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Efficient Noise Generation Protocols for
Differentially Private Multiparty Computation

Reo Eriguchi, Atsunori Ichikawa, Noboru Kunihiro, and Koji Nuida

Abstract—To bound information leakage in outputs of protocols, it is important to construct secure multiparty computation protocols
which output differentially private values perturbed by the addition of noise. However, previous noise generation protocols have round
and communication complexity growing with differential privacy budgets, or require parties to locally generate non-uniform noise, which
makes it difficult to guarantee differential privacy against active adversaries. We propose three kinds of protocols for generating noise
drawn from certain distributions providing differential privacy. The two of them generate noise from finite-range variants of the discrete
Laplace distribution. For (ϵ, δ)-differential privacy, they only need constant numbers of rounds independent of ϵ, δ while the previous
protocol needs the number of rounds depending on δ. The two protocols are incomparable as they make a trade-off between round and
communication complexity. Our third protocol non-interactively generates shares of noise from the binomial distribution by
predistributing keys for a pseudorandom function. It achieves communication complexity independent of ϵ or δ for the computational
analogue of (ϵ, δ)-differential privacy while the previous protocols require communication complexity depending on ϵ. We also prove
that our protocols can be extended so that they provide differential privacy in the active setting.

Index Terms—Differential privacy, secure multiparty computation, secret sharing.
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1 INTRODUCTION

THERE is an increasing demand for providing statistical
analysis of a large number of private data. A motivating

example is performing surveys on customer information
held by banks [1] or medical data stored by hospitals [2].
Secure multiparty computation (MPC) offers a solution,
which enables parties to compute a function without reveal-
ing information on their data beyond an output. However,
standard MPC protocols output an exact calculation result
and cannot prevent an adversary from learning what fol-
lows from the result. In some applications, the exact value
may contain some sensitive information on individuals. For
example, exact statistics or machine learning models can be
used to extract personal data [3], [4].

To deal with that problem, differentially private mech-
anisms [5], [6], [7] add noise drawn from an appropriate
distribution to an exact calculation result and make the
distributions of outputs for two “similar” inputs approxi-
mately the same. Since parties’ inputs are sensitive, it is not
appropriate to assume a trusted party who aggregates their
data and applies a mechanism to them. We have to realize it
in a distributed setting by emulating the trusted party.
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Generally, given an MPC protocol generating noise, we
can emulate a mechanism based on the noise and obtain a
protocol guaranteeing the same level of differential privacy
[8], [9]. However, it is not straightforward to efficiently
realize distributed noise generation since we have to cor-
rectly obtain noise drawn from a non-uniform distribution
even if an adversary has access to and manipulates the
local randomness of corrupted parties. Particularly, it cannot
be solved by a simple protocol where a designated party
samples and shares noise among the other parties, or where
each party generates non-uniform noise ri to perturb an
outcome by the addition of

∑
i∈[n] ri. Furthermore, many

other differentially private protocols in the local model [10],
[11], [12], [13] and in the shuffled model [14], [15], [16] also
require parties to locally generate non-uniform noise, which
makes it difficult in the presence of active adversaries to
efficiently verify that corrupted parties indeed generate their
randomness from the correct distribution.

Several suitable protocols for noise generation have been
proposed in the literature [5], [9], [17]. Dwork et al. [5] de-
vise secret-sharing based MPC protocols to generate shares
of noise drawn from the discrete Laplace distribution and
the binomial distribution of parameter 1/2. However, their
protocol for the discrete Laplace distribution requires the
number of rounds proportional to approximately log log δ−1

to achieve (ϵ, δ)-differential privacy. Their protocols for the
binomial distribution have to securely generate almost the
same number of uniform random bits as the size of the
support of the distribution. Then, the communication com-
plexity grows linearly in ϵ−2 and exponentially in the length
of the fractional part when a fixed-point data type is dealt
with. The protocols [9], [17] assume arithmetic operations
for real numbers with infinite precision and do not rigor-
ously analyze achievable levels of differential privacy when
they are implemented under finite-precision semantics.
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In summary, there is no constant-round protocol for gen-
erating discrete Laplace noise with theoretical guarantees
of differential privacy, or no protocol achieving communi-
cation complexity independent of privacy budgets ϵ, δ for
binomial noise.

1.1 Our Results
We propose MPC protocols achieving constant round com-
plexity for the discrete Laplace distribution and achieving
communication complexity independent of ϵ, δ for the bino-
mial distribution. We rigorously analyze achievable levels
of differential privacy of them. They can also be extended
so that they provide differential privacy against active ad-
versaries.

1.1.1 Abstraction of an Output Perturbation Framework for
MPC
We first abstract a framework implicitly used in the previous
protocols [5], [9], [17]. Specifically, they let parties agree on a
uniformly random element s = (si)i∈[n] of a subset U ⊆ Sn

for some set S, e.g., the set of all possible shares of 0 and 1.
They then securely compute a deterministic function h(s),
which we term a noise generator function. Assume that the
distribution of h(s) provides (ϵ, δ)-differential privacy even
conditioned on (si)i∈T being fixed where T ⊆ [n]. Then,
we can generally construct an (ϵ, δ)-differentially private
protocol against corruption of T from protocols securely
sampling s ∈ U and computing h(s). An important advan-
tage of this framework is that distributed noise generation
is reduced to secure computation of deterministic functions
and generation of uniformly random elements. We can cut
down communication cost by devising an instantiation of h
and achieve differential privacy against active adversaries
by using the known actively secure protocols [18], [19].

1.1.2 Two Novel Noise Generation Protocols for the Dis-
crete Laplace Distribution
We instantiate h with two noise generator functions whose
outputs on a random input follow finite-range variants of
the discrete Laplace distribution. As a result, we obtain
constant-round protocols improving the round complexity
of [5]. For example, while the previous protocol [5] needs
25 rounds in practical parameter settings ϵ = 0.5 and
δ = 2−60 [20], our first protocol only requires 19 rounds
and our second one 14 rounds for any choice of ϵ, δ.
Furthermore, the probability that protocols fail to generate
noise is negligible in our first protocol and 0 in our second
one while it is non-negligible in [5]. It means that a single
protocol execution would be sufficient and our protocols
can achieve better utility than [5]. Although our protocols
have higher communication complexity than [5], it does
not weaken our advantages in round complexity. Actually,
our protocols reduce the estimated total running time of [5]
by around 20% in the above parameter setting. As for a
comparison between our protocols, the first one has lower
communication cost but needs more rounds of interaction
than the second one. As a result, the first one is faster for
small ϵ while the second one is faster for large ϵ. The second
one has another advantage of high utility coming from the
failure probability being zero and hence is even applicable to

ϵ such that the first one is not. A more detailed comparison
is given in Section 6.1.

1.1.3 A Novel Noise Generation Protocol for the Binomial
Distribution

We also instantiate h with a function whose output on a
random input follows the binomial distribution of size N
and parameter 1/2. Based on it, we propose a protocol
that enables parties to locally compute shares of binomial
noise by predistributing keys for a pseudorandom function.
Technically, it is a modification of pseudorandom secret
sharing [21]. Our protocol reduces the previous communica-
tion complexity linear in N [5] at the cost of predistributing
keys. Furthermore, once the keys are distributed, parties
can non-interactively generate shares of polynomially many
binomial samples, which amortizes the communication cost
in the setup. As a drawback, our protocol only satisfies
the computational analogue of differential privacy [22].
Moreover, the error bound of our protocol is O(nt/2) times
larger than that of [5], where t is a corruption threshold.
Nevertheless, our protocol works well in the client-server
model, in which n corresponds to the number of servers
and is typically small, e.g., n = 3. We compare the estimated
total running time of ours with [5], and figure out that it is
up to 23 times faster when generating 100 binomial noises
for ϵ = 0.5 and δ = 2−60. A more detailed comparison is
given in Section 6.2.

1.1.4 Extension to Active Security

To the best of our knowledge, we are first to formalize un-
conditional security of MPC achieving differential privacy
against active adversaries in the ideal-real-world paradigm.
Although the authors of [17], [23] extend their protocols to
the active setting, their security depends on cryptographic
primitives such as computational verifiable secret sharing
and zero-knowledge proof, and they do not discuss uncon-
ditional security. We prove that our general framework pro-
vides unconditionally secure protocols against active adver-
saries given actively secure protocols computing determin-
istic functions and generating uniformly random elements.
In particular, our above protocols can be extended to the
active setting by replacing the underlying MPC primitives
accordingly.

For concrete efficiency, we estimate the running times
for our actively secure protocols to generate samples from
the discrete Laplace and binomial distributions. Calculating
additional communication bits and rounds of interaction,
we figure out that our actively secure protocols are about
4–16 times slower than the passively secure counterparts.
Based on the experimental results [24], we also see that
our protocols can generate noises in the presence of active
adversaries for a reasonable time even if local computation
time is taken into account. A more detailed performance
evaluation is given in Section 7.

1.2 Related Work

The authors of [9], [17], [23] construct protocols for gen-
erating noise drawn from the Gaussian and Laplace dis-
tributions by making black-box use of MPC protocols for
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operations over real numbers. However, since secure com-
putation over real numbers is more costly than on integers
(e.g., more than 140 rounds are necessary for computing
logarithms in the floating-point representation [25]), our
protocols outperform the protocols [9], [17] in efficiency
when an integer data type is dealt with. Furthermore, they
lack a rigorous analysis of the impact of the finite-precision
implementations on differential privacy, which is undesir-
able since differentially private mechanisms are vulnerable
to the inexact computations [26], [27].

There are many differentially private mechanisms in the
local model [10], [11], [12], [13], in which every party locally
randomizes his private input and sends it to a designated
party, who then computes a function on the noisy data.
However, as mentioned above, local-model mechanisms
require parties to locally generate non-uniform noise and
it is difficult to efficiently verify the correctness of local
randomness of corrupted parties in the presence of active
adversaries. In addition, since a careful analysis of accumu-
lated noise is needed, mechanisms are proposed only for
a limited class of functions such as aggregate-sum queries∑
i∈[n] fi(xi). Other mechanisms in the shuffled model [14],

[15], [16] also involve non-uniform noise generation and are
applicable only for simple functions. We refer the reader to
[28] for a survey.

