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Abstract. We study the task of obliviously compressing a vector comprised of n ciphertexts of size ξ
bits each, where at most t of the corresponding plaintexts are non-zero. This problem commonly features
in applications involving encrypted outsourced storages, such as searchable encryption or oblivious
message retrieval. We present two new algorithms with provable worst-case guarantees, solving this
problem by using only homomorphic additions and multiplications by constants. Both of our new
constructions improve upon the state of the art asymptotically and concretely.
Our first construction, based on sparse polynomials, is perfectly correct and the first to achieve an
asymptotically optimal compression rate by compressing the input vector into O(tξ) bits. Compression
can be performed homomorphically by performing O(n logn) homomorphic additions and multiplica-
tions by constants. The main drawback of this construction is a decoding complexity of Ω(

√
n).

Our second construction is based on a novel variant of invertible bloom lookup tables and is correct with
probability 1 − 2−κ. It has a slightly worse compression rate compared to our first construction as it
compresses the input vector into O(ξκt/ log t) bits, where κ ≥ log t. In exchange, both compression and
decompression of this construction are highly efficient. The compression complexity is dominated by
O(nκ/ log t) homomorphic additions and multiplications by constants. The decompression complexity
is dominated by O(κt/ log t) decryption operations and equally many inversions of a pseudorandom
permutation.

1 Introduction

It is well known that in general encrypted data cannot be compressed. In this work, we study the task
of compressing encrypted data, when a small amount of knowledge about the structure of the underlying
plaintexts is known. More concretely, we consider encryptions of vectors m = (m1, . . . ,mn) where at most
t distinct coordinates in m are non-zero. In the context of outsourced storage applications the task of
compressing such vectors appears naturally.

In searchable encryption [SWP00, BDOP04], we have a client Charlie, who holds a vector (m1, . . . ,mn)
of data elements and wants to store it remotely on server Sally. To hide the contents of the data elements,
Charlie encrypts the data vector under a secret key only she knows before sending it to Sally. Later on, Charlie
may want to search through the vector and retrieve all elements that match some secret keyword. A series of
recent works [YSK+13, LLN15, CKK16, CKL15, AFS18, CDG+21] have shown how to construct searchable
encryption schemes from fully homomorphic encryption [RAD78, Gen09] with reasonable concrete efficiency.
Conceptually, these approaches are comprised of two major steps. First Charlie sends a short keyword-
dependent hint to the server, who uses it to obliviously transform the vector of ciphertexts (c1, . . . , cn) into a
new vector c̃ = (c̃1, . . . , c̃n), where for i ∈ {1, . . . , n} the ciphertext c̃i is either an encryption of the original
message mi in ci or zero, depending on whether mi was matching the keyword of Charlie or not. In the second
step, the server obliviously compresses the vector c̃ under the assumption that no more than t ciphertexts
were matching the keyword and sends it back to Charlie. If the assumption about the sparsity of the vector
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c̃ was correct, then Charlie successfully decodes the vector and obtains the desired result. If the assumption
was not correct, then Charlie may not be able to retrieve the output.

The best compression algorithm used in this context is due to Choi et al. [CDG+21], which compresses c̃
into a bit string of length Ω(tξ(κ+log n)), where ξ is the length of one ciphertext entry. Under the assumption
that the plaintext messages are of a specific form4, the authors show that Charlie can correctly decode the
vector with probability 1− 2−κ. Both compressing and decoding are computationally concretely efficient.

In the oblivious message retrieval setting, recently introduced by Liu and Tromer [LT22], we have a server
Sally, who keeps a public bulletin board, and multiple clients Charlie, Chucky, and Chris. Each of the clients
can post encrypted messages for any of the other clients on the bulletin board, but would like to hide who
is the recipient of which message. At some point, for example, Chucky may want to retrieve all messages
that are intended for him. Naively, he could simply download all contents from Sally’s bulletin board, but
this would incur a large bandwidth overhead that is linear in the total number of messages stored by Sally.
Instead, the idea behind oblivious message retrieval is to let Chucky generate a short identity-dependent
hint that can be used by Sally to obliviously generate a short message that contains all relevant encrypted
messages for Chucky. Conceptually, the construction of Liu and Tromer follows the exact same blueprint
as the searchable encryption scheme outlined above. First Sally obliviously filters her vector with the hint
provided by Chucky and then she obliviously compresses the filtered vector under the assumption that not
too many messages are addressed to Chucky.

From an efficiency perspective, the solution of Liu and Tromer is rather expensive. To compress, Sally
performsΩ(tn+κt log t) homomorphic additions andΩ(tn) homomorphic multiplications by constants, where
κ is the correctness error defined as in the searchable encryption example. Sally’s message to Chucky is Ω(ξt+
ξκt log t) bits long. To decode the result from Sally’s message, Chucky needs to perform gaussian elimination
on a matrix of size O(t) × O(t), which incurs a computational overhead of Ω(t3). The authors provide
heuristic optimizations of their constructions that improve their performance significantly, but unfortunately
these come without asymptotic bounds or provable correctness guarantees.

Taking a step back and looking at the two applications described above from a more abstract point
of view, one can recognize that both follow a very similar blueprint. In the first step, both apply some
vastly different techniques to convert a vector of ciphertexts into a sparse vector containing only the desired
entries. In the second step, both works solve the identical problem. They both need to compress a sparse
homomorphically encrypted vector with nothing but the knowledge of how many entries are non-zero, and
in particular without any knowledge about which entries are zero and which ones are not. How to compress
such a sparse encrypted vector is the topic of this work.

1.1 Our Contribution

We present two new algorithms, one based on polynomials and one based on algorithmic hashing, for com-
pressing sparse encrypted vectors, which both improve upon the prior state of the art in terms of compression
rate. Our algorithms only rely on homomorphic additions and homomorphic multiplications by constants.
Both of our constructions have provable worst-case bounds for all their parameters.

Compressing via Polynomials. Our first construction (Section 4) is perfectly correct and is based on the
concept of sparse polynomial interpolation. Its compression rate has an asymptotically optimal dependence on
t, as the compressed vector is merely O(ξ · t) bits large. During compression one needs to perform O(n log n)
homomorphic additions and equally many homomorphic multiplications by constants. The main bottleneck
of this solution is the decompression complexity of Õ(t ·

√
n), which depends on the length n of the original

vector. Although the compression rate is much better than that of previous works, such as those Choi et
al. [CDG+21] and that of Liu and Tromer [LT22], this construction suffers from a slower decompression time.

4 This assumption can be removed at the cost of doubling the size of the compressed vector and additionally assuming
that one is not only given c̃, but also some auxiliary vector ĉ as the output of the first step of their protocol.
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Compressing via Hashing. Our second construction (Section 5) is a randomized hashing based solution, which
is correct with probability 1− 2−κ, where the probability is taken over the random coins of the compression
algorithm. We develop a novel data structure that is heavily inspired by the invertible bloom lookup tables
of Goodrich and Mitzenmacher [GM11], but can be applied efficiently to encrypted data. Both compression
and decompression are highly efficient. During compression one needs to perform O(nκ/ log t) homomorphic
additions and multiplications by constants, where κ ≥ log t. During decompression the main costs come from
O(κt/ log t) many decryptions and equally many evaluations of a pseudorandom permutation. In contrast
to our polynomial based solution, however, the compressed vector is O(ξκt/ log t) bits large. Nevertheless,
this construction outperforms all prior works in terms of compression rate, while having either superior or
comparable compression and decompression complexities.

