
Half-Tree: Halving the Cost of Tree Expansion in COT and DPF

Xiaojie Guo∗,† Kang Yang∗ Xiao Wang‡ Wenhao Zhang‡

Xiang Xie§,¶ Jiang Zhang∗ Zheli Liu†

December 21, 2023

Abstract

GGM tree is widely used in the design of correlated oblivious transfer (COT), subfield vector
oblivious linear evaluation (sVOLE), distributed point function (DPF), and distributed com-
parison function (DCF). Often, the cost associated with GGM tree dominates the computation
and communication of these protocols. In this paper, we propose a suite of optimizations that
can reduce this cost by half.
• Halving the cost of COT and sVOLE. Our COT protocol introduces extra correlation

to each level of a GGM tree used by the state-of-the-art COT protocol. As a result, it
reduces both the number of AES calls and the communication by half. Extending this idea
to sVOLE, we are able to achieve similar improvement with either halved computation or
halved communication.

• Halving the cost of DPF and DCF. We propose improved two-party protocols for the
distributed generation of DPF/DCF keys. Our tree structures behind these protocols lead to
more efficient full-domain evaluation and halve the communication and the round complexity
of the state-of-the-art DPF/DCF protocols.

All protocols are provably secure in the random-permutation model and can be accelerated based
on fixed-key AES-NI. We also improve the state-of-the-art schemes of puncturable pseudorandom
function (PPRF), DPF, and DCF, which are of independent interest in dealer-available scenarios.

1 Introduction
The construction of Goldreich-Goldwasser-Micali (GGM) tree [GGM84] yields a pseudorandom
function (PRF) family from any length-doubling pseudorandom generator (PRG). In this construc-
tion, a PRF key serves as a root and is expanded into a full binary tree, where each non-leaf
node defines two child nodes from its PRG output. The PRF output for an input bit-string is
defined as the leaf node labeled by this bit-string. GGM tree has been adapted widely for various
cryptographic applications, especially in recent years.

A recent appealing application of GGM tree is to build efficient pseudorandom correlation
generators (PCGs) [BCGI18, SGRR19, BCG+19a, YWL+20, BCG+20, WYKW21], e.g., correlated
oblivious transfer (COT), subfield vector oblivious linear evaluation (sVOLE), etc. In this context,
a GGM tree essentially serves as a puncturable pseudorandom function (PPRF). PCGs serve as

∗State Key Laboratory of Cryptology. Email: yangk@sklc.org, jiangzhang09@gmail.com
†Nankai University. Email: xiaojie.guo@mail.nankai.edu.cn, liuzheli@nankai.edu.cn
‡Northwestern University. Email: wangxiao@cs.northwestern.edu, wenhao.zhang@northwestern.edu
§Shanghai Qi Zhi Institute. Email: xiexiangiscas@gmail.com
¶PADO Labs.

1

Protocol Computation Communication # Rounds
COT (§ 4.1.1) 2× 2× −

sVOLE (§ 4.1.2) 2× 1 ∼ 2× −
sVOLE (§ 4.2) 1.33× 2× −
DPF (§ 5.2) 1.33× 3× 2×
DCF (§ 5.3) 1.6× 2 ∼ 3× 2×

Table 1: Improvements of our protocols in the random-permutation model. Computation is
measured as the number of fixed-key AES calls. In sVOLE, communication varies as per two field sizes |F|
and |K|. In DCF protocol, communication varies as per the range size |R| of comparison functions.

essential building blocks for secure multi-party computation (MPC) (e.g., [HK21, GMW87]), zero-
knowledge proofs (e.g., [WYKW21, DIO21, BMRS21]), private set intersection (e.g., [GPR+21,
RS21]), etc. Another related application of GGM tree is to build function secret sharing (FSS).
In an FSS scheme, a dealer produces two keys, each defining an additive secret sharing of the
full-domain evaluation result of some function f without revealing the parameters of f . FSS is very
useful even for a simple f , and the dealer can be emulated using an MPC protocol. A distributed
point function (DPF) [GI14] is an FSS scheme for the family of point functions f•α,β(x) that output
β if x = α and 0 otherwise. DPF has found various applications, including RAM-based secure
computation [Ds17], two-server PIR [GI14, BGI16], private heavy hitters [BBC+21], oblivious linear
evaluation (OLE) [BCG+20], etc. One important variation of DPF is distributed comparison
function (DCF), which is an FSS scheme for the family of comparison functions f<α,β(x) that output
β if x < α and 0 otherwise. DCF has been applied to design mixed-mode MPC [BGI19, BCG+21],
secure machine-learning inference [GKCG22], etc.

In all applications above, the cost associated with GGM tree can often be significant. For
example, in the most recent silent OT protocol [CRR21], distributing GGM-tree-related correlations
takes more than 70% of the computation and essentially all communication. Similar bottlenecks
have also been observed in DPF. For example, in the DPF-based secure RAM computation [Ds17],
local expansion of DPF keys takes a majority of the time as well.

1.1 Our Contribution
We propose a suite of half-trees as tailored alternatives for several GGM-tree-based protocols,
leading to halved computation/communication/round complexity (Table 1, detailed complexity is
compared in the sections). Our constructions work in the random-permutation model (RPM) [RS08,
BHKR13], which can be efficiently instantiated via, e.g., fixed-key AES-NI.
Correlated GGM trees for half-cost COT and sVOLE. We introduce correlated GGM
(cGGM), a tree structure leading to both improved computation and communication in COT. It
has an invariant that all same-level nodes sum up to the same global offset. We keep this invariant
by setting a left child as the hash of its parent and the associated right child as the parent minus
the left child. By plugging this tree into the state-of-the-art COT protocols [YWL+20, CRR21],
we can prove the security of the whole protocol in the random-permutation model by carefully
choosing the hash function. Compared to the optimized GGM tree [GKWY20], this tree reduces
the number of random-permutation calls and the communication by half.