The authors of [29] propose a method to generate many
biased bits improving the efficiency of [5]. However, the
method is based on oblivious data structures and is not
directly applicable to secret-sharing based MPC protocols.

1.3 Publication Note
The preliminary version appeared in the proceedings of
Financial Cryptography and Data Security 2021 [30]. The
current version provides a novel protocol for the discrete
Laplace distribution improving the communication com-
plexity of [30]. In addition, this paper proves that our
protocols can be extended to the active setting.

2 PRELIMINARIES

2.1 Notations
For n ∈ N, [n] denotes {z ∈ Z : 1 ≤ z ≤ n} and [0..n)
denotes {z ∈ Z : 0 ≤ z ≤ n − 1}. We denote by ex or
exp(x) the exponential function of x ∈ R. We assume that q
is a sufficiently large odd prime and identify the prime field
Zq of size q with {z ∈ Z : −q/2 < z < q/2}. A function
f : N → R is negligible in λ and denoted by negl(λ) if for
any c > 0, there exists N ∈ N such that 0 ≤ f(λ) < 1/λc for
any λ ≥ N . For T ⊆ [n] and a vector x ∈ Sn, we denote by
xT ∈ S|T | the sub-vector obtained by restricting the indices
to T .

Let X and Y be two random variables with range U .
We define the statistical distance SD(X,Y ) between X and
Y as SD(X,Y ) = (1/2)

∑
u∈U |Pr[X = u ] − Pr[Y = u ] |.

It holds that SD((X1, X2), (Y1, Y2)) ≤ SD(X1, Y1) +
SD(X2, Y2) for random variables X1, X2, Y1, Y2 and that
SD(F (X), F (Y )) ≤ SD(X,Y ) for any randomized function
F . We denote by X ∼ D if X is distributed according to
a probability distribution D. We also write s ∼ D if s is a
value sampled from D. We denote by Uni(S) the uniform
distribution over a finite set S.

2.2 Secure Multiparty Computation
Assume that there are n parties holding their private inputs
xi, i ∈ [n] from a finite set D. Let g be a deterministic
function to compute on their inputs. Let Π be a protocol.
For a subset T ⊆ [n], we define ViewΠ

T (x) as the joint view
of the parties in T during the execution of Π with inputs
x. We say that Π is an MPC protocol t-securely computing
g if (1) for any subset T ⊆ [n] of size t and any pair of
inputs x = (xi)i∈[n] and y = (yi)i∈[n], the distributions of
ViewΠ

T (x) and ViewΠ
T (y) are identical as long as xT = yT

and g(x) = g(y) and (2) for every x and i ∈ [n], g(x) is
included in ViewΠ

i (x). See [31] for a more general case of n-
input/n-output randomized functionalities in the presence
of an active adversary.

2.2.1 Secret Sharing
Given a secret a ∈ Zq , the (t, n)-Shamir secret sharing
scheme [32] generates a random polynomial p of degree
at most t such that p(0) = a and outputs JaKi = p(i) as
the i-th share. We simply write JaK if the index i is clear
from the context. If t < n/2, there exists a protocol MULT t-
securely computes JabK from JaK and JbK [33]. If t < n/3, it is
possible to t-securely realize it even in the presence of active
adversaries. We measure the communication complexity of
an MPC protocol by the number of invocations of MULT
and its round complexity by the number of sequential
invocations of MULT.

2.2.2 Pseudorandom Secret Sharing
Pseudorandom secret sharing [21] allows parties to non-
interactively generate shares of a pseudorandom number by
predistributing keys for a pseudorandom function. Techni-
cally, a pseudorandom function [34] with length parameters
s, ℓ : N → N is a collection of functions {ψr : {0, 1}s(λ) →
{0, 1}ℓ(λ)}r∈{0,1}∗ , where {0, 1}∗ denotes the set of all the
bit strings of arbitrary length and λ is the bit length of r,
such that (efficient evaluation) ψr(a) can be computed in
polynomial time from r ∈ {0, 1}λ and a ∈ {0, 1}s(λ) and
(pseudorandomness) for every probabilistic polynomial-
time (PPT) oracle machine M which has access to out-
puts of a function on inputs of its choice, it holds that
|Pr

[
MψUλ (1λ) = 1

]
−Pr

[
MFλ(1λ) = 1

]
| = negl(λ), where

Uλ ∼ Uni({0, 1}λ) and Fλ is a uniformly selected map
from {0, 1}s(λ) to {0, 1}ℓ(λ). There is a provably secure
pseudorandom function {ψr : {0, 1}s → {0, 1}ℓ}r∈{0,1}λ

with λ = 161× 160 and s = ℓ = 160 [35]. One can also use
the AES encryption with λ = 128 and s = ℓ = 128.

Let A = {A ⊆ [n] : |A| = n − t} and Ai = {A ∈
A : i ∈ A} for i ∈ [n]. For A ∈ A, let fA ∈ Zq[X] be
the unique polynomial such that fA(0) = 1, fA(i) = 0
for any i ∈ [n] \ A, and deg fA ≤ t. Assume that for each
A ∈ A, parties in A receive a key rA ∼ Uni({0, 1}λ). The i-
th party locally computes vi =

∑
A∈Ai

ψrA(a)fA(i) from
his keys (rA)A∈Ai and a public input a ∈ {0, 1}s(λ) by
embedding {0, 1}ℓ(λ) into Zq . It can be verified that (vi)i∈[n]

are consistent shares of the (t, n)-Shamir secret sharing
scheme for a pseudorandom number

∑
A∈A ψrA(a) ∈ Zq .

Note that the setup assumption can be removed by using
any protocol for generating random shares of the replicated
secret sharing scheme (e.g. [36]) since (rA)A∈Ai

is the i-th
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share of the replicated secret sharing scheme for a secret⊕
A∈A rA ∈ {0, 1}λ, where

⊕
is the bit-wise xor operation.

2.2.3 Primitives
We introduce constant-round MPC protocols for specific
functionalities. A protocol PREℓ∨ securely computes ℓ sharesJ∨jk=1akK, j ∈ [ℓ] from JakK, k ∈ [ℓ] if q > 2ℓ. It needs 7
rounds (including 2 rounds for random value generation)
and its communication complexity is 17ℓ invocations [37].
A protocol ΣBit generates shares for a uniform random bit
with 2 rounds and 2 invocations [38]. Nishide and Ohta
[37] propose a protocol for the interval test with 13 rounds
(including 2 rounds for random value generation) and
110 log q + 1 invocations. Specifically, it securely computesJcK from JxK and public constants a, b ∈ Zq , where c = 1
if a ≤ x ≤ b and c = 0 otherwise. They also propose a
protocol for the equality test computing JcK from JxK andJyK, where c = 1 if x = y and c = 0 otherwise. Its round
complexity is 8 rounds (including 2 rounds for random
value generation) and communication complexity is 81 log q
invocations. Catrina and Hoogh [39] propose a protocol IPℓ

with 1 round and 1 invocation computing J∑ℓ
k=1 akbkK fromJakK and JbkK for k ∈ [ℓ].

2.3 Differential Privacy

Two random variables X,Y are said to be (ϵ, δ)-DP close if
for every distinguisher D, it holds that

Pr[D(X) = 1] ≤ eϵ Pr[D(Y ) = 1] + δ.

Analogously, we say that they are computationally (ϵ, δ)-DP
close [22] if for every PPT distinguisher D, it holds that

Pr[D(X) = 1] ≤ eϵ Pr[D(Y ) = 1] + δ + negl(λ) ,

where λ is a security parameter. Two vectors x =
(x1, . . . , xn), y = (y1, . . . , yn) ∈ Dn are called T -
neighboring if there is exactly one index i ∈ [n] \ T
such that xi ̸= yi, and simply called neighboring if they
are ∅-neighboring. We say that a randomized functional-
ity M with domain Dn is (resp. computationally) (ϵ, δ)-
differentially private if M(x) and M(y) are (resp. com-
putationally) (ϵ, δ)-DP close for all neighboring vectors
x,y ∈ Dn. When the output domain of M is included
in R, we say that M satisfies (α, β)-utility for a function
g : Dn → R if for every input x ∈ Dn, it holds that
Pr[|M(x)− g(x)| ≤ α ] ≥ 1 − β. We only consider passive
adversaries who see internal states of corrupted parties but
do not deviate from protocols until Section 7. For now, we
suppose the following definition of MPC protocols satisfy-
ing differential privacy against passive adversaries.

Definition 1. An MPC protocol Π is called a (t; ϵ, δ)-
differentially private protocol for computing g with
(α, β)-utility if the following holds:

• t-Privacy: for every subset T of size at most t and for
any pair of inputs x and y with xT = yT and g(x) =
g(y), the distributions of ViewΠ

T (x) and ViewΠ
T (y) are

identical.
• (ϵ, δ)-Differential privacy: for every subset T of size

at most t and for any pair of T -neighboring inputs x

and y, the distributions of ViewΠ
T (x) and ViewΠ

T (y)
are (ϵ, δ)-DP close.

• (α, β)-Utility: for every input x, it holds that
Pr[|Π(x)− g(x)| ≤ α ] ≥ 1 − β, where Π(x) is an
output of Π on input x.

We can define a computational analogue of (t; ϵ, δ)-
differentially private protocols by considering (ϵ, δ)-DP
closeness in the computational setting. Note that we do not
relax t-privacy in the computational setting.

In the above definition, we require that differential pri-
vacy holds for pairs of T -neighboring inputs for a set T
of corrupted parties, instead of ∅-neighboring ones. This is
because what we need to guarantee is that an adversary
cannot tell if at most one honest party i /∈ T changes his
input in the sense of differential privacy. For neighboring
inputs differing on an entry whose index is in T , the
adversary can trivially break differential privacy by viewing
the corrupted parties’ inputs. We note that this definition is
adopted in the literature [8], [9].

