
FairPoS: Input Fairness in Permissionless
Consensus
James Hsin-yu Chiang #

Technical University of Denmark, Denmark

Bernardo David #

IT University of Copenhagen, Denmark

Ittay Eyal #

Technion, IC3, Haifa, Israel

Tiantian Gong #

Purdue University, West Lafayette, USA

Abstract

In permissionless consensus, the ordering of transactions or inputs in each block is freely determined
by an anonymously elected block leader. A rational block leader will choose an ordering of inputs
that maximizes financial gain; the emergence of automatic market makers in decentralized finance
enables the block leader to front-run honest trade orders by injecting its own inputs prior to and
after honest trades. Front-running is rampant in decentralized finance and reduces the utility of
the system by extracting financial value from honest trades and increasing demand for block-space.
Current proposals to prevent input order attacks by encrypting user inputs are not permissionless, as
they rely on small static committees to perform distributed key generation and threshold decryption.
Such committees require party authentication, knowledge of the number of participating parties
or do not permit player replaceability and are therefore not permissionless. Moreover, alternative
solutions based on sequencing inputs in order of their arrival cannot prevent front-running in an
unauthenticated peer-2-peer network where message arrival is adversarially controlled.

We present FairPoS, the first consensus protocol to achieve input fairness in the permissionless
setting with security against adaptive adversaries in semi-synchronous networks. In FairPoS, the
adversary cannot learn the plaintext of any client input before it is included in a block in the
chain’s common-prefix. Thus, input ordering attacks that depend on observing pending client inputs
in the clear are no longer possible. In FairPoS, this is achieved via Delay Encryption (DeFeo et
al., EUROCRYPT 2021), a recent cryptographic primitive related to time-lock puzzles, allowing
all client inputs in a given round to be encrypted under a key that can only be extracted after
enough time has elapsed. In contrast to alternative approaches, the key extraction task in delay
encryption can, in principle, be performed by any party in the permissionless setting and requires no
distribution of secret key material amongst authenticated parties. However, key extraction requires
highly specialized hardware in practice. Thus, FairPoS requires resource-rich staking parties to insert
extracted keys into blocks, enabling light-clients to decrypt past inputs and relieving parties who join
the execution from decrypting all inputs in the entire chain history. Realizing this in proof-of-stake is
non-trivial; naive application of key extraction to proof-of-stake can result in chain stalls lasting the
entire key extraction period. We overcome this challenge with a novel key extraction protocol, which
tolerates adversarial delays in block delivery intended to prevent key extraction from completing
on schedule. Critically, this also enables the adoption of a new longest-extendable-chain rule which
allows FairPoS to achieve the same guarantees as Ouroborous Praos against an adaptive adversary.

2012 ACM Subject Classification Security and privacy → Privacy-preserving protocols

Keywords and phrases Front-running, Delay Encryption, Proof-of-Stake, Blockchain

Digital Object Identifier 10.4230/LIPIcs...

© Anonymous;
licensed under Creative Commons License CC-BY 4.0

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:jachiang@ucla.edu
mailto:bernardo@bmdavid.com
mailto:ittay@technion.ac.il
mailto:tg@purdue.edu
https://doi.org/10.4230/LIPIcs...\protect \protect \leavevmode@ifvmode \kern +.2222em\relax
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

:2 FairPoS: Input Fairness in Permissionless Consensus

1 Introduction

In permissionless consensus, the ordering privilege of the block leader is exploited in front-
running [17], where adversarial inputs can be interleaved with honest inputs to extract
financial value from the honest victim in applications such as automatic market makers [5].
Such behaviour financially penalizes the honest user, but also generates excess demand
for block-space since front-running attacks [5] always require additional inputs from the
adversary, inflicting block congestion at times, as acutely observed on Avalanche [2]. Current
proposals to mitigate front-running with varying notions of input fairness violate assumptions
underlying permissionless consensus such as Proof-of-Stake (PoS) [18].

A commonly proposed notion of input fairness requires encrypting inputs which are then
decrypted after finalization1. To guarantee timely decryption and to avoid malicious parties
withholding the reveal of the plaintext input, threshold decryption [31, 7] or identity-based
encryption [32, 20] involving static committees have been proposed. The honest-majority
committees with distributed private or master key material then guarantee the decryption of
inputs as specified by the protocol. However, such protocols require authenticated parties to
prevent Sybil interference and assume secure, private communication and are therefore not
permissionless; ongoing research efforts to lift such protocols into the permissionless setting
are discussed in Section 2.

Alternatively, the notion of sequencing transactions in the order of their arrival at honest
consensus nodes has been proposed in [28, 27, 26, 13]. This is meaningful in the permissioned
setting where communication between client and consensus node is fast, preventing an
adversary to observe a pending transaction and then emit a front-running transaction which
can then propagate faster than the victim’s transaction. However, this notion of input
order fairness does not easily translate to the permissionless setting, where transactions are
propagated across a permissionless, unauthenticated peer-to-peer network where delay is
adversarially controlled.

We introduce FairPoS, a PoS blockchain consensus protocol that achieves a novel notion
of input fairness (Def. 6, Thm. 19) in permissionless consensus, while retaining the security
guarantees of Ouroborous Praos [18]. As in Praos, we prove security against an adaptive
adversary, which controls the network delay and corrupts parties as the protocol execution
unfolds. Our novel notion of input fairness in permissionless consensus guarantees that the
plain-text content of any finalized input (in the common-prefix) could not have been observed
by the adversary prior to its finalization. FairPoS achieves this by encrypting inputs with
the delay encryption scheme by DeFeo et al. [12], which improves on time-lock puzzles [33].
Classical time-lock puzzles store plaintext messages that can be obtained by clients after an
extraction process that requires performing a known number of non-parallelizable sequential
operations (i.e. requiring a certain minimum amount of time for recovering a message).
However, naively encrypting inputs with time-lock puzzles requires a dedicated extraction
process for each client input, which quickly becomes infeasible at higher throughput. Delay
encryption, in contrast, allows all inputs in a block to be encrypted under a single unknown
key, which can be extracted as time elapses. Hence, only a single key extraction is required
for each block. The extraction procedure to recover the decryption key is parameterized
to run in at least time d, and can be performed by any party with access to specialized
hardware to ensure timely execution. This preserves adaptive security, as no relevant key

1 In permissionless, longest-chain consensus, input finalization occurs when the block containing the input
joins the common-prefix.

J. Chiang, B. David, I. Eyal and T. Gong :3

material is learned upon corruption of an honest party.
Still, it is not practical for non-staking parties or clients with limited resources to

perform key extraction. First, we expect only resource-rich participants to have access to
the specialized hardware [1] necessary to perform extractions in d time; otherwise, a long-
running, non-trivial extraction cost would be imposed on clients following the blockchain and
interacting with smart contract applications. Secondly, without any integrated mechanism
to publicly expose extraction keys, any party joining the protocol would need to perform
key extractions for all blocks beginning from genesis, which becomes rapidly more expensive
at higher chain lengths. A key contribution of FairPoS is a novel key extraction protocol,
requiring staking parties to insert the extracted keys from past blocks into later, child blocks
of the same chain within a fixed schedule, thus ensuring decryption keys are made public
in lock-step with chain growth. The challenge here is to prevent the arbitrary delay of
adversarial blocks to impede chain growth if honest parties cannot finish key extractions
on time due to delayed arrival of past blocks. In standard blockchain consensus, chains in
the local view can immediately be extended, but parties in FairPoS can only extend a chain
if past key extractions are completed on time. Note that it is not sufficient to require a
block to arrive at an honest party within the maximum network delay, so that key extraction
can begin as intended. The adversary can trivially deliver dishonest blocks to a subset of
honest parties only with the maximum permitted receipt delay, and then induce an additional
network delay as this dishonest block is relayed to others. The local receipt delay of this
block at other parties must then exceed the limit, causing irreconcilable inconsistencies
and potential chain stall. Although such attacks cannot be prevented as the adversary is
permitted to delay messages up to a maximum bound, they are carefully addressed in FairPoS
by incrementing receipt delay bounds for blocks which are further away from the chain tip
(Fig. 3). The novel longest-extendable-chain rule then asserts this notion of timeliness of
block arrivals, guaranteeing that any honest chain can be extended by another honest leader
within a fixed time. We highlight honest chain growth as a critical property and formally
prove that FairPoS achieves both input fairness whilst maintaining the security of Praos [18].
Paper overview. We provide an overview of related work in Section 2. In Section 3,
we introduce Delay Encryption and an abstract model of Ouroborous Praos execution (δ-
PoS). In Section 4, we then define our proposed notion of Input Fairness for permissionless
consensus and present the FairPoS model, extending δ-PoS with delay encryption and a
novel “longest-extendable-chain” selection rule. In Section 5, we gently introduce FairPoS
and formally demonstrate that achieves input fairness whilst maintaining the asymptotic
security of Ouroborous Praos (δ-PoS) against an adaptive adversary. Full Proofs of stated
theorems and lemmas are provided in Appendix C.

2 Related Work

Encrypt-and-reveal with timed cryptography. The basic idea of encrypt-and-reveal is to
encrypt client inputs, and then to decrypt these when they are finalized in the blockchain.
The “blockchain state” implied by the ordering of inputs is then “revealed” as past inputs
are decrypted over time. For “decryption” to be permissionless, it must be possible without
the knowledge of any secret key material; here, time-lock puzzles [33] were first proposed,
which permit any party with the ciphertext to compute the decryption key with d squarings
in a group of unknown order. Similarly, timed commitments were proposed in [11], which
are accompanied by zero-knowledge proof of well-formedness; namely, that the time-lock
commitment is well-formed and opens after d squaring operations. Time-lock puzzles have

:4 FairPoS: Input Fairness in Permissionless Consensus

been formalized in the universal composability framework in Tardis [6], permitting secure
composition with other protocols.

Mitigating front-running with time-lock puzzles in exchanges has been proposed in
Clockwork [16]. In [25], blockchain inputs are encrypted with time-lock puzzles to prevent
adversarial ordering based on the input plaintext. We note that this approach requires
extracting decryption keys for each submitted input individually, which quickly becomes
impractical for higher throughput levels. Open square [34] proposes a service which permits
users to outsource the extraction of cryptographic time-locks to anonymous servers. De
Feo et al. introduce the first time-lock primitive which permits all clients to encypt to
the same session key, called Delay Encryption (§3.1), which improves on time-lock puzzles
and minimizes “wasted” work spent on solving individual time-locks separately; thus, delay
encryption represents the state-of-the-art in time-lock encryption.

In all timed-crypto primitives, the existence of a “fastest” hardware is assumed. Fur-
thermore, it must assumed that this is accessible to all participants. We highlight two open
challenges; firstly, there has been little research on parameterising time-cryptography for
real-world hardware designs. Secondly, the “fastest” hardware design is likely to be specialized
and costly such that in practice, only resource-rich participants are likely to have access to
such extraction hardware. A key objective of FairPoS is to address the second challenge by
requiring block leaders to include extracted keys in the blockchain, thereby minimizing redund-
ant work and allowing non-staking users to decrypt past inputs in lockstep with chain growth.

