
Peer-to-Peer Energy Trading Meets Blockchain:
Consensus via Score-Based Bid Assignment

Xiangyu Su1, Xavier Defago1, Mario Larangeira1,2, Kazuyuki Mori3, Takuya
Oda1, Yasumasa Tamura1, and Keisuke Tanaka1

1 School of Computing, Tokyo Institute of Technology. Tokyo-to Meguro-ku
Oookayama 2-12-1 W8-55. su.x.ab@m.titech.ac.jp, mario@c.titech.ac.jp,

keisuke@is.titech.ac.jp.
2 Input Output, Global. mario.larangeira@iohk.io.

3 Mitsubishi Electric.

Abstract. The demand for peer-to-peer energy trading (P2PET) grows
alongside the advancement of smart grids. A P2PET system enables its
peers to trade energy as in a double-sided auction market by issuing
auction bids to buy or sell energy. A robust public ledger, that sat-
isfies the standard properties of persistence and liveness, is necessary
for the system to record trading agreements, i.e., combinations between
buy and sell bids which would form a transaction. The Bitcoin based
blockchain satisfies such properties as proven in the backbone protocol
(EuroCrypt’15). However, existing blockchain-based P2PET approaches
rely on general-purpose blockchains with smart contract capabilities, un-
avoidably incurring in high operational costs. Therefore, this work in-
tends to design a dedicated blockchain for the ledger of P2PET. We first
revisit the blockchain data structure to support auction bids. Then, we
abstract the process of forming transactions, i.e., matching bids, with a
score-based many-to-many Bid Assignment Problem (BAP). Leveraging
our proposed BAP in addition to the corresponding scoring function, we
propose a “proof-of” scheme, namely Proof-of-Bid-Assignment (PoBA),
and design the corresponding blockchain aided protocol. The key dif-
ference from any previous work, we are aware of, is that our protocol
selects blocks according to the score of their content, i.e., bids and trans-
actions. Hence, a higher-scored block would be preferable to the underly-
ing P2PET system regardless of whether the block’s generator is honest,
since, intuitively, it would increase the number of trading agreements.
Finally, by modeling PoBA with a universal sampler (AsiaCrypt’16) and
analyzing honest users’ local chain dynamics, we prove the security of
our design with respect to the standard ledger properties.

Keywords: Smart Grid, Peer-to-Peer Energy Trading System, Gener-
alized Multi-Assignment Problem, Score-Based Blockchain Consensus.

1 Introduction

We start by reviewing the current P2PET scenario and its relation with blockchain-
aided protocols before describing our approach and contribution.

1.1 Background and Motivation

The shift to renewable but less reliable energy sources urges a significant change
in the current grid structure, from the centralized uni-direction traditional sys-
tem to the decentralized bi-direction “smart grid”. A smart grid involves pro-
sumers who both produce and consume energy. The infrastructure enables its
users, i.e., the early prosumers, to trade energy and exchange data on demand,
hence contributing to regional self-sustainability. A control system, i.e., the
P2PET system, monitors and manages the user operations within the smart
grid. The paramount functionality is to securely record the trading history so
that users can perform accordingly. In a decentralized environment, a public
ledger that ensures user consensus is usually used for this purpose, to prevent
any single party from tampering with its data.

The problem of consensus, where multiple participants are made to agree
on common decisions, has been studied for at least five decades in the context
of distributed systems. Due to the popularity of Bitcoin [20] and other crypto-
currencies, consensus and its embodiment as a blockchain protocol, has gained a
much wider interest, taking the form of a distributed ledger, ensuring persistence
and liveness [12]. It is hence natural to utilize a blockchain as the implementation
of a distributed ledger in P2PET systems.

Related works. Numerous studies investigate the use of blockchains in P2PET [1,
15,18], however these studies are built atop general-purpose blockchain protocols
and rely on smart contract capabilities [19], e.g., as provided in Ethereum [24]
and Cardano [10]. Unfortunately, this severely limits the opportunities for op-
timizations, and these protocols suffer from high maintenance fees [23], where
users must incur severe costs while submitting smart contract-based transac-
tions to the network. Often the mining mechanism is typically based on proof-
of-work (PoW) (e.g., enforcing the repeated computation of huge amounts of
hash function evaluations) which requires significant computational power (and
hence energy), a sharp contrast with the goals of improving energy trading and
reducing energy consumption. Needless to say, such repeated evaluations, as a
computational problem, have no connection with the market that may exist on
the top of the system. This gap is the starting point of our work.

This work explores the design of a dedicated blockchain protocol for P2PET,
purposely deviating from the use of smart contracts and PoW. We thoroughly
redesign, from the very bottom, the blockchain data structure itself. Hence, we
can exploit the operations in the P2PET system and integrate them into a novel
“proof-of-X” approach, named Proof-of-Bid-Assignment (PoBA) (to be detailed
later). Therefore, unlike the PoW paradigm, in which much computing (and
electrical) power is wasted in order to pace the block generation as a corner-
stone for ensuring a robust ledger, ours leverages the existing architecture and
structure of power distribution to provide a leaner and more effective solution.
In summary, our novel framework integrates the underlying network mechanism,
to ensure the robust ledger, with the market dynamics of the system.

2

1.2 Our Approach and Contributions

Now, we show a brief image of our approach. The first step is to extract settings
and unique operations from the P2PET system.

Abstracted P2PET. A P2PET apparatus is the control system of the under-
lying smart grid, executed among users and potentially regional power plants
within a tight-knit community, e.g., a town. The smart grid infrastructure pro-
vides users with equipment to produce, store, and transmit energy. The users
are also equipped with certificated, hence, tamper-proof smart-meters that mea-
sure energy production and consumption. Each smart-meter is associated with a
Home Energy Management System (HEMS) that oversees the process of energy
management. Unlike smart-meters, HEMS are more sophisticated, e.g., being
capable of computation, and are not assumed to be trustworthy. Similar to com-
bining several local smart grids into a regional grid, the P2PET systems of these
grids can also join together to form more extensive systems. Such a process can
be done recursively under a hierarchical structure.

This work considers a typical standalone P2PET system of a small commu-
nity in which users and a power plant are connected via bi-direction power lines
given a fixed physical topology. Each user can produce or consume energy freely.
However, due to the unreliability of the energy production, the user may face
(1) shortages when not producing enough, or (2) excesses when producing too
much. Here, the trading capability of the P2PET system becomes crucial since
it enables the user to buy or sell energy. Note that the smart grid infrastructure
also enables users to store energy. Hence, in addition to buying in shortage and
selling in excess, users may also buy for storing when the energy price is low
and sell for profit when the price is high. We do not specify users’ purpose but
focus on the buy/sell operation. In order to support these operations, recall a
double-sided auction market in which users can buy some product at a price by
issuing a buy bid, and sell some product at a price by issuing a sell bid. We
follow the same process of bidding with energy as the product.

Next, we consider the formation of trading agreements from the bids. Each
agreement (later called transaction) consists of a buy bid and a sell bid that sat-
isfies some constrain, e.g., the buy bid’s price should be higher than the sell bid’s
price. The public ledger of P2PET should record properly formed transactions,
thus users can transmit energy and payment accordingly. It may have been no-
ticed that two crucial questions are not mentioned above: (1) Given a set of bids,
how to generate a set of transactions; (2) How to ensure a robust ledger in such
a setting. The following sections thoroughly answer these questions. Moreover,
we need to emphasize that this work focuses on the design of the blockchain
protocol level instead of the P2PET system or smart grids. Therefore, we will
NOT fully investigate the dynamics of the energy trading market or problems
in the physical infrastructure, e.g., energy transmission loss. However, we argue
that our protocol is general enough to cover such problems.

3

P2PET meets blockchain: A brief description. In order to integrate
the P2PET bidding operations with blockchain protocols, we first refine the
blockchain data structure. Concretely, we add the bid layer in which each bid
contains a type, i.e., buy or sell, a quantity, and a unit price. In our setting, the
blockchain transaction is the combination of a buy and a sell bid. Briefly, the
block is defined as a container of bids and transactions, and the blockchain is
defined as an ordered linked list of blocks.

Next, we formalize the process of generating transactions with a many-to-
many assignment problem, i.e., the Bid Assignment Problem (BAP), which can
be further regarded as a special case of the Generalized Multiple-Assignment
Problem (GMAP) [21]. We start by defining a generic framework of the BAP in
which a set of bids is taken as input, and an index set of assigned bid pairs is
output according to a scoring function. Then, by instantiating the BAP’s outputs
with blocks and specifying the scoring function’s domain on the block’s space,
we instantiate the BAP to put forth the BAP for block generation (bk-BAP).
Finally, we leverage the bk-BAP as the base problem of our “proof-of” scheme,
the Proof-of-Bid-Assignment (PoBA) scheme.

Before proposing the formal syntax of the PoBA scheme, we introduce the
concept of bidpool, i.e., a pool of bids, which mimics the mempool of transactions
in conventional blockchain protocols. We enable each PoBA user (formally called
prover) to maintain and verify a bidpool according to her view of the blockchain.
Then, we define the PoBA scheme that consists of algorithms for (1) sampling
a bid set, from the bidpool, (2) solving the bk-BAP, given by the sampled bid
set, and (3) evaluating the bk-BAP solution, according to the public scoring
function. Here, the scoring function can enforce particular market dynamics,
e.g., by granting different scores to particular transactions. Since we will not
fully investigate the underlying market and want to showcase the flexibility of
our design, we leave the scoring function as general as possible. Then, when
analyzing the computation in PoBA with respect to the general scoring function,
we adopt the universal sampler [5,16] that samples blocks and the corresponding
scores following arbitrary distributions. Our modeling follows a similar approach
as PoW-based blockchain protocols, in which the hash computation in PoW is
modeled by the query to a random oracle [12].

The earlier outlined bid-related block design is one of the major technical
novelties of our proposal. To the best of our knowledge, this work is the first to
introduce such an approach. Moreover, another unique feature of our protocol
lies in the block selection and blockchain dynamics. Note that we do not require
optimality in each user’s block generation, i.e., briefly, the best possible bid
match combination, but instead, we encourage them to compete with each other
so that the protocol can eventually put forth a chain of blocks with the highest
overall score. Hence, we consider a tree structure for maintaining blocks that
users see in the protocol, i.e., the local view. Each branch on the block-tree
is a valid chain of blocks. Then, we assign branches with scores based on the
score of each block in the branch, thereby users can select the highest-scored
branch accordingly. The security proof of our system is quite involving, and we

4

consider it a significant technical contribution of this work. In a nutshell, security
is demonstrated by analyzing honest users’ local tree dynamics. We prove that,
given any score distribution (due to the universal sampler of [5,16]), our protocol
satisfies robust ledger properties with overwhelming probability.

Our contributions. They are threefold: (1) we abstract the process of gen-
erating transactions from bidding with a combinatorial optimization problem
that extends the GMAP [21]; (2) we design a dedicated blockchain protocol for
the P2PET system that can be further extended for general double-sided auction
markets; (3) we prove that our protocol fulfills the ledger properties by modeling
the computation in PoBA with the modified universal sampler [5, 16].

1.3 Organization

The remainder is organized as follows. Section 2 defines the notation and the
models of the protocol execution. The following three sections present our main
contribution, i.e., the dedicated blockchain protocol design for the P2PET sys-
tem. Concretely, Section 3 introduces our tailored data structure and formally
defines the BAP; Section 4 proposes the PoBA scheme based on the BAP and
models the scheme with a universal sampler; and Section 5 describes the full
protocol concerning blockchain selection and maintenance. Then, in Section 6,
we prove the security of our protocol with respect to robust ledger properties,
by analyzing users’ local blockchain dynamics. Finally, Section 7 concludes this
work and discusses potential extensions.

2 Preliminaries

In this paper, let λ be the security parameter. For a set X, x
$← X denotes that

x is uniformly and randomly sampled from X. When specifying distribution,

x
D← X denotes that x is randomly sampled from X following distribution D. For

an algorithm Alg, x← Alg denotes that x is assigned the output of the algorithm

Alg on fresh randomness. For k ∈ N, let [k] ∆
= {1, . . . , k}, while (key:value) denotes

a mapping from a key key to its corresponding value value.
For completeness, we employ a digital signature scheme SIG that satisfies

correctness and existential unforgeability under adaptive chosen message attacks

(EUF-CMA) [14]. In general, the scheme consists of a tuple of algorithms SIG
∆
=

(KGen,Sign,Verify).

