All papers in 2022 (Page 18 of 1781 results)

Last updated:  2022-03-15
Single-Server Private Information Retrieval with Sublinear Amortized Time
Henry Corrigan-Gibbs, Alexandra Henzinger, Dmitry Kogan
We construct new private-information-retrieval protocols in the single-server setting. Our schemes allow a client to privately fetch a sequence of database records from a server, while the server answers each query in average time sublinear in the database size. Specifically, we introduce the first single-server private-information-retrieval schemes that have sublinear amortized server time, require sublinear additional storage, and allow the client to make her queries adaptively. Our protocols rely only on standard cryptographic assumptions (decision Diffie-Hellman, quadratic residuosity, learning with errors, etc.). They work by having the client first fetch a small "hint" about the database contents from the server. Generating this hint requires server time linear in the database size. Thereafter, the client can use the hint to make a bounded number of adaptive queries to the server, which the server answers in sub-linear time--yielding sublinear amortized cost. Finally, we give lower bounds proving that our most efficient scheme is optimal with respect to the trade-off it achieves between server online time and client storage.
Last updated:  2022-01-23
Better Security-Efficiency Trade-Offs in Permutation-Based Two-Party Computation
Yu Long Chen, Stefano Tessaro
We improve upon the security of (tweakable) correlation-robust hash functions, which are essential components of garbling schemes and oblivious-transfer extension schemes. We in particular focus on constructions from permutations, and improve upon the work by Guo et al. (IEEE S&P '20) in terms of security and efficiency. We present a tweakable one-call construction which matches the security of the most secure two-call construction -- the resulting security bound takes form O((p+q)q/2^n), where q is the number of construction evaluations and p is the number of direct adversarial queries to the underlying n-bit permutation, which is modeled as random. Moreover, we present a new two-call construction with much better security degradation -- in particular, for applications of interest, where only a constant number of evaluations per tweak are made, the security degrades as O((sqrt(q)p+q^2)/2^n). Our security proof relies on on the sum-capture theorems (Babai ’02; Steinberger ’12, Cogliati and Seurin ’18), as well as on new balls-into-bins combinatorial lemmas for limited independence ball-throws. Of independent interest, we also provide a self-contained concrete security treatment of oblivious transfer extension.
Last updated:  2022-01-20
Lightweight Secure Integer Comparison
Thijs Veugen
We solve the millionaires problem in the semi-trusted model with homomorphic encryption without using intermediate decryptions. This leads to the computationally least expensive solution with homomorphic encryption so far, with a low bandwidth and very low storage complexity. The number of modular multiplications needed is less than the number of modular multiplications needed for one Pallier encryption. The output of the protocol can be either publicly known, encrypted, or secret-shared. The private input of the first player is computationally secure towards the second player, and the private input of the second player is even unconditionally secure towards the first player. We also introduce an efficient client-server solution for the millionaires problem with similar security properties
Last updated:  2022-05-20
Secure Lossy Function Computation with Multiple Private Remote Source Observations
Onur Gunlu, Matthieu Bloch, Rafael F. Schaefer
We consider that multiple noisy observations of a remote source are used by different nodes in the same network to compute a function of the noisy observations under joint secrecy, joint privacy, and individual storage constraints, as well as a distortion constraint on the function computed. Suppose that an eavesdropper has access to one of the noisy observations in addition to the public messages exchanged between legitimate nodes. This model extends previous models by 1) considering a remote source as the source of dependency between the correlated random variables observed at different nodes; 2) allowing the function computed to be a distorted version of the target function, which allows to reduce the storage rate as compared to a reliable function computation scenario in addition to reducing secrecy and privacy leakages; 3) introducing a privacy metric that measures the information leakage about the remote source to the fusion center in addition to the classic privacy metric that measures the leakage to an eavesdropper; 4) considering two transmitting nodes to compute a function rather than one node. Single-letter inner and outer bounds are provided for the considered lossy function computation problem, and simplified bounds are established for two special cases, in which either the computed function is partially invertible or the function is invertible and the measurement channel of the eavesdropper is physically degraded with respect to the measurement channel of the fusion center.
Last updated:  2022-07-29
Multiple Noisy Private Remote Source Observations for Secure Function Computation
Onur Gunlu, Matthieu Bloch, Rafael F. Schaefer
The problem of reliable function computation is extended by imposing privacy, secrecy, and storage constraints on a remote source whose noisy measurements are observed by multiple parties. The main additions to the classic function computation problem include 1) privacy leakage to an eavesdropper is measured with respect to the remote source rather than the transmitting terminals' observed sequences; 2) the information leakage to a fusion center with respect to the remote source is considered as another privacy leakage metric; 3) two transmitting node observations are used to compute a function. Inner and outer bounds on the rate regions are derived for lossless single-function computation with two transmitting nodes, which recover previous results in the literature, and for special cases that consider invertible functions simplified bounds are established.
Last updated:  2022-01-20
Babylon: Reusing Bitcoin Mining to Enhance Proof-of-Stake Security
Ertem Nusret Tas, David Tse, Fisher Yu, Sreeram Kannan
Bitcoin is the most secure blockchain in the world, supported by the immense hash power of its Proof-of-Work miners, but consumes huge amount of energy. Proof-of-Stake chains are energy-efficient, have fast finality and accountability, but face several fundamental security issues: susceptibility to non-slashable long-range safety attacks, non-slashable transaction censorship and stalling attacks and difficulty to bootstrap new PoS chains from low token valuation. We propose Babylon, a blockchain platform which combines the best of both worlds by reusing the immense Bitcoin hash power to enhance the security of PoS chains. Babylon provides a data-available timestamping service, securing PoS chains by allowing them to timestamp data-available block checkpoints, fraud proofs and censored transactions on Babylon. Babylon miners merge mine with Bitcoin and thus the platform has zero additional energy cost. The security of a Babylon-enhanced PoS protocol is formalized by a cryptoeconomic security theorem which shows slashable safety and liveness guarantees.
Last updated:  2022-01-20
Uncovering Impact of Mental Models towards Adoption of Multi-device Crypto-Wallets
Uncategorized
Easwar Vivek Mangipudi, Udit Desai, Mohsen Minaei, Mainack Mondal, Aniket Kate
Show abstract
Uncategorized
The ever-increasing cohort of cryptocurrency users saw a sharp increase in different types of crypto-wallets in the past decade. However, different wallets are non-uniformly adopted in the population today; Specifically, emerging multi-device wallets, even with improved security and availability guarantees over their counterparts, are yet to receive proportionate attention and adoption. This work presents a data-driven investigation into the perceptions of cryptocurrency users towards multi-device wallets today, using a survey of255crypto-wallet users. Our results revealed two significant groups within our participants—Newbies and Non-newbies. These two groups statistically significantly differ in their usage of crypto-wallets. However, both of these groups were concerned with the possibility of their keys getting compromised and yet are unfamiliar with the guarantees offered by multi-device wallets. After educating the participants about the more secure multi-device wallets, around 70% of the participants preferred them; However, almost one-third of participants were still not comfortable using them. Our qualitative analysis revealed a gap between the actual security guarantees and mental models for these participants—they were afraid that using multi-device wallets will result in losing control over keys (and in effect funds) due to the distribution of key shares. We also investigated the preferred default settings for crypto-wallets across our participants, since multi-device wallets allow a wide range of key-share distribution settings. In the distributed server settings of the multi-device wallets, the participants preferred a smaller number of reputed servers (as opposed to a large non-reputed pool). Moreover, considerations about the threat model further affected their preferences, signifying a need for contextualizing default settings. We conclude the discussion by identifying concrete, actionable design avenues for future multi-device wallet developers to improve adoption.
Last updated:  2022-09-08
FINAL: Faster FHE instantiated with NTRU and LWE
Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder V. L. Pereira, Nigel P. Smart
The NTRU problem is a promising candidate to build efficient Fully Homomorphic Encryption (FHE). However, all the existing proposals (e.g. LTV, YASHE) need so-called `overstretched' parameters of NTRU to enable homomorphic operations. It was shown by Albrecht et al. (CRYPTO 2016) that these parameters are vulnerable against subfield lattice attacks. Based on a recent, more detailed analysis of the overstretched NTRU assumption by Ducas and van Woerden (ASIACRYPT 2021), we construct two FHE schemes whose NTRU parameters lie outside the overstretched range. The first scheme is based solely on NTRU and demonstrates competitive performance against the state-of-the-art FHE schemes including TFHE. Our second scheme, which is based on both the NTRU and LWE assumptions, outperforms TFHE with a 28% faster bootstrapping and 45% smaller bootstrapping and key-switching keys.
Last updated:  2022-01-20
Forward-Secure Public Key Encryption without Key Update from Proof-of-Stake Blockchain
Seiya Nuta, Jacob C. N. Schuldt, Takashi Nishide
A forward-secure public-key encryption (PKE) scheme prevents eavesdroppers from decrypting past ciphertexts in order to mitigate the damage caused by a potential secret key compromise. In prior works, forward security in a non-interactive setting, such as forward-secure PKE, is achieved by constantly updating (secret) keys. In this paper, we formalize the notion of blockchain-based forward-secure PKE and show the feasibility of constructing a forward-secure PKE scheme without key update (i.e. both the public key and the secret key are immutable), assuming the existence of a proof-of-stake blockchain with the distinguishable forking property introduced by Goyal, et al. (TCC 2017). Our construction uses the proof-of-stake blockchain as an immutable decryption log and witness encryption by Garg, et al. (STOC 2013) to ensure that the same ciphertext cannot be decrypted twice, thereby rendering a compromised secret key useless with respect to decryption of past ciphertext the legitimate user has already decrypted.
Last updated:  2023-06-04
Generic Construction of Public-key Authenticated Encryption with Keyword Search Revisited: Stronger Security and Efficient Construction
Keita Emura
Public-key encryption with keyword search (PEKS) does not provide trapdoor privacy, i.e., keyword information is leaked through trapdoors. To prevent this information leakage, public key authenticated encryption with keyword search (PAEKS) has been proposed, where a sender's secret key is required for encryption, and a trapdoor is associated with not only a keyword but also the sender. Liu et al. (ASIACCS 2022) proposed a generic construction of PAEKS based on word-independent smooth projective hash functions (SPHFs) and PEKS. In this paper, we propose a new generic construction of PAEKS. The basic construction methodology is the same as that of the Liu et al. construction, where each keyword is converted into an extended keyword using SPHFs, and PEKS is used for extended keywords. Nevertheless, our construction is more efficient than Liu et al.'s in the sense that we only use one SPHF, but Liu et al. used two SPHFs. In addition, for consistency we considered a security model that is stronger than Liu et al.'s. Briefly, Liu et al. considered only keywords even though a trapdoor is associated with not only a keyword but also a sender. Thus, a trapdoor associated with a sender should not work against ciphertexts generated by the secret key of another sender, even if the same keyword is associated. Our consistency definition considers a multi-sender setting and captures this case. In addition, for indistinguishability against chosen keyword attack (IND-CKA) and indistinguishability against inside keyword guessing attack (IND-IKGA), we use a stronger security model defined by Qin et al. (ProvSec 2021), where an adversary is allowed to query challenge keywords to the encryption and trapdoor oracles. We also highlight several issues associated with the Liu et al. construction in terms of hash functions, e.g., their construction does not satisfy the consistency that they claimed to hold.
Last updated:  2022-01-20
Encapsulated Search Index: Public-Key, Sub-linear, Distributed, and Delegatable
Erik Aronesty, David Cash, Yevgeniy Dodis, Daniel H. Gallancy, Christopher Higley, Harish Karthikeyan, Oren Tysor
We build the first sub-linear (in fact, potentially constant-time) public-key searchable encryption system: − server can publish a public key $PK$. − anybody can build an encrypted index for document $D$ under $PK$. − client holding the index can obtain a token $z_w$ from the server to check if a keyword $w$ belongs to $D$. − search using $z_w$ is almost as fast (e.g., sub-linear) as the non-private search. − server granting the token does not learn anything about the document $D$, beyond the keyword $w$. − yet, the token $z_w$ is specific to the pair $(D, w)$: the client does not learn if other keywords $w'\neq w$ belong to $D$, or if w belongs to other, freshly indexed documents $D'$. − server cannot fool the client by giving a wrong token $z_w$. We call such a primitive Encapsulated Search Index (ESI). Our ESI scheme can be made $(t, n)$- distributed among $n$ servers in the best possible way: non-interactive, verifiable, and resilient to any coalition of up to $(t − 1)$ malicious servers. We also introduce the notion of delegatable ESI and show how to extend our construction to this setting. Our solution — including public indexing, sub-linear search, delegation, and distributed token generation — is deployed as a commercial application by Atakama.