Encrypt-and-reveal with threshold cryptography. An alternative to timed-cryptography
is to rely on a dedicated committee to generate a distributed master key, permitting the
encryption and subsequent decryption of inputs, after they are finalized in the longest chain.
Threshold decryption [7, 31] imposes a significant overhead, as each encrypted input must be
individually decrypted by the dedicated committee. We note a recent you-only-speak-once
(YOSO) line of work that investigates cryptographic protocols via anonymously elected
committees [9, 23, 15, 14, 21] promising player replaceability in the absence of party authen-
tication. Protocols in the YOSO model allow for permissionless solutions with the same effect
of the aforementioned solutions based on threshold encryption. The concept of Encryption
to the Future [14] allows for encrypting messages in such a way that they can be decrypted
only by the block leader of a later slot, also allowing for realizing “Witness Encryption on
Blockchains” (WEB) as proposed in [23] using threshold Identity Based Encryption (IBE).
However, protocols in the YOSO model require techniques for proactively secret-sharing
state to future committees; accomplishing this with high throughput in a practical manner
remains an open problem. The central technique in the WEB construction from [14] is
efficiently implemented in [32], which allows clients to encrypt their inputs to a future round
number in string form; the identity-specific key associated with the current round number
is then jointly released by the committee, permitting the public decryption of client inputs
encrypted to the same round. An alternative construction called signature-based witness
encryption is proposed by McFly [20], which realizes a special case of WEB with an efficient
instantiation of the threshold IBE technique from [14]. This approach permits the encryption
of an input to the set of committee verification keys and a round specific reference string.
McFly scales to larger committee sizes, promising practicality for permissioned consensus
systems. We emphasize that such encrypt-and-reveal approaches are not permissionless; an
authenticated party must be assigned to each protocol role in an execution, communication
between committee members must be secure and private and parties are not arbitrarily
replaceable.

J. Chiang, B. David, I. Eyal and T. Gong :5

Fair ordering. A line of research from authenticated consensus [28, 27, 26, 13] proposes
a notion of fair input ordering. A block leader will order inputs based on their order of
arrival. However, fair ordering is only meaningful in a setting with a secure connection
between client and round leaders: in an unauthenticated, peer-to-peer gossip network setting
common in massively distributed permissionless blockchain protocols, the receipt-order of
messages is adversarially controlled, making it difficult to justify any notion of fair message
arrival. A secure connection with the next block leader implies public knowledge of its
identity, contradicting the permissionless setting. The work of [26] lifts the notion of
receipt-order-fairness to the permissionless setting; however, we argue the adopted notion of
transaction arrival ordering is difficult to justify when client messages are propagated across
an unauthenticated, peer-2-peer network with adversarially controlled delivery schedules; the
adversary observing a propagating client transaction can inject their own inputs and control
the receipt order for each honest consensus node. Moreover, this work is only secure against
static adversaries.

3 Preliminaries

3.1 Delay Encryption
The delay encryption (DE) scheme by De Feo et al. [12] consists of the following four
algorithms: A global DE.Setup parameterized with a security parameter λ ∈ {0, 1}∗ and
delay parameter d generates public encryption (DE.pk) and extraction (DE.ek) keys. In each
round, a public session id ∈ {0, 1}∗ is sampled, and DE.Encaps can be used to generate a pair
(c, k) of a ciphertext c and a key k corresponding to id and the encryption key DE.pk. The
DE.Extract algorithm runs in at least d time, and returns a session key idk, with which the
DE.Decaps algorithm can compute a key k from ciphertext c for all (c, k) generated with the
same session id and public paramaters from a given setup.

1. DE.Setup(λ, d)→ (DE.ek, DE.pk)
2. DE.Encaps(DE.pk, id)→ (c, k)
3. DE.Extract(DE.ek, id)→ idk
4. DE.Decaps(DE.pk, id, idk, c)→ k

Delay encryption is an isogeny-based delay protocol, and similar to [19] is built from isogeny
walks in graphs of pairing friendly supersingular elliptic curves. In implementations [19],
such isogeny evaluations occupy memory space in the terabytes. Parties performing Extract
are expected to deploy specialized FPGA hardware [1] in order to achieved the parameterized
extraction time.

3.2 Longest-chain PoS model and security
We present a model of longest-chain proof-of-stake protocols, formalized by the Ouroborous
line of work [30, 18, 3] and subsequent improvements [10, 29]. We adopt modelling approach
in [30, 18, 3, 29], where the PoS protocol is modelled by two orthogonal components: the
first describes the leader election process and the second part models the views of blockchain
trees which result from a protocol execution induced by a given leader schedule.

Idealized leader elections. Time in PoS is divided into units named slots, each capturing
the duration of a single protocol round. In a given round, a party with relative stake α ∈ (0, 1]
becomes a slot leader for a given slot with probability

ϕ(α) = 1− (1− f)α

:6 FairPoS: Input Fairness in Permissionless Consensus

where parameter active slot coefficient f is the probability that a leader holding all stake
will be elected leader in given slot: importantly, ϕ(α) is maintained even if share α is split
amongst multiple, virtual parties (eq. 2 in [18]). Let a characteristic string w be defined as a
sequence of leader election results, where an election result at slot t is defined as follows.

wt =

0 a single honest leader
1 multiple honest leaders / adversarial leader
⊥ no leader

In PoS [18], leader election is can be modelled by sampling characteristic strings from an
idealized, dominant distribution Df

α that is strictly more adversarial than the true setting
where the adaptive adversary corrupts up to (1−α) of the stake during the protocol execution
(Theorem 8 in [18]). Thus, any security that holds in PoS executions induced by characteristic
strings sampled from Df

α must also hold in the true protocol execution against an adaptive
adversary dynamically corrupting up to 1− α stake.

▶ Definition 1 (Dominant distribution Df
α (Definition 11 in [18])). For an adaptive adversary

corrupting up to 1 − α stake fraction and active slot coefficient f ∈ [0, 1), the dominant
distribution Df

α is defined by the following probabilities:

p⊥ = 1− f p0 = ϕ(α) · (1− f) p1 = 1− p⊥ − p0 (1)

▶ Definition 2 (Blocks, chains, trees and branches). A block B = (sl, st, d, ldr) generated
at slot sl contains state st ∈ {0, 1}∗, data d ∈ {0, 1}∗ and party ldr that generated B and
was the elected block leader of slot sl. A chain is a sequence of blocks B0, ..., Bn associated
with a strictly increasing sequence of slots, where B0 is the genesis block, and the state of
Bi is H(Bi−1), H(·) denoting a collision-resistant hash function. We write C.tip to denote
the block at the tip of chain C and Cj to denote a block B ∈ C such that B.sl = j. If such
a block does not exist, Cj = ⊥. Let C⌈k denote the chain obtained from C by removing the
last k blocks. Multiple chains form a tree if their blocks share state. A branch B in a tree
T is a chain which ends with a leaf block. We write C ⪯ B to indicate C is a prefix of B.
When quantifying over all chains in a tree, ∀C ∈ T , we quantify over all prefixes of all tree
branches. Let len(C) denote the number of blocks in chain C.

A model of δ-PoS executions. As in [22, 30, 18, 3], we model the execution of PoS initiated
upon the activation of an environment Z, which spawns both honest parties H and an
adversary A. Upon each activation by the environment, each party executes the protocol
according to Figure 1, which precisely models the adversarial powers to influence the round-
wise evolution of block tree structures in the local view parties as the full PoS protocol in [18],
but omits details such as block proofs, signatures or individual leader election procedures
such as evaluation of verifiable random functions. A given characteristic string w induces
executions of our δ-PoS model that generate local tree structures identical to those resulting
from a full PoS [18] protocol execution that induces a leader election sequence consistent
with w and activates the same parties and adversarial actions.

Let the protocol execution state Γt in slot t, consist of honest party states, including the
local block tree view T (i) and the outbound message queue m(i) for each honest party i ∈ H.
Further, let Γt include the blockchain tree view T A of the adversary.

Γt =
(
{T (i), m(i)}i∈H, T A

)
(2)

The outbound message queue m(i) = {(C,P), ...} in Γt is the set of broadcast, yet undelivered
chains previously sent by honest party i. For each entry (C,P) ∈ m(i), C was initially

J. Chiang, B. David, I. Eyal and T. Gong :7

δ-PoS consensus model

The δ-PoS state Γt =
(
{T (i), m(i)}i∈H, T A

)
evolves in a single round Γt →wt+1 Γt+1

induced by environment Z, adversary A and characteristic string w as follows.

Trees. Honest {T (i)}i∈H and adv. T A evolve as follows:
T0 T (i)

0 consists of the genesis block.
T1 If wt+1 = 0, a single honest party runs Extend on the longest C in T (i), which is

then added to T (i) and T A.
T2 At any time during the round, adversary A may:
a) Run Extend on a chain in T A for slot t + 1 if wt+1 = 1, upon which the extended

chain is added to T A.
b) Update any honest tree view T (i) with an additional chain from T A or an honest

message queue {m(i)}i∈H (see M2).

Msgs. Honest message queues {m(i)}i∈H evolve as follows:
M1 For chain C′ extended by honest party i in the round (T2), the entry (C′,H) is

added to local message queue m(i).
M2 At any time during the round, adversary A may deliver a chain from an entry

(C,P) ∈m(i) to a subset of honest users I ⊆ H:
a) Entry (C,P) in m(i) is updated to (C,P ′), where P ′ = P \ I.
b) Each (C,P) ∈m(i) must be delivered to all honest parties H by slot C.tip.sl + δ,

and is then removed from m(i).

Extend. To extend C, party i generates B = (t + 1, H(C.tip), d, i) with an ordering of
inputs d = {ini}i∈[m] input by environment Z for slot t.

Figure 1 Model of δ-PoS execution induced by environment Z and characteristic string w.

broadcast and added to the local message queue at slot C.sl ≤ t. Each entry in m(i) consists
of a chain C and honest party subset P ⊂ H, which has yet to receive the message. A is
required to deliver all honestly broadcast chains with a delay of no more than δ slots. The
model executes round-wise beginning from initial state Γ0, where the tree views of all parties
consist only of the genesis block.

In each round from slot t to t + 1, the leader is implied by by wt+1 ∈ {0, 1,⊥}. For a
uniquely honest slot, the environment Z is permitted to activate any honest party to extend
the longest chain in its local view, where the inputs for insertion in the block are provided
by Z. We interpret wslot = 1 as a strictly adversarial slot, since the adversary could affect
the structure of local trees views in the same way as multiple honest leaders: namely, by
producing multiple blocks associated with the same slot.

PoS Security. The seminal work on formalizing the Bitcoin backbone protocol [22] proved
liveness and persistence of longest-chain proof-of-work (PoW) protocols in terms of common-
prefix, chain growth and chain quality properties, which are also achieved for PoS in Ouroboros
Praos [18]. We restate these below and formally prove them for FairPoS in Section 5.

▶ Definition 3 (Common prefix, k-CP; with parameter k ∈ N). The chains C1, C2 possessed
by two honest parties at the onset of the slots t1 < t2 are such that C⌈k1 ⪯ C2 , where C⌈k1
denotes the chain C⌈k1 obtained by removing the last k blocks from C1, and ⪯ denotes the
prefix relation.

:8 FairPoS: Input Fairness in Permissionless Consensus

▶ Definition 4 (Chain growth, (τ, s)-CG; with parameter τ ∈ (0, 1] and s ∈ N). Consider
the chains C1, C2 possessed by two honest parties at the onset of two slots t1, t2 with t2 at
least s slots ahead of t1. Then it holds that len(C2) − len(C1) ≥ τ · s. We call τ the speed
coefficient.

▶ Definition 5 (Chain quality, (µ, k)-CQ; with parameters µ ∈ (0, 1] and k ∈ N). Consider
any portion of length at least k of the chain possessed by an honest party at the onset of a
round; the ratio of blocks originating from the adversary is at most 1 − µ. We call µ the
chain quality coefficient.

4 The FairPoS protocol

As in δ-PoS, we model a FairPoS execution that is induced by an environment Z and a
characteristic string w; both protocol participants and adaptive adversary A are spawned
by Z, whereas w governs which parties may be activated by Z to generate blocks at each
slot. The adaptive adversary is permitted to spend its corruption budget on honest parties
anytime; in particular, it can observe any message emitted by an honest party, and then
decide its corruption strategy based on the sent message of the honest user. In FairPoS,
inputs provided to the block leader by Z are delay encrypted. Thus, a party must first be
activated by Z with a plain-text input and execute the input encryption procedure (Fig. 2).
Upon receiving encrypted inputs, Z can forward an ordering of encrypted client inputs to
the elected block leader in the FairPoS execution (Fig. 4).