– KGen(1λ) takes as input the security parameter λ and outputs a key pair
(sk, pk);

– Sign(sk,m) takes as input the secret key sk and a message m. It outputs a
signature σ on m under sk;

– Verify(pk,m, σ) takes as input the public key pk, the message m and the
signature σ. It outputs 1 if the signature is valid and 0 otherwise.

5

Additionally, we use Hash : {0, 1}∗ → {0, 1}λ to denote a collision-free hash
function. Next, we will describe the protocol execution model.

2.1 Protocol Execution Model

We model general protocol executions with the standard Interactive Turing Ma-
chines (ITM) Model approach [6]. A protocol refers to algorithms for a set of
nodes (users) to interact with each other. All corrupted nodes are considered to
be controlled by an adversary A who can read inputs and set outputs for these
nodes. We first present our protocol settings.

Time and slots. Time is divided into discrete units called time slots, indexed
by an integer ℓ ∈ {1, 2, . . . }. We assume a globally synchronized clock T is
equipped with a key pair (skT , pkT) from the signature scheme SIG. Users can
submit queries (σT , ℓ)← T (m) such that (σT , ℓ)← SIG.Sign(skT ,m, ℓ) where m
is the query message and ℓ is the index of the current slot;

Synchrony. We adapt the δ-synchronous setting from [6] to our slot-based ex-
ecution where δ is the known network delay. Suppose an honest user sends a
message in slot t, the message is guaranteed to be received by all honest users
in any slot ℓ ≥ t+ δ. Moreover, we assume the diffusion functionality from [12];

Rushing adversary. We consider a rushing network adversary who is able to:
(1) receive any message from honest users first; (2) decide for each recipient
whether to inject additional messages; (3) decide the order of message delivery;
(4) diffuse its (the adversary’s) messages after seeing all honest messages.

Permissionless setting with static corruption. We follow the constrained permis-
sionless setting from [22]. In each slot, there are exactly n ∈ N users executing
the protocol, and at least one is honest. Whenever an honest user joins, the
protocol informs her with the parameters (n, δ). Moreover, we assume a static
corruption model so that the adversary cannot corrupt honest users after they
are spawned.

P2PET Rationale. Recall that in P2PET, users must periodically perform
energy transmission and payment in real life. Hence, following the approach
from [17], time is composed by time slots. Local clocks of P2PET users are
implemented by certificated smart meters, which may not be fully synchronized
in real-life. However, we can adjust the length of time represented by a time slot
long enough to make any discrepancies between users’ local time be insignificant.
Hence, it is convenient to assume the existence of the globally synchronized
clock. Moreover, the certificated hardware naturally enables us to consider the
permissioned setting, in which the n ∈ N users are initialized before the protocol
execution and are informed with the identities of all honest ones. However, such
a setting is not necessary in our security proof. Hence, we adopt the constrained
permissionless setting as shown above.

6

3 Abstractions of Blockchain-Based P2PET

We present our redesigned blockchain protocol, data structure and considered
problem, in this section. However, we start by providing an overview.

3.1 Intuition and Overview

The first step is to define the blockchain’s data structure to support operations
in the P2PET system. Recall that the system enables its users to buy or sell en-
ergy with energy storage and transmit equipment. Concretely, if a user produces
more energy than she needs, the surplus can be stored. Then, the user can use
the energy afterward or sell it through the system network. The buy/sell oper-
ation resembles a double-sided auction market with energy as trading resource.
Hence, we borrow the term “bid”, which is further categorized as “buy bid”
(from buyers) or “sell bid” (sometimes called “ask”, from sellers). Therefore,
in order to support the bid operation, we add a bid layer to the conventional
“transaction-block” structure. Moreover, as in conventional blockchain proto-
cols, a transaction is regarded as the agreement of trading, which, in our case, is
the energy transmission and payment agreement between a buyer and a seller.
Thus, we define the transaction as a combination of a buy and a sell bid with
some restrictions which are specified in later sections.

Next, we abstract the process of generating a set of transactions, from a
given set of bids, as the early outlined BAP, in which we define a general scor-
ing function to quantify the quality of the solutions, i.e., each presented set of
transactions. The BAP, with respect to the scoring function, is a combinatorial
optimization problem, and can be regarded as a many-to-many assignment prob-
lem, a special case of the GMAP [21], as it was already described. Note that the
BAP is the underlying problem of our “proof-of-X” for our blockchain protocol.
We formally introduce the BAP and review the GMAP in the next sections.

3.2 Definitions for the Blockchain Data Structure

The redefined data structure definitions are bids, transactions, and, for com-
pleteness, block and chain. In the following, we denote each instance as bid, tx,
bk, and chain, whereas we denote users as U . For bid or block, when specifying
issuer (or generator) U and time slot ℓ ≥ 1, we denote them explicitly as bidℓU
or bkℓU , respectively. Moreover, each instance is associated with an identifier,
which is set to be the hash of the instance’s contents, e.g., bidID = Hash(bid)
is the identifier of a given bid bid. As we mentioned in the execution model,
within the definitions, we assume that the global time server T is secured by the
signature scheme SIG. The server T (m) returns queries for m, from users, with
(σT , ℓ)← T (m) such that σT = SIG.Sign(skT ,m, ℓ) and time slot ℓ.

Starting with bids, users have two options: (1) to buy a quantity of energy
units for an initial price (anything lower is acceptable); (2) to sell a quantity
of energy units for an initial price (anything upper is acceptable). A bid should

7

include its generation and expiration time slots, and must be signed by its issuer
and the time server. The formal definition is as follows.

Definition 1 (Bid). A bid bid issued by a user U who holds a key pair (sk, pk)

from the signature scheme SIG is defined as bid
∆
= (bidraw, auxU , auxT) and is

associated with an identifier bidID = Hash(bid) where:

– The bid’s raw content, bidraw
∆
= (kind ∈ {buy, sell}, q, p, tGen, tExp):

• kind ∈ {buy, sell} indicates the bid’s kind, i.e., a buy bid or a sell bid;
• q, p > 0 denote the bid’s quantity and unit price, respectively;
• tGen, tExp denote the bid’s generation and expiration time slots, respectively.

– Information relates to the user’s signature, auxU
∆
= ((pk, σ),misc):

• (pk, σ) is the user’s public key and signature, i.e., σ = SIG.Sign(sk, bidraw);
• misc contains additional information from the user, e.g., a certificate by a
trusted authority attesting the user’s public key.

– auxT
∆
= (pkT , σT) consists of the public key and signature from the time server

T , i.e., σT = SIG.Sign(skT , (bidraw, auxU)).

Moreover, we denote the bid space by BID.

Next, a transaction combines a buy and a sell bid at selected quantity and
price. Intuitively, the transaction’s quantity should not exceed the original bids’
quantity, and the price should be in the range of the original bids’ prices. How-
ever, note that we enable our protocol to handle more complex bid assignments,
the concrete restrictions will be presented in Section 4.

Definition 2 (Transaction). A transaction tx is defined as tx
∆
= (bidID1,

bidID2, qtx, ptx) and is associated with an identifier txID = Hash(tx) where:

– bidID1, bidID2 are the identifiers of two bids bid1, bid2. We may use bid1, bid2
directly for simplicity;

– qtx ≥ 0, ptx > 0 denote the agreed quantity and unit price of the trade.

Moreover, we denote the transaction space by TX.

Here, for completeness, we also present the definition of a block. A block
embeds both a bid set and a transaction set, in which the transaction set is
derived from the bid set via the BAP. The block should also include a hash link
pointing to its parent block. Similar to bids, the user who generates blocks need
to secure the block with the signatures from herself and the time server.

Definition 3 (Block). A block bk generated by a user U with (sk, pk) from SIG

is defined as bk
∆
= (prevHash, bkraw, auxU , auxT). It is associated with an identifier

bkID = Hash(bk) and a score Sbk. In a block bk:

– prevHash denotes the identifier of the block’s parent block, i.e., the hash of the
block that bk intends to extend;

– The block’s raw content, bkraw
∆
= (BIDs,TXs, t):

8

• BIDs ̸= ∅,TXs denote the set of bids and transactions embedded in the block;
• t denotes the block’s generation time slot.

– Information of signatures auxU
∆
= ((pk, σ),misc) and auxT

∆
= (pkT , σT) are

similar as in bids (Definition 1) where σ = SIG.Sign(sk, (prevHash, bkraw)) and
σT = SIG.Sign(skT , (prevHash, bkraw, auxU)).

Moreover, we denote the block space by BK.

Finally, as in conventional blockchain protocols, the chain is defined as an
ordered linked list of blocks. The first block is called genesis block and denoted
by bkG, which contains public keys of users and is publicly known to all users.
Then, all the users, when aware of new block candidates, will discard the ones
which are signed with public keys that are not in the initial list.

Definition 4 (Chain). Let || denotes block concatenation, i.e., if bkt||bkt+1,
then bkt+1’s prevHash equals to bkt’s identifier. Hence, a chain chain is an or-

dered linked list of blocks defined as chain
∆
= bkG||bk1||bk2|| · · · where bkG is the

genesis block that contains the public keys of the users of the system.

Note that we consider a tree structure in protocol description (Section 5) and
security analysis (Section 6). Hence, we may use “branch”, i.e., branch, as an
interchangeable term of “chain” (Definition 14).

3.3 The Bid Assignment Problem (BAP)

Based on the data structure above, we propose BAP that abstracts the process of
finding an “optimal” set of combinations of bids, i.e., a set of transactions. The
optimality is defined based on a scoring function which should be sophisticatedly
designed according to real-life situation, e.g., market dynamics in the P2PET
system. We emphasize again that this work focuses on the protocol level design
instead of fully investigating the underlying energy trading market. Hence, we
leave the scoring functions general to showcase the flexibility of our design.

Concretely, we proceed our definitions by first showing a generic framework
of the BAP with an unspecified scoring function. Next, we consider the scoring
function on the transaction level and then extend it to the blocks. These scoring
functions are still general, but their domains are defined on the concrete data
structure, i.e., transaction sets and blocks. The scoring function for transaction
sets is taken as an intermediate step, because a transaction set must be output
before generating a block. Finally, with the scoring function for blocks, we define
the BAP for block generation (bk-BAP). The purpose of bk-BAP is to argue our
highest-score based block selection rules in the protocol design.

The Generic BAP. Our explanation starts from the generic version of the
BAP, i.e., we consider an unspecified scoring function s : X→ R where X is an
arbitrary space. Later, we instantiate s. The BAP takes as input a non-empty
set of bids, denoted by BIDs. Here, for simplicity, we assume all bids in the
set are “alive”, i.e., the bid was issued before and is not expired, and all bids’

9

signatures are valid (the signature scheme’s verification algorithm outputs 1,
i.e., 1← SIG.Verify). Hence, we can focus on the quantity and price constraints
in the BAP. That is, we reframe the bids as bid = (kind, q, p) in the following
description. Next, according to each bid’s kind, we can further divide the input
set BIDs into a buy bid set and a sell bid set. Without loss generality, we write

BIDs = B ∪ S where B
∆
= {bidBi = (buy, qBi , pBi)}i∈[m] is a buy bid set of size

m, and S
∆
= {bidSj = (sell, qSj , p

S
j)}j∈[n] is a sell bid set of size n such that

B ∩ S = ∅. Then, all the combinations of the bids can be given by the index

set I
∆
= {(i, j) : bidBi ∈ B ∧ bidSj ∈ S} = {(i, j)}i∈[m],j∈[n]. An assignment

between a buy bid bidBi ∈ B and a sell bid bidSj ∈ S is a transaction in the
sense of Definition 2, and it can be denoted by a tuple with respect to indices:
(i, j, qij , pij) where qij and pij are the assigned quantity and price, respectively.