2.4 Additive Noise Mechanisms
A typical technique to achieve differential privacy is adding
controlled noise to an outcome. Let g : Dn → R. We
define the sensitivity ∆ of g as ∆ = max{|g(x) − g(y)| :
x and y are neighboring} and the range R of g as R =
maxx∈Dn |g(x)|.

For 0 < p < 1, the discrete Laplace distribution DL(p) is
the distribution of L defined as Pr[L = k ] = p|k|(1−p)/(1+
p) for k ∈ Z [40]. The functionality g(·) + L satisfies (ϵ, 0)-
differential privacy and (α, β)-utility if p = exp(−ϵ/∆) and
α = (∆/ϵ) ln(1/β) [41]. Since we focus on integers on a
finite interval, we consider finite-range variants of DL(p),
which are also shown to provide differential privacy in
Section 4.

The binomial distribution is also used in the literature
[7]. For ℓ,M ∈ N, let Y ∼ Bin(N, 1/2), i.e., Pr[Y = k ] =(N
k

)
2−N for k = 0, 1, . . . , N and define NBin(N,M) as the

distribution of (1/M) (Y −N/2). Suppose thatN,M satisfy
N/4 ≥ max{23 log(10/δ), 2∆M} for some δ > 0. For Z ∼
NBin(N,M), the functionality MN,M

g (·) = g(·)+Z is (ϵ, δ)-
differentially private if

ϵ ≥ ϵ(δ,N,M,∆) := ∆

(
c1(δ)

M√
N

+ c2(δ)
M

N

)
, (1)

where c1(δ) = O(
√
log δ−1) and c2(δ) = O((log δ−1)2).

For any input x ∈ Dn, Hoeffding’s inequality im-
plies that MN,M

g satisfies (α, β)-utility for g if β =

2 exp(−2M2α2/N), i.e., α =
√
(N/2M2) ln(2/β).

3 ABSTRACTION OF AN OUTPUT PERTURBATION
FRAMEWORK FOR MPC
We abstract out the framework implicitly used in the pre-
vious protocols for generating shares of noise drawn from
non-uniform distributions [5], [9], [17]. They first get parties
agree on an element uniformly selected from a certain set
and then securely compute a deterministic function h on
the element. Technically, let S be a finite set and U be a
subset of Sn. For T ⊆ [n], we define UT = {a ∈ S|T | : a =
uT for some u ∈ U}.
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Assumption. The parties receive correlated randomness
s ∼ Uni(U).

Input. x ∈ Dn.
Output. z = g(x) + h(s) ∈ Zq .
Protocol.

1) Jg(x)K = Πg(x).
2) Jh(s)K = Πh(s).
3) JzK = Jg(x)K + Jh(s)K.
4) Reconstruct and output z.

Fig. 1: A (t; ϵ, δ)-differentially private protocol for computing g

Proposition 1. Let g : Dn → Zq and h : U → Zq be
deterministic functions. Let Πg (resp. Πh) be a protocol
which takes x ∈ Dn (resp. s ∈ U ) as input and t-
securely computes (Jg(x)Ki)i∈[n] (resp. (Jh(s)Ki)i∈[n]).
Assume that, for any subset T of size t, any pair of T -
neighboring vectors x,y ∈ Dn, and any a ∈ UT , two
distributions (xT , sT , g(x)+h(s)), (yT , sT , g(y)+h(s))
conditioned on sT = a are (ϵ, δ)-DP close over the
randomness of s ∼ Uni(U). Furthermore, assume that
Prs∼Uni(U) [|h(s)| ≤ α ] ≥ 1 − β for α and β. Then,
the protocol Π described in Fig. 1 (assuming certain
correlated randomness) is a (t; ϵ, δ)-differentially private
protocol for computing g with (α, β)-utility.

We call h in Proposition 1 a noise generator function. We
emphasize that the level of differential privacy and utility
that the resultant protocol achieves only depends on the
property of h. Therefore, a single noise generator function h
can give the same level of differential privacy and utility to
MPC protocols for many different functions g.

Proof of Proposition 1: Let T ⊆ [n] with |T | ≤ t. For
x ∈ Dn and fixed s ∈ U , let vΠT (x; s) denote the joint view of
T when Π is executed on x and s. Note that the distribution
of ViewΠ

T (x) is the same as that of vΠT (x; s) induced by
s ∼ Uni(U). From the security of Πg and Πh, we have a
simulator SimT such that the distribution of vΠT (x; s) is the
same as that of SimT (xT , sT , g(x)+h(s)) for fixed x and s.

As for t-privacy, let x,y be two inputs such that xT =
yT and g(x) = g(y). Then, it holds that for any set of
transcripts O,

Pr
[
ViewΠ

T (x) ∈ O
]

= Prs∼Uni(U)

[
vΠT (x; s) ∈ O

]
=

∑
u∈U

Pr[s = u ] · Pr
[
vΠT (x;u) ∈ O

]
=

∑
u∈U

Pr[s = u ] · Pr[SimT (xT ,uT , g(x) + h(u)) ∈ O ]

=
∑
u∈U

Pr[s = u ] · Pr[SimT (yT ,uT , g(y) + h(u)) ∈ O ]

= Pr
[
ViewΠ

T (y) ∈ O
]
.

As for (ϵ, δ)-differential privacy, let x,y be T -
neighboring inputs. From the assumption, we have that for

any set of outcomes O′ and any a ∈ UT ,

Pr[(xT , sT , g(x) + h(s)) ∈ O′ | sT = a ]

≤ eϵ Pr[(yT , sT , g(y) + h(s)) ∈ O′ | sT = a ] + δ.

Since differential privacy is immune to post-processing, it
also holds that for any set of transcripts O and any a ∈ UT ,

Pr[SimT (xT , sT , g(x) + h(s)) ∈ O | sT = a ]

≤ eϵ Pr[SimT (yT , sT , g(y) + h(s)) ∈ O | sT = a ] + δ.

Since vΠT (x; s) and SimT (xT , sT , g(x)+h(s)) are identically
distributed for fixed x and s, we obtain that for any set of
transcripts O and any a ∈ UT ,

Pr
[
vΠT (x; s) ∈ O

∣∣∣ sT = a
]

≤ eϵ Pr
[
vΠT (y; s) ∈ O

∣∣∣ sT = a
]
+ δ.

Thus, taking the probability-weighted sum over all a ∈ UT
gives Pr

[
ViewΠ

T (x) ∈ O
]
≤ eϵ Pr

[
ViewΠ

T (y) ∈ O
]
+ δ for

any set of transcripts O.
Finally, (α, β)-utility easily follows.
It can be seen that Π is a computationally (t; ϵ, δ)-

differentially private protocol if h only provides (ϵ, δ)-
differential privacy in the computational setting.

If generating a random input to h is equivalent to ob-
taining shares for uniform random values or bits, we can
construct differentially private protocols without the setup
assumption by running protocols for generating random
shares. This is actually the case in all of the previous
protocols [5], [9], [17] and our instantiations given later.

As a corollary of Proposition 1, if the input domain of
h is the set of all the possible shares of m secret bits and
the output of h essentially depends on the m bits, then it
becomes easier to find out the level of differential privacy
that h can provide.
Corollary 1. Let g and Πg be as in Proposition 1. Let

h0 : {0, 1}m → Zq be a deterministic function and Π0 be
a protocol which takes shares of m bits b = (b1, . . . , bm)
as input and t-securely computes (Jh0(b)Ki)i∈[n]. As-
sume that, for any subset T of size t and any pair
of T -neighboring vectors x,y ∈ Dn, two distributions
(xT , g(x) + h0(b)), (yT , g(y) + h0(b)) are (ϵ, δ)-DP close
over the randomness of b ∼ Uni({0, 1}m). Furthermore,
assume that Prb∼Uni({0,1}m) [|h0(b)| ≤ α ] ≥ 1 − β for α
and β. Then, there exists a (t; ϵ, δ)-differentially private
protocol for computing g with (α, β)-utility.

Proof: Define U as

U = {(Jb1Ki, . . . , JbmKi)i∈[n] : (b1, . . . , bm) ∈ {0, 1}m}

and h : U → Zq as h(Jb1K, . . . , JbmK) = h0(b1, . . . , bm).
Then, Π0 t-securely computes h(s) from s ∈ U . Further-
more, the setup assumption of Π can be removed since gen-
erating correlated randomness s ∼ Uni(U) can be done by
ΣBit. Due to the security of ΣBit, the conditional distribution
of h(s) given sT is the same as h0(b) for b ∼ Uni({0, 1}m) as
long as |T | ≤ t. Therefore, for any subset T of size t and any
pair of T -neighboring vectors x,y ∈ Dn, two conditional
distributions (xT , sT , g(x) + h(s)), (yT , sT , g(y) + h(s))
given sT are (ϵ, δ)-DP close for s ∼ Uni(U). The statements
then follow from Proposition 1.
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The protocol provided in the above proof can also be
viewed as a protocol securely realizing the randomized
functionality which, on input x ∈ Dn, outputs g(x) + h0(b)
for b ∼ Uni({0, 1}m). Thus, the same statement is obtained
by applying the general result [8], [9] which states that pro-
tocols securely realizing differentially private mechanisms
achieve the same level of differential privacy. Neverthe-
less, an important feature of Corollary 1 is that it reduces
generation of noise for differential privacy to generation
of uniformly random bits and secure computation of the
deterministic function h0.

4 TWO NOVEL NOISE GENERATION PROTOCOLS
FOR THE DISCRETE LAPLACE DISTRIBUTION

To begin with, we present simple sufficient conditions for a
probability distribution over a finite interval of Z to provide
differential privacy.

Lemma 1. Let N ∈ N and g : Dn → Zq be a function with
sensitivity ∆ and range R. Assume that q/2 > N + R.
Let X be a random variable on Zq such that

1) its support is {z ∈ Z : −N < z < N};
2) Pr[X = z ] = Pr[X = −z ] for 0 ≤ z < N ;
3) Pr[X = z ] ≤ eϵ Pr[X = z′ ] for 0 ≤ z ≤ z′ ≤ z+∆;
4) Pr[N −∆ ≤ X < N ] ≤ δ.