Z

Input
encryption

FairPoS
consensus

3. Encrypted Input(s)1. Input

2. Encid(Input)

We introduce the FairPoS model in parts. In Section 4.1, we formally define the no-
tion of input fairness in the permissionless setting for clients sending transactions to a
FairPoS execution. In order for an encrypted input to reach the k-common-prefix, the
duration implied by the delay parameter d must be sufficiently long. We then define the
FairPoS input encryption procedure; our protocol deploys key evolving signature schemes as
in Ouroborous Praos [18], which prevents the adaptive adversary from obtaining static key
material upon corrupting an honest party that has just emitted an honestly signed input.

In Sections 4.2 and 4.3, we introduce the formal FairPoS protocol execution model, which
extends δ-PoS with key extraction and a novel longest-extendable-chain selection rule. Here,
encrypted inputs are generated as in Section 4.1 and given by the environment Z to parties
executing the protocol. We first describe how the adversary can prevent key extraction
processes to complete on time by delaying adversarial blocks, thereby motivating the design
of the longest-extendable-chain selection rule in the FairPoS model, which mitigates such ad-
versarial impedance and ensures honest chain growth independent of chosen delay encryption
parameter d.

A security analysis of FairPoS follows in Section 5, where the precise relationship between
input fairness, chain growth, common-prefix and chain quality properties is formalized.

J. Chiang, B. David, I. Eyal and T. Gong :9

FairPoS input encryption

Let KES = (Gen,Sign,Verify,Update) denote a key evolving signature scheme and SKE =
(Gen, Enc,Dec) a symmetric-key encryption scheme. Let the genesis block of a chain
contain a delay encryption parameter DE.pk and a chain tip imply account keys
{KES.vki}i∈[n].
Gen. Upon (Gen), set (sk, vk)← Gen(1k, T), return vk.
Sign. Upon (Sign, C, in)
1. Let id = C.tip, assert vk ∈ accts(C.tip)
2. Set pk← DE.pk(C0)
3. Compute (c, k)← DE.Encaps(pk, id).
4. Encrypt input with key k: m← SKE.Enck(in).
5. Generate σ ← KES.Signsk(c |m | id = C.tip).
6. Set sk← Update(KES.sk), erasing previous signing key.
7. Return (c, m, σ).

Figure 2 Input encryption procedure in FairPoS

4.1 Input fairness & encryption
▶ Definition 6 (Input fairness, IF). Consider the chain C possessed by an honest party at the
onset of a round, where k-CP holds true. Input fairness holds if for all blocks B ∈ C⌈k: 1. the
adversary cannot decrypt an honestly encrypted input in B before B is in the k-common-prefix;
2. encrypted inputs in B are eventually decrypted by all honest parties.

Input fairness is conditioned on k-common-prefix property in FairPoS. Intuitively, the
extraction delay d in FairPoS must be parameterized, such that the encrypted input can reach
the common-prefix before d time passes. For simplicity, we denote d as time in slots. Note
that input fairness permits an encrypted input to not become finalized and decrypted by the
adversary: we argue this outcome is acceptable as the client transaction is not executed and
thus cannot be exploited in any input ordering attacks. This is consistent with [7, 31, 32].

We sketch the input encryption procedure for FairPoS shown in Figure 2, where the
environment Z provides the plain-text input for a party to encrypt and sign. For a block B,
inputs are encrypted to a session id which is set to the chain tip that B is extending, such
that id = C.tip and C.tip = B.st. To ensure that a slot leader cannot insert an encrypted
input to a later block, potentially deferring its insertion until the key extraction is completed,
we ensure that the input is bound to a child block of C.tip with a signature.

In the adaptive corruption setting, we deploy an efficient key evolving signature scheme
(KES) [8, 24] as in Ouroborous Praos [18]. Such schemes evolve secret key material forward
with each signature, thereby erasing any information that could be used to generate verifying
signatures of past rounds (See Definition 20). An adaptive adversary can always corrupt an
honest user who has just broadcast a newly delay encrypted and signed input; with static key
material only, the adversary would learn the signature key and generate verifying signatures
of the delay encrypted input to insert it into any later block, potentially after decrypting
the encrypted input2. In other words, since it is the signature of an honest user that binds

2 In practice, clients may be required to safeguard static key material. For modelling consistency, we
assume clients performing the input encryption procedure can be adaptively corrupted just as parties
participating in FairPoS consensus, motivating the use of key evolving signature schemes.

:10 FairPoS: Input Fairness in Permissionless Consensus

its encrypted input to a specific block, allowing the adaptive adversary to bind the same
honestly encrypted input to a later block will violate input fairness in Definition 6.

For the public verification of such signatures, we assume the presence of logical accounts for
all parties, each associated with a public, signature verification key inferred from the chain tip.

Malformed inputs. As shown in Fig. 2, it will be possible for adversarial parties to encrypt
malformed inputs; elected, honest block leaders which included these encrypted inputs to
their blocks cannot discern the validity of the plaintext message, as the key extraction
procedure is intended to proceed until the input reaches the k-common-prefix.

We omit a detailed treatment of mitigation techniques, but sketch several possible
approaches. (1) A zero-knowledge proof of well-formedness may accompany each encrypted
input, proving well-formedness of the underlying input. (2) Fees may mitigate denial-of-
service attacks from mal-formed, adversarial inputs; we note that the correct execution- or
gas-dependent fee amount can also be proven in zero-knowledge for certain applications.

We also highlight the existence of consensus protocols with explicit focus on input fi-
nalization for high transaction-throughput [4]. Here, finalized yet invalid inputs are simply
ignored when determining canonical, total ordering of the chain.

4.2 Introducing key extraction in FairPoS
In FairPoS, each block is associated with a session id string, to which inputs in the child block
are encrypted, as required by the input encryption procedure in Fig. 2. The extraction of
the session key idk required to decrypt the finalized, input ciphers is parameterized to take d

slots or rounds. A key design goal of FairPoS is to ensure that the session keys for each block
will be included in later blocks of the same chain so that lightweight clients following the
protocol execution do not need to perform expensive extractions to observe the blockchain
state. This suggests that the protocol must define a fixed “extraction schedule” parameter
D ≥ d, such that the session key of a block B must be included the earliest block following
slot B.sl + D of a chain extending B. Defining such a fixed extraction schedule, however,
is not trivial, as the adversary can delay its own blocks arbitrarily, and reveal them to a
selected subset of honest users only, and thereby induce additional block delays for other
honest parties as the dishonest block must be relayed over the network, further hindering
timely completion of key extraction processes run by honest parties.

In this section, we provide preliminary definitions and intuition for how FairPoS achieves
scheduled key extraction without breaking honest chain growth; the latter is formalized as
the ∆-monotonicity property in Definition 7 which is also holds in Praos [18]. Then, we
define receipt delays in Definition 8; this is the delay between the onset of a round and
the local arrival time of a block associated with the same round. Given receipt delays, we
then show a naive application of maximum receipt delays limits for blocks. The idea here
is to ensure key extraction processes are initiated in a timely manner by requiring blocks
to arrive within a maximum duration after their scheduled generation. We then show how
the adversary can attack such a naive scheme and cause chain stalls (eq. 3). This attack is
overcome in FairPoS by carefully incrementing maximum receipt delays for blocks further
away from the chain-tip, as illustrated in Example 9. We demonstrate that FairPoS achieves
∆-monotonicity in Theorem 10, a key property required for FairPoS security (§5). A more
formal treatment of the the full FairPoS consensus protocol follows in Section 4.3.

▶ Definition 7 (∆-Monotonicity, from [18]). Let T =
⋃

i∈H T (i) be an honest tree rooted in
genesis resulting from an execution of protocol π in a δ-synchronous network: it consists of

J. Chiang, B. David, I. Eyal and T. Gong :11

all chains broadcast by honest parties. Further, let depthT (i) denote the length of the chain
in T extended by the uniquely honest leader of slot i. T exhibits the ∆-monotonicity property
if the following holds true.

For all uniquely honest slots (i, j) s.t. j ≥ i + ∆ :
depthT (j) > depthT (i)

In PoS executed in a δ-synchronous setting, δ-monotonicity is trivially achieved: any honest
block tip must arrive in the view of other honest party after δ slots, and is thus considered
as a chain candidate for extension by any honest leader applying the longest chain selection
rule.

We introduce a formal notion of receipt delay, which, informally, quantifies how far a
local key extraction process is “behind schedule” due to adversarial delay of block arrival.

▶ Definition 8 (Receipt delay). Let r(i)(B) : B → Z0 be the delay in slots between B.sl and
the local arrival of block B from the view of the party (i). If B is an empty-block (⊥), we
define the receipt delay to be ⊥.

When the extraction window is defined as a slot interval preceding genesis, where slot indices
are “negative”, let the receipt delay is defined as ⊥. We allow a receipt delay of ⊥ to be
interpreted as a receipt delay of 0.

Attack on receipt delay consistency. The receipt delay of each block B must be bounded
by the protocol in order to guarantee a fixed future slot in which the honest party can
complete the extraction of the session key of B and produce a valid block. However, note
that the receipt delay is defined on the local view of a single party; the adversary can trivially
achieve inconsistencies in receipt delays between honest parties, such that arrival of a block
is considered “on-time” by on party, but “too late” by another. We illustrate such an attack
on receipt delay consistency (Eq. 3) between honest parties.

A CA−−→ Pi
CA|Bi−−−−→ {Pj}j∈H (3)

Consider a chain CA, which for simplicity sake consists of adversarial blocks only. Then, let
the adversary forward the chain to honest party Pi, such that all receipt delays for each
block in CA are exactly the maximum receipt delay permitted by the protocol. Should honest
Pi extend CA and subsequently deliver CA | Bi to all other honest parties {Pj}j∈H:j ̸=i with
a network delay of δ slots, the receipt delays of blocks in CA in the view of the other honest
parties will violate the protocol, as these will be r(j)(B) = r(i)(B) + δ for each B ∈ CA; by
assumption, r(j)(B) is the maximum permitted by the protocol. Thus, the honest chain
tip Bi will never be extended by other honest parties, as its prefix CA contains blocks with
invalid receipt delays, violating ∆-monotonicity for any ∆; in the view of other parties,
CA | Bi is an invalid chain.

FairPoS key extraction. We overcome this class of attacks in FairPoS by permitting increasing
receipt delay limits for blocks that are farther away from the chain tip (Figure 4). The
high-level idea is as follows: To achieve ∆-monotonicity (Def. 7), we consider honest block
leaders of slots which are ∆ slots apart. Even if the receipt delay view of a block may differ
from one honest leader at slot t to the leader of a later slot t + ∆, the leader at t + ∆ will
grant the same block a higher, maximum receipt delay to account for any additional network
delays induced by the adversary, as shown above. Our protocol permits independent Choices
of extraction delay (d), network delay (δ), montonicity paramater (∆) satisfying Eq. 5. We

:12 FairPoS: Input Fairness in Permissionless Consensus

Local view of honest party (a)

Local view of honest party (b)

Leader of slot t: (a)

3. Δ-WindowExt-Win.

w =

Max. receipt delay:
2. Δ-Window 1. Δ-Window 0. Δ-Window

1 1 1 1 1 1 1 1 1 1 1 1 0

Leader of
slot t+Δ: (b)

Ext-Window

w =

Max. receipt delay:
3. Δ-Window 2. Δ-Window

234345456
1. Δ-Window

123 012

2343454 123 012

0. Δ-Window

1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0

Ext. Schedule (D) = d + 4δ = 8 + 4

Figure 3 Key extraction in (d=8, δ=1, ∆=3)-FairPoS with maximally permitted receipt delays.

provide a discussion of parameterizations of (d, δ, ∆)-FairPoS in Sec. 4.3. Before formalising
the FairPoS key extraction protocol, we provide an example parameteriziation of FairPoS for
intuition.

