
INT-RUP Security of SAEB and TinyJAMBU

Nilanjan Datta1, Avijit Dutta2, and Shibam Ghosh3

1TCG CREST, India
nilanjan.datta@tcgcrest.org

2TCG CREST, India
avirocks.dutta13@gmail.com

3Department of Computer Science, University Of Haifa, Israel
sghosh03@campus.haifa.ac.il

Abstract. The INT-RUP security of an authenticated encryption (AE)
scheme is a well studied problem which deals with the integrity security
of an AE scheme in the setting of releasing unverified plaintext model.
Popular INT-RUP secure constructions either require a large state (e.g.
GCM-RUP, LOCUS, Oribatida) or employ a two-pass mode (e.g. MON-
DAE) that does not allow on-the-fly data processing. This motivates us
to turn our attention to feedback type AE constructions that allow small
state implementation as well as on-the-fly computation capability. In CT-
RSA 2016, Chakraborti et al. have demonstrated a generic INT-RUP
attack on rate-1 block cipher based feedback type AE schemes. Their
results inspire us to study about feedback type AE constructions at a
reduced rate. In this paper, we consider two such recent designs, SAEB
and TinyJAMBU and we analyze their integrity security in the setting of
releasing unverified plaintext model. We found an INT-RUP attack on
SAEB with roughly 232 decryption queries. However, the concrete analy-
sis shows that if we reduce its rate to 32 bits, SAEB achieves the desired
INT-RUP security bound without any additional overhead. Moreover, we
have also analyzed TinyJAMBU, one of the finalists of the NIST LwC,
and found it to be INT-RUP secure. To the best of our knowledge, this
is the first work reporting the INT-RUP security analysis of the block ci-
pher based single state, single pass, on-the-fly, inverse-free authenticated
ciphers.

1 Introduction

In the last few years, the increasing growth of the Internet of Things (IoT) comes
with high demands on and constrictive conditions for cryptographic schemes.
Such constraints may come in various types, as these small interconnected de-
vices may have to operate with low power, low area, low memory, or other-
wise. Lightweight cryptography is about developing cryptographic solutions for
such constrained environments and partly ignited by the CAESAR [16] and
the ongoing NIST Lightweight Competition (LwC) [32]. As a result of these
competitions, the cryptographic community has witnessed the rise of various
lightweight authenticated encryption schemes in recent years. These include

2 Nilanjan Datta1, Avijit Dutta2, and Shibam Ghosh3

block cipher based constructions such as CLOC [30], JAMBU [42], COFB [21],
SAEB [36], SUNDAE [11], permutation based constructions such as ASCON [25],
ACORN [41], Beetle [20] and tweakable block cipher based constructions such as
Deoxys AEAD [31], Romulus and Remus [29], Skinny AEAD [12] etc. However, in
the paper, we confine our discussion only to block cipher and permutation based
AE schemes.

1.1 Designing Area-Efficient Authenticated Ciphers

Often Lightweight Authenticated Encryption (AE) schemes are sequential in na-
ture. This is primarily due to the fact that sequential modes consume less state
size (the memory needed for storing internal values), implying smaller hard-
ware footprint. In addition, sequential modes usually offer inverse-free property
(except a few construction such as CBC and its variants 1) of the underlying
primitive, which also suits one of the very basic needs of implementing ciphers
in lightweight environments.

Block Cipher Based Designs The design of almost every block cipher based
sequential AE schemes starts with a fixed initial state and processes each input
block in sequence by applying a feedback function on the previous block cipher
output, some secret auxiliary state, and the current input (message or associated
data). This feedback function derives the next block cipher input, updated secret
auxiliary state, and the current output (in case of message blocks). Thus, any
block cipher based sequential AE scheme can be described by the underlying
block cipher, the secret auxiliary state and the feedback function. Consequently,
the AE scheme’s efficiency and hardware footprint largely depend on the ef-
ficiency and the hardware footprint of the underlying block cipher, feedback
function, and the secret auxiliary state. Zhang et al. [45] have proposed one such
block cipher based sequential AE scheme called iFEED that uses plaintext feed-
back and achieves optimal rate 2 (i.e. rate-1). However, it requires a state size
of (3n+ k)-bits, where n and k are the block size and the key size of the under-
lying block cipher respectively. CPFB, proposed by Montes and Penazzi [34], is
a notable scheme that reduces the state size to (2n + k)-bits, at the cost of re-
ducing the rate to 3/4. In CHES’17, Chakraborti et al. proposed COFB [21], the
first feedback type AE scheme, achieves rate-1 with a state size of 1.5n+ k-bits.
Recently, it has been proven in [18] that the state size for any feedback type
rate-1 AE scheme cannot be less than 1.5n+ k-bits. In the same paper, authors
have also proposed a hybrid feedback type AE scheme called HyENA [18] that
achieves rate-1 with the state size 1.5n+ k-bits but with a reduced XOR count.

Sponge Type Designs An alternative way to avoid the generation of the
auxiliary states from the block cipher based designs is to use a public permu-

1 Some inverse-free modes are not sequential, e.g., CTR, OTR, GCM etc.
2 rate is defined as the inverse of the number of block cipher calls required to process
a single block of message, where a block refers to the block size of the block cipher.

INT-RUP Security of SAEB and TinyJAMBU 3

tation based sponge mode of operations. Since the selection of Ascon [25] in
the final portfolio of the CAESAR [16] competition, sponge based designs have
gained a huge momentum. In the ongoing NIST LwC competition [32], out of
57 submissions, 25 submissions are based on sponge type designs and out of 10
finalists, 5 candidates are sponge type designs [32]. The primary feature that
one can get out of sponge type designs is that unlike block cipher based con-
structions, it does not require any key scheduling algorithm to invoke. This
feature proves to be beneficial from the storage point of view when the data
size of the underlying permutation for any sponge type design is less than the
combination of the block size and key size of the underlying block cipher for
any block cipher based designs. In such cases, sponge type mode becomes an
excellent choice for area-efficient designs. Moreover, the additional feature of
having no inverse call to the underlying permutation at the time of executing
verified decryption algorithm, ensures an extremely low hardware footprint in
a combined encryption-decryption implementation of the mode. By leveraging
the advantages of sponge-type structure in block cipher based designs (albeit
block cipher based schemes are required to store extra k-bit state for storing the
keys), a few block cipher based sponge-type designs have recently been proposed.
This includes CAESAR candidate JAMBU [42], and two NIST LwC candidates
SAEAES [35] (which is an instantiation of SAEB [36] with AES-128 block cipher)
and TinyJAMBU [43], where all the three AE schemes use a block size of 128-bits
along with a block cipher key of 128-bits, employing an extremely small overall
state of size 256-bits.

1.2 Authenticated Ciphers under Release of Unverified Plaintext
(RUP) Setting

In traditional authenticated ciphers, the verification must be done prior to release
of plaintexts to the user. However, in resource constrained environments with
limited memory, it may not be feasible to store the whole plaintext and one
might be forced to release the plaintext before verification. Further details can
be found in the supplementary material (see Section B).
In [7], Andreeva et al. formalized the security notion of an authenticated encryp-
tion scheme under the release of unverified plaintext setting. In this model, the
encryption functionality E remains, but it separates the decryption/verification
functionality DV into a decryption functionality D and a verification function-
ality V. Likewise the usual security notion of any AE scheme that ensures both
confidentiality and integrity, Andreeva et al. [7] have suggested to achieve the
confidentiality and integrity security for any AE scheme in the RUP model us-
ing IND-CPA + PA1 / PA2 notion and INT-RUP notion respectively. For the
confidentiality model in PA1 setting, i.e., IND-CPA + PA1, the adversary is
given access to E and to either D or a simulator. The purpose of this notion
is to complement the conventional confidentiality in the sense that it measures
the advantage an adversary can gain from actually having access to D. The
integrity notion of an authenticated encryption scheme under this model, i.e.,
INT-RUP, allows an adversary to interact with E ,D, V; and asks it to forge a

4 Nilanjan Datta1, Avijit Dutta2, and Shibam Ghosh3

valid ciphertext, i.e., make a new, valid query to V oracle. The adversary poten-
tially possesess significantly more power in this model due to the access to the
decryption oracle D.
Andreeva et al. [7] have shown that OCB [39], COPA [8] are insecure in the
RUP security model. In [24], Datta et al. mounted an INT-RUP attack on any
Encrypt-Linear mix-Encrypt type authenticated ciphers that includes the CAE-
SAR standard COLM [6]. In another direction, Chakraborti et al. [19] mounted
an INT-RUP attack on iFeed [44]. Adopting a similar attack strategy, they have
shown a generic INT-RUP attack [19] on rate-1 block cipher based feedback
type AEAD constructions. At the same time, they also proposed a scheme called
mCPFB [19] and claimed that the INT-RUP security could be achieved at the cost
of the rate of the construction. Similar approach have been used in OCBIC [46]
and LOCUS [17], which builds upon OCB [39], and LOTUS [17], which builds
upon OTR [33]. For both the constructions LOCUS and LOTUS, IND-CPA +
PA1 and INT-RUP both security notions have been achieved at the cost of
additional block cipher invocations, which halves the rate of the construction.
Note that these modes are parallel in structure, and all of them require a state
of size at least 3n + k-bits, where n is the block size and k is the key size of
the underlying block cipher. Ashur et al. [10] proposed an alternative notion of
RUP security, called RUPAE. This notion focuses on nonce-based authenticated
encryption, and proposed a RUP-variant of GCM [1], dubbed GCM-RUP [10],
in the described nonce-based model. On the other extreme, Chang et al. [22]
introduced the notion of AERUP which unifies the notions of RUP privacy (i.e.,
IND-CPA + PA1) and integrity (i.e., INT-RUP) for deterministic authenticated
ciphers. They also proposed a simple variant of SUNDAE [11], dubbed MON-
DAE [22], that achieves confidentiality and integrity security in RUP setting
under this newly introduced AERUP model. However, MONDAE is a two-pass
authenticated encryption mode. Hence, it does not have the on-the-fly decryption
feature. In a nutshell, while looking at the ciphers with RUP security, either the
constructions lose on state size (e.g., LOCUS [17], mCPFB [19], GCM-RUP [10],
requires at least 3n + k-bits) or the construction does not have the on-the-fly
decryption feature (e.g., MONDAE [22]). The above discussion makes us raise
the question:

Can we have a block cipher based INT-RUP secure design with on-the-fly
decryption feature with a total of n+ k-bits state?

1.3 Towards RUP-Secure Single-state On-the-Fly Authenticated
Encryption

The above question turns our attention to study the INT-RUP security of sponge
based modes. In [15], Bhattacharjee et al. have studied the INT-RUP security of
permutation based sponge type designs. They have presented an INT-RUP at-
tack on generic duplex constructions, with attack complexity O(qdqp/2

c), where
qd is the number of decryption queries, qp is the number of primitive queries
to the permutation, and c is the capacity part of the construction. They have

INT-RUP Security of SAEB and TinyJAMBU 5

also shown that such attacks can be extended to other Sponge variants such as
Beetle [20] and SPoC [2]. The main idea of the attack is to exploit a collision
between an inner state of the construction and a primitive query. To resist such
attacks, the authors used the concept of masking the previous state and proposed
a new cipher called Oribatida [15] that achieves INT-RUP security of O(q2d/2

c).
However, this comes at the cost of an additional state.

When we move to block cipher based AEAD constructions, Chakraborti et
al. [19] have shown that any feedback type rate-1 block cipher based AEAD
construction is not INT-RUP secure. Adopting the idea used in iFeed, they
have shown a generic INT-RUP attack on rate-1 block cipher based feedback
type AEAD constructions. This result immediately rules out the popular area-
efficient block cipher based designs such as COFB and HyENA to have INT-RUP
security. Therefore, the focus goes to feedback type constructions with a lower
rate. This makes us look into block cipher based sponge type constructions such
as SAEB [36] and TinyJAMBU [43]. Due to the inverse-free implementation with
n+k-bits state, these constructions are incredibly lightweight and ideally suited
for resource constraint applications. At the same time, these constructions have
the capability of on-the-fly computation of plaintext/ciphertext blocks. Thus,
they are ideally suited for applications where RUP security would be of extreme
relevance. However, the current literature does not say anything about these
block cipher based constructions, and hence investigating their RUP security
seems an exciting research direction. In this regard, we would like to mention
that in a recent work, Andreeva et al. [4] have shown 2n/2 INT-RUP security
bound on a forkcipher [9] based construction, called SAEF [3]. The structure of
SAEF resembles to the CBC mode of operation, where one of the output blocks
of the forkcipher is used to XOR-mask the input and sometimes output of the
next primitive call.