Then, M(·) = g(·) +X is (ϵ, δ)-differentially private.

Proof: Let S ⊆ Zq and x,y ∈ Dn be neighboring
vectors. Assume that g(y) ≤ g(x). Define S1, S2 ⊆ S as
S1 = {z ∈ S : g(x)−N ≤ z ≤ g(y) +N} and S2 = S \ S1.
Since g(x) ≤ g(y) + ∆, we have

Pr[M(x) ∈ S ]

= Pr[M(x) ∈ S1 ] + Pr[M(x) ∈ S2 ]

≤
∑
z∈S1

Pr[X = z − g(x)] + Pr[N −∆ ≤ X < N ]

≤
∑
z∈S1

eϵ Pr[X = z − g(y)] + δ

≤ eϵ Pr[M(y) ∈ S ] + δ.

A similar argument works when g(y) ≥ g(x).
The output distributions of our protocols have some sta-

tistical difference from target distributions and our former
protocol fails to generate shares with small but non-zero
probability. We analyze the loss of differential privacy and
utility in that regard.

Lemma 2. Let X,X ′ be random variables on Zq such that
SD(X,X ′) ≤ δ0. Assume that M(·) = g(·) +X satisfies
(ϵ, δ)-differential privacy and (α, β)-utility for g. Then,
M′(·) = g(·)+X ′ satisfies (ϵ, δ′)-differential privacy and
(α, β + δ0)-utility for g, where δ′ = δ0(e

ϵ + 1) + δ.

Proof: Let S ⊆ Zq and x,y be neighboring vectors.
Then, it holds that

Pr[M′(x) ∈ S ]

≤ Pr[M(x) ∈ S ] + δ0

≤ eϵ Pr[M(y) ∈ S ] + δ + δ0

≤ eϵ Pr[M′(y) ∈ S ] + δ0(e
ϵ + 1) + δ.

Furthermore, (α, β + δ0)-utility follows from

Pr[|M′(x)− g(x)| ≤ α ] = Pr[|X ′| ≤ α ]

≥ Pr[|X| ≤ α ]− δ0

≥ 1− β − δ0.

Lemma 3. Let ⊥ be a special symbol not in Zq . Let X be
a random variable on Zq ∪ {⊥} and δ0 = Pr[X = ⊥ ].
Let X ′ be the random variable associated with the con-
ditional distribution of X given X ̸= ⊥. Assume that
M′(·) = g(·)+X ′ satisfies (ϵ, δ)-differential privacy and
(α, β)-utility for g. Then, M(·) = g(·)+X satisfies (ϵ, δ)-
differential privacy and (α, β+δ0)-utility for g, where for
any input x, we define M(x) = ⊥ if X = ⊥.

Proof: Let S ⊆ Zq ∪ {⊥} and x,y be neighboring
vectors. Then, it holds that

Pr[M(x) ∈ S ]

= Pr[M(x) ̸= ⊥ ] · Pr[M(x) ∈ S |M(x) ̸= ⊥ ]

+ Pr[M(x) = ⊥ ] · Pr[M(x) ∈ S |M(x) = ⊥ ]

≤ (1− δ0)(e
ϵ Pr[M(y) ∈ S |M(y) ̸= ⊥ ] + δ) + δ01S(⊥)

= eϵ(Pr[M(y) ∈ S ]− δ01S(⊥)) + (1− δ0)δ + δ01S(⊥)

= eϵ Pr[M(y) ∈ S ] + (1− δ0)δ + (1− eϵ)δ01S(⊥)

≤ eϵ Pr[M(y) ∈ S ] + δ,

where 1S(⊥) is 1 if ⊥ ∈ S and 0 otherwise. Furthermore,
(α, β + δ0)-utility follows from

Pr[|M(x)− g(x)| ≤ α ] = Pr[|X| ≤ α ]

= Pr[X ̸= ⊥ ] · Pr[|X ′| ≤ α ]

≥ (1− δ0)(1− β)

≥ 1− β − δ0.

4.1 The First Protocol

As a building block, we present a constant-round protocol
for generating noise according to the Bernoulli distribution
from many uniformly random bits. Let Ber(α) be the dis-
tribution over {0, 1} such that Pr[X = b ] = αb(1 − α)1−b.
For ℓ ∈ [d], let αℓ be the ℓ-th most significant bit in the
binary expansion of α. Define Bα,d : {0, 1}d → Zq as
Bα,d(b1, . . . , bd) = 1 − bj for j = min{ℓ ∈ [d] : bℓ ̸= αℓ}
(we set j = d + 1 if there is no such index). Equivalently,
it outputs 1 if

∑
ℓ∈[d] bℓ2

−ℓ ≤ α and otherwise, outputs
0. The statistical distance between Ber(α) and Bα,d(b) for
b ∼ Uni({0, 1}d) is at most 2−d. The protocol BERα,d de-
scribed in Fig. 2 t-securely computes shares of Bα,d(b) from
b ∈ {0, 1}d. Note that at Step 1, Jbℓ ⊕ αℓK can be locally
computed from JbℓK since αℓ is a public parameter.

Now, we construct a protocol for generating noise drawn
from a finite-range variant of DL(p). Let 0 < p < 1 and
N ∈ N. Let G ∼ Geo(p,N) be the truncated geometric dis-
tribution defined by Pr[G = x ] = C(1−p)px for x ∈ [0..N),
where C = (

∑
x∈[0..N)(1 − p)px)−1 = (1 − pN )−1 is a

normalizing constant. Define F̃DL1(p,N) as the distribution
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Input. JbℓK, ℓ ∈ [d], where bℓ ∈ {0, 1}.
Output. JBα,d(b1, . . . , bd)K.
Protocol.

1) JcℓK = Jbℓ ⊕ αℓK for ℓ ∈ [d].
2) (JeℓK)ℓ∈[d] = PREd∨((JckK)k∈[d]).
3) JfℓK = JeℓK − Jeℓ−1K for ℓ ∈ [d], where

e0 = 0.
4) JgK = IPd((JfℓK)ℓ∈[d], (JbℓK)ℓ∈[d]).
5) Output 1− JgK.

Fig. 2: The protocol BERα,d for computing Bα,d

of X1 −X2 for independent X1, X2 ∼ Geo(p,N). Explicitly,
the distribution of X ′ ∼ F̃DL1(p,N) is

Pr[X ′ = x ] =
(1− p)p|x|(1− p2(N−|x|))

(1 + p)(1− pN )2
, −N < x < N.

The motivation behind this definition is a mathematical fact
that the distribution of g1−g2 is DL(p) for two independent
samples g1, g2 drawn from the geometric distribution [40].

To make it applicable to a wide range of privacy budgets,
for M ∈ N with M < N , we define FDL1(p,N,M) as the
probability distribution of X ′ ∼ F̃DL1(p,N) conditioned on
|X ′| ≤ M . That is, X ∼ FDL1(p,N,M) has the probability
distribution

Pr[X = x ] =
Pr[X ′ = x ]

Pr[|X ′| ≤M ]
, −M ≤ x ≤M,

where X ′ ∼ F̃DL1(p,N).
Proposition 2. Let X ∼ FDL1(p,N,M). The functionality

M(·) = g(·) + X is (ϵ, δ)-differentially private for a
function g with sensitivity ∆ and range R if p, N , and
M satisfies that N +R < q/2,

p−∆ 1− p2(N−M)

1− p2(N−M−∆)
≤ eϵ, (2)

and
pM−∆

(1− p)(1− p2N )
≤ δ. (3)

Furthermore, M satisfies (α, β)-utility for g if α =
(∆/ϵ) ln(2/(β(1− p)(1− p2N ))).

Proof: The support of FDL1(p,N,M) is {z ∈ Z : |z| <
M}. For any z and z′ with 0 ≤ z ≤ z′ ≤ z +∆, we have

Pr[X = z ]

Pr[X = z′ ]
≤ p−∆ 1− p2(N−z)

1− p2(N−z−∆)

≤ p−∆ 1− p2(N−M)

1− p2(N−M−∆)

since (1 − p2(N−z))/(1 − p2(N−z−∆)) is monotonically in-
creasing with respect to z.

To show Pr[M −∆ ≤ X ≤M ] ≤ δ, we observe that for
X ′ ∼ F̃DL1(p,N) and any 0 ≤ m ≤M ,

Pr[|X ′| ≤ m ]

=
1− p

(1 + p)(1− pN )2

 ∑
|x|≤m

p|x| −
∑

|x|≤m

p2N−|x|


=

1 + p+ p2N + p2N+1 − 2pm+1 − 2p2N−m

(1 + p)(1− pN )2
.

Thus, we have that

Pr[M −∆ ≤ X ≤M ]

=
1

2

(
1− Pr[|X ′| ≤M −∆− 1]

Pr[|X ′| ≤M ]

)
=

pM−∆(1− p∆+1)(1− p2N−2M+∆)

1 + p+ p2N + p2N+1 − 2pM+1 − 2p2N−M

=
pM−∆(1− p∆+1)(1− p2N−2M+∆)

(1 + p)(1− pN )2 Pr[|X ′| ≤M ]

≤ pM−∆

(1 + p)(1− pN )2 Pr[X ′ = 0]

=
pM−∆

(1− p)(1− p2N )

≤ δ.

Differential privacy then follows from Lemma 1.
For 0 ≤ α ≤M and k = ⌊α⌋, we have

Pr[|X| > α ] = 1− Pr[|X ′| ≤ k ]

Pr[|X ′| ≤M ]

=
2pk+1(1− pM−k)(1− p2N−M−k−1)

(1 + p)(1− pN )2 Pr[|X ′| ≤M ]

<
2pk+1

(1− p)(1− p2N )
.

Therefore, M satisfies (α, β)-utility if β = 2pα+1/(1−p)(1−
p2N ), i.e.,

α =
∆

ϵ
ln

2

β(1− p)(1− p2N )
.