Next, we consider the assignment constraints. Note that unlike matching
problems, we enable many-to-many assignment, i.e., a buy bid can be assigned
to multiple sell bids, and multiple buy bids can be assigned to a sell bid. Hence,
the total assigned quantity of a bid should not exceed the bid’s original quantity,
and the assigned price of a buy and a sell bid should fall in the range of their
original prices. Then, for all (i, j) ∈ I, we have the following constraints.

qij ≥ 0,

n−1∑
j=0

qij ≤ qBi ,

m−1∑
i=0

qij ≤ qSj ;

pSj ≤ pij ≤ pBi , if qij ̸= 0. (1)

We can now clarify the scoring function’s domain by defining the assignment
space A. Concerning the input bid set BIDs ̸= ∅, denote an assignment set with

A
∆
= {(i, j, qij , pij) : Given BIDs,∀(i, j) ∈ I, Equation 1 holds}. Then, the space

of all assignment sets with respect to BIDs can be defined as ABIDs. We define

the space of all assignment sets as A ∆
= {A : A ∈ ABIDs}BIDs∈BID and rewrite the

scoring function as s : A→ R. Finally, the formal definition of our Generic BAP
is given as follows.

Definition 5 (Generic BAP). Let BIDs ⊆ BID be a non-empty set of bids,
which can be divided into B = {bidBi = (buy, qBi , pBi)}i∈[m] and S = {bidSj =

(sell, qSj , p
S
j)}j∈[n], such that BIDs = B∪S and B∩S = ∅. Let I = {(i, j)}i∈[m],j∈[n]

be the index set. Given the scoring function s : A→ R where A denotes the as-

signment space, the Generic BAP is to find a set X
∆
= {(i, j, qij , pij) : (i, j) ∈ I}

that maximizes s(X) and satisfies the constraints given by Equation 1.

We say a solution to the BAP is “valid” if the output set X is an assignment
set, i.e., X = {(i, j, qij , pij) : Given BIDs,∀(i, j) ∈ I, Equation 1 holds}. Hence,
the validity of BAP solutions does not require optimality, which is convenient to
define the BAP-based “proof-of-X” scheme later in Section 4 (Definition 10).

BAP for Block Generation. The Generic BAP provides an intuition of the
problem’s input and output. However, in order to integrate the BAP into our

10

P2PET blockchain protocol, we need to adapt the problem so that it can output
blocks, and the scoring function should be able to quantify the quality of blocks.
As mentioned above, we first consider a general scoring function for transaction
sets. Then, here, we extend it to the scoring function for blocks sbk. The later will
instantiate the scoring function in the Generic BAP (Definition 5) and complete
our BAP for block generation (bk-BAP) Definition next.

We start from a function that evaluates one transaction stx : TX → R and
an aggregation function Aggtxs : R∗ → R. The aggregation function takes as
input all evaluated values within the given transaction set and outputs the ag-
gregated value as the score of the set. Hence, the scoring function for an ar-

bitrary k-size transaction set TXs = {txi}i∈[k] can be written as stxs(TXs)
∆
=

Aggtxs(stx(tx1), . . . , stx(txk)). Here, we show a toy example. Let stx(tx) = qtx ·ptx
for any transaction tx = (bid1, bid2, qtx, ptx) ∈ TX, and let Aggtxs be the sum func-
tion. Then, given any transaction set TXs ⊆ TX, stxs(TXs) =

∑
tx∈TXs qtx · ptx.

Next, recall the structure of blocks given in Definition 3. For simplicity, we re-
frame the blocks as bk = (TXs,AUX) where AUX = (prevHash,BIDs, t, auxU , auxT).
Following the same process of defining stxs, let saux be the scoring function for
auxiliary information, and Aggbk : R2 → R be a general aggregation func-
tion. The function Aggbk aggregates the score of a transaction set and the
score of auxiliary information within the given block. Hence, given any block

bk = (TXs,AUX) ∈ BK, the scoring function for blocks is defined as sbk(bk)
∆
=

Aggbk(stxs(TXs), saux(AUX)). We have the following definition.

Definition 6 (Scoring Function for Blocks). Let stx : TX→ R be a function
that maps a transaction to a real value, and let Aggtxs : R∗ → R be a general
aggregation function. The scoring function for transaction sets is stxs : TX∗ →
R such that for any k-size transaction set TXs = {txi}i∈[k], then stxs(TXs)

∆
=

Aggtxs(stx(tx1), . . . , stx(txk)). Let saux : {0, 1}∗ → R be a function that maps
auxiliary information of blocks to a real value. We use {0, 1}∗ to denote the
unspecified input domain. Next, let Aggbk : R2 → R be another aggregation
function that takes as input two real values. The scoring function for blocks is
given by sbk : BK→ R such that for any block bk = (TXs,AUX):

sbk(bk)
∆
= Aggbk(stxs(TXs), saux(AUX)).

Finally, we refine the Generic BAP with our newly defined scoring function
for blocks sbk to complete the bk-BAP.

Definition 7 (bk-BAP). Let BIDs ⊆ BID be a non-empty set of bids, which
can be divided into B = {bidBi = (buy, qBi , pBi)}i∈[m] and S = {bidSj = (sell, qSj ,

pSj)}j∈[n], such that BIDs = B ∪ S and B ∩ S = ∅. Let I = {(i, j)}i∈[m],j∈[n]

be the index set. Given the scoring function for blocks sbk : BK → R as in
Definition 6, the bk-BAP is to find a block bk = (TXs,AUX) where TXs =
{(bidBi , bid

S
j , qij , pij) : (i, j) ∈ I} and BIDs ∈ AUX. The block bk should maximize

sbk(·), and the transaction set TXs should satisfy constrains given by Equation 1.

11

Remark 1 (Extensions). The data structure and BAPs can be extended in mul-
tiple ways depending on real-life requirements of the P2PET system. For ex-
ample: When trading energy, users may have preference targets to sell to or
buy from. Hence, we can embed a target list (potentially ordered according
to priority) within the bid data structure, i.e., (U , targets) ∈ bid where U is
the bid’s issuer, and targets ⊆ {Ui}i∈[N] is a subset of the all N users with
whom the user willing to trade. Then, the BAPs should: (1) take into con-
sideration the target constraints when assigning bids, i.e., for any pair of buy
and sell bids, bid1 = (buy,U1, targets1) and bid2 = (sell,U2, targets2), addi-
tion to constraints in Equation 1, assignment (bid1, bid2) should also satisfy
U1 ∈ targets2 ∧ U2 ∈ targets1; (2) adjust scoring function so that prioritized tar-
get grant higher scores. We hope this example can demonstrate our abstraction’s
capability of modeling the real-life system.

In the following two sections, we show our design of a blockchain protocol
that takes the “proof-of-X” scheme based on the vanilla bk-BAP as its core. We
argue that extensions like the example given above can be easily integrated into
our design significant changes in the (yet to be presented) security analysis.

4 BAP-Based “Proof-of-X” Scheme

This section introduces a “proof-of-X” scheme based on the bk-BAP, namely, the
Proof-of-Bid-Assignment (PoBA) scheme. Like conventional PoW, the PoBAP
involves two types of participants: provers and verifiers. Note that both types
are performed by users in our protocol. The separation here only aims to clarify
the algorithms, i.e., the prover runs a solving algorithm to solve the bk-BAP;
Whereas the verifier evaluates the solution’s validity and its score.

In order to present our scheme, we consider the setting where provers main-
tain a pool of bids alongside their views of the blockchain. For simplicity, we
assume all bids are issued with valid signatures and correct identifiers, i.e., com-
puted honestly from the hash function. The “bidpool” is similar to the mempool
in other blockchain protocols, with the difference that the mempool keeps trans-
actions. A prover needs to update her bidpool according to the bidding history
in the P2PET system and the transaction history recorded by the blockchain.

Our PoBA scheme starts with each prover holding a bidpool, and then the
prover samples a bid set as the input for the bk-BAP. Hence, we first (1) show
an algorithm for updating the bidpool, and then (2) present the formal syntax of
the PoBA scheme. Finally, we model the scheme with a universal sampler [5,16],
which has the interesting property of allowing random sampling from arbitrary
distribution. In our case, we rely on this property to randomly sample PoBA
solutions (blocks and corresponding scores). Moreover, we argue the reason and
the limitation of this modeling.

We clarify that this section focuses on algorithms and the model of PoBA.
PoBA-based block selection and blockchain maintenance are explained in Sec-
tion 5, which utilizes our modeling, is presented in Section 6.

12

4.1 Bidpool Update

The purpose of the bidpool is to keep track of a continuous view of all avail-
able bids in each time slot, so that provers can sample their input bid sets for
generating blocks by solving the bk-BAP. Each prover maintains her bidpool
concerning two aspects: (1) The bidding and transaction history embedded in
the prover’s blockchain; (2) The newly issued bids in the previous slot. Therefore,
this section starts with the definitions of the history. Then, by introducing the
“residual” of bids, i.e., the unassigned (quantity) part of bids in the history, we
show the concrete approach and specify the algorithm for updating the bidpool
(the yet to be introduced Algorithm 1) later.

Definition 8 (Bid History and Transaction History). For any prover,
let chain = bkG||bk1|| . . . ||bkℓ be the prover’s blockchain, and for t ∈ [ℓ], let
bktraw = (BIDst, txt, t) ∈ bkt. The bid and transaction history with respect to

chain is defined as Hℓ
bid

∆
= {bidID : bid ∈ BIDs1 ∪ · · · ∪ BIDsℓ} and Hℓ

tx
∆
=

{txID : tx ∈ TXs1 ∪ · · · ∪ TXsℓ} where bidID and txID are the identifiers of bid
and tx, respectively. For convenience, we may also use the corresponding bid or
transaction for the given identifier.

Recall that the transaction sets are generated following the constraints given
in Equation 1, i.e., the sum of assigned quantity in all transactions that involve a
given bid should not surpass the bid’s original quantity. Thus, in order to reduce
the waste in energy trading, we enable provers to include bids with unassigned
quantity into their bidpool. We name such bids as residual bids. A residual bid
is a bid that exists on the blockchain, i.e., in the bid history, that has unassigned
quantity larger than 0.

Definition 9 (Residual Bid). Let chain = bkG||bk1|| . . . ||bkℓ be a blockchain.
Denote its bid and transaction history with Hℓ

bid and Hℓ
tx, respectively. Given a

bid bid = (kind, q, p, aux) with identifier bidID ∈ Hℓ
bid, the residual bid of bid is

defined as rbid
∆
= (kind, qrbid, p, aux) if qrbid > 0, and rbid

∆
=⊥ if qrbid ≤ 0. Here:

qrbid = q −
∑

{tx:txID∈Hℓ
tx∧bidID∈tx}

qtx. (2)

If rbid ̸=⊥, we set its identifier to bidID, i.e., the original bid’s identifier. We
denote the set of all residual bids with respect to a given chain as Rchain.

Provers can assign a residual bid into a new transaction without exhausting
the bid’s qrbid, thereby deriving a new residual bid from the original residual bid.
That is, we enable provers to assign bids recursively as long as the bid is not
expired. Moreover, because the residual bid’s identifier is identical to its original
(residual) bid, it is possible to maintain the history of each bid by tracking
unique identifiers. This is also the reason we define the history using identifiers
in Definition 8. Therefore, in the following, we denote the bidpool with Pool and
use mappings to represent entries in the bidpool, i.e., (bidID:bid or rbid) ∈ Pool
where bidID is the identifier of a (residual) bid.

13

The algorithm for updating bidpools. Considering the process of updating
the bidpool for any prover P, at the beginning of time slot ℓ ≥ 1, let the prover
hold a bidpool from the previous slot, denoted by Poolℓ−1, and a blockchain
chainℓ−1 = bkG||bk1|| . . . ||bkℓ−1. We denote the set of bids in which all bids

are issued in slot ℓ−1 with P ℓ−1 ∆
= {bid : tGen = ℓ−1}. Here, tGen is the bid’s

generation time slot. Then, the algorithm that outputs the updated bidpool
for slot ℓ can be written as Poolℓ ← UpdatePool(Poolℓ−1, chainℓ−1, P ℓ−1). For
consistency of format, we may reframe the bid set P in the form of mapping,
i.e., P ℓ−1 = {(bidID:bid) : tGen = ℓ−1}. Note that ℓ = 1 is slightly different
because in the previous slot, PoolG = ∅ and chain = bkG. That is, it contains no
history, i.e., HG

bid = ∅,HG
tx = ∅.