Last updated:  2022-01-18
(Nondeterministic) Hardness vs. Non-Malleability
Marshall Ball, Dana Dachman-Soled, Julian Loss
We present the first truly explicit constructions of non-malleable codes against tampering by bounded polynomial size circuits. These objects imply unproven circuit lower bounds and our construction is secure provided E requires exponential size nondeterministic circuits, an assumption from the derandomization literature. Prior works on NMC for polysize circuits, either required an untamperable CRS [Cheraghchi, Guruswami ITCS'14; Faust, Mukherjee, Venturi, Wichs EUROCRYPT'14] or very strong cryptographic assumptions [Ball, Dachman-Soled, Kulkarni, Lin, Malkin EUROCRYPT'18; Dachman-Soled, Komargodski, Pass CRYPTO'21]. Both of works in the latter category only achieve non-malleability with respect to efficient distinguishers and, more importantly, utilize cryptographic objects for which no provably secure instantiations are known outside the random oracle model. In this sense, none of the prior yields fully explicit codes from non-heuristic assumptions. Our assumption is not known to imply the existence of one-way functions, which suggests that cryptography is unnecessary for non-malleability against this class. Technically, security is shown by non-deterministically reducing polynomial size tampering to split-state tampering. The technique is general enough that it allows us to to construct the first seedless non-malleable extractors [Cheraghchi, Guruswami TCC'14] for sources sampled by polynomial size circuits [Trevisan, Vadhan FOCS'00] (resp. recognized by polynomial size circuits [Shaltiel CC'11]) and tampered by polynomial size circuits. Our construction is secure assuming E requires exponential size $\Sigma_4$-circuits (resp. $\Sigma_3$-circuits), this assumption is the state-of-the-art for extracting randomness from such sources (without non-malleability). We additionally observe that non-malleable codes and non-malleable secret sharing [Goyal, Kumar STOC'18] are essentially equivalent with respect to polynomial size tampering. In more detail, assuming E is hard for exponential size nondeterministic circuits, any efficient secret sharing scheme can be made non-malleable against polynomial size circuit tampering. Unfortunately, all of our constructions only achieve inverse polynomial (statistical) security. Extending a result from [Applebaum, Artemenko, Shaltiel, Yang CC'16] we show it is impossible to do better using black-box reductions. However, we extend the notion of relative error from [Applebaum, Artemenko, Shaltiel, Yang CC'16] to non-malleable extractors and show that they can be constructed from similar assumptions. We additionally observe that relative-error non-malleable extractors can be utilized to render a broad class of cryptographic primitives tamper and leakage resilient, while preserving negligible security guarantees.
Last updated:  2022-01-18
Small-Box Cryptography
Yevgeniy Dodis, Harish Karthikeyan, Daniel Wichs
One of the ultimate goals of symmetric-key cryptography is to find a rigorous theoretical framework for building block ciphers from small components, such as cryptographic $S$-boxes, and then argue why iterating such small components for sufficiently many rounds would yield a secure construction. Unfortunately, a fundamental obstacle towards reaching this goal comes from the fact that traditional security proofs cannot get security beyond $2^{-n}$, where $n$ is the size of the corresponding component. As a result, prior provably secure approaches --- which we call "big-box cryptography" --- always made $n$ larger than the security parameter, which led to several problems: (a) the design was too coarse to really explain practical constructions, as (arguably) the most interesting design choices happening when instantiating such "big-boxes" were completely abstracted out; (b) the theoretically predicted number of rounds for the security of this approach was always dramatically smaller than in reality, where the "big-box" building block could not be made as ideal as required by the proof. For example, Even-Mansour (and, more generally, key-alternating) ciphers completely ignored the substitution-permutation network (SPN) paradigm which is at the heart of most real-world implementations of such ciphers. In this work, we introduce a novel paradigm for justifying the security of existing block ciphers, which we call small-box cryptography. Unlike the "big-box" paradigm, it allows one to go much deeper inside the existing block cipher constructions, by only idealizing a small (and, hence, realistic!) building block of very small size $n$, such as an 8-to-32-bit $S$-box. It then introduces a clean and rigorous mixture of proofs and hardness conjectures which allow one to lift traditional, and seemingly meaningless, "at most $2^{-n}$ security proofs for reduced-round idealized variants of the existing block ciphers, into meaningful, full-round security justifications of the actual ciphers used in the real world. We then apply our framework to the analysis of SPN ciphers (e.g, generalizations of AES), getting quite reasonable and plausible concrete hardness estimates for the resulting ciphers. We also apply our framework to the design of stream ciphers. Here, however, we focus on the simplicity of the resulting construction, for which we managed to find a direct "big-box"-style security justification, under a well studied and widely believed eXact Linear Parity with Noise (XLPN) assumption. Overall, we hope that our work will initiate many follow-up results in the area of small-box cryptography.
Last updated:  2022-01-18
Updatable Public Key Encryption in the Standard Model
Yevgeniy Dodis, Harish Karthikeyan, Daniel Wichs
Forward security (FS) ensures that corrupting the current secret key in the system preserves the privacy or integrity of the prior usages of the system. Achieving forward security is especially hard in the setting of public-key encryption (PKE), where time is divided into periods, and in each period the receiver derives the next-period secret key from their current secret key, while the public key stays constant. Indeed, all current constructions of FS-PKE are built from hierarchical identity-based encryption (HIBE) and are rather complicated. Motivated by applications to secure messaging, recent works of Jost et al. (Eurocrypt’19) and Alwen et al. (CRYPTO’20) consider a natural relaxation of FS-PKE, which they term updatable PKE (UPKE). In this setting, the transition to the next period can be initiated by any sender, who can compute a special update ciphertext. This ciphertext directly produces the next-period public key and can be processed by the receiver to compute the next-period secret key. If done honestly, future (regular) ciphertexts produced with the new public key can be decrypted with the new secret key, but past such ciphertexts cannot be decrypted with the new secret key. Moreover, this is true even if all other previous-period updates were initiated by untrusted senders. Both papers also constructed a very simple UPKE scheme based on the CDH assumption in the random oracle model. However, they left open the question of building such schemes in the standard model, or based on other (e.g., post-quantum) assumptions, without using the heavy HIBE techniques. In this work, we construct two efficient UPKE schemes in the standard model, based on the DDH and LWE assumptions, respectively. Somewhat interestingly, our constructions gain their efficiency (compared to prior FS-PKE schemes) by using tools from the area of circular-secure and leakage resilient public-key encryption schemes (rather than HIBE).
Last updated:  2022-02-23
Parallel Operations over TFHE-Encrypted Multi-Digit Integers
Jakub Klemsa, Melek Önen
Recent advances in Fully Homomorphic Encryption (FHE) allow for a practical evaluation of non-trivial functions over encrypted data. In particular, novel approaches for combining ciphertexts broadened the scope of prospective applications. However, for arithmetic circuits, the overall complexity grows with the desired precision and there is only a limited space for parallelization. In this paper, we put forward several methods for fully parallel addition of multi-digit integers encrypted with the TFHE scheme. Since these methods handle integers in a special representation, we also revisit the signum function, firstly addressed by Bourse et al., and we propose a method for the maximum of two numbers; both with particular respect to parallelization. On top of that, we outline an approach for multiplication by a known integer. According to our experiments, the fastest approach for parallel addition of 31-bit encrypted integers in an idealized setting with 32 threads is estimated to be more than 6x faster than the fastest sequential approach. Finally, we demonstrate our algorithms on an evaluation of a practical neural network.
Last updated:  2022-01-18
A remark on the Discrete Fourier Transform statistical test
Anghel Florin, Asandoaiei David, Tabacaru Robert
The study of randomness has always been a topic of significant relevance, and the importance of this topic in cryptography is undeniable. In this paper, we are going to provide a short introduction regarding pseudo-random number generators, their applications in cryptography and an analysis of the Discrete Fourier Transform statistical test. Our contribution is that of compiling the results of multiple runs on several popular pseudo-random number generators, and a Python implementation for computing the probability of a type II error. We intend to underline the weak points of the Discrete Fourier Transform test by showcasing results on large amounts of data, and showcase how testing bigger sequences of bits can help reduce the probability of type II errors.
Last updated:  2022-02-25
Practical (Post-Quantum) Key Combiners from One-Wayness and Applications to TLS
Uncategorized
Nimrod Aviram, Benjamin Dowling, Ilan Komargodski, Kenneth G. Paterson, Eyal Ronen, Eylon Yogev
Show abstract
Uncategorized
The task of combining cryptographic keys, some of which may be maliciously formed, into one key, which is (pseudo)random is a central task in cryptographic systems. For example, it is a crucial component in the widely used TLS and Signal protocols. From an analytical standpoint, current security proofs model such key combiners as dual-PRFs -- a function which is a PRF when keyed by either of its two inputs -- guaranteeing pseudo-randomness if one of the keys is compromised or even maliciously chosen by an adversary. However, in practice, protocols mostly use HKDF as a key combiner, despite the fact that HKDF was never proven to be a dual-PRF. Security proofs for these protocols usually work around this issue either by simply assuming HKDF to be a dual-PRF anyway, or by assuming ideal models (e.g. modelling underlying hash functions as random oracles). We identify several deployed protocols and upcoming standards where this is the case. Unfortunately, such heuristic approaches to security tend not to withstand the test of time, often leading to deployed systems that eventually become completely insecure. In this work, we narrow the gap between theory and practice for key combiners. In particular, we give a construction of a dual-PRF that can be used as a drop-in replacement for current heuristic key combiners in a range of protocols. Our construction follows a theoretical construction by Bellare and Lysyanskaya, and is based on concrete hardness assumptions, phrased in the spirit of one-wayness. Therefore, our construction provides security unless extremely strong attacks against the underlying cryptographic hash function are discovered. Moreover, since these assumptions are considered post-quantum secure, our construction can safely be used in new hybrid protocols. From a practical perspective, our dual-PRF construction is highly efficient, adding only a few microseconds in computation time compared to currently used (heuristic) approaches. We believe that our approach exemplifies a perfect middle-ground for practically efficient constructions that are supported by realistic hardness assumptions.
Last updated:  2022-01-18
A Framework for the Design of Secure and Efficient Proofs of Retrievability
Françoise Levy-dit-Vehel, Maxime Roméas
Proofs of Retrievability (PoR) protocols ensure that a client can fully retrieve a large outsourced file from an untrusted server. Good PoRs should have low communication complexity, small storage overhead and clear security guarantees with tight security bounds. The focus of this work is to design good PoR schemes with simple security proofs. To this end, we use the Constructive Cryptography (CC) setting by Maurer [13]. We propose a framework for the design of secure and efficient PoR schemes based on Locally Correctable Codes (LCC). We give a first instantiation of our framework using the high rate lifted codes introduced by Guo et al. [5]. This yields an infinite family of good PoRs. We assert their security by solving a finite geometry problem, giving an explicit formula for the probability of an adversary to fool the client. Using the local correctability properties of Tanner codes, we get another instantiation of our framework and derive an analogous formula for the success probability of the audit.
Last updated:  2022-09-18
Non-Interactive Zero-Knowledge Proofs to Multiple Verifiers
Kang Yang, Xiao Wang
In this paper, we study zero-knowledge (ZK) proofs for circuit satisfiability that can prove to $n$ verifiers at a time efficiently. The proofs are secure against the collusion of a prover and a subset of $t$ verifiers. We refer to such ZK proofs as multi-verifier zero-knowledge (MVZK) proofs and focus on the case that a majority of verifiers are honest (i.e., $t<n/2$). We construct efficient MVZK protocols in the random oracle model where the prover sends one message to each verifier, while the verifiers only exchange one round of messages. When the threshold of corrupted verifiers $t<n/2$, the prover sends $1/2+o(1)$ field elements per multiplication gate to every verifier; when $t<n(1/2-\epsilon)$ for some constant $0<\epsilon<1/2$, we can further reduce the communication to $O(1/n)$ field elements per multiplication gate per verifier. Our MVZK protocols demonstrate particularly high scalability: the proofs are streamable and only require a memory proportional to what is needed to evaluate the circuit in the clear.
Last updated:  2023-06-04
An Introduction to Secret-Sharing-Based Secure Multiparty Computation
Uncategorized
Daniel Escudero
Show abstract
Uncategorized
This text serves as a general guide to secure multiparty computation based on secret-sharing, focusing more on practical aspects of the techniques and constructions rather than their theoretical grounds. It is intended to serve as an introductory reference text for readers interested in the area, assuming essentially no background in these topics. This work in progress currently includes an introduction to several core concepts in secure multiparty computation, an overview of simulation-based security, and detailed constructions for honest and two-thirds honest majority MPC, and also dishonest majority in the preprocessing model.