1.2 Strawman Approach

When the sparse vector is encrypted using a fully homomorphic encryption scheme, conceptually simple
solutions to the compression problem exist. For instance, Sally could just homomorphically sort all entries
in the vector and then only send back the t largest entries. Such solutions, however, require her to perform
multiplications of encrypted values. This is problematic for multiple reasons. Multiplications of encrypted
values are much more computationally expensive than homomorphic additions or multiplications by con-
stants. Since Sally may potentially store a very large database, we would like to minimize her computational
overhead. Furthermore, if the data is encrypted using a somewhat homomorphic encryption scheme, then
the multiplicative depth of the circuit that can be executed on the vector by Sally is bounded. Ideally, we
would like the compression step to be concretely efficient and not require the use of any multiplications of
encrypted values. For these reasons, we only focus on compression algorithms that require homomorphic
additions and multiplications by constants in this work.

1.3 Additional Related Works

In addition to what has already been discussed above, there are several other works that are related to
ours. Johnson, Wagner, and Ramchandran [JWR04] showed that, assuming messages from a source with
bounded entropy, it is possible to compress one-time pad encryptions without knowledge of the encryption
key through a clever application of Slepian-Wolf coding [SW73]. Their result only applied to linear stream
ciphers but was later extended to block ciphers using certain chaining modes by Klinc et al. [KHJ+09]. These
result do not apply to our setting, where we focus on compressing vectors encrypted using more complex
homomorphic public-key encryption schemes.

In the context of fully homomorphic encryption, multiple works [PVW08, SV14, BGH13] have studied
the question of how to optimize the encryption rate, i.e., the size of the ciphertext relative to the size of the
plaintext, by packing multiple plaintexts into one ciphertext. These results are related, but do not allow for
obliviously “removing” irrelevant encryptions of zero.

Another line of works [Don06, CRT06, GI10] studies the compressed sensing problem, where the task is
to design a matrix A such that it is possible to recover, possibly high-dimensional, but sparse vectors x from
a vector of measurements Ax of small dimension. In general these works aim to recover an approximation
of x even when given somewhat noisy measurements. In our case, we are interested in the simpler problem
of exact recovery of a sparse vector. Our construction based on polynomials can be seen as a matrix-vector
multiplication. Looking ahead, our matrix A will be a carefully chosen Vandermonde matrix that allows for
very efficient matrix vector multiplication. The server will multiply this public matrix with the encrypted
vector and send back the result that can be decoded by the client. Our second construction, based on hashing,
does not fall into this category of algorithms.

2 Preliminaries

Notation. Given a possibly randomized function f : X → Y , we will sometimes abuse notation and write
f(x) := (f(x1), . . . , f(xn)) for x ∈ Xn. For a set X, we write x ← X to denote the process of sampling a
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uniformly random element x ∈ X. For a vector v ∈ Xn, we write vi to denote its i-th component. For a matrix
M ∈ Xn×m, we write M [i, j] to denote the cell in the i-th row and j-th column. We write [n] to denote the set
{1, . . . , n}. For a set Xn, we define the scissor operator $(Xn) := {(x1, . . . , xn) ∈ Xn | xi 6= xj ∀i, j ∈ [n]}
to denote the subset of Xn consisting only of those vectors with unique entries.

Definition 1 (Sparse Vector Representation). Let Fq be a field and let a ∈ Fnq be a vector. The sparse
representation of a is the set sparse(a) := {(i, ai) | ai 6= 0}.

2.1 Homomorphic Encryption

Informally, a homomorphic encryption scheme allows for computing an encryption of f(m), when only given
the description of f and an encryption of message vector m. Throughout the paper, we assume that functions
are represented as circuits composed of addition and multiplication gates.

Definition 2. A homomorphic encryption scheme E is defined by a tuple of PPT algorithms (Gen,Enc,Eval,
Dec) that work as follows:

Gen(1λ): The key generation algorithm takes the security parameter 1λ as input and returns a secret key
sk and public key pk. The public key implicitly defines a message space M and ciphertext space C. We
denote the set of all public keys as P.

Enc(pk,m): The encryption algorithm takes the public key pk and message m ∈ M as input and returns a
ciphertext c ∈ C.

Eval(pk, f, c): The evaluation algorithm takes the public key pk, a function f : Mn → Mm, and a vector
c ∈ Cn of ciphertexts as input and returns a new vector of ciphertexts c̃ ∈ Cm.

Dec(sk, c): The deterministic decryption algorithm takes the secret key sk and ciphertext c ∈ C as input and
returns a message m ∈M∪ {⊥}.

Throughout the paper we assume that the ciphertext size is fixed and does not increase through the use of
the homomorphic evaluation algorithm. We extend the definition of Enc and Dec to vectors and matrices of
messages and ciphertexts respectively, by applying them componentwise, i.e., for any matrix M ∈Mn×m, we
have Enc(pk,M) = C with C ∈ Cn×m and C[i, j] = Enc(pk,M [i, j]) and equivalently Dec(sk,C) = M ′ with
M ′ ∈ Mn×m and M ′[i, j] = Dec(sk, C[i, j]). Let E be an additively homomorphic encryption scheme with
message space M = Fq for some prime power q. And let f : F2

q → Fq, f(a, b) := a+ b and let gα : Fq → Fq,
g(a) := α ·a for any constant α ∈ Fq. For notational convenience we write Eval(pk, f, (c1, c2)ᵀ) as c1� c2 and
Eval(pk, gα, c) as α� c with pk being inferrable from context. For the sake of simplicity we restrict ourselves
to homomorphic encryption schemes with unique secret keys, i.e. for a given pk, there exists at most one sk,
such that (sk, pk)← Gen(1λ). We write Gen−1(pk) to denote the – not efficiently computable – unique secret
key.

Later on in the paper, it will be convenient for us to talk about ciphertexts that may not be fresh
encryptions, but still allow for some homomorphic operations to be performed on them.

Definition 3 (Z-Validity). Let (Gen,Enc,Eval,Dec) be a homomorphic encryption scheme, let Z be a class
of circuits, and let pk be a public key. A vector c of ciphertexts is Z-valid for pk, iff for all functions f ∈ Z it
holds that ⊥ /∈ Dec(Gen−1(pk), c) and Dec(Gen−1(pk),Eval(pk, f, c) = f(Dec(sk, c)). We denote by vld(Z, pk)
the set of ciphertext vectors Z-valid for pk.

2.2 Polynomial Kung Fu

Let f(x) =
∑d
i=0 ai · xi ∈ Fq[x] be a polynomial with coefficients from a finite field Fq. The degree of f is

defined as the largest exponent in any monomial with a non-zero coefficient. We say that f is s-sparse, if the
number of non-zero monomials is at most s or more formally if |{ai | ai 6= 0 ∧ i ∈ [n]}| ≤ s. It is well-known
that any polynomial of degree at most d can be interpolated from d + 1 evaluation points. In this work,
we will make use of the less well-known fact that sparse polynomials can be interpolated from a number
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of evaluation points that is linear in the polynomial’s sparsity. The first algorithms for interpolating sparse
univariate and multivariate polynomials were presented by Prony [dP95] and Ben-Or and Tiwari [BT88]
respectively. We will make use of the following result by Huang and Gao [HG19] for sparse interpolation of
univariate polynomials over finite fields:

Theorem 4 ([HG19]). Let f ∈ Fq[x] be an s-sparse univariate polynomial of degree at most d with coeffi-
cients from a finite field Fq. Let ω ∈ Fq be a primitive 2(s + 1)-th root of unity. There exists an algorithm
Interpolate that takes evaluations f(ω0), . . . , f(ω2s+1) as input and returns the coefficients of f in sparse
representation in time Õ(s ·

√
d).