Using cGGM tree, we can realize sVOLE for any large field and its subfield. This protocol reduces
the computation of the prior protocols [BCG+19a, WYKW21] by 2× using a field-based random
permutation. However, it only halves the communication when the subfield size is significantly
smaller than the field size. Then, we modify our cGGM tree to obtain a pseudorandom correlated

2

Assump. Corr. Computation
Communication (bits)

P0 → P1 P1 → P0

ROM sVOLE m RO calls
[BCG+22]

Ad-hoc1 sVOLE m RP calls
+ 0.5m RO calls

2t(log m
t − 1)λ+ 3t log |K| t log |F|

COT m RP calls t(log m
t − 1)λ+ λ −

This
work RPM sVOLE m RP calls t(log m

t − 1) log |K|+ λ t(log m
t + 1) log |F|

sVOLE 1.5m RP calls t(log m
t − 2)λ+ 3t log |K|+ λ t log |F|

1 Security relies on the conjecture that the punctured result of the RPM-based UPF is unpredictable. This UPF
uses GGM-style tree expansion G(x) := H0(x) ∥H1(x) for H0(x) := H(x)⊕x and H1(x) := H(x)+ x mod 2λ.

Table 2: Comparison with the concurrent work. “RO/ROM” (resp., “RP/RPM”) is for random oracle
(resp., permutation) and the model. P0 is the sender with a global key, and P1 is the receiver. Assume weight-
t regular LPN noises in sVOLE extension with output length m, field F, and extension field K. Computation
is measured by the amount of symmetric-key operations, and there is also LPN-related computation in
practice. Communication is measured by assuming P0 and P1 have access to random precomputed tuples:
(i) [BCG+22]: t log m

t COTs (+ t sVOLEs, for general sVOLE extension), (ii) our COT extension: t log m
t

COTs, (iii) our first sVOLE extension: t(log m
t +1) sVOLEs, and (iv) our second sVOLE extension: t log m

t
COTs + t sVOLEs.

GGM (pcGGM) tree, which is similar to a cGGM tree but has pseudorandom leaves. In contrast,
pcGGM tree leads to a 2× saving in communication and a 1.33× saving in computation.
Halved communication and round complexity in distributed key generation of DPF
and DCF. We introduce another binary tree structure, which adapts our pcGGM tree into a secretly
shared form. This tree leads to a new DPF scheme with an improved distributed key generation
protocol. This DPF protocol reduces the computation, communication, and round complexity of
the prior work roughly by 1.33×, 3×, and 2×, respectively. When the range of point functions is
a general ring, this shared tree allows simpler secure computation than the prior works in terms of
the last correction word.

We also use an extended version of this shared pcGGM tree to design a new DCF scheme also
with an improved distributed key generation protocol. The tree expansion in our DCF is much
simpler than the prior work [BCG+21], where each parent node has to quadruple in length to
produce additional correction words. In our extended shared pcGGM tree, this expansion factor in
length is two or three, and the resulting additional correction words are more 2PC-friendly. When
used in our DCF protocol with typical parameters, this extended tree leads to about 1.6×, 2 ∼ 3×,
and 2× savings in terms of computation, communication, and round complexity in contrast to the
prior work.

1.2 Concurrent Work
Recently, Boyle et al. [BCG+22] propose two unpredictable punctured functions (UPFs) that
can be converted to PPRF with additional 0.5N RO calls for N -sized domain. Their first UPF
construction needs N RO calls and is provably secure while the second UPF construction needs
N RP calls but relies on an ad-hoc conjecture. For m-sized sVOLE tuples, the sVOLE extension
protocols based on their proposal either needs 1.5m RO calls, or needs m RP calls plus 0.5m RO
calls. They also propose an sVOLE extension protocol that is based on a stronger variation of UPF

3

and requires m RO calls in total.
In contrast, our protocol is secure in the random-permutation model without any conjecture.

Our COT protocol, as a special case of sVOLE protocol, only requires m RP calls and can reduce
communication by half; our two sVOLE protocols need m or 1.5m RP calls with different levels of
communication reduction. More importantly, we also demonstrate how the idea can be applied to
DPF/DCF protocols as well.

In Table 2, we compare the cost of sVOLE extension in the two works. The sVOLE extension in
both works can be easily turned into the extension of random OTs via the standard transformation
[IKNP03, Bea95, BCG+19a]. If we regard one (length-preserving) RO call as two RP calls according
to the XOR-based construction of [BN18], our work also beats the concurrent one in terms of
concrete efficiency.

2 Preliminaries
2.1 Notation
Let λ denote the computational security parameter. n = n(λ) means that n ∈ N is polynomial in λ.
Let negl(·) denote an unspecified negligible function and log(·) denote the logarithm in base 2. Let
x← S denote sampling x uniformly at random from a finite set S. Let [a, b) := {a, . . . , b− 1} and
[a, b] := {a, . . . , b}. Let G (resp., R) denote finite group (resp., ring). We use bold lowercase letters
(e.g., a) for vectors. For i ≥ 0, let a(i) denote the i-th entry of vector a. Let unitG(n, α, β) ∈ Gn

denote the vector whose α-th entry is β and others are 0. For some field F and irreducible polynomial
f(X) ∈ F[X], let K = F[X]/f(X) denote an extension field. For some n ∈ N, we interchangeably
use F2n , Fn

2 , and {0, 1}n, where ⊕ is for bitwise-XOR. For some bit-string x ∈ {0, 1}n, let lsb(x)
denote its least significant bit (LSB), hb(x) denote its high n − 1 bits, and xi denote its i-th
bit such that x1 is the most significant one. We use ∥ for bit-string concatenation and ◦ for
function composition. Let ConvertG : {0, 1}∗ → G denote a function that maps random strings to
pseudorandom G elements (see Appendix F.1 for its implementation).
Binary trees. In an n-level tree, let Xj

i denote the j-th node on its i-level for i ∈ [1, n] and
j ∈ [0, 2i). We can write the superscript j into i-bit decomposition, i.e., Xj1...ji

i := Xj
i . When a

node Xj
i ∈ {0, 1}n, we can decompose it into a seed sji := hb(Xj

i) ∈ {0, 1}n−1 and a control bit
tji := lsb(Xj

i) ∈ {0, 1} such that Xj
i = (sji ∥ t

j
i). We usually omit the superscript j if it is the i-bit

prefix of a path α ∈ {0, 1}n of particular interest in a given context. For completeness, let X0

denote the root. For some i ∈ [1, n] and b ∈ {0, 1}, let Kb
i denote the sum of the 2i−1 b-side (i.e.,

left or right) nodes on the i-th level.
Secret sharings. For some additive Abelian group G and x ∈ G, we use ⟨x⟩A to mean that x is
additively shared between two parties and call it a secret for short. For some secret ⟨x⟩A for x ∈ G
and party b ∈ {0, 1}, let ⟨x⟩Ab ∈ G denote the secret share of the party b such that x = ⟨x⟩A0 + ⟨x⟩A1 .
We abbreviate ⟨x⟩A to ⟨x⟩ and ⟨x⟩Ab to ⟨x⟩b if G = {0, 1}n. For some secret ⟨x⟩ for x ∈ {0, 1}n and
efficiently computable (possibly non-linear) Boolean circuit H : {0, 1}n → {0, 1}∗, let H(⟨x⟩) denote
such a linear evaluation that returns a secret ⟨y⟩ with share ⟨y⟩b := H(⟨x⟩b) for each b ∈ {0, 1}.