Remark. We give an explicit way to choose parameters
p,N,M satisfying the conditions (2) and (3) given ϵ, δ,∆.
We first show a more simple sufficient condition for (2) that

K := 2(N −M −∆) ≥ max

{
2

ϵ
,
2(1− ζ)

ζ2
+ 1

}
(4)

and p = exp

(
−ϵ− θ(K)

∆

)
, (5)

where ζ = ϵ/2∆ and θ(K) = ln(1 + K−1). Given ϵ, δ,∆,
choose K as any even number satisfying (4) and set p
according to (5). Then, choose M as a sufficiently large
number satisfying

pM−∆

(1− p)(1− pK+2M+2∆)
≤ δ

and finally set N = K/2 +M +∆.
To see (4) and (5) imply (2), let η = exp(ζ). Since η− 1 ≥

ζ , we have that

ηK = (1 + (η − 1))K

≥ 1 +Kζ +
K(K − 1)

2
ζ2

≥ K + 1.

The last inequality follows from K ≥ 2(1− ζ)/ζ2 +1. Since
K ≥ 2/ϵ, we have ϵ− θ(K) ≥ ϵ/2 and

exp

(
K(ϵ− θ(K))

∆

)
≥ ηK ≥ K + 1,
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and hence

1− exp

(
K(ϵ− θ(K))

∆

)
≥ K

K + 1
.

Since ln(K/(K + 1)) = −θ(K), we then have that

0 ≤ θ(K) + ln

(
1− exp

(
−K(ϵ− θ(K))

∆

))
= θ(K) + ln(1− pK)

= ϵ+∆ ln p+ ln(1− pK).

Hence, it holds that ϵ ≥ −∆ln p− ln(1− pK) + ln(1− p2N )
and eϵ ≥ p−∆(1− p2N )/(1− p2(N−∆)).

To obtain a noise generator function for FDL1(p,N,M),
we show the following lemmas. Lemma 4 readily follows
from the definitions of F̃DL1(p,N) and FDL1(p,N,M).
Lemma 5 is implicitly shown in [5].

Lemma 4. Let 0 < p < 1 andN,M ∈ N be such thatN > M .
Let X1, X2 be independent random variables following
Geo(p,N). Define X over Zq ∪ {⊥} as

X =

{
X1 −X2, if |X1 −X2| ≤M,

⊥, otherwise.

Then, the distribution of X conditioned on X ̸=
⊥ is FDL1(p,N,M). Furthermore, Pr [X = ⊥ ] ≤
2pM+1/((1 + p)(1− pN )2).

Lemma 5 ([5]). Let N = 2c for c ∈ N, 0 < p < 1, and βi =
(1 + p2

−i

)−1 for i ∈ [0..c). Define Gp,N : {0, 1}c → Zq
as Gp,N (b0, . . . , bc−1) =

∑
i∈[0..c) bi2

i. If Xi ∼ Ber(βi)
for each i ∈ [0..c), then Gp,N (X0, . . . , Xc−1) follows
Geo(p,N).

Proof: Define Z≥c = {z ∈ Z : z ≥ c} for c ∈ Z. Let
βi = (1 + p−2i)−1 also for i ∈ Z≥c. It is shown in [5] that
G :=

∑
i∈Z≥0

Xi2
i has the geometric distribution Geo(p),

i.e., Pr[G = g ] = (1 − p)pg for g ≥ 0. Therefore, for every
finite set I ⊆ Z≥0,

Pr[Xi = 1 (∀i ∈ I) ∧Xi = 0 (∀i ∈ (Z≥0 \ I))] = (1−p)py(I),

where we define y(I) =
∑
i∈I 2

i. Let g ∈ [0..N) and I ⊆
[0..c) be such that g = y(I).

Pr

 ∑
i∈[0..c)

Xi2
i = g

 = Pr

[
Xi = 1 (∀i ∈ I) ∧
Xi = 0 (∀i ∈ ([0..c) \ I))

]
=

∑
J⊆Z≥c

(1− p)py(I∪J)

= (1− p)pg
∑

J⊆Z≥c

py(J).

Since
∑
g∈[0..N) Pr

[∑
i∈[0..c)Xi2

i = g
]

= 1, we have∑
J⊆Z≥c

py(J) = (
∑
g∈[0..N)(1− p)pg)−1 = C .

Now, let c, d ∈ N, N = 2c, M < N , m = 2cd, and
0 < p < 1. Define βi = (1 + p2

−i

)−1 for i ∈ [0..c).
Define F1 : {0, 1}m → Zq ∪ {⊥} as follows: For u =
((ui1, . . . , uid)i∈[0..c), (vi1, . . . , vid)i∈[0..c)) ∈ {0, 1}m,

1) for i ∈ [0..c) and j ∈ [d], let ai = Bβi,d(ui1, . . . , uid)
and bi = Bβi,d(vi1, . . . , vid);

Input. (Jai1K, . . . , JaidK)i∈[0..c), (Jbi1K, . . . , JbidK)i∈[0..c),
where aij , bij ∈ {0, 1}.

Output. JF1((ai1, . . . , aid)i∈[0..c), (bi1, . . . , bid)i∈[0..c))K.
Protocol.

1) JaiK = BERβi,d((JaijK)j∈[d]) for i ∈ [0..c).
2) JbiK = BERβi,d((JbijK)j∈[d]) for i ∈ [0..c).
3) Jx1K = GEOp,N ((JaiK)i∈[0..c)).
4) Jx2K = GEOp,N ((JbiK)i∈[0..c)).
5) JyK = Jx1K − Jx2K.

6) JeK = J|y| ?
≤MK and open e.

7) Output JyK if e = 1 and otherwise, out-
put ⊥.

Fig. 3: The protocol ΠFDL1 for computing F1

2) let x1 = Gp,N (a0, . . . , ac−1) and x2 =
Gp,N (b0, . . . , bc−1);

3) let

F1(u) =

{
x1 − x2, if |x1 − x2| ≤M,

⊥, otherwise.

Since the statistical distance between ai (or bi) and Ber(βi)
is at most 2−d, we have that SD(F1(u), X) ≤ c2−d+1 for
u ∼ Uni({0, 1}m) and X defined in Lemma 4.

In view of Lemmas 2, 3, and Proposition 2, we can
estimate differential privacy and utility provided by F1(u)
for u ∼ Uni({0, 1}m). We show an MPC protocol for F1 in
Fig. 3. Combining it with Corollary 1, we have the following
theorem. Note that since Gp,N is a linear function of inputs,
it is straightforward to construct a non-interactive protocol
GEOp,N securely computing Gp,N .
Theorem 1. Let g : Dn → Zq be a function with sensitivity

∆ and range R. For ϵ > 0 and δ > 0, let 0 < p < 1,
N = 2c for c ∈ N, and M ∈ N be the ones satisfying the
conditions (2), (3), and that q/2 > N+R. Let α, β ∈ R be
such that α = (∆/ϵ) ln(2/(β(1− p)(1− p2N ))). For any
t < n/2 and any d ∈ N, there is a (t; ϵ, δ′)-differentially
private protocol computing g with (α, β+δ0+δ1)-utility,
where δ0 = c2−d+1, δ1 = 2pM+1/((1+p)(1−pN )2), and
δ′ = δ + δ0(e

ϵ + 1).

4.2 The Second Protocol
Next, we construct a protocol for generating noise drawn
from another finite-range variant of DL(p). Let 0 < p < 1
and N ∈ N. Let FDL2(p,N) denote the probability distribu-
tion over {z ∈ Z : −N ≤ z ≤ N} defined as

Pr[X = x ] =


p|x|(1− p)/(1 + p), if |x| < N,

pN/(1 + p), if |x| = N,

0, otherwise.

Proposition 3. Let X ∼ FDL2(p,N). The functionality
M(·) = g(·) + X is (ϵ, δ)-differentially private for a
function g : Dn → Zq with sensitivity ∆ and range R if

p = exp
(
− ϵ

∆

)
, pN

1 + p−∆

1 + p
≤ δ, and

q

2
> N +R.

(6)
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Furthermore, M satisfies (α, β)-utility for g if α =
(∆/ϵ) ln(2/β).

Proof: Differential privacy roughly follows by apply-
ing Lemma 1 to FDL2(p,N) although we have to slightly
modify Lemma 1 so that Pr[N −∆ ≤ X ≤ N ] (instead of
Pr[N −∆ ≤ X < N ]) is upper bounded by δ. For 0 ≤ α <
N and k = ⌊α⌋, we have

Pr[|X| ≤ α ] =
k∑

i=−k

1− p

1 + p
pi = 1− 2pk+1

1 + p
> 1− 2pα

1 + p
.

Therefore, M satisfies (α, β)-utility if β = 2pα/(1 + p), i.e.,

α =
∆

ϵ
ln

2

β(1 + p)
≤ ∆

ϵ
ln

2

β
.

We show that sampling a value from FDL2(p,N) can be
reduced to sampling sufficiently many bits from Ber(α).

Proposition 4. Assume that q/2 > N . Let B0 be a random
variable with Ber((1− p)/(1 + p)) and B1, . . . , BN−1 be
independent random variables with Ber(1− p). Define a
random variable Y on Zq as

Y =

{
min{i ∈ [0..N) : Bi = 1}, if Bi = 1 for some i,
N, otherwise.

Then, the distribution ofX = σY for σ ∼ Uni({−1,+1})
is FDL2(p,N).

Proof: Let p0 = (1 − p)/(1 + p) and p1 = 1 − p.
Observe that Pr[σY = 0] = p0, Pr[σY = k ] = (1/2)(1 −
p0)(1 − p1)

|k|−1p1 = p|k|(1 − p)/(1 + p) if 0 < |k| < N ,
and Pr[σY = k ] = (1/2)(1− p0)(1− p1)

N = pN/(1 + p) if
|k| = N .

We then obtain a noise generator function for
FDL2(p,N). Let N, d ∈ N, m = Nd + 1, and 0 < p < 1.
Define γi for i ∈ [0..N) as γ0 = (1 − p)/(1 + p) and
γi = 1 − p for i ̸= 0. Define F2 : {0, 1}m → Zq as follows:
For b = ((bi1, . . . , bid)i∈[0..N), b) ∈ {0, 1}m,

1) let bi = Bγi,d(bi1, . . . , bid) for i ∈ [0..N) and σ =
1− 2b;

2) let y = min{i ∈ [0..N) : bi = 1} if bi = 1 for some i
and otherwise y = N ;

3) let F2(b) = σy.