1.4 Our Contribution and Significance of the Result

In this paper, we study the INT-RUP security of two constructions, namely
SAEB [36] by Naito et al. and TinyJAMBU [43] by Wu et al. Our contribution is
threefold:

(i) We have shown an INT-RUP attack on SAEB that uses a single encryption
query, and roughly 2c/2 decryption queries, where c is the capacity part of the
construction. The attack is applicable for any choices of rate and capacity.

(ii) We have investigated the INT-RUP security bound of SAEB. We have shown
that it offers roughly q2d/2

c INT-RUP security, where qd is the number of
decryption queries and c is the capacity part of the construction. Combining
the proven security bound of SAEB with its attack complexity establishes
the tightness of the security bound of SAEB. This result signifies that if we
instantiate SAEB with a standard 128-bit block cipher and put a restriction
that at a time 32-bits of the message will be injected to SAEB, the mode
achieves INT-RUP security up to 248 blocks, which satisfies the NIST criteria
of having 250 bytes of data complexity. However, for SAEAES, where we inject

6 Nilanjan Datta1, Avijit Dutta2, and Shibam Ghosh3

64-bits of message at a time to the construction, achieves INT-RUP security
up to 232 blocks.

(iii) Finally, we consider the INT-RUP security of TinyJAMBU, one of the finalists
of the NIST LwC. Interestingly TinyJAMBU has a unique structure, where
message injection and ciphertext release occur from different parts of the
state. We have proved that TinyJAMBU offers roughly qvσd/2

n−r INT-RUP
security, where σd is the total number of blocks in all the decryption queries,
r-bits of the message is injected at a time to the construction and n is the
block size of the underlying block cipher.

Thus, in this work, we have obtained the INT-RUP security bounds of SAEB
and TinyJAMBU. To the best of our knowledge, this is the first work that reports
two single-pass 3, inverse-free AEAD constructions, achieving INT-RUP security,
while keeping the on-the-fly decryption property intact. We would like to point
here that both of these construction will not preserve confidentiality in the RUP
setting as these are not two-pass modes. This paper solely focuses on studying
the integrity security of the two constructions in the RUP setting.

2 Preliminaries

For n ∈ N, [n] denotes the set {1, 2, . . . , n} and for a < b ∈ N, we write [a, b] to
denote the set {a, a + 1, . . . , b}. We write (a, b) < (a′, b′) to denote that either
a < a′ or (a = a′ and b < b′). For a finite set X , X←$X denotes the uniform at
random sampling of X from X . For n ∈ N, we write {0, 1}+ and {0, 1}n to denote
the set of all non-empty binary strings, and the set of all n-bit binary strings,
respectively. We write ∅ to denote the empty string, and {0, 1}∗ = {0, 1}+∪{∅}.
For any two strings X,Y ∈ {0, 1}∗, we write X∥Y to denote the concatenation
of the string X followed by the string Y . For X ∈ {0, 1}∗, |X| denotes the
length (number of the bits) of X. For any non-empty binary string X ∈ {0, 1}+,
(X[1], . . . , X[k])

n← X denotes the n-bit parsing of X, where |X[i]| = n for 1 ≤
i ≤ k−1, and 1 ≤ |X[k]| ≤ n. We use the notation X[a . . . b] to denote bit string
X[a]∥X[a+ 1]∥ · · · ∥X[b]. If a = 1, then we write X[. . . b] to denote X[1 . . . b]. In
this paper, we fix a positive integer n and define the function ozs over the set of
any binary string, as ozs(X) := X∥1∥0n−(|X| mod n)−1. Note that the function is
injective and maps allm-bit binary strings to a multiple of n-bit binary strings by
appropriately padding the string with 10∗. For any real number X, ⌈X⌉ denotes
the smallest integer X ′ such that X ′ ≥ X. For any X ∈ {0, 1}+ and an integer
i ≤ |X|, ⌊X⌋i (⌈X⌉i) returns the least significant (most significant, resp.) i-bits
of X. For any integer i, we denote the n-bit unsigned representation of i as ⟨i⟩n.

2.1 Authenticated Encryption

An authenticated encryption (AE) is an integrated scheme that provides both
privacy and integrity of a plaintext M ∈ {0, 1}∗ and integrity of an associ-

3 GCM-RUP [10] also achieves inverse-free, INT-RUP security and on-the-fly decryp-
tion property but it requires two pass

INT-RUP Security of SAEB and TinyJAMBU 7

ated data A ∈ {0, 1}∗. Taking a nonce N ∈ N (which is a unique value
for each encryption), where N is the nonce space, together with the associ-
ated data A and the plaintext M , the encryption function of AE, encK , pro-
duces a tagged-ciphertext (C, T) ∈ {0, 1}∗ × {0, 1}τ with |C| = |M |. We de-
note the length in blocks of the associated data, message and ciphertext with
a,m and c, respectively. The corresponding decryption function, decK , takes
(N,A,C, T) ∈ N × {0, 1}∗ × {0, 1}∗ × {0, 1}τ and returns a decrypted plaintext
M ∈ {0, 1}∗ when the authentication on (N,A,C, T) is successful; otherwise, it
returns the atomic error symbol denoted by ⊥. Following Andreeva et al. [7], we
separate the decryption algorithm into plaintext computation and tag verifica-
tion. Formally, the decryption interface provides two algorithms, a decryption
function decK that takes (N,A,C) and returns a decrypted plaintextM irrespec-
tive of the authentication result (hence we drop the tag value), and a verification
function verK that takes (N,A,C, T) and returns ⊤ when the authentication
succeeds; otherwise, it returns ⊥.

2.2 Integrity Security in RUP Setting

Following the definition of Andreeva et al. [7], we define the integrity security of
an authenticated encryption scheme in the RUP setting. We consider an informa-
tion theoretic adversary A with access to a triplet of oracles of an authenticated
encryption scheme Θ - for a uniformly sampled secret key K, the encryption ora-
cle Θ.encK , decryption oracle Θ.decK and the verification oracle Θ.verK . We say
that A forges Θ under the RUP setting if A can compute a tuple (N,A,C, T)
satisfying Θ.verK(N,A,C, T) ̸= ⊥, without querying (N,A,M) to Θ.encK and
receiving (C, T) as a response, i.e. (N,A,C, T) is a non-trivial forgery. We as-
sume that A can make decryption queries of the form (N,A,C) to the oracle
Θ.decK , with no restriction on nonce repetitions, and receive the corresponding
response M , whereas nonces should be distinct for every encryption queries to
Θ.encK . Then, the integrity security or equivalently the forging advantage of Θ
for the adversary A in the RUP setting is defined as

Pr[K ←$ {0, 1}k : A Θ.encK ,Θ.decK ,Θ.verK forges].

We assume that A does not make any query to the oracles for which it can
compute the corresponding response on its own. We call such an adversary a non-
trivial adversary. Following [7], we view the forging advantage of Θ in the RUP
setting as an equivalent distinguishing game between two worlds. The real world
consists of (Θ.encK ,Θ.decK ,Θ.verK) for a uniformly chosen key K, whereas the
ideal world consists of (Θ.encK ,Θ.decK ,⊥), i.e., the verification oracle in the
real world is replaced by the reject symbol. This means all verification attempts
in the ideal world will lead to a rejection. Under this equivalent setting, the
integrity advantage for any distinguisher A is defined as

Advint-rup
Θ (A) :=

∣∣∣Pr[A (Θ.encK ,Θ.decK ,Θ.verK) = 1]− Pr[A (Θ.encK ,Θ.decK ,⊥) = 1]
∣∣∣ ,

8 Nilanjan Datta1, Avijit Dutta2, and Shibam Ghosh3

where ⊥ denotes the degenerate oracle that always returns ⊥ symbol and the
probability is defined over the randomness of K. The integrity under RUP ad-
vantage of Θ is defined as

Advint-rup
Θ (qe, qd, qv, σe, σd, σv) := max

A
Advint-rup

Θ (A),

where the maximum is taken over all distinguishers making qe encryption queries,
qd decryption queries and qv verification queries. Here σe, σd and σv denotes
the total number of block cipher calls with distinct inputs in encryption, de-
cryption, and verification queries, respectively. Throughout this paper, we write
(qe, qd, qv, σe, σd, σv)-distinguisher to represent a distinguisher that makes qe en-
cryption queries with a total of σe many primitive calls with distinct inputs in
encryption queries, qd decryption queries with a total of σd many primitive calls
with distinct inputs in decryption queries and qv verification queries with a total
of σv many primitive calls with distinct inputs in verification queries.

Let Λ1 and Λ0 denote the random variable induced by the interaction of A with
the real oracle and the ideal oracle, respectively. The probability of realizing
a transcript ω in the ideal oracle (i.e., Pr[Λ0 = ω]) is called the ideal interpo-
lation probability. Similarly, one can define the real interpolation probability. A
transcript ω is said to be attainable with respect to A if the ideal interpolation
probability is non-zero (i.e., Pr[Λ0 = ω] > 0). We denote the set of all attainable
transcripts by Ω. Following these notations, we state the main result of the H-
Coefficient Technique in Theorem 1. The proof of this theorem can be found in
[37].

Theorem 1 (H-Coefficient Technique). Suppose for some Ωbad ⊆ Ω, which
we call the bad set of transcripts, the following conditions hold:

1. Pr[Λ0 ∈ Ωbad] ≤ ϵ1,

2. For any good transcript ω ∈ Ω \Ωbad, Pr[Λ1 = ω] ≥ (1− ϵ2) · Pr[Λ0 = ω].

Then, we have

Advint-rup
Θ (qe, qd, qv, σe, σd, σv) ≤ ϵ1 + ϵ2. (1)

We will apply the H-Coefficient technique to bound the integrity security of the
two block cipher based authenticated ciphers SAEB and TinyJAMBU in the RUP
model. To do this, we first replace the underlying primitive of the construction,
which is a block cipher, with a random permutation at the cost of the PRP
advantage of the block cipher. Then, we bound the distinguishing advantage of
the resulting construction (whose underlying primitive is a random permutation)
from the ideal one. We bound this advantage against an adversary A that is
computationally unbounded (i.e., no bound on the time complexity, but bounded
on the number of queries that it can ask to the oracle) and hence deterministic.
We call them information-theoretic adversary. Therefore, from now onwards, we
skip the time parameter from their corresponding advantage definitions.

INT-RUP Security of SAEB and TinyJAMBU 9

3 SAEB AEAD Mode and Its INT-RUP Security

SAEB [36] is a block cipher based AEAD scheme, proposed by Naito et al. in
TCHES’18. The design principle of SAEB follows the sponge duplex mode based
on block ciphers. Similar to permutation based sponge constructions, SAEB in-
jects r-bits of the message at a time to the construction, called the message
injection rate, c-bits capacity, and the overall block size is n = r + c-bits. The
algorithmic description of the encryption function of SAEB is presented in Fig-
ure 1, and its schematic diagram is depicted in Figure 3. An instantiation of
SAEB with AES-128, called SAEAES [35], was submitted in NIST LwC and is
one of the second round candidates of the competition. In the original proposal
of the scheme, the recommended parameters of SAEAES are r = 64 and c = 64.

SAEB(K,N,A,M)

1 : A[1]∥ . . . ∥A[a]
r←− A∥10∗;

2 : M [1]∥ . . . ∥M [m]
r←−M∥10∗;

3 : s[1]← A[1]∥0c;
4 : for i = 2 to a− 1;

5 : s[i]← EK(s[i− 1])⊕A[i]∥0⋆;
6 : s[a]← EK(s[a− 1])⊕A[a]∥const1;
7 : s[a+ 1]← EK(s[a])⊕N∥const2;
8 : for i = 2 to m− 1;

9 : s[a+ i]← EK(s[a+ i− 1])⊕M [i]∥0⋆;
10 : C[i]← ⌈s[a+ i]⌉r;
11 : s[a+m+ 1]← EK(s[a+m])⊕M [m]∥const3;
12 : T ← ⌈EK(s[a+m+ 1])⌉τ ;
return (C, T);

Fig. 1: Encryption algorithm of SAEB authenticated encryption mode.

Naito et al. [36] have shown that SAEB achieves birthday bound security with
the dominating term being (σa+σd)/2

c+(σe+σd)
2/2n, where σa is the number

of associated data blocks across all the queries, σe is the total number of block
cipher calls with distinct inputs in encryption queries, and σd is the total number
of block cipher calls with distinct inputs in decryption queries. However, the
designers have not analyzed the construction in the RUP setting, and to the
best of our knowledge, no prior work has addressed the issue of analyzing the
security of this construction in the RUP setting. In the subsequent sections, we
analyze the INT-RUP security of SAEB. In particular, we show in Sect. 3.1 that
an adversary A with roughly 2c/2 decryption queries, can forge SAEB in the

10 Nilanjan Datta1, Avijit Dutta2, and Shibam Ghosh3

release of unverified plaintext setting and in Sect. 4, we give an upper bound of
the order 2c/2 on the INT-RUP security of SAEB.