Last updated:  2022-01-19
A remark on the NIST 800-22 Binary Matrix Rank Test
Nicu Neculache, Vlad-Andrei Petcu, Emil Simion
Statistical testing is a mechanism that has been included in various domains or fields, providing a method for making quantitative decisions about a particular sample. The statistical testing plays a big role in selecting and testing random and pseudorandom generators whose output may be used in the field of cryptography, specifically for the encryption, decryption and the keys or sub-keys generation. In this paper we study one of the NIST 800-22 random number generation tests. We give an overview for the statistical testing and its importance for cryptography, then we focus on one of the tests, specifically the Binary Matrix Rank Test. We provide a logical schema and a new code implementation in Python 3. Further we evaluate the test, by running it on a collection of well chosen test samples and gathering the results based on which we do an assumption. More exactly, we validate if the binary sequence input can be classified as random or not depending on the bits density.
Last updated:  2022-01-18
Quantum Boomerang Attacks and Some Applications
Paul Frixons, María Naya-Plasencia, André Schrottenloher
In this paper, we study quantum key-recovery attacks on block ciphers. While it is well known that a quantum adversary can generically speed up an exhaustive search of the key, much less is known on how to use specific vulnerabilities of the cipher to accelerate this procedure. In this context, we show how to convert classical boomerang and mixing boomerang attacks into efficient quantum key-recovery attacks. In some cases, we can even obtain a quadratic speedup, the same as simple differential attacks. We apply this technique to a 5-round attack on SAFER++.
Last updated:  2023-06-08
SPHINCS-$\alpha$: A Compact Stateless Hash-Based Signature Scheme
Kaiyi Zhang, Hongrui Cui, Yu Yu
Hash-based signatures offer a conservative alternative to post-quantum signatures with arguably better-understood security than other post-quantum candidates. Nevertheless, a major drawback that makes it less favorable to deploy in practice is the (relatively) large size of the signatures, and long signing and verification time. In this paper, we introduce SPHINCS-$\alpha$, a stateless hash-based signature scheme, which benefits from a twofold improvement. First, we provide an improved Winternitz one-time signature with an efficient size-optimal encoding, which might be of independent interest. Second, we give a variant of the few-time signature scheme, FORC, by applying the Winternitz method. Plugging the two improved components into the framework of the state-of-the-art (stateless) hash-based SPHINCS$^+$, with carefully chosen parameter choices, yields a certain degree of performance improvement. In particular, under the ``small'' series parameter set aiming for compact signatures, our scheme reduces signature size and signing time by 8-11% and 3-15% respectively, compared to SPHINCS$^+$ at all security levels. For the ``fast'' series that prioritizes computation time, our scheme exhibits a better performance in general. E.g., when instantiating the simple tweakable hash function with SHA-256, our scheme reduces the signing and verification time by 7-10% and up to 10% respectively, while keeping roughly the same signature size. The security proofs/estimates follow the framework of SPHINCS$^+$. To facilitate a fair comparison, we give the implementation of SPHINCS-$\alpha$ by adapting that of SPHINCS$^+$, and we provide a theoretical estimate in the number of hash function calls.
Last updated:  2023-12-11
First-Order Masked Kyber on ARM Cortex-M4
Daniel Heinz, Matthias J. Kannwischer, Georg Land, Thomas Pöppelmann, Peter Schwabe, and Amber Sprenkels
In this work, we present a fast and first-order secure Kyber implementation optimized for ARM Cortex-M4. Most notably, to our knowledge this is the first liberally-licensed open-source Cortex-M4 implementation of masked Kyber. The ongoing NIST standardization process for post-quantum cryptography and newly proposed side-channel attacks have increased the demand for side-channel analysis and countermeasures for the finalists. On the foundation of the commonly used PQM4 project, we make use of the previously presented optimizations for Kyber on a Cortex-M4 and further combine different ideas from various recent works to achieve a better performance and improve the security in comparison to the original implementations. We show our performance results for first-order secure implementations. Our masked Kyber768 decapsulation on the ARM Cortex-M4 requires only 2 978 441 cycles, including randomness generation from the internal RNG. We then practically verify our implementation by using the t-test methodology with 100 000 traces.
Last updated:  2022-06-15
The Hidden Parallelepiped Is Back Again: Power Analysis Attacks on Falcon
Morgane Guerreau, Ange Martinelli, Thomas Ricosset, Mélissa Rossi
Falcon is a very efficient and compact lattice-based signature finalist of the NIST's Post-Quantum standardization campaign. This work assesses Falcon's side-channel resistance by analyzing two vulnerabilities, namely the pre-image computation and the trapdoor sampling. The first attack is an improvement of Karabulut and Aysu (DAC 2021). It overcomes several difficulties inherent to the structure of the stored key like the Fourier representation and directly recovers the key with a limited number of traces and a reduced complexity. The main part of this paper is dedicated to our second attack: we show that a simple power analysis during the signature execution could provide the exact value of the output of a subroutine called the base sampler. This intermediate value does not directly lead to the secret and we had to adapt the so-called hidden parallelepiped attack initially introduced by Nguyen and Regev in Eurocrypt 2006 and reused by Ducas and Nguyen in Asiacrypt 2012. We extensively quantify the resources for our attacks and experimentally demonstrate them with Falcon's reference implementation on the ELMO simulator (McCann, Oswald and Whitnall USENIX 2017) and on a Chipwhisperer Lite with STM32F3 target (ARM Cortex M4). These new attacks highlight the need for side-channel protection for one of the three finalists of NIST's standardization campaign by pointing out the vulnerable parts and quantifying the resources of the attacks.
Last updated:  2024-04-15
LedgerHedger: Gas Reservation for Smart-Contract Security
Itay Tsabary, Alex Manuskin, Roi Bar-Zur, and Ittay Eyal
In smart contract blockchain platforms such as Ethereum, users interact with the system by issuing transactions. System operators called miners or validators add those transactions to the blockchain. Users attach to each transaction a fee, which is collected by the miner who placed it in the blockchain. Miners naturally prioritize better-paying transactions. This process creates a volatile fee market due to limited throughput and fluctuating demand. The fee required to place a transaction in the future is unknown; yet, ensuring timely transaction confirmation is critical for securing smart contracts that represent billions of dollars and underpin prominent blockchain scaling solutions. We present LedgerHedger, a novel mechanism that guarantees the confirmation of a transaction within a specified time frame. Due to the absence of external enforcement in decentralized systems, LedgerHedger uses incentives. Its core is a hedging agreement between a transaction issuer and a second party, possibly a miner. The issuing party pays for the transaction upfront while the second party commits to paying any necessary fees when the transaction is issued in the future, even if they exceed the original payment. LedgerHedger gives rise to a strategic game, where the issuing party deposits the transaction payment and the committing party deposits a collateral. During the target time frame, the latter is required to confirm the transaction if it exists, or they have the option to withdraw the payment and the collateral if the transaction is not presented. We demonstrate that for a broad range of parameters, a subgame perfect equilibrium exists where both parties are incentivized to act as desired, thereby guaranteeing transaction confirmation. We implement LedgerHedger and deploy it on an Ethereum test network, showcasing its efficacy and minor overhead.
Last updated:  2024-01-08
Key lifting : Multi-key Fully Homomorphic Encryption in plain model without noise flooding
Xiaokang Dai, Wenyuan Wu, and Yong Feng
Multi-key Fully Homomorphic Encryption (\MK), based on the Learning With Error assumption (\LWE), usually lifts ciphertexts of different users to new ciphertexts under a common public key to enable homomorphic evaluation. The efficiency of the current Multi-key Fully Homomorphic Encryption (\MK) scheme is mainly restricted by two aspects: Expensive ciphertext expansion operation : In a boolean circuit with input length $N$, multiplication depth $L$, security parameter $\lambda$, the number of additional encryptions introduced to achieve ciphertext expansion is $O(N\lambda^6L^4)$. Noise flooding technology resulting in a large modulus $q$ : In order to prove the security of the scheme, the noise flooding technology introduced in the encryption and distributed decryption stages will lead to a huge modulus $q = 2^{O(\lambda L)}B_\chi$, which corrodes the whole scheme and leads to sub-exponential approximation factors $\gamma = \tilde{O}(n\cdot 2^{\sqrt{nL}})$. This paper solves the first problem by presenting a framework called Key-Lifting Multi-key Fully Homomorphic Encryption (\KL). With this \emph{key lifting} procedure, the number of encryptions for a local user is reduced to $O(N)$, similar to single-key fully homomorphic encryption (\FHE). For the second problem, we prove the discrete Gaussian version of the Smudging lemma, and combined with the anti-leakage properties of the encryption, we remove the noise flooding technique introduced in the distributed decryption. Secondly, we propose an analysis method based on R\'{e}nyi divergence, which removes the noise flooding technology in the encryption stage. These approaches significantly reduces the size of the modulus $q$ (with $\log q = O(L)$) and the computational overhead of the entire scheme.
Last updated:  2022-01-18
SIKE Channels
Luca De Feo, Nadia El Mrabet, Aymeric Genêt, Novak Kaluđerović, Natacha Linard de Guertechin, Simon Pontié, Élise Tasso
We present new side-channel attacks on SIKE, the isogeny-based candidate in the NIST PQC competition. Previous works had shown that SIKE is vulnerable to differential power analysis and pointed to coordinate randomization as an effective countermeasure. We show that coordinate randomization alone is not sufficient, as SIKE is vulnerable to a class of attacks similar to refined power analysis in elliptic curve cryptography, named zero-value attacks. We describe and confirm in the lab two such attacks leading to full key recovery, and analyze their countermeasures.
Last updated:  2022-01-18
Brute Force Cryptanalysis
Aron Gohr
The topic of this contribution is the cryptanalytic use of spurious keys, i.e. non-target keys returned by exhaustive key search. We show that the counting of spurious keys allows the construction of distinguishing attacks against block ciphers that are generically expected to start working at (marginally) lower computational cost than is required to find the target key by exhaustive search. We further show that if a brute force distinguisher does return a strong distinguishing signal, fairly generic optimizations to random key sampling will in many circumstances render the cost of detecting the signal massively lower than the cost of exhaustive search. We then use our techniques to quantitatively characterize various non-Markov properties of round-reduced Speck32/64. We fully compute, for the first time, the ciphertext pair distribution of 3-round Speck32/64 with one input difference $\Delta$ without any approximations and show that it differs markedly from Markov model predictions; we design a perfect distinguisher for the output distribution induced by the same input difference for 5-round Speck32/64 that is efficient enough to process millions of samples on an ordinary PC in a few days; we design a generic two-block known-plaintext distinguisher against Speck32/64 and show that it achieves 58 percent accuracy against 5-round Speck, equivalent e.g. to a linear distinguisher with $\approx 50$ percent bias. Turning our attention back to differential cryptanalysis, we show that our known-plaintext distinguisher automatically handles the 5-round output distribution induced by input difference $\Delta$ as well as the perfect differential distinguisher, but that no significant additional signal is obtained from knowing the plaintexts. We then apply the known-plaintext brute force distinguisher to 7-round Speck32/64 with fixed input difference $\Delta$, finding that it achieves essentially the same distinguishing advantage as state-of-the-art techniques (neural networks with key averaging). We also show that our techniques can precisely characterize non-Markov properties in longer differential trails for Speck32/64.
Last updated:  2022-02-14
Near-optimal Balanced Reliable Broadcast and Asynchronous Verifiable Information Dispersal
Sourav Das, Zhuolun Xiang, Ling Ren
In this paper, we present near-optimal asynchronous Byzantine reliable broadcast (RBC) protocols with balanced costs and an improved asynchronous verifiable information dispersal (AVID) protocol. Assuming the existence of collision-resistant hash functions, our RBC protocol broadcasts a message $M$ among $n$ nodes with total communication cost $O(n|M|+\kappa n^2)$ and per-node communication cost $O(|M|+\kappa n)$. In contrast, the state-of-the-art reliable broadcast protocol either has per-node cost $O(|M|+\kappa \log n)$, or has imbalanced costs where the broadcaster incurs $O(n|M|)$ while other nodes incur a communication cost of $O(|M|+\kappa n)$. We also present an error-free RBC protocol that makes no computational assumption and has total communication cost $O(n|M|+ n^2\log n)$ and per-node communication cost $O(|M|+ n\log n)$. In contrast, the state-of-the-art error-free RBC protocol has total cost of $O(n|M|+ n^3\log n)$, and the broadcaster has imbalanced cost of $O(n|M|+ n^2\log n)$. We then use our new balanced RBC and additional techniques to design an asynchronous verifiable information dispersal (AVID) protocol with total dispersal cost $O(|M|+\kappa n^2)$, retrieval cost $O(|M|+\kappa n)$, and no trusted setup. In our AVID protocol, the client incurs a communication cost of $O(|M|+\kappa n)$ in comparison to $O(|M|+\kappa n\log n)$ of prior best. Moreover, each node in our AVID protocol incurs a storage cost of $O(|M|/n+\kappa)$ bits, in comparison to $O(|M|/n+\kappa \log n)$ bits of prior best. Finally, we present lower bound results on communication cost and show that our balanced RBC and AVID protocols have near-optimal communication costs -- only an factor of $O(\kappa)$ or $O(\log n)$ gap from the lower bounds.
