct replica.

\(\text{VV}() \) takes as input a \text{VIEW-UPDATE} message \(m \) and \text{lockState} (i.e., \(lb \)). Let \(b' \) denote the parent block of \(m, \text{block} \), then \(\text{VV}() \) outputs 1 if one of the following four conditions is satisfied: 1) \(b', \text{QC}_x \in \pi \) and \(\text{rank}(b') \geq \text{rank}(lb) \) (lines 32-33); 2) \(M_v, vb \in \pi \) and \(\text{num}(b', M_v, vb) \geq f + 1 \) and \(\text{rank}(b') > \text{rank}(lb) \) (lines 34-35); 3) \(M_v, vb \in \pi \) and \(\text{num}(b', M_v, vb) \geq f + 1 \) and \(b' = lb \) (lines 36-37); 4) \(M_v, \text{QC}_x \in \pi \) and \(b', \text{QC}_x \in \pi \) and \(\text{num}(b', \text{QC}_x, M_v, \text{QC}_x) > 2f + 1 \) (lines 38-39).

For \(\text{DP}_2 \), we obtain the following theorems:

Lemma 3. If \(T - (n - T_i + f) \geq f + 1 \) and \(T - (n - T_{i+1} + f) \geq T - (2f + 1) \), then \(BG[x, y, z] \) satisfies \(\text{DP}_2 \).

Theorem 9. \(BG[x, y, z] \) (in Table 2) achieves safety and optimistic responsiveness if the following are satisfied: 1) \(BG[x, y, z] \) satisfies \(\text{DP}_2 \); 2) \(f < T \leq n - f \); 3) \(\left\lfloor \frac{f + 1}{2} \right\rfloor \leq T_1 \leq n - f \); 4) \(f < T_j \leq n - f \) for \(j \in [1..z] \); and 5) \(x < y < z, n - T_i + f + 1 \leq T_j + 1 \).

We present proofs for the above theorems in Appendix H.

Dominant predicate \(\text{DP}_3 \). Both \(\text{DP}_1 \) and \(\text{DP}_2 \) require each replica to maintain its last vote \(vb \) and the \(QC \)s as part of the \text{criticalState}. In \(\text{DP}_3 \), \text{criticalState} contains only the highest \(QC \). In particular, we consider the following situation for \(\text{DP}_3 \): "enough" correct replicas have received the quorum certificate for \(b \). \(BG[x, z] \) satisfies \(\text{DP}_3 \) iff \(\text{CERTS}(b, T, x, z) \geq 1 \); \(BG[x, y, z] \) satisfies \(\text{DP}_2 \) iff \(\text{CERTS}(b, T, x, y) \geq 1 \).
The constructions of core functions for DP3 are shown in lines 41-52 in Table 2. Block \(b_2\) (lines 42-43) is the block with the highest rank such that \(b_2.QC_x\) is included in \(M_v.QC_x\). For \(b_2.QC_x\) outputs \((b_2, (b_2.QC_x, M_v))\) (line 44-1) for \(BG[x, z]\) and \((b_2, b_2.QC_x)\) (line 44-2) for \(BG[x, y, z]\).

Let \(m\) denote a VIEW-UPDATE message for view \(v\), let \(b\) denote the parent block of \(m.block\) and \(\pi\) denote \(m.justify\). Then \(Vv(m)\) for \(BG[x, z]\) returns 1 in view \(v\) if \(m.justify\) is \(M_v\), \((b, \pi) = FSB(M_v)\), and \(b.view\) is lower than \(v\) (see lines 45-48). For \(BG[x, y, z]\), \(Vv()\) has an additional input \(lb\). \(Vv(m, lb)\) outputs 1 if \(b.QC_x \in \pi\), \(b.view < v\) and \(rank(b) \geq rank(lb)\) (see lines 49-52). Otherwise, \(Vv()\) outputs 0.

We obtain the following theorems for \(BG[x, z]\) and \(BG[x, y, z]\):

Lemma 4. If \(x < z\) and \(T - (n - T_{x+1} + f) > 0\) or if \(x \geq z\) and \(T - (n - 1) > 0\), then \(BG[x, z]\) satisfies DP3.

Lemma 5. If \(x < y\) and \(T - (n - T_{x+1} + f) > 0\) or if \(x = y\) and \(T - (n - 1) > 0\), then \(BG[x, y, z]\) satisfies DP3.

Theorem 10. \(BG[x, z]\) (in Table 2) achieves safety and optimistic responsiveness if the following are satisfied: 1) \(BG[x, z]\) satisfies DP3; 2) \(f < T \leq n - f\); 3) \(\left\lfloor \frac{n + f + 1}{2} \right\rfloor \leq T_1 \leq n - f\); and 4) \(f < T_j \leq n - f\) for \(j \in [1..z]\).

Theorem 11. \(BG[x, y, z]\) (in Table 2) achieves safety and optimistic responsiveness if the following are satisfied: 1) \(BG[x, y, z]\) satisfies DP3; 2) \(f < T \leq n - f\); 3) \(\left\lfloor \frac{n + f + 1}{2} \right\rfloor \leq T_1 \leq n - f\); 4) \(f < T_j \leq n - f\) for \(j \in [1..z]\); and 5) \(n - T_1 + f + 1 \leq T_{v+1}\).

We present the proofs for these theorems in Appendix I and Appendix J.

Dominant predicate DP4. DP4 aims at capturing protocols with weak liveness. In particular, during the view changes, any correct leader needs to wait for NEW-VIEW messages from all correct replicas. While protocols with weak liveness are considered a bad practice [31], we use DP4 to cover well-known protocols of this kind such as Tendermint and Casper [8, 9]. We discuss DP4 in detail in Appendix D.

Dominant predicate DP5. Since DP4 captures protocols with weak liveness property, a natural question is whether we can define a dominant predicate that can transform a protocol with weak liveness to one with optimistic responsiveness. We answer this question affirmatively in DP5. In DP5, criticalState is set to \(QC_x\) and vb. Given a block \(b\), DP5 is based on two situations. The first situation is that \(b\) has been committed by at least one correct replica and "enough" correct replicas have locked \(b\). The second situation is more subtle: "enough" correct replicas may have already voted for a block \(b\) but not "enough" correct replicas have locked \(b\). In this situation, \(M_v.QC_x\) may include no information about \(b\) Then correct replicas having locked \(b\) may reject a VIEW-UPDATE message from a correct new leader as in DP4.

\(BG[x, y, z]\) satisfies DP5 iff \(CERTS(b, T, x, z) \geq 1\) and \(VOTES(b, T, y) \geq 1\). In our concrete constructions of \(FSB()\) and \(Vv()\), a VIEW-UPDATE message may need to optionally include \(M_v\).

The constructions of core functions for \(BG[x, y, z]\) based on DP5 are shown in Table 2, lines 53-68. \(FSB()\) takes as input \(M_v\) and outputs some \((b, \pi)\). From \(M_v\),
we can obtain two intermediate variables (block \(b_1\) and block \(b_2\)). In lines 54–55, block \(b_1\) is set as (any) one block with the highest rank in \(M_v.vb\). The way of obtaining \(b_2\) (lines 56–57) is exactly the same as that of \(DP1\) and \(b\) is set to \(b_2\). Then \(fsb()\) outputs \((b_2, b_2.QC_x, M_v.QC_x)\), if \(rnk(b_1) > rnk(b_2)\). Otherwise, \(fsb()\) outputs \((b_2, b_2.QC_x)\).

Let \(m\) denote a \textsc{view-update} message for view \(v\), \(b\) denote the parent block of \(m\.block\), and \(π\) denote \(m\.justify\). \textsc{vv}(\(m, lb\)) outputs 1 if one of the following conditions is satisfied: 1) \(b.QC_x ∈ π\) and \(rnk(b) ≥ rnk(lb)\) (see lines 62–63); or 2) \(b.QC_x ∈ π\) and \(M_v.QC_x ∈ π\) and \(b\) is the block with the highest rank such that \(b.QC_x ∈ M_v.QC_x\) (see lines 64–67).

We present the main theorems for \(DP5\) as follows:

Lemma 6. If \(T - (n - T_1 + f) > 0\) and \(T - (n - T_{x+1} + f) > 0\), then \(BG[x, y, z]\) satisfies \(DP5\).

Theorem 12. \(BG[x, y, z]\) (in Table 2) achieves safety and responsiveness if the following are satisfied: 1) \(BG[x, y, z]\) satisfies \(DP5\); 2) \(f < T ≤ n - f\); 3) \(\left[\frac{n + f + 1}{2}\right] ≤ T_1 ≤ n - f\); 4) \(f < T_j ≤ n - f\) for \(j ∈ \{1..z\}\); and 5) \(n - T_1 + f + 1 ≤ T_{y+1}\).

We present the proof for the above theorems in Appendix K.

A \(DP5\) variant. According to the construction of \(fsb()\) function for \(DP5\), a new leader may need to include \(M_v\) in its \textsc{view-update} message. One can alternatively use one more phase to remove this \(M_v\). We discuss the variant in detail in Appendix C.2. The idea is at the core of Marlin [30], one of the state-of-the-art 2-phase BFT protocols with linearity.

7 BG Instantiations

The section discusses the selective BFT protocols \textit{generated} from the BG framework. To \textit{generate} BFT protocols, we could simply enumerate the parameters \(x\), \(y\), \(z\) for each dominant predicate and generate either a \(BG[x, z]\) or a \(BG[x, y, z]\) protocol. For each \(BG[x, z]\) or \(BG[x, y, z]\), using the realizations for core functions generated in layer 3, we can check whether the system of inequalities with thresholds \((T, T_1, \cdots, T_z)\) being unknown is achievable according to the theorems described in Sec. 6.

<table>
<thead>
<tr>
<th>protocols</th>
<th>fixed replica</th>
<th>thresholds</th>
<th>statuses</th>
</tr>
</thead>
<tbody>
<tr>
<td>(BG[1, 1])</td>
<td>(DP1)</td>
<td>(T = T_1 = 4f + 1)</td>
<td>(\text{an improvement of Table (DP5)})</td>
</tr>
<tr>
<td>(BG[1, 2])</td>
<td>(DP2)</td>
<td>(T = T_1 = 2f + 1)</td>
<td>(\text{almost identical with Fast-Heustuff})</td>
</tr>
<tr>
<td>(BG[1, 2])</td>
<td>(DP3)</td>
<td>(T = T_1 = 2f + 1)</td>
<td>(\text{the most efficient 2-phase protocol without lock state})</td>
</tr>
<tr>
<td>(BG[1, 2])</td>
<td>(DP4)</td>
<td>(T = T_1 = 2f + 1)</td>
<td>(\text{the first update protocol which achieves (O(n)) message complexity and (O(n)) authenticator complexity for both normal-case and view change})</td>
</tr>
<tr>
<td>(BG[1, 2])</td>
<td>(DP6)</td>
<td>(T = T_1 = 2f + 1)</td>
<td>(\text{the protocol can be further optimized to cover Marlin [30]})</td>
</tr>
<tr>
<td>(BG[1, 2])</td>
<td>(DP6)</td>
<td>(T = T_1 = 2f + 1)</td>
<td>(\text{a variant of (BG[1, 2]) that achieves (O(n)) authenticator complexity at the cost of two more phases for view change})</td>
</tr>
<tr>
<td>(BG[1, 2])</td>
<td>(DP3)</td>
<td>(T = T_1 = 2f + 1)</td>
<td>(\text{almost identical with Heustuff})</td>
</tr>
</tbody>
</table>

Table 3: Representative BG BFT protocols generated using our framework for \(z ≤ 3\).
In light of the existence of efficient 3-phase BFT protocols (e.g., HotStuff, PBFT), we only enumerate x, y, and z for $z \leq 3$. We obtain 23 candidate protocols in total. In Appendix C, we present all the system inequalities and ranges of the thresholds in Table 5 and Table 7, and a complete list of all 23 protocols in Table 6.

Among the protocols, seven of them compare favorably with existing ones in terms of at least one characteristic, as summarized in Table 3. For each protocol, we specify the dominant predicate and their features. We then present in this section how to generate the protocols using our frameworks and how the protocols outperform prior works. We present in Table 3 a summary of the conditions (which are crucial to determining whether a protocol is achievable) for all the protocols described in this section. The full list is presented in Appendix Sec. C.1, Table 5.

<table>
<thead>
<tr>
<th>Predicates</th>
<th>Conditions to satisfy predicates</th>
<th>Other conditions</th>
<th>Non-local f</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG[1, 3], $T (n-T_1+f) > 0$</td>
<td>$T (n-T_1+f) > 0$</td>
<td>$T_1 < n-f$</td>
<td>7</td>
</tr>
<tr>
<td>$T (n-T_1+f) > 0$</td>
<td>$T_1 < n-f$</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>$T (n-T_1+f) > 0$</td>
<td>$T_1 < n-f$</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>$T (n-T_1+f) > 0$</td>
<td>$T_1 < n-f$</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>$T (n-T_1+f) > 0$</td>
<td>$T_1 < n-f$</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>$T (n-T_1+f) > 0$</td>
<td>$T_1 < n-f$</td>
<td>12</td>
<td></td>
</tr>
</tbody>
</table>

Table 4: Conditions for some BG candidates summarized from the Lemmas and Theorems for the dominant predicates.

BG[1, 2, 3] with DP3. We begin with a 3-phase protocol BG[1, 2, 3], a protocol with lockState based on DP3. To generate BG[1, 2, 3], we need to determine the values of n, f, T_1, T_2, T_3, and T. According to Table 4, we can obtain a system of inequalities (2) as follows:

\[
\begin{align*}
T - (n - T_2 + f) &> 0 \\
n - T_1 + f + 1 &\leq T_3 \leq n - f \\
f &< T < n - f \\
n + f + 1 &\leq T_1 \leq n - f \\
f &< T_1 \leq n - f \\
f &< T_2 \leq n - f \\
f &< T_3 \leq n - f
\end{align*}
\]

While the inequalities have many solutions, we set n as $3f + 1$, and set T_1, T_2, T_3 and T as $2f + 1$ to achieve optimal resilience. Accordingly, we obtain BG[1, 2, 3], as shown in Fig. 6. The protocol is similar to HotStuff in performance and message flow except minor differences in data structure and information carried in the NEW-VIEW message.
BG[1, 2] with DP3. To specify the details of the protocol, we need to determine the values of n, f, T_1, T_2 and T. According to Table 4, we can obtain a system of inequalities (2) as follows:

$$
\begin{align*}
T - (n - T_2 + f) &> 0 \\
T - (n - T_2 + f) &< 0 \\
T - (n - T_2 + f) &= 0
\end{align*}
$$

The system of inequalities have (many) solutions. To achieve optimal resilience, we set n as $3f + 1$, and set T_1, T_2 and T as $2f + 1$. Then using Algorithm 3, Algorithm 4, and the realization of the $FSB()$ and $VV()$ in Table 2, we obtain $BG[1, 2]$ as shown in Fig. 7.

BG[1, 2, 3] with DP3.

Fig. 6: BG[1,2,3] with DP3.

BG[1, 2] with DP1. Again, we need to specify the values of n, f, T_1, T_2 and T. According to Table 4, we obtain the following system of inequalities (3):

$$
\begin{align*}
T - (n - T_2 + f) &> T/2 \\
(n - T_2 + f) &< T < n - f \\
(n - T_2 + f) &= T
\end{align*}
$$

The above system of inequalities has solution only if $n > 5f$. We thus set n as $5f + 1$, and set T_1, T_2 and T as $4f + 1$. According to Algorithm 3, Algorithm 4, and the realization of the $FSB()$ and $VV()$ in Table 2, we obtain $BG[1, 1]$ as shown in Fig. 8.

BG[1, 2, 2] with DP2. According to Table 2, we have the following system of inequalities (4):
The above system of inequalities has solutions only if \(n > 4f \). This time, we set \(n = 4f + 1 \), and set \(T_1, T_2 \) and \(T \) as \(3f + 1 \). From Algorithm 3, Algorithm 4, and the realization of the \(\text{FSB()} \) and \(\text{VV}() \) in Table 2, we obtain \(\text{BG}[1,1] \) as depicted in Fig. 9.

![Fig. 9: BG[1,1,2] with DP2](image-url)
phase 2 commit

1. select the block b_1 such that $\text{num}(b_1, M_v.lb) \geq 2f+1$, if b_1 exists, ...
2. select the block b of the parent block b' of b satisfies: (b', \mathcal{V}_c) is the output of $\text{FSB}(M_v)$ (lines 09-11)

Fig. 10: BG[1,1,2] with DP5

$\text{BG}[1,1,2]$ with DP5. According to Table 4, we obtain the following system of inequalities (5):

\[
\begin{align*}
T - (n - T_1 + f) &> 0 \\
T - (n - T_2 + f) &> 0 \\
n - T_1 + f + 1 &\leq T_2 \leq n - f \\
f &< T < n - f \\
\frac{n + f + 1}{2} &\leq T_1 \leq n - f \\
f &< T_1 \leq n - f \\
f &< T_2 \leq n - f
\end{align*}
\]

The system of inequalities has solutions only if $n > 3f$. We then set n to $3f + 1$, and T_1, T_2 and T to $2f + 1$ and obtain $\text{BG}[1,1,2]$ as shown in Fig. 10.