3.1 INT-RUP Attack on SAEB

In this section, we show a forging attack on SAEB in the INT-RUP setting
with 2c/2 decryption queries and a single encryption query. Here we describe the
adversary A that primarily exploits the fact that during a decryption call, an
adversary can control the rate part of the input of the block cipher by directly
injecting the ciphertext into the rate part of the block cipher (see Figure 4) to
mount the attack: First, we describe the attack when r ≥ c/2, then extend it
for r < c/2. Let r ≥ c/2. We describe an adversary A that mounts an INT-
RUP attack against SAEB with roughly 2c/2 decryption queries and a single
encryption query as follows:

1. A chooses an arbitrary r-bit nonce N , an arbitrary r-bit associated data
A and an arbitrary r-bit ciphertext data C, and then makes 2c/2+1 de-
cryption queries of the form (N, A, Ci[1] ∥ C[2] ∥ C[3] ∥ . . . ∥ C[ℓ +
1])i=1,...,2c/2 , with distinct r-bit Ci[1] values such that C[2] = C[3] = . . . =
C[ℓ + 1] = C and ℓ = ⌈c/r⌉ + 1. Let the unverified released plaintext be
Mi[1] ∥ Mi[2] ∥ Mi[3] ∥ . . . ∥ Mi[ℓ+ 1].

2. Assume there exist two indices j, k ∈ [2c/2] for which Mj [a] = Mk[a] for all
a ∈ [3, ℓ+ 1].

3. A makes an encryption query with (N, A, Mj [1] ∥Mj [2] ∥Mj [3] ∥ . . . ∥Mj [ℓ+
1]). Let the tagged ciphertext be (Cj [1] ∥ C[2] ∥ C[3] ∥ . . . ∥ C[ℓ + 1], T),
where C[2] = C[3] = . . . = C[ℓ+ 1] = C.

4. A forges with (N, A, (Ck[1] ∥ C[2] ∥ C[3] ∥ . . . ∥ C[ℓ + 1]), T), where
C[2] = C[3] = . . . = C[ℓ+ 1] = C.

It is easy to see that A succeeds with probability 1/2. For completeness, the
details analysis is given in the Supplementary material (see Section C.2).

Attack when r < c/2. Now, we consider the case when r < c/2. Note that,
when r < c/2, then varying just one r-bit ciphertext string would result in
at most 2r different values. This would not ensure a collision in the capacity
part with high probability. To deal with this, we vary multiple consecutive r-
bit ciphertext strings, say s many, which results in 2rs many different values. If
we appropriately choose s with rs ≥ c/2, we expect a collision in the capacity
part. Then a similar attack strategy, as described for r ≥ c/2, will hold. For
completeness, we formally present the attack algorithm in the supplementary
material.

4 INT-RUP Security of SAEB

In this section, we show that SAEB is INT-RUP secure against all adversaries
that make roughly 2c/2 decryption queries, where c is the capacity of the con-
struction. We prove the security of the construction in the information-theoretic

INT-RUP Security of SAEB and TinyJAMBU 11

setting, where a uniform random n-bit permutation P replaces the underlying
block cipher of the construction at the cost of the prp advantage of the block
cipher E and denote the resulting construction as SAEB∗[P]. In the following, we
state and prove the int-rup security result of SAEB∗[P].

Theorem 2. Let P←$Perm(n) be an uniformly sampled n-bit random permu-
tation. The INT-RUP advantage for any (qe, qd, qv, σe, σd, σv)-distinguisher A
against the construction SAEB∗[P] that makes at most qe encryption, qd de-
cryption and qv verification queries with at most σe primitive calls with distinct
inputs in encryption queries, σd primitive calls with distinct inputs in decryption
queries and σv primitive calls with distinct inputs in verification queries having
a total of σ = σe + σd + σv primitive calls with distinct inputs such that ρ ≤ σe,
where ρ is a parameter, is given by

Advint-rup
SAEB∗[P](A) ≤ σ2

2n+1
+

σρ
e

(2r)ρ−1
+

qv(2ρ+ σd)

2c
+

qv
2τ

+
qv(σe + σd)

2c
.

Proof. As the first step of the proof, we slightly modify the construction by
replacing the random permutation with a random function R←$Funcs({0, 1}n).
We denote the resulting construction as Θ. This modification comes at the cost of
birthday bound complexity due to the PRF-PRP switching lemma [13,14,23]. We
consider a computationally unbounded non-trivial deterministic distinguisher A
that interacts with a triplet of oracles in either of the two worlds: in the real
world, it interacts with (Θ.encR,Θ.decR,Θ.verR), and in the ideal world, it in-
teracts with (Θ.encR,Θ.decR,⊥), where ⊥ denotes the oracle that always rejects
the verification attempts. We summarize A ’s query-response in a transcript ω
which is segregated into a transcript of encryption queries, decryption queries,
verification queries. Basically, we segregate the transcript ω into three parts ω+,
ω−, and ω×, where ω+ = {(N+

1 , A+
1 ,M

+
1 , C+

1 , T+
1), . . . , (N+

qe , A
+
qe ,M

+
qe , C

+
qe , T

+
qe)}

is a tuple of encryption queries, ω− = {(N−
1 , A−

1 , C
−
1 ,M−

1), (N−
2 , A−

2 , C
−
2 ,M−

2),
. . . , (N−

qd
, A−

qd
, C−

qd
,M−

qd
)} is a tuple of decryption queries, and a tuple of verifi-

cation queries ω× = {(N×
1 , A×

1 , C
×
1 , T×

1 ,⊥1), . . . , (N
×
qv , A

×
qv , C

×
qv , T

×
qv ,⊥qv)} such

that ω = ω+ ∪ ω− ∪ ω×. We modify the experiment by releasing all internal
state values to adversary A after it makes all the encryption, decryption and
verification queries, and before it outputs the decision bit b. We denote the j-
th internal state value in the i-th encryption, decryption and verification query
as s+i [j], s

−
i [j] and s×i [j] respectively. In general, we denote it as s⋆i [j], where

⋆ ∈ {+,−,×}. The length of associated data, message and ciphertext in the i-th
query is denoted as a⋆i ,m

⋆
i and c⋆i respectively where ⋆ ∈ {+,−,×}. In the real

world, these internal state variables for every encryption, decryption and verifi-
cation queries are computed by the corresponding oracles that faithfully evaluate
SAEB∗. Note that the sequence of internal state values, in the real world for the

12 Nilanjan Datta1, Avijit Dutta2, and Shibam Ghosh3

i-th encryption query of length a+i +m+
i + 1, are defined as follows:

s+i [1] = A+
i [1]∥⟨0⟩c1

s+i [k] = A+
i [k]∥⟨0⟩c1 ⊕R(s+i [k − 1]), for 2 ≤ k < a+i

s+i [a
+
i] = ozs(A+

i [a
+
i])∥⟨const1⟩c ⊕R(s+i [a

+
i − 1])

s+i [a
+
i + 1] = N+

i ∥⟨const2⟩c ⊕R(s+i [a
+
i])

s+i [a
+
i + 1 + k] = M+

i [k]∥⟨0⟩c ⊕R(s+i [k − 1]), for 1 ≤ k < m+
i

s+i [a
+
i + 1 +m+

i] = ozs(M+
i [m+

i])∥⟨const3⟩c ⊕R(s+i [a
+
i +m+

i])

(2)

Similarly, we define the internal state values in the real world for decryption and
verification queries. In the ideal world, as the encryption and decryption oracles
are identical to that of the real world, the intermediate state variables for every
encryption and decryption queries are faithfully evaluated by the corresponding
oracles, and hence the sequence of state values for i-th encryption query is iden-
tically defined to Eqn. (2). Similar to the real world, we also define the internal
state values in the ideal world for decryption queries. As the verification ora-
cle ⊥ in the ideal world always returns rejects and does not compute anything,
the internal state variables are not defined. Therefore, we have to define the
sampling of the intermediate state variables for every verification query in the
ideal world. To achieve this, for every verification query (N,A,C, T), the verifi-
cation oracle for the ideal world invokes the decryption oracle Θ.decR with input
(N,A,C) ignoring the output of r-bit plaintext strings. Finally, the verification
oracle ignores the checking of the computed tag T ∗ with the given tag T . Thus,
the sequence of internal state values is defined for verification queries. Let the
modified attack transcripts be ωnew = ω+

new ∪ ω−
new ∪ ω×

new, where
ω+
new = ω+ ∪ {s+i [j] : i ∈ [qe], j ∈ [ai +mi + 1]}

ω−
new = ω− ∪ {s−i [j] : i ∈ [qd], j ∈ [ai +mi + 1]}

ω×
new = ω× ∪ {s×i [j] : i ∈ [qv], j ∈ [ai +mi + 1]}.

For a given transcript ωnew, we reorder the transcript so that all the encryption
queries appear first, followed by all the decryption queries and finally, all the
verification queries. It is easy to see that a state collision occurs in s⋆i [j] and
s⊛i′ [j] with probability 1, where ⋆,⊛ ∈ {+,−,×}, if
• A⋆

i [. . . j] = A⊛
i′ [. . . j], when j ≤ a⋆i ,

• A⋆
i = A⊛

i′ , N
⋆
i = N⊛

i′ , when j = a⋆i + 1,
• N⋆

i = N⊛
i′ , A

⋆
i = A⊛

i , M
⋆
i [. . . (j − a⋆i − 1)] = M⊛

i′ [. . . (j − a⋆i − 1)], when
a⋆i + 1 < j ≤ a⋆i + 1 +m⋆

i .

A state collision that happens with probability 1 is called a trivial collision, and
any other state collision is non-trivial. For j > 1, we write ancestor(s⋆i [j]) to
denote the sequence of state values (s⋆i [1], . . . , s

⋆
i [j − 1]) that leads to s⋆i [j] in

the i-th query and ancestor(s⋆i [1]) = ϕ, where ⋆ ∈ {+,−,×}. Using this notion,
we say that a trivial state collision between s⋆i [j] and s⊛i′ [j] occurs if and only if
ancestor(s⋆i [j]) = ancestor(s⊛i′ [j]) for some j. Let D⋆

i := A⋆
i ∥N⋆

i and d⋆i := a⋆i + 1

INT-RUP Security of SAEB and TinyJAMBU 13

where ⋆ ∈ {+,−,×}. Let us consider two queries ⋆,⊛ ∈ {+,−,×} with distinct
query indices i and i′, where i, i′ ∈ [qe + qd + qv]. We define the longest common
prefix of (i, i′), denoted as LCP(i, i′)
j, if j ∈ [d⋆i], D

⋆
i [1..j] = D⊛

i′ [1..j], D
⋆
i [j + 1] ̸= D⊛

i′ [j + 1]

d⋆i , if D⋆
i = D⊛

i′ ,M
⋆
i [1] ̸= M⊛

i′ [1]

j, if j ∈ [d⋆i , d
⋆
i +m⋆

i], D
⋆
i = D⊛

i′ ,M
⋆
i [1..j] = M⊛

i′ [1..j],M
⋆
i [j + 1] ̸= M⊛

i′ [j + 1]

d⋆i +m⋆
i , if D⋆

i = D⊛
i′ ,M

⋆
i = M⊛

i′ [1..m
⋆
i]

Consequently, we define LLCP(i)
∆
= maxi′<i{LCP(i, i′)}, that denotes the longest

common prefix of query index i ∈ [qe + qd + qv].

4.1 Definition and Probability of Bad Transcripts

In this section, we define and bound the probability of bad transcripts in the
ideal world. Let Ω be the set of all attainable transcripts and ωnew ∈ Ω be one
such attainable transcript. We say that transcript ωnew is bad, i.e., ωnew ∈ Ωbad,
if at least one of the following holds:

1. Coll: there exists i, j, i′, j′ with (i′, j′) < (i, j) with LLCP(i) < j ≤ ai+mi+1
and i ≤ [qe + qd + qv] such that s⋆i [j] = s⊛i′ [j

′], where ⋆,⊛ ∈ {+,−,×}.
2. mColl: ∃i1, j1, . . . , iρ, jρ with {i1, . . . , iρ} ⊆ [qe] and for all 1 ≤ k ≤ ρ, jk ∈

[mik], such that C+
i1
[j1] = · · · = C+

iρ
[jρ].