2.2 Security Model and Functionalities
We use the universal composability (UC) framework [Can01] to prove security in the presence of a
semi-honest, static adversary. We say that a protocol Π UC-realizes an ideal functionality F if for
any probabilistic polynomial-time (PPT) adversary A, there exists a PPT adversary (simulator) S
such that for any PPT environment Z with arbitrary auxiliary input z, the output distribution of

4

Functionality FsVOLE

Parameters: Field F and its extension field K.
Initialize: Upon receiving (init) from P0 and P1, sample ∆ ← K if P0 is honest; otherwise, receive
∆ ∈ K from the adversary. Store ∆ and send it to P0. Ignore all subsequent (init) commands.
Extend: This functionality allows polynomially many (extend) commands. Upon receiving (extend,m)
from P0 and P1:

1. If P0 is honest, sample v← Km; otherwise, receive v ∈ Km from the adversary.

2. If P1 is honest, sample u ← Fm, and compute w := v + u · ∆ ∈ Km; otherwise, receive (u,w) ∈
Fm ×Km from the adversary, and recompute v := w − u ·∆ ∈ Km.

3. Send v to P0 and (u,w) to P1.

Global-key queries: If P1 is corrupted, upon receiving (guess,∆′), where ∆′ ∈ K, from the adversary,
send (success) to the adversary if ∆ = ∆′; send (fail) to the adversary otherwise.

Figure 1: Functionality for subfield VOLE.

Z in the real-world execution where the parties interact with A and execute Π is computationally
indistinguishable from the output distribution of Z in the ideal-world execution where the parties
interact with S and F.

Our protocols use the functionality FsVOLE (Figure 1) of subfield vector oblivious linear evalu-
ation. If K = F2λ and F = F2, FsVOLE degenerates to the COT functionality FCOT in [YWL+20].
If K = F, FsVOLE serves as the VOLE functionality in [BCGI18, SGRR19, RS21]. We omit
the session IDs and sub-session IDs in the functionalities for simplicity. By convention, we can
write sVOLE tuples as two-party information-theoretic message authentication codes (IT-MACs)
[NNOB12, DPSZ12]. Let ∆b ∈ K denote the global key of one party Pb. Pb authenticates a value
x ∈ F of the other party P1−b by sampling a uniform one-time key Kb[x] ← K and giving to P1−b
the MAC M1−b[x] := Kb[x] + x ·∆b ∈ K. If identity b ∈ {0, 1} is clear in a given context, we write
∆, K[x], and M[x] for ∆b, Kb[x], and M1−b[x], respectively.

2.3 Circular Correlation Robustness
Circular correlation robustness (CCR) [CKKZ12, GKWY20] is the security notion first introduced
for the circuit garbling with Free-XOR optimization [KS08], where there exists a global key ∆
offsetting the inputs and outputs of some function H. [GKWY20] showed that a CCR function
H can be constructed from a fixed-key block cipher (e.g., AES) modeled as random permutation
and a linear orthomorphism1. In this construction, it takes one block-cipher call to invoke a CCR
function.

Definition 1 (Circular Correlation Robustness, [GKWY20]). Let H : {0, 1}λ → {0, 1}λ, χ be a
distribution on {0, 1}λ, and Occr

H,∆(x, b) := H(x ⊕ ∆) ⊕ b · ∆ be an oracle for x,∆ ∈ {0, 1}λ and
b ∈ {0, 1}. H is (t, q, ρ, ϵ)-CCR if, for any distinguisher D running in time at most t and making

1A mapping σ : G → G for an additive Abelian group G is a linear orthomorphism if (i) σ is a permutation, (ii)
σ(x+ y) = σ(x) + σ(y) for any x, y ∈ G, and (iii) σ′(x) := σ(x)− x is also a permutation. [GKWY20] presents two
efficient instantiations of σ (with well-defined efficient σ−1, σ′, and σ′−1): (i) if G is a field, σ(x) := c · x for some
c ̸= 0, 1 ∈ G, and (ii) if G = {0, 1}n, σ(x) = σ(xL ∥xR) := (xL ⊕ xR) ∥xL where xL and xR are the left and right
halves of x.

5

at most q queries to Occr
H,∆(·, ·), and any χ with min-entropy at least ρ, it holds that∣∣∣∣ Pr∆←χ

[
DOccr

H,∆(·,·)(1λ) = 1
]
− Pr

f←Fλ+1,λ

[
Df(·,·)(1λ) = 1

]∣∣∣∣ ≤ ϵ,
where D cannot query both (x, 0) and (x, 1) for any x ∈ {0, 1}λ.

In this work, D can only make CCR queries with restricted forms, which are reminiscent of
those in the Half-Gate garbling scheme [ZRE15]. We defer the formal definition of these restricted
queries to Appendix A.

2.4 Function Secret Sharing
A function secret sharing (FSS) is a secret sharing scheme where a dealer distributes the shares of
a function f to multiple parties, and each party can use its share to locally compute the share of
f(x) for any public x in the domain of f . In this work, we focus on two-party FSS schemes.

Definition 2 (Function Secret Sharing, [BGI16, BCG+21]). For a family FX ,G of functions with
domain X and range G, where G is an Abelian group, a two-party FSS scheme with key space
K0 ×K1 has the following syntax:

• (k0, k1) ← Gen(1λ, f̂). On input 1λ and the description f̂ ∈ {0, 1}∗ of a function f ∈ FX ,G,
output a key pair (k0, k1) ∈ K0 ×K1.