▶ Example 9. We illustrate an execution of (d=8, δ=1, ∆=3)-FairPoS in Fig. 3, where the
local chain view of honest parties (a) and (b) is shown. Here, party (a) is elected block leader
At slot t, whereas party (b) is elected block leader at slot t + ∆; for ∆-monotonicity to hold,
the chain extended by (a) must be extendable by (b); in party (b)’s local view, this requires
all blocks in the chain to respect the receipt delays imposed by the protocol, even if the
adversary has induced inconsistent receipt delays between honest parties. For simplicity, we
assume no leaderless slots (⊥) in this example.

Receipt delay limits (“max. receipt delay” in Fig. 3) imposed by FairPoS are organised in
slot intervals, called ∆-windows. Beginning from the current slot, preceding slots are divided
into slot windows of ∆ = 3 length. Each slot position within a n’th ∆-window is granted an
additional receipt delay of delta in the subsequent (n + 1)’th Delta window. The extraction
window defines the blocks for which the session keys must be extracted and included into the
block of the current slot; note that the extraction schedule (D = d + 4δ = 12) is consistent
with the maximum receipt delay (4δ = 4) imposed on blocks in the extraction window.

Fig. 3 illustrates a worst case scenario; honest party (a) is extending a fully adversarial
chain, where the adversary has forwarded the blocks to party (a) only, with the maximally
permitted receipt delays. Honest party (a) broadcasts the chain upon extending it in slot t,
such that all blocks arrive at party (b) with an additional, worst case network delay δ = 1.
However, note that in the view of block leader party (b), each block of the chain in the n’th
∆-window is now in in the (n + 1)’th ∆-window, which tolerates an additional receipt delay
of δ = 1. Thus, this chain from party (a)is extendable by party (b) after ∆ slots, implying
∆-monotonicity for ∆ = 3.

We highlight that each honest party has no knowledge of whether blocks where generated
by an adversary or honest party. Further, no honest party can infer the true receipt delays
in the local views of other honest parties. Informally, the FairPoS key extraction protocol is
designed to accommodate the “worst case” adversarial interference as shown in this example.

4.3 The (d, δ, ∆)-FairPoS consensus protocol
We formalize the key extraction protocol introduced in §4.2 and present the full FairPoS
execution model (Fig. 4) which also extends δ-PoS (Fig. 1) with a novel longest-extendable-
chain selection rule. The design of FairPoS permits scheduled key extraction for each block

J. Chiang, B. David, I. Eyal and T. Gong :13

whilst maintaining ∆-monotoncity (Def. 10), essential for the security of FairPoS (§5).

Extraction window. A FairPoS protocol instance is parameterized with extraction schedule D,
the duration after which the extracted session keys of a block are due in the next, available
block. Here, we must account for the possibility of a gap between the chain tip and the
current slot, for which no extracted keys could have been inserted. We therefore require a
notion of an extraction window that denotes a window of preceding slots, for which associated
blocks have key extractions due in the current slot. We first formalize gap2tip(t, C) as the
number of empty slots between slot t and C.tip.sl.

gap2tip(t, C) = t− tip(C).sl for t > tip(C).sl

Then, the extraction window of current slot t and chain C with extraction schedule D can be
defined as the range of slots, which are at least D slots in the past and are associated with
blocks in C without key extractions already inserted in C due to a non-empty gap2tip(t, C).

extWinD(t, C) = (t−D − gap2tip(t, C) : t−D] (4)

Extraction schedule & ∆-windows. Let (d, δ, ∆)-FairPoS be parameterized by delay encryp-
tion parameter d > 0, maximum network delay δ ≥ 0 and desired monotonicity parameter
∆ > δ (Definition 7). Parameters d, δ and ∆ are chosen to satisfy the following relation.
Note that n denotes the number of ∆-windows in extraction schedule D (see ∆-windows in
Fig. 3).

D = n∆ where n = d/(∆− δ) s.t. n ∈ Z (5)

In words: the extraction schedule D is divisible by ∆. Furthermore, the number of ∆-windows
in D must equal d/(∆− δ). We define the m’th “∆-window” of current slot t as the following
slot interval, consistent with Figure 3.

∆WinD(t, m) = (t− (m + 1)∆ : t−m∆] for m ∈ [0 : D

∆) (6)

Chain extendability. A chain C is extendable by leader of slot t with local receipt delay
view r(i) if the receipt delays specific to each slot and ∆-window are satisfied, as implied by
conditions 1 , 2 and 3 in Equation (7).

ext(t, C, r(i)) =
{

1 1 ∧ 2 ∧ 3

0 otherwise

1 ∀m ∈ [0 : D
∆) :

∀j ∈ ∆WinD(t, m) : r(i)(Cj) ≤ mδ + (t−m∆− j)

2 ∀j ∈ extWinD(t, C) : r(i)(Cj) ≤ D
∆ δ + (t−D − j)

3 ∀B ∈ C : B contains valid idk for each block in its extWin

(7)

Concretely, condition 1 reflects the maximum permitted receipt delays for each slot in the
m’th ∆-window. Condition 2 describes the maximum permitted receipt delays for slots in
the extraction window (Eq. 4). Observe that these conditions are satisfied in the view of
parties (a) and (b) in Figure 3 since the maximum receipt delays imposed by FairPoS are
satisfied. Condition 3 states that all blocks in the chain must include valid session keys
from past, parent blocks in their respective extraction windows.

:14 FairPoS: Input Fairness in Permissionless Consensus

▶ Theorem 10. (∆-Monotonicity of FairPoS) Every protocol execution of (d, δ, ∆)-FairPoS
results in an honest tree T that exhibits the ∆-monotonicity property.

Proof. (Sketch) ∆-monotonicity holds, because each slot in the m’th ∆-window is granted an
additional δ receipt delay budget in the m + 1’th ∆-window. Thus, if a chain is extendable
(eq. 7) in the view of an honest party, the same chain must be extendable by all other parties
following δ slots, despite the attack shown in eq. 3 that induces inconsistent receipt delays.
Intuitively, the protocol can tolerate worst-case, receipt delay inconsistencies of δ slots from
such attacks because each block is granted an additional δ in delay budget after ∆ slots. The
formal proof of Theorem 10 is stated in Appendix C. ◀

FairPoS execution model. We can now state the full FairPoS protocol and its execution
model in Fig. 4. FairPoS extends the δ-PoS model in Figure 1 with the longest-extendable-
chain selection rule, key extractions and the insertion of delay encrypted inputs, generated
by the procedure in Figure 2. The protocol execution state of (d, δ, ∆)-FairPoS is extended
with local receipt delays:

Γt =
(
{T (i), m(i),r(i)}i∈H, T A

)
(8)

Views in initial state Γ0 contain a genesis block which includes public parameters DE.pk, DE.ek.
Importantly, we require the adversary A and each honest party to perform exactly one extrac-
tion step for each pending key extraction in each round of the execution. Thus, no party or
adversary gains a time advantage in extracting session keys from blocks (See E1 in Figure 4).
It remains to formally define the longest extendable chain selection in the local view of an
honest party.

Longest-extendable-chain selection. In FairPoS, an honest slot leader choses to extend the
longest extendable chain in its local tree view T (i), where chain extendability was previously
defined in Eq. 7.

maxExtChain(t, T (i), r(i)) = arg max
C∈T (i):ext(t,C,r(i))

len(C) (9)

4.4 Parameterization of FairPoS
We note that in parameterizing (d, δ, ∆)-FairPoS, the maximum network delay δ is conser-
vatively chosen to reflect network realities. For given δ, monotonicity parameter ∆ and key
extraction delay d can be chosen quasi-independently. For given choices of ∆ > δ, any d

is permitted that satisifies Equation (5); namely, d must be any multiple of (∆ − δ). In
Section 5, we show that the probability of input fairness being violated by the adversary
falls exponentially in d (Theorem 19). Thus, the security of input fairness can be chosen
independently from that of common-prefix, chain growth and chain quality properties. This
is important for utility; a larger d increases the robustness of input fairness, but this comes
at a cost of the freshness of blockchain state.

Freshness of visible blockchain state. All proposed encrypt-and-reveal approaches (Section 2)
to input fairness naturally accept a comprise in the “freshness” of visible blockchain state; a
delay parameter d naturally induces a gap between the current slot, and the most recent
block in the past with already decrypted inputs. In practice, clients must submit inputs
which are then applied to a blockchain state which is not yet decrypted - in other words,
clients must generate inputs based on older blockchain state. In applications with frequent

J. Chiang, B. David, I. Eyal and T. Gong :15

(d, δ, ∆)-FairPoS consensus model

The (d, δ, ∆)-FairPoS state Γt =
(
{T (i), m(i),r(i)}i∈H, T A

)
evolves in a single round

induced by environment Z, adversary A and characteristic string w as follows.

Trees. Honest {T (i)}i∈H and adversarial T A evolve as in δ-PoS (Fig. 1) except that
the honest leader i extends the longest-extendable chain (Eq. 9) in its view T (i).

Msgs. Honest message queues {m(i)}i∈H evolve as in δ-PoS (Fig. 1).

Receipt delays. The receipt delays {r(i)}i∈H in Γt evolve as follows:
R1 For each chain C delivered to honest party i by A at slot t + 1: for each newly seen

block Cj ∈ C, party i records r(i)(Cj)← t + 1− Cj .sl.

Extraction. Each honest party i ∈ H and adversary A performs:
E1 In each round, exactly a single Extract step on each block in its local view for which

key extraction is pending.

Extend. Party i generates B = (t, H(C.tip), dext|dins, Pi) where
• dext = (idk, idk′, ...) are extractions of blocks in C within extWinD(t, C) (Eq. 4).
• dins = {(cj , mj , σj)}j∈[n] is an ordering of encrypted inputs from enviroment Z;

Upon receiving dins from Z, party i asserts for each entry;
∃vkj ∈ accts(C.tip) : 1← KES.Verifyvkj

((cj |mj |C.tip), σj).
Then, party i adds chain C′ = C | B to its local view.

Figure 4 Model of FairPoS execution induced by environment Z and characteristic string w.
Encrypted inputs are generated in the input procedure in Fig 2 of §4.1.

inputs accessing the same public state, such as in decentralized finance [35], this likely results
in increased number of invalid or reverted transactions, affecting the utility of the blockchain.
In decentralized exchanges, for example, the market price is constantly adjusted with each
submitted trade. A trade order with a price limit informed by an outdated price can become
invalidated, as the older, lower price is no longer be available when the encrypted trade
order is finally decrypted. We emphasize that the trade-off between utility and robustness of
input fairness (Thm. 19) in FairPoS can be adjusted independently of the structural blocktree
properties of common-prefix (Thm. 15), chain growth (Thm. 16) and chain quality (Thm. 17);
in some applications a small, yet non-neglible probability of front-running may be accept-
able for a fresher, decrypted blockchain state offered by a smaller delay extraction d parameter.

Decryption gap. Parameterizations of (d, δ, ∆)-FairPoS always imply an extraction schedule
greater than the extraction delay parameter (D > d) for non-zero network delay parameter δ

(Eq. 5). Let D − d denote the “decryption gap”; informally, it represents how much sooner
the consensus node performing key extraction can decrypt a block compared to a light-weight
client, which must wait for the extracted key to be included in a later block. This “slack”
in extraction schedule D is necessary to maintain consensus security due to adversarial
block delays attacking receipt delay consistency between honest users illustrated in §4.2. We
emphasize that the decryption gap D − d does not represent a compromise in input fairness
or structural security properties; instead, it reflects the efficacy of the FairPoS key extraction
protocol, which aims to provide extracted keys to lightweight clients as soon as possible after
these are extracted.

:16 FairPoS: Input Fairness in Permissionless Consensus

0 10 20 30 40
5

10

15

20

25

30

d

D
−

d

(δ, ∆) = (6, 7)
(δ, ∆) = (6, 10)
(δ, ∆) = (6, 13)
(δ, ∆) = (6, 16)
(δ, ∆) = (6, 19)

Figure 5 The decryption gap (D − d) between key extraction schedule (D) and key extraction
delay (d) is shown for selected parameterizations of (d, δ, ∆)-FairPoS. Decryption gap D − d can
be interpreted as the “efficacy” of the key extraction protocol in FairPoS, which aims to provide
extracted keys to blocks as soon as possible.