$\text{BG}[1,1]$ with DP1. This time, we have the following system of inequalities (6):

\[
\begin{align*}
T - (n - T_1 + f) &> T/2 \\
f &< T < n - f \\
\frac{n + f + 1}{2} &\leq T_1 \leq n - f \\
f &< T_1 \leq n - f
\end{align*}
\]

The system of inequalities has solutions only if $n > 5f$. We thus set n as $5f + 1$, and T_1 and T as $4f + 1$ and the protocol $\text{BG}[1,1]$ is shown in Fig. 11.

Acknowledgment

This work was supported in part by the National Key R&D Program of China under 2022YFB2701700, Beijing Natural Science Foundation under M23015, and the National Natural Science Foundation of China under 92267203.

References

A Additional Related Work

We have discussed the most relevant work throughout the paper. This section now discusses additional related work.

First of all, the idea of using the local state variables stems from the HotStuff technique [31], a novel technique that originally used by HotStuff BFT protocol [31] and implicitly used in AMS validated Byzantine agreement (VBA) [4]. Such a technique is later used to build various other Byzantine fault-tolerant protocols [29, 3, 2]. In the partial synchronous setting, a number of HotStuff BFT variants have been proposed, including [20, 16, 17, 5, 30].

Some of our protocols admit a threshold of $f+1$ for some (but not all) phases. A threshold signature with $f+1$ as the threshold, in general, compared to a high-threshold $(2f+1)$ signature, has many benefits. First, a low-threshold signature is more efficient, as one now only waits for $f+1$ partial threshold signatures to form a combined signature [14]. Second, without assuming trusted setup, it is computationally less efficient to build high-threshold signature [21, 2, 13, 6]. Also, some prior protocols explore using low thresholds in their constructions (e.g., [10]).

B Algorithms for Layer 1

In this section, we provide the deferred formal description of our framework defined in layer 1. The normal-case protocol is presented in Algorithm 3, and the view change protocol is presented in Algorithm 4. Both protocols use the data structures defined in Sec. 4.2.

B.1 Formal Description for Normal-Case Protocol

We present normal-case protocol for $\text{BG}[x, z]$ and $\text{BG}[x, y, z]$ in Algorithm 3. In the normal-case protocol, there are z phases. Each phase includes two steps with linear communication. Note that $x, y,$ and z are integers such that $x \leq z$ in $\text{BG}[x, z]$ and $x \leq y \leq z$ in $\text{BG}[x, y, z]$.

- Sui, X., Duan, S., Zhang, H.: Marlin: Two-phase bft with linearity. DSN (2022)

In lines 6-14 (phase 1), the leader extends a branch in the tree it maintains, creates a new block \(b \), and broadcasts a message \(m = \langle \text{msg-1}, \text{cview}, b.\text{height}, b, QC_z \rangle \) to all replicas. Upon receiving a \(\text{msg-1} \) message \(m \), each replica verifies \(m.\text{block} \). The replica then sends the leader \(\text{QCVote}(\langle \text{vote-1}, b.\text{height}, \text{curView}, b, QC_z \rangle) \).

In lines 15-24, starting from phase 2, replicas repeat the same procedure until the \(z \)-th phase completes. In particular, in the \(j \)-th phase, after collecting \(T_{j-1} \) matching signature shares, the leader runs \(\text{QCCreate}() \) to obtain a \(QC_{j-1} \) for block \(b \), broadcasts \(\langle \text{msg-j}, \text{cview}, b.\text{height}, b, b.QC_{j-1} \rangle \) to all replicas and enters the next phase. Upon receiving a valid \(\text{msg-j} \) message, a replica sends the leader \(\text{QCVote}(m) \) using a \(\text{vote-j} \) message. In \(\text{BG}[x, y, z] \), if a replica voted for a block in the \((y+1) \)-th phase of normal-case protocol, it sets its \(lb \) to the block at the same time.

In lines 25-32 (the commit step), the leader broadcasts \(QC_z \) to all replicas in a \text{COMMIT} message. Upon receiving a valid \(QC_z \), each replica commits the corresponding block.

Algorithm 3: Normal-case protocol for \(\text{BG}[x, z] \) and \(\text{BG}[x, y, z] \)

1. **Initialization:**
 1. localState: \(\text{cview} \leftarrow 1, vb \leftarrow \bot, QC_1, QC_2, \cdots \), and \(QC_z \) are initialized to \(\bot \).
 2. criticalState: set by layer 3 of the framework; contain variables in localState.
 3. lockState: \(QC_y \) (in \(\text{BG}[x, y, z] \)) or \(\bot \) (in \(\text{BG}[x, z] \))
 4. flag: a system parameter set by layer 3 of the framework.

2. **Phase 1:**
 1. as a leader
 2. \(b' \leftarrow QCBlock(QC_z) \), \(b \leftarrow \langle \text{cview}, b'.\text{height} + 1, \text{req}, \text{hash}(b') \rangle
 3. broadcast \(\langle \text{MSG-1}, \text{cview}, b.\text{height}, b, b.QC_z \rangle \)

3. **Phase 2 to Phase z (for \(2 \leq j \leq z \)):**
 1. as a replica
 2. wait for \(\text{message} \langle \text{msg-j}, \text{cview}, b.\text{height}, b, b'.QC_z \rangle \) from \text{Leader}(\text{cview})
 3. if \(b'.\text{view} = \text{view} \) and \(b'.\text{height} = b.\text{height} + 1 \) and \(bpl = \text{hash}(b') \) and \(\text{rank}(b') \geq \text{rank}(b) \)
 4. \(QC_z \leftarrow b'.QC_z \), \(vb \leftarrow b \), \(m \leftarrow \langle \text{VOTE-L}, \text{cview}, b.\text{height}, b, \bot \rangle
 5. send \(\text{QCVote}(m) \) to \text{Leader}(\text{cview})

4. **Phase 2 to Phase z (for \(2 \leq j \leq z \)):**
 1. as a leader
 2. wait for \(T_{j-1} \) matching votes: \(M \leftarrow \{ \sigma \mid \sigma \text{ is a signature for } \langle \text{VOTE-j}, \text{cview}, b.\text{height}, b, \bot \rangle \} \)
 3. broadcast \(\langle \text{MSG-j}, \text{cview}, b.\text{height}, b, \text{QCCreate}(M) \rangle \)

5. **Phase 2 to Phase z (for \(2 \leq j \leq z \)):**
 1. as a replica
 2. wait for \(\text{message} \langle \text{msg-j}, \text{cview}, b.\text{height}, b, b.QC_{j-1} \rangle \) from \text{Leader}(\text{cview})
 3. if \(b.\text{view} = \text{cview} \) and \(\text{rank}(b) > \text{rank}(QCBlock(QC_{j-1})) \)
 4. \(QC_{j-1} \leftarrow \text{QCBlock}(b) \), \(m \leftarrow \langle \text{VOTE-j}, \text{cview}, b.\text{height}, b, \bot \rangle
 5. if \(j = y + 1 \) then \(lb \leftarrow \text{b}
 6. send \(\text{QCVote}(m) \) to \text{Leader}(\text{cview})

6. **Phase 2 to Phase z (for \(2 \leq j \leq z \)):**
 1. as a leader
 2. wait for \(T_{j+1} \) matching votes: \(M \leftarrow \{ \sigma \mid \sigma \text{ is a signature for } \langle \text{COMMIT}, \text{cview}, b.\text{height}, b, \text{QCCreate}(M) \rangle \}

7. **Phase 2 to Phase z (for \(2 \leq j \leq z \)):**
 1. as a replica
 2. wait for \(\text{message} \langle \text{COMMIT}, \text{cview}, b.\text{height}, b, b.QC_z \rangle \) from \text{Leader}(\text{cview})
 3. if \(b.\text{view} = \text{cview} \) and \(\text{rank}(b) > \text{rank}(QCBlock(QC_z)) \)
 4. \(QC_z \leftarrow b.QC_z \), execute the requests in \(b \) in order

8. **Finally**
 1. switch to New-view phase of view change protocol if \(\text{timeout} \) occurs in any phase
We now present the view change protocol using the core functions \(\text{FSB}(\cdot) \) and \(\forall \langle \cdot \rangle \) in a black-box manner. As is described in Sec. 4.4, view change is triggered by \(p_i \) when \(\text{timeout} \) occurs.

\(\triangleright \) In lines 1-3, a replica triggers view change by incrementing \(\text{cview} \) by one. Then \(p_i \) sends \(\text{criticalState} \) in a \(\text{NEW-VIEW} \) message to the next leader.

\(\triangleright \) In lines 4-14, the new leader collects a set of \(T \) \(\text{NEW-VIEW} \) messages, denoted as \(M_v \). It then executes \(\text{FSB}(M_v) \) to obtain \((b', \pi) \), where \(b' \) is a block and \(\pi \) is a proof that \(b' \) is a safe block to extend. Then the leader extends the branch led by \(b' \) with a new block \(b \) and broadcasts \(b \) in a \(\text{VIEW-UPDATE} \) message \(m \). Depending on the parameter \(\text{flag} \), there are two cases. If \(\text{flag} = 0 \), the leader directly switches to phase 2 of normal-case operation. If \(\text{flag} = 1 \), the leader still switches to phase 2 but does not update its \(\text{lockState} \) until \(b.QC_x \) is generated.

\(\triangleright \) In lines 15-22, a replica accepts a \(\text{VIEW-UPDATE} \) message \(m \) in view \(v \) from the new leader only if \(\forall \langle m \rangle \) outputs 1 in \(\text{BG}[x, y, z] \) or \(\forall \langle m, lb \rangle \) outputs 1 in \(\text{BG}[x, y, z] \). Similar to the two cases for the leader, according to the \(\text{flag} \) parameter, the replica may take different actions upon receiving \(m \). If \(\text{flag} = 0 \), the replica switches to Line 13 of normal-case without updating \(QC_x \). If \(\text{flag} = 1 \), the replica still votes for \(m \) but does not update \(\text{lockState} \) or commit any block until a \(\text{MSG}-1 \) message for a block \(b' \) extending \(b \) is received. Then the replica switch to phase 1 of normal-case operation.

C Protocols and Inequalities

In this section, we discuss all the 23 BFT protocols generated in our framework.
In this variant, a new leader uses one more DP5 flag variant, we set flag as 0 and the core functions remains the same as those in DP5. However, the view change protocol of the DP5 variant is slightly different from that mentioned in the framework. In this variant, a new leader uses one more...

Table 5: Solvability for each BG candidate summarized from the Lemmas and Theorems for the dominant predicates. To see if a specific BG candidate protocol achieves safety and optimistic responsiveness, one needs to see if a system of inequalities for conditions is solvable. For instance, the system of inequalities for BG[1, 1] includes the condition for DP1 (row 1, column 3), x, y-dependent conditions (which are null here), and other general conditions (row 1, column 5). If a system of inequalities is solvable for a specific BG candidate, the range for its thresholds is illustrated in Table 7.

C.1 Enumerating the BG Protocols

While protocols presented in Sec. 7 outperform existing BFT protocols, we could enumerate x, y, z for the predicates, creating 23 protocols in total. Table 5 presents the system of inequalities for these protocols, and Table 6 presents the system features of all the protocols. We also present the ranges of framework parameters (e.g., the thresholds) of these protocols in Table 7 (as summarized from the theorems presented in layer 3).

C.2 The DP5 Variant

We present the constructions for core functions for the variant of DP5. In this variant, we set flag as 0 and the core functions remains the same as those in DP5. However, the view change protocol of the DP5 variant is slightly different from that mentioned in the framework. In this variant, a new leader uses one more...
<table>
<thead>
<tr>
<th>Protocol</th>
<th>Replicas</th>
<th>Message Pattern</th>
<th>Steps</th>
<th>Authentication Complexity</th>
<th>Message Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBFT [22]</td>
<td>—</td>
<td>3f + 1</td>
<td>2</td>
<td>O(n^2)</td>
<td>O(n)</td>
</tr>
<tr>
<td>BG[1, 1]</td>
<td>BP1</td>
<td>3f + 1</td>
<td>3</td>
<td>O(n)</td>
<td>O(n)</td>
</tr>
<tr>
<td>Frankl-Rabin [20]</td>
<td>—</td>
<td>3f + 1</td>
<td>3</td>
<td>O(n^2)</td>
<td>O(n)</td>
</tr>
<tr>
<td>BG[1, 1]</td>
<td>BP1</td>
<td>3f + 1</td>
<td>3</td>
<td>O(n^2)</td>
<td>O(n)</td>
</tr>
<tr>
<td>BG[1, 1]</td>
<td>BP2</td>
<td>3f + 1</td>
<td>3</td>
<td>O(n^2)</td>
<td>O(n)</td>
</tr>
<tr>
<td>BG[1, 1]</td>
<td>BP3</td>
<td>3f + 1</td>
<td>3</td>
<td>O(n^2)</td>
<td>O(n)</td>
</tr>
<tr>
<td>BG[1, 1]</td>
<td>BP4</td>
<td>3f + 1</td>
<td>3</td>
<td>O(n^2)</td>
<td>O(n)</td>
</tr>
<tr>
<td>BG[1, 1]</td>
<td>BP5</td>
<td>3f + 1</td>
<td>3</td>
<td>O(n^2)</td>
<td>O(n)</td>
</tr>
<tr>
<td>BG[1, 1]</td>
<td>BP6</td>
<td>3f + 1</td>
<td>3</td>
<td>O(n^2)</td>
<td>O(n)</td>
</tr>
<tr>
<td>BG[1, 1]</td>
<td>BP7</td>
<td>3f + 1</td>
<td>3</td>
<td>O(n^2)</td>
<td>O(n)</td>
</tr>
</tbody>
</table>

Table 6: BFT protocols generated using BG[x, z] and BG[x, y, z] for z ≤ 3. For instance, BG[1, 1] with a predicate BP1 is a 1-phase protocol. One can have many instantiations for the same parameters (e.g., BG[1, 1, 2]) by using different predicates. AtoA denotes all-to-all communication and 1toA represents one-to-all or all-to-one (linear) communication.
Table 7: Ranges for the thresholds of BG protocols that are achievable given the system of inequalities presented in Table 5. All DP1 protocols use $5f + 1$ replicas, while protocols with other predicates have optimal resilience.

<table>
<thead>
<tr>
<th>protocol</th>
<th>predicate</th>
<th>T</th>
<th>T_1</th>
<th>T_2</th>
<th>T_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>BG[1], 1</td>
<td>DP1</td>
<td>$(f, n-f)$</td>
<td>$\left(\max\left{ \frac{n-f}{2}, n+f - \frac{n}{2}, n-f\right}, n-f\right)$</td>
<td>$[f+1, n-f]$</td>
<td>$[f+1, n-f]$</td>
</tr>
<tr>
<td>BG[2], 1</td>
<td>DP1</td>
<td>$(f, n-f)$</td>
<td>$\left(\max\left{ \frac{n-f}{2}, n+f - \frac{n}{2}, n-f\right}, n-f\right)$</td>
<td>$[f+1, n-f]$</td>
<td>$[f+1, n-f]$</td>
</tr>
<tr>
<td>BG[1], 2</td>
<td>DP3</td>
<td>$(f, n-f)$</td>
<td>$\left[\frac{n}{2}, n-f\right)$</td>
<td>$[n+f - T+1, n-f]$</td>
<td>$[n+f - T+1, n-f]$</td>
</tr>
<tr>
<td>BG[1], 2</td>
<td>DP2</td>
<td>$(f, n-f)$</td>
<td>$\left[\frac{n}{2}, n-f\right)$</td>
<td>$[n+f - T+1, n-f]$</td>
<td>$[n+f - T+1, n-f]$</td>
</tr>
<tr>
<td>BG[1], 2</td>
<td>DP5</td>
<td>$(f, n-f)$</td>
<td>$\left[\max(n-f+2f+1, \frac{n}{2}), n-f\right)$</td>
<td>$[\max(n-f+1, n-T_t+f+1), n-f]$</td>
<td>$[\max(n-f+1, n-T_t+f+1), n-f]$</td>
</tr>
</tbody>
</table>

When a replica responds "no", the replica is also required to send its QC_x qc' in this response, where $\text{rank}(qc') > \text{rank}(qc)$. Then p_i will propose a block b extending qc'. Note that the rank of qc' is no less than the locked block of any replica, and all correct replicas will vote for b. In particular, if a correct replica p_j locked at b, then the parent block of b (denoted b^i) satisfies that $b^i.view = b.view$. Meanwhile, if p_j sets its v as b, p_j must have stored a QC_x for b^i. In DP5, $\text{Votes}(b, T, y) \geq 1$, so the rank of the highest QC_x qc contained in a view change snapshot is at most one less than that of the highest locked block.
This additional ask-response phase ensures that the new block proposed by \(p_i \) will be voted by all correct replicas without being sent with \(n - f \) new-view messages.