Last updated:  2022-01-18
Titanium: A Metadata-Hiding File-Sharing System with Malicious Security
Weikeng Chen, Thang Hoang, Jorge Guajardo, Attila A. Yavuz
End-to-end encrypted file-sharing systems enable users to share files without revealing the file contents to the storage servers. However, the servers still learn metadata, including user identities and access patterns. Prior work tried to remove such leakage but relied on strong assumptions. Metal (NDSS '20) is not secure against malicious servers. MCORAM (ASIACRYPT '20) provides confidentiality against malicious servers, but not integrity. Titanium is a metadata-hiding file-sharing system that offers confidentiality and integrity against malicious users and servers. Compared with MCORAM, which offers confidentiality against malicious servers, Titanium also offers integrity. Experiments show that Titanium is 5x-200x faster or more than MCORAM.
Last updated:  2022-01-18
High-Speed and Unified ECC Processor for Generic Weierstrass Curves over GF(p) on FPGA
Asep Muhamad Awaludin, Harashta Tatimma Larasati, Howon Kim
In this paper, we present a high-speed, unified elliptic curve cryptography (ECC) processor for arbitrary Weierstrass curves over GF(p), which to the best of our knowledge, outperforms other similar works in terms of execution time. Our approach employs the combination of the schoolbook long and Karatsuba multiplication algorithm for the elliptic curve point multiplication (ECPM) to achieve better parallelization while retaining low complexity. In the hardware implementation, the substantial gain in speed is also contributed by our n-bit pipelined Montgomery Modular Multiplier (pMMM), which is constructed from our n-bit pipelined multiplier-accumulators that utilizes digital signal processor (DSP) primitives as digit multipliers. Additionally, we also introduce our unified, pipelined modular adder-subtractor (pMAS) for the underlying field arithmetic, and leverage a more efficient yet compact scheduling of the Montgomery ladder algorithm. The implementation for 256-bit modulus size on the 7-series FPGA: Virtex-7, Kintex-7, and XC7Z020 yields 0.139, 0.138, and 0.206 ms of execution time, respectively. Furthermore, since our pMMM module is generic for any curve in Weierstrass form, we support multi-curve parameters, resulting in a unified ECC architecture. Lastly, our method also works in constant time, making it suitable for applications requiring high speed and SCA-resistant characteristics.
Last updated:  2022-01-18
Small MACs from Small Permutations
Maria Eichlseder, Ahmet Can Mert, Christian Rechberger, Markus Schofnegger
The concept of lightweight cryptography has gained in popularity recently, also due to various competitions and standardization efforts specifically targeting more efficient algorithms, which are also easier to implement. One of the important properties of lightweight constructions is the area of a hardware implementation, or in other words, the size of the implementation in a particular environment. Reducing the area usually has multiple advantages like decreased production cost or lower power consumption. In this paper, we focus on MAC functions and on ASIC implementations in hardware, and our goal is to minimize the area requirements in this setting. For this purpose, we design a new MAC scheme based on the well-known Pelican MAC function. However, in an effort to reduce the size of the implementation, we make use of smaller internal permutations. While this certainly leads to a higher internal collision probability, effectively reducing the allowed data, we show that the full security is still maintained with respect to other attacks, in particular forgery and key recovery attacks. This is useful in scenarios which do not require large amounts of data. Our detailed estimates, comparisons, and concrete benchmark results show that our new MAC scheme has the lowest area requirements and offers competitive performance. Indeed, we observe an area advantage of up to 30% in our estimated comparisons, and an advantage of around 13% compared to the closest competitor in a concrete implementation.
Last updated:  2022-01-14
RSA, DH, and DSA in the Wild
Nadia Heninger
This book chapter outlines techniques for breaking cryptography by taking advantage of implementation mistakes made in practice, with a focus on those that exploit the mathematical structure of the most widely used public-key primitives.
Last updated:  2022-01-14
Short Pairing-Free Blind Signatures with Exponential Security
Stefano Tessaro, Chenzhi Zhu
This paper proposes the first practical pairing-free three-move blind signature schemes that (1) are concurrently secure, (2) produce short signatures (i.e., three or four group elements/scalars), and (3) are provably secure either in the generic group model (GGM) or the algebraic group model (AGM) under the (plain or one-more) discrete logarithm assumption (beyond additionally assuming random oracles). We also propose a partially blind version of one of our schemes. Our schemes do not rely on the hardness of the ROS problem (which can be broken in polynomial time) or of the mROS problem (which admits sub-exponential attacks). The only prior work with these properties is Abe’s signature scheme (EUROCRYPT ’02), which was recently proved to be secure in the AGM by Kastner et al. (PKC ’22), but which also produces signatures twice as long as those from our scheme. The core of our proofs of security is a new problem, called weighted fractional ROS (WFROS), for which we prove (unconditional) exponential lower bounds.
Last updated:  2022-03-09
Membership Privacy for Asynchronous Group Messaging
Keita Emura, Kaisei Kajita, Ryo Nojima, Kazuto Ogawa, Go Ohtake
The Signal protocol is a secure messaging protocol providing end-to-end encrypted asynchronous communication. In this paper, we focus on a method capable of hiding membership information from the viewpoint of non group members in a secure group messaging (SGM) protocol, which we call "membership privacy''. Although Chase et al. (ACM CCS 2020) have considered the same notion, their proposal is an extension of Signal so called "Pairwise Signal'' where a group message is repeatedly sent over individual Signal channels. Thus their protocol is not scalable. In this work, we extend the Cohn-Gordon et al. SGM protocol (ACM CCS 2018), which we call the Asynchronous Ratcheting Trees (ART) protocol, to add membership privacy. We employ a key-private and robust public-key encryption (Abdalla et al., TCC2010/JoC2018) for hiding membership-related values in the setup phase. Furthermore, we concentrate on the fact that a group common key provides anonymity. This fact is used to encrypt membership information in the key update phase. Our extension does not affect the forward secrecy and post-compromise security of the original ART protocol. Our modification achieves asymptotically the same efficiency of the ART protocol in the setup phase. Any additional cost for key update does not depend on the number of group members (specifically, one encryption and decryption of a symmetric key-encryption scheme and one execution of a key-derivation function for each key update are employed). Therefore, the proposed protocol can add membership privacy to the ART protocol with a quite small overhead.
Last updated:  2022-06-23
Probing Security through Input-Output Separation and Revisited Quasilinear Masking
Dahmun Goudarzi, Thomas Prest, Matthieu Rivain, Damien Vergnaud
The probing security model is widely used to formally prove the security of masking schemes. Whenever a masked implementation can be proven secure in this model with a reasonable \emph{leakage rate}, it is also provably secure in a realistic leakage model known as the \emph{noisy leakage model}. This paper introduces a new framework for the composition of probing-secure circuits. We introduce the security notion of \emph{input-output separation} (IOS) for a refresh gadget. From this notion, one can easily compose gadgets satisfying the classical probing security notion --which does not ensure composability on its own-- to obtain a \emph{region probing secure} circuit. Such a circuit is secure against an adversary placing up to $t$ probes in each gadget composing the circuit, which ensures a tight reduction to the more realistic noisy leakage model. After introducing the notion and proving our composition theorem, we compare our approach to the composition approaches obtained with the (Strong) Non-Interference (S/NI) notions as well as the Probe-Isolating Non-Interference (PINI) notion. We further show that any uniform SNI gadget achieves the IOS security notion, while the converse is not true. We further describe a refresh gadget achieving the IOS property for any linear sharing with a quasilinear complexity $\Theta(n \log n)$ and a $O(1/\log n)$ leakage rate (for an $n$-size sharing). This refresh gadget is a simplified version of the quasilinear SNI refresh gadget proposed by Battistello, Coron, Prouff, and Zeitoun (ePrint 2016). As an application of our composition framework, we revisit the quasilinear-complexity masking scheme of Goudarzi, Joux and Rivain (Asiacrypt 2018). We improve this scheme by generalizing it to any base field (whereas the original proposal only applies to field with $n$th powers of unity) and by taking advantage of our composition approach. We further patch a flaw in the original security proof and extend it from the random probing model to the stronger region probing model. Finally, we present some application of this extended quasilinear masking scheme to AES and MiMC and compare the obtained performances.
Last updated:  2022-01-14
Security and Privacy Analysis of Recently Proposed ECC-Based RFID Authentication Schemes
Atakan Arslan, Muhammed Ali Bingöl
Elliptic Curve Cryptography (ECC) has been popularly used in RFID authentication protocols to efficiently overcome many security and privacy issues. Even if the strong cryptography primitives of ECC are utilised in the authentication protocols, the schemes are alas far from providing security and privacy properties as desired level. In this paper, we analyze four up-to-minute ECC based RFID authentication schemes proposed by Gasbi et al., Benssalah et al., Kumar et al., and Agrahari and Varma. The authors claim that their schemes provide prominent and important security and privacy requirements. However, we have shown some crucial vulnerabilities of the schemes against their allegations. We attack to Gasbi et al.'s protocol by using transmitted messages in insecure channel and exploiting the message relations which points a specific tag, and show that the scheme does not provide tag anonymity/untraceability, forward and backward security and the scheme has performance problems. Moreover, we demonstrate that Kumar et al., and Agrahari and Varma's schemes do not achieve forward and backward security because the schemes are not designed to eliminate the advantage of an adversary obtaining full knowledge of a tag from by attack definition. We also show that Benssalah et al.'s scheme suffers from tag anonymity/untraceability, forward and backward security when the pseudonym of a tag is transmitted in insecure channel somehow without updating.
Last updated:  2022-03-17
Broken Proofs of Solvency in Blockchain Custodial Wallets and Exchanges
Konstantinos Chalkias, Panagiotis Chatzigiannis, Yan Ji
Since the Mt. Gox Bitcoin exchange collapse in 2014, a number of custodial cryptocurrency wallets offer a form of financial solvency proofs to bolster their users' confidence. We identified that despite recent academic works that highlight potential security and privacy vulnerabilities in popular auditability protocols, a number of high-profile exchanges implement these proofs incorrectly, thus defeating their initial purpose. In this paper we provide an overview of \textit{broken} liability proof systems used in production today and suggest fixes, in the hope of closing the gap between theory and practice. Surprisingly, many of these exploitable attacks are due to a) weak cryptographic operations, for instance SHA1 hashing or hash-output truncation to 8 bytes, b) lack of data binding, such as wrong Merkle tree inputs and misuse of public bulletin boards, and c) lack of user-ID uniqueness guarantees.
Last updated:  2022-01-14
Inapplicability of Differential Fault Attacks against Cellular Automata based Lightweight Authenticated Cipher
AMBILI K N, JIMMY JOSE
Authenticated encryption (AE) schemes are a necessity to secure the physical devices connected to the Internet. Two AE schemes, TinyJambu and Elephant, are finalists of NIST lightweight cryptography competition. Another AE scheme, ACORN v3, a CAESAR competition finalist, has been shown to be particularly vulnerable against Differential Fault Attack (DFA), even more than its previous version ACORN v2. TinyJambu is also susceptible to DFA. An optimized interpolation attack has been proposed against one instance of Elephant, Delirium, recently. We propose methods to strengthen these schemes using the Cellular Automata (CA) and increase their resistance to these attacks. The Programmable Cellular Automata (PCA) 90-150 is effectively deployed to make these ciphers robust against DFA. We also provide mathematical analysis of the invigorated schemes and show that significant improvement is achieved in all the three enhanced schemes.