3. Forge: This event happens if for some verification query, all its interme-
diate states prior to the final state matches with intermediate state from
some encryption or decryption queries; and the final state of the verification
query matches with the final state of an encryption query for which the tag
matches. In other words, ∃i ∈ [qv] such that for the i-th verification query
(N×

i , A×
i , C

×
i , T+

i), the following two events hold:{
∀j ∈ [a×i + 1, (a×i + c×i)],∃i′, j′ such that s×i [j] = s+i′ [j

′] or s×i [j] = s−i′ [j
′],

∃f ∈ [qe] such that s×i [a
×
i + c×i + 1] = s+f [a

+
f + c+f + 1] with T+

i = T+
f .

We now compute the probability of a transcript being bad in the ideal world.
Using the union bound, we have

Pr[Λ0 ∈ Ωbad] = Pr[Coll ∨mColl ∨ Forge]. (3)

Bounding Coll: For this event to happen, we know that there exists at least
one pair of indices (i′, j′) < (i, j) such that LLCP(i) < j ≤ ai + mi + 1 and
s⋆i [j] = s⊛i′ [j

′]. For any value of j ∈ [1, ai +mi + 1], we have,

s⋆i [j] = s⋆i′ [j]⇔ R(s⋆i [j − 1])⊕R(s⋆i′ [j − 1]) = x⋆
i [j]⊕ x⊛

i′ [j] (4)

where x⋆
i [j] and x⊛

i′ [j] are two n-bit strings. Note that if j > ai + 1, the first
r-bits of x⋆

i [j] is xored with message block if ⋆ = + or the first r-bits of x⋆
i [j] is

14 Nilanjan Datta1, Avijit Dutta2, and Shibam Ghosh3

replaced by the ciphertext block if ⋆ ∈ {−,×}. Similarly, if j > ai + 1 the first
r-bits of x⊛

i′ [j] is xored with message block if ⊛ = + or the first r-bits of x⊛
i′ [j] is

replaced by a ciphertext block if ⊛ ∈ {−,×}. On the other hand, if j ≤ ai + 1,
then first r-bits of x⋆

i [j] and x⊛
i′ [j] is xored with associated data or nonce for

⋆,⊛ ∈ {+,−,×}. First, let us consider the case when j = j′ = LLCP(i) + 1 and
j > 1. Then there exists some i′ such that i′ < i and LLCP(i) holds for i′. Now
we consider the values of s⋆i [j − 1] and s⊛i′ [j

′ − 1]. Based on the values of j, we
get following cases.

1. Case j < a⋆i + 1. In this case, we have D⋆
i [1..j − 1] = D⊛

i′ [1..j − 1] i.e,

A⋆
i [1..j] = A⊛

i′ [1..j] Then from the Equation (2), we have s⋆i [j−1] = s⊛i′ [j
′−1].

2. Case j = a⋆i + 1. In this case, LLCP(i) = a⋆i . Thus, D
⋆
i [1..a

⋆
i] = D⊛

i′ [1..a
⋆
i]

i.e, A⋆
i = A⊛

i′ . Then from the Equation (2), we have s⋆i [j − 1] = s⊛i′ [j
′ − 1].

3. Case j = a⋆i + 2. In this case, the associated date and nonce in i-th and

i′-th query matches. So, we have s⋆i [j − 1] = s⊛i′ [j
′ − 1].

4. Case a⋆i + 2 ≤ j ≤ a⋆i +m⋆
i + 1. In this case, the nonce and associated data

in the i-th and i′-th query matches. Also, the message/ciphertext in i-th and
i′-th query matches up to (j−a⋆i −2)-th block. Thus from the Equation (15),
we have s⋆i [j − 1] = s⊛i′ [j

′ − 1].

Therefore, for any value of j ∈ [2, ai +mi + 1], s⋆i [j − 1] = s⊛i′ [j
′ − 1]. Thus, the

probability of the event,

s⋆i [j] = s⋆i′ [j]⇔ R(s⋆i [j − 1])⊕R(s⋆i′ [j − 1]) = x⋆
i [j]⊕ x⊛

i′ [j]⇔ x⋆
i [j]⊕ x⊛

i′ [j] = 0

is zero. On the other hand, for all i′ ≤ i and j′ ̸= j or j ̸= LLCP(i) + 1,
R(s⋆i [j − 1])⊕R(s⋆i′ [j − 1]) = x⋆

i [j]⊕ x⊛
i′ [j] holds with probability at most 2−n.

Thus, the probability that two states collide is 2−n. Note that there are σ possible
values of (i, j) in a transcript, each having no more than σ possible values of
(i′, j′), where σ is the total number of permutation calls including all encryption,
decryption and verification queries, such that s⋆i [j] = s⊛i′ [j

′] holds. Therefore, we
have

Pr[Coll] ≤
(
σ

2

)
1

2n
≤ σ2

2n+1
. (5)

Bounding mColl: We bound this event by conditioning the event that Coll does
not occur. As there are no non-trivial collisions, ancestor(s+i1 [j1]), ancestor(s

+
i2
[j2]),

..., ancestor(s+iρ [jρ]) are all distinct and fresh. Therefore, all the outputsR(s+i1 [j1]),

R(s+i2 [j2]), ..., R(s+iρ [jρ]) are all uniformly sampled over {0, 1}n. Thus, from the

randomness of R, we can view this event as throwing σe balls into 2r bins (as we
are seeking collisions in the rate part) uniformly at random, where σe denotes
the total number of primitive calls including all encryption queries and we want
to find the probability that there is a bin that contains ρ or more balls. In other
words, ρ or more outputs take some constant value c. This event occurs with
probability at most (1

2r)
ρ. Again, we have 2r choices for the constant value c.

Therefore, by varying the choices of all encryption queries, we have

Pr[mColl | Coll] ≤
(
σe

ρ

)
× 2r(

1

2r
)ρ ≤ σρ

e

(2r)ρ−1
, (6)

INT-RUP Security of SAEB and TinyJAMBU 15

where the last inequality follows from Stirling’s approximation ignoring the con-
stant term.

Bounding Forge: We fix a verification query (N×
i , A×

i , C
×
i , T×

i) with associ-
ated data length a×i and ciphertext length c×i such that ∀a×i + 1 ≤ j ≤ (a×i +
c×i),∃i′, j′ s.t s×i [j] = s⋆i′ [j

′] where ⋆ ∈ {+,−}. Let j be the largest index for
which s×i [j] does have a trivial collision with s⋆i′ [j]. We bound the probability
of Forge when Coll and mColl do not occur. Now, we consider the following two
cases based on the values of j.

(a) Consider a×i + 1 ≤ j < a×i + c×i . In this case the associated data, nonce
and some parts of the message match with some previous query. Here, the
adversary can control the rate part and so s×i [j + 1] matches with some
encryption or decryption query with probability at most ρ+σd

2c .
(b) Finally, consider the case j = a×i + c×i . So the final state matches with some

previous encryption query with probability at most ρ
2c .

Combining everything together and by varying over the choices of all the verifi-
cation queries,

Pr[Forge | Coll ∧mColl] ≤ qv(2ρ+ σd)

2c
. (7)

From Eqn. (3)-Eqn. (7), we obtain the probability of a transcript being bad as,

Pr[Λ0 ∈ Ωbad] ≤ Pr[Coll] + Pr[mColl | Coll] + Pr[Forge | Coll ∧mColl]

≤ σ2

2n+1
+

σρ
e

(2r)ρ−1
+

qv(2ρ+ σd)

2c
. (8)

4.2 Analysis of the Good Transcripts

In this section, we show that for a good transcript ωnew ∈ Ωnew, the probability
of realizing ωnew in the real world is as likely as in the ideal world. It is easy to
see that for a good transcript ωnew, we have that Pr[Λ+

1 = ω+
new,Λ

−
1 = ω−

new] =
Pr[Λ+

0 = ω+
new,Λ

−
0 = ω−

new]. Thus, the ratio of interpolation probabilities is given
by

Pr[Λ1 = ωnew]

Pr[Λ0 = ωnew]
= Pr[Λ×

1 = ω×
new|Λ+

1 = ω+
new,Λ

+
1 = ω+

new]

≥ 1− Pr[Λ×
1 ̸= ω×

new | Λ+
1 = ω+

new,Λ
−
1 = ω−

new],

where we have used the fact that Pr[Λ×
0 = ω×

new | Λ+
0 = ω+

new,Λ
−
0 = ω−

new] = 1,
because in the ideal world, the response to any verification query is ⊥. For

i ∈ [qv], let Ei denote the event Ei
∆
=

(
λ̄i ̸= ⊥

∣∣ Λ+
1 = ω+

new,Λ
−
1 = ω−

new

)
, where

λ̄i be the random variable that denotes the response to the i-th verification query
in the real world. Then, we have

Pr[Λ×
1 ̸= ω×

new | Λ+
1 = ω+

new,Λ
−
1 = ω−

new] ≤
∑
i∈[qv]

Pr[Ei].

16 Nilanjan Datta1, Avijit Dutta2, and Shibam Ghosh3

We fix i ∈ [qv] and let the i-th verification query be (N×
i , A×

i , C
×
i , T×

i), of as-
sociated data length a×i and ciphertext length c×i . We want to bound Pr[Ei].
This probability is non-zero only if Θ.verR returns anything other than ⊥. If
s×i [a

×
i + c×i + 1] does not match with the final state of any encryption query,

Pr[Ei] ≤ 1
2τ holds trivially. Suppose, there exists some encryption query such

that the final state matches with s×i [a
×
i + c×i + 1]. In this case, there must exist

some j such that s×i [j] is fresh, otherwise Forge is true. Let j∗ be the maximum
of such j. Then, s×i [j

∗+1] matches with some previous encryption or decryption

state with probability at most (σe+σd)
2c , as the adversary can control only the

rate-part of these states. Putting everything together we get:

Pr[Ei] ≤
1

2τ
+

(σe + σd)

2c
.

Therefore, we have

Pr[Λ×
1 ̸= ω×

new | Λ+
1 = ω+

new,Λ
−
1 = ω−

new] ≤
qv
2τ

+
qv(σe + σd)

2c
. (9)

The result follows as we combine Eqn. (8), Eqn. (9) and Theorem 1. ⊓⊔
Significance of INT-RUP Security of SAEB: If we instantiate SAEB with
AES-128 block cipher and restrict its message injection rate to r = 32-bits, then
the capacity c will be of 96-bits, and hence SAEB-32 will provide INT-RUP
security up to 248 decryption/verification blocks4, which satisfies the NIST cri-
teria of having 250 byte of data-complexity. However, for SAEAES, where the
message injection rate is r = 64-bits, we only achieve 232 block of INT-RUP
security. This result signifies that if we wish to have an INT-RUP secure variant
of SAEB, we can simply use the same construction as SAEAES but with a lower
message injection rate.

5 TinyJAMBU and Its INT-RUP Security

TinyJAMBU is one of the finalists of the NIST lightweight competition. The
design principle of TinyJAMBU follows the sponge duplex mode based on keyed
permutations derived from lightweight LFSRs. Unlike SAEB, TinyJAMBU injects
the message in a specific part of the state and squeeze from a different part of
the state to output the ciphertext. Therefore, we have a r-bit message injection
part, r-bit squeezing part, and a c-bit unaltered capacity part, which is xored
with the frame constants. Together, we have a total state size of n = c + 2r-
bits. TinyJAMBU uses two different keyed permutations with the same key K.
These two keyed permutations are similar in structure but differs only in the
number of rounds. One permutation consists of 384 rounds of a LFSR, which we

denote as P
(1)
K and the another permutation consists of 1024 rounds of the same

LFSR, which we denote as P
(2)
K . The encryption and the decryption algorithm

4 Security bound of the SAEB is moot if the number of encryption blocks exceeds 232.

INT-RUP Security of SAEB and TinyJAMBU 17

of TinyJAMBU starts with the Init function that mixes the key K and the nonce
N to produce a pseudorandom state. In particular, the Init function consists of
two steps: key set up phase and nonce set up phase. In the key setup phase,
an 128-bit register is initialized with all 0 and update the state by the keyed

permutation P
(2)
K . In the nonce setup phase, an 96-bits nonce N is splitted up

into three 32-bits nonces N [1]∥N [2]∥N [3]. Followed by it, for each i ∈ {1, 2, 3},
it updates the intermediate state s by xoring 0∥consti∥0 with the current value

of s. Then, invoke P
(1)
K on s and finally xor the output with N [i] to update the

intermediate state s.
The algorithmic description of the encryption function of TinyJAMBU is given in
Fig. 2, and its schematic diagram is depicted in Fig. 5. In the original proposal
of the scheme [43], the recommended parameters of TinyJAMBU are r = 32,
c = 64. consti denotes 3-bits frame constants for i ∈ {1, 2, 3, 4}, where const1 =
001, const2 = 011, const3 = 101, const4 = 111. TinyJAMBU achieves birthday
bound security with dominant terms being (eσe/ρ2

r)ρ(2r/
√
ρ) + (σa + σd)(ρ −

1)/2c+(r/2)+1, where ρ is a properly chosen constant. In the following, we state
and prove the INT-RUP security result of TinyJAMBU∗[P].