We use \(\text{BG}[1,1,2]^* \) to denote the protocol generated using the variant of DP5. As shown in Fig. 12, \(\text{BG}[1,1,2]^* \) achieves \(O(n) \) authenticator complexity at the cost of two more (optional) phases for view change.

![Fig. 12: BG[1,1,2]^* with DP5](image)

The above mechanism is at the core of Marlin [30]. Marlin, however, does further optimizations, including one where the ask-response phase is combined with the broadcast-vote phase of two new blocks.

C.3 Optimizations of The Protocols

Here we present optimizations for our protocols with DP1 to reduce the number of steps for view changes. Recall that \(\text{flag} \) is set to 1 in DP1. According to Algorithm 4, after the view change, the new leader proposes its first block \(b \). Replicas can vote for \(b \) but do not update their lockState or commit \(b \). After replicas receive another proposed block extending \(b \) from the leader, they then switch to normal case operation. Accordingly, the first block proposed by a new leader needs one more phase to be committed, i.e., the block can be committed only after its extension is committed.

Fortunately, we can make some modification to our view-update protocol to reduce this additional phase for view change. In this section, we provide the optimized implementation of protocols with DP1. We follow the notations defined in Sec. 4.2 despite some minor modification.

Message. For the view change protocol, we extend the definitions of the new-view message. There are two types of new-view messages. One remains the same as that defined in our main framework. The new one we define sets the justify field as \(\bot \) but other fields are used to store information for a block.

View-change certificate (VC). We introduce a certificate called view-change certificate (VC). Recall that during the view change, each replica sends a signed...
NEW-VIEW message containing its criticalState. A view-change certificate for a message m is a collection of signatures for a NEW-VIEW message m, where $m.justify$ is \perp. For a VC vc for m, $vc.view$ is $m.view$ and we also called vc a view-change certificate for $m.block$. The threshold for a VC is set as $\lceil(T + 1)/2\rceil$, where T is the threshold of NEW-VIEW messages the new leader needs to collect.

Local state. In the modified protocol, each replica needs to maintain the latest view-change certificate received during the view change in its lockState, denoted as QC_{vc}. The criticalState of a replica is set to vb, QC_x, and QC_{vc} of the replica.

In the modified protocol, we ask replicas to create partial signatures for the block proposed in the NEW-VIEW messages so QCs can be formed during the view change as well. These combined signature (if any) naturally becomes a certificate for the first block proposed by a new leader. Besides, replicas need to locally stores the certificate for such a block. This certificate ensures that no votes for a committed block can be overwritten and should be included in the NEW-VIEW message if another view change occurs.

We make modification to view change protocol in layer 2 and provide new realizations of $fsb()$ and $vv()$ in layer 3.

View change protocol. We present the modified view change protocol in Algorithm 3. Similar to Algorithm 4, we present the modified protocol using $fsb()$ and $vv()$ functions in a black-box manner. When the timer of replica p_i expires in $cvview$, view change is triggered.

▷ In lines 1-6, a replica starting view change by incrementing $cvview$ by one. Then p_i sends criticalState in a NEW-VIEW message to the next leader. If the last voted block vb of p_i has a higher rank than QC_x of p_i, p_i also creates a partial signature for vb and include the partial signature in the NEW-VIEW message.

▷ In lines 7-14, the new leader collects a set of T NEW-VIEW messages, denoted as M_v. It then executes $fsb(M_v)$ to obtain (b', π), extends the branch led by b' with a new block b, and broadcasts b in a VIEW-UPDATE message m. Then the leader waits for T_1 matching votes to form a QC_1 for b. After receiving $b.QC_x$, the leader sets its QC_1 to $b.QC_x$ and directly switches to phase 2 of normal-case operation.

▷ In lines 15-20, a replica accepts a VIEW-UPDATE message m in view v from the new leader only if $vv(m, \cdot)$ outputs 1. If $m.justify$ contains a view change certificate or a QC_x, then the replica sets its QC_{vc} to the certificate and switches to Line 13 of our algorithm but does not update its QC_x.

Realization of $fsb()$ and $vv()$ for DP1. We present a modified realization of the $fsb()$ and $vv()$ functions for $BG[x, z]$ and $BG[x, y, z]$ in Table 8. $fsb()$ takes as input M_v and outputs (b, π). Based on M_v, we can obtain three intermediate blocks b_1, b_2, and b_3. Block b_1 represents the block more than $T/2$ replicas have voted for, if any. Block b_2 represents the highest block with a QC. If there exist a b such that $num(b, M_v, vb) > T/2$, then these votes for b_1 can form a VC vc and b_1 is set as b (lines 02-04). Then $fsb()$ outputs $(b_1, (M_v, vc))$ in $BG[x, z]$ and $(b_1, (\perp, vc))$ in $BG[x, y, z]$ (lines 05-1 and 05-2). Otherwise, we have $b_1 = null$. Block b_2 (lines 06-07) is the block with the highest rank such that $b_2.QC_x$ is included in $M_v.QC_x$. Block b_3 (lines 08-10) is the block such that a VC vc for
Algorithm 5: View change protocol

1. ▷ New-view:
2. as a replica
3. cview ← cview + 1, m ← ⊥, m1 ← ⟨NEW-VIEW, cview, ⊥, ⊥, criticalState⟩
4. if rank(vb) > rank(qcBlock(QCx))
5. m ← ⟨NEW-VIEW, cview, vb, vb.height, ⊥⟩
6. send m1 and QCVote(m) to Leader(cview)

7. ▷ View-update
8. as a new leader
9. (b′, π) ← fsb(Mv) // Mv is a set of T NEW-VIEW messages collected in v
10. b ← (b′.height + 1, cview, req, hash(b′))
11. broadcast m = ⟨VIEW-UPDATE, cview, b.height, b, π⟩
12. wait for T1 matching votes:
13. M ← {m | m = ⟨vote-1, cview, b.height, b, ⊥⟩}; QC1 ← QC_CREATE(M)
14. // switch to Phase 2 of normal-case operation
15. as a replica
16. wait for ⟨VIEW-UPDATE, cview, b.height, b, π⟩ from Leader(cview)
17. if vV (m, ·) = 1 and π = (π1, π2)
18. if π2 is a view change certificate then QC_vc ← π2
19. if π2 is a QCx and rank(π2) > rank(QCx) then QCx ← π2
20. // switch to line 13 of normal-case without updating QCx
21. ▷ Finally
22. switch to New-view phase of view change protocol if timeout occurs in any phase

b3 is included in Mv.QC_vc and vc is the view-change certificate with the highest view contained in Mv.QC_vc. If the view of vc is larger than b2, then fsb() returns (b2, (Mv, vc)) in BG[x, z] and (b2, (⊥, vc)) in BG[x, y, z] (lines 12-1 and 12-2). Otherwise, fsb() returns (b2, (Mv, b2.QCx)) in BG[x, z] and (b2, (⊥, b2.QCx)) in BG[x, y, z] (lines 13-1 and 13-2).

In BG[x, z], vV () is the same with that shown in Table 2. For BG[x, y, z], besides m, the function additionally takes as input lb. vV () outputs 1 in view v if one of the following two conditions is satisfied: 1) a VC for b is included in m.justify, b.view < v, and rank(b) ≥ rank(lb) (see lines 19-20); 2) b.QCx is included in m.justify, b.view < v, and rank(b) ≥ rank(lb) (see lines 21-22). The first condition proves that a VC is formed during the view change while the second condition proves that a block formed before the view change has potentially been committed by at least one correct replica.

D BG Protocols with Weak Liveness

Weak liveness is used to capture the liveness property of some existing protocols (e.g., Tendermint, Casper), where a correct leader needs to wait for the messages from all correct replicas. Protocols achieving the notion would rely on synchrony for liveness. This notion is defined in HotStuff [31], as shown below.
Weak liveness: After GST, any correct leader needs to wait for responses from all correct replicas to guarantee that it can create a proposal that will make progress.

D.1 Weak Liveness: Layer 2

Our Layer 2 framework can easily and formally capture protocols achieving weak liveness rather than optimistic responsiveness. Take $BG[x, y, z]$ for example. Let $S(M_v)$ denote the set of senders of snapshot M_v. We can define a weak liveness property for the $fsb()$ function:

- **FSBL-wliveness**: If $C \subseteq S(M_v)$, then $fsb(M_v)$ outputs (b, π).

The other properties are exactly the same as those for $BG[x, y, z]$. We have the following liveness theorem:

Theorem 13. $BG[x, y, z]$ achieves weak liveness, if $T_j \leq n - f$ for all $j \in [1..z]$, and FSBL-wliveness and VVL-liveness hold.

D.2 Weak Liveness: Layer 3 and Instantiations

To capture weak liveness, we propose predicate $DP4$ in layer 3. $DP4$ is similar to $DP3$ except that any correct leader needs to wait for new-view messages from all correct replicas to guarantee that it can received QC_x for the locked block with the highest rank. Therefore, the leader can create a proposal that will make progress. We let such a set of new-view messages for view v be $M_v(C)$. We also define $M^h(C)$ such that $M^h(C)$ is identical to M^h, except that $M^h(C)$ contains messages from all correct replicas.

While $DP3$ makes sense for both $BG[x, z]$ and $BG[x, y, z]$, we focus on $BG[x, y, z]$ to capture existing protocols also with weak liveness property (e.g., Tendermint and Casper): $flag$ is set to 0, $BG[x, y, z]$ satisfies $DP4$ iff $b.QC_x \in M^h(C)$ for any locked block b.

<table>
<thead>
<tr>
<th>pred</th>
<th>protocol</th>
<th>$FSB()$</th>
<th>VVL</th>
</tr>
</thead>
<tbody>
<tr>
<td>$BG[x, z]$</td>
<td>$flag=1$</td>
<td>$func: FB(M_v)$</td>
<td>$func: VV((\text{view}, b', \text{height}, V, \pi))$</td>
</tr>
<tr>
<td>04-0b</td>
<td>for $b \in M_v$, vb</td>
<td>$T/2$ then $b_1 \leftarrow b$</td>
<td></td>
</tr>
<tr>
<td>04</td>
<td>$\pi_{z} \leftarrow a VC for b$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>05-0c</td>
<td>return $(b_1(M_v), \pi_{z})$</td>
<td>$BG[x, y, z]$</td>
<td>$flag=1$</td>
</tr>
<tr>
<td>06-0e</td>
<td>for b : $b.QC_x \in M_v.QC_x$</td>
<td>$func: VV((\text{view}, b', \text{height}, b', \pi), \text{vb})$</td>
<td></td>
</tr>
<tr>
<td>07-0g</td>
<td>$\text{view} < b$, view_{up} then $b_1 \leftarrow b$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>08</td>
<td>for b a certificate qc for $b \in M_v.QC_{\text{vc}}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>09-10</td>
<td>if $\text{vc}.\text{view} > b_0.\text{view}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>if $\text{vc}.\text{view} > b_0.\text{view}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12-13</td>
<td>return $(b_0, (M_v, \text{vc}))$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14-15</td>
<td>return $(b_1, (\text{vc}, b_0, QC_x))$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16-17</td>
<td>return $(b_1, (\text{vc}, QC_x))$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 8: The realization of $fsb()$ and $VV()$ for the optimized protocols according to $DP1$.

We present a realization of the \(\text{fsb}() \) and \(\text{vv}() \) for \(\text{BG}[x, y, z] \) in Table 9. These constructions of core functions are identical to that for \(\text{DP3} \) except for the different inputs of \(\text{fsb}() \).

\[
\begin{array}{|c|c|c|}
\hline
\text{prot} & \text{crit} & \text{fsb()} & \text{vv()} \\
\hline
\text{DP4} & \text{BG}[x, y, z] & \text{func run}(M) \\
& (QC_x) & b_2 \leftarrow \text{null} \\
& (flag = 0) & \text{for } b: \\
& \text{if rank}(b) > \text{rank}(b_2) \text{ then } b_2 \leftarrow b \\
& \text{return } (b_2, \pi) \\
& \text{s.t. } \pi = (b_2.QC_x) \\
& \text{func } \text{vv}() & \text{VW-UPDATE, cview, b'.height, b', e, \delta} \\
& & b \leftarrow \text{the parent block of } b' \\
& & \text{if } b.QC_x \in \pi \text{ and rank}(b) \geq \text{rank}(\delta) \text{ then } \\
& & \text{if } b.view < cview \text{ then return } 1 \\
& & \text{return } 0 \\
\hline
\end{array}
\]

\textbf{Table 9: Realizing }\text{fsb}()\text{ and }\text{vv}()\text{ according to }\text{DP4}.

We have the following theorem for \(\text{BG}[x, y, z] \) with \(\text{DP4} \):

\textbf{Theorem 14.} \(\text{BG}[x, y, z] \) (in Table 2) achieves safety and weak liveness if the following are satisfied: 1) \(\text{BG}[x, y, z] \) satisfies \(\text{DP4} \) for locked blocks; 2) \(T_1 \leq n - f; 3) f < T_j \leq n - f \text{ for } 1 \leq j \leq z; \text{ and } 4) x \leq y < z, n - T_1 + f + 1 \leq T_y + 1. \)

The proof of Theorem 14 is the same as that for Theorem 9 except that the threshold \(T \) is replaced by a requirement that a \text{VIEW-UPDATE} message should include \(M^b(C) \) in contrast to \(M^b \).

By adopting the notion, a communication-optimal 2-phase BFT (WBG[1,1,2], resembling 2-phase HotStuff) can be directly obtained from our framework and it outperforms Tendermint and Casper.

\section{Proofs of Theorems for Layer 2 Algorithms}

\textbf{Lemma 7.} Given a block \(b \), if \(T_j > f \) for all \(j \in [1..z] \) and if \(b.QC_k \) has been formed in view \(b.view \) for some \(k \in [1..z] \), then \(b.QC_1, \ldots, b.QC_k \) were formed in the same view.

\textit{Proof.} For \(k = 1 \), correctness is trivial. For \(k \in [2..z] \), since \(b.QC_k \) exists, at least \(T_k \) replicas have sent \text{VOTE-k} messages for \(b \). As \(T_k > f \), at least one correct replica \(p_i \) has sent \text{VOTE-k} messages for \(b \). Hence, \(p_i \) must have received \(b.QC_{k-1} \) contained in a \text{MSG-k} message for the same view. This completes the proof of the lemma.

\textbf{Lemma 8.} Let \(b \) and \(d \) be two blocks proposed in view \(v \) such that the view of the parent block of \(b \) (denoted \(b' \)) and the view of the parent block of \(d \) (denoted \(d' \)) are lower than \(v \). If \(T_j > f \) for all \(j \in [1..z] \), \(T_1 \geq \left\lceil \frac{n+f+1}{2} \right\rceil \), and the \(QC_x \) for \(b \) and \(d \) are both formed in view \(v \), then \(b = d \) and \(QC_x \) for \(b \) is the \(QC_x \) with the lowest rank formed in view \(v \).
Proof. Let b_v be the block with the lowest height for which a QC_x was formed in view v. Let b_v' denote the parent block of b_v. According to Lemma 7, at least a correct replica p_i has sent a \texttt{VOTE\neg1} message for b_v to form the $b_v.QC_1$ in view v. If $b_v'.view = v$, then p_i must have received a QC_x for b_v' and rank(b_v') < rank(b_v). This causes a contradiction, because the QC_x for b_v is defined to be the QC_x with the lowest height formed in view v. Thus, $b_v'.view < v$. As $T_1 \geq \left\lceil \frac{n+f+1}{2} \right\rceil$ and the QC_x's for b, d, and b_v are all formed in view v, at least one correct replica has sent a \texttt{VOTE\neg1} message for b, d, and b_v to form QC_1 for these blocks. Note that in view v, a correct replica sends a \texttt{VOTE\neg1} message for at most one block whose parent block is proposed before view v. Thus, it must hold that $b = d = b_v$.

Lemma 9. Let $T_j > f$ for any $j \in [1..z]$ and $T_1 \geq \left\lceil \frac{n+f+1}{2} \right\rceil$. Let b_v and b_1 be blocks such that QC_x for both b_v and b_1 have been formed in view v and the view of the parent block of b_v is lower than v. Then $b_1 = b_v$ or b_1 is an extension of b_v.

Proof. According to Lemma 8, $b_v.QC_x$ is the QC_x with the lowest rank formed in view v. Let b_0 denote the block with the lowest rank on the branch led b such that $b_0.view = v$.

For any block b, according to Lemma 7, the formation of $b.QC_x$ implies that $b.QC_1$ has also been formed in view $b.view$. Then, at least a correct replica has sent a \texttt{VOTE\neg1} message for b since $T_1 > f$. Besides, if the view of the parent block b' of b is equal to $b.view$, a correct replica will send \texttt{VOTE\neg1} message for b only after receiving $b'.QC_x$. Then the existence of $b_0.QC_x$ implies that QC_x's for b' has been formed in view v. Furthermore, QC_x for b_0 and any block that is an extension of b_0 on the branch led by b_1 have been formed in view v. Then according to Lemma 8, b_0 equals b_v and $b_1 = b_0 = b_v$ or b_1 is an extension of b_v.