Figure 5 shows the “decryption gap” D− d for selected protocol parameters (d, δ = 6, ∆).
We highlight the first trade-off between ∆−δ and decryption gap D−d; a higher monotonicity
parameter ∆ in ∆− δ implies slower chain extendability, but can be exchanged for a smaller
decryption gap, implying higher chain utility for light clients. Furthermore, delay encryption
delay parameter d and decryption gap D − d are linearly correlated for given δ and ∆;
designing a secure key extraction protocol with sub-linear decryption gap represents an
interesting problem for future work.

5 FairPoS security

Having presented a formal model of (d, δ, ∆)-FairPoS we proceed to demonstrate that it
satisfies common-prefix (Def. 15), chain growth (Thm. 16), chain quality (Thm. 17) and
input fairness (Thm. 19).

Informally, common-prefix is demonstrated by showing that any execution of (d, δ, ∆)-
FairPoS produces local blocktree views which could have resulted from a ∆-PoS execution;
since common-prefix is interpreted as a structural branching property of local blocktree views,
this allows us to directly inherit common-prefix from ∆-PoS previously proven in Praos [18].
Chain growth and chain quality are implied by ∆-monotonicity of FairPoS, previously shown
in Theorem 10. Finally, input fairness in FairPoS is inferred from common-prefix, chain
growth and chain quality.

5.1 Common-prefix in FairPoS
Demonstrating k-common-prefix in FairPoS is accomplished by formally relating the tree
views generated in an execution of (d, δ, ∆)-FairPoS with those that could have resulted from
δ-PoS. Let the honest tree of protocol execution state

Γt =
(
{T (i), m(i),r(i)}i∈H, T A

)
be given be the union of honest tree views at slot t:

T H(Γt) =
⋃

i∈H
T (i) (10)

J. Chiang, B. David, I. Eyal and T. Gong :17

In the analysis of PoS [18, 29], the branching structure of the honest tree informs us about
events where a local chain was abandoned for a longer, alternative branch according to
the longest chain selection rule. Informally, the common-prefix property is violated if the
k-common-prefix shared between prior and newly adopted chains if their shared prefix is
“too short”. We begin our analysis with the (viable) branches which could have been adopted
by honest parties in the first place.

Viable branches in PoS. A viable branch B in a tree T must exceed all honest chains-
tips generated more than δ slots prior to B.tip.slot: this property arises from the honest
application of the longest chain rule. The honest leader of B.tip.slot must have received any
honest chain-tips generated δ slots prior and considered them as alternative candidates for
extension. Therefore, the viable branch B must exceed these in length. For branch B ∈ T ,
we first formalize its set of alternative chain candidates as follows.

altChnsδ(B, T) =

{ C ⊆ T | C.tip.ldr ∈ H ∧ B.tip.sl > C.tip.sl + δ }
(11)

For a PoS protocol execution state Γt =
(
{T (i), m(i)}i∈H, T A

)
, the set of well-formed, viable

branches is formalized as the set of branches with lengths exceeding their honest, alternative
chains.

viableBranchesPoS
δ (Γt) =

{∀B ∈ T H(Γt) | len(B) > arg max
C ∈ altChnsδ(B,T H(Γt))

len(C) } (12)

Viable chains in FairPoS. The notion of viable branches must be strengthened for FairPoS
since the longest-extendable-chain rule introduces additional constraints for the adoption of
a chain in the local honest tree view. Let the extendable prefix of a branch B in the view of
honest parties at slot t be defined as the “longest extendable prefix” of a branch.

extPrefix(t,B, {r(i)}i∈H) = arg max
C⪯B : ∃i∈H : ext(t,C,r(i))

len(C) (13)

For a (d, δ, ∆)-FairPoS state, let the set of viable chains be defined as the extendable
prefixes (Equation (13)) of branches in the honest tree with lengths which exceed those of its
alternative chains (Equation (11)) generated ∆ slots prior: by the ∆-monotonicity property
(Theorem 10), these chains must have been extendable by the leader that generated the
respective prefix and considered these as candidates for extension. Viable chains in FairPoS
are defined as;

viableChainsFairPoS
∆ (Γt) = { C ⊆ T H(Γt) | 1 ∧ 2 }

1 ∃B ∈ T H(Γt) : C = extPrefix(t,B, {r(i)}i∈H)
2 len(C) > arg max

C′ ∈ altChns∆(C,T H(Γt))
len(C′)

(14)

In words; a viable chain in FairPoS and the local honest view must 1 be an extendable
prefix and 2 this prefix must also exceed its alternative chains in length.

Next, we restate the divergence notion from Praos [18, 29] which formally describes the
magnitude of branching caused by the switching between viable chains.

▶ Definition 11 (Divergence). For two chains C1 and C2, define their divergence to be the
quantity

div(C1, C2) = min(len(C1), len(C2))− len(C1 ∩ C2)

:18 FairPoS: Input Fairness in Permissionless Consensus

where C1 ∩ C2 denotes the common prefix of C1 and C2. We extend this notion of divergence
to the protocol execution state Γ resulting from the execution of protocol π induced by
characteristic w in the δ-synchronous setting: here, the maximum divergence over any two
viable chains is quantified.

divπ
δ (Γ) = maxC1,C2∈viableBranchesπ

δ
(Γ)div(C1, C2)

Finally, we define the divergence of a characteristic string w to be the maximum divergence
observable over all states which could have resulting from protocol executions induced by w.
More formally, let execπ

δ (Γ0, w) denote all possible executions of π beginning with state Γ0
which could have been induced by w in δ-synchronous network. Then the divergence of a
characteristic string w is defined as:

divπ
δ (w) = maxΓ∈reachableπ

δ
(Γ0,w)divπ

δ (Γ)
where reachableπ

δ (Γ0, w) = {Γ | ∃λ ∈ execπ
δ (Γ0, w) : Γ0

λ−→ Γ}
(15)

For PoS, the probability that that the divergence exceeds k-blocks over an execution of
R slots, is given by the following theorem from [18]. Bounding the probability of divergence
naturally implies common-prefix security.

▶ Theorem 12. (PoS Divergence, Theorem 4 in [18]) Let active slot coefficient f ∈
(0, 1] and α be such that α(1 − f)∆ = (1 + ϵ)/2 for some ϵ > 0. Further, let w be a
string drawn from {0, 1,⊥}R according to Df

α. Then we have Prw←$Df
α
[divPoS

∆ (w) ≥ k] ≤
exp(ln(R)− Ω(k −∆)).

Towards demonstrating k-common prefix in FairPoS, we first present a central theorem,
which states that for all executions of (d, δ, ∆)-FairPoS in the δ-synchronous setting, there
exists an execution of PoS in the ∆-synchronous setting, such that viable chains of the
d, δ, ∆-FairPoS honest tree are equivalent (≡) to the viable branches of the PoS honest tree:
here, we define the equivalence of chains such that only their structural properties are
considered, formally stated in Definition 21.

▶ Theorem 13. (Equivalent trees) For any (d, δ, ∆)-FairPoS execution λ induced by a
charactistic string w ∈ {0, 1,⊥}∗, Γ0 →λ Γ, there exists a ∆-PoS execution λ′ induced by
same w, Γ′0 →λ′ Γ′, such that the viable chains in Γ are equivalent to the viable branches in
Γ′.

∀w ∈ {0, 1,⊥}∗ : ∀λ ∈ execFairPoS
δ (Γ0, w), Γ0

λ−→ Γ :
∃λ′ ∈ execPoS

∆ (Γ′0, w), Γ0
λ′

−→ Γ′ :

viableChainsFairPoS
δ (Γ) ≡ viableBranchesPoS

∆ (Γ′)

We refer to the full proof of Theorem 13 in Appendix C; here, we demonstrate how to
match any honest and adversarial action in ∆-PoS with a corresponding honest or adversarial
action in (d, δ, ∆)-FairPoS such that the viable branches of (d, δ, ∆)-FairPoS evolve in lockstep
with the viable chains in the ∆-PoS execution.

Since divergence is defined over viable chains and viable branches, we can infer Corollary 14
from Theorem 13.

▶ Corollary 14. ∀w ∈ {0, 1,⊥}∗ : divFairPoS
δ (w) ≤ divPoS

∆ (w)

This allows us to infer k-common-prefix from bounding the probability of the event divPoS
∆ (w) >

k for w ←$ Df
α in PoS [18].

J. Chiang, B. David, I. Eyal and T. Gong :19

▶ Theorem 15. (k-Common prefix in FairPoS) Let A be an an adaptive adversary
against the protocol (d, δ, ∆)-FairPoS that corrupts up to (1− α) stake, where α be such that
α(1−f)∆ = (1+ϵ)/2 for active slot coefficient f ∈ (0, 1] and some ϵ > 0. The probability that
A makes the protocol violate the k-common-prefix property in a δ-synchronous environment
throughout a period of R slots is no more than exp(ln R + ∆− Ω(k)).

Proof. Let w be drawn from dominant distribution Df
α (Equation (1)), with honest stake α

and parameter f satisfying α(1− f)∆ = (1 + ϵ)/2 for some ϵ > 0. From Corollary 14 and
Theorem 12 we infer the following:

Pr
w←Df

α

[divFairPoS
δ (w) ≥ k] ≤ Pr

w←Df
α

[divPoS
∆ (w) ≥ k] ≤ exp(ln R + ∆− Ω(k)) (16)

From Corollary 14, divFairPoS
δ (w) ≥ k =⇒ divPoS

∆ (w) ≥ k, implying the left equality
in Equation (16). The right inequality is inferred from Theorem 12. ◀

5.2 Chain growth, chain quality and input fairness
Both chain growth and chain quality of FairPoS can be derived from ∆-monotonicity of
FairPoS (Theorem 10) and probabilities bounding security failure from PoS [18]. We refer to
Appendix C for the full proofs of the following security theorems.

▶ Theorem 16. ((τ, s)-Chain growth in (d, δ, ∆)-FairPoS) Let A be an an adaptive
adversary against the protocol (d, δ, ∆)-FairPoS that corrupts up to (1 − α) stake, where
α be such that α(1 − f)∆ = (1 + ϵ)/2 for active slot coefficient f ∈ (0, 1] and some
ϵ > 0. Then the probability that A makes the protocol violate the chain growth property
with parameters s ≥ 4∆ and τ = cα/4 throughout a period of R slots, is no more than
exp(−cαs/(20∆) + lnR∆ + O(1)), where c denotes the constant c := c(f, ∆) = f(1− f)∆.

▶ Theorem 17. ((µ, k)-Chain quality in (d, δ, ∆)-FairPoS) Let A be an adaptive
adversary against the protocol (d, δ, ∆)-FairPoS that corrupts up to (1− α) stake, where α

be such that α(1− f)∆ = (1 + ϵ)/2 for active slot coefficient f ∈ (0, 1] and some ϵ > 0. Then
the probability that A makes FairPoS violate the chain quality property with parameters k

and µ = 1/k throughout a period of R slots, is no more than exp(ln R− Ω(k)).

Input fairness is obtained from chain growth, common prefix and chain quality. Informally,
given time d and chain growth rate τ , we can determine common-prefix and chain quality
parameters such that a decrypted input must have sufficient time (d slots) to reach finalization
or lie in an abandoned chain.

▶ Lemma 18. (Input fairness from CG, CP and CQ in (d, δ, ∆)-FairPoS) Input
fairness is implied in an execution of (d, δ, ∆)-FairPoS, in which (τ, d)-chain growth, (dτ(τ −
δ/(∆−δ))−1)-common prefix and (1/(D+1), D+1)-chain quality hold, where D = d∆/(∆−δ)

In the full proof of Lemma 18 in Appendix C, we derive the relation between the security
parameters of chain growth, common-prefix and chain quality shown above such that there
is always sufficient time for an honestly encrypted input to reach the common-prefix; here
we must carefully accomodate “time advantages” granted to the adversary. Firstly, observe
that whenever there are empty slots between the chain tip and current slot, the adversary is
granted time to decrypt the current session key without any progress towards finalization.
Secondly, in the case of a leading adversarial block-span, the adversary is granted another
head start in completing key extraction, as it can generate the block span prior to their
associated slots and begin key extraction ahead of time.