Theorem 3. Let P←$Perm(n) be an n-bit uniform random permutation. Let
r, c and ρ be three parameters such that n = c+2r and let τ be the bit size of the
tag output by TinyJAMBU. The INT-RUP advantage for any (qe, qd, qv, σe, σd, σv)-
distinguisher A against the construction TinyJAMBU∗[P] that makes at most qe
encryption, qd decryption and qv verification queries with at most σe primitive
calls with distinct inputs in encryption queries, σd primitive calls with distinct
inputs in decryption queries and σv primitive calls with distinct inputs in veri-
fication queries having a total of σ = σe + σd + σv primitive calls with distinct
inputs such that ρ ≤ σe is given by

Advint-rup
TinyJAMBU∗(A) ≤ σ2

2n+1
+

σρ
e

(2r)ρ−1
+

qv(2ρ+ σd)

2n−r
+

qv
2τ

+
qv(σe + σd)

2n−r
.

Remark 1. Recently two independent works by Sibleyras et al. [40] and Dunkel-
man et al. [26] have shown some vulnerabilities on the underlying permutation
of TinyJAMBU. Note that these results do not imply any insecurity of the mode
TinyJAMBU per se. In this paper, we prove the INT-RUP security of TinyJAMBU
by viewing it as a mode which is build on top of some secure keyed permuta-
tions. Note that the construction uses two different keyed permutations with
the same key but differs only in the number of rounds, we model the security
proof of the construction in the standard setting, where we replace these two
keyed permutations with an n-bit uniform random permutation and denote the
resulting construction as TinyJAMBU∗[P].

Proof. We proceed similar to the proof of Theorem 2. We modify the construc-
tion by replacing the permutations with random function R←$Funcs({0, 1}n)
and denoting the resulting construction as Θ. We consider a distinguisher A ,
that interacts with a triplet of oracles in either of the worlds: in the real world, it

18 Nilanjan Datta1, Avijit Dutta2, and Shibam Ghosh3

TinyJAMBU(K,N,A,M)

1 : A[1]∥ . . . ∥A[a]
r←− A; M [1]∥ . . . ∥M [m]

r←−M ;

2 : s[0]← Init(K,N);

3 : for i = 1 to a− 1;

4 : s[i− 1]← s[i− 1]⊕ (0∥const2∥0);

5 : s[i]← P
(1)
K (s[i− 1])⊕A[i];

6 : s[a− 1]← s[a− 1]⊕ (0∥const2∥0);

7 : s[a]← P
(1)
K (s[a− 1])⊕A[a]∥10r−|A[a]|−1∥lp(A[a]);

8 : for i = 1 to m− 1;

9 : s[a+ i− 1]← s[a+ i− 1]⊕ (0∥const3∥0);

10 : s[a+ i]← P
(2)
K (s[a+ i− 1])⊕M [i];

11 : C[i]←M [i]⊕ s[a+ i][64...(64 + r − 1)];

12 : s[a+m− 1]← s[a+m− 1]⊕ (0∥const3∥0);

13 : s[a+m]← P
(2)
K (s[a+m− 1])⊕M [m]∥10r−|M [m]|−1∥0r∥lp(M [m]);

14 : C[m]←M [m]⊕ s[a+m][64...(64 + |M [m]| − 1)];

15 : s[a+m]← P
(2)
K (s[a+m]⊕ (0∥const4∥0));

16 : T1 ← s[a+m][64...(64 + τ/2− 1)];

17 : s[a+m]← P
(1)
K (s[a+m]⊕ (0∥const4∥0));

18 : T2 ← s[a+m][64...(64 + τ/2− 1)];

19 : T ← T1∥T2;

return (C, T);

Fig. 2: Formal Specification of TinyJAMBU authenticated encryption mode. The
function lp(X) := ⌊|X|/8⌋ denotes the binary representation of the number of
bytes present in a binary string X.

interacts with (Θ.encR,Θ.decR,Θ.verR) and in the ideal world it interacts with
(Θ.encR,Θ.decR,⊥). We summarize the queries in a transcript ω and segregate
the transcript ω into three parts ω+, ω−, and ω× as described for the analysis of
SAEB and we have ω = ω+ ∪ ω− ∪ ω×. The length of associated data, message
and ciphertext in the i-th query is denoted as a⋆i ,m

⋆
i and c⋆i respectively where

⋆ ∈ {+,−,×}. We denote the j-th input to R in the i-th encryption, decryption
and verification query as s+i [j], s

−
i [j] and s×i [j] respectively and in general s⋆i [j]

where ⋆ ∈ {+,−,×}. In the above description, the nonce in the i-th encryption
query is N+

i = N+
i [1]∥N+

i [2]∥N+
i [3] is processed in three steps. We modify the

experiment by releasing all internal state values to the adversary A before it
outputs the decision bit b, but after it makes all the queries. As the verification
oracle ⊥ in the ideal world always returns reject and does not compute any-
thing, the internal state variables are not defined. Thus, similar to the proof of

INT-RUP Security of SAEB and TinyJAMBU 19

Theorem 2, we have to define the sampling of the intermediate state variables
for every verification query in the ideal world. To achieve this, for every verifi-
cation query (N,A,C, T) made by adversary A, the verification oracle for the
ideal world invokes the decryption oracle Θ.decR with input (N,A,C) ignoring
the output of r-bit plaintext strings. Finally, the verification oracle ignores the
checking of the computed tag T ∗ with the given tag T . Hence, the sequence of
internal state values is defined for verification queries. Let the modified attack
transcripts be ωnew = ω+

new ∪ ω−
new ∪ ω×

new. For a given transcript ωnew, we reorder
the transcript in such a way that all the encryption queries appear first, followed
by all the decryption queries and finally, all the verification queries. Now, it is
easy to see that a state collision in s⋆i [j] and s⊛i′ [j] occurs with probability 1 if

• N⋆
i = N⊛

i′ , A
⋆
i [. . . j] = A⊛

i′ [. . . j], when j ≤ a⋆i ,
• N⋆

i = N⊛
i′ , A

⋆
i = A⊛

i , M
⋆
i [. . . (j − a⋆i)] = M⊛

i′ [. . . (j − a⋆i)], when a⋆i < j ≤
a⋆i +m⋆

i .

A state collision with probability 1 is called trivial, and any other state collision is
called non-trivial. We denote D⋆

i = N⋆
i ∥A⋆

i and d⋆i = a⋆i +3 where ⋆ ∈ {+,−,×}.
Let us consider two query ⋆,⊛ ∈ {+,−,×} with distinct query indices i and i′,
where i, i′ ∈ [qe+qd+qv]. Similar to the proof of Theorem 2, we use the notations
ancestor, LCP(i, i′) and LLCP(i).

5.1 Definition and Probability of Bad Transcripts

In this section, we define and bound the probability of bad transcripts in the ideal
world. The idea of this proof is almost similar to that of Theorem 2. However,
the bounds are different because the adversary cannot control the rate part from
where the squeezing occurs. Let Ω be the set of all attainable transcripts and
ωnew ∈ Ω be one such attainable transcript. We say that transcript ωnew is bad,
i.e., ωnew ∈ Ωbad, if at least one of the following holds:

1. Coll: there exists i, j, i′, j′ with (i′, j′) < (i, j) with LLCP(i) < j ≤ ai+mi+3
and i ≤ [qe + qd + qv] such that s⋆i [j] = s⊛i′ [j

′], where ⋆,⊛ ∈ {+,−,×}.
2. mColl: ∃i1, j1, . . . , iρ, jρ with {i1, . . . , iρ} ⊆ [qe] and for all 1 ≤ k ≤ ρ, jk ∈

[mik], such that C+
i1
[j1] = · · · = C+

iρ
[jρ].

3. Forge: This event happens, if for some verification query, all its intermedi-
ate states prior to the final state match with the intermediate state from
some encryption or decryption queries, and the final state of the verification
query matches with the final state of the encryption query for which the tag
matches. In other words, ∃i ∈ [qv] such that for the i-th verification query
(N×

i , A×
i , C

×
i , T+

i), the following two events hold:{
∀j ∈ [a×i , (a

×
i + c×i − 1)],∃i′, j′ such that s×i [j] = s+i′ [j

′] or s×i [j] = s−i′ [j
′],

∃f ∈ [qe] such that s×i [a
×
i + c×i] = s+f [a

+
f + c+f] with T+

i = T+
f .

We now compute the probability of a transcript being bad in the ideal world.
If ωnew is a transcript observed in the ideal world, we want to calculate the

20 Nilanjan Datta1, Avijit Dutta2, and Shibam Ghosh3

probability of ωnew to satisfy one of the above conditions. By applying the union
bound, we have

Pr[Λ0 ∈ Ωbad] = Pr[Coll ∨mColl ∨ Forge]

≤ Pr[Coll] + Pr[mColl | Coll] + Pr[Forge | Coll ∧mColl]

≤ σ2

2n+1
+

σρ
e

(2r)ρ−1
+

qv(2ρ+ σd)

2n−r
. (10)

The calculation for the bounds for each of the above terms are given in the
supplementary section.

5.2 Analysis of the Good Transcripts

In this section, we show that for a good transcript ωnew ∈ Ωnew, the probability
of realizing ωnew in the real world is as likely as in the ideal world. It is easy to
see that for a good transcript ωnew, we have Pr[Λ

+
1 = ω+

new,Λ
−
1 = ω−

new] = Pr[Λ+
0 =

ω+
new,Λ

−
0 = ω−

new]. Thus, the ratio of interpolation probabilities is given by

Pr[Λ1 = ωnew]

Pr[Λ0 = ωnew]
= Pr[Λ×

1 = ω×
new|Λ+

1 = ω+
new,Λ

+
1 = ω+

new]

≥ 1− Pr[Λ×
1 ̸= ω×

new | Λ+
1 = ω+

new,Λ
−
1 = ω−

new],

≥ 1− (
∑
i∈[qv]

1

2τ
+

(σe + σd)

2n−r
)

≥ 1− (
qv
2τ

+
qv(σe + σd)

2n−r
). (11)

Finally, we obtain the result combining Eqn. (10), Eqn. (11) and using Theo-
rem 1. ⊓⊔

6 Conclusion and Future Works

In this paper, we have analyzed the INT-RUP security of SAEB and TinyJAMBU.
Our analysis on TinyJAMBU is particularly relevant from the NIST lightweight
competition perspective, and we believe that our result may positively impact
TinyJAMBU during the final portfolio selection. Our result on SAEB depicts that
the INT-RUP security can be achieved by controlling the message injection rate
without incurring any additional overheads. A similar analysis for the permu-
tation based constructions may be considered as a future research direction.
However, we would like to mention that the trick, similar to SAEB, cannot be
applied on TinyJAMBU as message injection and ciphertext release occur from
different parts of its state. It would be interesting to come up with a matching
INT-RUP attack on TinyJAMBU. Note that Oribatida achieves INT-RUP secu-
rity, but at the cost of maintaining an additional state. Investigating INT-RUP
secure permutation based sponge constructions without any additional overhead
seems a challenging open problem.

INT-RUP Security of SAEB and TinyJAMBU 21

References

1. Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode
(GCM) and GMAC. NIST Special Publication 800-38D, 2007. National Institute
of Standards and Technology.

2. Riham AlTawy, Guang Gong, Morgan He, Ashwin Jha, Kalikinkar Mandal,
Mridul Nandi, and Raghvendra Rohit. SpoC: An Authenticated Cipher Submis-
sion to the NIST LWC Competition, 2019. https://csrc.nist.gov/projects/

lightweight-cryptography/round-2-candidates.
3. Elena Andreeva, Amit Singh Bhati, and Damian Vizar. Nonce-misuse security

of the saef authenticated encryption mode. Cryptology ePrint Archive, Report
2020/1524, 2020.

4. Elena Andreeva, Amit Singh Bhati, and Damian Vizar. Rup security of the saef
authenticated encryption mode. Cryptology ePrint Archive, Report 2021/103,
2021.

5. Elena Andreeva, Begül Bilgin, Andrey Bogdanov, Atul Luykx, Bart Mennink,
Nicky Mouha, and Kan Yasuda. Ape: Authenticated permutation-based encryp-
tion for lightweight cryptography. In Carlos Cid and Christian Rechberger, editors,
Fast Software Encryption, 2015.