Lemma 10. If $T_j > f$ for all $j \in [1..z]$, $T_1 \geq \left\lceil \frac{n+f+1}{2} \right\rceil$, b and d are two conflicting blocks and $b.view = d.view = v$, then $b.QC_x$ and $d.QC_x$ cannot be formed in view v.

Proof. Let b_v be the block with the lowest rank such that a QC_x for b_v was formed in view v. If there exists QC_x for two conflicting blocks b and d formed in view v, then according to Lemma 9, b and d should be the same as b_v or both b and d are extension of b_v. Additionally, according to Lemma 7, the QC_1 has been formed for both b and d in view v. Accordingly, $b.height \geq b_v.height$ and $d.height \geq b_v.height$. Then, we distinguish two cases:

1) $b.height = d.height$. If $b.height = b_v.height$, Obviously, we have $b = d = b_v$, contradicting to the assumption that b and d are conflicting blocks. If $b.height > b_v.height$, then b and d are blocks with the same rank and the view of the parent blocks of b and d are v. Then \texttt{VOTE\neg1} message for b or d are sent during normal-case protocol. Note that each correct replica sends a \texttt{VOTE\neg1} message only once for blocks with a specific height in a view during the normal
case. Since \(T_1 \geq \left\lceil \frac{n+f+1}{2} \right\rceil \), \(QC_1 \) for \(b \) and \(d \) cannot be formed in the same view \(v \).

2) \(b.\text{height} \neq d.\text{height} \). We assume w.l.o.g., \(b.\text{height} > d.\text{height} \). If \(d.\text{height} = b_v.\text{height} \), then \(d = b_v \) and \(b \) is an extension of \(b_v \), contradicting to the assumption. If \(d.\text{height} > b_v \), \(b \) and \(d \) are also extension block of \(b_v \). Let \(b_0 \) denote the block on the branch led by \(b \) such that \(b_0.\text{height} = d.\text{height} \), then \(b_0 \) is also an extension of \(b_v \), \(b_0.\text{view} = v \) and \(b_0 \neq d \). Note the existence of \(b.\text{QC}_x \) implies that \(b_0.\text{QC}_x \) has been formed in view \(v \). However, according to the discussion in Case 1), \(\text{QC}_x \)'s for \(b_0 \) and \(d \) cannot be formed in view \(v \). That's a contradiction.

This completes the proof of the lemma.

Lemma 1 Let \(B^v = \{ b \mid \text{block } b \text{ has been committed before view } v \} \). If \(T_j > f \) for \(j \in [1..z] \) and \(T_1 \geq \left\lceil \frac{n+f+1}{2} \right\rceil \), then there exists \(b^v \in B^v \) such that for all \(b' \in B^v \) and \(b' \neq b^v \) and \(\text{rank}(b^v) > \text{rank}(b') \).

Proof. For any block \(b \in B^v \), according to Lemma 7, a \(\text{QC}_x \) for \(b \) is formed in \(b.\text{view} \). We can find a set of blocks with the highest view by traversing all blocks in \(B^v \). According to Lemma 10, any two blocks contained in the set have different heights. Therefore, we can find a block \(b^v \) with the highest height in the set. Obviously, \(b^v \) satisfies the conditions described in the lemma.

Theorem 1 \(BG[x, z] \) achieves safety-I, if \(T_1 \geq \left\lceil \frac{n+f+1}{2} \right\rceil \) and \(T_j > f \) for all \(j \in [1..z] \).

Proof. If two conflicting blocks \(b \) and \(d \) are committed in the same view \(v \), each by a correct replica, then there exist \(\text{QC}_x \) for \(b \) and \(d \) formed in view \(v \). This is a contradiction with Lemma 7 and Lemma 10.

Theorem 4 \(BG[x, y, z] \) achieves safety-I, if \(T_1 \geq \left\lceil \frac{n+f+1}{2} \right\rceil \) and \(T_j > f \) for all \(j \in [1..z] \).

Proof. The proof follows from Theorem 1.

Lemma 11. In \(BG[x, z] \), if a block \(b \) has been committed by at least one correct replica in view \(v \) and FSB-safety and VV-safety hold in view \(v + 1, \ldots, v + k \) \((k \geq 1)\), then for any \(\text{QC}_x \) \(qc \) formed in view \(v' \) \((v + 1 \leq v' \leq k)\), \(\text{QCBlock}(qc) \) is an extension of \(b \).

Proof. For a \(\text{QC}_x \) \(qc \) formed in view \(v' \) \((v + 1 \leq v' \leq v + k)\), let \(b' \) denote \(\text{QCBlock}(qc) \). We need to prove that \(b' \) is an extension of \(b \).

Let \(b_{v'} \) denote the block with the lowest height for which a \(\text{QC}_x \) has been formed in view \(v' \). According to Lemma 1, we know \(b_{v'} \) exists for any view \(v' \) such that \(v + 1 \leq v' \leq k \). Then we prove the lemma by induction over the view \(v' \), starting from view \(v + 1 \).

Base case: Suppose \(v' = v + 1 \). In this case, we know \(b_{v'}.\text{height} \geq b.\text{height} \) and \(b_{v'}.\text{view} = b.\text{view} = v \). From Theorem 1, we have either \(b_{v'} \) equals \(b \) or \(b_{v'} \) extends \(b \). According to Lemma 7 and Lemma 8, the view of the parent block of
Let $b_{v'}$ denote the block with the lowest height for which a QC_1 has been formed in view v'. Since $T > f + 1$, at least one correct replica has sent $\text{vote}−1$ for $b_{v'}$ during view change. According to FSB-safety and VV-safety, $b_{v'}$ must be an extension of b'. According to Lemma 9, b' is equal to $b_{v'}$ or b' is an extension of $b_{v'}$. Then b' must be an extension of b.

Inductive case: Assume $v' = v + k_0 + 1$ ($1 \leq k_0 < k$) and for any QC_x qc formed in view $v + 1, \cdots, v + k_0$, $\text{qcBlock}(qc)$ is an extension of b. We prove that b' is an extension of b. Note correct replicas will commit a block only after receiving a QC_z for the block and $x \leq z$. According to Lemma 7 and the inductive hypothesis, we know $b^{v'} = b$ or $b^{v'}$ extends b. According to Lemma 7 and Lemma 8, the view of the parent block of $b_{v'}$ is lower than v' and a QC_1 has been formed in view v'. Since $T > f + 1$, at least one correct replica has sent $\text{vote}−1$ for $b_{v'}$ during view change. According to FSB-safety and VV-safety, $b_{v'}$ must be an extension of $b^{v'}$. According to Lemma 9, b' is equal to $b_{v'}$ or b' is an extension of $b_{v'}$. Then b' must be an extension of b.

Thus, for any qc formed in view v' ($v + 1 \leq v' \leq v + k$), $\text{qcBlock}(qc)$ is an extension of b.

Lemma 12. In BG[x, y, z], if a block b has been committed by at least one correct replica in view v and VVL-safety hold in view $v, \cdots, v + k (k \geq 1)$, then for any QC_x qc formed in view $v, \cdots, v + k$, $\text{qcBlock}(qc)$ is an extension of b.

Proof. For a QC_x qc formed in view v' ($v + 1 \leq v' \leq v + k$), let b' denote $\text{qcBlock}(qc)$. We need to prove that b' is an extension of b.

Let $b_{v'}$ denote the block with the lowest height for which a QC_x has been formed in view v'. According to Lemma 1, we know $b^{v'}$ exists for any view v'. Then we prove the lemma by induction over the view v', starting from view $v + 1$.

Base case: Suppose $v' = v + 1$. In this case, we know $b^{v'}.\text{height} \geq b.\text{height}$ and $b^{v'}.\text{view} = b.\text{view} = v$. From Theorem 1, we have either $b^{v'}$ equals b or $b^{v'}$ extends b. According to Lemma 7 and Lemma 8, the view of the parent block of $b_{v'}$ is lower than v' and a QC_1 for $b_{v'}$ has been formed in view v'. Thus, more than $T_1 − f$ correct replica has sent $\text{vote}−1$ for $b_{v'}$ during view change. According to VVL-safety, $b_{v'}$ must be an extension of $b^{v'}$. According to Lemma 9, b' is equal to $b_{v'}$ or b' is an extension of $b_{v'}$. Then b' must be an extension of b.

Inductive case: Assume $v' = v + k_0 + 1$ ($1 \leq k_0 < k$) and any QC_x formed in view $v + 1, \cdots, v + k_0$ is a QC_x for an extension of b. We prove that b' is an extension of b. Note correct replicas will commit a block only after receiving a QC_z for the block and $x \leq z$. According to Lemma 7 and the inductive hypothesis, we know $b^{v'} = b_or b^{v'}$ extends b. According to Lemma 7 and Lemma 8, the view of the parent block of $b_{v'}$ is lower than v' and a QC_1 for $b_{v'}$ has been formed in view v'. Thus, more than $T_1 − f$ correct replica has sent $\text{vote}−1$ for $b_{v'}$ during view change. According to VVL-safety, $b_{v'}$ must be an extension of $b^{v'}$. According to Lemma 9, b' is equal to $b_{v'}$ or b' is an extension of $b_{v'}$. Then b' must be an extension of b.

Thus, for any qc formed in view v' ($v + 1 \leq v' \leq v + k$), $\text{qcBlock}(qc)$ is an extension of b.

Theorem 2 $BG[x, z]$ achieves safety-II, if $T_1 \geq \left\lceil \frac{n+f+1}{2} \right\rceil$, $T_j > f$ for all $j \in [1..z]$, and FSB-safety and VV-safety hold.

Proof. According to Lemma 1, we know b^v exists for any view v. To prove $BG[x, z]$ satisfies safety II, we need to show the following: if a block b has been committed by at least one correct replica in view v, then any blocks committed after view v is an extension of b.

Assume that there exist a block b' committed in view v' ($v' > v$) such that b' is not an extension of b. According to Lemma 7, $b'.QC_x$ is formed in view v'. Note that FSB-safety and VV-safety hold in view v, \ldots, v'. By Lemma 11, $qcBlock(qc)$ must be an extension of b, a contradiction.

Now we can conclude that for any block b that has been committed by at least one correct replica proposed in view v, any blocks committed after view v should be an extension of b. Hence, $BG[x, z]$ satisfies safety II.

Theorem 5 $BG[x, y, z]$ achieves safety-II, if $T_1 \geq \left\lceil \frac{n+f+1}{2} \right\rceil$, $T_j > f$ for all $j \in [1..z]$, and VVL-safety holds.

Proof. According to Lemma 1, we know b^v exists for any view v. To prove $BG[x, y, z]$ satisfies safety II, we need to show the following: if a block b has been committed by at least one correct replica in view v, then any blocks committed after view v is an extension of b.

Assume that there exist a block b' committed in view v' ($v' > v$) such that b' is not an extension of b. According to Lemma 7, $b'.QC_x$ is formed in view v'. By Lemma 12, $qcBlock(qc)$ must be an extension of b, a contradiction. This completes the proof of the lemma.

Theorem 3 $BG[x, z]$ achieves optimistic responsiveness, if $T_j \leq n - f$ for all $j \in [1..z]$, $T \leq n - f$, and FSB-liveness and VV-liveness hold.

Proof. Suppose after GST, in a new view, the leader p_i is correct. Since $T \leq n - f$, p_i can collect T new-view messages from correct replicas. By FSB-liveness, p_i can run $FSB()$ and obtain some (b, π). Then p_i sends a $VIEW-UPDATE$ message m such that $m.block = b_v$. We distinguish two case:

1) $flag = 1$. According to VV-liveness, b_v can be voted by enough replicas to form $b_v.QC_1$. Then b_v will be voted by all the correct replicas to form $b_v.QC_2, \ldots, b_v.QC_x$. As $T_j \leq n - f$ for all $j \in [1..x]$, $b_v.QC_x$ can be formed and p_i will propose a block b' extending b_v. Since $b_v.QC_x$ is the first QC_x formed in view v, the condition on Line 11 of Algorithm 1 is satisfied. Since $T_j \leq n - f$ for all $j \in [1..z]$, it is clear that $b'.QC_1, \ldots, b'.QC_z$ can be formed by p_i. Hence, b_v can be committed.

2) $flag = 0$. Since $T_j \leq n - f$ for all $j \in [1..z]$, it is clear that $b_v.QC_1, \ldots, b_v.QC_z$ can be formed by p_i. Hence, b_v can be committed.

$BG[x, z]$ achieves optimistic responsiveness, because there is no step that requires a specific timeout in both cases.
Lemma 1. We let b rank we have $-v$. Therefore, after comparing ranks of $\text{Supp} \circ \text{GST}$, in a new view, the leader p_i is correct. Since $T \leq n - f$, p_i can collect T NEW-VIEW messages from correct replicas. Then by FSBL-likeness, p_i can run $\text{FSB}(\cdot)$ and obtain some (b, π). Then p_i sends a VIEW-UPDATE message m such that $m.\text{block} = b_v$. Note $T_j \leq n - f$ for all $j \in [1..z]$. According to VVL-likeness, p_i can receive enough VOTE−1 messages to form a QC_x for b_v. Then no matter $flag = 1$ or $flag = 0$, a block can be committed. Therefore, $BG[x, y, z]$ achieves optimistic responsiveness.

F Proofs of Theorems for $BG[x, z]$ with DP1

Lemma 2. If $T - (n - T_1 + f) > T/2$, then $BG[x, z]$ or $BG[x, y, z]$ satisfies DP1.

Proof. In a $BG[x, z]$ or $BG[x, y, z]$ protocol, for any block b, if $b.QC_z$ is received by a correct replica p_i and p_i set its QC_z to $b.QC_z$ in view v, then $b.view = v$. According to Lemma 7, $b.QC_z$ is also formed by the leader in view v. Accordingly, at least $T_1 - f$ correct replicas have sent VOTE−1 messages for b such that $b.QC_z$ is formed. As p_i set its QC_z to $b.QC_z$ in view v, b is block proposed in normal case and the $T_1 - f$ replicas set their vb to b in view v. Thus, fewer than $n - T_1$ correct replicas have not yet set their vb to b in view v. Therefore, for any M^b, at most $n - T_1 + f$ messages are sent by replicas who have not set their vb to b, i.e., there are at least $T - (n - T_1 + f)$ b in $M^b.vb$. Since $T - (n - T_1 + f) > T/2$, more than $T/2$ elements in $M^b.vb$ are b. That means that $\text{VOTES}(b, T, z) > T/2$ and the $BG[x, z]$ or $BG[x, y, z]$ satisfies DP1.

Lemma 13. If $T_j > f$ for all $j \in [1..z]$, and $T_1 \geq \left\lceil \frac{n + f + 1}{2} \right\rceil$, then FSB-likeness holds for $BG[x, z]$.

Proof. Given a M_v, we need to prove that $\text{FSB}(M_v)$ outputs some (b, π). Based on M_v, we can output two intermediate variables, block b_1 and block b_2. Since $\text{num}(b_1, M_v.vb) > T/2$, b_1 is a unique block or $null$. By Lemma 10, b_2 is also a unique block. Therefore, after comparing ranks of b_1 and b_2, $\text{FSB}(M_v)$ will output a block together with a proof π.

Lemma 14. If $BG[x, z]$ satisfies DP1, $T_j > f$ for all $j \in [1..z]$, $T_1 \geq \left\lceil \frac{n + f + 1}{2} \right\rceil$, $T > 2f$, and there exists a block committed by at least one correct replica in view $v - 1$, then FSB-safety holds in view v for $BG[x, z]$.

Proof. Let $B^v = \{b \mid \text{block } b \text{ has been committed before view } v\}$. According to Lemma 1, we let b^v denotes a block in B^v such that for all $b' \in B^v$ and $b' \neq b^v$, we have $\text{rank}(b^v) > \text{rank}(b')$. Since there exists a committed block in view $v - 1$, we know $b^v.view = v - 1$. From Lemma 7, there must exist QC_x for b^v, which is formed in view $v - 1$. By Lemma 13, $\text{FSB}(M_v)$ will output some (b, π). Note b is equal to either b_1 or b_2, where b_1 and b_2 are two intermediate variables based...
on M_v. We now prove that b is either b^v or an extension of b^v. Since $\mathbb{DP}1$ holds in $BG[x, z]$, we consider two cases:

1) $\text{num}(b^v, M^v.vb) > T/2$. Then both b and b_1 equal to b^v. Hence, b is either b^v or an extension of b^v.