The algorithm of Huang and Gao relies on a subroutine for finding discrete logarithms. Using Shank’s
algorithm [Sha71] for this step, we obtain the computational complexity stated in the above theorem with
deterministic performance guarantees.

Another tool we will use is the Fast Fourier Transform, (re-)discovered by Cooley and Tukey [CT65]
which allows for evaluating a degree d polynomial given as a list of coefficients at ` ≤ d evaluation points
simultaneously in time O(d log d). More precisely, for a fixed set of evaluation points (ω0, . . . , ω`), one can
represent the circuit taking the polynomial coefficients (a0, . . . , ad) as input and returning (f(ω0), . . . , f(ω`))
as a series of O(log d) alternating layers of O(d) addition or multiplication by constants gates respectively.

Theorem 5 (Fast Fourier Transform). Let d, ` ∈ N with d ≥ `. Let f =
∑d
i=0 ai · xi ∈ Fq[x] be a

polynomial of degree at most d with coefficients from a finite field Fq. Let ω ∈ Fq be a primitive `-th root
of unity. There exists an arithmetic circuit FFT comprised of a series of O(log d) alternating layers of O(d)
addition or multiplication by constants gates respectively that takes (a0, . . . , ad) as well as (ω0, . . . , ω`) as
input and returns (f(ω0), . . . , f(ω`)).

2.3 Invertible Bloom Lookup Tables

An invertible Bloom lookup table (IBLT) is a data structure first introduced by Goodrich and Mitzen-
macher [GM11] that supports three operations called Insert, Peel, and List. The insertion operations adds
elements to the data structure, the deletion operations removes them5 and the list operation recovers all
currently present elements with high probability, if not too many elements are present.

The data structure consists of two γ × 8t matrices C, the count matrix and V the valueSum matrix. It
further requires t-wise independent hash functions hi : {0, 1}∗ → [8t] for i ∈ [γ]. Initially all values are set to
0. To insert an element x into the data structure, we locate the cells Ci,hi(x) and Vi,hi(x) for i ∈ [γ] and add
1 to each counter and x to each valueSum. To remove an element, we perform the inverse operations. To list
all elements currently present in (C, V ), we repeatedly perform a peeling operation until (C, V ) is empty.
The peeling operation finds a cell with counter 1, adds that corresponding valueSum value to the output list
and deletes the element from (C, V ). The only way the list operation may fail is if (C, V ) is not empty, but
the peeling operation cannot find any cell with counter 1. It has been shown by Goodrich and Mitzenmacher
that this probability decreases exponentially in γ log t. We formally describe the algorithms in Figure 1.

Theorem 6 ([GM11]). Let h1, . . . , hγ be t-wise independent hash functions, then for any X = {x1, . . . , xt}
it holds that

Pr
[
B := Insert((02)γ×8t, X) : List(B) 6= X

]
≤ O

(
2−(γ−2) log t

)
,

where the probability is taken over the random choices of h1, . . . , hγ .

Remark 1. The construction of an IBLT can be modified to store tuples of values, by maintaining multiple
valueSum matrices, one for each component. As long as one of the components remains unique among
all inserted values, it is sufficient to use this component as input to the has functions, without affecting
Theorem 6. We will make use of this in our construction in Section 5.

5 For the present discussion, we assume that only previously inserted elements are deleted.
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Insert(B,X)

V := 0γ×8t

C := 0γ×8t

foreach (i, x) ∈ [γ]×X do

j := hi(x)

V [i, j] := V [i, j] +md

C[i, j] := C[i, j] + 1

return (C,V )

List((C,V ))

S := ∅
while ∃ (i∗, j∗) ∈ [γ]× [8t]. C[i∗, j∗] = 1 do

m := M ′[i∗, j∗]

S := S ∪ {m}
(C,V ) := Peel((C,V ),m)

return S

Peel((C,V ),m)

foreach i ∈ [γ]

j := hi(m)

V ′[i, j] := V ′[i, j]−m
C[i, j] := C[i, j]− 1

return (C,V )

Fig. 1. An invertible Bloom lookup table

3 Ciphertext Compression

In this section we formally define the concept of a ciphertext compression scheme (Compress,Decompress).
Intuitively, the compression algorithm takes the public encryption key pk as well as a vector of ciphertexts
c from some family Fpk of ciphertext vectors as input and returns some compressed representation thereof.
The decompression algorithm gets the compressed representation as well as the secret decryption key as
input and should return the decryption of c.

Definition 7 (Ciphertext Compression Scheme). Let E = (Gen,Enc,Eval,Dec) be a homomorphic pub-
lic key encryption scheme with ciphertext size ξ = ξ(λ). Let P be the public key space of E. For each pk ∈ P
let Fpk be a set of ciphertext vectors. A δ-compressing, (1 − ε)-correct ciphertext compression scheme for
the family F := {Fpk | pk ∈ P} is a pair of PPT algorithms (Compress,Decompress), such that for any
(sk, pk)← Gen(1λ) and any c ∈ Fpk the output length of Compress(pk, c) is at most δξ|c| and it holds that

Pr[Decompress(sk,Compress(pk, c)) = sparse(Dec(sk, c))] = 1− ε(λ),

where the probability is taken over the random coins of the compression and decompression algorithms.

Remark 2. Note, that a ciphertext compression scheme gives no guarantee whatsoever in the case where
c /∈ Fpk.

4 Compression via Sparse Polynomials

In this section we present our first construction, which is based on the idea of interpolating sparse polynomials.
Given the right building blocks, the construction is conceptually very simple. We simply view the sparse
encrypted vector (c1, . . . , cn) as the coefficient representation of sparse polynomial. Using the Fast Fourier
Transform, we homomorphically evaluate this polynomial efficiently at some sufficient number of points.
These encrypted evaluations will constitute the compression of the vector. To obtain the original vector
during decompression, we simply decrypt the evaluation points and interpolate the corresponding sparse
polynomial.

Definition 8 (Fast Fourier Functions). The class of fast fourier functions is the set of functions Z`FFT =
{f `x | x ∈ F`q} with

f `x : Fnq → F`q, fx(a) := FFT(a,x).

Definition 9 (Z2(t+1)
FFT -Valid Low Hamming Weight Ciphertext Vectors). Let E = (Gen,Enc,Eval,

Dec) be a homomorphic public key encryption scheme. For any pk ∈ P, let

FFFT
t,pk :=

{
c ∈ vld(Z2(t+1)

FFT , pk) | hw(Dec(Gen−1(pk), c)) < t
}
.
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Compress(pk, c)

c̃← Eval
(
pk,FFT(·, (ω0, . . . , ω2t+1)), c

)
return c̃

Decompress(sk, c̃)

m← Dec(sk, c̃)

S ← Interpolate(m)

return S

Fig. 2. A ciphertext compression scheme for FFFT
t based on sparse polynomials. Here FFT(·, (ω0, . . . , ω2t+1)) refers

to the circuit of the function f(ω0,...,ω2t+1) from Definition 8, i.e., the FFT circuit with the hardcoded second input

(ω0, . . . , ω2t+1).