:20 FairPoS: Input Fairness in Permissionless Consensus

▶ Theorem 19. (Input fairness in (d, δ, ∆)-FairPoS) Let A be an adaptive adversary
against the protocol (d, δ, ∆)-FairPoS that corrupts up to (1 − α) stake, where α be such
that α(1− f)∆ = (1 + ϵ)/2 for active slot coefficient f ∈ (0, 1] and some ϵ > 0. Then, the
probability that A makes the FairPoS violate the input fairness property falls exponentially
with d.

Theorem 19 is proven in Appendix C with Lemma 18 which relates the delay extraction
parameter d with the security parameters of k-common-prefix, (τ, s)-chain growth and
(µ, k)-chain quality.

6 Conclusion

We contribute FairPoS, the first longest-chain, proof-of-stake protocol achieving input fairness
against an adaptive adversary. When adopting the leader election procedure from Ouroborous
Praos [18] or one that induces leader sequences (i.e. characteristic strings) consistent with
the dominant distribution (Definition 1), FairPoS achieves input fairness in addition to the
common-prefix, chain-growth and chain-quality properties of PoS [18]. We note that Kiayas
et al. [29] provide tighter bounds for k-common prefix in PoS. Applying this updated analysis
framework to security of FairPoS is planned as future work.

References
1 VDF Alliance. VDF Alliance Official Wiki. https://supranational.atlassian.net/wiki/

spaces/VA/overview, 2022.
2 Avalanche. Apricot Phase Four: Snowman++ and Reduced

C-Chain Transaction Fees. https://medium.com/avalancheavax/
apricot-phase-four-snowman-and-reduced-c-chain-transaction-fees-1e1f67b42ecf,
2021.

3 Christian Badertscher, Peter Gaži, Aggelos Kiayias, Alexander Russell, and Vassilis Zikas.
Ouroboros genesis: Composable proof-of-stake blockchains with dynamic availability. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security,
pages 913–930, 2018. https://doi.org/10.1007/978-3-319-78375-8_3.

4 Vivek Bagaria, Sreeram Kannan, David Tse, Giulia Fanti, and Pramod Viswanath. Prism:
Deconstructing the blockchain to approach physical limits. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Security, pages 585–602, 2019. https:
//doi.org/10.1145/3319535.3363213.

5 Massimo Bartoletti, James Hsin-yu Chiang, and Alberto Lluch-Lafuente. Maximizing ex-
tractable value from automated market makers. arXiv preprint arXiv:2106.01870, 2021.
https://arxiv.org/pdf/2106.01870.

6 Carsten Baum, Bernardo David, Rafael Dowsley, Jesper Buus Nielsen, and Sabine Oechsner.
Tardis: a foundation of time-lock puzzles in uc. In Advances in Cryptology–EUROCRYPT
2021: 40th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Zagreb, Croatia, October 17–21, 2021, Proceedings, Part III, pages 429–459.
Springer, 2021. https://doi.org/10.1007/978-3-030-77883-5_15.

7 Joseph Bebel and Dev Ojha. Ferveo: Threshold Decryption for Mempool Privacy in BFT
networks. Cryptology ePrint Archive, 2022. https://eprint.iacr.org/2022/898.

8 Mihir Bellare and Sara K. Miner. A forward-secure digital signature scheme. In Michael J.
Wiener, editor, CRYPTO’99, volume 1666 of LNCS, pages 431–448. Springer, Heidelberg,
August 1999. doi:10.1007/3-540-48405-1_28.

9 Fabrice Benhamouda, Craig Gentry, Sergey Gorbunov, Shai Halevi, Hugo Krawczyk, Chengyu
Lin, Tal Rabin, and Leonid Reyzin. Can a public blockchain keep a secret? In Rafael Pass

https://supranational.atlassian.net/wiki/spaces/VA/overview
https://supranational.atlassian.net/wiki/spaces/VA/overview
https://medium.com/avalancheavax/apricot-phase-four-snowman-and-reduced-c-chain-transaction-fees-1e1f67b42ecf
https://medium.com/avalancheavax/apricot-phase-four-snowman-and-reduced-c-chain-transaction-fees-1e1f67b42ecf
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1145/3319535.3363213
https://doi.org/10.1145/3319535.3363213
https://arxiv.org/pdf/2106.01870
https://doi.org/10.1007/978-3-030-77883-5_15
https://eprint.iacr.org/2022/898
https://doi.org/10.1007/3-540-48405-1_28

J. Chiang, B. David, I. Eyal and T. Gong :21

and Krzysztof Pietrzak, editors, TCC 2020, Part I, volume 12550 of LNCS, pages 260–290.
Springer, Heidelberg, November 2020. doi:10.1007/978-3-030-64375-1_10.

10 Erica Blum, Aggelos Kiayias, Cristopher Moore, Saad Quader, and Alexander Russell. Linear
consistency for proof-of-stake blockchains. arXiv preprint arXiv:1911.10187, 2019. https:
//arxiv.org/abs/1911.10187.

11 Dan Boneh and Moni Naor. Timed commitments. In Advances in Cryptology—CRYPTO
2000: 20th Annual International Cryptology Conference Santa Barbara, California, USA,
August 20–24, 2000 Proceedings, pages 236–254. Springer, 2000. https://link.springer.
com/content/pdf/10.1007/3-540-44598-6.pdf#page=248.

12 Jeffrey Burdges and Luca De Feo. Delay encryption. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 302–326. Springer, 2021.
https://doi.org/10.1007/978-3-030-77870-5_11.

13 Christian Cachin, Jovana Mićić, and Nathalie Steinhauer. Quick Order Fairness. arXiv preprint
arXiv:2112.06615, 2021. https://arxiv.org/abs/2112.06615.

14 Matteo Campanelli, Bernardo David, Hamidreza Khoshakhlagh, Anders Konring, and Jes-
per Buus Nielsen. Encryption to the future - A paradigm for sending secret messages to future
(anonymous) committees. In ASIACRYPT 2022, Part III, LNCS, pages 151–180. Springer,
Heidelberg, December 2022. doi:10.1007/978-3-031-22969-5_6.

15 Ignacio Cascudo, Bernardo David, Lydia Garms, and Anders Konring. YOLO YOSO: Fast and
simple encryption and secret sharing in the YOSO model. In ASIACRYPT 2022, Part I, LNCS,
pages 651–680. Springer, Heidelberg, December 2022. doi:10.1007/978-3-031-22963-3_22.

16 Dan Cline, Thaddeus Dryja, and Neha Narula. ClockWork: An Exchange Protocol for Proofs
of Non Front-Running.

17 P. Daian, S. Goldfeder, T. Kell, Y. Li, X. Zhao, I. Bentov, L. Breidenbach, and A. Juels. Flash
boys 2.0: Frontrunning in decentralized exchanges, miner extractable value, and consensus
instability. In IEEE Symposium on Security and Privacy, pages 910–927. IEEE, 2020. https:
//doi.org/10.1109/SP40000.2020.00040. doi:10.1109/SP40000.2020.00040.

18 Bernardo David, Peter Gaži, Aggelos Kiayias, and Alexander Russell. Ouroboros praos:
An adaptively-secure, semi-synchronous proof-of-stake blockchain. In Annual International
Conference on the Theory and Applications of Cryptographic Techniques, pages 66–98. Springer,
2018. https://doi.org/10.1007/978-3-319-78375-8_3.

19 Luca De Feo, Simon Masson, Christophe Petit, and Antonio Sanso. Verifiable delay functions
from supersingular isogenies and pairings. In International Conference on the Theory and
Application of Cryptology and Information Security, pages 248–277. Springer, 2019. https:
//doi.org/10.1007/978-3-030-34578-5_10.

20 Nico Döttling, Lucjan Hanzlik, Bernardo Magri, and Stella Wohnig. Mcfly: Verifiable encryp-
tion to the future made practical. Cryptology ePrint Archive, 2022. https://eprint.iacr.
org/2022/433.

21 Andreas Erwig, Sebastian Faust, and Siavash Riahi. Large-scale non-interactive threshold
cryptosystems through anonymity. Cryptology ePrint Archive, Report 2021/1290, 2021.
https://eprint.iacr.org/2021/1290.

22 Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Ana-
lysis and applications. In Annual international conference on the theory and applications
of cryptographic techniques, pages 281–310. Springer, 2015. https://doi.org/10.1007/
978-3-662-46803-6_10.

23 Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno, and Yifan Song. Storing
and retrieving secrets on a blockchain. In PKC 2022, Part I, LNCS, pages 252–282. Springer,
Heidelberg, May 2022. doi:10.1007/978-3-030-97121-2_10.

24 Gene Itkis and Leonid Reyzin. Forward-secure signatures with optimal signing and verifying. In
Joe Kilian, editor, CRYPTO 2001, volume 2139 of LNCS, pages 332–354. Springer, Heidelberg,
August 2001. doi:10.1007/3-540-44647-8_20.

https://doi.org/10.1007/978-3-030-64375-1_10
https://arxiv.org/abs/1911.10187
https://arxiv.org/abs/1911.10187
https://link.springer.com/content/pdf/10.1007/3-540-44598-6.pdf#page=248
https://link.springer.com/content/pdf/10.1007/3-540-44598-6.pdf#page=248
https://doi.org/10.1007/978-3-030-77870-5_11
https://arxiv.org/abs/2112.06615
https://doi.org/10.1007/978-3-031-22969-5_6
https://doi.org/10.1007/978-3-031-22963-3_22
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1109/SP40000.2020.00040
https://doi.org/10.1007/978-3-319-78375-8_3
https://doi.org/10.1007/978-3-030-34578-5_10
https://doi.org/10.1007/978-3-030-34578-5_10
https://eprint.iacr.org/2022/433
https://eprint.iacr.org/2022/433
https://eprint.iacr.org/2021/1290
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-662-46803-6_10
https://doi.org/10.1007/978-3-030-97121-2_10
https://doi.org/10.1007/3-540-44647-8_20

:22 FairPoS: Input Fairness in Permissionless Consensus

25 Fredrik Kamphuis, Bernardo Magri, Ricky Lamberty, and Sebastian Faust. Revisiting
transaction ledger robustness in the miner extractable value era. In International Con-
ference on Applied Cryptography and Network Security, pages 675–698. Springer, 2023.
https://doi.org/10.1007/978-3-031-33491-7_25.

26 Mahimna Kelkar, Soubhik Deb, and Sreeram Kannan. Order-fair consensus in the permis-
sionless setting. In Proceedings of the 9th ACM on ASIA Public-Key Cryptography Workshop,
pages 3–14, 2022. https://doi.org/10.1145/3494105.3526239.

27 Mahimna Kelkar, Soubhik Deb, Sishan Long, Ari Juels, and Sreeram Kannan. Themis: Fast,
Strong Order-Fairness in Byzantine Consensus, 2021. https://eprint.iacr.org/2021/1465.

28 Mahimna Kelkar, Fan Zhang, Steven Goldfeder, and Ari Juels. Order-fairness for byzantine
consensus. In Annual International Cryptology Conference, pages 451–480. Springer, 2020.
https://doi.org/10.1007/978-3-030-56877-1_16.

29 Aggelos Kiayias, Saad Quader, and Alexander Russell. Consistency of proof-of-stake block-
chains with concurrent honest slot leaders. In 2020 IEEE 40th International Confer-
ence on Distributed Computing Systems (ICDCS), pages 776–786. IEEE, 2020. https:
//doi.org/10.1109/ICDCS47774.2020.00065.

30 Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. In Annual international cryptology
conference, pages 357–388. Springer, 2017. https://doi.org/10.1007/978-3-319-63688-7_
12.