2) $\text{num}(b^v, M^v.vb) \leq T/2$. Since $\text{num}(b^v, M^v.vb) > T/2$ and $T > 2f$, it is clear that at least one correct sender p_i of a message in M_v has changed its vb from b^v to some other block b' in view $v - 1$. According to the condition on Line 11 of Algorithm 1, we have $\text{rank}(b') > \text{rank}(b^v)$ and p_i has received a QC_x for b'', the parent block of b'. We further know that $b''.view = v - 1$ and $b''.height \geq b^v.height$. Then according to Lemma 10, b'' is either b^v or an extension of b^v and b' must be an extension of b^v. Similarly, the vb of p_i contained in its new-view message must be an extension of b^v. So b_1 must be an extension of b'' or $null$. In addition, p_i will send its QC_x qc' in a new-view message, $qC_{V1\text{EW}}(qc') = v - 1$, and $qC_{\text{HEIGHT}}(qc') \geq b^v.height$. According to Lemma 10, we now know b_2 is b^v or an extension of b^v. Hence, b must be b^v or an extension of b^v no matter b equals b_1 or b_2.

This completes the proof of the lemma.

Lemma 15. If $BG[x, z]$ satisfies $\mathbb{DP}1$, $T_j > f$ for $j \in [1..z]$, $T_1 \geq \left\lceil \frac{n + f + 1}{2} \right\rceil$, and $2f < T \leq n - f$, then FSB-safety holds for $BG[x, z]$.

Proof. For any view v, let $B^v = \{b \mid \text{block } b \text{ has been committed before view } v\}$. According to Lemma 1, we let b^v denote a block in B^v such that for all $b' \in B^v$ and $b' \neq b^v$, we have $\text{rank}(b^v) > \text{rank}(b')$.

We prove that FSB-safety holds for $BG[x, z]$ by proving that FSB-safety holds in every view. For a specific view v', let w denote $b^{v'.view}$. We prove that FSB-safety holds in view v' iteratively. First, we prove that FSB-safety holds in view $w + 1$. Then we prove that if FSB-safety holds in view $w + 1, \ldots, w + k$ (for any constant k such that $1 \leq k \leq v' - w - 1$), FSB-safety also holds in view $w + k + 1$. When $k = v' - w - 1$, we know that FSB-safety holds in view v'.

According to Lemma 14, we know that FSB-safety holds in view $w + 1$.

Then, assume that FSB-safety holds in view $w + 1, \ldots, w + k$ (for any integer k such that $1 \leq k \leq v' - w - 1$), we need to show that FSB-safety holds in view $w + k + 1$. By Lemma 13, FSB(M_{w+k+1}) will output some (b, π). Note b is either b_1 or b_2, where b_1 and b_2 are two intermediate variables obtained from M_{w+k+1}. We now prove that b is either b^v or an extension of b^v. Since $\mathbb{DP}1$ holds in $BG[x, z]$, we consider two cases:

1) $\text{num}(b^v, M^v.vb) > T/2$. Then both b and b_1 equal to b^v. Hence, b is either b^v or an extension of b^v.

2) $\text{num}(b^v, M_{w+k+1}.vb) \leq T/2$. Since $\text{num}(b^v, M^v.vb) > T/2$ and $T > 2f$, it is clear that at least one correct sender p_i of a message in M_v has changed its vb from b^v to some other block b' during view $w, w + 1, \ldots, w + k$. Since $flag = 1$, p_i changed its vb only if $\text{rank}(b') > \text{rank}(b^v)$. According to Algorithm 1, p_i has received a QC_x qc for the parent block b'' of b' and $\text{rank}(b'') \geq \text{rank}(b'')$. By Lemma 10, Lemma 11 and the hypothesis, we know that b'' is either b'' or
Lemma 19. If \(BG(b)\) can obtain two intermediate variables, block \(b_1\) must be an extension of \(b\). Similarly, the \(vb\) of \(p_i\) contained in its new-view message must be an extension of \(b\). So \(b_1\) must be an extension of \(b\) or null. In addition, \(p_i\) will send its \(QC_x qc'\) in a new-view message. Since correct replicas only change its \(QC_x qc\) to \(QC_x\) with the same or a higher rank, we have \(\text{rank}(QC_x \text{BLOCK}(qc')) \geq \text{rank}(QC_x \text{BLOCK}(qc))\). Therefore, \(\text{rank}(b_2) \geq \text{rank}(b)\) and \(b_2 QC_x\) is included in \(M_{n+k+1} QC_x\). If \(b_2, \text{view} = w\), then according to Lemma 10, \(b_2\) is either \(b\) or an extension of \(b\\). If \(b_2, \text{view} > w\), then according to Lemma 11 and the inductive hypothesis, \(b_2\) is either \(b\) or an extension of \(b\\). Hence, \(b\) is either \(b\) or an extension of \(b\\) no matter \(b equals b_1\) or \(b equals b_2\).

In both cases \(b\) is either \(b\\) or an extension of \(b\\), then FSB-safety holds in view \(w + k + 1\). When \(k = v' - w - 1\), we know that FSB-safety holds in view \(v\\). This completes the proof of the lemma.

Lemma 16. If \(T_1 > f\), VV-safety holds in \(BG[x, z]\).

Proof. Given any view-update message \(m\), let \(b\) denote the parent block of \(m.\text{block}\). According to the instantiation of \(VV()\), \(VV(m)\) outputs 1 only if \(M_e \in m.\text{justify}\) and \(FSB(M_e) = (b, m.\text{justify})\). Hence, \(VV()\) outputs 1 by a correct replica in view \(v\) only if there exists a set \(M_e\) such that \((b, m.\text{justify})\) is the output of \(FSB(M_e)\).

Lemma 17. If \(T_1 \leq n - f\) for \(1 \leq j \leq z\), VV-liveness holds in \(BG[x, z]\).

Proof. Given any view-update message \(m\), let \(b\) denote the parent block of \(m.\text{block}\). If \((b, m.\text{justify})\) is an output of \(FSB(M_e)\), then \(M_e \in m.\text{justify}\) and \(VV(m)\) outputs 1. This completes the proof.

Theorem 7. \(BG[x, z]\) (in Table 2) achieves safety and optimistic responsiveness if the following are satisfied: 1) \(BG[x, z]\) satisfies \(DP1\) 2) \(f < T \leq n - f\); 3) \(\left\lceil \frac{n+f+1}{2} \right\rceil \leq T_1 \leq n - f\); and 4) \(2f < T_j \leq n - f\) for \(j \in [1..z]\).

Proof. Correctness follows from Theorem 1, Theorem 2, Theorem 3, Lemma 13, Lemma 15, Lemma 16 and Lemma 17.

G Proofs of Theorems for \(BG[x, y, z]\) with \(DP1\)

Lemma 18. If \(BG[x, y, z]\) satisfies \(DP1\), \(T_j > f\) for \(j \in [1..z]\), \(T_1 \geq \left\lceil \frac{n+f+1}{2} \right\rceil\), and \(f < T \leq n - f\), then FSBL-liveness holds for \(BG[x, y, z]\).

Proof. The proof resembles the proof of Lemma 13. In any view \(v\), the leader can obtain two intermediate variables, block \(b_1\) and block \(b_2\) based on a \(M_e\) and output \((b, \pi)\) after comparing ranks of \(b_1\) and \(b_2\).

Lemma 19. If \(BG[x, y, z]\) satisfies \(DP1\), \(T_j > f\) for \(j \in [1..z]\), \(T_1 \geq \left\lceil \frac{n+f+1}{2} \right\rceil\), \(T > 2f\), \(x \leq y < z\), \(T_{y+1} \geq n - T_1 + f + 1\), and there exists a block committed by at least one correct replica in view \(v\), then VVL-safety holds in view \(v\) for \(BG[x, y, z]\).
Proof. Let \(B^v = \{ b \mid \text{block } b \text{ has been committed before view } v \} \). According to Lemma 1, we can find \(b^v \in B^v \) such that for all \(b' \in B^v \) and \(b' \neq b^v \), we have \(\text{rank}(b^v) > \text{rank}(b') \). Since there exists a committed block in view \(v-1 \), we know \(b^v,\text{view} = v - 1 \).

As there exists \(QC_x \) formed for \(b^v \) in view \(v-1 \) and \(y < z \), at least \(T_{y+1} - f \geq n - T_1 + 1 \) correct replicas have locked \(b^v \) and sent \(\text{VOTE-(y+1)} \) for \(b' \) such that \(b'.QC_y \) is formed in view \(v-1 \). Let \(m \) denote a \(\text{VIEW-UPDATE} \) message such that \(m.\text{view} = v \) and the parent block \(b_v \) of \(m.\text{block} \) is conflicting with \(b^v \) or \(\text{rank}(b_v) < \text{rank}(b^v) \). Let \(P = \{ p_i \mid p_i \in C \} \) (the set of correct replicas), \(\text{VV}(m, \text{lockState}) \) outputs in view \(v \) by \(p_i \).

For any one correct replica \(p_i \) who has locked \(b^v \), let \(qc \) be its \(\text{lockState} \) when receiving \(m \). Let \(b_q \) denote \(\text{QCBLOCK}(qc) \). Since a correct replica only change its \(QC_x \) to a \(QC_x \) with the same or a higher rank, \(\text{rank}(qc) \geq \text{rank}(b^v) \). \(\text{VV}(m, \text{lockState}) \) returns true by \(p_i \) if one of the following two conditions is satisfied:

1) \(m.\text{justify} \) contains \(b_v, QC_z, b_v.\text{view} < v \) and \(\text{rank}(b_v) \geq \text{rank}(b_l) \) (lines 15-16 in Table 2).
2) \(m.\text{justify} \) contains \(M_v, vb, \text{num}(b_v, M_v.vb) > T/2, b_v.\text{view} < v \) and \(\text{rank}(b_v) \geq \text{rank}(b_l) \) (lines 13-14 in Table 2).

Suppose that \(\text{rank}(b_v) < \text{rank}(b^v) \). In this case, \(\text{VV}(m, \text{lockState}) \) outputs 0 since none of the above conditions is satisfied. Suppose that \(\text{rank}(b_v) \geq \text{rank}(b^v) \). If case 1) is satisfied, then according to Lemma 10, \(b_v \) must be equal to \(b^v \) or an extension of \(b^v \). If case 2) is satisfied, then at least one correct sender of a message in \(M_v \) has changed its \(vb \) from \(b^v \) to \(b_v \) in view \(v - 1 \) since \(BG[x, y, z] \) satisfies DP1. According to Algorithm 3, \(\text{rank}(b_v) > \text{rank}(b^v) \) and the \(QC_x \) for the parent block of \(b_v \) is received by the replica in view \(v - 1 \). By Lemma 10, \(b_v \) must be an extension of \(b^v \). According to the assumption that either \(b^v \) is conflicting with \(b^v \) or \(\text{rank}(b_v) < \text{rank}(b^v) \), for all the correct replicas who have locked \(b^v \), \(\text{VV}(m, \text{lockState}) \) returns false. Since \(T_{y+1} \geq n - T_1 + f + 1 \) and at least \(T_{y+1} - f \geq n - T_1 + 1 \) correct replicas have locked \(b^v \), we know that \(|P| < T_1 - f \) and VVL-safety holds in view \(v \).

Lemma 20. If \(BG[x, y, z] \) satisfies DP1, \(T_j > f \) for \(j \in [1..z] \), \(T_1 \geq \left[\frac{n+1}{2} \right] \), \(T > 2f \), \(x \leq y < z \), and \(T_{y+1} \geq n - T_1 + f + 1 \), then VVL-safety holds in \(BG[x, y, z] \).

Proof. For any view \(v \), let \(B^v = \{ b \mid \text{block } b \text{ has been committed before view } v \} \). According to Lemma 1, we can find \(b^v \in B^v \) such that for all \(b' \in B^v \) and \(b' \neq b^v \), we have \(\text{rank}(b^v) > \text{rank}(b') \).

We prove that VVL-safety holds for \(BG[x, y, z] \) by proving that VVL-safety holds in every view. For a specific view \(v' \), let \(w \) denote \(b^{v'}.\text{view} \). We need to prove that VVL-safety holds in view \(v' \). To do this, we need to do the following: First, we prove that VVL-safety holds in view \(w + 1 \). Then we prove that if VVL-safety holds in view \(w + 1, \cdots, w + k \) (for any integer \(k \) such that \(1 \leq k \leq v' - w - 1 \)), VVL-safety also holds in view \(w + k + 1 \). Then for \(k = v' - w - 1 \), we know that VVL-safety holds in view \(v' \).
According to Lemma 19, we know that VVL-safety holds in view \(w + 1 \).

Then, assume that VV-safety holds in view \(w + 1, \ldots, w + k \) (for any integer \(1 \leq k \leq v' - w - 1 \)). We need to show that VV-safety also holds in view \(w + k + 1 \). As \(b'' \) has been committed in view \(w \) and \(y < z \), at least \(T_{y+1} - f \geq n - T_1 + 1 \) correct replicas have locked \(b'' \) and sent \(\text{VOTE}_y(y+1) \) for \(b'' \) to form \(b''_QC \) in view \(w \). Let \(m \) denote a \(\text{VIEW-UPDATE} \) message such that \(m.view = w + k + 1 \)

and the parent block \(b' \) of \(m.block \) is conflicting with \(b'' \) or \(\text{rank}(b') < \text{rank}(b'') \).

Let \(P = \{ p_i \mid P \subseteq C \} \) (the set of correct replicas), \(\text{VV}(m, lockState) \) returns true in view \(w + k + 1 \) by \(p_i \).

For any one correct replica \(p_i \) who has locked \(b'' \), let \(qc \) be its \(\text{lockState} \) when receiving \(m \). Let \(b_l \) denote \(qcBlock(qc) \). Since a correct replica only change its \(QC_x \) to a \(QC_x \) with the same or a higher rank, \(\text{rank}(qc) \geq \text{rank}(b'' \rangle \). \n
\(\text{VV}(m, lockState) \) returns true by \(p_i \) if one of the following two conditions is satisfied:

1) \(m.justify \) contains \(\{ b', QC_x, b'.view < w + k + 1 \) and \(\text{rank}(b') \geq \text{rank}(b_l) \) (lines 15-16 in Table 2).

2) \(m.justify \) contains \(\{ m.w + k + 1, vb, b'.view < w + k + 1 \) and \(\text{num}(b', m.w + k + 1, vb) \) \(> T/2 \) and \(\text{rank}(b') \geq \text{rank}(b_l) \) (lines 13-14 in Table 2).

Suppose that \(\text{rank}(b'_w) < \text{rank}(b'') \). In this case, \(\text{VV}(m, lockState) \) outputs 0 since both conditions are not satisfied. Suppose that \(\text{rank}(b') \geq \text{rank}(b'') \). If case 1) is satisfied, then according to Lemma 7, Lemma 10, Lemma 12 and the inductive hypothesis, \(b' \) must be equal to \(b'' \) or an extension of \(b'' \). If case 2) is satisfied, then at least one correct sender of a message in \(m.w + k + 1 \) has changed its \(vb \) from \(b'' \) to \(b' \) in view \(w, \ldots, w + k \) since \(BG[x, y, z] \) satisfies \(\text{DP1} \) and \(T > 2f \). According to Algorithm 3, \(\text{rank}(b') > \text{rank}(b'') \), the \(QC_x \) for the parent block \(b'' \) of \(b' \) is received by the replica, \(b'.view = b'.view \) and \(\text{rank}(b') \geq \text{rank}(b'') \). By Lemma 10, Lemma 12 and the inductive hypothesis, \(b' \) must be an extension of \(b'' \). According to the assumption that either \(b' \) is conflicting with \(b'' \) or \(\text{rank}(b') < \text{rank}(b'') \), for all the correct replicas who have locked \(b'' \), \(\text{VV}(m, lockState) \) outputs 0. Since \(T_{y+1} - f \geq n - T_1 + f + 1 \) and at least \(T_{y+1} - f \geq n - T_1 + 1 \) correct replicas have locked \(b'' \), we know that \(|P| < T_1 - f \) and VVL-safety holds in view \(w + k + 1 \).

Then for \(k = v' - w - 1 \), we know that VVL-safety holds in view \(v' \).

Lemma 21. If \(BG[x, y, z] \) satisfies \(\text{DP1} \), \(f < T_j \leq n - f \) for \(j \in [1..z] \), and \(T_1 \geq \left\lceil \frac{n+f+1}{2} \right\rceil \), then VVL-liveness holds in \(BG[x, y, z] \).

Proof. For any view \(v \), let \(B_v^w = \{ b \mid \text{block } b \text{ has been locked before view } v \} \). According to Lemma 7 and Lemma 10, we can fine \(b_v^i \in B_v^w \) such that for all \(b' \in B_v^w \) and \(b' \neq b_v^i \), \(\text{rank}(b_v^i) > \text{rank}(b') \). Given a \(\text{VIEW-UPDATE} \) message \(m \) in view \(v \), let \(b \) denote the parent block of \(m.block \). If \((b, m.justify) \) is the output of \(\text{FSB}(M_v) \) on some \(M_v \), there are two cases to consider:

1) \(b_v^i \cdot QC_x \in M_v \cdot QC_x \). In this case, \(b \) is a block such that \(\text{rank}(b) \geq b_v^i \).