Since the statistical distance between bi and Ber(γi) is at
most 2−d, we have that SD(F2(b),FDL2(p,N)) ≤ N2−d

for b ∼ Uni({0, 1}m). We can also directly obtain an MPC
protocol ΠFDL2

for F2 (Fig. 4). Combining it with Corollary 1,
we have the following theorem.

Theorem 2. Let g : Dn → Zq be a function with sensitivity ∆
and range R. For ϵ > 0 and δ > 0, let 0 < p < 1 and N ∈
N be the ones satisfying the condition (6). Let α, β ∈ R be
such that α = (∆/ϵ) ln(2/β). For any t < n/2 and any
d ∈ N, there is a (t; ϵ, δ′)-differentially private protocol
computing g with (α, β + δ0)-utility, where δ0 = N2−d

and δ′ = δ + δ0(e
ϵ + 1).

Input. (Jbi1K, . . . , JbidK)i∈[0..N), JbK, where bij , b ∈
{0, 1}.

Output. JF2((bi1, . . . , bid)i∈[0..N), b)K.
Protocol.

1) JbiK = BERγi,d((JbijK)j∈[d]) for i ∈
[0..N).

2) (JciK)i∈[0..N) = PREN∨ ((JbjK)j∈[0..N)).
3) JyK = N −

∑
i∈[0..N) JciK.

4) JσK = 1− 2JbK.
5) Output JσyK = MULT(JyK, JσK).

Fig. 4: The protocol ΠFDL2 for computing F2

Public parameter. a ∈ {0, 1}s.
Input. s = ((rA)A∈Ai

)i∈[n] ∈ U .
Output. (Jh(s)Ki)i∈[n].
Protocol. Output ℓi =

∑
A∈Ai

ℓrA(a)fA(i) for i ∈ [n].

Fig. 5: The protocol ΠBin for computing h

5 A NOVEL NOISE GENERATION PROTOCOL FOR
THE BINOMIAL DISTRIBUTION

We provide a protocol which allows parties to non-
interactively obtain a share of noise drawn from NBin(ℓ,M)
by using predistributed keys for a pseudorandom function.

We define some notations. Let λ ∈ N be a security
parameter. Let U be the set of all possible tuples of keys
for pseudorandom secret sharing. Formally, recall that we
have defined A = {A ⊆ [n] : |A| = n − t} and Ai = {A ∈
A : i ∈ A} for i ∈ [n]. We define S = {0, 1}λ·(

n−1
t ) and

U =

{
((rA,i)A∈Ai)i∈[n] ∈ Sn :

rA,i = rA,j for all i, j, A
with A ∈ Ai ∩ Aj

}
.

We restrict ourselves to the family {ψr : {0, 1}s(λ) →
{0, 1}ℓ(λ)}r∈{0,1}λ with key length of λ and simply write
s = s(λ) and ℓ = ℓ(λ). Let ℓr(a) be the number of 1’s in
ψr(a) ∈ {0, 1}ℓ for r ∈ {0, 1}λ and a ∈ {0, 1}s.

Assume that q > ℓ|A|. Since s ∈ U can be written as
s = ((rA)A∈Ai)i∈[n] for some rA ∈ {0, 1}λ, it is possible
to define a function h : U → Zq (depending on a public
input a ∈ {0, 1}s) as h(s) =

∑
A∈A ℓrA(a). Then, the

pseudorandomness of ψr implies that (1/M)(h(s)−ℓ|A|/2)
works as a noise generator function for NBin(ℓ|A|,M) in the
computational setting. The protocol ΠBin described in Fig. 5
non-interactively (and hence t-securely) computes shares of
h(s) from s ∈ U . Note that generating a uniformly random
element in U is equivalent to generating random shares of
the replicated secret sharing scheme, which in turn can be
securely done by a known protocol ΣRep [36].

The following theorem (Theorem 3) mostly follows from
the above observation and Proposition 1. One exception is
that parties run ΠMg rather than Πg , whereMg is defined as
(Mg)(x) =M · g(x), and then compute (1/M)(y− ℓ|A|/2)
from the recovered secret y as plaintexts. We do that pro-
cedure to avoid an arithmetic operation over R in secret-
shared form. For completeness, we formally describe the
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Public parameter. a ∈ {0, 1}s.
Input. x ∈ Dn.
Output. z = g(x) + (1/M)(h(s)− ℓ|A|/2) ∈ R.
Protocol.

1) JMg(x)K = ΠMg(x).
2) s = ΣRep().
3) Jh(s)K = ΠBin(s).
4) JyK = JMg(x)K + Jh(s)K.
5) Open y and output z = (1/M)(y −

ℓ|A|/2).

Fig. 6: The differentially private protocol Π based on the bino-
mial distribution

protocol Π in Fig. 6. Its utility is discussed after the proof of
Theorem 3.

Theorem 3. Let g : Dn → Zq be a function with sensi-
tivity ∆ and range R. Let λ be a security parameter
and assume a pseudorandom function {ψr : {0, 1}s →
{0, 1}ℓ}r∈{0,1}λ . For ϵ ∈ O(log λ) and δ > 0, assume
that there exists M ∈ N such that ϵ ≥ ϵ(δ, ℓ,M,∆)
and q > MR + ℓ|A|. For any t < n/2, the protocol Π
described in Fig. 6 is a (t; ϵ, δ)-computationally differen-
tially private protocol for computing g.

Proof: Fix a set T ⊆ [n] of t corrupted parties and
let J = [n] \ T ∈ A. The output of Π has the form of
Mℓ|A|,M

g (x). However, the adversary knows all but one
keys rA, A ̸= J and the only noise unknown to him is
ℓrJ (a). Therefore, an achievable level of differential privacy
against the adversary’s view deteriorates to that of Mℓ,M

g .
More formally, let f(x; s) = g(x)+(1/M)(h(s)−ℓ|A|/2)

for x ∈ Dn and s ∈ U . In view of Proposition 1, it is suf-
ficient to show that for all T -neighboring vectors x,y, two
distributions (xT , sT , f(x; s)), (yT , sT , f(y; s)) induced by
s ∼ Uni(U) are computationally (ϵ, δ)-DP close even when
the randomness of sT is fixed. Recall that we have defined
UT = {u ∈ S|T | : u = sT for some s ∈ U}.

First, define a randomized function f̃J as f̃J(x;u) =
fJ(x;u) + (1/M)(ℓ̃J − ℓ/2) for x ∈ Dn and u =
((rA)A∈Ai)i∈T ∈ UT , where fJ(x;u) = g(x) +
(1/M)

∑
A∈A\{J} (ℓrA(a)− ℓ/2) and ℓ̃J ∼ Bin(ℓ, 1/2). In

other words, if u = sT , f̃J(x;u) is defined by replacing
ℓrJ (a) in f(x; s) with ℓ̃J properly sampled from Bin(ℓ, 1/2).
For fixed u ∈ UT , f̃J(·;u) is equivalent to the (ϵ, δ)-
differentially private mechanism Mℓ,M

fJ (·;u) and hence for
all T -neighboring vectors x,y and for any u ∈ UT , two
distributions (xT ,u, f̃J(x;u)), (yT ,u, f̃J(y;u)) are (ϵ, δ)-
DP close, where the randomness is ℓj ∼ Bin(ℓ, 1/2).

Next, we show that for any but fixed x ∈ Dn and u =
((rA)A∈Ai

)i∈T ∈ UT , the distribution of f̃J(x;u) induced
by ℓ̃J ∼ Bin(ℓ, 1/2) and that of f(x; ((rA)A∈Ai

)i∈[n]) =
fJ(x;u) + (1/M)(ℓrJ (a) − ℓ/2) induced by rJ ∼
Uni({0, 1}λ) are computationally indistinguishable. As-
sume otherwise that there are a PPT distinguisher D
which can distinguish (xT ,u, f(x; ((rA)A∈Ai

)i∈[n])) from
(xT ,u, f̃J(x;u)) with non-negligible advantage for some
x ∈ Dn and u = ((rA)A∈Ai)i∈T ∈ UT . We construct a PPT

oracle machine Alg for {ψr : {0, 1}s → {0, 1}ℓ}r∈{0,1}λ as
follows. First, Alg invokes the oracle to receive ξb ∈ {0, 1}ℓ,
and sets ℓbJ as the number of 1’s in ξb. Here, the oracle
flips a bit b ∼ Uni({0, 1}) and sets ξb = ψrJ (a) for
rJ ∼ Uni({0, 1}λ) if b = 1 or else ξb = F (a) for a
uniformly selected map F : {0, 1}s → {0, 1}ℓ. Next, Alg
computes zb = fJ(x;u) + (1/M)

(
ℓbJ − ℓ/2

)
. Note that

z0 (resp. z1) has the same distribution as f̃J(x;u) (resp.
f(x; ((rA)A∈Ai)i∈[n]) with rJ ∼ Uni({0, 1}λ)). Alg then
gives (xT ,u, z

b) to D and receives a guess b′ ∈ {0, 1} from
D. Finally, it outputs b′. We would have that Pr[b′ = b ]−1/2
is non-negligible, which contradicts the indistinguishability
of ψ.

For any PPT distinguisher D, for all T -neighboring vec-
tors x,y, and for any u ∈ UT , we have that

Prs∼Uni(U) [D(xT , sT , f(x; s)) = 1 | sT = u ]

= PrℓJ∼Bin(ℓ,1/2)

[
D(xT ,u, f̃J(x;u)) = 1

]
+ negl(λ)

≤ eϵ PrℓJ∼Bin(ℓ,1/2)

[
D(yT ,u, f̃J(y;u)) = 1

]
+ δ + negl(λ)

= eϵ Pr[D(yT , sT , f(y; s)) = 1 | sT = u ] + δ + negl(λ) .