31 Dahlia Malkhi and Pawel Szalachowski. Maximal Extractable Value (MEV) Protection on a
DAG. arXiv e-prints, pages arXiv–2208, 2022. https://arxiv.org/abs/2208.00940.

32 Peyman Momeni. Fairblock: Preventing blockchain front-running with minimal overheads.
Master’s thesis, University of Waterloo, 2022. https://eprint.iacr.org/2022/1066.

33 Ronald L Rivest, Adi Shamir, and David A Wagner. Time-lock puzzles and timed-release crypto.
1996. http://bitsavers.trailing-edge.com/pdf/mit/lcs/tr/MIT-LCS-TR-684.pdf.

34 Sri Aravinda Krishnan Thyagarajan, Tiantian Gong, Adithya Bhat, Aniket Kate, and Domin-
ique Schröder. Opensquare: Decentralized repeated modular squaring service. In Proceedings
of the 2021 ACM SIGSAC Conference on Computer and Communications Security, pages
3447–3464, 2021. https://doi.org/10.1145/3460120.3484809.

35 Sam M Werner, Daniel Perez, Lewis Gudgeon, Ariah Klages-Mundt, Dominik Harz, and
William J Knottenbelt. Sok: Decentralized finance (defi). arXiv preprint arXiv:2101.08778,
2021. https://arxiv.org/abs/2101.08778.

https://doi.org/10.1007/978-3-031-33491-7_25
https://doi.org/10.1145/3494105.3526239
https://eprint.iacr.org/2021/1465
https://doi.org/10.1007/978-3-030-56877-1_16
https://doi.org/10.1109/ICDCS47774.2020.00065
https://doi.org/10.1109/ICDCS47774.2020.00065
https://doi.org/10.1007/978-3-319-63688-7_12
https://doi.org/10.1007/978-3-319-63688-7_12
https://arxiv.org/abs/2208.00940
https://eprint.iacr.org/2022/1066
http://bitsavers.trailing-edge.com/pdf/mit/lcs/tr/MIT-LCS-TR-684.pdf
https://doi.org/10.1145/3460120.3484809
https://arxiv.org/abs/2101.08778

J. Chiang, B. David, I. Eyal and T. Gong :23

A Key evolving signature schemes

We present the formal definitions of key evolving signature scheme of [8, 24]

▶ Definition 20. A key evolving signature scheme

KES = (Gen, Sign, Verify, Update)

is a tuple of algorithms such that:

1. Gen(1k, T) is a probabilistic key generation algorithm that takes as input a security
parameter 1k and the total number of periods T , outputting a key pair (KES.sk1, KES.vk),
where KES.vk is the verification key and KES.sk1 is the initial signing key (we assume
that the period j to which a signing key KES.skj corresponds is encoded in the signing key
itself).

2. SignKES.skj
(m) is a probabilistic signing algorithm that takes as input a secret key KES.skj

for the time period j ≤ T and a message m, outputting a signature σj on m for time
period j (we assume that the period j for which a signature σj was generated is encoded
in the signature itself).

3. VerifyKES.vk(m, σj) is a deterministic verification algorithm that takes as input a public
key KES.vk, a message m and a signature σj, outputting 1 if σj is a valid signature on
message m for time period j and 0 otherwise.

4. Update(KES.skj) is a probabilistic secret key update algorithm that takes as input a secret
key KES.skj for the current time period j and outputs a new secret key KES.skj+1 for
time period j + 1. We define KES.skT +1 as the empty string and set it as the output of
Update(KES.skT).

Correctness: for every key pair (KES.sk1, KES.vk) ← Gen(1k, T), every message m and
every time period j ≤ T , the following holds.

VerifyKES.vk(m, SignKES.skj
(m)) = 1

B Chain equivalence

▶ Definition 21 (Equivalence ≡). Two chains C0 and C1 are equivalent, C0 ≡ C1, if C′0 = C′1,
where C′ is obtained from C with the following procedure:
- Let C = (B0, ..., BR) and set B′0 ← (0, ϵ, ϵ, 0), C′ ← B′0,
- For k ∈ [1, R]:

- B′k ← (Bk.sl, H(B′k−1), ϵ, Bk.ldr)
- C′ ← C′|B′k

We lift this definition of equivalence to chain sets (or trees), where each chain in one set has
exactly one equivalent chain in the other.

C Proofs

▶ Theorem 10. (∆-Monotonicity of FairPoS) Every protocol execution of (d, δ, ∆)-FairPoS
results in an honest tree T that exhibits the ∆-monotonicity property.

:24 FairPoS: Input Fairness in Permissionless Consensus

Proof. ∆-monotonicity holds if every chain-tip that is honestly generated at slot i is con-
sidered a candidate for extension by the first honest leader at or following slot i + ∆. In
other words, the proof obligation is to demonstrate honest chain extendability (Equation (7))
holds for every honest chain-tip, ∆ slots following its generation. We prove this by induction:

Base case (Genesis). The genesis block at slot 0 is trivially extendable at any slot sl ≥ ∆.
Recall that we permit negative chain indices, e.g. C−j for j ∈ Z, which denote “empty
blocks”, for which the local receipt delay r(i)(C−j) is always ⊥, and by the definition of
receipt delay (Definition 8) is interpreted as 0. Thus, when extending genesis, every “empty
block” in the extraction window and the “m”th ∆-window will not violate the receipt delay
bounds imposed by the extendable-chain criteria in Equation (7).

Inductive case (Slot i). A chain C honestly extended at slot i must fulfill the receipt
delay constraints in Equation (7) in the view of the slot leader. This honest leader will have
rebroadcast every block in C upon arrival: thus, in the worst case, all other honest parties will
have received blocks in C with an additional receipt delay of δ slots compared to the leader
of slot i. The following must hold for C in the view of any honest leader of slot j ≥ i + ∆:

- For m ∈ [0 : n): each block of C in the “m”-th ∆-window (Equation (6)) in the view of
leader of slot i is now in the “m + 1”-th ∆-window in the view of the honest leader of slot
j, it is permitted an additional worst-case additional delay of δ by the extendable chain
definition (Equation (7)).

- Blocks in the “n− 1”th window of C in the view of leader i are in the extraction window of
leader of slot j, and are also permitted an additional worst-case delay of δ (Equation (7)).

◀

▶ Theorem 13. (Equivalent trees) For any (d, δ, ∆)-FairPoS execution λ induced by a
charactistic string w ∈ {0, 1,⊥}∗, Γ0 →λ Γ, there exists a ∆-PoS execution λ′ induced by
same w, Γ′0 →λ′ Γ′, such that the viable chains in Γ are equivalent to the viable branches in
Γ′.

∀w ∈ {0, 1,⊥}∗ : ∀λ ∈ execFairPoS
δ (Γ0, w), Γ0

λ−→ Γ :
∃λ′ ∈ execPoS

∆ (Γ′0, w), Γ0
λ′

−→ Γ′ :

viableChainsFairPoS
δ (Γ) ≡ viableBranchesPoS

∆ (Γ′)

Proof. Let execπ
δ (Γ, wt) denote all possible single round executions of π in a δ-synchronous

setting induced by wt ∈ {0, 1,⊥} at slot t, beginning with protocol state Γ. Further,
we define the honest extendable tree of FairPoS state Γt as the union of the extendable
prefixes (Equation (13)) of all tree branches in the view of honest parties.

T Hext(Γt) =
⋃

C∈T H : ∃B∈T H : C=extPrefix(t,B,{r(i)}i∈H)

C

For a FairPoS state Γt and PoS state Γ′t where T Hext(Γt) ≡ T H(Γ′t) we observe that viable
branches of Γt and viable chains of Γ′t converge by definition.

viableChainsFairPoS
δ (Γt) ≡ viableBranchesPoS

∆ (Γ′t)

We prove the theorem round-wise, by induction.

J. Chiang, B. David, I. Eyal and T. Gong :25

Base step (0→ 1). For the first round executed on the genesis block (slot 0) and given a
characterstic string w we must prove:

∀ r ∈ execFairPoS
δ (Γ0, w1) , Γ0

r−→ Γ1 :

∃ r′ ∈ execPoS
∆ (Γ′0, w1) , Γ′0

r′

−→ Γ′1 :

T Hext(Γ1) ≡ T H(Γ′1)

(17)

We describe the translation from r to r′. If w1 is honest, then the elected honest parties will
generate a block extending genesis in the rounds of both protocols (genesis is immediately
extendable, as no key extractions are due in the block associated at slot 1). If w1 is dishonest,
then whatever the blocks the adversary generates in r is performed by the adversary in r′:
resulting extendable honest tree in Γ1 and honest tree in Γ′1 must be equivalent.

Induction step (t→ t + 1). We must prove

∀ r ∈ execFairPoS
δ (Γt, wt+1) , Γt

r−→ Γt+1 :
∃ r′ ∈ execPoS

∆ (Γ′t, wt+1) , Γ′t
r′

−→ Γ′t+1 :

T Hext(Γt+1) ≡ T H(Γ′t+1)

(18)

By induction hypothesis it holds that this holds that T Hext(Γt) ≡ T H(Γ′t). For any honest or
adversarial action in round r, we illustrate the respective action in round r′, before arguing
the equivalence of extendable honest trees in Γt+1 and honest trees in Γ′t+1.
Honest actions in FairPoS round r are also performed in PoS round r′:

H1 If wt+1 is a uniquely honest slot, the longest (extendable) chains will be equivalent in the
honest party’s view, and the honest leader(s) will extend the equivalent chains of both
protocol executions in rounds r and r′ respectively. (By induction hypothesis, the the
honest extendable tree in Γt is equivalent to the honest tree in Γ′t). A newly extended
chain from honest party i is added to the message queue m(i) and T A in both r and r′.

Adversarial actions include dishonest block generation (T2 in Figure 1) and the delivery of
messages (M2 in Figure 1). The translation of adversarial actions from r round to the r′ is
described.

A1 If the adversary adds dishonest blocks to T A at any adversarial slot t′ ≤ t + 1 in the
round r, this action is performed in r′ round.

A2 If the adversary delivers a C with adversarial chain tip from T A to T (i) in r:
a. If C is extendable by party i in state Γt+1 following r, A delivers equivalent C′ from
T A ′ to T (i)′ in the r′ round: C, C′ must both exist in the adversarial tree views in
states Γt, Γ′t due to A1.

b. Else if C remains unextendable in state Γt+1 by party i, equivalent C′ is not added to
the equivalent honest tree T (i)′ in r′.

A3 If the adversary delivers a chain C from message queue m(i) to an honest tree view T (i)

in r:
a. If C is extendable by party i in state Γt+1 following r, A delivers equivalent C′ to T (i)′

in the r′ round.
b Else if C is not extendable by party i in state Γt+1, its equivalent C′ is not added to

the honest tree in round r′: since ∆ > δ, it is always possible for A defer an honest
chain delivery for a longer delay in PoS (∆-synchrony) than in the ∆PoS (δ-synchrony)
execution.

:26 FairPoS: Input Fairness in Permissionless Consensus

A4 If any C ∈ T (i) in an honest tree view becomes extendable in slot t + 1 following round r

in the view of party i.
a. If C and equivalent C′ feature an honest chain tip it must be present in an honest

message queue m(j)′ of the PoS execution (H1) and will be delivered to party i in
round r′. An honest chain tip in a FairPoS execution can remain unextendable for up
to ∆ slots (Theorem 10), which is exactly the maximum message delay permitted for
messages in m(j)′ in the PoS ∆-synchronous setting.

b. If C and equivalent C′ feature an adversarial chain tip, C′ cannot be in an honest tree
view nor an honest message queue in the PoS execution prior to slot t + 1: A2 requires
an adversarial chain tip in FairPoS to be extendable before it is introduced to an honest
tree in PoS. Instead, any C′ with adversarial tip must be in T A, T A ′ of both executions
(A1) at the beginning of the round, and C′ can therefore still be delivered to T (i)′ from
T A ′ by the adversary in round r′.