That's because \(b \) is either equal to \(b_1 \) or equal to \(b_2 \), where \(b_1 \) and \(b_2 \) are two intermediate variables obtained from \(M_v \). Since \(b_v^i \cdot QC_x \in M_v \cdot QC_x \), we have that
rank(b_q) ≥ b_q^r. If b_1 exists, we can also have that rank(b_1) ≥ b_q^r since BG[x, y, z] satisfies DP1. Therefore, we know that vv(m, lockState) outputs 1 by all correct replicas since either condition 1) (lines 15-16 in Table 2) or condition 2) (lines 13-14 in Table 2) is satisfied for them.

2) b_q^r ∉ M_o.QC_x. We distinguish two cases. If there exists a block b_o such that b_o.QC_x ∈ M_o.QC_x and rank(b_o) ≥ rank(b_q^r), then block b should satisfies that rank(b) ≥ rank(b_q^r). Therefore, we know that vv(m, lockState) will output 1 by all correct replicas. If any qc ∈ M_o.QC_x satisfies that rank(qcBlock(qc)) < rank(b_q^r), we prove that the output of vsb(M_q) is (b_q^r, M_q, vb). Since BG[x, y, z] satisfies DP1, we have num(b_q^r, M_q^r, vb) > T/2. Any correct replica changes its vb and QC_x only in the case that it has received a QC_x qc such that rank(qcBlock(qc)) ≥ rank(vb). Therefore, no correct replica of any message in M_q has changed its vb from b_q^r to some other block and num(b_q^r, M_q^r, vb) > T/2. Then the output of vsb(M_q) is (b_q^r, M_q, vb) and vv(m, lockState) outputs 1 by all correct replicas since condition 2) (lines 13-14 in Table 2) is satisfied for them.

Theorem 8. BG[x, y, z] (in Table 2) achieves safety and optimistic responsiveness if the following are satisfied: 1) BG[x, y, z] satisfies DP1; 2) 2f < T ≤ n − f; 3) \(\lceil \frac{n + f + 1}{2} \rceil \leq T_1 \leq n − f; 4) f < T_j \leq n − f \) for \(j \in \{1..z\} \); and 5) \(x \leq y < z \), \(n − T_1 + f + 1 \leq T_{y+1} \).

Proof. Correctness follows from Theorem 4, Theorem 5, Theorem 6, Lemma 18, Lemma 20 and Lemma 21.

H Proofs of Theorems for BG[x, y, z] with DP2

Lemma 3. If \(T − (n − T_1 + f) \geq f + 1 \) and \(T − (n − T_{x+1} + f) \geq T − (2f + 1) \), then BG[x, y, z] satisfies DP2.

Proof. In a BG[x, y, z], for any block b, if b has been locked by a correct replica p_i in view v, then b.vb = v and p_i has also set its QC_y to b.QC_y. According to Lemma 7, b.QC_1 is also formed by the leader in view v. Accordingly, at least \(T_1 − f \) correct replicas have sent vote−1 messages for b such that b.QC_1 is formed. As p_i set its QC_y to b.QC_y in view v, b is block proposed in normal case and the \(T_1 − f \) replicas set their vb to b in view v. Thus, fewer than \(n − T_1 \) correct replicas have not yet set their vb to b in view v. Therefore, for any M^b, at most \(n − T_1 + f \) messages are sent by replicas who have not set their vb to b, i.e., there at least \(T − (n − T_1 + f) \) in M^b.vb. Since \(T − (n − T_1 + f) \geq f + 1 \), we have that VOTES(b, T, z) > f + 1.

Besides, for any block d, if d.QC_x is received by a correct replica p_i and p_i set its QC_z to d.QC_z in view v, then d.view = v. According to Lemma 7 and \(x \leq y < z \), d.QC_x is also formed in view v. Accordingly, at least \(T_{x+1} − f \) correct replicas have received d.QC_x and sent vote−(x + 1) messages for d such that d.QC_x is formed. As p_i set its QC_z to d.QC_z in view v, d is block proposed in normal case and the \(T_{x+1} − f \) correct replicas set their QC_z’s to d.QC_x in
view v. Thus, fewer than $n - T_{x+1}$ correct replicas have not yet set their QC_x's to $d.QC_x$ in view v. Therefore, for any M^b, at most $n - T_{x+1} + f$ messages are sent by replicas who have not set their QC_x's to $d.QC_x$, i.e., there at least $T - (n - T_{x+1} + f)$ b in $M^b.vb$. Since $T - (n - T_{x+1} + f) \geq T - (2f + 1)$, we have that $\text{CERT}(d, T, x, z) \geq T - (2f + 1)$.

Therefore, $BG[x, y, z]$ satisfies DP2.

Lemma 22. If $BG[x, y, z]$ satisfies DP2, $T_j > f$ for $j \in [1..z]$, $T_1 \geq \left[\frac{n+f+1}{2}\right]$, and $f < T \leq n - f$, then FSBL-liveness holds for $BG[x, y, z]$.

Proof. Given a M_v, we need to prove that $\text{FSB}(M_v)$ outputs some (b, π). Based on M_v, we can obtain four intermediate variables, block b_0, b_1, b_2 and b_3. Since $\text{num}(b_1, M_v.vb) > f + 1$ and $\text{num}(b_2, M_v.vb) > f + 1$, b_2 and b_0 are unique blocks or null. By Lemma 10, b_3 is also a unique block. Therefore, after comparing ranks of b_0, b_1, b_2 and b_3, $\text{FSB}(M_v)$ will output a block together with a proof π.

Lemma 23. If $BG[x, y, z]$ satisfies DP2, $T_j > f$ for $j \in [1..z]$, $T_1 \geq \left[\frac{n+f+1}{2}\right]$, $x \leq y < z$, $T_{y+1} \geq n - T_1 + f + 1$, and there exists a block committed by at least one correct replica in view $v-1$, then VVL-safety holds in view v for $BG[x, y, z]$.

Proof. Let $B^v = \{b \mid b \text{ has been committed before view } v\}$. According to Lemma 1, we can find $b^v \in B^v$ such that for all $b' \in B^v$ and $b' \neq b^v$, we have $\text{rank}(b') > \text{rank}(b^v)$. Since there exists a committed block in view $v-1$, we know $b^v.view = v-1$.

As there exists QC_x formed for b^v in view $v-1$ and $y < z$, at least $T_{y+1} - f \geq n - T_1 + f + 1$ correct replicas have locked b^v and sent $\text{VOTE}(y+1)$ for b^v to form $b^v.QC_{y+1}$ in view $v - 1$. Let m denote a VIEW-UPDATE message such that $m.view = v$ and the parent block b_e of $m.block$ is conflicting with b^v or $\text{rank}(b_e) < \text{rank}(b^v)$. Let $P = \{p_i \mid p_i \in C, \text{the set of correct replicas}, \forall \text{V}(m, \text{lockState}) \text{ outputs } 1 \text{ in view } v \text{ by } p_i\}$.

For any correct replica p_i who has locked b^v, let b_i be its lb when receiving m. Since a correct replica only change its lb to a block with the same or a higher rank, $\text{rank}(b_i) \geq \text{rank}(b^v)$. Note that $x \leq y$. According to Lemma 7 and Lemma 10, $b_i.QC_x$ is formed in view $v - 1$ and b_i is equal to b^v or an extension of b^v. $\forall \text{V}(m, \text{lockState})$ outputs 1 by p_i if one of the following four conditions is satisfied:

1) $m.justify$ contains $b_v.QC_x$, and $\text{rank}(b_v) \geq \text{rank}(b_i)$ and $b_v.view < v$ (lines 32-33 in Table 2).
2) $m.justify$ contains $M_v.vb$, $\text{num}(b_v, M_v.vb) \geq f + 1$ and $\text{rank}(b_v) > \text{rank}(b_i)$ and $b_v.view < v$ (lines 34-35 in Table 2).
3) $m.justify$ contains $M_v.vb$, $\text{num}(b_v, M_v.vb) \geq f + 1$ and $b_v = b_i$ and $b_v.view < v$ (lines 36-37 in Table 2).
4) $m.justify$ contains $M_v.QC_x$, and $\text{num}(b_v, QC_x, M_v.QC_x) > 2f+1$ and $b_v.view < v$ (lines 38-39 in Table 2).
Suppose that \(\text{rank}(b_v) < \text{rank}(b^v) \). In this case, \(\text{VV}(m, \text{lockState}) \) outputs 1 only when condition 4) is satisfied. Since \(\text{BG}[x, y, z] \) satisfies DP2 and \(b^v \) is committed in view \(v-1 \), we have \(\text{num}(b^v.QC_x, M^{b^v}.QC_x) \geq T-(2f+1) \). As \(\text{rank}(b_v) < \text{rank}(b^v) \) and a correct replicas only updates its \(QC_x \) to a \(QC_x \) for a block with a higher rank, \(\text{num}(b_v.QC_x, M_v.QC_x) \leq 2f+1 \), a contradiction.

Suppose that \(\text{rank}(b_v) = \text{rank}(b^v) \). If condition 1) or condition 4) is satisfied, then according to \(x \geq y \), Lemma 7 and Lemma 10, \(b_v \) must be equal to \(b^v \) or is an extension of \(b^v \). If case 2) is satisfied, then at least one correct replica has received a \(QC_x \) for the parent block \(b' \) of \(b_v \) such that \(b'.view = b_v.view \). Since \(\text{rank}(b_v) = \text{rank}(b^v) \), we have that \(\text{rank}(b') \geq \text{rank}(b^v) \). According to \(x \leq y \), Lemma 7 and Lemma 10, \(b' \) must be equal to \(b^v \) or an extension of \(b^v \). Therefore, \(b_v \) must be an extension of \(b^v \). If case 3) is satisfied, then \(b_v = b_l \).

Therefore, \(b_v \) is equal to \(b^v \) or an extension of \(b^v \).

According to the assumption that either \(b_v \) is conflicting with \(b^v \) or \(\text{rank}(b_v) < \text{rank}(b^v) \), for all the correct replicas who have locked \(b^v \), \(\text{VV}(m, \text{lockState}) \) return false. Since \(T_{y+1} \geq n-T_1+f+1 \) and at least \(T_{y+1}-f \geq n-T_1+1 \) correct replicas have locked \(b^v \), we know that \(|P| < T_1-f \) and VVL-safety holds in view \(v \).

Lemma 24. If \(\text{BG}[x, y, z] \) satisfies DP2, \(T_j > f \) for \(j \in [1..z] \), \(T_1 \geq \left\lfloor \frac{n+f+1}{2} \right\rfloor \), and \(T_{y+1} \geq n-T_1+f+1 \), then VVL-safety holds in \(\text{BG}[x, y, z] \).

Proof. For any view \(v \), let \(B^v = \{ b \mid \text{block} \ b \ \text{has been committed before view} \ v \} \). According to Lemma 1, we can find \(b^v \in B^v \) such that for all \(b' \in B^v \) and \(b' \neq b^v \), we have \(\text{rank}(b^v) > \text{rank}(b') \).

We prove that VVL-safety holds for \(\text{BG}[x, y, z] \) by proving that VVL-safety holds in every view. For a specific view \(v' \), let \(w \) denote \(b^{v'}.\text{view} \). We need to prove that VVL-safety holds in view \(v' \). Our proof consists of the following steps. First, we prove that VVL-safety holds in view \(w+1 \). Then we prove that if VVL-safety holds in view \(w+1, \ldots, w+k \) (for any integer \(1 \leq k \leq v'-w-1 \), VVL-safety also holds in view \(w+k+1 \). Then for \(k = v'-w-1 \), we know that VVL-safety holds in view \(v' \).

According to Lemma 23, we know that VVL-safety holds in view \(w+1 \).

Then, assume that VVL-safety holds in view \(w+1, \ldots, w+k \) (for any integer \(1 \leq k \leq v'-w-1 \). We need to show that VVL-safety also holds in view \(w+k+1 \). As there exists \(QC_x \) formed for \(b^v \) in view \(w \) and \(y < z \), at least \(T_{y+1}-f \geq n-T_1+1 \) correct replicas have locked \(b^v \) and sent a \(\text{VOTE}_{(y+1)} \) message for \(b^v \) to form \(b^v.QC_{y+1} \) in view \(w \). Let \(m \) denote a \(\text{VIEW-UPDATE} \) message such that \(m.\text{view} = w+k+1 \) and the parent block \(b' \) of \(m.\text{block} \) is conflicting with \(b^v \) or \(\text{rank}(b') < \text{rank}(b^v) \). Let \(P = \{ p_i \mid p_i \in C \ (\text{the set of correct replicas}), \ \text{VV}(m, \text{lockState}) \) outputs 1 in view \(w+k+1 \) by \(p_i \} \).

As there exists \(QC_x \) formed for \(b^v \) in view \(w \) and \(y < z \), at least \(T_{y+1}-f \geq n-T_1+1 \) correct replicas have locked \(b^v \) and sent \(\text{VOTE}_{(y+1)} \) for \(b^v \) to form \(b^v.QC_{y+1} \) in view \(w \). For any correct replica \(p_i \) who has locked \(b^v \), let \(q_c \) be its \(\text{lockState} \) when receiving \(m \). Let \(b_l \) denote \(\text{QCBLOCK}(q_c) \). Since a correct replica only change its \(QC_x \) to a \(QC_x \) with the same or a higher rank,
rank(qc) ≥ rank(b')

According to Lemma 7, Lemma 10, Lemma 12 and the inductive hypothesis, b₁.view ∈ {w, · · · , w + k} and b₁ is equal to b' or an extension of b'. VV(m, lockState) returns true by p₁ if one of the following four conditions is satisfied:

1) m.justify contains M_w+k+1,QC_x, and rank(b') ≥ rank(b₁) and b₁.view < w + k + 1 (lines 32-33 in Table 2).

2) m.justify contains M_w+k+1.vb, num(b', M_w+k+1.vb) ≥ f + 1 and rank(b') > rank(b₁) and b₁.view < w + k + 1 (lines 34-35 in Table 2).

3) m.justify contains M_w+k+1.vb, num(b', M_w,vb) ≥ f + 1 and b₁ = b₁ and b₁.view < w + k + 1 (lines 36-37 in Table 2).

4) m.justify contains M_w+k+1,QC_x, and num(b', QC_x, M_w,QC_x) > 2f + 1 and b₁.view < w + k + 1 (lines 38-39 in Table 2).

Suppose that rank(b') < rank(b'). In this case, VV(m, lockState) returns true only when condition 4 is satisfied. Since BG[x,y,z] satisfies DFP2 and b' is committed in view w, we have num(b' QC_x, M b' QC_x) ≥ T − (2f + 1). As rank(b') < rank(b'), and correct replicas only change its QC_x to a QC_x the same or a higher rank, num(b', QC_x, M_w+k+1,QC_x) ≤ 2f + 1, a contradiction.

Suppose that rank(b') ≥ rank(b'). If condition 1) or condition 4) is satisfied, then according to x ≤ y, Lemma 10, Lemma 7, Lemma 12 and the inductive hypothesis, b' must be equal to b' or an extension of b'. If case 2) is satisfied, then at least one correct replica has received a QC_x for the parent block b' such that b'.view = b'.view. Since rank(b') ≥ rank(b'), we have that rank(b') ≥ rank(b'). According to x ≤ y, Lemma 10, Lemma 7, Lemma 12 and the inductive hypothesis, b' must be equal to b' or an extension of b'. Therefore, b' must be an extension of b'. If case 3) is satisfied, then b' = b₁. Therefore, b' is equal to b' or an extension of b'.

According to the assumption that b' is conflicting with b', for all the correct replicas who have locked b', VV(m, lockState) will output 0. Since T_{y+1} ≥ n − T₁ + f and at least T_{y+1} − f ≥ n − T₁ + 1 correct replicas have locked b', we know that |P| < T₁ − f and VVL-safety holds in view w + k + 1.

Then for k = w' − w − 1, we know that VVL-safety holds in view v'.

Lemma 25. If BG[x,y,z] satisfies DFP2, f < T_j ≤ n − f for j ∈ [1..z], and

\[T₁ ≥ \left\lfloor \frac{n−f+1}{2} \right\rfloor, \] x < y ≤ z, then VVL-liveness holds in BG[x,y,z].

Proof. For any view v, let B'₅ = {b | block b has been locked before view v}. According to x ≤ y and Lemma 10, we can find b₅' ∈ B'₅ such that for all b' ∈ B'₅ and b' ≠ b₅', we have rank(b₅') > rank(b'). Given a view-update message m in view v, let b denote the parent block of m.block. If (b, m, justify) is the output of FSB(M_v) on some M_v, there are two cases to consider:

1) b₅', QC_x ∈ M_v.QC_x. In this case, b is a block such that rank(b) ≥ b₅'. Therefore, VV(m, lockState) outputs 1 by all correct replicas since either condition 1) (lines 34-35 in Table 2) or condition 2) (lines 36-37 in Table 2) is satisfied for them.