• fb(x) ← Eval(b, kb, x). On input the party identifier b ∈ {0, 1}, the party’s key kb ∈ Kb, and a
point x ∈ X , output the share fb(x) ∈ G.

A two-party FSS scheme (Gen,Eval) is secure for the function family FX ,G with leakage Leak :
{0, 1}∗ → {0, 1}∗ if the following properties hold.

• Correctness. For any function f ∈ FX ,G with description f̂ , and any x ∈ X ,

Pr
[
(k0, k1)← Gen(1λ, f̂) :

∑
b∈{0,1} Eval(b, kb, x) = f(x)

]
= 1.

• Security. There exists a PPT simulator Sim such that, for any function f ∈ FX ,G with the
description f̂ , any b ∈ {0, 1}, and any PPT adversary A,∣∣∣Pr [(k0, k1)← Gen(1λ, f̂) : A(1λ, kb) = 1

]
− Pr

[
kb ← Sim(1λ, b, Leak(f̂)) : A(1λ, kb) = 1

]∣∣∣ ≤ negl(λ).

By default, the leakage Leak(f̂) only involves the domain and the range of f . The following two
special FSS schemes have been proposed in [BGI16, BCG+21].
Distributed Point Functions (DPFs). A two-party distributed point function with domain
X and range G is a two-party FSS scheme (DPF.Gen,DPF.Eval) for the function family FX ,G =
{f•α,β}α∈X ,β∈G where f•α,β is a point function such that f•α,β(α) = β, and f•α,β(x) = 0 for x ̸= α ∈ X .
Distributed Comparison Functions (DCFs). A two-party distributed comparison function
with domain X and range G is a two-party FSS scheme (DCF.Gen,DCF.Eval) for the function family
FX ,G = {f<α,β}α∈X ,β∈G where f<α,β is a comparison function such that f<α,β(x) = β if x < α ∈ X ,
and f<α,β(x) = 0 otherwise.

6

3 Technical Overview
3.1 Improved COT/sVOLE from Correlated GGM Trees
Since COT/sVOLE can be constructed from its “single-point” version using an appropriate LPN
assumption, we focus on single-point COT/sVOLE, where the vector u in a COT/sVOLE tuple
w = v + u ·∆ has exactly one non-zero entry.
Correlated OT from correlated GGM. The core idea behind our single-point COT protocol
is that, instead of using a GGM tree with pseudorandom nodes as the state-of-the-art works, our
protocol uses a correlated GGM (cGGM) tree where the sum of all same-level nodes equals a global
offset ∆. This invariant can be maintained by using a generalized Davies-Meyer construction with
a hash function H: every parent x has left child H(x) and right child x − H(x). cGGM tree leads
to two improvements: (i) no additional hash computation is needed for every right child so that
the computation is halved, and (ii) if the global offset ∆ (i.e., the difference between two first-level
nodes) is set up by precomputed random COT tuples, the single-point COT protocol sends only λ
bits per level, in contrast to 2λ bits from a standard OT per level in the state-of-the-art works.

To explain our second improvement in detail, we first recall the prior construction from the
perspective of GGM tree. In this construction, the sender holds an n-level GGM tree, whose 2n

leaves in F2λ forms a vector v ∈ F2n

2λ
. The receiver with a punctured point α = α1 . . . αn ∈ {0, 1}n

uses, for each i ∈ [1, n], a standard OT to select the XOR of all αi-side nodes on the i-th level.
From these n XORs, the receiver recovers the n off-path GGM-tree nodes just leaving the path α
and use these n nodes to recover all leaves except the α-th one, corresponding to a vector w ∈ F2n

2λ

with the punctured entry w(α). The sender samples ∆ ← F2λ , defines its output as (∆,v), and
sends ψ := ∆⊕ (⊕j∈[0,2n)v

(j)) ∈ F2λ to the receiver. The receiver patches w(α) := ψ ⊕ (⊕j ̸=αw
(j))

and defines its output as (u,w) for u = unitF2(2
n, α, 1). The computation is dominated by the

full GGM-tree expansion while the communication is from n parallel standard OTs, which need n
precomputed COT tuples via the standard technique [IKNP03, Bea95].

In contrast, our cGGM-tree single-point COT, where the global offset in a cGGM tree coincides
with the global key in the n precomputed COT tuples, can directly use these tuples. For each level
i ∈ [1, n], let M[ri] = K[ri]⊕ ri ·∆ be such a tuple where the sender has (∆,K[ri]) ∈ F2λ × F2λ and
the receiver has (ri,M[ri]) ∈ F2 × F2λ , and Kb

i ∈ F2λ be the XOR of all b-side nodes for b ∈ {0, 1}.
To select Kαi

i as in the prior construction, the receiver sends αi ⊕ ri to the sender, receives back
ci := K0

i ⊕ K[ri]⊕ (αi ⊕ ri) ·∆, and computes

ci ⊕M[ri] = K0
i ⊕ K[ri]⊕ (αi ⊕ ri) ·∆⊕M[ri] = K0

i ⊕ αi ·∆ = Kαi
i ,

where the last equality holds since the cGGM tree uses ∆ as global offset. For each level, the sender
sends λ bits to the receiver, only a half of the 2λ bits in a standard OT. When the point α is
random, the message αi ⊕ ri can be avoided as well. The single-point COT outputs are defined as
in the prior construction, except that the receiver locally patches w(α) := ⊕j ̸=αw

(j).
The security against the semi-honest sender is straightforward. However, a subtle issue arises

in proving the security against the semi-honest receiver. Note that the environment Z can observe
the global key ∆ from the honest sender’s output and use it to distinguish the two worlds. Let
{Xα1...αi−1αi

i }i∈[1,n] be the cGGM-tree off-path nodes recovered by the receiver. In the real world,
these off-path nodes satisfy the consistency with ∆: for j ∈ [2, n], Xα1...αj−1αj

j equals

H
(
∆⊕

⊕
i∈[1,j−1]X

α1...αi−1αi

i

)
⊕ αj ·

(
∆⊕

⊕
i∈[1,j−1]X

α1...αi−1αi

i

)
. (1)

However, this consistency does not hold in the ideal world where {ci}i∈[1,n] sent by the simulator are
sampled at random so that the n off-path nodes will be independently uniform in the ideal world.