We then define the family of Z2(t+1)
FFT -valid ciphertext vectors with low hamming weight as FFFT

t := {FFFT
t,pk |

pk ∈ P}.

Theorem 10. Let E = (Gen,Enc,Eval,Dec) be an additively homomorphic encryption scheme with message
space M = Fq with ciphertext size ξ = ξ(λ). Let n, t ∈ N be integers such that n < q and let ω ∈ Fq be a
2(t+ 1)-th primitive root of unity. Then (Compress,Decompress) from Figure 2 is a 2(t+ 1)/n-compressing
perfectly correct ciphertext compression scheme for family FFFT

t .

Proof. Let c be an arbitrary, but fixed Z2(t+1)
FFT -valid ciphertext vector and let S be an arbitrary vector in

sparse representation. Due to the validity condition on c we know that

Pr

c̃← Eval
(
pk,FFT

(
·, (ω0, . . . , ω2t+1)

)
, c
)

m← Dec(sk, c̃)

S = Interpolate(m)

 = Pr

 m← Dec(sk, c)

m′ ← FFT
(
m, (ω0, . . . , ω2t+1)

)
S = Interpolate(m′)

 .
Furthermore, the Z2(t+1)

FFT -validity of c tells us that Dec(sk, c) is a vector of hamming weight at most t
or, when viewed as a polynomial in coefficient representation, a t-sparse polynomial of degree at most n.
From Theorem 4 it follows this sparse polynomial can be correctly interpolated from its 2(t+ 1) evaluations
produced by FFT(Dec(sk, c), (ω0, . . . , ω2t+1)) and therefore

Interpolate(FFT(Dec(sk, c), (ω0, . . . , ω2t+1))) = sparse(Dec(sk, c)).

The output of Compress is a vector of 2(t + 1) ciphertexts of size ξ and thus the scheme is 2(t + 1)/n
compressing.

5 Compression via IBLTs

In this section we present our second construction, which is on a variant of invertible Bloom lookup tables.
Given a vector of ciphertexts c the idea is to homomorphically insert the corresponding non-zero plaintexts
into an (encrypted) IBLT. The encrypted IBLT would then constitute the compression of the vector.

This approach encounters two problems: First, the insertion operation of an IBLT requires hashing the
value to choose the cells to insert it in, which we cannot do because we do not have access to the plaintext.
Second, since we do not know which of the ciphertexts correspond to a non-zero it is unclear how to only
insert those.

The first problem can be solved using Remark 1 by actually storing pairs (d,md). Since the index d is
both publically known and unique, we can rely on only hashing d to derive the positions to insert the values.

The second problem is a bit trickier to solve. To build some intuition, we can first consider an easier
compression problem where in addition to c we are given an additional vector of ciphertexts h containing
“zero hints”. I.e., hd decrypts to 0 if ci decrypts to 0 and hd decrypts to 1, if cd decrypts to anything else.
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The IBLT then gets initialized as three matrices, a count matrix C and two valueSum matrices M and
D with each cell containing an encryption of zero. To insert the content of ciphertext cd into the IBLT, we
can then for i ∈ [γ] compute j := hi(d) and insert the value by setting C[i, j] := C � hd, M [i, j] := M � cd,
and D[i, j] := D � (d� hd).

Note that for any ciphertext corresponding to zero, this results in zero being added to all entries, which
is equivalent to not inserting the value at all. Decompressing then involves decrypting all three matrices and
using the List algorithm to extract pairs (d,md) giving us a sparse representation of the plaintext vector
corresponding to c. By the correctness guarantee of an IBLT, this works as long as not too many ciphertexts
decrypt to a non-zero value.

However, actually getting such “zero hint” ciphertexts may not be feasible in all scenarios, especially if
the encryption scheme is only additively homomorphic. This means we need to somehow simulate having a
count matrix without these zero hints.

The trick that we use is to choose a vector of random values k that we will use to “recognize” cells that
only contain a single message. We will still initialize two matrices M and K but inserting into the IBLT
is now done by setting M [i, j] := M � cd, and K[i, j] := K � (kd � cd). Note now, that after decryption,
for any cell (i, j) that only contains a single value md, we have that M [i, j] = md and K[i, j] = kd ·md. By
checking if K[i, j]/M [i, j] corresponds to one of the values in k, we can thus recognize which cells contain
only a single value and which index it corresponds to, allowing us to peel the message from the IBLT. In
section we prove in a helpful lemma in Section 5.2 we prove that we can bound the probability that this
recognition procedure produces false positives.

There still remains the problem that simply using a random vector k and storing it, which would require
O(n) storage and O(n) computation to recognize the entries. To solve this issue we introduce the concept of
wunderbar pseudorandom vectors in Section 5.1, which allows us to store a compact O(λ) representation of
a pseudorandom vector k and recognition of vector entries in time O(polylog(n)).

5.1 Wunderbar Pseudorandom Vectors

The concept of a pseudorandom vector is conceptually similar to that of pseudorandom sets introduced in
[CK20], except that we do not require puncturability. The idea is that it allows us to sample a short description
of a long vector, which is indistinguishable from a random vector with unique entries. Importantly, we require
that there exists an efficient algorithm that can recover the position of a given entry in the vector in time
independent of the vector length. Naively one can always find the position in linear time in the vector length.
This is, however, not good enough for our application, which is why we require the pseudorandom vector
to be “wunderbar”. In particular, we want the description length of the vector to be in O(λ) and getting
individual entries as well as index recovery should be possible in O(polylog(n)).

Definition 11. A pseudorandom vector with index recovery for an efficiently sampleable universe K = K(λ)
consists of a triple of ppt algorithms (Sample,Entry, Index) such that

Sample(1λ, n): The sampling algorithm takes as input the security parameter λ and the vector length n in
unary and outputs the description of a pseudorandom vector s.

Entry(s, i): The deterministic retrieving algorithm takes as input a description s and an index i ∈ [n] and
outputs a value ki ∈ K.

Index(s, k): The deterministic index recovery algorithm takes as input a description s and a value k and
outputs either an index i ∈ [n] or ⊥.

A pseudorandom vector with index recovery is correct, if for all vector lengths n = poly(λ) and all seeds
s← Gen(1λ, 1n) it holds that:

1. For all indices i ∈ [n] it holds that Index(s,Entry(s, i)) = i.

2. For all all k∗ 6∈ {Entry(s, i) | i ∈ [n]} it holds that Index(s, k∗) = ⊥.
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The pseudorandom vector is wunderbar if the description of a vector has length O(λ) and the runtime
of Entry and Index is O(polylog(n)). A pseudorandom vector is secure, if for all n = poly(λ) and all ppt
algorithms A ∣∣∣∣∣∣∣∣∣∣

Pr


s← Sample(1λ, 1n),

k :=

Entry(s, 1)
...

Entry(s, n)

 : A(k)

− Pr[k←$(Kn) : A(k)]

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

Remark 3. For ease of notation we define two algorithms DummySample and DummyIndex that represent
a dummy version of a pseudorandom vector with index recovery. I.e., DummySample(1λ, n) simply samples
k←$(Kn) and DummyIndex(k, k) performs an exhaustive search and returns i iff ki = k and ⊥ if none of
them match. Using this notation, the above security definition can be rewritten as∣∣∣∣∣∣∣∣∣∣

Pr


s← Sample(1λ, 1n),

k :=

Entry(s, 1)
...