2) b₅' ∉ M_v.QC_x. Let b₃ denote the block with the highest rank such that b₃.QC_x ∈ M_v.QC_x. We distinguish two sub-cases. If rank(b₃) ≥ rank(b₅'), then
we know that the block b should satisfies that $\text{rank}(b) \geq \text{rank}(b')$. Therefore, we know that $\text{VV}(m, \text{lockState})$ outputs 1 by all correct replicas.

If $\text{rank}(b_3) < \text{rank}(b')$, we prove that $\text{num}(b', M_v, vb) \geq f+1$. Since $\text{BG}[x, y, z]$ satisfies DP2, we have $\text{num}(b', M_v, vb) > f + 1$. Any correct replica changes its vb and QC_x only in the case that it has received a QC_x qc such that $\text{rank}(qc.BLOCK(qc)) \geq \text{rank}(vb)$. Thus, for any correct sender of a message in M_v, if a replica has sent a vote -1 message for b', it will not change its vb before sending new-view message. We have that $\text{num}(b', M_v, vb) \geq f + 1$. If there exists another block d such that $\text{num}(d, M_v, vb) \geq f + 1$ and $\text{rank}(d) = \text{rank}(b')$, then the output of $\text{FSB}(M_v)$ is $(b'_3, b_3 QC_x, M_v, QC_x)$. As $\text{num}(d, M_v, vb) \geq f + 1$ and $\text{num}(b', M_v, vb) \geq f + 1$, QC_x for the parent block of b' and d are both formed in view b'. According to Lemma 10, $b' b$ and d have the same parent block b_3. Then $\text{num}(b_3 QC_x, M_v, QC_x) \geq 2f + 2$. Therefore, we know that $\text{VV}(m, \text{lockState})$ outputs 1 by all correct replicas since condition 4) (lines 34-35 in Table 2) is satisfied for them. If no such block d exists, then the output of $\text{FSB}(M_v)$ is (b'_3, M_v, vb). Therefore, according to Lemma 10, we know that $\text{VV}(m, \text{lockState})$ outputs 1 by all correct replicas since either condition 2) (lines 36-37 in Table 2) or condition 3) (lines 38-39 in Table 2) is satisfied. This completes the proof.

Theorem 9. $\text{BG}[x, y, z]$ (in Table 2) achieves safety and responsiveness if the following are satisfied: 1) $\text{BG}[x, y, z]$ satisfies DP2; 2) $f < T \leq n - f$; 3) $\left\lfloor \frac{n + f + 1}{2} \right\rfloor \leq T_1 \leq n - f$; 4) $f < T_j \leq n - f$ for $j \in [1..z]$; and 5) $n - T_1 + f + 1 \leq T_{y+1}$.

Proof. Correctness follows from Theorem 4, Theorem 5, Theorem 6, Lemma 22, Lemma 24 and Lemma 25.

I Proofs of Theorems for $\text{BG}[x, z]$ with DP3

Lemma 4. If $x < z$ and $T - (n - T_{x+1} + f) > 0$ or if $x \geq z$ and $T - (n - 1) > 0$, then $\text{BG}[x, z]$ satisfies DP3.

Proof. We consider two cases in the lemma separately:

In a $\text{BG}[x, z]$ ($x < z$), for any block b, if $b.QC_z$ is received by a correct replica p_i and p_i set its QC_z to $b.QC_z$ in view v, then $b.view = v$. According to $x < z$ and Lemma 7, $b.QC_{x+1}$ is also formed by the leader in view v. Accordingly, at least $T_{x+1} - f$ correct replicas have sent vote -1 messages for b such that $b.QC_{x+1}$ is formed. As p_i set its QC_y to $b.QC_y$ in view v, b is block proposed in normal case and the $T_{x+1} - f$ correct replicas set their QC_z’s to $b.QC_{x+1}$ in view v. Thus, fewer than $n - T_{x+1}$ correct replicas have not yet set their QC_z’s to $b.QC_z$ in view v. Therefore, for any M_b, at most $n - T_{x+1} + f$ messages are sent by replicas who have not set their QC_z’s to $d.QC_z$, i.e., there at least $T - (n - T_{x+1} + f)$ b in $M^b.vb$. Since $T - (n - T_{x+1} + f) > 0$, we have that $\text{CERTS}(b, T, x, z) > 0$.

In a $\text{BG}[x, z]$ ($x = z$), for any block b, if $b.QC_x$ is received by a correct replica p_i and p_i sets its QC_x to $b.QC_x$ in view v, then $b.view = v$. In this case, $b.QC_x$ is received by at least only one replica. If $T - (n - 1) > 0$, a new leader needs to collect new-view messages from all the replicas in the system. Then $b.QC_x$ is included in $M^b.QC_x$ and we have that $\text{Certs}(b, T, x, z) > 0$.

That completes the proof.

Lemma 26. If $T_j > f$ for all $j \in [1..z]$, and $T_1 \geq \lceil \frac{n+f+1}{2} \rceil$, then FSB-liveness holds in $\text{BG}[x, z]$.

Proof. Given a M_v, we need to prove that $\text{FSB}(M_v)$ outputs some (b, π). By Lemma 10, b_2 is a unique block based on M_v. Therefore, after comparing ranks of blocks whose QC_x in M_v, $\text{FSB}(M_v)$ will output a unique block together with a proof π.

Lemma 27. If $\text{BG}[x, z]$ satisfies DP3, $T_j > f$ for $j \in [1..z]$, $T_1 \geq \lceil \frac{n+f+1}{2} \rceil$, $T > f$, and there exists a block committed by at least one correct replica in view $v - 1$, then FSB-safety holds in view v for $\text{BG}[x, z]$.

Proof. Let $B^v = \{b | \text{block } b \text{ has been committed before view } v\}$. According to Lemma 1, there exists $b^v \in B^v$ such that for all $b' \in B^v$ and $b' \neq b^v$, we have $\text{rank}(b^v) > \text{rank}(b')$. Since there exists a committed block in view $v - 1$, we know $b^v.view = v - 1$. By Lemma 26, $\text{FSB}(M_v)$ outputs some (b_2, π). We now prove that b_2 is either b^v or an extension of b^v. Since DP3 holds in $\text{BG}[x, z]$ for any v, we consider two cases:

1) $b^v.QC_x \in M_v.QC_x$. In this scenario, the output should satisfy that $b_2.QC_x \in M_v.QC_x$ and $\text{rank}(b_2) \geq \text{rank}(b^v)$. According to Lemma 10, we have that b_2 equals b^v or b_2 is an extension of b^v.

2) $b^v.QC_x \notin M_v.QC_x$. Since DP3 holds in $\text{BG}[x, z]$, it is clear that at least one correct sender p_i of a message in M_v has changed its QC_x from $b^v.QC_x$ to QC_x for some other block b' before sending the new-view message. According to Algorithm 3, p_i changes its QC_x in view $v - 1$ only if it receives $b^v.QC_x$ and $\text{rank}(b^v) \geq \text{rank}(b')$. By Lemma 10, we know that b' must be equal to or an extension of b^v, and b_2 must be an extension of b^v.

Hence, FSB-safety holds in view v in $\text{BG}[x, z]$.

Lemma 28. If $\text{BG}[x, z]$ satisfies DP3, $T_j > f$ for $j \in [1..z]$, $T_1 \geq \lceil \frac{n+f+1}{2} \rceil$, and $f < T \leq n - f$, then FSB-safety holds for $\text{BG}[x, z]$.

Proof. For any view v, let $B^v = \{b | \text{block } b \text{ has been committed before view } v\}$. According to Lemma 1, there exists $b^v \in B^v$ such that for all $b' \in B^v$ and $b' \neq b^v$, we have $\text{rank}(b^v) \geq \text{rank}(b')$.

We prove that FSB-safety holds for $\text{BG}[x, z]$ by proving that FSB-safety holds in every view. For a specific view v', let w denote $b^v'.view$. We prove that FSB-safety holds in view v' by iterative method. The proof consists of the following steps. First, we prove that FSB-safety holds in view $w + 1$. Then we prove that
Lemma 29. If $T_i > f$, VV-safety holds in $BG[x,z]$.

Proof. The proof is the same with that of Lemma 16.

Lemma 30. If $T_j \leq n - f$ for $1 \leq j \leq z$, VV-liveness holds in $BG[x,z]$.

Proof. The proof is the same with that of Lemma 17.

Theorem 10. $BG[x,z]$ (in Table 2) achieves safety and optimistic responsiveness if the following are satisfied: 1) $BG[x,z]$ satisfies DP3; 2) $f < T \leq n - f$; 3) $\left\lceil \frac{n + f + 1}{2} \right\rceil \leq T_1 \leq n - f$; and 4) $f < T_j \leq n - f$ for $j \in [1..z]$.

Proof. Correctness follows from Theorem 1, Theorem 2, Theorem 3, Lemma 26, Lemma 28, Lemma 29 and Lemma 30.

J Proofs of Theorems for $BG[x,y,z]$ with DP3

Lemma 5. If $x < y$ and $T - (n - T_{x+1} + f) > 0$ or if $x = y$ and $T - (n - 1) > 0$, then $BG[x,y,z]$ satisfies DP3.
Proof. We consider two cases in the lemma separately: $x < z$ and $x = z$.

In a $\text{BG}[x, y, z]$ protocol such that $x < z$, for any block b, we know that if b has been locked by any correct replica p_i in view v, then $b.view = v$ and p_i has also set its QC_y to $b.QC_y$. According to $x < y$ and Lemma 7, $b.QC_{x+1}$ is also formed by the leader in view v. Accordingly, at least $T_{x+1} - f$ correct replicas have sent $\text{VOTE}_{-(x+1)}$ messages for b such that $b.QC_{x+1}$ is formed. As p_i set its QC_y to $b.QC_y$ in view v, b is block proposed in normal case and the $T_1 - f$ replicas set their vb to b in view v. The $T_{x+1} - f$ correct replicas set their QC_x's to $b.QC_x$ in view v. Thus, fewer than $n - T_{x+1}$ correct replicas have not yet set their QC_x's to $b.QC_x$ in view v. Therefore, for any M^b, at most $n - T_{x+1} + f$ messages are sent by replicas who have not set their QC_x's to $b.QC_x$, i.e., there at least $T - (n - T_{x+1} + f)$ $b.QC_x$ in $M^b.QC_x$. Since $T - (n - T_{x+1} + f) > 0$, we have that $\text{CERTS}(b, T, x, y) > 0$.

In a $\text{BG}[x, y, z]$ protocol such that $x = z$, for any block b, we know that if b has been locked by any correct replica p_i in view v, then $b.view = v$ and p_i has also set its QC_y to $b.QC_y$. In this case, $b.QC_y$ is received by at least only one replica. If $T - (n - 1) > 0$, a new leader need to collect NEW-VIEW messages from all the replicas in the system and then $b.QC_y$ is included in $M^b.QC_x$ and we have that $\text{CERTS}(b, T, x, y) > 0$.

That completes the proof.

Lemma 31. If $\text{BG}[x, y, z]$ satisfies $\mathcal{DP3}$, $T_j > f$ for $j \in [1..z]$, $T_1 \geq \left[\frac{n + f + 1}{2} \right]$, and $f < T \leq n - f$, then FSBL-liveness holds for $\text{BG}[x, y, z]$.

Proof. The proof resembles the proof of Lemma 26. In any view v, the leader can obtain block b_2 based on any M_v (a valid view change snapshot) and output $(b_2, b_2.QC_x)$ according to Lemma 10.

Lemma 32. If $\text{BG}[x, y, z]$ satisfies $\mathcal{DP3}$, $T_j > f$ for $j \in [1..z]$, $T_1 \geq \left[\frac{n + f + 1}{2} \right]$, $T > 2f$, $T_{y+1} \geq n - T_1 + f + 1$, and there exists a block committed by at least one correct replica in view $v - 1$, then VVL-safety holds in view v for $\text{BG}[x, y, z]$.

Proof. Let $B^v = \{ b \mid \text{block } b \text{ has been committed before view } v \}$. According to Lemma 1, we can find $b^v \in B^v$ such that for all $b' \in B^v$ and $b' \neq b^v$, we have $\text{rank}(b^v) > \text{rank}(b')$. Since there exists a committed block in view $v - 1$, we know $b^v.view = v - 1$.

As there exists QC_z formed for b^v in view $v - 1$ and $z < y$, at least $T_{y+1} - f \geq n - T_1 + f + 1$ correct replicas have locked b^v and sent $\text{VOTE}_{-(y+1)}$ for b^v to form $b^v.QC_{y+1}$ in view $v - 1$. Let m denote a VIEW-UPDATE message such that $m.view = v$ and the parent block b' of $m.block$ is conflicting with b^v or $\text{rank}(b') < \text{rank}(b^v)$. Let $P = \{ p_i \mid p_i \in C \text{ (the set of correct replicas)} \}$.

By definition, m has rank at most $\text{rank}(b')$ and $\text{rank}(b) = \text{rank}(b') + 1$. Since b^v is the highest rank block for b', VVL(safety) holds in view v for $\text{BG}[x, y, z]$.
If the condition is satisfied, then we know that \(\text{rank}(b') \geq \text{rank}(b_i) \geq \text{rank}(b^v) \) and \(b'.QC_x \) is formed in view \(v - 1 \). According to Lemma 10, \(b' \) must be equal to \(b^v \) or an extension of \(b^v \), contradicting to the assumption.

Therefore, for all the correct replicas who have locked \(b^v \), \(\text{VVL}(m, \text{lockState}) \) return false. Since \(T_{y+1} \geq n - T_1 + f + 1 \) and at least \(T_{y+1} - f \geq n - T_1 + 1 \) correct replicas have locked \(b^{v'} \), we know that \(|P| < T_1 - f \) and VVL-safety holds in view \(v \).

Lemma 33. If \(BG[x, y, z] \) satisfies \(DP3 \), \(T_j > f \) for \(j \in [1..z] \), \(T_1 \geq \left\lceil \frac{n+f+1}{2} \right\rceil \), and \(T_{y+1} \geq n - T_1 + f + 1 \), then VVL-safety holds in \(BG[x, y, z] \).

Proof. For any view \(v \), let \(B^v = \{ b \mid \text{block } b \text{ has been committed before view } v \} \). According to Lemma 1, we can find \(b^v \in B^v \) such that for all \(b' \in B^v \) and \(b' \neq b^v \), we have \(\text{rank}(b^v) > \text{rank}(b') \).

We prove that VVL-safety holds for \(BG[x, y, z] \) by proving that VVL-safety holds in every view. For a specific view \(v' \), let \(w \) denote \(b^v.v \).view. We need to prove that VVL-safety holds in view \(v' \). Out proof consists of the following steps. First, we prove that VVL-safety holds in view \(w+1 \). Then we prove that if VVL-safety holds in view \(w+1, \ldots, w+k \) (for any integer \(1 \leq k \leq v' - w - 1 \), VVL-safety also holds in view \(w+k+1 \). Then for \(k = v' - w - 1 \), we know that VVL-safety holds in view \(v' \).

According to Lemma 32, we know that VVL-safety holds in view \(w+1 \).

Then, assume that VV-safety holds in view \(w+1, \ldots, w+k \) (for any integer \(1 \leq k \leq v' - w - 1 \)). We need to show that VV-safety also holds in view \(w+k+1 \). As there exists \(QC_x \) formed for \(b^{v'} \) in view \(w \) and \(z > y \), at least \(T_{y+1} - f \geq n - T_1 + f + 1 \) correct replicas have locked \(b^{v'} \) and sent a \text{VOTE}-(\(y+1 \)) message for \(b^{v'} \) to form \(b^{v'}.QC_{y+1} \) in view \(w \). Let \(m \) denote a \text{VIEW-UPDATE} message such that \(m.view = w+k+1 \) and the parent block \(b' \) of \(m.block \) is conflicting with \(b^{v'} \) or \(\text{rank}(b') < \text{rank}(b^{v'}) \). Let \(P = \{ p_i \mid p_i \in C \text{ (the set of correct replicas), } \text{VVL}(m, \text{lockState}) \text{ outputs } 1 \text{ in view } w+k+1 \text{ by } p_i \} \).

For any one correct replica \(p_i \) who has locked \(b^{v'} \), let \(b_i \) denote the locked block of \(p_i \) when \(p_i \) received \(m \). Since a correct replica only change its \(QC_x \) to a \(QC_x \) with the same or a higher rank, \(\text{rank}(b_i) \geq \text{rank}(b^{v'}) \). \(\text{VVL}(m, \text{lockState}) \) outputs 1 by \(p_i \) if \(m.justify \) contains \(b'.QC_x, b'.view < w+k+1 \) and \(\text{rank}(b') \geq \text{rank}(b_i) \) (lines 50-51 in Table 2).