6. Elena Andreeva, Andrey Bogdanov, Nilanjan Datta, Atul Luykx, Bart Mennink,
Mridul Nandi, Elmar Tischhauser, and Kan Yasuda. COLM v1. CAESAR Com-
petition.

7. Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Nicky Mouha,
and Kan Yasuda. How to securely release unverified plaintext in authenticated
encryption. In Advances in Cryptology - ASIACRYPT 2014 - 20th International
Conference on the Theory and Application of Cryptology and Information Security,
Kaoshiung, Taiwan, R.O.C., December 7-11, 2014. Proceedings, Part I, pages 105–
125, 2014.

8. Elena Andreeva, Andrey Bogdanov, Atul Luykx, Bart Mennink, Elmar Tis-
chhauser, and Kan Yasuda. AES-COPA v.2. Submission to CAESAR, 2015.
https://competitions.cr.yp.to/round2/aescopav2.pdf.

9. Elena Andreeva, Virginie Lallemand, Antoon Purnal, Reza Reyhanitabar, Arnab
Roy, and Damian Vizár. Forkcipher: A new primitive for authenticated encryption
of very short messages. In Steven D. Galbraith and Shiho Moriai, editors, Advances
in Cryptology - ASIACRYPT 2019 - 25th International Conference on the Theory
and Application of Cryptology and Information Security, Kobe, Japan, December 8-
12, 2019, Proceedings, Part II, volume 11922 of Lecture Notes in Computer Science,
pages 153–182. Springer, 2019.

10. Tomer Ashur, Orr Dunkelman, and Atul Luykx. Boosting authenticated encryption
robustness with minimal modifications. In Jonathan Katz and Hovav Shacham, edi-
tors, Advances in Cryptology - CRYPTO 2017 - 37th Annual International Cryptol-
ogy Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceedings, Part
III, volume 10403 of Lecture Notes in Computer Science, pages 3–33. Springer,
2017.

11. Subhadeep Banik, Andrey Bogdanov, Atul Luykx, and Elmar Tischhauser. Sundae:
Small universal deterministic authenticated encryption for the internet of things.
IACR Transactions on Symmetric Cryptology, 2018(3), 2018.

12. Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander, Amir Moradi,
Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and Siang Meng Sim. SKINNY-AEAD
and skinny-hash. IACR Trans. Symmetric Cryptol., 2020(S1):88–131, 2020.

https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates
https://csrc.nist.gov/projects/lightweight-cryptography/round-2-candidates
https://competitions.cr.yp.to/round2/aescopav2.pdf

22 Nilanjan Datta1, Avijit Dutta2, and Shibam Ghosh3

13. Mihir Bellare, Joe Kilian, and Phillip Rogaway. The security of cipher block chain-
ing. In Yvo Desmedt, editor, CRYPTO, volume 839 of LNCS, pages 341–358.
Springer, 1994.

14. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a frame-
work for code-based game-playing proofs. In Serge Vaudenay, editor, Advances
in Cryptology - EUROCRYPT 2006, 25th Annual International Conference on the
Theory and Applications of Cryptographic Techniques, St. Petersburg, Russia, May
28 - June 1, 2006, Proceedings, volume 4004 of Lecture Notes in Computer Science,
pages 409–426. Springer, 2006.

15. Arghya Bhattacharjee, Cuauhtemoc Mancillas López, Eik List, and Mridul Nandi.
The oribatida v1.3 family of lightweight authenticated encryption schemes. Journal
of Mathematical Cryptology, 15(1), 2021.

16. CAESAR: Competition for Authenticated Encryption: Security, Applicability, and
Robustness, 2014. http://competitions.cr.yp.to/caesar.html.

17. Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Cuauhtemoc Mancillas-López,
Mridul Nandi, and Yu Sasaki. INT-RUP secure lightweight parallel AE modes.
IACR Trans. Symmetric Cryptol., 2019(4):81–118, 2019.

18. Avik Chakraborti, Nilanjan Datta, Ashwin Jha, Snehal Mitragotri, and Mridul
Nandi. From combined to hybrid: Making feedback-based AE even smaller. IACR
Trans. Symmetric Cryptol., 2020(S1):417–445, 2020.

19. Avik Chakraborti, Nilanjan Datta, and Mridul Nandi. INT-RUP analysis of block-
cipher based authenticated encryption schemes. In Kazue Sako, editor, Topics in
Cryptology - CT-RSA 2016 - The Cryptographers’ Track at the RSA Conference
2016, San Francisco, CA, USA, February 29 - March 4, 2016, Proceedings, volume
9610 of Lecture Notes in Computer Science, pages 39–54. Springer, 2016.

20. Avik Chakraborti, Nilanjan Datta, Mridul Nandi, and Kan Yasuda. Beetle family
of lightweight and secure authenticated encryption ciphers. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(2):218–241, 2018.

21. Avik Chakraborti, Tetsu Iwata, Kazuhiko Minematsu, and Mridul Nandi.
Blockcipher-based authenticated encryption: How small can we go? In Crypto-
graphic Hardware and Embedded Systems - CHES 2017 - 19th International Con-
ference, Taipei, Taiwan, September 25-28, 2017, Proceedings, pages 277–298, 2017.

22. Donghoon Chang, Nilanjan Datta, Avijit Dutta, Bart Mennink, Mridul Nandi,
Somitra Sanadhya, and Ferdinand Sibleyras. Release of unverified plaintext: Tight
unified model and application to ANYDAE. IACR Trans. Symmetric Cryptol.,
2019(4):119–146, 2019.

23. Donghoon Chang and Mridul Nandi. A short proof of the PRP/PRF switching
lemma. IACR Cryptol. ePrint Arch., 2008:78, 2008.

24. Nilanjan Datta, Atul Luykx, Bart Mennink, and Mridul Nandi. Understanding
RUP integrity of COLM. IACR Trans. Symmetric Cryptol., 2017(2):143–161, 2017.

25. Christoph Dobraunig, Maria Eichlseder, Florian Mendel, and Martin Schläffer.
Ascon v1.2. Submission to CAESAR, 2016. https://competitions.cr.yp.to/

round3/asconv12.pdf.
26. Orr Dunkelman, Eran Lambooij, and Shibam Ghosh. Practical related-key

forgery attacks on the full tinyjambu-192/256. Cryptology ePrint Archive, Pa-
per 2022/1122, 2022.

27. Ewan Fleischmann, Christian Forler, and Stefan Lucks. Mcoe: A family of almost
foolproof on-line authenticated encryption schemes. In Anne Canteaut, editor, Fast
Software Encryption - 19th International Workshop, FSE 2012, Washington, DC,
USA, March 19-21, 2012. Revised Selected Papers, volume 7549 of Lecture Notes
in Computer Science, pages 196–215. Springer, 2012.

http://competitions.cr.yp.to/caesar.html
https://competitions.cr.yp.to/round3/asconv12.pdf
https://competitions.cr.yp.to/round3/asconv12.pdf

INT-RUP Security of SAEB and TinyJAMBU 23

28. Viet Tung Hoang, Reza Reyhanitabar, Phillip Rogaway, and Damian Vizár. Online
authenticated-encryption and its nonce-reuse misuse-resistance. In Rosario Gen-
naro and Matthew Robshaw, editors, Advances in Cryptology - CRYPTO 2015
- 35th Annual Cryptology Conference, Santa Barbara, CA, USA, August 16-20,
2015, Proceedings, Part I, volume 9215 of Lecture Notes in Computer Science,
pages 493–517. Springer, 2015.

29. Tetsu Iwata, Mustafa Khairallah, Kazuhiko Minematsu, and Thomas Peyrin. Duel
of the titans: The romulus and remus families of lightweight AEAD algorithms.
IACR Trans. Symmetric Cryptol., 2020(1):43–120, 2020.

30. Tetsu Iwata, Kazuhiko Minematsu, Jian Guo, Sumio Morioka, and Eita Kobayashi.
CAESAR Candidate CLOC. DIAC 2014.

31. Jérémy Jean, Ivica Nikolic, Thomas Peyrin, and Yannick Seurin. The deoxys
AEAD family. J. Cryptol., 34(3):31, 2021.

32. Kerry A. McKay, Larry Bassham, Meltem Sönmez Turan, and Nicky Mouha. Re-
port on Lightweight Cryptography, 2017. http://nvlpubs.nist.gov/nistpubs/

ir/2017/NIST.IR.8114.pdf.

33. Kazuhiko Minematsu. AES-OTR v3.1. Submission to CAESAR, 2016. https:

//competitions.cr.yp.to/round3/aesotrv31.pdf.

34. Miguel Montes and Daniel Penazzi. AES-CPFB v1. Submission to CAESAR. 2015.
https://competitions.cr.yp.to/round1/aescpfbv1.pdf.

35. Yusuke Naito, Mitsuru Matsui, Yasuyuki Sakai, Daisuke Suzuki, Kazuo
Sakiyama, and Takeshi Sugawara. SAEAES: Submission to NIST LwC, 2019.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/round-2/spec-doc-rnd2/SAEAES-spec-round2.pdf.

36. Yusuke Naito, Mitsuru Matsui, Takeshi Sugawara, and Daisuke Suzuki. SAEB: A
lightweight blockcipher-based AEAD mode of operation. IACR Trans. Cryptogr.
Hardw. Embed. Syst., 2018(2):192–217, 2018.

37. Jacques Patarin. The “coefficients h” technique. In Selected Areas in Cryptography,
pages 328–345. 2008.

38. Phillip Rogaway. Authenticated-encryption with associated-data. In Vijayalak-
shmi Atluri, editor, Proceedings of the 9th ACM Conference on Computer and
Communications Security, CCS 2002, Washington, DC, USA, November 18-22,
2002, pages 98–107. ACM, 2002.

39. Phillip Rogaway. Efficient instantiations of tweakable blockciphers and refinements
to modes OCB and PMAC. In Advances in Cryptology - ASIACRYPT 2004,
10th International Conference on the Theory and Application of Cryptology and
Information Security, Jeju Island, Korea, December 5-9, 2004, Proceedings, pages
16–31, 2004.

40. Ferdinand Sibleyras, Yu Sasaki, Yosuke Todo, Akinori Hosoyamada, and Kan Ya-
suda. Birthday-bound slide attacks on tinyjambu’s keyed-permutations for all key
sizes. In Chen-Mou Cheng and Mitsuaki Akiyama, editors, Advances in Informa-
tion and Computer Security - 17th International Workshop on Security, IWSEC
2022, Tokyo, Japan, August 31 - September 2, 2022, Proceedings, volume 13504 of
Lecture Notes in Computer Science, pages 107–127. Springer, 2022.

41. Hongjun Wu. ACORN: A Lightweight Authenticated Cipher (v3). Submission to
CAESAR, 2016. https://competitions.cr.yp.to/round3/acornv3.pdf.

42. Hongjun Wu and Tao Huang. The JAMBU Lightweight Authentication Encryption
Mode (v2.1). Submission to CAESAR, 2016. https://competitions.cr.yp.to/

round3/jambuv21.pdf.

http://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf
http://nvlpubs.nist.gov/nistpubs/ir/2017/NIST.IR.8114.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round3/aesotrv31.pdf
https://competitions.cr.yp.to/round1/aescpfbv1.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SAEAES-spec-round2.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/round-2/spec-doc-rnd2/SAEAES-spec-round2.pdf
https://competitions.cr.yp.to/round3/acornv3.pdf
https://competitions.cr.yp.to/round3/jambuv21.pdf
https://competitions.cr.yp.to/round3/jambuv21.pdf

24 Nilanjan Datta1, Avijit Dutta2, and Shibam Ghosh3

43. Hongjun Wu and Tao Huang. TinyJAMBU: A Family of Lightweight
Authenticated Encryption Algorithms: Submission to NIST LwC, 2019.
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/

documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf.
44. Liting Zhang, Wenling Wu, Han Sui, and Peng Wang. ifeed[aes] v1, 2014. https:

//competitions.cr.yp.to/round1/ifeedaesv1.pdf.
45. Liting Zhang, Wenling Wu, Han Sui, and Peng Wang. iFeed[AES] v1. Submission

to CAESAR, 2014. https://competitions.cr.yp.to/round1/ifeedaesv1.pdf.
46. Ping Zhang, Peng Wang, and Honggang Hu. The INT-RUP Security of OCB

with Intermediate (Parity) Checksum. IACR Cryptology ePrint Archive, 2017.
https://eprint.iacr.org/2016/1059.pdf.

https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://csrc.nist.gov/CSRC/media/Projects/lightweight-cryptography/documents/finalist-round/updated-spec-doc/tinyjambu-spec-final.pdf
https://competitions.cr.yp.to/round1/ifeedaesv1.pdf
https://competitions.cr.yp.to/round1/ifeedaesv1.pdf
https://competitions.cr.yp.to/round1/ifeedaesv1.pdf
https://eprint.iacr.org/2016/1059.pdf

INT-RUP Security of SAEB and TinyJAMBU 25

Supplementary Materials

A Security Notions

A.1 Block Cipher

Let n, κ ∈ N. A block cipher E : {0, 1}κ × {0, 1}n → {0, 1}n is a function that
takes as input a key K ∈ {0, 1}k and a message M ∈ {0, 1}n and transforms it
into a ciphertext C ∈ {0, 1}n. We write EK(M) := E(K,M). The transformation
is bijective, i.e., for each K ∈ {0, 1}k, the function EK is invertible; however, we
will not be concerned with inverse evaluations of E. We fix positive even integers
n and k to denote the block size and the key size of the block cipher, respectively,
in terms of the number of bits.