Entry(s, n)

 : A(k)

− Pr[k← DummySample(1λ, n) : A(k)]

∣∣∣∣∣∣∣∣∣∣
≤ negl(λ)

Wunderbar Pseudorandom Vectors from Pseudorandom Permuations Let Fpm be a field such that
m · blog pc ≥ λ. We construct wunderbar pseudorandom vectors over a subset K ⊆ Fpm from an arbitrary
family of pseudorandom permutations over Fλ2 . To do so we need an efficiently computable and efficiently
invertible injective function binToField mapping from Fλ2 to Fpm . The exact function is irrelevant, but for

concreteness, we specify it in the following. Let {0, 1} : [q] → Fdlog qe2 denote the function that maps an

integer to its canonical binary representation and let proj : Fdlog qe2 → [q] be its inverse. Then we specify

binToField : Fλ2 → Fpm binToField((b1, . . . , bλ)) :=

m−1∑
i=0

cix
i

where

ci :=

min{dλme,λ−id
λ
me}∑

j=1

2j−1bid λm e+j
.

We further specify the inverse function as

fieldToBin : Fpm → Fλ2 ∪ {⊥}

fieldToBin(
m−1∑
i=0

cix
i) :=

{
⊥ if ∃ci. ci ≥ 2min{d λm e,λ−id

λ
m e}

(b1, . . . , bλ) otherwise

where
bi := bin

(
cbi/dλ/mec

)
i−bi/dλ/mec·dλ/me.

Theorem 12. Let PRP be a secure family of pseudorandom permuations over some Fλ2 . Then (Sample,Entry,
Index) as described in Figure 3 is a secure wunderbar pseudorandom vector with index recovery for universe
K = {binToField(b) | b ∈ Fλ2}.

Proof. We need to establish that the construction is correct, wunderbar, and secure. It is simple to see that
the construction is correct:

Index((s, n),Entry((s, n), i))
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Sample(1λ, 1n)

s← Fλ2
return (s, n)

Entry((s, n), i)

b := bin(i)

b′ := PRP(s, b)

return binToField(b′)

Index((s, n), k)

b′ := fieldToBin(k)

if b′ 6= ⊥

b := PRP−1(s, b′)

if proj(b) ∈ [n]

return proj(b)

return ⊥

Fig. 3. A wunderbar pseudorandom vector for K ⊆ Fpm constructed from a family of pseudorandom permuations
over Fλ2 .

=Index((s, n), binToField(PRP(s, bin(i)))) (Def. of Entry)

=proj(PRP−1(s, fieldToBin(binToField(PRP(s, bin(i)))))) (Def. of Index)

=proj(PRP−1(s,PRP(s, bin(i))))

=proj(bin(i))

=i.

Similarly, it is easy to see that the construction is wunderbar: the description consists of s ∈ Fλ2 and
n = poly(λ) ≤ λc for some constant c. Therefore, it has size at most λ+c · log λ ∈ O(λ). The runtime of Entry
is in fact independent of n and thus trivially in O(polylog(n)) and the only computation in Index that depends
on n, is the membership check proj(b) ∈ [n] which can be performed in time O(log n) ⊂ O(polylog(n)).

It remains to show that the construction is secure. Let n = n(λ) = poly(λ) and let A be an arbitrary
PPT algorithm, such that We construct an adversary B against the pseudorandomness of as follows. B takes
as input the security parameter λ and is given access to an oracle. For each i ∈ [n], query bin(i) to the oracle,
receiving back b′i and compute ki := binToField(b′i). Invoke A(k) and output whatever A outputs. Clearly,
B is also PPT, needing a runtime overhead of just n oracle queries over simply running A. We now consider
two cases: if, on the one hand, the oracle is PRP(s, ·), then for all i ∈ [n] ki = binToField(PRP(s, bin(i))) =
Entry((s, n), i). I.e., we have

Pr[s← Fλ2 : BPRP(s,·) = 1]

= Pr[s← Sample(1λ, 1n),k := (Entry(s, 1), . . . ,Entry(s, n))ᵀ) : A(k)].
(1)

If, on the other hand, the oracle is a truly random permutation g, then for all i ∈ [n] it holds that ki =
binToField(g(bin(i))) and therefore

Pr[g ← Π(Fλ2 ) : Bg(·) = 1]

= Pr[g ← Π(Fλ2 ); ∀i ∈ [n]. ki = binToField(g(bin(i))) : A(k)] (2)

= Pr[(b′1, . . . , b
′
n)←$

(
(Fλ2 )n

)
;k = (binToField(b′i))i∈[n] : A(k)] (3)

= Pr[k←$(Kn) : A(k)]. (4)

Here, Equation 3 holds because g is a uniformly chosen random permutation and therefore the values g(bin(i))
are uniformly distributed conditioned on not being duplicates and Equation 4 holds because binToField is an
injective function into K.

Combining Equation 1 and Equation 4 we get∣∣∣∣∣∣∣∣∣∣
Pr


s← Sample(1λ, 1n),

k :=

Entry(s, 1)
...

Entry(s, n)

 : A(k)

− Pr[k←$(Kn) : A(k)]

∣∣∣∣∣∣∣∣∣∣
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=
∣∣∣Pr[s← Fλ2 : BPRP(s,·) = 1]− Pr[g ← {f : Fλ2 → Fλ2} : Bg(·) = 1]

∣∣∣
≤negl(λ)

where the last inequality follows from the fact that PRP is pseudorandom. ut

5.2 A Helpful Lemma

We prove a helpful lemma which allows to bound the probability of false positives when attempting to detect
cells with only a single entry in the IBLT. Recall, that we have two matrices M and K, where the cells of
M contain sums of messages md and the cells of K contain sums of kd ·md for a random vector k. We check
for cells containing only a single message, i.e. cells that can be peeled, by checking whether K[i, j]/M [i, j]
corresponds to one of the values in k. A false positive could occur, if for some set of at least two non-zero
messages corresponding to indices I ⊆ [n] it happens to hold that

kj =

∑
i∈I kimi∑
i∈I mi

for some j ∈ [n]. The lemma states that we can bound the probability of this occuring by choosing the entries
of k from a large enough space.

Lemma 13. Let K ⊆ Fq, (m1, . . . ,mn) ∈ Fnq and I ⊆ [n] be arbitrary such that
∑
i∈I mi 6= 0 and there

exist i, i′ ∈ I with 0 6∈ {mi,mi′}. It holds that

Pr

[
k← Kn : ∃j ∈ [n]. kj =

∑
i∈I kimi∑
i∈I mi

]
≤ n

|K|

Proof. Using a union bound we have

Pr

[
k← Kn : ∃j ∈ [n]. kj =

∑
i∈I kimi∑
i∈I mi

]
≤
∑
j∈[n]

Pr

[
k← Kn : kj =

∑
i∈I kimi∑
i∈I mi

]
. (5)

It thus remains to bound the above probability for individual j. Let j ∈ [n] be arbitrary but fixed and let
ξ = 1 if j ∈ I and ξ = 0 otherwise. It then holds that