Last updated:  2022-01-14
Reinforcing Lightweight Authenticated Encryption Schemes against Statistical Ineffective Fault Attack
AMBILI K N, JIMMY JOSE
The increasing use of resource limited devices with less memory, less computing resource and less power supply, motivates the adoption of lightweight cryptography to provide security solution. ASCON is a finalist and GIMLI is a round 2 candidate of NIST lightweight cryptography competition. ASCON is a sponge function based authenticated encryption (AE) scheme suitable for high performance applications. It is suitable for use in environments like Internet of Things (IoT) where large number of very constrained devices communicate with high-end servers. The drawback is that fault analyses like Statistical Ineffective fault attack (SIFA) and Sub-Set Fault Analysis (SSFA) are possible. GIMLI is also a sponge function based AE scheme which is susceptible to SIFA. In this work, we modify ASCON 128a and GIMLI exploiting the pseudo-random properties of Cellular Automata (CA) to prevent these attacks. We analyse and show that these attacks are inapplicable in the reinforced cipher.
Last updated:  2022-01-14
Ensuring Accountability and Outsourced Decryption in IoT Systems using Ciphertext-Policy Attribute-Based Encryption
AMBILI K N, JIMMY JOSE
Attribute based cryptography enhances the chances of secure communication on large scale. There are several features of attribute based encryption which have been proposed as different protocols. Most of these are suitable for access control in large systems like cloud services. Very few protocols focus on reducing the computational overhead for lower end devices like Internet of Things sensors and actuators. Hence, it is desirable to have a mix of features in protocols for IoT architecture. Our protocol enforces accountability of different parties involved while reducing the computational overhead during decryption on miniature devices. We prove that our protocol is RCCA-secure in selective security model and achieve accountability and unlinkability.
Last updated:  2022-01-14
Outsourced CP-ABE with Whitebox Accountability in IoT Systems
AMBILI K N, JIMMY JOSE
Cryptography based on identity and attributes enhances the chance of secure communication on a large scale. Several attribute-based encryption schemes achieve different objectives when used in various protocols. Most of these are suitable for large systems like cloud services. There are a few protocols which focus on reducing the computational overhead for lower end devices like Internet of Things sensors and actuators. It is desirable to have a mix of features in protocols for IoT security architecture. We first propose a scheme to ensure accountability in CPABE scheme FAME. The protocol is proven CPA-secure with full security in random oracle model. We also prove its accountability. We also propose a hybrid protocol that enforces user accountability and outsourced decryption in IoT systems and achieve full security in replayable chosen ciphertext attack (RCCA) under random oracle model.
Last updated:  2022-01-14
ABE Squared: Accurately Benchmarking Efficiency of Attribute-Based Encryption
Antonio de la Piedra, Marloes Venema, Greg Alpár
Measuring efficiency is difficult. In the last decades, several works have contributed in the quest to successfully determine and compare the efficiency of pairing-based attribute-based encryption (ABE) schemes. However, many of these works are limited: they use little to no optimizations, or use underlying pairing-friendly elliptic curves that do not provide sufficient security anymore. Hence, using these works to benchmark ABE schemes does not yield accurate results. Furthermore, most ABE design papers focus on the efficiency of one important aspect. For instance, a new scheme may aim to have a fast decryption algorithm. Upon realizing this goal, the designer compares the new scheme with existing ones, demonstrating its dominance in this particular aspect. Although this approach is intuitive and might seem fair, the way in which this comparison is done might be biased. For instance, the schemes that are compared with the new scheme may be optimized with respect to another aspect, and appear in the comparison consequently inferior. In this work, we present a framework for accurately benchmarking efficiency of ABE: ABE Squared. In particular, we focus on uncovering the multiple layers of optimization that are relevant to the implementation of ABE schemes. Moreover, we focus on making any comparison fairer by considering the influence of the potential design goals on any optimizations. On the lowest layer, we consider the available optimized arithmetic provided by state-of-the-art cryptographic libraries. On the higher layers, we consider the choice of elliptic curve, the order of the computations, and importantly, the instantiation of the scheme on the chosen curves. Additionally, we show that especially the higher-level optimizations are dependent on the goal of the designer, e.g. optimization of the decryption algorithm. To compare schemes more transparently, we develop this framework, in which ABE schemes can be justifiably optimized and compared by taking into account the possible goals of a designer. To meet these goals, we also introduce manual, heuristic type-conversion techniques where existing techniques fall short. Finally, to illustrate the effectiveness of ABE Squared, we implement several schemes and provide all relevant benchmarks. These show that the design goal influences the optimization approaches, which in turn influence the overall efficiency of the implementations. Importantly, these demonstrate that the schemes also compare differently than existing works previously suggested.
Last updated:  2023-02-05
Subgroup membership testing on elliptic curves via the Tate pairing
Dmitrii Koshelev
This note explains how to guarantee the membership of a point in the prime-order subgroup of an elliptic curve (over a finite field) satisfying some moderate conditions. For this purpose, we apply the Tate pairing on the curve, however it is not required to be pairing-friendly. Whenever the cofactor is small, the new subgroup test is much more efficient than other known ones, because it needs to compute at most two $n$-th power residue symbols (with small $n$) in the basic field. More precisely, the running time of the test is (sub-)quadratic in the bit length of the field size, which is comparable with the Decaf-style technique. The test is relevant, e.g., for the zk-SNARK friendly curves Bandersnatch and Jubjub proposed by the Ethereum and Zcash research teams respectively.
Last updated:  2022-02-15
Systematic Study of Decryption and Re-Encryption Leakage: the Case of Kyber
Uncategorized
Melissa Azouaoui, Olivier Bronchain, Clément Hoffmann, Yulia Kuzovkova, Tobias Schneider, François-Xavier Standaert
Show abstract
Uncategorized
The side-channel cryptanalysis of Post-Quantum (PQ) key encapsulation schemes has been a topic of intense activity over the last years. Many attacks have been put forward: Simple Power Analysis (SPAs) against the re-encryption of schemes using the Fujisaki-Okamoto (FO) transform are known to be very powerful; Differential Power Analysis (DPAs) against the decryption are also possible. Yet, to the best of our knowledge, a systematic and quantitative investigation of their impact for designers is still missing. In this paper, we propose to capture these attacks with shortcut formulas in order to compare their respective strength in function of the noise level. Taking the case of Kyber for illustration, we then evaluate the (high) cost of preventing them with masking and the extent to which different parts of an implementation could benefit from varying security levels. We finally discuss tweaks to improve the situation and enable a better leveling of the countermeasures. Our conclusions confirm that current solutions for side-channel secure PQ key encapsulation schemes like Kyber are unlikely to be efficient in low-noise settings without (design or countermeasures) improvements.
Last updated:  2022-01-14
Time-Traveling Simulators Using Blockchains and Their Applications
Vipul Goyal, Justin Raizes, Pratik Soni
Blockchain technology has the potential of transforming cryptography. We study the problem of round-complexity of zero-knowledge, and more broadly, of secure computation in the blockchain-hybrid model, where all parties can access the blockchain as an oracle. We study zero-knowledge and secure computation through the lens of a new security notion where the simulator is given the ability to ``time-travel” or more accurately, to look into the future states of the blockchain and use this information to perform simulation. Such a time-traveling simulator gives a novel security guarantee of the following form: whatever the adversary could have learnt from an interaction, it could have computed on its own shortly into the future (e.g., a few hours from now). We exhibit the power of time-traveling simulators by constructing round-efficient protocols in the blockchain-hybrid model. In particular, we construct: 1. Three-round zero-knowledge (ZK) argument for NP with a polynomial-time black-box time-traveling simulator. 2. Three-round secure two-party computation (2PC) for any functionality with a polynomial-time black-box time-traveling simulator for both parties. In addition to standard cryptographic assumptions, we rely on natural hardness assumptions for Proof-of-Work based blockchains. In comparison, in the plain model, three-round protocols with black-box simulation are impossible, and constructions with non-black-box simulation for ZK require novel cryptographic assumptions while no construction for three-round 2PC is known. Our three-round 2PC result relies on a new, two-round extractable commitment that admits a time-traveling extractor.
Last updated:  2022-07-19
From Privacy-Only to Simulatable OT: Black-Box, Round-Optimal, Information-theoretic
Varun Madathil, Chris Orsini, Alessandra Scafuro, Daniele Venturi
We present an information-theoretic transformation from any 2-round OT protocol with only game-based security in the presence of malicious adversaries into a 4-round (which is known to be optimal) OT protocol with simulation-based security in the presence of malicious adversaries. Our transform is the first satisfying all of the following properties at the same time: – It is in the plain model, without requiring any setup assumption. – It only makes black-box usage of the underlying OT protocol. – It is information-theoretic, as it does not require any further cryptographic assumption (besides the existence of the underlying OT protocol). Additionally, our transform yields a cubic improvement in communication complexity over the best previously known transformation.
Last updated:  2022-01-14
Deletion-Compliance in the Absence of Privacy
Uncategorized
Jonathan Godin, Philippe Lamontagne
Show abstract
Uncategorized
Garg, Goldwasser and Vasudevan (Eurocrypt 2020) invented the notion of deletion-compliance to formally model the "right to be forgotten", a concept that confers individuals more control over their digital data. A requirement of deletion-compliance is strong privacy for the deletion requesters since no outside observer must be able to tell if deleted data was ever present in the first place. Naturally, many real world systems where information can flow across users are automatically ruled out. The main thesis of this paper is that deletion-compliance is a standalone notion, distinct from privacy. We present an alternative definition that meaningfully captures deletion-compliance without any privacy implications. This allows broader class of data collectors to demonstrate compliance to deletion requests and to be paired with various notions of privacy. Our new definition has several appealing properties: - It is implied by the stronger definition of Garg et al. under natural conditions, and is equivalent when we add a privacy requirement. - It is naturally composable with minimal assumptions. - Its requirements are met by data structure implementations that do not reveal the order of operations, a concept known as history-independence. Along the way, we discuss the many challenges that remain in providing a universal definition of compliance to the "right to be forgotten."
Last updated:  2022-01-14
Formal Analysis of Non-Malleability for Commitments in EasyCrypt
Denis Firsov, Sven Laur, Ekaterina Zhuchko
In this work, we perform a formal analysis of definitions of non-malleability for commitment schemes in the EasyCrypt theorem prover. There are two distinct formulations of non-malleability found in the literature: the comparison-based definition and the simulation- based definition. In this paper, we do a formal analysis of both. We start by formally proving that the comparison-based definition which was originally introduced by Laur et al. is unsatisfiable. Also, we propose a novel formulation of simulation-based non-malleability and show that it is satisfiable in the Random Oracle Model. Moreover, we validate our definition by proving that it implies hiding and binding of the commitment scheme. Finally, we relate the novel definition to the existing definitions of non-malleability.
Last updated:  2022-01-14
BAT: Small and Fast KEM over NTRU Lattices
Pierre-Alain Fouque, Paul Kirchner, Thomas Pornin, Yang Yu
We present $\BAT$ -- an IND-CCA secure key encapsulation mechanism (KEM) that is based on NTRU but follows an encryption/decryption paradigm distinct from classical NTRU KEMs. It demonstrates a new approach of decrypting NTRU ciphertext since its introduction 25 years ago. Instead of introducing an artificial masking parameter $p$ to decrypt the ciphertext, we use 2 linear equations in 2 unknowns to recover the message and the error. The encryption process is therefore close to the GGH scheme. However, since the secret key is now a short basis (not a vector), we need to modify the decryption algorithm and we present a new NTRU decoder. Thanks to the improved decoder, our scheme works with a smaller modulus and yields shorter ciphertexts, smaller than RSA-4096 for 128-bit classical security with comparable public-key size and much faster than RSA or even ECC. Meanwhile, the encryption and decryption are still simple and fast in spite of the complicated key generation. Overall, our KEM has more compact parameters than all current lattice-based schemes and a practical efficiency. Moreover, due to the similar key pair structure, $\BAT$ can be of special interest in some applications using Falcon signature that is also the most compact signature in the round 3 of the NIST post-quantum cryptography standardization. However, different from Falcon, our KEM does not rely on floating-point arithmetic and can be fully implemented over the integers.
Last updated:  2022-12-30
Improved (Related-key) Differential-based Neural Distinguishers for SIMON and SIMECK Block Ciphers
Jinyu Lu, Guoqiang Liu, Bing Sun, Chao Li, Li Liu
In CRYPTO 2019, Gohr made a pioneering attempt and successfully applied deep learning to the differential cryptanalysis against NSA block cipher Speck32/64, achieving higher accuracy than the pure differential distinguishers. By its very nature, mining effective features in data plays a crucial role in data-driven deep learning. In this paper, in addition to considering the integrity of the information from the training data of the ciphertext pair, domain knowledge about the structure of differential cryptanalysis is also considered into the training process of deep learning to improve the performance. Meanwhile, taking the performance of the differential-neural distinguisher of Simon32/64 as an entry point, we investigate the impact of input difference on the performance of the hybrid distinguishers to choose the proper input difference. Eventually, we improve the accuracy of the neural distinguishers of Simon32/64, Simon64/128, Simeck32/64, and Simeck64/128. We also obtain related-key differential-based neural distinguishers on round-reduced versions of Simon32/64, Simon64/128, Simeck32/64, and Simeck64/128 for the first time.