Next, we clarify that for any t ∈ [ℓ−1], the block bkt−1 is generated based
on the bidpool in the same slot Poolt−1. In other words, we need to remove the
duplicated identifiers from the bidpool referring to the block’s bid set. Then, by
adding the set of freshly issued bids from the previous slot to the bidpool, we
obtain a pool that contains all viable unique bid identifiers. Thus, we can refer
to the transaction history on the blockchain to derive residual bids for these
identifiers. The last step of the UpdatePool algorithm is to remove the outdated
bids, i.e., bids with expiration slots tExp earlier than the current slot. Finally, the
algorithm outputs the new bidpool from the identifiers and their corresponding
bids or residual bids. The procedure is formally specified in Algorithm 1.

4.2 Formal Syntax of PoBA

Given any time slot ℓ ≥ 1, the PoBA scheme consists of the tuple of algo-

rithms PoBA
∆
= (SampleBIDs,Solve,Eval). The SampleBIDs algorithm samples a

bid set from the prover’s updated bidpool as the input of the bk-BAP; Solve
outputs the corresponding blockchain of a valid solution (block) to the bk-BAP.
As mentioned before, by valid, we mean the solution satisfying the constraints
and signatures being valid; Finally, the evaluation algorithm Eval verifies the va-
lidity of the whole blockchain and outputs the score of the latest block according
to the public scoring function. We define the PoBA correctness (Definition 12)
after presenting the formal syntax in the next definition.

Definition 10 (PoBA Scheme). Let Hash : {0, 1}∗ → {0, 1}λ be a collision-
free hash function, and let sbk : BK→ R be a publicly known scoring function for
blocks as given in Definition 6. In time slot ℓ ≥ 1, for any prover P, let PoolℓP
be her updated bidpool from Algorithm 1, and let chainℓ−1

P = bkG||bk1|| . . . ||bkℓ−1

be her current blockchain. The prover performs (SampleBIDs,Solve), and any
verifier performs Eval.

– SampleBIDs(PoolℓP ,N; r
ℓ
P) takes as input the prover’s bidpool PoolℓP , an upper

bound N for the size of bid sets, and a random seed rℓP . The randomness can
be omitted, we write it explicitly for later modeling the computation in PoBA.
SampleBIDs outputs a set of bids BIDsℓP ⊆ PoolℓP such that |BIDsℓP | ≤ N;

14

Algorithm 1: The UpdatePool algorithm. Let ℓ ≥ 1 be the current time
slot. UpdatePool is parameterized by a bidpool Poolℓ−1, a blockchain
chainℓ−1, and a set of bids P ℓ−1.

1 function UpdatePool(Poolℓ−1, chainℓ−1, P ℓ−1);

2 Let Poolℓ = ∅;
3 if ℓ = 1 then
4 Parse PoolG = ∅, chain = bkG, and PG = {(bidID:bid) : tGen = G};
5 Return Pool1 = PG

6 else

7 Parse chainℓ−1 = bkG||bk1|| . . . ||bkℓ−1 and

bkℓ−1
raw = (BIDsℓ−1, txℓ−1, ℓ−1) ∈ bkℓ−1;

8 Parse P ℓ−1 = {(bidID:bid) : tGen = ℓ−1};
// Remove duplicated identifiers from Poolℓ−1.

9 for bid ∈ BIDsℓ−1 do

10 if bidID ∈ Poolℓ−1 then

11 Delete the entry from Poolℓ−1

12 end

13 end
// Collect all unique bid identifiers.

14 Set Poolℓ = Poolℓ−1 ∪ P ℓ−1;
// Derive (residual) bids for each identifier with Equation 2.

15 Parse the transaction history of chain as Hℓ−1
tx ;

16 for bidID ∈ Poolℓ do
// Let q be the original bid’s quantity with bidID.

17 Compute qrbid = q −
∑

{tx:txID∈Hℓ−1
tx ∧bidID∈tx} qtx;

18 if qrbid > 0 then

19 Replace the entry in Poolℓ with (bidID:rbid) such that qrbid ∈ rbid;
20 end

21 end

// Remove outdated bids from Poolℓ.

22 for bidID ∈ Poolℓ do
// Let tExp be the bid’s expiration slot with bidID.

23 if tExp < ℓ then

24 Delete the entry from Poolℓ

25 end

26 end

27 Return Poolℓ

28 end

– Solve(chainℓ−1
P ,BIDsℓP) takes as input a bid set BIDsℓP that satisfies |BIDsℓP |

≤ N. The algorithm outputs the prover’s solution to the bk-BAP, i.e., a block

candidate bkℓP = (TXs,AUX), with the corresponding new blockchain chainℓP
∆
=

chainℓ−1
P ||bkℓP . Here, AUX = (prevHash, bidℓP , ℓ, auxP , auxT), prevHash = Hash

(bkℓ−1), and all signatures in (auxP , auxT) are valid;

15

– Eval(chaintP∗ ,N) takes as input a blockchain chaintP∗ from prover P∗ and the
size bound N for bid sets. If t ̸= ℓ, Eval outputs (0,⊥). Otherwise, parse
chainℓP∗ = chainℓ−1||bkℓP∗ where bkℓP∗ is generated by P∗, and assume (1, ·)←
Eval(chainℓ−1,N). Let Hℓ−1

bid and Hℓ−1
tx denote the bid and transaction history

of chainℓ−1, respectively. Parse bkℓP∗ = (prevHash, (BIDs∗,TXs∗, t∗), auxP∗ ,
auxT), if all the following conditions hold, the algorithm outputs (1, sbk(bk

ℓ
P∗)),

and we say the blockchain and the new block are valid:
1. For previous hash prevHash: Let bkℓ−1 be the latest block on the verified

blockchain chainℓ−1: prevHash = Hash(bkℓ−1);
2. For bid set bid∗: (1) |BIDs∗| ≤ N; (2) For each bid ∈ BIDs∗ with generation

and expiration time slots (tGen, tExp), the current slot ℓ ∈ [tGen, tExp]; (3) Let

bidID be bid ∈ BIDs∗’s identifier, if bidID /∈ Hℓ−1
bid , and the signatures in

bid are valid;
3. For transaction set TXs∗: Let BI = {bidID : bid ∈ BIDs∗} and TI = {txID :

tx ∈ TXs∗} be the identifier sets given by BIDs∗ and TXs∗, respectively.
Then: (1) For each tx = (bidID1, bidID2, qtx, ptx) ∈ TXs∗, bidID1, bidID2 ∈
Hℓ−1

bid ∪BI; (2) Let Hℓ
tx,P∗ = Hℓ−1

tx ∪TI. For each tx = (bidID1, bidID2, qtx,

ptx) ∈ Hℓ
tx,P∗ , without loss of generality, let bid1raw = (buy, q1, p1) has

identifier bidID1, and bid2raw = (sell, q2, p2) has identifier bidID2, and the
assigned quantity and price of tx satisfies:∑
txID∈Hℓ

tx,P∗∧bidID1∈tx

qtx ≤ q1
∧ ∑

txID∈Hℓ
tx,P∗∧bidID2∈tx

qtx ≤ q2
∧

p2 ≤ ptx ≤ p1.

4. For block generation slot t∗: t∗ = ℓ;
5. For auxiliary information (auxP∗ , auxT): The signatures are valid.
Otherwise, the algorithm outputs (0,⊥).

Correctness of the PoBA scheme requires that the Eval algorithm accepts
any blockchain from honestly executed SampleBIDs and Solve algorithms. Be-
cause the SampleBIDs algorithm starts with a bidpool, we need to first define
validity for bidpools. Here, we consider a VerifyPool algorithm to check “con-
flicts” between an updated bidpool and the blockchain.

Definition 11 (Validity of Bidpool). For any prover in time slot ℓ ≥ 1, let
Poolℓ be her bidpool, and let chainℓ−1 = bkG||bk1|| . . . ||bkℓ−1 be her blockchain.
The prover performs VerifyPool.

– VerifyPool(Poolℓ, chainℓ−1) takes as input the bidpool Poolℓ and the blockchain
chainℓ−1. Let Hℓ−1

bid and Hℓ−1
tx denote the history of chainℓ−1. If the following

conditions hold, VerifyPool outputs 1, and we say the bidpool Pool is valid
regarding the blockchain chain.
1. The blockchain is valid, i.e., (1, ·) ← PoBA.Eval(chainℓ−1,N) where N is

the size bound of the bid set embedded in each block on the blockchain;
2. For each bidID ∈ Poolℓ, let its corresponding (residual) bid have quantity

qrbid, and have generation and expiration time slots (tGen, tExp): (1) The

current time slot ℓ ∈ [tGen, tExp]; (2) If bidID ∈ Hℓ−1
bid , qrbid computed from

16

Equation 2 is larger than 0; (3) If bidID /∈Hℓ−1
bid , and the signatures in the

corresponding bid are valid.
Otherwise, the algorithm outputs 0.

The reason why VerifyPool considers only an updated bidpool regarding the
blockchain is that provers would not keep tracking old bidpools and bid sets after
updating them to the new bidpool. Hence, the proposed algorithm is to verify
the validity of bidpools, instead of deciding the correctness of the UpdatePool
algorithm. Next, we define the correctness of the PoBA scheme.

Definition 12 (Correctness of the PoBA Scheme). Given any prover P
in time slot ℓ ≥ 1, let (chainℓ−1,Poolℓ,N) be the prover’s input tuple such
that (1, ·) ← Eval(chainℓ−1,N) and 1 ← VerifyPool(Poolℓ, chainℓ−1). The PoBA
scheme is correct, if BIDs ← SampleBIDs(Poolℓ,N) and chainℓ−1

P ||bkℓP ← Solve(

chainℓ−1
P ,BIDs) are honestly executed, then:

Pr
[
(1, sbk(bk

ℓ
P))← Eval(chainℓ−1

P ||bkℓP ,N)
]
= 1.

Usually, in “proof-of-X” schemes that involve computational tasks, e.g., PoW [7]
and proof-of-useful-work [4, 9], the difficulty is another crucial property. Intu-
itively, it requires provers to contribute enough computing power to generate
valid blocks. Otherwise, adversarial provers can generate massive blocks in a
short period of time, and the network cannot be finalized on a chain of blocks
but with many “forks”.

However, the validity of blocks in our PoBA scheme does not require opti-
mality. Hence, it is easy to generate valid blocks for any prover. Instead, our
“difficulty” lies in the competition, i.e., honest provers only select the highest-
scored blocks (or precisely, blockchains as it will be introduced in Section 5.2).
Relying on block scores in PoBA is meaningful because the score relates to the
underlying P2PET system. Then, a higher-scored block is preferable to the sys-
tem regardless of who (honest or not) generates the block. Hence, despite that
we follow conventional modeling approaches [12] that differentiate the comput-
ing power of the honest provers in contrast with adversarial provers, we show in
Section 6, that this differentiation does not change the security of our protocol
(a higher score block, even if adversarial, is still useful for the overall system).

4.3 Modeling the Scheme

Recall that in PoW-based blockchain protocols, the hash computation is modeled
by the number of queries to a random oracle. Our modeling follows a similar ap-
proach for PoBA, with respect to the queries to a modified universal sampler [5],
which can be regarded as an advanced random oracle that samples from an ar-
bitrary distribution. In our case, the distribution is determined by the general
scoring function. The rationale behind it is to abstract away from concrete imple-
mentations of the general scoring function. We enable provers to obtain solutions
of PoBA, i.e., blocks and corresponding scores, by querying the universal sam-
pler instead of running concrete algorithms. The modeling is appropriate based

17

on the following evidence: (1) Given a well-chosen scoring function, the BAPs
(generic and bk-BAP) can be reduced to the generalized multiple-assignment
problem, which has been proven to be NP-complete [21]; (2) Stochasticity arises
in assignment problems due to the uncertainty in problem inputs [8], i.e., in
our case, PoBA requires provers to sample input bid sets from bidpools for the
bk-BAP, hence, some bids may not need to be assigned.

Next, we first show the definition of the modified universal sampler [5]. Then,
we detail the interaction between PoBA provers and the universal sampler.

Definition 13 (Universal Sampler [5]). A universal sampler scheme consists

of algorithms US
∆
= (Setup,Sample) that are performed as follows.

– Setup(1λ) takes as input the security parameter λ and outputs sampler param-
eters U ;

– Sample(U, d, β) takes as input sampler parameters U , the description of a pro-
gram d with a random seed for the program to generate samples. It outputs
induced samples pd.