7

Thus, Z can trivially distinguish the two worlds by using the known ∆ to check (1). Our security
proof addresses this issue by carefully constructing H from a random permutation, allowing global-
key queries in the single-point COT functionality, and programming the random permutation and
its inverse to keep the consistency. The intuition is that, to distinguish the two worlds, Z must
query the random permutation or its inverse with ∆-related transcripts. Thus, the simulator can
observe these queries and extract every potential ∆ from them. Using global-key queries, the
simulator checks whether an extracted ∆ matches that in the single-point COT functionality or
not. If so, it immediately programs the two permutation oracles using this ∆ so that they are
consistent with the simulated {ci}i∈[1,n]. Similar proof technique in the random-oracle model have
been used in TinyOT [NNOB12, HSS17].
Subfield VOLE from correlated GGM. We further propose a cGGM-based blueprint of single-
point sVOLE for field F and its exponentially large extension K. In this blueprint, we construct
an n-level cGGM tree from a hash function H : K → K so that all nodes are in K, and extend the
spirit of our single-point COT. The spirit is that the equality w(α) = v(α) ⊕ ∆ at the punctured
point α automatically holds by embedding ∆ into a cGGM tree. For single-point sVOLE, we want
to likewise keep w(α) = v(α)+β ·∆ for some β ∈ F∗ and ∆ ∈ K at the punctured point α. However,
we cannot use β ·∆, which is unknown to the sender, as the cGGM-tree global offset. Instead, we
can define this offset as the sender’s additive share of β · ∆ so that the receiver can correct the
automatically preserved result at the point α by using its additive share of β ·∆.

In detail, the two parties use a random sVOLE tuple M[β] = K[β] + β ·∆ for the β ·∆ term,
where the sender has (∆,K[β]) ∈ K×K and the receiver has (β,M[β]) ∈ F∗ ×K. The sender uses
K[β] as the global offset of its cGGM tree, and the receiver selects, for each level i, the sum of all
αi-side nodes. For the i-th level, let Kb

i ∈ K be the sum of all b-side nodes for b ∈ {0, 1}, and let
the two parties have access to a special sVOLE tuple2 M[ri] = K[ri] + ri · K[β], where the sender
has K[ri] ∈ K and the receiver has (ri,M[ri]) ∈ F2 × K. The sender sends ci := K[ri] +K0

i ∈ K to
the receiver, who defines αi := ri and can compute

(−1)ri · (−M[ri] + ci) = (−1)αi · (K0
i − αi · K[β]) = Kαi

i ,

where the last equality holds due to the cGGM invariant. The n selected sums allow the receiver
to recover, in a top-down manner, the n off-nodes with respect to α and the 2n cGGM leaves
except the α-th one. The sender defines v ∈ K2n from its 2n cGGM-tree leaves, while the receiver
defines w ∈ K2n from the α-exclusive 2n − 1 leaves and the locally patched punctured leaf w(α) :=
M[β] −

∑
j ̸=αw

(j) = M[β] − (
∑

j ̸=αw
(j) + v(α)) + v(α) = v(α) + β · ∆. If the sender defines its

output as (∆,v) and the receiver defines its output as (u,w) for u := unitF(2
n, α, β), the two

parties share a single-point sVOLE correlation.
Our cGGM-based single-point sVOLE protocol also has the issue in proving the security against

the semi-honest receiver as the environment Z sees ∆ from the honest sender’s output. Z can
compute the cGGM offset K[β] = M[β] − β · ∆ and, to distinguish the two worlds, check if the
consistency (1) holds for K[β] or not. As in our cGGM-based single-point COT, our simulator
addresses this issue by extracting every possible K[β] and the associated ∆ = β−1 · (M[β]− K[β]),
querying the single-point sVOLE functionality with ∆, and programming the random permutation
and its inverse if the global-key query succeeds.
Subfield VOLE from pseudorandom correlated GGM. There is another single-point sVOLE
blueprint [BCG+19a, WYKW21] basing its security on the pseudorandomness of GGM-tree nodes:
for some path α ∈ {0, 1}n, the n off-path nodes and the α-th leaf are pseudorandom. Our cGGM

2The special sVOLE tuples for selecting n sums can be obtained from n precomputed random sVOLE tuples by
the receiver sending n · log |F| bits.

8

tree cannot be used in this blueprint since its same-level nodes are correlated under the global offset.
However, we observe that a cGGM tree can be modified into a pseudorandom cGGM (pcGGM) tree
with the required pseudorandomness.

In an n-level pcGGM tree, we preserve the cGGM invariant for the F2λ nodes on the first n− 1
levels, i.e., using a hash function H′ : F2λ → F2λ and Davies-Meyer construction to keep that all
same-level nodes are XORed to a global offset ∆ ∈ F2λ . Nevertheless, we break the last-level
correlation in the pcGGM tree: every parent x ∈ F2λ on the (i− 1)-th level has left child H′(x) and
right child H′(x⊕ 1). In sVOLE protocols for K ̸= F2λ , the pcGGM leaves will be further converted
by the function ConvertK : F2λ → K.

Our core observation for arguing the pseudorandomness of the n+ 1 pcGGM nodes is that the
inputs of the hash function H′ are of CCR forms. More specifically, a global ∆ ∈ F2λ offsets the two
first-level nodes of the pcGGM tree and induces the first n− 1 off-path nodes {Xα1...αi−1αi

i }i∈[1,n−1]
according to (1) for H′. Meanwhile, the last off-path node Xα1...αn−1αn

n ∈ F2λ and the α-th pcGGM
leaf Xn ∈ F2λ come from two hash calls of the following form: for b ∈ {0, 1},

Xα1...αn−1b
n = H′

(
∆⊕ (

⊕
i∈[1,n−1]X

α1...αi−1αi

i)⊕ b
)
.

Intuitively, we can use a CCR hash function H′ to argue the pseudorandomness of the n off-path
nodes and the α-th leaf, which is sufficient for the single-point sVOLE blueprint. The challenge in
this security reduction is to show that the CCR queries to H′ are legal (i.e., no (x, 0) and (x, 1) for the
same x) with overwhelming probability. We address this challenge by resorting to the observation
that these inputs are restricted so that they are well-structured and are not arbitrarily chosen by the
corrupted receiver (the only case where we need the pseudorandomness). Such restricted inputs are
reminiscent of the “naturally derived keys” [ZRE15, GKWY20] in the Half-Gate garbling scheme
so that we can bound the probability similarly. We defer the details to Appendix A. Note that even
if one uses ConvertK to map the leaves into K, the pseudorandomness of these nodes still holds due
to the pseudorandomness of ConvertK.