Pr

[
k← Kn : kj =

∑
i∈I kimi∑
i∈I mi

]
= Pr

[
k← Kn : kj ·

∑
i∈I

mi =
∑
i∈I

kimi

]
= Pr

[
k← Kn : kj ·

(∑
i∈I

mi − ξmj

)
=
∑
i∈I

kimi − kjξmj

]
= Pr

[
k← Kn : kj ·

∑
i∈I\{j}

mi =
∑

i∈I\{j}

kimi

]
We now consider two cases. If

∑
i∈I\{j} = 0, let j′ ∈ I \ {j} be an index, such that mj′ 6= 0. Note that such

an index always exists by the condition on I. We then have

Pr
[
k← Kn : kj ·

=0︷ ︸︸ ︷∑
i∈I\{j}

mi =
∑

i∈I\{j}

kimi

]
= Pr

[
k← Kn : 0 =

∑
i∈I\{j}

kimi

]

11



= Pr

[
k← Kn : kj′ =

∑
i∈I\{j,j′} kimi

−mj′

]
where (−mj′)

−1 is always defined by the condition that mj′ 6= 0. Since the right hand side of the equality
is independent of kj′ , the probability that the equality holds is at most 1/|K| for any choice of ki, i 6= j′.
Thus, in this case

Pr

[
k← Kn : kj =

∑
i∈I kimi∑
i∈I mi

]
≤ 1

|K|
. (6)

In the other case, i.e., if
∑
i∈I\{j} 6= 0, (

∑
i∈I\{j})

−1 is well defined and we have

Pr
[
k← Kn : kj ·

∑
i∈I\{j}

mi =
∑

i∈I\{j}

kimi

]
= Pr

[
k← Kn : kj =

∑
i∈I\{j} kimi∑
i∈I\{j}mi

]
.

Here again, the right hand side of the equality is independent of kj . Thus, the probability that the equality
holds is at most 1/|K| for any choice of ki, i 6= j and also in this case it holds that

Pr

[
k← Kn : kj =

∑
i∈I kimi∑
i∈I mi

]
≤ 1

|K|
(7)

Finally, combining Equation 5 with Equation 6 and Equation 7, we get

Pr

[
k← Kn : ∃j ∈ [n]. kj =

∑
i∈I kimi∑
i∈I mi

]
≤ n

|K|
ut

By observing that the statistical distance betweem Kn and $(Kn)) is at most n2/|K| due to the birthday
bound, we obtain the following corollary.

Corollary 14. Let K ⊆ Fq, (m1, . . . ,mn) ∈ Fnq and I ⊆ [n] be arbitrary such that
∑
i∈I mi 6= 0 and there

exist i, i′ ∈ I with 0 6∈ {mi,mi′}. It holds that

Pr

[
k←$(Kn) : ∃j ∈ [n]. kj =

∑
i∈I kimi∑
i∈I mi

]
≤ n2 + n

|K|

5.3 Construction of Ciphertext-Compression from IBLTs

Populating the IBLT involves homomorphically evaluating an inner product between the encrypted vector
and a plain vector. Therefore, the compression scheme can only work for ciphertext vectors that allow the
evaluation of inner product functions defined in the following.

Definition 15 (Inner Product Functions). The class of inner product functions is the set of functions
Zip = {fa | a ∈ Fnq } with

fa : Fnq → Fq, fa(x) := 〈a,x〉.

The family of ciphertext vectors the construction is applicable to is then exactly those ciphertext vectors
with low hamming weight and allow the evaluation of inner product functions. We define this family as
follows.

Definition 16 (Zip-Valid Low Hamming Weight Ciphertext Vectors). Let E = (Gen,Enc,Eval,Dec)
be a homomorphic public key encryption scheme. For any pk ∈ P, let

F ip
t,pk :=

{
c ∈ vld(Zip, pk) | hw(Dec(Gen−1(pk), c)) < t

}
.

We then define the family of Zip-valid ciphertext vectors with low hamming weight as F ip
t := {Ft,pk | pk ∈ P}.
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Compress(pk, c)

s1 ← Sample(1λ, n)

s2 ← {0, 1}λ

M := Enc(pk, 0)γ×8t

K := Enc(pk, 0)γ×8t

foreach (i, d) ∈ [γ]× [n] do

j := PRF(s2, (i, d))

M [i, j] := M [i, j] � cd

k := Entry(s1, d)

K[i, j] := K[i, j] � (k � cd)

return (s1, s2,M ,K)

Decompress(sk, (s1, s2,M ,K))

S := ∅
M ′ := Dec(sk,M)

K′ := Dec(sk,K)

D′ := Initialize()

while ∃ (i∗, j∗) ∈ [γ]× [8t]. D′[i∗, j∗] 6= ⊥ do

(d, k,m) := (D′[i∗, j∗],K′[i∗, j∗],M ′[i∗, j∗])

S := S ∪ {(d,m)}
Update(d, k,m)

return S

Initialize()

D′ := ⊥γ×8t

foreach (i, j) ∈ [γ]× [8t] do

if M ′[i, j] 6= 0

D′[i, j] := Index
(
s1,

K′[i,j]
M ′[i,j]

)
return D′

Update(d, k,m)

foreach i ∈ [γ] do

j := PRF(s2, (i, d))

M ′[i, j] := M ′[i, j]−m
K′[i, j] := K′[i, j]− k
if M ′[i, j] 6= 0

D′[i, j] := Index
(
s1,

K′[i,j]
M ′[i,j]

)
else

D′[i, j] := ⊥

Fig. 4. A ciphertext compression scheme based on invertible bloom lookup tables and wunder pseudorandom vectors.
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Theorem 17. Let E = (Gen,Enc,Eval,Dec) be an additively homomorphic encryption scheme with message
spaceM = Fq for some prime power q with ciphertext size ξ = ξ(λ). Let λ, κ, t, n ∈ N be integers and let γ :=
d κlog te+2. Let PRF be a family of pseudorandom functions PRF : [γ]×[2λ]→ [8t] and let (Sample,Entry, Index)

be a wunderbar pseudorandom vector with index recovery for a universe K = K(λ) ⊆ Fq with |K| ≥
2κ(8tγ)(n3 + n2). Then (Compress,Decompress) from Figure 4 is a (O(λ) + 16tγξ)/(nξ)-compressing (1 −
O(2−κ)− negl(λ))-correct ciphertext compression scheme for family F ip

t .

Proof. The output of the compression algorithm consists of a s1, s2 and 16tγ ciphertexts. Since the pseu-
dorandom vector is wunderbar, it holds that |s1| = O(λ) and s2 is chosen as a λ-bit string. Therefore, it is
easy to see that the scheme is (O(λ) + 16tγξ)/(nξ)-compressing. It remains to prove that it is correct. To do
so we define a series of six hybrid schemes in Figures 5 through 9.

Compress1(m)

s1 ← Sample(1λ, n)

s2 ← {0, 1}λ

M := 0γ×8t

K := 0γ×8t

foreach (i, d) ∈ [γ]× [n] do

j := PRF(s2, (i, d))

M [i, j] := M [i, j] +md

k := Entry(s1, d)

K[i, j] := K[i, j] + (k ·md)

return (s1, s2,M ,K)

Decompress1((s1, s2,M ,K))

S := ∅
M ′ := M

K′ := K

D′ := Initialize()

while ∃ (i∗, j∗) ∈ [γ]× [8t]. D′[i∗, j∗] 6= ⊥ do

(d, k,m) := (D′[i∗, j∗],K′[i∗, j∗],M ′[i∗, j∗])

S := S ∪ {(d,m)}
Update(d, k,m)

return S

Fig. 5. The first hybrid scheme works exactly as the actual ciphertext compression scheme, except that it operates
on plaintext messages instead of encrypted messages. I.e., ciphertexts are now decrypted before compression instead
of between compression and decompression.