We instantiate the definition above by specifying the program description

with d
∆
= (bk-BAP, sbk) where bk-BAP is the underlying problem of the PoBA

scheme and sbk is the general scoring function associated with the bk-BAP. The
universal sampler is accessible by any prover performing the PoBA scheme via
queries in which the prover sends its own bidpool and a random seed. That

is, for any prover P, her query to the universal sampler is β
∆
= (PoolP , rP).

Here, we follow the conventional model approach that in each time slot, each
honest prover can make at most q > 0 queries, whereas, the adversarial prover
can make at most qA > q queries. We denote the upper bound of total query
number in each slot by Q ∈ N. The difference in query capabilities indicates the
difference in computing power between honest and adversarial provers. Moreover,
we clarify that the communication between provers and the universal sampler
cannot be delayed by the network adversary, given it is oracle access. This is
a natural setting since the universal sampler captures the capability of provers
to internally and locally select bids and generate blocks relying only on her
randomness and the solving algorithm.

Then, the Sample algorithm has the single property of randomly sampling a

block bk∈BK such that sbk(bk)
D← S where D and S denotes the score distri-

bution and score space determined by the scoring function. With a well-chosen
scoring function, blocks can be strictly ordered by the score with high probabil-
ity. Concretely, the universal sampler works as follows.

Universal Sampler

In any time slot ℓ ≥ 1, setup up the universal sampler with U ←
US.Setup(1λ). Let Lℓ

P = {(·, ·, ·, ·)} ∈ U be the list kept by the univer-
sal sampler for any prover P. The total size of lists is upper bounded by
Q ∈ N, i.e., let Pℓ denote the set of all provers in slot ℓ, |

⋃
P∈Pℓ Lℓ

P | ≤ Q.

18

On a query (PoolℓP , r
ℓ
P) from P:

– If: there exists a tuple (PoolℓP , r
ℓ
P , bk

ℓ
P , sbk(bk

ℓ
P)) ∈ Lℓ

P , then, return

(bkℓP , sbk(bk
ℓ
P));

– Else if: |Lℓ
P | > q when P is honest or |Lℓ

P | > qA when P is adversarial,
then, return ⊥;

– Else: run and return (bkℓP , sbk(bk
ℓ
P)) ← US.Sample(U, (bk-BAP, sbk),

(PoolℓP , r
ℓ
P)), and add (PoolℓP , r

ℓ
P , bk

ℓ
P , sbk(bk

ℓ
P)) to Lℓ

P .

The output distribution. The output from the universal sampler can be modeled
as a continuous random variable X following a score distribution D on a score

space S ∆
= [smin, smax]. Here, D, smin, smax are determined by the general scoring

function sbk(·). We denote the probability density function and the distribution
function of D with f(·) and F (·) such that F (x) = Pr[X ≤ x] =

∫ x

smin
f(t)dt.

Discussion: Block re-using attack. An issue with the PoBA scheme defini-
tion and our modeling is that it cannot prevent adversaries from re-using other
users’ valid block candidates, e.g., the adversaries can claim others’ blocks as
theirs or modify the block slightly to achieve higher scores without performing
enough computation. Hence, in order to tackle the block re-using attack, we con-
sider an exact time barrier for diffusing block candidates in each time slot so that
no honest user will diffuse its block before this time barrier. This is achievable
given the globally synchronized clock T . We clarify that this is the only place in
this paper where we use the strong synchronicity of the global clock, and it is a
natural setting for P2PET.

5 PoBA-Based Blockchain Protocol

As mentioned before, each user in our blockchain protocol maintains a bidpool
alongside a blockchain. In the previous section, we show the process of the user
maintaining her bidpool with Algorithm 1. We then introduce the PoBA scheme
in which users can generate blocks by solving the bk-BAP (Definition 7 that takes
as input a bid set sampled from the bidpool. This section ends the description
of our protocol by further showing the process of users selecting blocks and
maintaining their blockchains. Finally, we will briefly discuss the incentive model.

Concretely, in any given time slot, we continue our explanation from where
each user obtains a list of block candidates from the PoBA scheme, which is mod-
eled by our bk-universal sampler. Each honest user diffuses her highest-scored
candidates through the network; Whereas, a rushing adversary, as mentioned
in Section 2, receives all honest blocks, manages the order, and diffuses its (the
adversary’s) candidates accordingly. Since there is more than one block being
delivered to users, and each block can only extend one blockchain, we consider
a directed tree (or precisely, a directed forest due to missing blocks) structure

19

that stores blocks locally for each user. The root of the “block-tree” is the gen-
esis block as given in Definition 4. Users extend their block-tree in each time
slot with newly received blocks and select the “best” branch on the block-tree
as their blockchain. Hence, we extend the notion score for branches to support
this selecting operation. Users will output the confirmed part of their blockchain
when asked to report the ledger.

5.1 Block-Tree and Score of Branches

Now, we start with the necessary definitions for the block-tree structure and
the scoring function for branches. Given a time slot ℓ ≥ 1, we first consider a
master-tree mtreeℓ that contains all valid blocks (block candidates) generated
(NOT diffused) by users (honest or not) from the genesis slot to slot ℓ. Then,
we define the master-tree mtreeℓ = (V,E) as a directed tree such that its vertex
set corresponds to blocks and the edge set corresponds to the hash link between
blocks. Hence, the genesis block bkG is the root of mtreeℓ. Recall the height
definition from graph theory: (1) The vertex height in a directed tree is defined
as the number of edges between the vertex and the root; (2) The tree height is
defined as the number of edges in the longest path between a leaf vertex and
the root. Hence, mtreeℓ is of height ℓ. Furthermore, for vertices in mtreeℓ of
the same height, the corresponding blocks are generated in the same time slot.
A user may only see a part of the master-tree because we assume the rushing
adversary controls block diffusion. Hence, denote the block-tree of a user U as
treeℓU = (VU , EU), we have tree

ℓ
U ⊆ mtreeℓ, i.e., VU ⊆ V and EU ⊆ E. The formal

definition is as follows.

Definition 14 (Master-Tree, User’s Block-Tree, Branch). Let bkG be the
genesis block. For any ℓ ≥ 1 and all i ∈ [n] where n is the number of users

participating the protocol, let BKt
i

∆
= {bkti} ≠ ∅ denote the set of valid blocks

generated by user Ui in slot t ∈ [ℓ]. Then, BKt ∆
=
⋃

i∈[n] BKt
i denotes the

set of valid blocks generated in slot t. The master-tree of slot ℓ is defined as
mtreeℓ = (V,E) such that V = {bkG} ∪

⋃
t∈[ℓ] BKt, and E = {(bkG, bk1) :

∀bk1 ∈ BK1} ∪
⋃

t∈[ℓ−1]{(bk
t, bkt+1) : ∀bkt ∈ BKt, bkt+1 ∈ BKt+1, prevHash =

Hash(bkt)} where prevHash is the previous hash value entry in block bkt+1, i.e.,
blocks (bkt, bkt+1) are linked by the hash function Hash as in the PoBA scheme
(Definition 10). A block-tree of user U is denoted by treeℓU = (VU , EU), and
satisfies treeℓU ⊆ mtreeℓ. Moreover, given a block-tree (master or user’s) of slot

ℓ as Gℓ = (V ℓ, Eℓ), a branch is defined branchℓ
∆
= bkG||bk1i1 || . . . ||bk

ℓ
iℓ

where

I
∆
= {i1, . . . , iℓ} is the index set of block generators such that branchℓ ⊆ Gℓ, i.e.,

for any t ∈ [ℓ], bktit ∈ V , and for any t ∈ [ℓ−1] and it, it+1 ∈ I, (bktit , bk
t+1
it+1

) ∈ E.

Recall that the branch definition resembles the definition of blockchain as
mentioned after Definition 4. We may also distinguish them by using branch for
arbitrary branches on a given block-tree, and chain for the highest-scored branch.

Moreover, we use branchℓ⌈k for k ∈ N to denote the chain of blocks resulting
from the removal of the k rightmost blocks of the branch branchℓ. If k ≥ ℓ,

20

we define branchℓ⌈k = ε, i.e., the empty chain. Then, by treeℓ⌈k, we denote the
sub-tree constructing from branchℓ⌈k for all branch ⊆ treeℓ. Note that in the case
of master-tree mtreeℓ, since it contains all generated blocks in the protocol, we
have for any t ∈ [ℓ] and k = ℓ− t: mtreet = mtreeℓ⌈k.

Next, in order to define the best branch with respect to scores, we extend
the scoring function by taking blocks’ generation slots into consideration. That
is, given a branch branchℓ = bkG||bk1|| . . . ||bkℓ in time slot ℓ ≥ 1, we introduce
an accumulating function acc(t) ∈ R for all t ∈ [ℓ]. Then, the score of each slot
t is defined as acc(t) · sbk(bkt). Finally, the score of the branch is defined as
the sum of all slot scores. Formally, we write the score of the branch branchℓ =
bkG||bk1|| . . . ||bkℓ as follows.

Sbranchℓ
∆
=

ℓ∑
t=1

acc(t) · sbk(bkt). (3)

Note that in our protocol, blocks generated in the same time slot share the
same height in the block-tree. Then, given an arbitrary block-tree, users can
compute the score of all branches on the tree with Equation 3. Hence, for a
user U holding a block-tree treeℓU in time slot ℓ ≥ 1, the user selects her branch,

denoted by chainℓU ⊆ treeℓU , such that:

SchainℓU
= max

branch⊆treeℓU

Sbranch. (4)

As we will show in Section 6, the accumulating function parameterizes the pos-
sibility of our protocol achieving consensus.

5.2 Protocol Description

Finally, we can present the full description of our protocol. In the following,
we show the workflow of an honest user in an arbitrary time slot where she
maintains her bidpool, generates a block, extends her block-tree, and reports
her confirmed blockchain to the system.

Let U be an honest user among the n ∈ N users performing the protocol in
time slot ℓ ≥ 1. Denote the user’s view of bidpool and block-tree at the end of
slot ℓ−1 with Poolℓ−1 and treeℓ−1, respectively. Here, we do not specify them to
U because our permissionless setting cannot guarantee the user to participate
in slot ℓ−1. However, we require that for any branch branch ⊆ treeℓ−1, (1, ·) ←
PoBA.Eval(branch,N) as given in Definition 10. Then, following Equation 4, the

user selects her branch, which is denoted by chainℓ−1
U . Let P ℓ−1 ∆

= {bid : tGen =
ℓ−1} be the set of bids that are issued in slot ℓ−1. Hence, the input for U ’s
execution in slot ℓ is (Poolℓ−1, chainℓ−1

U , P ℓ−1).
Next, with the UpdatePool algorithm given in Algorithm 1, the user obtains

her updated bidpool for generating blocks in slot ℓ, i.e., PoolℓU ← UpdatePool(
Poolℓ−1, chainℓ−1

U , P ℓ−1). We require that the bidpool to be valid as in Defini-

tion 11, i.e., 1 ← VerifyPool(PoolℓU , chain
ℓ−1
U). By performing the PoBA scheme

21

as a prover, the user obtains a set of valid block candidates, i.e., U samples
bid sets with BIDs ← SampleBIDs(PoolℓU ,N) and generates candidates with

bkℓU ← Solve(chainℓ−1
U ,BIDs). Denote the set of candidates as BKU

∆
= {bkℓi,U}i∈N.

Our protocol requires honest users only diffuse their highest-scored block can-
didate and the corresponding blockchain, i.e., U diffuses the block bkℓU that
satisfies sbk(bk

ℓ
U) = maxbk∈BKU bk, and the corresponding blockchain chainℓ−1

U .