If the condition is satisfied, then we know that \(\text{rank}(b') \geq \text{rank}(b_i) \geq \text{rank}(b^v) \). According to Lemma 7, Lemma 10, Lemma 12 and the inductive hypothesis, \(b' \) must be equal to \(b^v \) or an extension of \(b^v \), contradicting to the assumption that either \(b' \) is conflicting with \(b^{v'} \) or \(\text{rank}(b') < \text{rank}(b^{v'}) \). Therefore, for all the correct replicas who have locked \(b^{v'} \), \(\text{VVL}(m, \text{lockState}) \) return false. Since \(T_{y+1} \geq n - T_1 + 1 \) and at least \(T_{y+1} - f \geq n - T_1 + 1 \) correct replicas have locked \(b^{v'} \), we know that \(|P| < T_1 - f \) and VVL-safety holds in view \(w+k+1 \). Then for \(k = v' - w - 1 \), we know that VVL-safety holds in view \(v' \).

Lemma 34. If \(BG[x, y, z] \) satisfies \(DP3 \), \(f < T_j \leq n - f \) for \(j \in [1..z] \), and \(T_1 \geq \left\lceil \frac{n+f+1}{2} \right\rceil \), then VVL-liveness holds in \(BG[x, y, z] \).
Lemma 6. If \(\text{set its} \) Since \(v \) thus, fewer than \(b.QC \) DP5 satises Lemma 33 and Lemma 34. Therefore, we know that \(\text{Vv(m, lockState)} \) outputs 1 by all correct replicas since conditions (lines 30-31 in Table 2) are satisfied for all of them.

2) \(b.v, QC_x \notin M_v.QC_x \). Note that any correct replica changes its \(vb \) and \(QC_x \) only in the case that it has received a \(QC_x \) \(qc \) such that \(\text{rank}(qCBlock(qc)) \geq \text{rank}(vb) \). Since \(BG[x,y,z] \) satisfies DP3, at least one correct sender of a message in \(M_v \) has change its \(QC_x \) from \(b.v, QC_x \) to \(QC_x \) for another block \(b' \). Then \(\text{rank}(b') \geq \text{rank}(b.v) \). In this case, \(b \) is a block such that \(\text{rank}(b) \geq \text{rank}(b.v) \). Therefore, we know that \(\text{Vv(m, lockState)} \) outputs 1 by all correct replicas since conditions (lines 54-55 in Table 2) are satisfied for all of them. This complete the proof.

Theorem 11. \(BG[x,y,z] \) (in Table 2) achieves safety and optimistic responsiveness if the following are satisfied: 1) \(BG[x,y,z] \) satisfies DP1; 2) \(2f < T \leq n-f \); 3) \(\left\lceil \frac{n+f+1}{2} \right\rceil \leq T_i \leq n-f \); 4) \(f < T_j \leq n-f \) for \(j \in [1..z] \); and 5) \(n-T_i+f+1 \leq T_{y+1} \).

Proof. Correctness follows from Theorem 4, Theorem 5, Theorem 6, Lemma 31, Lemma 33 and Lemma 34.

K Proofs of Theorems for \(BG[x,y,z] \) with DP5

Lemma 6. If \(T - (n - T_i + f) > 0 \) and \(T - (n - T_{x+1} + f) > 0 \), then \(BG[x,y,z] \) satisfies DP5.

Proof. In a \(BG[x,y,z] \), for any block \(b \), we know that if \(b \) has been locked by any correct replica \(p_i \) in view \(v \), then \(b.view = v \) and \(p_i \) has also set its \(QC_y \) to \(b.QC_y \). According to \(x \leq y \) and Lemma 7, \(b.QC_1 \) is also formed by the leader in view \(v \). Accordingly, at least \(T_i - f \) correct replicas have sent \(\text{vote-1} \) messages for \(b \) such that \(b.QC_1 \) is formed. The \(T_i - f \) replicas set their \(vb \) to \(b \) in view \(v \). Thus, fewer than \(n - T_i \) correct replicas have not yet set their \(vb \) to \(b \) in view \(v \). Therefore, for any \(M^b \), at most \(n - T_i + f \) messages are sent by replicas who have not set their \(vb \) to \(b \), i.e., there are at least \(T - (n - T_i + f) \) in \(M^bvb \). Since \(T - (n - T_i + f) > 0 \), we have that \(\text{Votes}(b, T, y) \geq 1 \).

Besides, for any block \(d \), if \(d.QC_z \) is received by a correct replica \(p_i \) and \(p_i \) set its \(QC_z \) to \(d.QC_z \) in view \(v \), then \(d.view = v \). According to Lemma 7 and \(x \leq y < z \), \(d.QC_{x+1} \) is also formed by the leader in view \(v \). Accordingly, at least \(T_{x+1} - f \) correct replicas have received \(d.QC_x \) and sent \(\text{vote-x+1} \) messages for \(d \) such that \(d.QC_{x+1} \) is formed. The \(T_{x+1} - f \) correct replicas set their \(QC_z \)'s to \(d.QC_z \) in view \(v \). Thus, fewer than \(n - T_{x+1} \) correct replicas have not yet set their \(QC_z \)'s to \(d.QC_z \) in view \(v \). Therefore, for any \(M^b \), at most \(n - T_{x+1} + f \).
messages are sent by replicas who have not set their QC’s to d.QC, i.e., there at least \(T - (n - T_{x+1} + f) \) b.QC in \(M^k.QC \). Since \(T - (n - T_{x+1} + f) > 0 \), we have that \(\operatorname{Certs}(d, T, x, z) \geq 1 \).

Therefore, \(\operatorname{BG}[x, y, z] \) satisfies \(\operatorname{DP1} \).

Lemma 35. If \(\operatorname{BG}[x, y, z] \) satisfies \(\operatorname{DP5} \), \(T_j > f \) for \(j \in [1..z] \), \(T_1 \geq \left\lfloor \frac{n+f+1}{2} \right\rfloor \), and \(f < T \leq n - f \), then \(\operatorname{FSBL-liveness} \) holds for \(\operatorname{BG}[x, y, z] \).

Proof. The proof resembles the proof of Lemma 18. In any view \(v \), the leader can obtain two intermediate variables, block \(b_1 \) and block \(b_2 \) based on a \(M \), and output \((b, \pi)\) after comparing ranks of \(b_1 \) and \(b_2 \).

Lemma 36. If \(\operatorname{BG}[x, y, z] \) satisfies \(\operatorname{DP5} \), \(T_j > f \) for \(j \in [1..z] \), \(T_{y+1} \geq n - T_1 + f + 1 \), and at least one block has been committed by correct replica in view \(v - 1 \), then \(\operatorname{VVL-safety} \) holds in view \(v \) for \(\operatorname{BG}[x, y, z] \).

Proof. Let \(B^v = \{ b \mid \text{block } b \text{ has been committed before view } v \} \). According to Lemma 1, we let \(b^v \) denote a block in \(B^v \) such that for all \(b' \in B^v \) and \(b' \neq b^v \), we have \(\operatorname{rank}(b^v) \geq \operatorname{rank}(b') \). Since there exists a committed block in view \(v - 1 \), we know \(b^v.view = v - 1 \).

As there exists \(QC_x \) formed for \(b^v \) in view \(v - 1 \) and \(y < z \), at least \(T_{y+1} - f \geq n - T_1 + 1 \) correct replicas have locked \(b^v \) and sent \(\text{vote}(y+1) \) for \(b^v \) to form \(\text{b}^v.QC_{y+1} \) in view \(v - 1 \). Let \(m \) denote a \(\text{view-update} \) message such that \(m.view = v \) and the parent block \(b' \) of \(m.block \) is conflicting with \(b^v \) or \(\operatorname{rank}(b') \geq \operatorname{rank}(b^v) \). Let \(P = \{ p_i \mid p_i \in C \text{ (the set of correct replicas)} \} \), \(\text{vv}(m, \text{lockState}) \) outputs 1 in view \(v \) by \(p_i \).

For any one correct replica \(p_i \) who has locked \(b^v \), let \(b_i \) denote the locked block of \(p_i \) when \(p_i \) received \(m \). Since a correct replica only change its \(QC_x \) to a \(QC_x \) with the same or a higher rank, \(\operatorname{rank}(b_i) \geq \operatorname{rank}(b^v) \). \(\text{vv}(m, \text{lockState}) \) outputs 1 by \(p_i \) if one of the following two conditions is satisfied:

1) \(m.justify \) contains \(b^v.QC_x, b^v.view < v \) and \(\operatorname{rank}(b_i) \geq \operatorname{rank}(b^v) \) (lines 62-63 in Table 2).

2) \(m.justify \) contains \(M_v.QC_x, b^v.view < v \) and \(b^v.QC_x \) is the \(QC_x \) with the highest rank in \(M_v.QC_x \) (lines 64-67 in Table 2).

If condition 1) is satisfied, then \(b' \) must be equal to or an extension of \(b^v \) according to Lemma 10, contradicting the assumption that either \(b' \) is conflicting with \(b^v \) or \(\operatorname{rank}(b') < \operatorname{rank}(b^v) \). If the condition 2) is satisfied, then we know that \(b' \) is the block with highest rank for which a \(QC_x \) is included in \(M_v.QC_x \). Since \(\operatorname{BG}[x, y, z] \) satisfies \(\operatorname{DP5} \), we have that \(\text{num}(b^v.QC_x, M^k.QC_x) \geq 1 \). Note that any correct replica changes its \(QC_x \) with a \(QC_x \) with the same or higher rank. We have \(\operatorname{rank}(b') \geq \operatorname{rank}(b^v) \). According to Lemma 10, \(b' \) must be equal to \(b^v \) or an extension of \(b^v \), contradicting the assumption that either \(b' \) is conflicting with \(b^v \) or \(\operatorname{rank}(b') < \operatorname{rank}(b^v) \).

Therefore, for all the correct replicas who have locked \(b^v \), \(\text{vv}(m, \text{lockState}) \) return false. Since \(T_{y+1} \geq n - T_1 + f + 1 \) and at least \(T_{y+1} - f \geq n - T_1 + 1 \) correct replicas have locked \(b^v \), we know that \(|P| < T_1 - f \) and \(\operatorname{VVL-safety} \) holds in view \(v \).
Lemma 37. If $BG[x, y, z]$ satisfies DP5, $T_j > f$ for $j \in [1..z]$, $T_1 \geq \left\lceil \frac{n+f+1}{2} \right\rceil$, and $T_{y+1} \geq n - T_1 + f + 1$, then VVL-safety holds in $BG[x, y, z]$.

Proof. For any view v, let $B^v = \{ b \mid \text{block } b \text{ has been committed before view } v \}$. According to Lemma 1, we can find $b^v \in B^v$ such that for all $b^u \in B^u$ and $b^u \neq b^v$, we have $\text{rank}(b^v) > \text{rank}(b^u)$.

We prove that VVL-safety holds for $BG[x, y, z]$ by proving that VVL-safety holds in every view. For a specific view v', let w denote $b^w . view$. We need to prove that VVL-safety holds in view v'. The proof consists of the following steps. First, we prove that VVL-safety holds in view $w + 1$. Then we prove that if VVL-safety holds in view $w + 1, \ldots, w + k$ (for any integer $1 \leq k \leq v' - w - 1$), VVL-safety also holds in view $w + k + 1$. Then for $k = v' - w - 1$, we know that VVL-safety holds in view v'.

According to Lemma 36, we know that VVL-safety holds in view $w + 1$.

Then, assume that VV-safety holds in view $w + 1, \ldots, w + k$ (for any integer $1 \leq k \leq v' - w - 1$). We need to show that VV-safety also holds in view $w + k + 1$. As there exists QC_x formed for b^v in view w and $y < z$, at least $T_{y+1} - f \geq n - T_1 + 1$ correct replicas have locked b^v and sent $\text{vote}_(y+1)$ for b^v to form $b'^v . QC_{y+1}$ in view w. Let m denote a view-update message such that $m . view = w + k + 1$ and the parent block b' of $m . block$ is conflicting with b'^v or $\text{rank}(b') < \text{rank}(b'^v)$. Let $P = \{ p_i \mid p_i \in C \text{ (the set of correct replicas)} \}$, $\text{VV}(m, lockState)$ outputs 1 in view $w + k + 1$ by p_i if one of the following four conditions is satisfied:

1) $m . justify$ contains $b' . QC_x, b' . view < w + k + 1$ and $\text{rank}(b') \geq \text{rank}(b_i)$ (lines 62-63 in Table 2).

2) $m . justify$ contains $M_{w+k+1} . QC_x, b' . view < w + k + 1$ and $b' . QC_x$ is the QC_x with the highest rank in $M_{w+k+1} . QC_x$ (lines 64-67 in Table 2).

If condition 1) is satisfied, then b' must be equal to or is an extension of b^v according to Lemma 7, Lemma 10, Lemma 12 and the inductive hypothesis. This is a contradiction with the assumption that either b' is conflicting with b^v or $\text{rank}(b') < \text{rank}(b^v)$. If the condition 2) is satisfied, then we know that b' is the block with the highest rank for which a QC_x is included in $M_{w+k+1} . QC_x$. Since $BG[x, y, z]$ satisfies DP5, we have that $\text{num}(b'^v . QC_x, M_{w+k+1} . QC_x) \geq 1$. Note that any correct replica changes its QC_x only with QC_x with the same or a higher rank, $\text{rank}(b') \geq \text{rank}(b'^v)$. According to Lemma 7, Lemma 10, Lemma 12 and the inductive hypothesis, b' must be equal to b^v or an extension of b^v, contradicting the assumption that either b' is conflicting with b^v or $\text{rank}(b') < \text{rank}(b^v)$.

Then for $k = v' - w - 1$, we know that VVL-safety holds in view v'. That completes the proof.

Lemma 38. If $BG[x, y, z]$ satisfies DP5, $T_j > f$ for $j \in [1..z]$, $T_1 \geq \left\lceil \frac{n+f+1}{2} \right\rceil$, $x \leq y < z$ and $f < T \leq n - f$, then VVL-liveness holds in $BG[x, y, z]$.
Proof. For any view \(v \), let \(B_v^l = \{ b \mid \text{block } b \; \text{has been locked before view } v \} \). According to \(x \leq y \) and Lemma 10, we can find \(b_v^l \in B_v^l \) such that for all \(b' \in B_v^l \) and \(b' \neq b_v^l \), we have \(\text{rank}(b_v^l) > \text{rank}(b') \). Given a view-update message \(m \) in view \(v \), let \(b \) denote the parent block of \(m.\text{block} \). If \((b, m.\text{justify}) \) is the output of \(\text{fsb}(M_v) \) on some \(M_v \), there are two cases to consider:

1) \(b_v^l.\text{QC}_x \in M_v.\text{QC}_x \). In this case, the output of \(\text{fsb}(M_v) \) is \((b, b.\text{QC}_x) \) or \((b, M_v.\text{QC}_x) \). For both situations, \(b \) is a block such that \(\text{rank}(b) \geq \text{rank}(b_v^l) \). Hence, \(\text{vv}(m, \text{lockState}) \) returns true by all correct replicas since condition 1) (lines 62-63 in Table 2) is satisfied.

2) \(b_v^l \notin M_v.\text{QC}_x \). We need to consider two sub-cases. If \(\text{rank}(b) \geq \text{rank}(b_v^l) \), then we know that \(\text{vv}(m, \text{lockState}) \) returns true by all correct replicas since condition 1) (lines 77-78 in Table 2) is satisfied. If \(\text{rank}(b) < \text{rank}(b_v^l) \), we need to prove that the output of \(\text{fsb}(M_v) \) is of the form \((b, b.\text{QC}_x, M_v.\text{QC}_x) \). Since \(\text{BG}[x, y, z] \) satisfies DP5, then we have \(b_v^l \in M_v.\text{vb} \). Recall again any correct replica changes its \(\text{vb} \) and \(\text{QC}_x \) only in the case that it has received a \(\text{QC}_x \) \(qc \) such that \(\text{rank}(\text{qcBlock}(qc)) \geq \text{rank}(\text{vb}) \). Therefore, for any replica that sends a message \(m \) such that \(m \in M_v \), it will not change its \(\text{vb} \) or updates \(\text{QC}_x \), as the replica previously sets \(\text{vb} \) to \(b_v^l \) and we know \(b_v^l \in M_v.\text{vb} \). Then the output of \(\text{fsb}(M_v) \) is \((b, M_v.\text{QC}_x) \) and \(\text{vv}(m, \text{lockState}) \) returns true by all correct replicas since condition 2) (lines 64-67 in Table 2) is satisfied for them.

That completes the proof.

Theorem 12 \(\text{BG}[x, y, z] \) (in Table 2) achieves safety and responsiveness if the following are satisfied: 1) \(\text{BG}[x, y, z] \) satisfies DP5; 2) \(f < T \leq n - f \); 3) \(\left\lfloor \frac{n + f + 1}{2} \right\rfloor \leq T_1 \leq n - f \); 4) \(f < T_j \leq n - f \) for \(j \in [1..z] \); and 5) \(x \leq y < z \), \(n - T_1 + f + 1 \leq T_{y+1} \).

Proof. Correctness follows from Theorem 4, Theorem 5, Theorem 6, Lemma 35, Lemma 37 and Lemma 38.