Claim 18. For any Zip-valid vector of ciphertexts it holds that

Pr[Decompress(sk,Compress(pk, c)) = sparse(Dec(sk, c))]

= Pr[Decompress1(Compress1(Dec(sk, c))) = sparse(Dec(sk, c))]

Proof. Following Definition 15 we denote by fa the inner product function fa : Fnq → Fq, fa(x) := 〈a,x〉.
Further, we denote

vi,j :=

δj,PRF(s2,(i,1))...
δj,PRF(s2,(i,n))

 wi,j :=

Entry(s1, 1) · δj,PRF(s2,(i,1))
...

Entry(s1, n) · δj,PRF(s2,(i,n))


Now, let M0,K0,M

′
0,K

′
0 and M1,K1,M

′
1,K

′
1 denote the relevant matrices in the actual scheme and

hybrid 1 respectively. We note, that since c is Zip-valid, it holds for all (i, j) ∈ [γ]× [8t] that

M ′
0[i, j] =Dec(sk,M0[i, j])

=Dec(sk,�
d∈{[n]|PRF(s2,(i,d))=j}

cd)

=Dec(Eval(pk, fvi,j , c))
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=fvi,j (Dec(sk, c)) (Definition 3)

=
∑

d∈{[n]|PRF(s2,(i,d))=j}

Dec(sk, cd) = M ′
1[i, j]

as well as

K ′0[i, j] =Dec(sk,K0[i, j])

=Dec(sk,�
d∈{[n]|PRF(s2,(i,d))=j}

cd · Entry(s1, d))

=Dec(Eval(pk, fwi,j
, c))

=fwi,j
(Dec(sk, c)) (Definition 3)

=
∑

d∈{[n]|PRF(s2,(i,d))=j}

Dec(sk, cd) · Entry(s1, d)) = K ′1[i, j]

Since the computation on M ′,K′ is otherwise identical between the two hybrids, the claim immediately
follows. ut

Compress2(m)

k← DummySample(1λ, n)

s2 ← {0, 1}λ

M := 0γ×8t

K := 0γ×8t

foreach (i, d) ∈ [γ]× [n] do

j := PRF(s2, (i, d))

M [i, j] := M [i, j] +md

k := kd

K[i, j] := K[i, j] + (k ·md)

return (k, s2,M ,K)

Decompress2((k, s2,M ,K))

S := ∅
M ′ := M

K′ := K

D′ := Initialize2()

while ∃ (i∗, j∗) ∈ [γ]× [8t]. D′[i∗, j∗] 6= ⊥ do

(d, k,m) := (D′[i∗, j∗],K′[i∗, j∗],M ′[i∗, j∗])

S := S ∪ {(d,m)}
Update2(d, k,m)

return S

Initialize2()

D′ := ⊥γ×8t

foreach (i, j) ∈ [γ]× [8t] do

if M ′[i, j] 6= 0

D′[i, j] := DummyIndex
(
k, K′[i,j]

M ′[i,j]

)
return D′

Update2(d, k,m)

foreach i ∈ [γ] do

j := PRF(s2, (i, d))

M ′[i, j] := M ′[i, j]−m
K′[i, j] := K′[i, j]− k
if M ′[i, j] 6= 0

D′[i, j] := DummyIndex
(
k, K′[i,j]

M ′[i,j]

)
else

D′[i, j] := ⊥

Fig. 6. The second hybrid scheme works exactly as the first hybrid scheme, except that instead of using the wunder
pseudorandom vector it uses the dummy sampler and the dummy index recovery to work with a uniformly random
vector k ∈$Kn.
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Claim 19. If (Sample,Entry, Index) is a secure pseudorandom vector, it holds for any key pair (sk, pk) and
any vector c that∣∣∣∣∣ Pr[Decompress1(Compress1(Dec(sk, c))) = sparse(Dec(sk, c))]

−Pr[Decompress2(Compress2(Dec(sk, c))) = sparse(Dec(sk, c))]

∣∣∣∣∣ ≤ negl(λ).

Proof. We construct an attacker A against security of the pseudorandom vector as follows. On input
k, A executes Decompress2(Compress2(Dec(sk, c))), except that it uses its input k instead of sampling a
fresh one. If k was chosen using k ← DummySample(1λ, n), this is identical to a regular execution of
Decompress2(Compress2(Dec(sk, c))). If on the other hand k was chosen by sampling s2 ← Sample(1λ, n) and
setting k := (Entry(s, 1), . . . ,Entry(s, n))ᵀ, this is identical to a regular execution of Decompress1(Compress1(
Dec(sk, c))). Therefore, by the security of the pseudorandom vector

negl(λ) ≥

∣∣∣∣∣∣∣∣∣∣
Pr

s← Sample(1λ, n),k :=

(Entry(s, 1)
...

Entry(s, n)

 : A(k)


−Pr[k← DummySample(1λ, n) : A(k)]

∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣ Pr[Decompress1(sk,Compress1(pk, c)) = sparse(Dec(sk, c))]

−Pr[Decompress2(Compress2(Dec(sk, c))) = sparse(Dec(sk, c))]

∣∣∣∣∣ ut

Claim 20. It holds that∣∣∣∣∣ Pr[Decompress2(Compress2(Dec(sk, c))) = sparse(Dec(sk, c))]

−Pr[Decompress3(Compress3(Dec(sk, c))) = sparse(Dec(sk, c))]

∣∣∣∣∣ ≤ 2−κ.

Proof. We first note two things

1. Whenever a correct element (m, d) is peeled, the resulting matrices (C′,M ′,K′,D) are identical to the
scenario where md = Dec(sk, cd) = 0 and all other mesages are unchanged.

2. In the third hybrid scheme only correct elements are peeled.

The first observation follows because a correct peeling removes a message from the relevant cells by subtract-
ing the corresponding values, which is equivalent to not adding them in the first place, which is exactly what
happens if the message is zero. The second observation follows because we correctly keep track of the number
of non-zero elements in each cell and only peel those, where a single non-zero element remains. By these
observations, at any point during the execution of the decompression loop, there exists a vector m′ ∈ Fnq ,
such that for all (i, j)

K′[i, j] :=

d if
∑
ι∈Ii

kιmι∑
ι∈Ii

mι
= kd

⊥ otherwise

where Ii = {ι ∈ [n] | PRF(s1, (i, ι)) = j}.
We denote by Er,i,j the event that before the r-th iteration of the main loop of Decompress4, it holds

that C[i, j] > 1 but K[i, j] 6= ⊥. Note that Decompress4 and Decompress3 behave identically unless at least
one of Er,i,j for (r, i, j) ∈ [n]× [γ]× [8t] occurs.