In addition to chain diffusion, users also receive blockchains from others.
Here, we consider the process of the honest U updating her local block-tree

treeℓ−1 ∆
= (V ℓ−1, Eℓ−1) when receiving a blockchain (including her own) chaint

′

U∗ .
We use U∗ for unspecified users and t′ for the slot index to be verified. The user

U first performs as the verifier in PoBA with (b, ·) ← PoBA.Eval(chaint
′

U∗ ,N).
If b = 0, U discards the blockchain. Otherwise, she compares the incoming
blockchain with her local block-tree and adds missing blocks with hash links to
the tree. Concretely, when b = 1, we have t′ = ℓ. Then, we can rewrite the incom-
ing blockchain with chainℓU∗ = bkG||bk1U∗ || . . . ||bkℓ−1

U∗ ||bkℓU∗ . Note that users ac-

cept blockchains. Hence, we only need to consider a sub-chain bktU∗ || . . . ||bkℓU∗ ⊆
chainℓU∗ such that bkt−1

U∗ ∈ treeℓ−1 and bktU∗ /∈ treeℓ−1. Therefore, denote the

updated block-tree as treeℓU = (V ℓ
U , E

ℓ
U), we have V ℓ

U = V ℓ−1 ∪ {bktU∗ , . . . , bkℓU∗}
and Eℓ

U = Eℓ−1 ∪ {(bkt−1
U∗ , bktU∗), . . . (bkℓ−1

U∗ , bkℓU∗)}. We summarize the update

process of block-trees with an algorithm: tree′ ← UpdateTree(tree, chaint
′

U∗). Note
that we use tree and tree′ instead of specifying slot indices (ℓ−1 and ℓ) because
users may receive more than one blockchain candidate within one slot. The al-
gorithm is specified in Algorithm 2.

Finally, the user is responsible for reporting her confirmed blockchain to the
protocol with respect to a parameter k (to be estimated in Section 6), i.e.,
given the user’s updated block-tree treeℓU , the user outputs chainℓU according to

Equation 4 such that chain
ℓ⌈k
U is the confirmed part of the blockchain.

Our PoBA-Based Blockchain Protocol Πn,δ,k,sbk,acc

Let U be an honest user among the n users executing the protocol
Πn,δ,k,sbk,acc in time slot ℓ ≥ 1. Here, δ is the known network de-
lay, k is a parameter for blockchain confirmation, sbk(·) is the general
scoring function for blocks, and acc(·) is the accumulating parameter
function for branch scores. Given the algorithms UpdatePool, VerifyPool,
UpdateTree and the PoBA scheme PoBA, the user U takes as input
(Poolℓ−1, treeℓ−1, P ℓ−1) from the previous slot ℓ−1.

– Bidpool Maintenance: At the beginning of slot ℓ, U updates the
bidpool with PoolℓU ← UpdatePool(Poolℓ−1, chainℓ−1

U , P ℓ−1 such that

1 ← VerifyPool(PoolℓU , chain
ℓ−1
U) where chainℓ−1

U ⊆ treeℓ−1 is selected
according to Equation 4;

22

Algorithm 2: The UpdateTree algorithm. Let ℓ ≥ 1 be the current time
slot. UpdateTree is parameterized by a block-tree tree and a blockchain

candidate chaint
′

U∗ .

1 function UpdateTree(tree, chaint
′
U∗);

2 Parse tree = {V,E};
// Verify each blockchain candidate.

3 Run (b, ·)← PoBA.Eval(chaint
′
U∗ ,N);

4 if b = 1 then
// t′ = ℓ.

5 Parse chaint
′
U∗ = bkG||bk1U∗ || . . . ||bkℓ−1

U∗ ||bkℓU∗ ;
// Find the first block not in tree.

6 for bktU∗ ∈ chaint
′
U∗ do

7 if bkt−1
U∗ ∈ tree and bktU∗ /∈ tree then

8 Set V ′ = V ∪ {bktU∗ , . . . , bkℓU∗};
9 Set E′ = E ∪ {(bkt−1

U∗ , bktU∗), . . . (bkℓ−1
U∗ , bkℓU∗)};

10 Return treeℓ = (V ′, E′)

11 end

12 end

13 end

– Block Generation: U generates block candidates with the PoBA
scheme, i.e., BIDs ← PoBA.SampleBIDs(PoolℓU ,N), chain

ℓ−1
U ||bkℓU ←

PoBA.Solve(chainℓ−1
U ,BIDs) where N is the size bound of input bid sets;

– Block-Tree Update: U initializes an intermediate variable tree
∆
=

treeℓ−1. Whenever U receives a blockchain candidate chaint
′

U∗ , she runs

tree′ ← UpdateTree(tree, chaint
′

U∗) and updates her temporary variable
with tree ← tree′. Finally, the user obtains treeℓU after updating her
local block-tree with all blockchain candidates received in slot ℓ;

– Bids Collection: U collects a set of bids issued in slot ℓ as P ℓ ∆
= {bid :

tGen = ℓ−1} such that all bid ∈ P have valid signatures;
– Ledger Reporting: Upon queried by the protocol Π, U outputs her

blockchain chainℓU ⊆ treeℓU that satisfies Equation 4, and regard chain
ℓ⌈k
U

as the confirmed part of the blockchain.

Discussion: incentive model. The security proofs of this paper are based on
practical assumptions in the sense of implementation. However, we do NOT an-
alyze the reason behind these assumptions based on rational analysis as shown
in [2, 3, 11]. Given the richness of the area, we only discuss the intuition of the
incentive model. Like conventional blockchain protocols, there are two layers of
incentive: inherent (e.g., transaction fee) and explicit (e.g., block reward). The

23

inherent incentive in our protocol derives from where users can tweak transac-
tions to benefit themselves, e.g., assigning higher buy price for their sell bids or
lower sell price for their buy bids. However, prioritizing their own bids in the
solving algorithm will potentially sacrifice the block scores. Hence, the blocks
may fail to be selected in the confirmed blockchain. The trade-off between this
inherent reward and the scarification of block scores requires a case-by-case anal-
ysis with respect to concrete scoring functions.

However, problems arise when considering explicit incentives, i.e., rewards to
block generators. We argue that a well-chosen scoring function in PoBA prevents
adversarial users from attacking the underlying P2PET and from disturbing
consensus in the network (as shown in Section 6). However, the computation
in PoBA is unfair, i.e., adversaries can dominate the block generation without
dominating computing power. The explicit incentive intensifies unfairness.

6 Security Analysis

This section proves the security of our protocol Πn,δ,k with respect to ledger
properties, i.e., persistence and liveness [12]. We first provide the definition of
persistence by adopting the slightly refined version from [9]. For liveness, exist-
ing definitions require that if an honest user receives a transaction, then, the
transaction will eventually be output by all honest users in their ledger, i.e.,
blockchain. However, as shown in previous sections, transactions are not dif-
fused solely in our protocol but are released within blocks. Moreover, each user
maintains a local block-tree to keep tracking blocks of the protocol. Hence, we
define block-liveness instead of the original liveness to fit our design.

Definition 15 (Persistence and Block-Liveness). Denote blockchain as chain
and block-tree as tree.

– Persistence: For any two honest users with blockchains chainℓ11 , chainℓ22 at time
slot ℓ1, ℓ2 ≥ 1, respectively. Without loss of generality, let ℓ1 ≤ ℓ2. Persistence
with parameter k ∈ N indicates that chainℓ11 , should be a prefix of chainℓ22 after
removing the rightmost k blocks;

– Block-liveness: For any honest user with chainℓ in time slot ℓ ≥ 1, block-
liveness states that for any t ∈ [ℓ], chaint is extended by at exact one block.

Remark 2 (Relaxation in Liveness). As discussed above, we cannot define live-
ness for transactions in our protocol due to the change in the data structure.
There are two options: one is to define liveness for blocks as in Definition 15,
which can be considered as a relaxation of the original liveness property, and in
fact, our protocol satisfies block-liveness by design (Theorem 2). Whereas, the
other option is to define liveness for bids, which can be meaningless in real life.
This is because our main purpose is to require honest users to find good assign-
ments (higher-scored blocks) according to the scoring function derived from the
underlying P2PET system instead of enforcing them to include every bid.

24

Persistence. In order to prove persistence, we first make an additional as-
sumption on the adversary. Recall the rushing adversary in our execution model
who can learn all block (blockchain) candidates generated, i.e., the adversary
holds the master-tree of the protocol. We assume that this adversary sends the
highest-scored blockchain of each time slot to at least one honest user.

Assumption 1 Let mtreeℓ be the master-tree in time slot ℓ, and let A be the
rushing adversary who holds mtreeℓ. Let chainℓ ⊆ mtreeℓ be the highest-scored
branch that satisfies:

Schainℓ = max
branch⊆mtreeℓ

Sbranch. (5)

We assume that at least one honest user among the n users who participate in
the protocol receives chainℓ by the end of slot ℓ.

Next, we consider honest users’ local block-tree dynamics. It takes two steps
to achieve persistence: (1) The highest-scored branch of each time slot should
be eventually known to all honest users; (2) Highest-scored branches of different
time slots should have a long enough common prefix.

Disclosing highest-scored branches. If a block or branch is known to all
honest users, we say it is disclosed, i.e., given a block bk (or a branch branch),
for any honest user with block-tree tree, it holds bk ∈ tree (or branch ⊆ tree).
Remark that given the δ-bounded communication network, a block candidate
generated by an honest user is always disclosed after δ time slots. Generally, we
define d-disclosure for blocks and branches.

Definition 16 (d-Disclosure). Let bkt be a valid block generated in time slot
t ≥ 1, the block is d-disclosed if for any honest user with block-tree treeℓ in slot ℓ
such that ℓ ≥ t+d, then, bkt ∈ treeℓ. We say a branch is d-closed if the rightmost
block on the branch is d-disclosed.

The following lemma indicates that if a branch is selected as the highest-
scored branch by any user, the branch will eventually be disclosed.

Lemma 1. Let mtreet be the master-tree in time slot t ≥ 1. Assuming the net-
work is δ-synchronous, if a branch brancht ⊆ mtreet is selected as the highest-
scored branch according to Equation 5, the branch is at most (δ + 1)-disclosed.

Proof. Denote the branch with brancht = bkG|| . . . ||bkt, we first consider the
situation where bkt is generated by an honest user, then, it is δ-disclosed by δ-
bounded network setting. Hence, branch is also δ-disclosed. Otherwise, the block
is first received by the rushing adversary A in slot t. Because brancht ⊆ mtreet is
the highest-scored branch according to Equation 5, by Assumption 1, an honest
user will receive the branch in slot t. Denote the user’s local block-tree with treet.
Since treet is a sub-graph of mtreet, branch is the highest-scored branch in treet.
Hence, the honest user will generate a block atop branch in the following slot
t+1, which is also δ-disclosed. Therefore, the branch is at most δ + 1-disclosed.

25

Directly from Lemma 1, we have the following proposition for all disclosed
highest-scored branches in the master-tree.

Proposition 1. Assuming the network is δ-slot synchronous, let mtreet be the
master-tree in time slot t in which brancht is selected as the highest-scored branch
according to Equation 5. All blocks on branches in {brancht}t∈[ℓ−(δ+1)] is dis-
closed for any ℓ > δ + 1.

Common prefix among selected branches. Proposition 1 only indicates
that the highest-scored branch of each time slot will eventually be known to all
honest users. However, even in the master-tree (i.e., everything is known), given
two conjunctive slots, the highest-scored branches may be different from each
other, e.g., a high-but-not-highest-scored branch gets extended by an extremely
high-scored block so that the new branch is selected in the next time slot. Such
a substitution causes the blockchain to be unstable and prevents honest users
from agreeing on the same chain. We consider two situations: (In the illustration,
the circle denotes the blocks on the branches, and the double circle denotes the
branch being selected as the highest-scored one): (1) If the change of branch
selection happens frequently, the block history cannot be settled (Figure 1a); (2)
If the selected branches of different slots have too many distinct blocks, the block
history can get reset (Figure 1b). In either case, invalid bids and transactions in
the unconfirmed blocks can disturb the underlying P2PET market.

(a) The selected chain swings over con-
junctive time slots so that the blocks
during these slots cannot be settled.

(b) A branch substitutes the selected
chain after it gets selected for multiple
slots so that the history gets reset.

Fig. 1: Intuition of Chain Instability: In the successful attack, the adversary
forces the nodes to keep changing the chain between two cases.

In order to tackle this problem, we first define divergence between branches
and branch viability. The definitions originate from [17], we refine them with
respect to the score of branches. Moreover, since we focus on the highest-scored
branches in each time slot, and they are disclosed as shown in Proposition 1, we
will consider the master-tree in the following analysis for simplicity.

Definition 17 (Divergence and Viability). Let mtreeℓ be the master-tree of
time slot ℓ ≥ 1. For any t ∈ [ℓ], given any two branches brancht1, branch

t
2 ⊆

mtreet, the divergence of brancht1 and brancht2 is given by:

div(brancht1, branch
t
2) = |Sbrancht1

− Sbrancht2
|.