Last updated:  2022-04-30
CRYScanner: Finding cryptographic libraries misuse
Amit Choudhari, Sylvain Guilley, Khaled Karray
Cryptographic libraries have become an integral part of every digital device. Studies have shown that these systems are not only vulnerable due to bugs in cryptographic libraries, but also due to misuse of these libraries. In this paper, we focus on vulnerabilities introduced by the application developer. We performed a survey on the potential misusage of well-known libraries such as PKCS #11. We introduced a generic tool CRYScanner, to identify such misuses during and post-development. It works on the similar philosophy of an intrusion detection system for an internal network. This tool provides verification functions needed to check the safety of the code, such as detecting incorrect call flow and input parameters. We performed a feature-wise comparison with the existing state of the art solutions. CRYScanner includes additional features, preserving the capabilities of both static and dynamic analysis tools. We also show the detection of potential vulnerabilities in the several sample codes found online.
Last updated:  2022-01-10
Locality-Preserving Hashing for Shifts with Connections to Cryptography
Elette Boyle, Itai Dinur, Niv Gilboa, Yuval Ishai, Nathan Keller, Ohad Klein
Can we sense our location in an unfamiliar environment by taking a sublinear-size sample of our surroundings? Can we efficiently encrypt a message that only someone physically close to us can decrypt? To solve this kind of problems, we introduce and study a new type of hash functions for finding shifts in sublinear time. A function $h:\{0,1\}^n\to \mathbb{Z}_n$ is a $(d,\delta)$ {\em locality-preserving hash function for shifts} (LPHS) if: (1) $h$ can be computed by (adaptively) querying $d$ bits of its input, and (2) $\Pr [ h(x) \neq h(x \ll 1) + 1 ] \leq \delta$, where $x$ is random and $\ll 1$ denotes a cyclic shift by one bit to the left. We make the following contributions. Near-optimal LPHS via Distributed Discrete Log: We establish a general two-way connection between LPHS and algorithms for distributed discrete logarithm in the generic group model. Using such an algorithm of Dinur et al. (Crypto 2018), we get LPHS with near-optimal error of $\delta=\tilde O(1/d^2)$. This gives an unusual example for the usefulness of group-based cryptography in a post-quantum world. We extend the positive result to non-cyclic and worst-case variants of LPHS. Multidimensional LPHS: We obtain positive and negative results for a multidimensional extension of LPHS, making progress towards an optimal 2-dimensional LPHS. Applications: We demonstrate the usefulness of LPHS by presenting cryptographic and algorithmic applications. In particular, we apply multidimensional LPHS to obtain an efficient "packed" implementation of homomorphic secret sharing and a sublinear-time implementation of location-sensitive encryption whose decryption requires a significantly overlapping view.
Last updated:  2022-04-27
Speeding Dumbo: Pushing Asynchronous BFT Closer to Practice
Bingyong Guo, Yuan Lu, Zhenliang Lu, Qiang Tang, Jing Xu, Zhenfeng Zhang
Asynchronous BFT consensus can implement robust mission-critical decentralized services in the unstable or even adversarial wide-area network without relying on any form of timing assumption. Starting from the work of HoneyBadgerBFT (CCS 2016), several studies tried to push asynchronous BFT towards practice. In particular, in a recent work of Dumbo (CCS 2020), they redesigned the protocol backbone and used one multi-valued validated Byzantine agreement (MVBA) to replace $n$ concurrent asynchronous binary agreement (ABA) protocols and dramatically improved the performance. Despite those efforts, asynchronous BFT protocols remain to be slow, and in particular, the latency is still quite large. There are two reasons contributing to the inferior performance: (1) the reliable broadcast (RBC) protocols still incur substantial costs; (2) the MVBA protocols are quite complicated and heavy, and all existing constructions need dozens of rounds and take the majority of he overall latency. We first present a new construction of asynchronous BFT that replaces RBC instance with a cheaper broadcast component. It not only reduces the $O(n^3)$ message complexity incurred by $n$ RBCs to $O(n^2)$, but also saves up to 67% communications (in the presence of a fair network scheduler). Moreover, our technical core is a new MVBA protocol, Speeding MVBA, which is concretely more efficient than all existing MVBAs. It requires only 6 rounds in the best case and expected 12 rounds in the worst case (by contrast, several dozens of rounds in the MVBA from Cachin et al. [12] and the recent Dumbo-MVBA [32], and around 20 rounds in the MVBA from Abraham et al. [4]). Our new technique of the construction might be of independent interests. We implemented Speeding Dumbo and did extensive tests among up to 150 EC2 t2.medium instances evenly allocated in 15 AWS regions across the globe. The experimental results show that Speeding Dumbo reduces the latency to about a half of Dumbo's, and also doubles the throughput of Dumbo, through all system scales from 4 nodes to 150 nodes. We also did tests to benchmark individual components such as the broadcasts and the MVBA protocols, which may be of interests for future improvements.
Last updated:  2022-01-10
Preparation for Post-Quantum era: a survey about blockchain schemes from a post-quantum perspective
Andrada-Teodora Ciulei, Marian-Codrin Crețu, Emil Simion
Blockchain is a type of Distributed Ledger Technology (DLT) that has been included in various types of fields due to its numerous benefits: transparency, efficiency, reduced costs, decentralization, and distributivity realized through public-key cryptography and hash functions. At the same time, the increased progress of quantum computers and quantum-based algorithms threatens the security of the classical cryptographic algorithms, in consequence, it represents a risk for the Blockchain technology itself. This paper briefly presents the most relevant algorithms and procedures that have contributed to the progress of quantum computing and the categories of post-quantum cryptosystems. We also included a description of the current quantum capabilities because their evolution directly influences the necessity of increasing post-quantum research. Further, the paper continues as a guide to understanding the fundamentals of blockchain technology, and the primitives that are currently used to ensure security. We provide an analysis of the most important cryptocurrencies according to their ranking by market capitalization (MC) in the context of quantum threats, and we end up with a review of post-quantum blockchain (PQB) schemes proposals.
Last updated:  2022-01-10
Boomeyong: Embedding Yoyo within Boomerang and its Applications to Key Recovery Attacks on AES and Pholkos
Mostafizar Rahman, Dhiman Saha, Goutam Paul
This work investigates a generic way of combining two very effective and well-studied cryptanalytic tools, proposed almost 18 years apart, namely the boomerang attack introduced by Wagner in FSE 1999 and the yoyo attack by Ronjom et. al. in Asiacrypt 2017. In doing so, the s-box switch and ladder switch techniques are leveraged to embed a yoyo trail inside a boomerang trail. As an immediate application, a 6-round key recovery attack on AES-128 is mounted with time complexity of $2^{78}$. A 10-round key recovery attack on recently introduced AES-based tweakable block cipher Pholkos is also furnished to demonstrate the applicability of the new technique on AES-like constructions. The results on AES are experimentally verified by applying and implementing them on a small scale variant of AES. We provide arguments that draw a relation between the proposed strategy with the retracing boomerang attack devised in Eurocrypt 2020. To the best of our knowledge, this is the first attempt to merge the yoyo and boomerang techniques to analyze SPN ciphers and warrants further attention as it has the potential of becoming an important cryptanalysis tool.
Last updated:  2023-04-03
Bootstrapping for Approximate Homomorphic Encryption with Negligible Failure-Probability by Using Sparse-Secret Encapsulation
Jean-Philippe Bossuat, Juan Ramón Troncoso-Pastoriza, Jean-Pierre Hubaux
Bootstrapping parameters for the approximate homomorphic-encryption scheme of Cheon et al., CKKS (Asiacrypt 17), are usually instantiated using sparse secrets to be efficient. However, using sparse secrets constrains the range of practical parameters within a tight interval, as they must support a large enough depth for the bootstrapping circuit but also be secure with respect to the sparsity of their secret. We present a bootstrapping procedure for the CKKS scheme that combines both dense and sparse secrets. Our construction enables the use of parameters for which the homomorphic capacity is based on a dense secret, yet with a bootstrapping complexity that remains the one of a sparse secret and with a large security margin. Moreover, this also enables us to easily parameterize the bootstrapping circuit so that it has a negligible failure probability that, to the best of our knowledge, has never been achieved for the CKKS scheme. When using the parameters of previous works, our bootstrapping procedures enables a faster procedure with an increased precision and lower failure probability. For example we are able to bootstrapp a plaintext of $\mathbb{C}^{32768}$ in 20.2 sec, with 32.11 bits of precision, 285 bits of modulus remaining, a failure probability of $2^{-138.7}$ and 128 bit security.
Last updated:  2022-01-08
Transitional Leakage in Theory and Practice - Unveiling Security Flaws in Masked Circuits
Nicolai Müller, David Knichel, Pascal Sasdrich, Amir Moradi
Accelerated by the increased interconnection of highly accessible devices, the demand for effective and efficient protection of hardware designs against SCA is ever rising, causing its topical relevance to remain immense in both, academia and industry. Among a wide range of proposed countermeasures against SCA, masking is a highly promising candidate due to its sound foundations and well-understood security requirements. In addition, formal adversary models have been introduced, aiming to accurately capture real-world attack scenarios while remaining sufficiently simple to efficiently reason about the SCA resilience of designs. Here, the $d$-probing model is the most prominent and well-studied adversary model. Its extension, introduced as the robust $d$-probing model, covers physical defaults occurring in hardware implementations, particularly focusing on combinational recombinations (glitches), memory recombinations (transitions), and routing recombinations (coupling). With increasing complexity of modern cryptographic designs and logic circuits, formal security verification becomes ever more cumbersome. This started to spark innovative research on automated verification frameworks. Unfortunately, these verification frameworks mostly focus on security verification of hardware circuits in the presence of glitches, but remain limited in identification and verification of transitional leakage. To this end, we extend SILVER, a recently proposed tool for formal security verification of masked logic circuits, to also detect and verify information leakage resulting from combinations of glitches and transitions. Based on extensive case studies, we further confirm the accuracy and practical relevance of our methodology when assessing and verifying information leakage in hardware implementations.
Last updated:  2022-01-08
Dynamic Group Signature Scheme on Lattice with Verifier-local Revocation
Uncategorized
Xiuju Huang, Jiashuo Song, Zichen Li
Show abstract
Uncategorized
The verifier-local revocation mechanism (VLR) is an ideal function of group signature. As long as the verifier knows the revocation list, he/she can verify the legitimacy of the signer, prevent the revoked user from impersonating a legitimate user for signature, ensure the timeliness of signature information and save resources. Group signature is often required to realize users' dynamic addition and revocation. Therefore, an efficient lattice signature scheme with a local revocation mechanism and alter the number of users has become an important topic. In this paper, a zero-knowledge proof scheme on the lattice has been proposed. Based on it, a group signature scheme with VLR has been constructed. This scheme can effectively join and revocation without generating the key pair again. The tracking mechanism uses an encryption scheme. As long as given a correct tracking key, the signer index can be opened quickly. And this algorithm has short public key, logarithmic signature length, and efficient implementation of the VLR function.
Last updated:  2023-07-12
WaterBear: Practical Asynchronous BFT Matching Security Guarantees of Partially Synchronous BFT
Uncategorized
Haibin Zhang, Sisi Duan, Boxin Zhao, Liehuang Zhu
Show abstract
Uncategorized
Asynchronous Byzantine fault-tolerant (BFT) protocols assuming no timing assumptions are inherently more robust than their partially synchronous counterparts, but typically have much weaker security guarantees. We design and implement WaterBear, a family of new and efficient asynchronous BFT protocols matching all security guarantees of partially synchronous protocols. To achieve the goal, we have developed the local coin (flipping a coin locally and independently at each replica) based BFT approach---one long deemed as being inefficient---and designed more efficient asynchronous binary agreement (ABA) protocols and their reproposable ABA (RABA) versions from local coins. Our techniques on ABA and RABA are of independent interests and also allow us to build more efficient ABA protocols from common coins (distributively generating the same random coins for all replicas), helping improve various other protocols such as distributed key generation and BFT assuming trusted setup. We implemented in total five BFT protocols in a new golang library, including four WaterBear protocols and BEAT. Via extensive evaluation, we show that our protocols are efficient under both failure-free and failure scenarios, achieving at least comparable or superior performance to BEAT with much weaker security guarantees. Specifically, the most efficient WaterBear protocol consistently outperforms BEAT in terms of all metrics. For instance, when the number of replicas is 16, the latency of our protocol is about 1/8 of that of BEAT and the throughput of our protocol is 1.23x that of BEAT. Our work pushes the boundaries of asynchronous BFT, showing the strongest security levels that we know of and high performance can co-exist.