By plugging our pcGGM tree into the prior single-point sVOLE blueprint, we obtain a more
efficient protocol. The improvement owes to the cGGM invariant in its first n − 1 levels. In terms
of communication, the receiver can use n − 1 precomputed random COTs to select the XORs on
these levels and recover the first n − 1 levels of the sender’s pcGGM tree; in contrast, the prior
protocols use a standard OT per level due to the two pseudorandom XORs. For the last level in
our protocol, the two parties also need a standard OT due to the broken correlation of the two sums.
Given the random-permutation-based CCR hash functions in [GKWY20], our pcGGM-based single-
point sVOLE protocol is secure in the random-permutation model. In particular, this protocol can
implement the single-point sVOLE functionality without global-key queries since ∆ ∈ F2λ is only
used in the pcGGM tree and is not included in the sender’s output.

3.2 DPF/DCF from Shared Pseudorandom Correlated GGM Trees
DPF scheme and protocol. Using a pcGGM-like trick, we present a new DPF scheme, followed
by a more efficient distributed protocol. Recall that, in the prior DPF scheme [BGI16], there are
two parties sharing an n-level GGM-style tree where the n nodes on some path α ∈ {0, 1}n are
pseudorandom with LSB one, and others are zero. Then, the two-party shares of the α-th leaf mask
the DPF payload β ∈ G. Our core observation is that we need the pseudorandom α-th leaf to hide
β, but the internal pseudorandom on-path nodes are not mandatory. Instead, the two parties can
share an n-level pcGGM-style tree (say, spcGGM tree) where (i) the root X0 and the first n − 1
on-path nodes equal a global offset ∆ ∈ F2λ with lsb(∆) = 1, (ii) the last on-path node (i.e., the

9

α-th leaf) is pseudorandom with LSB one, and (iii) other nodes are zero. As in the prior scheme,
the per-party share of this tree is compressed as a key including an XOR share of the root and
n+ 1 public pseudorandom correction words.

We explain our construction of these correction words in detail. To keep the invariant (i), the
spcGGM tree uses a correction procedure different from the prior one. For each level i ∈ [1, n− 1]
with a public correction word CWi ∈ F2λ , and b ∈ {0, 1}, the b-side secret child of the (i − 1)-th
on-path secret node ⟨Xi−1⟩ = ⟨si−1 ∥ ti−1⟩ is defined as follows:

⟨Xα1...αi−1b
i ⟩ := H′(⟨Xi−1⟩)⊕ b · ⟨Xi−1⟩ ⊕ ⟨ti−1⟩ · CWi.

Solving this linear equation for the public CWi under the constraint (i), we have

CWi = H′(⟨Xi−1⟩0)⊕ H′(⟨Xi−1⟩1)⊕ αi ·∆.

As for (ii), we use a public correction word CWn = (HCW, LCW0, LCW1) ∈ F2λ−1×F2×F2 to follow
the same last-level correction as the prior work. For b ∈ {0, 1}, define a function H′b(·) := H′(· ⊕ b)
and the b-side secret child of the (n− 1)-th on-path secret node ⟨Xn−1⟩ = ⟨sn−1 ∥ tn−1⟩ as follows:

⟨Xα1...αn−1b
n ⟩ := H′b(⟨Xn−1⟩)⊕ ⟨tn−1⟩ · (HCW ∥ LCWb).

Solving this linear equation for the public CWn under the constraint (i) and (iii),

HCW = hb
(
H′αn

(⟨Xn−1⟩0)⊕ H′αn
(⟨Xn−1⟩1)

)
,

∀b ∈ {0, 1} : LCWb = lsb
(
H′b(⟨Xn−1⟩0)⊕ H′b(⟨Xn−1⟩1)

)
⊕ αn ⊕ b.

(2)

Note that the n off-path secret nodes {⟨Xα1...αi−1αi

i ⟩}i∈[1,n] are zero secrets according to the above
correction procedures. As a result, the two parties hold identical shares of these n off-path nodes
and their subtrees, given that the share of a subtree is fully determined by the share of its root
(i.e., an off-path node) and the public correction words. This implies the constraint (iii). Finally,
the (n+ 1)-th public correction word is defined from the secret α-th leaf ⟨Xn⟩ = ⟨sn ∥ tn⟩ and the
function ConvertG : F2λ−1 → G as follows:

CWn+1 = (⟨tn⟩0 − ⟨tn⟩1) ·
(
ConvertG(⟨sn⟩1)− ConvertG(⟨sn⟩0) + β

)
∈ G,

where the DPF payload β is masked by the XOR shares of the α-th leaf.
The DPF security primarily follows from that the first n correction words are of CCR forms,

i.e., for i ∈ [0, n − 1], ⟨Xi⟩0 ⊕ ⟨Xi⟩1 = Xi = ∆ according to the XOR secret sharing scheme and
the invariant (i). The ∆-circular correlation in CW1, . . . ,CWn−1 is obvious for either corrupted
party. In CWn, the honest party’s H′ inputs also differ from the corrupted party’s H′ inputs by
∆. Intuitively, these n correction words use CCR responses as one-time pads, and the underlying
CCR queries are as structured as those in the original pcGGM tree. By using a CCR H′ and
upper bounding the probability of illegal CCR queries, we can prove the pseudorandomness of the
first n correction words and the high λ − 1 bits (i.e., sn) of the α-th leaf. The pseudorandom
sn = ⟨sn⟩0 ⊕ ⟨sn⟩1 and ConvertG ensure the pseudorandom CWn+1 for either corrupted party.