26

Moreover, let chaint be the highest-scored branch selected from mtreet according
to Equation 5. A branch brancht∗ ̸= chaint is viable, if div(brancht∗, chain

t) ≤
smax−smin where [smin, smax] is the range of block scores given by sbk(·).

A branch in slot t is viable if the divergence between the branch and the
highest-scored branch can be covered by a single block. That is, the viable branch
could be extended with a block with higher score and substitute the selected
chain. We formally define this situation as chain substitution with a parameter
τ ≥ 1. For convenience, we first introduce the injection operation for branches.
Let branch1 = bkG|| . . . ||bkt||bkt+1

1 . . . ||bkℓ11 be a branch of slot ℓ1 ≥ 1, and
let branch2 = bkG|| . . . ||bkt||bkt+1

2 . . . ||bkℓ22 be a branch of slot ℓ2 ≥ 2 where
t ∈ [min(ℓ1, ℓ2)]. Then, the intersection of branch1 and branch2 is denoted by
branch1 ∩ branch2 = bkG|| . . . ||bkt.

Definition 18 (τ-Chain Substitution). Let mtreeℓ be the master-tree of time
slot ℓ>τ . For any t ∈ [ℓ−τ], let chaini and chaini+1 be the highest-scored branches
in slot i and i+1 where i ∈ [t−1, t−2+τ] such that chaini+1 = chaini||bki+1

c . Let
bkt+τ

c be highest-scored block that extends chaint−1+τ in slot t+τ . Denote the

new branches branchc
∆
= chaint−1+τ ||bkt+τ

c . A τ -chain substitution occurs if there
exists a branch such that brancht−1+τ ∩ chaint−1+τ = chaint−1, and is extended

by block bkt+τ
b , denote the new branch branchb

∆
= brancht−1+τ ||bkt+τ

b , such that:

Sbranchb = max
brancht+τ⊆mtreet+τ

Sbrancht+τ .

A chain can only be substituted by a branch if the branch is viable, and
the blocks extending them satisfies sbk(bk

t+τ
b) − sbk(bk

t+τ
c) ≥ Schaint−1+τ −

Sbrancht−1+τ , i.e., Sbranchb ≥ Sbranchc . The parameter τ ≥ 1 indicates that a chain
is substituted after being selected for τ conjunctive slots. Assuming arbitrary
distribution D for our scoring function sbk(·), the following lemma shows a loose
upper bound for the probability of τ -chain substitution.

Lemma 2. Let mtreeℓ be the master-tree of time slot ℓ>τ . For any t ∈ [ℓ−τ],
given any score distribution D, there exists an accumulating function acc(·)
(Equation 3) such that the probability of τ -chain substitution occurring is O(c−τ)
where c is a constant value given by acc(·).

Proof. We start from the easy case where τ = 1. By Definition 18, chaint =
chaint−1||bktc and branchc = chaint||bkt+1

c . Consider a viable branch that satisfies
brancht∩chaint = chaint−1 and is extended by a block bkt+1

b such that branchb =
brancht||bkt+1

b substitutes branchc. Then, by Equation 3, we have:

sbk(bk
t
c) ≥ sbk(bk

t
b),

acc(t)

acc(t+1)
sbk(bk

t
c) + ·sbk(bk

t+1
c) ≤ acc(t)

acc(t+1)
sbk(bk

t
b) + sbk(bk

t+1
b). (6)

For simplicity, we omit the subscript in the scoring function with s(·) as we only
consider block scores. We also rewrite acc(t)

acc(t+1) with c(0, 1). Then, the probability

27

of branchc substituted by branchb, denoted by Pr[τ = 1, branchb], equals to joint
probability of events in Equation 6. That is, we need to estimate the following.

Pr[s(bktc)− s(bktb) ≥ 0 ∧ c(0, 1) ·
(
s(bktc)− s(bktb)

)
+
(
s(bkt+1

c)− s(bkt+1
b)

)
≤ 0]
(7)

Now, we denote the random variables representing the scores of the tuple
(bktc, bk

t
b, bk

t+1
c , bkt+1

b) with (Xt
c , X

t
b, X

t+1
c , Xt+1

b). Furthermore, we use two ran-
dom variables Y t and Y t+1 to represent the subtraction of scores. That is,

Y t = Xt
c −Xt

b = s(bktc)− s(bktb),

Y t+1 = Xt+1
c −Xt+1

b = s(bkt+1
c)− s(bkt+1

b).

Following in our universal sampler model, (Xt
c , X

t
b, X

t+1
c , Xt+1

b) are indepen-
dent and follow the same distribution DX = D on [smin, smax]. Hence, Y t and
Y t+1 are independent, and distributed identically and symmetrically [13] on
[smin−smax, smax−smin]. We denote the distribution of Y t and Y t+1 with DY ,
and let fY (·) and FY (·) be the probability density function and the distribution
function of DY . We can rewrite Equation 7 in the form of random variables:

Pr[(Y t ≥ 0) ∧ c(0, 1) · Y t + Y t+1 ≤ 0)]. (8)

Consider the event: {Y t = y ∧ Y t+1 ≤ −c(0, 1)y} for all y ∈ [0, smax−smin]. For
simplicity, we rewrite r = smax−smin. By Y t is independent of Y t+1, we have:

Equation 8 =

∫ r

0

Pr[Y t = y] · Pr[Y t+1 ≤ −c(0, 1)y]dy

=

∫ r

0

∫ −c(0,1)y

−r

fY (y)fY (x)dxdy. (9)

Here, we consider the upper-bound of Equation 9 by scaling up fY (·) with
two coefficients c1, c2 > 0 as follows.

fY (y)

{
≤ c1 · e−c2·y2

, if y ∈ [−r, r],
= 0, otherwise.

(10)

Note that fY (y) is a probability density function, hence, it satisfies
∫ r

−r
fY (y)dy =

1. Then, for c1, c2, we have the estimation:
∫∞
−∞ c1 · e−c2·y2

dy ≥ 1, which is

c21/c2 ≥ π−1. The manipulation of inequality gives us:

Equation 9 ≤
∫ ∞

0

∫ −c(0,1)y

−∞
e−y2

·e−x2

dxdy =
c1

2

2c2
·tan−1

(
1

c(0, 1)

)
≤ c1

2

2c2 · c(0, 1)
.

(11)
That is, Pr[τ = 1, branchb] ≤ c1

2/(2c2 · c(0, 1)) for any c1, c2 ≥ 0 and c21/c2 ≥
π−1 where c(0, 1) = acc(t)

acc(t+1) .

Now, we consider the probability of 1-chain substitution, denoted by Pr[τ =
1]. Let q be the number of viable branches of slot t. Recall our universal sampler,

28

Q is the upper bounded of the total number of queries (regardless of honest or
not) made in each time slot, i.e., q ≤ Q as shown in Section 4.3 (universal
sampler functionality). Then, we have:

Pr[τ = 1] ≤ 1−
(
1− c21

2c2 · c(0, 1)

)Q

.

Next, chain substitution with τ > 1 follows the same methodology of
τ = 1. Consider a branch that satisfies brancht−1+τ ∩ chaint−1+τ = chaint−1.
Denote the distinct blocks on brancht−1+τ with bktb, . . . , bk

t−1
b +τ . Comparing

them with the blocks on chaint−1+τ , and comparing the new blocks bkt+τ
b in

branchb and bkt+τ
c in branchc, by rewriting Equation 8, the probability of branchc

substituted by branchb, denoted by Pr[τ > 1, branchb], equals to:

Pr

 ∧
i∈[τ−1]

 i∑
j=0

acc(t+j)

acc(t+i)
· Y t+j ≥ 0

 ∧(τ∑
i=0

acc(t+i)

acc(t+τ)
· Y i ≤ 0

) , (12)

where Y t+i = Xt+i
c −Xt+i

b for any i ∈ {0, . . . , τ} are independent and distributed

identically with DY on [smin−smax, smax−smin]. For simplicity, we rewrite acc(j)
acc(i)

with c(j, i), and let c(i, i)
∆
= 1. Hence, Equation 12 equals to:

=

∫ r

0

· · ·
∫ r

rτ−1

Πτ−1
i=0 Pr[Y t+i = yi] · Pr

[
Y t+τ ≤ −

τ−1∑
i=0

c(i, τ) · yi

]
dy0 · · · dyτ−1

=

∫ r

0

· · ·
∫ r

rτ−1

∫ −
∑τ−1

i=0 c(i,τ)·yi

−r

Πτ−1
i=0 fY (yi) · fY (x)dxdy0 · · · dyτ−1. (13)

We denote the lower bound of random variable Y t+i for any i ∈ [τ−1] as ri.

Hence ri = −
∑i−1

j=0 c(j, i) · yj . Here, we use a small trick to scale Equation 13.
Note that ri is not necessarily larger than 0. We scale yi down to −r for all
i ∈ [τ−1]. Then, the upper bound of Y t+τ satisfies Y t+τ ≤ −c(0, τ)y0 + r ·∑τ−1

i=1 c(i, τ). By
∫ r

−r
fY (yi)dyi ≤ 1 for any i ∈ [τ−1], we have:

Equation 13 ≤
∫ r

0

∫ −c(0,τ)y0+r·
∑τ−1

i=1 c(i,τ)

−r

fY (y0)fY (x)dxdy0. (14)

Finally, by setting y′
∆
= y0− r

c(0,τ) ·
∑τ−1

i=1 c(i, τ) and the bound of fY (·) given in

Equation 10:

Equation 14 ≤
∫ ∞

−∞

∫ −c(0,τ)y′

−∞
e−y′2

·e−x2

dxdy′ =
c1

2

c2
·tan−1

(
1

c(0, τ)

)
≤ c21

c2
·c(0, τ).

(15)
That is, Pr[τ > 1, branchb] ≤ c1

2/c2 · c(0, τ)}, for any c1, c2 ≥ 0 and c21/c2 ≥ π−1

where c(0, τ) = acc(t)
acc(t+τ) . Then, similar to τ = 1, we compute the probability of

29

τ ≥ 1-chain substitution, denoted by Pr[τ > 1], as follows. Let q be the number
of viable branches in slot t. Then, by our universal sampler, q ≤ Q, where Q
is the upper bound of the total number of queries (regardless of honest or not)
made in each time slot. Hence,

Pr[τ > 1] ≤ 1−
(
1− c21

c2 · c(0, τ)

)Q

.

Combining the discussion above, we consider a constant value c > max{1, c21
c2
},

and let acc(t) = ct. Then, Pr[τ ≥ 1] ≤ 1 −
(
1− c21

c2·c−τ

)Q
is of the same order

as Q · c−τ . Note that we only use the upper bound of total queries to the uni-
versal sampler instead of honest queries. Finally, we can conclude that τ -chain
substitution occurs with probability O(c−τ).

Therefore, we have the following theorem on persistence.

Theorem 1 (Persistence). Assuming at least one honest user, the protocol
Πn,δ,k,sbk,acc among the n users, it holds that the protocol parameterized with k ≥
δ+1 satisfies persistence (Definition 15) with probability at least 1− Ω(c−k+δ).

Proof. Suppose persistence with parameter k ≥ δ+1 is violated. It follows that,
for honest users in two different time slots ℓ1 ≤ ℓ2 holding chainℓ11 and chainℓ22 ,

chain
ℓ1⌈k
1 is not the prefix of chainℓ22 . Hence, there exists blocks on chain

ℓ1⌈k
1 not

on chain2 ̸= ∅. Denote the first distinct block with bkℓ1−k′

1 , then k′ ≥ k.
By Proposition 1, in slot ℓ2, highest-scored branches of any slot before ℓ2 −

(δ + 1) are disclosed to all honest users. Hence, the block-tree treeℓ2 of the
user who holds chainℓ22 contains all highest-scored branches before ℓ2 − (δ + 1).

Then, chain
ℓ1⌈δ+1
1 ∈ treeℓ2. The chain substitution must happen in the slot af-

ter ℓ−δ+1. Without loss of generality, we consider the situation that for all i ∈
{ℓ1−k′, . . . , ℓ1−(δ+1)}, chaini1 = chaini−1

1 ||bki for all i ∈ {ℓ1−k′, . . . , ℓ1−(δ+1)},
i.e., blocks on chainℓ1 are selected conjunctively for k′−δ slots from ℓ−k′ to
ℓ−(δ+1). Therefore, by Lemma 2, the probability of this (k′−δ)-chain substitu-
tion occurs with probability of O(c−k′+δ) which is less then O(c−k+δ). Finally, we
conclude that the probability of persistence with k ≥ δ+1 is at least 1−Ω(c−k+δ).