Last updated:  2022-07-03
PACE: Fully Parallelizable BFT from Reproposable Byzantine Agreement
Uncategorized
Haibin Zhang, Sisi Duan
Show abstract
Uncategorized
The classic asynchronous Byzantine fault tolerance (BFT) framework of Ben-Or, Kemler, and Rabin (BKR) and its descendants rely on reliable broadcast (RBC) and asynchronous binary agreement (ABA). However, BKR does not allow all ABA instances to run in parallel, a well-known performance bottleneck. We propose PACE, a generic framework that removes the bottleneck, allowing fully parallelizable ABA instances. PACE is built on RBC and reproposable ABA (RABA). Different from the conventional ABA, RABA allows a replica to change its mind and vote twice. We show how to efficiently build RABA protocols from existing ABA protocols and a new ABA protocol that we introduce. We implement six new BFT protocols: three in the BKR framework, and three in the PACE framework. Via a deployment using 91 replicas on Amazon EC2 across five continents, we show that all PACE instantiations, in both failure-free and failure scenarios, significantly outperform their BKR counterparts, and prior BFT protocols such as BEAT and Dumbo, in terms of latency, throughput, latency vs. throughput, and scalability.
Last updated:  2022-09-13
Algebraic Meet-in-the-Middle Attack on LowMC
Fukang Liu, Santanu Sarkar, Gaoli Wang, Willi Meier, Takanori Isobe
By exploiting the feature of partial nonlinear layers, we propose a new technique called algebraic meet-in-the-middle (MITM) attack to analyze the security of LowMC, which can reduce the memory complexity of the simple difference enumeration attack over the state-of-the-art. Moreover, while an efficient algebraic technique to retrieve the full key from a differential trail of LowMC has been proposed at CRYPTO 2021, its time complexity is still exponential in the key size. In this work, we show how to reduce it to constant time when there are a sufficiently large number of active S-boxes in the trail. With the above new techniques, the attacks on LowMC and \mbox{LowMC-M} published at CRYPTO 2021 are further improved, and some LowMC instances could be broken for the first time. Our results seem to indicate that partial nonlinear layers are still not well-understood.
Last updated:  2023-05-16
Pairing-based Accountable Subgroup Multi-signatures with Verifiable Group Setup
Ahmet Ramazan Ağırtaş, Oğuz Yayla
An accountable subgroup multi-signature is a kind of multi-signature scheme in which any subgroup $\mathcal{S}$ of a group $\mathcal{G}$ of potential signers jointly sign a message $m$, ensuring that each member of $\mathcal{S}$ is accountable for the resulting signature. In this paper, we propose three novel pairing-based accountable subgroup multi-signature (ASM) schemes, which are secure against existential forgery under chosen-message attacks and computational co-Diffie-Hellman assumption. In the first one, we use Feldman’s verifiable secret sharing scheme as an implicit authentication and proof-of-possession for setting up group $\mathcal{G}$. In the second one, the members participating in authentication are decided by the subgroup. In the third one, we consider a designated combiner managing the authentication process. All schemes we propose here require fewer computations in the signature generation, signature aggregation, and verification phases than the pairing-based ASM scheme proposed by Boneh, Drijvers, and Neven. Moreover, our first and third ones solve the open problem of constructing an ASM scheme in which the subgroup $\mathcal{S}$ of signers is unknown before the signature generation. Besides, we give a method of eliminating the combiner in case of knowing the subgroup of signers $\mathcal{S}$ in advance. Further, we extend our proposed schemes to aggregated versions. For $N$ accountable subgroup multi-signatures, aggregated versions of our proposed schemes output an aggregated signature with the size of a single group ($\mathbb{G}_1$) element and require $N + 1$ pairings in aggregated signature verification. In contrast, the partially aggregated ASM scheme of Boneh, Drijvers, and Neven gives an aggregated signature with the size of $N + 1$ group elements and requires $2N + 1$ pairings in aggregated signature verification.
Last updated:  2023-09-20
Keyed-Fully Homomorphic Encryption without Indistinguishability Obfuscation
Shingo Sato, Keita Emura, and Atsushi Takayasu
(Fully) homomorphic encryption ((F)HE) allows users to publicly evaluate circuits on encrypted data. Although publicly homomorphic evaluation property has various applications, (F)HE cannot achieve security against chosen ciphertext attacks (CCA2) due to its nature. To achieve both the CCA2 security and homomorphic evaluation property, Emura et al. (PKC 2013) introduced keyed-homomorphic public key encryption (KH-PKE) and formalized its security denoted by $\mathsf{KH\textup{-}CCA}$ security. KH-PKE has a homomorphic evaluation key that enables users to perform homomorphic operations. Intuitively, KH-PKE achieves the CCA2 security unless adversaries have a homomorphic evaluation key. Although Lai et al. (PKC 2016) proposed the first keyed-fully homomorphic encryption (keyed-FHE) scheme, its security relies on the indistinguishability obfuscation ($\mathsf{iO}$), and this scheme satisfies only a weak variant of $\mathsf{KH\textup{-}CCA}$ security. Here, we propose a generic construction of a $\mathsf{KH\textup{-}CCA}$ secure keyed-FHE scheme from an FHE scheme secure against non-adaptive chosen ciphertext attack (CCA1) and a strong dual-system simulation-sound non-interactive zero-knowledge (strong DSS-NIZK) argument system by using the Naor-Yung paradigm. We show that there are existing strong DSS-NIZK systems and IND-CCA1 secure FHE schemes that are suitable for our generic construction. This shows that there exists a keyed-FHE scheme from simpler primitives than iO.
Last updated:  2022-08-08
An algebraic attack to the Bluetooth stream cipher E0
Roberto La Scala, Sergio Polese, Sharwan K. Tiwari, Andrea Visconti
In this paper we study the security of the Bluetooth stream cipher E0 from the viewpoint it is a “difference stream cipher”, that is, it is defined by a system of explicit difference equations over the finite field GF(2). This approach highlights some issues of the Bluetooth encryption such as the invertibility of its state transition map, a special set of 14 bits of its 132-bit state which when guessed implies linear equations among the other bits and finally a small number of spurious keys, with 83 guessed bits, which are compatible with a keystream of about 60 bits. Exploiting these issues, we implement an algebraic attack using Gröbner bases, SAT solvers and Binary Decision Diagrams. Testing activities suggest that the version based on Gröbner bases is the best one and it is able to attack E0 in about 2^79 seconds on an Intel i9 CPU. To the best of our knowledge, this work improves any previous attack based on a short keystream, hence fitting with Bluetooth specifications.
Last updated:  2022-01-07
Lattice-based Signatures with Tight Adaptive Corruptions and More
Jiaxin Pan, Benedikt Wagner
We construct the first tightly secure signature schemes in the multi-user setting with adaptive corruptions from lattices. In stark contrast to the previous tight constructions whose security is solely based on number-theoretic assumptions, our schemes are based on the Learning with Errors (LWE) assumption which is supposed to be post-quantum secure. The security of our scheme is independent of the numbers of users and signing queries, and it is in the non-programmable random oracle model. Our LWE-based scheme is compact namely, its signatures contain only a constant number of lattice vectors. At the core of our construction are a new abstraction of the existing lossy identification (ID) schemes using dual-mode commitment schemes and a refinement of the framework by Diemert et al. (PKC 2021) which transforms a lossy ID scheme to a signature using sequential OR proofs. In combination, we obtain a tight generic construction of signatures from dual-mode commitments in the multi-user setting. Improving the work of Diemert et al., our new approach can be instantiated using not only the LWE assumption, but also an isogeny-based assumption. We stress that our LWE-based lossy ID scheme in the intermediate step uses a conceptually different idea than the previous lattice-based ones. Of independent interest, we formally rule out the possibility that the aforementioned ``ID-to-Signature'' methodology can work tightly using parallel OR proofs. In addition to the results of Fischlin et al. (EUROCRYPT 2020), our impossibility result shows a qualitative difference between both forms of OR proofs in terms of tightness.
Last updated:  2022-01-08
Transformer encoder-based Crypto-Ransomware Detection for Low-Power Embedded Processors
Hyunji Kim, Sejin Lim, Yeajun Kang, Wonwoong Kim, Hwajeong Seo
Crypto-ransomware has a process to encrypt the victim's files, and crypto-ransomware requests the victim for money for a key to decrypt the encrypted file. In this paper, we present new approaches to prevent crypto-ransomware by detecting block cipher algorithms for Internet of Things (IoT) platforms. The generic software of the AVR package and the lightweight block cipher library (FELICS) written in C language was trained through the neural network, and then we evaluated the result. Unlike the previous technique, the proposed method does not extract sequence and frequency characteristics, but considers opcodes and opcode sequences as words and sentences, performs word embedding, and then inputs them to the neural network based on the encoder structure of the transformer model. Through this approach, the file size was reduced by 0.5 times while maintaining a similar level of classification performance compared to the previous method. The detection success rate for the proposed method was evaluated with the F-measured value, which is the harmonic mean of precision and recall. In addition to achieving 98% crypto-ransomware detection success rates, classification by benign firmware and lightweight cryptography algorithm, Substitution-Permutation-Network (SPN) structure, Addition-Rotation-eXclusive-or structure (ARX) and normal firmware classification are also possible.
Last updated:  2022-01-07
Quantum Rotational Cryptanalysis for Preimage Recovery of Round-Reduced Keccak
Runsong Wang, Xuelian Li, Juntao Gao, Hui Li, Baocang Wang
This paper considers the capability of 4-round Keccak-224/256/384/512 against the cryptanlysis involved by the quantum algorithm. In order to effectively find the corresponding rotational number for the rotational counterpart of preimage, we first establish a probabilistic algorithm based on the Grover search to guess a possible rotational number by using the fixed relations of bits pairs in some coordinates. This is committed to achieving that each iteration of searching the rotational counterparts contains only one run of 4-round Keccak variant applied for the verification, which can reduce the attack complexity in the quantum setting. Based on finding the rotational number under an acceptable randomness, we construct two attack models to focus on the recovery of preimage. In the first model, the Grover’s algorithm serves as finding out a rotational counterpart of the preimage. Through 64 attempts of checking the correct rotational number, the desired preimage can be obtained. In the second model, we abstract the finding of rotational counterparts into searching vertexes on a hypercube, and then, the SKW quantum algorithm is used to deal with the finding of the vertexes acted as rotational counterparts. Compared to the recent works in classical setting, we greatly reduce the attack complexity of preimage recovery. Furthermore, the first attack model is superior to the generic quantum preimage attack for 4-round Keccak-224/256/384/512, and the second model has slightly lower attack effect but more practicality on the 4-round Keccak-512/384, that is, the model is exponentially easier to implement in quantum circuit than both our first attack model and the generic quantum preimage attack.
Last updated:  2022-03-15
Security of Identity-based Encryption Schemes from Quadratic Residues
Ferucio Laurentiu Tiplea, Sorin Iftene, George Teseleanu, Anca-Maria Nica
The aim of this paper is to provide an overview on the newest results regarding the security of identity-based encryption schemes from quadratic residuosity. It is shown that the only secure schemes are the Cocks and Boneh-Gentry-Hamburg schemes (except of anonymous variations of them).
Last updated:  2022-04-22
Security Analysis of Coconut, an Attribute-Based Credential Scheme with Threshold Issuance
Alfredo Rial, Ania M. Piotrowska
Coconut [NDSS 2019] is an attribute-based credential scheme with threshold issuance. We analyze its security properties. To this end, we define an ideal functionality for attribute-based access control with threshold issuance. We describe a construction that realizes our functionality. Our construction follows Coconut with a few changes. In particular, it modifies the protocols for blind issuance of credentials and for credential show so that user privacy holds against computationally unbounded adversaries. The modified protocols are slightly more efficient than those of Coconut. Our construction also extends the public key, which seems necessary to prove unforgeability.