Therefore by a union bound and Corollary 14∣∣∣∣∣ Pr[Decompress3(sk,Compress3(pk, c)) = sparse(Dec(sk, c))]

−Pr[Decompress4(Compress4(Dec(sk, c))) = sparse(Dec(sk, c))]

∣∣∣∣∣
≤
∑

(r,i,j)∈[n]×[γ]×[8t]

Pr[Er,i,j ] ≤
∑

(r,i,j)∈[n]×[γ]×[8t]

n2 + n

|K|
=

(8tγ)(n3 + n2)

|K|
≤ (8tγ)(n3 + n2)

2κ · (8tγ)(n3 + n2)
≤ 2−κ

ut
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Compress3(m)

k← DummySample(1λ, n)

s2 ← {0, 1}λ

M := 0γ×8t

K := 0γ×8t

C := 0γ×8t

foreach (i, d) ∈ [γ]× [n] do

j := PRF(s2, (i, d))

M [i, j] := M [i, j] +md

k := kd

K[i, j] := K[i, j] + (k ·md)

if md 6= 0 do

C[i, j] := C[i, j] + 1

return (k, s2,M ,K,C)

Decompress3((k, s2,M ,K,C))

S := ∅
M ′ := M

K′ := K

D′ := Initialize2()

while ∃ (i∗, j∗) ∈ [γ]× [8t]. C[i∗, j∗] = 1 do

(d, k,m) := (D′[i∗, j∗],K′[i∗, j∗],M ′[i∗, j∗])

S := S ∪ {(d,m)}
Update3(d, k,m)

return S

Update3(d, k,m)

foreach i ∈ [γ] do

j := PRF(s2, (i, d))

M ′[i, j] := M ′[i, j]−m
K′[i, j] := K′[i, j]− k
C[i, j] := C[i, j]− 1

if M ′[i, j] 6= 0

D′[i, j] := DummyIndex
(
k, K′[i,j]

M ′[i,j]

)
else

D′[i, j] := ⊥

Fig. 7. The third hybrid scheme works exactly as the second hybrid scheme, except that it maintains a matrix
counting how many non-zero messages are mapped to each individual cell and deciding which messages to peel based
on these exact counts instead of relying on the matrix K.
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Compress4(m)

k← DummySample(1λ, n)

s2 ← {0, 1}λ

M := 0γ×8t

K := 0γ×8t

C := 0γ×8t

D := 0γ×8t

foreach (i, d) ∈ [γ]× [n] do

j := PRF(s2, (i, d))

M [i, j] := M [i, j] +md

k := kd

K[i, j] := K[i, j] + (k ·md)

if md 6= 0 do

C[i, j] := C[i, j] + 1

D[i, j] := D[i, j] + d

return (k, s2,M ,K,C,D)

Decompress4((k, s2,M ,K,C,D))

S := ∅
M ′ := M

K′ := K

D′ := D

while ∃ (i∗, j∗) ∈ [γ]× [8t]. C[i∗, j∗] = 1 do

(d, k,m) := (D′[i∗, j∗],K′[i∗, j∗],M ′[i∗, j∗])

S := S ∪ {(d,m)}
Update4(d, k,m)

return S

Update4(d, k,m)

foreach i ∈ [γ] do

j := PRF(s2, (i, d))

M ′[i, j] := M ′[i, j]−m
K′[i, j] := K′[i, j]− k
C[i, j] := C[i, j]− 1

D′[i, j] := D′[i, j]− d

Fig. 8. The fourth hybrid scheme works exactly as the third hybrid scheme, except that the matrix D which before
contained the indices of the messages if it could be inferred from the matrix K is now maintained with a sum of the
indices of all messages mapped to the cell. This means that whenever C[i, j] = 1, D[i, j] contains the index of the
single non-zero message mapped to cell (i, j).

Claim 21. It holds that∣∣∣∣∣ Pr[Decompress3(Compress3(Dec(sk, c))) = sparse(Dec(sk, c))]

= Pr[Decompress4(Compress4(Dec(sk, c))) = sparse(Dec(sk, c))]

∣∣∣∣∣.
Proof. The only difference between the two hybrids could occur, if when peeling a message from cell (i, j),
the content of D[i, j] would differ between the two hybrids. However, this is not possible, since in hybrid
three we have

D[i, j] = DummyIndex(k,
K[i, j]

M [i, j]
)

=DummyIndex(k,
kd ·md

md
) = DummyIndex(k, kd) = d

just as in hybrid four. ut

The fifth hybrid is identical to the fourth hybrid except that the now unneccessary matrix K is removed.
The following claim trivially follows from the fact that K is not used in either hybrids.

Claim 22. It holds that∣∣∣∣∣ Pr[Decompress4(Compress4(Dec(sk, c))) = sparse(Dec(sk, c))]

= Pr[Decompress5(Compress5(Dec(sk, c))) = sparse(Dec(sk, c))]

∣∣∣∣∣.
Claim 23. If PRF is a secure pseudorandom function then it holds that∣∣∣∣∣ Pr[Decompress5(Compress5(Dec(sk, c))) = sparse(Dec(sk, c))]

−Pr[Decompress
h(·,·)
6 (Compress

h(·,·)
6 (Dec(sk, c))) = sparse(Dec(sk, c))]

∣∣∣∣∣ ≤ negl(λ).
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Compress
h(·)
6 (m)

M := 0γ×8t

C := 0γ×8t

D := 0γ×8t

foreach (i, d) ∈ [γ]× [n] do

j := h(i, d)

M [i, j] := M [i, j] +md

if md 6= 0 do

C[i, j] := C[i, j] + 1

D[i, j] := D[i, j] + d

return (M ,C,D)

Decompress
h(·)
6 ((M ,C,D))

S := ∅
M ′ := M

D′ := D

while ∃ (i∗, j∗) ∈ [γ]× [8t]. C[i∗, j∗] = 1 do

(d,m) := (D′[i∗, j∗],M ′[i∗, j∗])

S := S ∪ {(d,m)}
Update5(d,m)

return S

Update6(d,m)

foreach i ∈ [γ] do

j := h(i, d)

M ′[i, j] := M ′[i, j]−m
C[i, j] := C[i, j]− 1

D′[i, j] := D′[i, j]− d

Fig. 9. The sixth hybrid scheme works exactly as the fifth hybrid scheme, except that instead of using a pseudorandom
function to derive j from (i, d), it uses a truly random function h given as an oracle.

Proof. The only difference between the two hybrids is the use of the function PRF(s2, ·, ·) in the fifth hy-
brid and h(·, ·) in the sixth hybrid. Thus, the claim follows from a straightforward reduction that, given

access to an oracle o, executes Decompress
o(·,·)
6 (Compress

o(·,·)
6 (Dec(sk, c))) and outputs 0 if the result equals

sparse(Dec(sk, c)) and 1 otherwise. ut

Claim 24. It holds for any vector of ciphertexts with hamming weight at most t that

Pr[Decompress6(Compress6(Dec(sk, c))) = sparse(Dec(sk, c))] ≤ O
(
2−κ

)
Proof. Denote m := Dec(sk, c), S := {(d,m′) | m′ = md} and S6=0 := {(d,m′) ∈ S | m′ 6= 0} = sparse(m).
Since c has Hamming weight at most t, we have that |S6=0| ≤ t.

Comparing hybrid six with the definition of an IBLT in Figure 1, and keeping in mind Remark 1 we can
observe, that what Compress6 actually outputs is simply an IBLT for pairs containing all elements of S6=0

using hash functions h(i, ·). Further, Decompress6 is in fact the same as List with Update6 being identical to
Peel. And since |S6=0| ≤ t and random functions are t-wise independent, it thus holds by Theorem 6 that

Pr[Decompress6(Compress6(m)) = sparse(m)]

= Pr[List(Insert(B0, S6=0)) = S6=0] ≥ 1−O
(

2−(γ−2) log t
)
≥ 1−O

(
2−κ

)
ut

By combining all of the above claims and using the triangle inequality it follows that

Pr[Decompress(sk,Compress(pk, c)) = sparse(Dec(sk, c))] ≥ 1−O
(
2−κ

)
− negl(λ)

as claimed. ut
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