A.2 Pseudorandom Function Notion

Let Funcs({0, 1}n) be the set of all functions from {0, 1}n to {0, 1}n and F :
{0, 1}k×{0, 1}n → {0, 1}n be a family of keyed functions from {0, 1}n to {0, 1}n.
We define the pseudorandom function (prf) advantage of F with respect to a
distinguisher A as follows:

Advprf
F (A)

∆
=

∣∣Pr[K ←$ {0, 1}k : A FK = 1]− Pr[R←$Funcs({0, 1}n) : A R = 1]
∣∣ .

We say that F is (q, t, ϵ) secure if the maximum pseudorandom function advan-
tage of F is ϵ where the maximum is taken over all distinguishers A that makes
q queries to its oracle and runs for a time at most t 5, i.e.,

Advprf
F (q, t)

∆
= max

A ∈C
Advprf

F (A),

where C is the class of all distinguishers A that makes at most q queries with
run time at most t.

A.3 Pseudorandom Permutation Notion

Let Perm(n) be the set of all permutations over {0, 1}n. We capture the security
notion of a block cipher E with key size k and block size n in terms of indistin-
guishabilty advantage from a uniform random permutation. More formally, we
define the pseudorandom permutation (prp) advantage of E of a distinguisher
A as follows:

Advprp
E (A)

∆
=

∣∣Pr[K ←$ {0, 1}k : A EK = 1]− Pr[P ←$Perm(n) : A P = 1]
∣∣ .

We say that E is (q, t, ϵ) secure if the maximum pseudorandom permutation
advantage of E is ϵ where the maximum is taken over all distinguishers A that
makes q queries to its oracle and runs for a time at most t.

5 Time complexity of the adversary is defined over the usual RAM model of compu-
tations.

26 Nilanjan Datta1, Avijit Dutta2, and Shibam Ghosh3

B Release of Unverified Plaintext (RUP) and Its
Implication

The functionality of an AE scheme renders two security models [38]- (i) the
first one is the confidentiality model, in which an adversary is given access to
the authenticated encryption functionality E or a random function $, and it has
to distinguish one from the another, (ii) and the second one is the authenticity
model in which an adversary is given access to the authenticated encryption func-
tionality E , and the decryption/verification functionality DV, and the adversary
tries to provide a valid ciphertext approved by DV. Therefore, an authenticated
encryption scheme suits a two-fold goal. Thus, upon decryption, a ciphertext
needs to be decrypted and its corresponding plaintext needs to be verified be-
fore the plaintext is released to the user. In some applications, where the tag
is computed over the plaintext and not over the ciphertext, enforce that the
decrypted plaintext should be kept in secure memory before the verification of
the plaintext is done. After successful verification, the plaintext can be released
to the user. However, the necessity of this additional secure memory can be a
severe issue in constrained devices in the Internet of Things (IoT). As a result,
an attacker can get hold of the insecure memory of the IoT devices to get access
of the unverified plaintext, which can leak significant informations about the ci-
pher to break its security. Moreover, real-time streaming protocols (e.g., SRTP,
SSH, and SRTCP) and Optical Transport Networks sometimes need to release
plaintexts in segments with intermediate tags on the fly to reduce end-to-end
latency and storage. Owing to these real-time applications, we require a security
notion which should ensure that when a cryptographic scheme Π satifies the
security notion, releasing the unverified plaintext will not lead to any threat to
the system. As a result of that, one does not need to store the entire plaintext in
a secure memory until the verification takes place. Releasing Unverified Plaintext
(RUP) security fulfils the above demand.
Note that, RUP security can also allow one to have the on-the-fly decryption
feature of a cryptographic scheme. That means, if a cryptographic scheme is
RUP secure, then its decryption module can decrypt the incoming ciphertext and
release the corresponding plaintext in block-by-block fashion without thinking of
the security issue that may arise due to the releasing of the unverified plaintext
blocks, thanks to the RUP security! On the other hand, on-the-fly encryption
requires OAE-1 [27] or OAE-2 [28] security. Owing to these applications, studying
the security of cryptographic schemes under the release of unverified plaintext
and designing ciphers that preserve the security is gaining importance in the
literature.

C SAEB and Its INT-RUP Security

C.1 Description and Features of SAEB

The pictorial representation of the encryption and the decryption algorithm of
SAEB is given in Fig. 3 and Fig. 4 respectively.

INT-RUP Security of SAEB and TinyJAMBU 27

A[1]

0

EK EK EK EK

r
⊕

A[2]

s[2]

c ‘

· · ·
⊕

⊕

A[a]

const1

⊕

⊕

N

const2

IV

IV EK EK EK EK

r⊕

M [1] C[1]

c

s[a+ 1]

⊕

M [2] C[2]

· · ·
⊕

M [m] C[m]

const3

⊕

T

Fig. 3: Encryption algorithm of SAEB Authenticated Encryption for a block
associated data, and m block message. const1, const2, const3 are two-bit distinct
constants used for domain separation. const1 = 01/10 based on whether A[a] is
a full or partial block. const2 = 11 and const3 = 01/10 based on whether M [m]
is a full or partial block.

IV EK EK EK EK

⊕ C[1]

M [1]

⊕ C

M [2]

⊕ C

M [3]

Z[1] Z[2]

· · ·
⊕

const3

T

Fig. 4: Decryption of SAEB Authenticated Encryption.

28 Nilanjan Datta1, Avijit Dutta2, and Shibam Ghosh3

The following features of SAEB make it highly efficient to be implemented in
resource-constrained and ultra light-weight devices.

(i) Minimum State Size: SAEB is an authenticated cipher that requires the
minimum possible state size of n+ k-bits, where n is the block size of the
block cipher and k is the key size of the block cipher.

(ii) Inverse Free: Due to the inherent duplex-sponge type structure, SAEB is
an inverse-free design (exception is APE [5], which is a sponge type design
but not inverse-free).

(iii) On-the-fly Computation: It is easy to see that the encryption algo-
rithm of SAEB allows one to produce the i-th ciphertext block before the
subsequent plaintext blocks are known, which makes the construction to
encrypt messages on-the-fly. Similarly, one can also decrypt the ciphertext
on-the-fly.

(iv) XOR Only Linear Operation: It says that apart from using the non-
linear operation induced by the underlying block cipher invocation in the
design, it uses only xor as a linear operation.

(v) Efficient Static AD Processing: In many practical scenarios, the as-
sociated data packets transmitted in a session remain unchanged. In such
cases, it is desirable that while processing the data packets through any
AEAD scheme, the associated data gets processed only once and then it is
stored such that the stored value can be used in the subsequent processing
of the data packets whose associated data has not been changed. Note that
the encryption algorithm of SAEB achieves this property. It does not pro-
cess the associated data each time it processes the data packet. Instead, it
processes the associated data once and then it stores the processed value
so that it can be reused in the subsequent processing of the data packets.

C.2 Analysis of the INT-RUP Attack against SAEB when r ≥ c/2

We analyze the attack in two steps. In the first step, we show that the collision
in Z[2] values occur with high probability, and then we show that the forging is
successful with high probability.

Stage-I: As adversary A makes decryption queries with uniformly random Ci[1]
values, Zi[2] values are uniformly distributed. Let Zj,k be the indicator random
variable defined as follows:

Zj,k =

{
1, if Zj [2] = Zk[2]

0, otherwise.

Let Z =
∑

j,k Zj,k, and we have to show that Z ≥ 1 with high probability. It
is easy to see that Zj,k’s are all pairwise independent random variables, and

INT-RUP Security of SAEB and TinyJAMBU 29

therefore, using Chebyshev’s inequality, we have

Pr[∥Z − E(Z)∥ ≥ E(Z)] ≤ V(Z)

E(Z)2

⇒Pr[Z = 0] ≤ Pr[∥Z − E(Z)∥ ≥ E(Z)] ≤ V(Z)

E(Z)2

⇒Pr[Z ≥ 1] ≥ 1− V(Z)

E(Z)2
. (12)

By using the linearity of expectation, we compute the expectation as follows:

E(Z) = E
[∑

j,k

Zj,k

]
=

∑
j,k

Pr[Zj,k = 1] =

(
2c/2+1

2

)
2c

. (13)

Again, from the pairwise independence of the variables Zj,k, we can compute
the variance as follows:

∑
j,k

V[Zj,k] =
∑
j,k

E[Z2
j,k]− (E[Zj,k])

2 =
∑
j,k

1

2c
−

(1

2c

)2

≤
∑
j,k

1

2c
=

(
2c/2+1

2

)
2c

.

(14)
Putting the values of Eqn. (13) and Eqn. (14) in Eqn. (12), we have

Pr[Z ≥ 1] ≥
(
1− 2c(

2c/2+1

2

)) ≥ 1

2
,

which proves that the probability of getting at least one collision in Z[2] values
for any two decryption queries is at least 0.5. Let the query indices be j and k,
i.e., Zj [2] = Zk[2]. As the successive r-bit ciphertext strings are identical for all
chosen tuples, such a collision results in identical r-bit plaintext strings, which
will be detected by adversary A . Therefore, for the j-th and the k-th query,
A observes whether Mj [a] = Mk[a] holds or not for all a ∈ [3, ℓ + 1]. Then, A
makes an encryption query (N,A,Mj [1 . . . ℓ+1]) to obtain the tagged-ciphertext
(Cj [1] ∥ C[2] ∥ C[3] ∥ . . . ∥ C[ℓ+1], T), where C[2] = C[3] = . . . = C[ℓ+1] = C.
This query allows A to forge with (N,A,Ck[1] ∥ C[2] ∥ C[3] ∥ . . . ∥ C[ℓ+1], T),
where C[2] = C[3] = . . . = C[ℓ + 1] = C. Note that Zj [2] = Zk[2] ensures the
collision in Mj [3] and Mk[3], which is propagated to the subsequent blocks of
the block cipher.

Stage-II: Now we show that the forging is successful with high probability.
According to step (4) of the attack algorithm, the kth decryption query is used
in the forging if adversary detects Mj [a] = Mk[a] for all a ∈ [3, ℓ+ 1]. However,
the collision in r-bit plaintext strings, i.e., Mj [a] = Mk[a] for a ∈ [3, ℓ + 1]
and j, k ∈ [2c/2+1], also occurs without being Zj [2] = Zk[2] to be true. Such a
collision is called random collision, which occurs with probability 2−r for each of
the r-bit plaintext strings. Now, if the random collision occurs between the r-bit
plaintext strings of the j-th and the k-th query, i.e., if Mj [a] = Mk[a] occurs for

30 Nilanjan Datta1, Avijit Dutta2, and Shibam Ghosh3

all a ∈ [3, ℓ+ 1] without being Zj [2] = Zk[3] to be true, verification may not be
successful. These are called false-positive cases. The probability with which one
false-positive case will be detected is at most 1

2r(ℓ−1) . Let Yj,k be the indicator
random variable defined as follows:

Yj,k =

{
1, if Mj [3..(ℓ+ 1)] = Mk[3..(ℓ+ 1)]

0, otherwise

and let Y =
∑

j,k Yj,k be the total number of false-positive cases. From the
definition of Y and Z, we calculate the expected number of false-positive cases
as follows:

E(Y |Z = 0) =
∑
j,k

Pr[Yj,k = 1|Z = 0] =

(
2c/2+1

2

)
2r(ℓ−1)

≤ 2c+1

2r(ℓ−1)
= 2,

where the last equality follows from the fact that ℓ = c/r+1. Thus, the expected
number of false-positive cases is at most 2.