Our DPF scheme enables a more efficient distributed key generation protocol due to the con-
struction of the first n − 1 correction words. The insight is that the two parties, who share ⟨α⟩
and ⟨β⟩A, can use their precomputed COT tuples to set up a secret ⟨∆⟩ with lsb(∆) = 1 and
share {⟨αi ·∆⟩}i∈[1,n] in two rounds, and use the black-box evaluation technique in [Ds17] to locally
share each secret H′(⟨Xi−1⟩). This technique relies on the invariant (iii) so that, for each i ∈ [1, n],

10

summing the shares of the 2i nodes on the i-th level returns the share of the i-th level on-path
node. Given the two-party shares of ⟨αi ·∆⟩ and H′(⟨Xi−1⟩), the secure computation of each CWi

only needs one round for revealing ⟨CWi⟩, leading to n − 1 rounds for the first n − 1 correction
words in total. In contrast, the prior protocol [Ds17] uses (2) for each correction word, and the i-th
level HCW depends on αi and should be computed level-by-level. Thus, it securely computes the
first n − 1 correction words in 2(n − 1) rounds: for each level, one round is to share ⟨CWi⟩ from
standard OTs, and another round is to reveal this secret.

We remark that our CWn+1 construction uses ⟨tn⟩0 − ⟨tn⟩1 to replace the (−1)⟨tn⟩1 term in the
prior construction. The correctness is unaffected due to the non-zero LSB (i.e., tn) of the α-th leaf.
However, when G is a ring, our CWn+1 allows the two parties to locally share ⟨tn⟩0 − ⟨tn⟩1 on the
ring via the black-box evaluation technique [Ds17]. Thus, the secure computation of CWn+1 uses
only one secure multiplication of two locally shared ring operands.
DCF scheme and protocol. We further show that our spcGGM tree can be extended to realize
more efficient DCF scheme and its distributed protocol. Note that comparison function f<α,β(x)
can be written as the sum of point function f•α,−αn·β(x) and a prefix function Vα,β(x), which
returns αh+1 · β ∈ G such that α1 . . . αh = x1 . . . xh is the longest common prefix of α and x
(for completeness, αn+1 := αn). We have shown how to realize the DPF scheme for point function
f•α,−αn·β(x) from spcGGM tree. Then, we want to compute Vα,β(x) by reusing the prefix information
with respect to α and x when traversing the spcGGM tree to evaluate the point function. Following
the GGM-style DCF scheme [BCG+21], we do this by introducing more nodes to the spcGGM tree
and an additional correction procedure to ensure that the sum of the introduced nodes along
the path x equals Vα,β(x). However, our extended spcGGM tree can use less nodes and simpler
correction words to compute Vα,β(x).

To give more details, we first recall how [BCG+21] works. It extends a shared GGM tree
by replacing its length-doubling PRG with a length-quadrupling PRG so that each secret parent
spawns two more secret children in F2λ . For each level i ∈ [1, n], let ⟨v0i ⟩ and ⟨v1i ⟩ denote such two
secret children of the (i − 1)-th on-path secret parent ⟨Xi−1⟩ = ⟨si−1 ∥ ti−1⟩, and the two parties
correct their additive shares for Vα,β(x) via the public correction word VCWi:

Vi−1 :=
∑

b∈{0,1}(−1)1−b ·
(
ConvertG(⟨v

αi−1

i−1 ⟩b)− ConvertG(⟨v
αi−1

i−1 ⟩b)
)
∈ G,

VCWi := (−1)⟨ti−1⟩1 ·
(
(ConvertG(⟨vαi

i ⟩1)− ConvertG(⟨vαi
i ⟩0))− Vi−1 + (αi − αi−1) · β

)
∈ G,

where V0 := 0 ∈ G and α0 = 0. The DCF key per party includes its DPF key for f•α,−αn·β(x) and
{VCWi}i∈[1,n]. The DCF security also requires the pseudorandomness of the n VCWi’s.

In contrast, our DCF scheme shows that it is overkill to introduce two more secret children
to each secret parent for the DCF security. For each i ∈ [1, n], one additional secret child ⟨vi⟩ =
⟨v0i ⟩ = ⟨v1i ⟩ of the secret parent ⟨Xi−1⟩ suffices, and the pseudorandomness of VCWi relies on a
random vi = ⟨vi⟩0 ⊕ ⟨vi⟩1 ∈ F2λ as ConvertG maps random strings to pseudorandom G elements.
We can argue the pseudorandomness of vi based on the CCR induced by Xi−1 = ∆, if we use
vi := H′(⟨Xi−1⟩0⊕ 2)⊕H′(⟨Xi−1⟩1⊕ 2). Collecting all H′ inputs for the DPF part and vi’s, we find
that these inputs are as structured as those in the original pcGGM tree. The DCF security can
follow from a similar hybrid argument.

Our DCF protocol is extended from our DPF protocol with the additional secure computation
of {VCWi}i∈[1,n]. Compared with the prior work, our DCF protocol achieves better efficiency due
to not only its optimized DPF part but also the structure of each VCWi. This structure makes the
ConvertG difference term independent of αi. This independence allows the two parties to locally
share the ConvertG difference via the black-box evaluation technique [Ds17], in contrast to the

11

Functionality FspsVOLE

Parameters: Field F and its extension field K.
Initialize: Upon receiving (init) from P0 and P1, sample ∆ ← K if P0 is honest; otherwise, receive
∆ ∈ K from the adversary. Store ∆ and send it to P0. Ignore all subsequent (init) commands.
Extend: This functionality allows polynomially many (extend) commands. Upon receiving (extend, N)
from P0 and P1:

1. If P0 is honest, sample v← KN ; otherwise, receive v ∈ KN from the adversary.

2. If P1 is honest, sample u← FN with exactly one nonzero entry, and compute w := v + u ·∆ ∈ KN ;
otherwise, receive (u,w) ∈ FN ×KN from the adversary, where u has at most one nonzero entry, and
recompute v := w − u ·∆ ∈ KN .

3. Send v to P0 and (u,w) to P1.

Global-key queries: If P1 is corrupted, upon receiving (guess,∆′), where ∆′ ∈ K, from the adversary,
send (success) to the adversary if ∆ = ∆′; send (fail) to the adversary otherwise.

Figure 2: Functionality for single-point subfield VOLE.

technique plus OT-based 2PC in the prior protocol. Since there is only one more secret child for
each secret parent, the local computation for sharing this difference is halved as well. We can also
replace the (−1)⟨ti−1⟩1 term in the prior VCWi construction by a linear term ⟨ti−1⟩0−⟨ti−1⟩1, which
can be locally shared via the same black-box evaluation technique if G is a ring. As a result, except
the 2PC for sharing {⟨αi · β⟩A}i∈[1,n], the secure computation of {VCWi}i∈[1,n] requires n secure
multiplications of two shared ring elements. These secure multiplications can run in parallel with
that for CWn+1.