Here, we use the assumption that ϵ ∈ O(log λ).
As for the utility, we assume that the statistical dis-

tance between the uniform distribution over {0, 1}ℓ|A| and
(ψrA(a))A∈A for rA ∼ Uni({0, 1}λ) is at most δψ . Then, the
statistical distance between Bin(ℓ|A|, 1/2) and

∑
A∈A ℓrA(a)

for rA ∼ Uni({0, 1}λ) is also upper bounded by δψ . Based
on the utility of Mℓ|A|,M

g , we can estimate that the func-
tionality M(·) = g(·) + (1/M)(

∑
A∈A ℓrA(a)− ℓ|A|/2) and

hence the protocol Π satisfy (α, β + δψ)-utility for g if
α =

√
(ℓ|A|/2M2) ln(2/β).

6 COMPARISON

6.1 The Discrete Laplace Distribution
We compare our protocols in Section 4 with the one in [5].
The following comparison is based on the MPC primitives
in Section 2.2.3. To describe their protocol [5], let N be a
power of 2 and L ∼ TDL(p,N) be the truncated discrete
Laplace distribution, i.e., Pr[L = k ] = Cp|k|(1− p)/(1 + p),
−N < k < N , where C = (1 + p)/(1 + p − 2pN ) is a
normalizing constant. Technically, their protocol generates
shares of g drawn from Geo(p,N) using logN independent
biased bits. Then, according to [29], σg conditioned on
(g, σ) ̸= (0,−1) follows TDL(p,N) if σ ∼ Uni({−1,+1}).
Since the statistical distance between the output distribution
and TDL(p,N) is 2−d logN for a parameter d, it follows
from Lemma 1 that to achieve (ϵ, δ)-differential privacy for
a function with sensitivity ∆, it is necessary to choose p,N, d
such that p = exp(−ϵ/∆) and

(eϵ + 1)2−d logN +
pN (p−∆ − 1)

1 + p− 2pN
≤ δ. (7)

6.1.1 Round Complexity
By performing the sub-protocols in parallel as much as
possible (Fig. 7), our protocols produce samples from
FDL1(p,N,M) and FDL2(p,N) in 19 rounds and 14 rounds,
respectively, which are independent of parameters p,N , or
M . However, the protocol [5] needs to evaluate a certain
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TABLE 1: Comparison of protocols sampling noise from finite-range discrete Laplace distributions

Reference Distribution Round Communication Probability of failure Statistical distance
[5] TDL(p,N) 2⌈log d⌉+ 11 O(d logN + log q) (1− p)/2 2−d logN

Theorem 1 FDL1(p,N,M) 19 O(d logN + log q) 2pM+1/((1 + p)(1− pN )2) 2−d logN
Theorem 2 FDL2(p,N) 14 O(dN) 0 2−dN

(a) FDL1(p,N,M) (b) FDL2(p,N)

Fig. 7: Our protocols for the discrete Laplace distributions performing the sub-protocols in parallel as much as possible

Boolean circuit for generating biased bits. The authors of
[42] propose a circuit of size 7d − 3 and depth 2⌈log d⌉ + 2
to sample biased bits with statistical difference at most
2−d. The total round complexity of [5] is therefore given as
2⌈log d⌉+ 11, which depends on δ due to the condition (7).

We note that it is possible to further reduce the above
round complexity by using pseudorandom secret sharing,
which comes at the cost of satisfying only computational
differential privacy. Specifically, our protocols can be done
in 8 rounds for FDL1(p,N,M) and 7 rounds for FDL2(p,N)
while [5] needs 2⌈log d⌉ + 7 rounds by replacing the primi-
tives in Section 2.2.3 with the ones based on pseudorandom
secret sharing [39].

6.1.2 Utility

In view of Lemmas 2 and 3, a protocol achieves (α, β +
δ0+δ1)-utility if its target noise distribution provides (α, β)-
utility, the statistical distance from its output distribution is
δ0, and the probability of failure is δ1. Since the probability
of failure of [5] is δ1 = (1 − p)/2 depending only on ϵ and
∆, it is impossible to make it negligible no matter how we
choose other parameters d, N , and q. On the other hand, our
protocols always generate an appropriate value or fail only
with negligible probability. Hence, it is possible to make the
utility of our protocols arbitrarily close to that of the target
noise distribution.

6.1.3 Communication Complexity

It follows from the size of the Boolean circuit [42] that
the protocol [5] requires 9d logN − 3 logN + 162 log q +
4 = O(d logN + log q) invocations. Our protocol for
FDL1(p,N,M) needs 38d logN + 2 logN + 110 log q + 1 =
O(d logN + log q) invocations and the one for FDL2(p,N)
needs 19dN + 18N + 3 = O(dN) invocations. Although
our protocols require asymptotically higher communication
complexity than [5], the difference is not significant in
practical parameter settings as described below.

6.1.4 Concrete Comparison

We estimate the running time required by the protocol of
[5] and ours (Theorems 1 and 2). Consider the client-server
model and set n = 3 and t = 1. Let g be any function with
sensitivity ∆ = 1 and q = 261 − 1. We assume the WAN
setting, and set the network speed to B = 100Mbits/ sec
and the latency to 0.1 sec [43]. We calculate the running time
as (# comm. bits)/B + (# rounds) × (latency), assuming
that the local computation time is negligible compared with
the communication time. Times to generate one Laplace
noise are shown in Fig. 8, where the privacy budget ϵ ranges
from 0.1 to 1, for

• δ = 2−100, 2−80 and 2−60, with β = 0.2 and α = 50;
• α = 10, 20 and 30, with β = 0.2 and δ = 2−60.

We do not plot the cases where protocols cannot achieve that
privacy budget ϵ under the constraint of the (α, β)-utility.

We figure out that our protocols are up to around 1.3
times faster than the protocol [5]; e.g., our first protocol
is at least 1.27 times faster in Fig. 8 (a). This is because
the dominant cost in the running time comes from the
round complexity in the WAN setting. Since the protocol
[5] has non-negligible probability of failure (1 − p)/2 =
(1 − exp(−ϵ/∆))/2, it cannot be applied to some ranges
of ϵ under the constraint of utility. On the other hand, our
protocols are applicable to wider ranges of ϵ; see Figs. 8 (d–
f).

As a comparison between our protocols, we note that
the first protocol (Theorem 1) is faster than the second one
(Theorem 2) if ϵ gets close to 0 in Figs. 8 (a–c). This is
because the communication complexity increases as ϵ → 0
and then it becomes a dominant factor of the running time.
An advantage of the second protocol is that under the strong
constraint of utility, it is even applicable to ϵ such that the
first one is not; see Figs. 8 (d–f). It comes from the fact that
it has the zero probability of failure and as a result, satisfies
higher utility with the same communication cost.
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(a) α = 50, β = 0.2 and δ = 2−100 (b) α = 50, β = 0.2 and δ = 2−80 (c) α = 50, β = 0.2 and δ = 2−60

(d) α = 10, β = 0.2 and δ = 2−100 (e) α = 20, β = 0.2 and δ = 2−100 (f) α = 30, β = 0.2 and δ = 2−100

Fig. 8: Estimation of running times to generate a discrete Laplace noise

TABLE 2: Comparison of protocols generating noise from NBin(N,M)

Reference Communication Round Differential privacy (α, β)-Utility

[5] O(N) 2
(ϵ, δ)-DP

for ϵ ≥ ϵ(δ,N,M,∆)
α =

√
(N/2M2) ln(2/β)

[5] O(N/n) 1
(ϵ, δ)-DP

for ϵ ≥ ϵ(δ,N(1− t/n),M,∆)
α =

√
(N/2M2) ln(2/β)

Theorem 3 O(λnt+1)
(in the setup)

1
(in the setup)

Computational (ϵ, δ)-DP
for ϵ ≥ ϵ(δ,N/

(n
t

)
,M,∆)

α =
√

(N/2M2) ln(2/(β − δψ))

6.2 The Binomial Distribution

We compare our protocol in Section 5 with the ones in
[5]. The first protocol of [5] generates shares of N ran-
dom bits using ΣBit and then locally computes a share of
Z ∼ NBin(N,M). The second protocol of [5] lets each
party i share N/n (local) random bits among the other par-
ties and then locally compute a share of Z . Since tN/n out
of theN bits are revealed to the adversary, the latter is (ϵ, δ)-
differentially private only for ϵ ≥ ϵ(δ,N(1− t/n),M,∆).

6.2.1 Communication Complexity

At the cost of predistributing keys for a pseudorandom
function with output length ℓ, our protocol non-interactively
generates shares of Z ∼ NBin(N,M) by using the keys
N/ℓ times (if overflow does not occur). The communication
cost to distribute the keys is λ(n − t)

(n
t

)
= O(λnt+1),

independent of N or M . Furthermore, the communica-
tion cost in the setup can be amortized by reusing the
keys. However, both of the protocols [5] require commu-
nication complexity proportional to N when generating
Z ∼ NBin(N,M). Approximately, N grows proportionally
to (∆/ϵ)2 in view of the condition (1). In addition, when
a fixed-point data type with resolution 2−k is dealt with,
N should satisfy the condition (1) for ∆ = max{|g(x) −
g(y)|2k : x,y are neighboring}, which means that N grows
exponentially in the length of the fractional part of the data
type.

6.2.2 Utility
To achieve the same level of differential privacy ϵ and δ, the
error bound α of our protocol is

(n
t

)1/2
= O(nt/2) times

larger than [5]. Nevertheless, we should also consider the
client-server model for practical applications. Our protocol
is available and even suitable for this model since n corre-
sponds to the number of servers and is typically small, e.g.,
n = 3.