The extendable honest tree in Γt+1 and honest tree in Γ′t+1 must be equivalent since for
an addition of a newly extendable chain (A2(a), A3(a), A4) to the honest tree in FairPoS
round r, the equivalent chain in PoS is added to the honest tree in round r′. ◀

▶ Theorem 16. ((τ, s)-Chain growth in (d, δ, ∆)-FairPoS) Let A be an an adaptive
adversary against the protocol (d, δ, ∆)-FairPoS that corrupts up to (1 − α) stake, where
α be such that α(1 − f)∆ = (1 + ϵ)/2 for active slot coefficient f ∈ (0, 1] and some
ϵ > 0. Then the probability that A makes the protocol violate the chain growth property
with parameters s ≥ 4∆ and τ = cα/4 throughout a period of R slots, is no more than
exp(−cαs/(20∆) + lnR∆ + O(1)), where c denotes the constant c := c(f, ∆) = f(1− f)∆.

Proof. The proof of chain-growth in FairPoS closely follows that of Ouroborous Praos, as
both analyses assume the dominant distribution (Definition 1) to model leader elections
during protocol executions. Thus, we reproduce the main proof argument of Theorem 6
in [18] for the convenience of the reader, and refer to [18] for the derivation of the exact
probability bounds, which are directly inferred from the dominant distribution.

Recall that the definition of chain growth requires that if the longest chain possessed
by an honest party at the onset of some slot sl1 is C1, and the longest chain possessed
by a (potentially different) honest party at the onset of slot sl2 ≥ sl1 + s is C2, then
len(C2)− len(C1) ≥ τs.

Let a uniquely honest slot (0) be ∆-right-isolated if it is followed with ∆ consequent slots
which are empty (⊥). Let C be a chain with a tip that is generated in a ∆-right-isolated
uniquely honest slot. Then the next slot leader will necessarily consider C candidate for
extension since

- Chain C must be have arrived in the view of all honest parties after δ slots in a δ-synchronous
setting, where δ < ∆ (Equation (5)).

- Chain C must be extractable after ∆ slots (Theorem 10).

Thus, in the view of all honest parties, chain C must be a candidate for extension according
to the longest-extractable-chain rule (Equation (9)) in FairPoS.

Now, let ŝl1, ..., ŝlh be the increasing sequence of all ∆-right-isolated uniquely honest slots
among the slots in T := {sl1 +∆, sl1 +∆+1, ..., sl2−∆}. Observe that since ŝl1 ≥ sl1 +∆, the
leader of ŝl1 will append a block to a chain that is at least as long as C1, since C1 will be known
to him and will be considered in the longest-extractable-chain selection rule. Therefore, the
chain that the leader of ŝl1 diffuses will be at least 1 block longer than C1. Analogously, the
leader of every ŝli will diffuse a chain that is at least 1 block longer than the chain diffused

J. Chiang, B. David, I. Eyal and T. Gong :27

by the leader of ŝli−1 since ŝli−1 is ∆-right-isolated. Finally, the chain diffused by the leader
of ŝlh will be known to all parties at slot sl2 and hence len(C2) will be at least as long as this
chain. It follows that len(C2)− len(C1) ≥ h.

It remains to bound the number h of ∆-right-isolated uniquely honest slots among the
slots with indices in T . To make our notation more flexible, let HT (x) denote the number
of ∆-right-isolated uniquely honest slots among the slots from T in x ∈ {0, 1,⊥}R. From
Theorem 6 in [18] we have for c = f(1−∆)∆:

Pr
x←Df

α

[HT (x) < cαs/4] = ∆ · e−
cα(s−3∆)

20∆

Applying the union bound over R slots, we conclude that the probability that there is a
chain growth violation with parameters s and τ = cα/4 is no more than

R∆ exp(−cα(s− 3∆)/(20∆)) = exp(−cα(s− 3∆)/(20∆) + ln R∆)

◀

▶ Theorem 17. ((µ, k)-Chain quality in (d, δ, ∆)-FairPoS) Let A be an adaptive
adversary against the protocol (d, δ, ∆)-FairPoS that corrupts up to (1− α) stake, where α

be such that α(1− f)∆ = (1 + ϵ)/2 for active slot coefficient f ∈ (0, 1] and some ϵ > 0. Then
the probability that A makes FairPoS violate the chain quality property with parameters k

and µ = 1/k throughout a period of R slots, is no more than exp(ln R− Ω(k)).

Proof. The proof of chain-growth in FairPoS closely follows that of Ouroborous Praos, as both
analyses assume the dominant distribution (Definition 1) to model leader elections during
protocol executions. Thus, for the convenience of the reader, we restate and adapt Lemma 4
in [18] and its main proof argument below, from which Theorem 17 follows.

▶ Lemma 22. (Adapted from Lemma 4 in [18]) Let k, ∆ ∈ N and ϵ ∈ (0, 1). Let A be an
adaptive adversary against the protocol (d, δ, ∆)-FairPoS corrupting up to (1− α) stake for
some α > 0 satisfying α(1 − f)∆ = (1 + ϵ)/2. Let B1, ..., Bk be a sequence of consecutive
blocks in a chain C possessed by an honest party. Then at least one block Bi was created in a
∆-right-isolated uniquely honest slot, except with probability exp(−Ω(k)).

For convenience, let us call a slot good if it is ∆-right-isolated uniquely honest, and bad
if it is neither empty nor good. Moreover, we call a block good (resp. bad) if it comes from a
good (resp. bad) slot.

Towards contradiction, assume that all blocks B1, ..., Bk are bad. Let G1 denote the
latest good block preceding B1 in C, and G2 the earliest good block appearing after Bk in C
(or the last block of C, if there is no good one). Note that all blocks between G1 and G2 are
bad.

Let ŝl1 (resp. ŝl2) denote the good slot in which G1 (resp. G2) was created (if G2 is not
good, let ŝl2 be the current slot). Denote by T the continuous sequence of slots between ŝl1
and ŝl2, excluding ŝl1 and including ŝl2. As we argued in the proof of Theorem 16, in each good
slot in T the (unique) leader creates a block that has depth increased by at least 1 compared to
the block from the previous good slot. Therefore, we have depth(G2) ≥ depth(G1) + g, where
g is the number of good slots in T . However, in chain C we have depth(G2) ≤ depth(G1) + b,
where b is the number of bad slots in the same sequence T . These two conditions can only
be satisfied at the same time if g ≤ b, we will now show that this is very unlikely.

We can bound Prx←$Df
α

[g(x) ≤ b(x)] as follows: we know that α(1− f)∆ = (1 + ϵ)/2 and
this implies that good slots are sampled with higher probability than bad slots. Therefore,
Prx←$Df

α
[g(x) ≤ b(x)] falls exponentially with k. Lemma 22 directly implies Theorem 17. ◀

:28 FairPoS: Input Fairness in Permissionless Consensus

▶ Lemma 18. (Input fairness from CG, CP and CQ in (d, δ, ∆)-FairPoS) Input
fairness is implied in an execution of (d, δ, ∆)-FairPoS, in which (τ, d)-chain growth, (dτ(τ −
δ/(∆−δ))−1)-common prefix and (1/(D+1), D+1)-chain quality hold, where D = d∆/(∆−δ)

Proof. The proof requires us to infer input fairness from chain growth, common-prefix and
chain quality parameters as stated in the Lemma 18.

More informally, we frame the proof obligation as follows. At the onset of a given slot t,
we are given a time budget of ∼ d slots, and must show that chain-growth will result in the
sufficient growth in the length of the chain possessed by any honest party, such that for any
encrypted input inserted at a block in slot t, it will reach the k-common-prefix within the
given time budget, unless it becomes part of an abandoned branch.

Let C be the chain extended by an honest party at honest slot t. For simplicity, let us first
assume that all slots are uniquely honest. An adversary begins the extraction of id = C.tip at
the onset of its generation. Then, there remains d− 1 slots between the encryption of the
input at slot t and its decryption, since the input at t is encrypted with the parent block as
session id. A chain growth rate of τ implies that the longest chain possessed by any honest
party after d − 1 time must increase by k = τ(d − 1). Thus, in this naive scenario, input
fairness would be implied by (τ, d)-CG and (τ(d− 1))-CP.

In the case that slots are not all uniquely honest, the adversary must be permitted a
head-start in extracting the session key idk from any block: let us denote this the time
advantage, which comes from two properties of the chain possessed by the honest user at the
onset of slot t:

1. Leading empty slots between C.tip.sl and current slot t. These empty slots represent a
head-start the adversary has in decrypting inputs inserted in a child block of h(C.tip)
generated at slot t.

2. Leading adversarial block span in C including C.tip, allowing it to generate blocks im-
mediately after the extraction period d instead of waiting the full extraction schedule
D = d + nδ, as an honest party would. In the worst case, such a adversarial block span
always leads up to C.tip, which is also adversarially generated, permitting the adversary
an additional head-start in decrypting inputs.

For the (1) leading empty slots, the (τ, d)-CG property gives us the maximum number
of slots in d, in which no blocks were generated for C, namely d(1− τ). For the (2) leading
adversarial block span, we quantify the time advantage gained from the leading adversarial
block span as follows: for every D consecutive adversarial blocks, the adversary gains an
additional nδ time advantage, since it does not have to wait the entire extraction schedule
D = d + nδ, where n = D/∆ = d/(∆− δ). Note that we are granted (1/(D + 1), D + 1)-chain
quality in Lemma 18, where D = n∆ = d∆/(n− δ) as in Equation (5). We assume the worst
case, namely, that all D slots leading up to t are indeed adversarial, and thus permit the
adversary the maximum possible extraction time-advantage of nδ slots.

Thus the total time advantage in producing the adversarial block C.tip obtained from
(1) and (2) is given by tadv = d(1 − τ) + nδ = d(1 − τ + δ/(∆ − δ)). Thus we require a
contracted common prefix parameter k = τ(d− tadv)− 1, in order for the honest input at slot
t to either reach the common prefix before the adversary (with time advantage) can complete
the key extraction of id = h(C.tip), or not join the common prefix at all. Rewriting gives us
k = dτ(τ − δ/(∆− δ))− 1 ◀

▶ Theorem 19. (Input fairness in (d, δ, ∆)-FairPoS) Let A be an adaptive adversary
against the protocol (d, δ, ∆)-FairPoS that corrupts up to (1 − α) stake, where α be such

J. Chiang, B. David, I. Eyal and T. Gong :29

that α(1− f)∆ = (1 + ϵ)/2 for active slot coefficient f ∈ (0, 1] and some ϵ > 0. Then, the
probability that A makes the FairPoS violate the input fairness property falls exponentially
with d.

Proof. With Lemma 18 we obtain input fairness from (τ, d)-CG and (dτ(τ−δ/(∆−δ))−1)-CP.
Further, for an execution of (d, δ, ∆)-FairPoS for R slots,

- (τ, d)-CG with parameters d ≥ 4∆ and τ = cα/4 is violated with probability no more than
exp(−dαc/(20∆) + lnR∆ + O(1)), where c denotes the constant c := c(f, ∆) = f(1− f)∆

(Theorem 16).
- k-CP with parameter k = dτ(τ − δ/(∆− δ))− 1 is violated with probability no more than

exp(ln R + ∆− Ω(k)) (Theorem 15).
- (1/(D + 1), D + 1)-CQ with parameter D = d∆/(∆− δ) is violated with probability no

more than exp(ln R + Ω(D)) (Theorem 17).

Probabilities above decline exponentially with increasing d. ◀

	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Delay Encryption
	3.2 Longest-chain PoS model and security

	4 The FairPoS protocol
	4.1 Input fairness & encryption
	4.2 Introducing key extraction in FairPoS
	4.3 The (d,,)-FairPoS consensus protocol
	4.4 Parameterization of FairPoS

	5 FairPoS security
	5.1 Common-prefix in FairPoS
	5.2 Chain growth, chain quality and input fairness

	6 Conclusion
	A Key evolving signature schemes
	B Chain equivalence
	C Proofs