C.3 INT-RUP Attack against SAEB, when r < c/2

Here we formally present the attack algorithm as follows:

1. Find minimum value of s such that s ≥ c/2r.
2. A chooses an arbitrary r bit nonce N , an arbitrary r bit associated data

A and an arbitrary r bit ciphertext data C, and then makes 2c/2 decryp-
tion queries in the form (N, A, Ci[1] ∥ . . . ∥ Ci[s] ∥ C[s + 1] ∥ C[s +
2] ∥ . . . ∥ C[(s+ ℓ+1)])i=1,...,2c/2 . Here the values of Ci[1] ∥ . . . ∥ Ci[s] are
distinct, and C[s+1] = C[s+2] = . . . = C[(s+ℓ+1)] = C, where ℓ = c/r. Let
the corresponding plaintext beMi[1] ∥ . . . ∥Mi[(s+2)] ∥ . . . ∥Mi[(s+ℓ+1)].

3. Assume there exists two indices j, k ∈ [2c/2] such that Mj [a] = Mk[a] for all
a ∈ [(s+ 2), (s+ ℓ+ 1)].

4. A makes an encryption query with (N, A, Mj [1] ∥ . . . ∥ Mj [s] ∥ Mj [s +
1] ∥ Mj [s + 2] ∥ . . . ∥ Mi[(s + ℓ + 1)]). Let the tagged ciphertext be
(Ck[1] ∥ . . . ∥ Ck[s] ∥ C[s + 1] ∥ C[s + 2] ∥ . . . ∥ C[(s + ℓ + 1)], T),
where C[s+ 1] = C[s+ 2] = . . . = C[(s+ ℓ+ 1)].

5. A forges with (Ck[1] ∥ . . . ∥ Ck[s] ∥ C[s+ 1] ∥ C[s+ 2] ∥ . . . ∥ C[(s+ ℓ+
1)], T), where C[s+ 1] = C[s+ 2] = . . . = C[(s+ ℓ+ 1)] = C.

The analysis of the attack is the same as in the case of r ≥ c/2. Using a similar
analysis, one can prove that the expected number of false-positive cases is two.
Hence, the number of verification attempts to be made is at most 2.

D TinyJAMBU and Its INT-RUP Security

D.1 Description and Properties of TinyJAMBU

The pictorial description of TinyJAMBU is presented in Figure 5. Similar to
SAEB, TinyJAMBU also has the advantage of computing the data on-the-fly,

INT-RUP Security of SAEB and TinyJAMBU 31

inverse-free, and maintains only an n + k-bit state with xor only linear opera-
tion. Additionally, TinyJAMBU achieves integrity even under the nonce-misuse
scenario. Hence, this AEAD mode is considered a good choice in the depth-
in-defense category. This additional benefit is achieved due to the property of
message injection, and ciphertext release occurs from two different places of the
construction. However, this property comes at the cost of the decreasing rate of
the construction.

K

N

Init P
(1)
K P

(1)
K P

(1)
K

r

r

⊕

const2

c
· · ·

⊕

⊕r

r

c

A[1]

const2

c

r

r

c ⊕

⊕

A[a]

const3

IV

IV P
(2)
K P

(2)
K P

(2)
K P

(2)
K P

(1)
K

r

r
⊕

⊕

M [1] C[1]

c

const3

⊕

r

r
⊕

⊕

M [2] C[2]

c

const3

⊕
· · ·

⊕ r

r

c

⊕

M [m] C[m]

⊕

const4

T1

⊕

const4

T2

Fig. 5: TinyJAMBU Authenticated Encryption for a block associated data, and
m block message. const2 = 011, const3 = 101, const3 = 111 are small distinct
constants used for domain separation. 32-bits of the message and associated data
are injected to the construction.

32 Nilanjan Datta1, Avijit Dutta2, and Shibam Ghosh3

D.2 Internal State Values for the i-th Encryption Query in the
Real World

The sequence of internal state values in the real world for i-th encryption query
of length ai +mi are defined according to the construction. as follows:

s+i [0] = R(0)

s+i [1] = R(s+i [0]⊕ 0∥⟨const1⟩2∥0)⊕N+
i [1]

s+i [2] = R(s+i [1]⊕ 0∥⟨const1⟩2∥0)⊕N+
i [2]

s+i [3] = R(s+i [2]⊕ 0∥⟨const1⟩2∥0)⊕N+
i [3]

s+i [k + 3] = R(s+i [k − 1]⊕ 0∥⟨const2⟩2∥0)⊕A+
i [k], for 1 ≤ k < a+i

s+i [ai + 3] = R(s+i [a
+
i − 1]⊕ 0∥⟨const2⟩2∥0)⊕ lp(A+

i [ai])

s+i [ai + 3 + k] = R(s+i [k − 1]⊕ 0∥⟨const3⟩2∥0)⊕M+
i [k], for 1 ≤ k < mi

s+i [ai + 3 +mi] = R(s+i [a
+
i +m+

i]⊕ 0∥⟨const3⟩2∥0)⊕ lp(M+
i [mi])⊕ 0∥⟨const4⟩2∥0

(15)

D.3 Bounding the Probabilities of Bad Transcripts for TinyJAMBU

Here we bound the probabilities of each bad events case by case.

Bounding Coll: For this event to happen, we know that there exists at least
one pair of indices (i′, j′) < (i, j) such that LLCP(i) < j ≤ ai + mi + 3 and
s⋆i [j] = s⊛i′ [j

′]. For any value of j ∈ [1, ai +mi + 3], we have,

s⋆i [j] = s⋆i′ [j]⇔ R(s⋆i [j − 1])⊕R(s⋆i′ [j − 1]) = x⋆
i [j]⊕ x⊛

i′ [j] (16)

where x⋆
i [j] and x⊛

i′ [j] are two n-bit strings. Note that the first r-bits of x⋆
i [j] is

xored with nonce, associated data or message for the i-th query. Similarly, the
first r-bits of x⊛

i′ [j] is xored with j-th nonce, associated data or message for the
i′-th query.

First, let us consider the case when j = j′ = LLCP(i) + 1 and j > 1. Then
there exists some i′ such that i′ < i and LLCP(i) holds for i′. Now we consider
the values of s⋆i [j − 1] and s⊛i′ [j

′ − 1]. Based on the values of j, we get following
cases.

1. Case j = 1. In this case, we have s⋆i [0] = s⊛i′ [0] = R(0).
2. Case j = 2. In this case, a part of the nonce in the i-th and i′-th query

matches, i.e., we have N⋆
i [1] = N⊛

i [1]. Then from the Equation (15), we
have s⋆i [1] = s⊛i′ [1].

3. Case 3 ≤ j ≤ 4. In this case, the nonce or part of the nonce in the i-th and
i′-th query matches. As we show in the above case, we can similarly show
that s⋆i [j − 1] = s⊛i′ [j

′ − 1].
4. Case 5 ≤ j ≤ a⋆i + 4. In this case, the nonce in the i-th and i′-th query

matches. Also, the associated date in i-th and i′-th query matches up to
(j−4)-th block. Thus from the Equation (15), we have s⋆i [j−1] = s⊛i′ [j

′−1].

INT-RUP Security of SAEB and TinyJAMBU 33

5. Case a⋆i + 5 ≤ j ≤ m⋆
i + 3. In this case, the nonce and associated data in

the i-th and i′-th query matches. Also, the message/ciphertext in i-th and
i′-th query matches up to (j−a⋆i −4)-th block. Thus from the Equation (15),
we have s⋆i [j − 1] = s⊛i′ [j

′ − 1].

Therefore, for any value of j ∈ [1, ai +mi + 4], s⋆i [j − 1] = s⊛i′ [j
′ − 1]. Thus,

the probability of the event,

s⋆i [j] = s⋆i′ [j]⇔ R(s⋆i [j − 1])⊕R(s⋆i′ [j − 1]) = x⋆
i [j]⊕ x⊛

i′ [j]⇔ x⋆
i [j]⊕ x⊛

i′ [j] = 0

is zero.

On the other hand, for all i′ ≤ i and j′ ̸= j or j ̸= LLCP(i) + 1, R(s⋆i [j −
1])⊕R(s⋆i′ [j − 1]) = x⋆

i [j]⊕ x⊛
i′ [j] holds with probability at most 2−n. Thus, the

probability that two states collide is 2−n. Note that there are σ possible values of
(i, j) in a transcript, each having no more than σ possible values of (i′, j′), where
σ is the total number of permutation calls including all encryption, decryption
and verification queries, such that s⋆i [j] = s⊛i′ [j

′] holds. Therefore, we have

Pr[Coll] ≤
(
σ

2

)
1

2n
≤ σ2

2n+1
. (17)

Bounding mColl: We bound this event by conditioning the event that Coll does
not occur. As there are no non-trivial collisions, ancestor(s+i1 [j1]), ancestor(s

+
i2
[j2]),

..., ancestor(s+iρ [jρ]) are all distinct and fresh. Therefore, all the outputsR(s+i1 [j1]),

R(s+i2 [j2]), ..., R(s+iρ [jρ]) are all uniformly sampled over {0, 1}n. Thus, from the

randomness of R, we can view this event as throwing σe balls into 2r bins (as we
are seeking collisions in the rate part) uniformly at random, where σe denotes
the total number of primitive calls with distinct inputs including all encryption
queries and we want to find the probability that there is a bin that contains ρ
or more balls. In other words, ρ or more outputs take some constant value c.
This occurs with probability at most (1

2r)
ρ. Again, we have 2r choices for the

constant value c. Therefore, by varying over the choices of all encryption queries,
we have

Pr[mColl | Coll] ≤
(
σe

ρ

)
× 2r(

1

2r
)ρ ≤ σρ

e

(2r)ρ−1
, (18)

where the last inequality follows from Stirling’s approximation and ignored the
constant term in the Stirling’s approximation.

Bounding Forge: Let us fix a verification query (N×
i , A×

i , C
×
i , T×

i) with associ-
ated data length a×i and ciphertext length c×i such that ∀j ≤ (a×i + c×i),∃i′, j′
such that s×i [j] = s⋆i′ [j

′] where ⋆ ∈ {+,−}. Let j be the largest index for which
s×i [j] does have a trivial collision with s⋆i′ [j]. We bound the probability of Forge
when Coll and mColl do not occur. Now, we consider the following two cases
based on the values of j.

34 Nilanjan Datta1, Avijit Dutta2, and Shibam Ghosh3

(a) Consider a×i + 3 ≤ j < a×i + c×i + 2. In this case, the associated data, nonce
and some parts of the message match with some previous queries. However,
the adversary can control only the message injection part. So, s×i [j + 1]
matches with some encryption or decryption query with probability at most
ρ+σd

2n−r .

(b) Finally, consider the case j = a×i +c×i +2. In this case, the final state matches
with some previous encryption query with probability at most ρ

2n−r .

Combining the cases and varying the choices of all the verification queries,

Pr[Forge | Coll ∧mColl] ≤ qv(2ρ+ σd)

2n−r
. (19)

D.4 Bounding Pr[Λ×
1 ̸= ω×

new | Λ+
1 = ω+

new,Λ
−
1 = ω−

new] in the Good
Analysis

For i ∈ [qv], let Ei denote the following event

Ei
∆
=

(
λ̄i ̸= ⊥

∣∣ Λ+
1 = ω+

new,Λ
−
1 = ω−

new

)
,

where λ̄i be the random variable that denotes the response to the i-th verification
query in the real world. Then, we have

Pr[Λ×
1 ̸= ω×

new | Λ+
1 = ω+

new,Λ
−
1 = ω−

new] ≤
∑
i∈[qv]

Pr[Ei].

We fix i ∈ [qv] and let the i-th verification query be (N×
i , A×

i , C
×
i , T×

i). Assume
that the associated data length is a×i , and the ciphertext length is c×i . We want
to bound Pr[Ei]. This probability is non-zero only if Θ.verR1,R2 returns anything
other than ⊥. If s×i [a×i +c×i] does not match with the final state of any encryption
query, we have Pr[Ei] ≤ 1

2τ . Suppose there is some encryption query such that

the final state matches with s×i [a
×
i + c×i]. In this case, there must be some j

such that s×i [j] is fresh; otherwise Forge is true. Let j∗ be the maximum of such
j. Then, s×i [j

∗ +1] matches with some previous encryption or decryption states

with probability at most (σe+σd)
2n−r . Note that the adversary can control only the

first r-bits of the state. Putting everything together we get:

Pr[Ei] ≤
1

2τ
+

(σe + σd)

2n−r
.

Therefore, we have

Pr[Λ×
1 ̸= ω×

new | Λ+
1 = ω+

new,Λ
−
1 = ω−

new] ≤
∑
i∈[qv]

1

2τ
+

(σe + σd)

2n−r
.

	INT-RUP Security of SAEB and TinyJAMBU