6.2.3 Concrete Comparison
We estimate the running time required by the protocols
of [5] and ours (Theorem 3). Consider the same setting
as Section 6.1.4. That is, we set n = 3, t = 1, ∆ = 1
and q = 261 − 1. We again assume the WAN setting,
and set the network speed to B = 100Mbits/ sec and
the latency to 0.1 sec. We use the pseudorandom function
based on AES with λ = 128 and s = ℓ = 128, assuming
δψ = 0. The local computation is considered to be domi-
nated by the execution of AES. We thus calculate the run-
ning time as (# comm. bits)/B+(# rounds)× (latency) for
the protocols [5] and as (# comm. bits)/B + (# rounds) ×
(latency) + 100tAESN/ℓ for our protocol, where tAES is
the running time of one AES execution. We use the value
tAES = 3.5 n sec [44]. Amortized times to generate 100
binomial noises are shown in Fig. 9, where the privacy
budget ϵ ranges from 2 to 4, for α = 100, 150 and 200, with
β = 0.2 and δ = 2−20. Our protocol only communicates
λ(n − t)

(n
t

)
= 768 bits independent of ϵ or δ. We figure



13

(a) α = 100, β = 0.2 and δ = 2−20 (b) α = 150, β = 0.2 and δ = 2−20 (c) α = 200, β = 0.2 and δ = 2−20

Fig. 9: Estimation of running times to generate 100 binomial noises

out that the running times of ours lie between 0.1 sec and
0.22 sec for all privacy budgets. On the other hand, those of
[5] become higher if ϵ gets close to 0, i.e., higher differential
privacy is required. Our protocol is up to around 21 times
faster for α = 100, 23 times for α = 150 and 14 times for
α = 200.

7 EXTENSION TO ACTIVE SECURITY

We demonstrate that MPC protocols in our framework
in Section 3 can achieve active security if actively secure
protocols for evaluating deterministic functions and for
jointly generating uniformly random elements are given. In
our protocols in Sections 4 and 5, the task of generating
uniformly random elements is equivalent to giving parties
random shares of Shamir and replicated secret sharing
schemes, respectively. Therefore, our protocols can provide
differential privacy even in the presence of active adver-
saries if the corruption threshold t is less than n/3.

To be precise, we first extend Definition 1 to the active
setting. We define the ideal process and the real process.
Consider an MPC protocol Π associated with an n-party
randomized functionality F .
IDEAL PROCESS: This process is defined with respect to a
trusted party. A subset of parties T can be corrupted by a
PPT ideal process adversary B. The process proceeds in the
following steps:

1) Inputs: The i-th party obtains an input xi.
2) Sending inputs to the trusted party: An honest party

i /∈ T always sends xi to the trusted party. A
malicious party i ∈ T may, depending on xi, either
abort or send some x′i to the trusted party.

3) Trusted party answers i-th party: Suppose that the
trusted party receives inputs x′i from the i-th party.
It sends the i-th output yi to the i-th party, where
F(x′1, . . . , x

′
n) = (y1, . . . , yn).

4) Outputs: If the i-th party is honest, it outputs yi. The
adversary B outputs an arbitrary (polynomial-time
computable) function of xT and the message it has
obtained from the trusted party.

We define IdealFB (x) as the distribution defined over the
view of B.
REAL PROCESS: The i-th party receives the input xi. All the
parties then execute the protocol Π. A subset of parties T is
controlled by an adversary A, who can deviate arbitrarily

from the rules of the protocol. We define ViewΠ
A(x) as the

distribution over the view of A.
We denote by Fg a functionality of computing a deter-

ministic function g, that is, Fg outputs g(x) if it receives x
from the parties.

Definition 2. We call Π a (t; ϵ, δ)-differentially private pro-
tocol for computing g with (α, β)-utility in the presence
of active adversaries if for any adversary A in the real
process corrupting a subset of t parties T , there exists a
PPT adversary B in the ideal process for Fg such that:

• t-Privacy: for any input x, the distributions of
ViewΠ

A(x) and Ideal
Fg

B (x) are identical.
• (ϵ, δ)-Differential privacy: for any pair of T -

neighboring inputs x and y, the distributions of
ViewΠ

A(x) and ViewΠ
A(y) are (ϵ, δ)-DP close.

• (α, β)-Utility: for any input x and i /∈ T , it holds that

Pr
[
|OutputΠA,i(x)− g(xB)| ≤ α

]
≥ 1− β,

where OutputΠA,i(x) is a part of the output the i-
th party receives at the end of the real process and
xB is a tuple of inputs (x[n]\T ,x

′
T ) submitted to the

trusted party in the ideal process.

As in Proposition 1, let g : Dn → Zq be a determin-
istic function to compute and h : U → Zq be a noise
generator function. Let t be a corruption threshold with
t < n/3. Then, there is a protocol Πg (resp. Πh) which
takes x ∈ Dn (resp. s ∈ U ) as input and t-securely
computes (Jg(x)Ki)i∈[n] (resp. (Jh(s)Ki)i∈[n]) in the presence
of active adversaries. Suppose that we are also given an
actively secure protocol ΣRan realizing a functionality FRan,
which takes no input, samples s = (si)i∈[n] ∼ Uni(U),
and gives si to the i-th party. Also, suppose that, for
any subset T of size t, any pair of T -neighboring vec-
tors x,y ∈ Dn, and any a ∈ UT , two distributions
(xT , sT , g(x) + h(s)), (yT , sT , g(y) + h(s)) conditioned on
sT = a are (ϵ, δ)-DP close, where the randomness is s ∼
Uni(U). Finally, assume that Prs∼Uni(U) [|h(s)| ≤ α ] ≥ 1−β
for α and β. Now, we construct a protocol Π based on Πg ,
Πh, and ΣRan (Fig. 10).

Proposition 5. Using the above notations, the protocol Π
described in Fig. 10 is a (t; ϵ, δ)-differentially private pro-
tocol for computing g with (α, β)-utility in the presence
of active adversaries.
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Input. x ∈ Dn.
Output. The i-th party receives (si, z), where s =

(si)i∈[n] ∼ Uni(U) and z = g(x) + h(s).
Protocol.

1) Jg(x)K = Πg(x).
2) s = ΣRan().
3) Jh(s)K = Πh(s).
4) JzK = Jg(x)K + Jh(s)K.
5) The i-th party receives the shares JzK and

outputs (si, z).

Fig. 10: A (t; ϵ, δ)-differentially private protocol for computing
g in the presence of active adversaries

Proof: Define F as a functionality which takes x ∈ Dn

as input, samples s ∼ Uni(U), and gives (si, f(x; s)) to the
i-th party, where f(x; s) := g(x) + h(s). Then, the protocol
Π t-securely realizes F . Indeed, Π simply invokes actively
secure protocols Πg , Πh, and ΣRan sequentially and opens z
to every party. We apply the composition theorem [31] and
use the robustness of Shamir secret sharing scheme since
t < n/3.

Then, Π satisfies (t; ϵ, δ)-differential privacy for comput-
ing g with (α, β)-utility. To see this, let A be an adversary
in the real process. From the security of Π for F , we have
an adversary B′ in the ideal process for F correspond-
ing to A. In particular, there exists a simulator Sim′ such
that ViewΠ

A(x) is identical to Sim′(xT ,F(xB′
)T ) for any

x, where xB′
is a tuple of inputs (x[n]\T ,x

′
T ) submitted

by B′ and F(xB′
)T = (si, f(x

B′
; s))i∈T for s ∼ Uni(U).

The t-privacy of Π then follows since we can obtain an
adversary B in the ideal process for Fg from B′ and from
a simulator Sim which on input xT and g(xB′

), locally
samples s ∼ Uni(U) and runs Sim′ on (xT , (si, g(x

B′
) +

h(s))i∈T ). For differential privacy, observe that if x and
y are T -neighboring, then so are xB′

and yB′
since B′

substitutes corrupted parties’ inputs depending only on
xT = yT . Thus, the distributions (xT , sT , f(x

B′
; s)) and

(yT , sT , f(y
B′
; s)) are (ϵ, δ)-DP close if s ∼ Uni(U). The

existence of Sim′ and the post-processing property of differ-
ential privacy imply that ViewΠ

A(x) and ViewΠ
A(y) are (ϵ, δ)-

DP close. The (α, β)-utility of Π can be derived from that of
g(·) + h(s), s ∼ Uni(U) and from the fact that OutputΠA,i(x)
is guaranteed to contain f(xB′

; s) for s ∼ Uni(U) by the
security of Π.

We actually have the protocols Πg , Πh, and ΣRan (e.g.,
[18], [19], [36]) if g and h are represented as arithmetic
circuits and U is the set of all possible shares of Shamir
or replicated secret sharing schemes. This is the case for
our protocols in Sections 4 and 5 and hence they can
provide differential privacy even in the presence of active
adversaries.

For concrete efficiency, we estimate the running times for
our actively secure protocols to generate discrete Laplace
and binomial noises in the same way as Section 6. For
the protocols in Theorems 1 and 2, we calculate additional
communication bits and rounds of interaction based on the
actively secure MPC protocol of [45]. In Fig. 11 (a), we

compare the running times of our actively secure protocols
to those of the passive ones in the same setting as Fig. 8 (f)
except that we set n = 4 > 3t. As shown, the running
time of the first protocol is at most four times slower and
that of the second one is at most 16 times slower. We also
estimate the running time taking into account the local
computation based on the experimental results [24, Table 5]
(in the active-security-with-abort model). They show that it
takes at most 28 sec to evaluate a circuit of depth 20 and size
106 for a small number of parties n ≤ 5. Since the circuits
considered in Theorems 1 and 2 belong to the above set of
circuits for the parameters in Section 6.1.4, we conclude that
our protocols can generate noises in the presence of active
adversaries for a reasonable time.

For the one in Theorem 3, notice that an additional cost
to achieve active security is only that we have to robustly
generate a random share for replicated secret sharing (all
the other computations are locally done). Based on the
sharing protocol of [36], the running time of the actively
secure protocol is estimated as at most four times slower
than the passive one. It can be empirically demonstrated by
Fig. 11 (b) in the same setting as Fig. 9 (c) except that we set
n = 4 > 3t.

8 CONCLUSION

In this paper, we propose three efficient MPC protocols for
generating shares of noise drawn from certain distributions
capable of providing differential privacy. Our protocols for
the discrete Laplace distribution improves the round com-
plexity of the previous one [5]. Our third protocol enables
parties to non-interactively compute shares of noise drawn
from the binomial distribution by predistributing keys for
a pseudorandom function. It reduces the communication
complexity of [5] while it loses utility to some extent. Our
protocols can be extended so that they provide differential
privacy even in the presence of active adversaries.
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