Last updated:  2022-06-28
Formalizing Delayed Adaptive Corruptions and the Security of Flooding Networks
Christian Matt, Jesper Buus Nielsen, Søren Eller Thomsen
Many decentralized systems rely on flooding protocols for message dissemination. In such a protocol, the sender of a message sends it to a randomly selected set of peers. These peers again send the message to their randomly selected peers, until every network participant has received the message. This type of protocols clearly fail in face of an adaptive adversary who can simply corrupt all peers of the sender and thereby prevent the message from being delivered. Nevertheless, flooding protocols are commonly used within protocols that aim to be cryptographically secure, most notably in blockchain protocols. While it is possible to revert to static corruptions, this gives unsatisfactory security guarantees, especially in the setting of a blockchain that is supposed to run for an extended period of time. To be able to provide meaningful security guarantees in such settings, we give precise semantics to what we call $\delta$-delayed adversaries in the Universal Composability (UC) framework. Such adversaries can adaptively corrupt parties, but there is a delay of time $\delta$ from when an adversary decides to corrupt a party until they succeed in overtaking control of the party. Within this model, we formally prove the intuitive result that flooding protocols are secure against $\delta$-delayed adversaries when $\delta$ is at least the time it takes to send a message from one peer to another plus the time it takes the recipient to resend the message. To this end, we show how to reduce the adaptive setting with a $\delta$-delayed adversary to a static experiment with an Erdős–Rényi graph. Using the established theory of Erdős–Rényi graphs, we provide upper bounds on the propagation time of the flooding functionality for different neighborhood sizes of the gossip network. More concretely, we show the following for security parameter $\kappa$, point-to-point channels with delay at most $\Delta$, and $n$ parties in total, with a sufficiently delayed adversary that can corrupt any constant fraction of the parties: If all parties send to $\Omega(\kappa)$ parties on average, then we can realize a flooding functionality with maximal delay $\mathcal{O}\bigl(\Delta \cdot \log (n) \bigr)$; and if all parties send to $\Omega\bigl( \sqrt{\kappa n \log (n)} \bigr)$ parties on average, we can realize a flooding functionality with maximal delay $\mathcal{O}(\Delta)$.
Last updated:  2023-06-15
Algebraic Reductions of Knowledge
Abhiram Kothapalli, Bryan Parno
We introduce reductions of knowledge, a generalization of arguments of knowledge, which reduce checking knowledge of a witness in one relation to checking knowledge of a witness in another (simpler) relation. Reductions of knowledge unify a growing class of modern techniques as well as provide a compositional framework to modularly reason about individual steps in complex arguments of knowledge. As a demonstration, we simplify and unify recursive arguments over linear algebraic statements by decomposing them as a sequence of reductions of knowledge. To do so, we develop the tensor reduction of knowledge, which generalizes the central reductive step common to many recursive arguments. Underlying the tensor reduction of knowledge is a new information-theoretic reduction, which, for any modules $U$, $U_1$, and $U_2$ such that $U \cong U_1 \otimes U_2$, reduces the task of evaluating a homomorphism in $U$ to evaluating a homomorphism in $U_1$ and evaluating a homomorphism in $U_2$.
Last updated:  2022-01-07
Beating Classical Impossibility of Position Verification
Jiahui Liu, Qipeng Liu, Luowen Qian
Chandran et al. (SIAM J. Comput.'14) formally introduced the cryptographic task of position verification, where they also showed that it cannot be achieved by classical protocols. In this work, we initiate the study of position verification protocols with classical verifiers. We identify that proofs of quantumness (and thus computational assumptions) are necessary for such position verification protocols. For the other direction, we adapt the proof of quantumness protocol by Brakerski et al. (FOCS'18) to instantiate such a position verification protocol. As a result, we achieve classically verifiable position verification assuming the quantum hardness of Learning with Errors. Along the way, we develop the notion of 1-of-2 non-local soundness for a natural non-local game for 1-of-2 puzzles, first introduced by Radian and Sattath (AFT'19), which can be viewed as a computational unclonability property. We show that 1-of-2 non-local soundness follows from the standard 2-of-2 soundness (and therefore the adaptive hardcore bit property), which could be of independent interest.
Last updated:  2022-07-25
PI-Cut-Choo and Friends: Compact Blind Signatures via Parallel Instance Cut-and-Choose and More
Uncategorized
Rutchathon Chairattana-Apirom, Lucjan Hanzlik, Julian Loss, Anna Lysyanskaya, Benedikt Wagner
Show abstract
Uncategorized
Blind signature schemes are one of the best-studied tools for privacy-preserving authentication. Unfortunately, known constructions of provably secure blind signatures either rely on non-standard hardness assumptions, or require parameters that grow linearly with the number of concurrently issued signatures, or involve prohibitively inefficient general techniques such as general secure two-party computation. Recently, Katz, Loss and Rosenberg (ASIACRYPT'21) gave a technique that, for the security parameter n transforms blind signature schemes secure for O(log n) concurrent executions of the blind signing protocol into ones that are secure for any poly(n) concurrent executions. This transform has two drawbacks that we eliminate in this paper: 1) the communication complexity of the resulting blind signing protocol grows linearly with the number of signing interactions; 2) the resulting schemes inherit a very loose security bound from the underlying scheme and, as a result, require impractical parameter sizes. In this work, we give an improved transform for obtaining a secure blind signing protocol tolerating any poly(n) concurrent executions from one that is secure for O(log n) concurrent executions. While preserving the advantages of the original transform, the communication complexity of our new transform only grows logarithmically with the number of interactions. Under the CDH and RSA assumptions, we improve on this generic transform in terms of concrete efficiency and give (1) a BLS-based blind signature scheme over a standard-sized group where signatures are of size roughly 3 KB and communication per signature is roughly 120 KB; and (2) an Okamoto-Guillou-Quisquater-based blind signature scheme with signatures and communication of roughly 9 KB and 8 KB, respectively.
Last updated:  2022-01-07
Efficient Lattice-Based Blind Signatures via Gaussian One-Time Signatures
Vadim Lyubashevsky, Ngoc Khanh Nguyen, Maxime Plancon
Lattice-based blind signature schemes have been receiving some recent attention lately. Earlier efficient 3-round schemes (Asiacrypt 2010, Financial Cryptography 2020) were recently shown to have mistakes in their proofs, and fixing them turned out to be extremely inefficient and limited the number of signatures that a signer could send to less than a dozen (Crypto 2020). In this work we propose a round-optimal, 2-round lattice-based blind signature scheme which produces signatures of length 150KB. The running time of the signing protocol is linear in the maximum number signatures that can be given out, and this limits the number of signatures that can be signed per public key. Nevertheless, the scheme is still quite efficient when the number of signatures is limited to a few dozen thousand, and appears to currently be the most efficient lattice-based candidate.
Last updated:  2022-01-07
Pseudorandom Bit Generation with Asymmetric Numeral Systems
Josef Pieprzyk, Marcin Pawlowski, Pawel Morawiecki, Arash Mahboubi, Jarek Duda, Seyit Camtepe
The generation of pseudorandom binary sequences is of a great importance in numerous applications stretching from simulation and gambling to cryptography. Pseudorandom bit generators (PRBGs) can be split into two classes depending on their claimed security. The first includes PRBGs that are provably secure (such as the Blum-Blum-Shub one). Security of the second class rests on heuristic arguments. Sadly, PRBG from the first class are inherently inefficient and some PRBG are insecure against quantum attacks. While, their siblings from the second class are very efficient, but security relies on their resistance against known cryptographic attacks. This work presents a construction of PRBG from the asymmetric numeral system (ANS) compression algorithm. We define a family of PRBGs for $2^R$ ANS states and prove that it is indistinguishable from a truly random one for a big enough $R$. To make our construction efficient, we investigate PRBG built for smaller $R=7,8,9$ and show how to remove local correlations from output stream. We permute output bits using rotation and Keccak transformations and show that permuted bits pass all NIST tests. Our PRBG design is provably secure (for a large enough $R$) and heuristically secure (for a smaller $R$). Besides, we claim that our PRBG is secure against quantum adversaries.
Last updated:  2022-01-02
Publicly verifiable anonymous tokens with private metadata bit
Fabrice Benhamouda, Tancrède Lepoint, Michele Orrù, Mariana Raykova
We present a new construction for publicly verifiable anonymous tokens with private metadata. This primitive enables an issuer to generate an anonymous authentication token for a user while embedding a single private metadata bit. The token can be publicly verified, while the value of the private metadata is only accessible to the party holding the secret issuing key and remains hidden to any other party, even to the user. The security properties of this primitive also include unforgeability, which guarantees that only the issuer can generate new valid tokens, and unlinkability that guarantees that tokens issued with the same private metadata bit are indistinguishable. Our anonymous tokens scheme builds on the top of blind Schnorr signatures. We analyze its security in the algebraic group model and prove its security under the modified ROS assumption, one-more discrete logarithm, and decisional Diffie-Hellman assumptions.
Last updated:  2022-03-15
Merged with 2022/007
Rutchathon Chairattana-Apirom, Anna Lysyanskaya
Blind signature schemes are one of the best and best-studied tools for privacy-preserving authentication. It has a blind signing protocol in which a signer learns nothing about the message being signed or the resulting signature; thus such a signature can serve as an anonymous authentication token. Thus, constructing efficient blind signatures secure under realistic cryptographic assumptions is an important goal. A recent paper by Benhamouda, Lepoint, Loss, Orr\`u, and Raykova (Eurocrypt '21) showed that a large class of blind signature schemes secure in the stand-alone setting are no longer secure when multiple instances of the blind signing protocol are executed concurrently. The best known technique to salvage the security of such blind signatures was recently proposed by Katz, Loss, and Rosenberg (Asiacrypt '21). For the security parameter $\kappa$, their technique transforms blind signature schemes that are secure for $\mathcal{O}(\log \kappa)$ concurrent executions of the blind signing protocol into ones that are secure for any $N = \mathsf{poly}(\kappa)$ concurrent executions. The resulting, transformed blind signing protocol needs $\mathcal{O}(N)$ times more computation and communication than the original one. In this paper, we give an improved transform for obtaining a secure blind signing protocol tolerating $N = \mathsf{poly}(\kappa)$ concurrent executions from one that is secure for $\mathcal{O}(\log \kappa)$ concurrent executions. Our technique still needs $\mathcal{O}(N)$ times more computation, but only $\mathcal{O}(\log N)$ more communication than the original blind signature.
Last updated:  2022-02-09
Polynomial-Time Key Recovery Attack on the Lau-Tan Cryptosystem Based on Gabidulin Codes
Wenshuo Guo, Fang-Wei Fu
This paper presents a key recovery attack on the cryptosystem proposed by Lau and Tan in a talk at ACISP 2018. The Lau-Tan cryptosystem uses Gabidulin codes as the underlying decodable code. To hide the algebraic structure of Gabidulin codes, the authors chose a matrix of column rank $n$ to mix with a generator matrix of the secret Gabidulin code. The other part of the public key, however, reveals crucial information about the private key. Our analysis shows that the problem of recovering the private key can be reduced to solving a multivariate linear system over the base field, rather than solving a multivariate quadratic system as claimed by the authors. Solving the linear system for any nonzero solution permits us to recover the private key. Apparently, this attack costs polynomial time, and therefore completely breaks the cryptosystem.
Last updated:  2022-03-30
Analyzing the Provable Security Bounds of GIFT-COFB and Photon-Beetle
Akiko Inoue, Tetsu Iwata, Kazuhiko Minematsu
We study the provable security claims of two NIST Lightweight Cryptography (LwC) finalists, GIFT-COFB and Photon-Beetle, and present several attacks whose complexities contradict their claimed bounds in their final round specification documents. For GIFT-COFB, we show an attack using $q_e$ encryption queries and no decryption query to break privacy (IND-CPA). The success probability is $O(q_e/2^{n/2})$ for $n$-bit block while the claimed bound contains $O(q^2_e/2^{n})$. This positively solves an open question posed in~[Khairallah, ePrint~2021/648 (also accepted at FSE~2022)]. For Photon-Beetle, we show an attack using $q_e$ encryption queries (using a small number of input blocks) followed by a single decryption query and no primitive query to break authenticity (INT-CTXT). The success probability is $O(q^2_e/2^{b})$ for a $b$-bit block permutation, and it is significantly larger than what the claimed bound tells, which is independent of the number of encryption queries. We also show a simple tag guessing attack that violates the INT-CTXT bound when the rate $r=32$. Then, we analyze other (improved/modified) bounds of Photon-Beetle shown in the subsequent papers~[Chakraborty et al., ToSC 2020(2) and Chakraborty et al., ePrint~2019/1475]. As a side result of our security analysis of Photon-Beetle, we point out that a simple and efficient forgery attack is possible in the related-key setting. We emphasize that our results do not contradict the claimed ``bit security'' in the LwC specification documents for any of the schemes that we studied. That is, we do not negate the claims that GIFT-COFB is $(n/2 - \log n)$-bit secure for $n=128$, and Photon-Beetle is $(b/2 - \log b/2)$-bit secure for $b=256$ and $r=128$, where $r$ is a rate. We also note that the security against related-key attacks is not included in the security requirements of NIST LwC, and is not claimed by the designers.
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.