Block-Liveness For completeness, we show the following theorem for block-
liveness.

Theorem 2 (Block-liveness). Assuming at least one honest user executes the
protocol Πn,δ,k,sbk,acc among the n users, it holds that the protocol satisfies block-
liveness (Definition 15) unconditionally.

The proof is straightforward. Assuming the one honest user is unaware of
any other blocks, she can trivially extend her block-tree by generating blocks
locally with the bidpool and selecting the blockchain accordingly.

30

7 Final Remarks

The starting point of our protocol is to implement the ledger of the P2PET,
where the underlying problem of matching buy and sell bids, can be used in
conjunction with a blockchain data structure. Despite the fact that users need
to be certificated to participate in the system, we adopt a more general execu-
tion: permissionless with static corruptions and δ-synchronous communication
network. Moreover, we assume the existence of a globally synchronized clock,
which, at first glance, is a constrained setting. However, it can easily be imple-
mented by the secure hardware provided by the P2PET system.

One component of our construction is the scoring function for blocks, i.e.,
sbk, and the BAP-based “proof-of-X” scheme (PoBA), implementing a novel
consensus protocol. The purpose of the scoring function is to provide a “notion
of optimal” to the system. Among all the blocks available in each time slot,
it chooses the “most optimal” choice to extend a (redefined) blockchain data
structure. At the same time, it is used as accounting for the auction market
underpinning the system. Instantiated with a concrete function, the adversary,
once given the description for the scoring function, could adapt and get an
advantage in constructing the next block. Thus, its adaptability, in fact, helps the
optimality of the overall protocol. We advocate that the study of more concrete
constructions of sbk is of independent interest and out of the scope of this work.

In our analysis, the PoBA scheme is replaced by a universal sampler which
samples blocks and corresponding scores from score space in each time slot. This,
in fact, simplifies our analysis without the loss of the whole motivation of our
construction. We remark that, although it is an advanced random oracle, it is
practical [16], since it can be easily used in practice with a random function.

Considering the universal sampler in our protocol execution setting, we showed
that our protocol has persistence and block-liveness when at least one user is
honest. We recall that block-liveness is a variant of the standard security liveness
property. This variant is necessary and meaningful in our setting, given that in
every time slot all honest participants issue candidate blocks. Thus, the property
is that one block among them is always chosen from all candidates. Needless to
say, by fulfilling the block-liveness property, we also obtain the regular liveness
property, thereby constructing a fully secure system.

Finally, we remark that we did not thoroughly investigate potential incentive
frameworks for our proposed system in the presence of a rational adversary. This
topic seem to be out of the scope of the current work despite its importance.
In particular, the study of the overall behavior of the system in the presence of
such adversary. We leave this topic for future works.

31

References

1. Akhras, R., El-Hajj, W., Majdalani, M., Hajj, H.M., Jabr, R.A., Shaban,
K.B.: Securing smart grid communication using ethereum smart contracts. In:
16th International Wireless Communications and Mobile Computing Confer-
ence, IWCMC 2020, Limassol, Cyprus, June 15-19, 2020. pp. 1672–1678. IEEE
(2020). https://doi.org/10.1109/IWCMC48107.2020.9148345, https://doi.org/

10.1109/IWCMC48107.2020.9148345
2. Badertscher, C., Garay, J.A., Maurer, U., Tschudi, D., Zikas, V.: But why does it

work? A rational protocol design treatment of bitcoin. In: Nielsen, J.B., Rijmen, V.
(eds.) Advances in Cryptology - EUROCRYPT 2018 - 37th Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Tel Aviv,
Israel, April 29 - May 3, 2018 Proceedings, Part II. Lecture Notes in Computer
Science, vol. 10821, pp. 34–65. Springer (2018). https://doi.org/10.1007/978-3-319-
78375-8“˙2, https://doi.org/10.1007/978-3-319-78375-8_2

3. Badertscher, C., Lu, Y., Zikas, V.: A rational protocol treatment of 51% attacks.
In: Malkin, T., Peikert, C. (eds.) Advances in Cryptology - CRYPTO 2021 - 41st
Annual International Cryptology Conference, CRYPTO 2021, Virtual Event, Au-
gust 16-20, 2021, Proceedings, Part III. Lecture Notes in Computer Science, vol.
12827, pp. 3–32. Springer (2021). https://doi.org/10.1007/978-3-030-84252-9“˙1,
https://doi.org/10.1007/978-3-030-84252-9_1

4. Ball, M., Rosen, A., Sabin, M., Vasudevan, P.N.: Proofs of work from worst-case
assumptions. In: Shacham, H., Boldyreva, A. (eds.) Advances in Cryptology -
CRYPTO 2018 - 38th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 19-23, 2018, Proceedings, Part I. Lecture Notes in Computer
Science, vol. 10991, pp. 789–819. Springer (2018). https://doi.org/10.1007/978-3-
319-96884-1“˙26, https://doi.org/10.1007/978-3-319-96884-1_26

5. Blocki, J., Zhou, H.: Designing proof of human-work puzzles for cryptocurrency
and beyond. In: Hirt, M., Smith, A.D. (eds.) Theory of Cryptography - 14th In-
ternational Conference, TCC 2016-B, Beijing, China, October 31 - November 3,
2016, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9986, pp. 517–
546 (2016). https://doi.org/10.1007/978-3-662-53644-5“˙20, https://doi.org/10.
1007/978-3-662-53644-5_20

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: 42nd Annual Symposium on Foundations of Computer Science,
FOCS 2001, 14-17 October 2001, Las Vegas, Nevada, USA. pp. 136–145. IEEE
Computer Society (2001). https://doi.org/10.1109/SFCS.2001.959888, https://

doi.org/10.1109/SFCS.2001.959888
7. Dwork, C., Naor, M.: Pricing via processing or combatting junk mail. In: Brick-

ell, E.F. (ed.) Advances in Cryptology - CRYPTO ’92, 12th Annual Inter-
national Cryptology Conference, Santa Barbara, California, USA, August 16-
20, 1992, Proceedings. Lecture Notes in Computer Science, vol. 740, pp. 139–
147. Springer (1992). https://doi.org/10.1007/3-540-48071-4“˙10, https://doi.

org/10.1007/3-540-48071-4_10
8. Dyer, M.E., Frieze, A.M.: Probabilistic analysis of the generalised assignment prob-

lem. Math. Program. 55, 169–181 (1992). https://doi.org/10.1007/BF01581197,
https://doi.org/10.1007/BF01581197

9. Fitzi, M., Kiayias, A., Panagiotakos, G., Russell, A.: Ofelimos: Combinatorial op-
timization via proof-of-useful-work \\ A provably secure blockchain protocol. In:
Advances in Cryptology - CRYPTO 2022. Lecture Notes in Computer Science,
Springer (2022)

32

10. Foundation, C.: Cardano Hub. https://www.cardano.org/ (2023), [Online; ac-
cessed 26-May-2023]

11. Garay, J.A., Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Rational pro-
tocol design: Cryptography against incentive-driven adversaries. In: 54th An-
nual IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-
29 October, 2013, Berkeley, CA, USA. pp. 648–657. IEEE Computer Society
(2013). https://doi.org/10.1109/FOCS.2013.75, https://doi.org/10.1109/FOCS.
2013.75

12. Garay, J.A., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: Anal-
ysis and applications. In: Oswald, E., Fischlin, M. (eds.) Advances in Cryptol-
ogy - EUROCRYPT 2015 - 34th Annual International Conference on the The-
ory and Applications of Cryptographic Techniques, Sofia, Bulgaria, April 26-30,
2015, Proceedings, Part II. Lecture Notes in Computer Science, vol. 9057, pp.
281–310. Springer (2015). https://doi.org/10.1007/978-3-662-46803-6“˙10, https:
//doi.org/10.1007/978-3-662-46803-6_10

13. George E.P. Box, G.C.T.: Bayesian Assessment of Assumptions 1. Ef-
fect of Non-Normality on Inferences about a Population Mean with
Generalizations, chap. 3, pp. 149–202. John Wiley and Sons, Ltd
(1992). https://doi.org/https://doi.org/10.1002/9781118033197.ch3, https:

//onlinelibrary.wiley.com/doi/abs/10.1002/9781118033197.ch3

14. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against
adaptive chosen-message attacks. SIAM J. Comput. 17(2), 281–308 (1988).
https://doi.org/10.1137/0217017, https://doi.org/10.1137/0217017

15. Górski, T., Bednarski, J.: Modeling of smart contracts in blockchain solution
for renewable energy grid. In: Moreno-Dı́az, R., Pichler, F., Quesada-Arencibia,
A. (eds.) Computer Aided Systems Theory - EUROCAST 2019 - 17th Interna-
tional Conference, Las Palmas de Gran Canaria, Spain, February 17-22, 2019, Re-
vised Selected Papers, Part I. Lecture Notes in Computer Science, vol. 12013, pp.
507–514. Springer (2019). https://doi.org/10.1007/978-3-030-45093-9“˙61, https:
//doi.org/10.1007/978-3-030-45093-9_61

16. Hofheinz, D., Jager, T., Khurana, D., Sahai, A., Waters, B., Zhandry, M.: How to
generate and use universal samplers. In: Cheon, J.H., Takagi, T. (eds.) Advances in
Cryptology - ASIACRYPT 2016 - 22nd International Conference on the Theory and
Application of Cryptology and Information Security, Hanoi, Vietnam, December
4-8, 2016, Proceedings, Part II. Lecture Notes in Computer Science, vol. 10032,
pp. 715–744 (2016). https://doi.org/10.1007/978-3-662-53890-6“˙24, https://doi.
org/10.1007/978-3-662-53890-6_24

17. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: A provably se-
cure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) Ad-
vances in Cryptology - CRYPTO 2017 - 37th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 20-24, 2017, Proceed-
ings, Part I. Lecture Notes in Computer Science, vol. 10401, pp. 357–388.
Springer (2017). https://doi.org/10.1007/978-3-319-63688-7“˙12, https://doi.

org/10.1007/978-3-319-63688-7_12

18. Kirli, D., Couraud, B., Robu, V., Salgado-Bravo, M., Norbu, S., Andoni, M.,
Antonopoulos, I., Negrete-Pincetic, M., Flynn, D., Kiprakis, A.: Smart contracts
in energy systems: A systematic review of fundamental approaches and implemen-
tations. Renewable and Sustainable Energy Reviews 158, 112013 (2022)

19. Luu, L., Chu, D., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi,

33

S. (eds.) Proceedings of the 2016 ACM SIGSAC Conference on Computer
and Communications Security, Vienna, Austria, October 24-28, 2016. pp. 254–
269. ACM (2016). https://doi.org/10.1145/2976749.2978309, https://doi.org/

10.1145/2976749.2978309

20. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008), http://

bitcoin.org/bitcoin.pdf

21. Park, J.S., Lim, B.H., Lee, Y.: A lagrangian dual-based branch-and-bound algo-
rithm for the generalized multi-assignment problem. Manage. Sci. 44(12), 271–275
(dec 1998)

22. Pass, R., Shi, E.: Thunderella: Blockchains with optimistic instant confirma-
tion. In: Nielsen, J.B., Rijmen, V. (eds.) Advances in Cryptology - EURO-
CRYPT 2018 - 37th Annual International Conference on the Theory and Appli-
cations of Cryptographic Techniques, Tel Aviv, Israel, April 29 - May 3, 2018
Proceedings, Part II. Lecture Notes in Computer Science, vol. 10821, pp. 3–
33. Springer (2018). https://doi.org/10.1007/978-3-319-78375-8“˙1, https://doi.
org/10.1007/978-3-319-78375-8_1

23. Robertson, H.: Ethereum transaction fees are running sky-high. (2021),
“https://markets.businessinsider.com/news/currencies/ethereum-transaction-
gas-fees-high-solana-avalanche-cardano-crypto-blockchain-2021-12”

24. Wood, G.: Ethereum yellow paper (2014)

34