In our DCF protocol, each ⟨αi ·β⟩A is secretly shared by carefully reusing the two precomputed
COT tuples, which were used to share ⟨αi · ∆⟩, to run a COT-based multiplication between the
XOR shared αi and the additively shared β on the ring. This multiplication generalizes the binary
case [ALSZ13, GKWY20] for an XOR shared bit and an XOR shared string by using the well-known
arithmetic XOR on the ring: ⟨αi⟩0 ⊕ ⟨αi⟩1 = ⟨αi⟩0 + ⟨αi⟩1 − 2 · ⟨αi⟩0 · ⟨αi⟩1.

4 Subfield VOLE Extension
Our sVOLE extension follows the blueprint of [BCG+19a, SGRR19, YWL+20, WYKW21], which
uses LPN to locally convert t single-point sVOLE (spsVOLE) tuples output by functionality
FspsVOLE (Figure 2) into an sVOLE tuple. We focus on the efficient spsVOLE protocol that UC-
realizes FspsVOLE. Note that the spsVOLE protocol dominates the computation and contributes all
communication in sVOLE extension.
FspsVOLE is parameterized by a field F and its extension K, and covers the single-point COT

functionality FspCOT if F = F2 and K = F2λ . This functionality is the same as that in [WYKW21],
except that FspsVOLE will not abort for an incorrect global-key query. Allowing for global-key
queries has been considered in [NNOB12, HSS17] and does not weaken the effective security. In
the spsVOLE protocol based on pseudorandom correlated GGM, such global-key queries can be
removed.

In essence, our spsVOLE protocols work as the PCG protocol [BCG+19b, BCG+19a, BCG+20,
CRR21] of spsVOLE correlation, although we do not divide the correlation generation into two
explicit PCG phases. In Appendix E.1, we show how to modify one of our spsVOLE protocols to

12

Parameters: Tree depth n ∈ N. Field K with |K| ≥ 2λ. Hash function H : K→ K.
cGGM.FullEval(∆, k): Given (∆, k) ∈ K2,
1: X0

1 := k ∈ K, X1
1 := ∆− k ∈ K.

2: for i ∈ [2, n], j ∈ [0, 2i−1) do
3: X2j

i := H(Xj
i−1) ∈ K, X2j+1

i := Xj
i−1 −X

2j
i ∈ K.

4: v := (X0
n, . . . , X

2n−1
n) ∈ K2n .

5: for i ∈ [1, n] do K0
i :=

∑
j∈[0,2i−1)X

2j
i ∈ K.

6: return (v, {K0
i }i∈[1,n])

cGGM.PuncFullEval(α, {Kαi
i }i∈[1,n]): Given (α, {Kαi

i }i∈[1,n]) ∈ {0, 1}n ×Kn,
1: Xα1

1 := Kα1
1 ∈ K.

2: for i ∈ [2, n] do
3: for j ∈ [0, 2i−1), j ̸= α1 . . . αi−1 do
4: X2j

i := H(Xj
i−1) ∈ K, X2j+1

i := Xj
i−1 −X

2j
i ∈ K.

5: X
α1...αi−1αi

i := Kαi
i −

∑
j∈[0,2i−1),j ̸=α1...αi−1

X2j+αi

i ∈ K.
6: Xα

n := −
∑

j∈[0,2n),j ̸=αX
j
n ∈ K, w := (X0

n, . . . , X
2n−1
n) ∈ K2n .

7: return w

Figure 3: Two full-evaluation algorithms for correlated GGM tree.

define such two phases, in order to satisfy the “silent property” that a long spsVOLE tuple can be
stored as two sublinearly short correlated seeds.

4.1 Single-point COT and sVOLE from Correlated GGM
In Figure 3, we present the two evaluation algorithms for our correlated GGM tree, which is defined
by two first-level nodes (k,∆− k) ∈ K2. For every non-leaf node x ∈ K, its left child is defined as
H(x) ∈ K while its right child is defined as x − H(x) ∈ K. The following claim is straightforward
from an induction.

Claim 1 (Leveled correlation). For any two first-level nodes (k,∆ − k) ∈ K2 and any i ∈ [1, n],
the offset ∆ ∈ K equals the sum of all nodes on the i-th level of the correlated GGM tree expanded
from (k,∆− k) as per cGGM.FullEval.

Corollary 1. For any α ∈ [0, 2n), any (k,∆− k) ∈ K2, and

(v, {K0
i }i∈[1,n]) := cGGM.FullEval(∆, k),

w := cGGM.PuncFullEval(α, {Kαi
i }i∈[1,n]),

where Kαi
i := αi ·∆+ (−1)αi ·K0

i for i ∈ [1, n], we have w(α) − v(α) = −∆.

Proof. Claim 1 and the definition of cGGM.FullEval imply that Kαi
i ∈ K in this corollary defines

the sum of all αi-side nodes on the i-th level of the correlated GGM tree. Then, it follows from the
definition of cGGM.PuncFullEval that v(j) = w(j) for any j ̸= α ∈ [0, 2n). Using Claim 1 for the last
level, we have w(α) − v(α) = −

∑
j∈[0,2n),j ̸=αw

(j) − v(α) = −
∑

j∈[0,2n),j ̸=α v
(j) − v(α) = −∆.

4.1.1 Single-point COT

Figure 4 describes our single-point COT protocol ΠspCOT that runs in the FCOT-hybrid model and
uses the cGGM expansion in Figure 3.

13

Protocol ΠspCOT

Parameters: Field F2 and its extension field F2λ .
Initialize: This procedure is executed only once.

1. P0 and P1 send (init) to FCOT, which returns ∆ ∈ F2λ to P0. P0 outputs ∆.

Extend: This procedure can be executed many times. P0 and P1 input N = 2n and use cGGM (c.f.
Figure 3) for n and F2λ .

2. P0 and P1 send (extend, n) to FCOT, which returns (K[r1], . . . ,K[rn]) ∈ Fn
2λ to P0 and

((r1, . . . , rn), (M[r1], . . . ,M[rn])) ∈ Fn
2 × Fn

2λ to P1 such that M[ri] = K[ri]⊕ ri ·∆ for i ∈ [1, n].

3. P0 samples c1 ← F2λ and sets k := K[r1]⊕ c1,

(v, {K0
i }i∈[1,n]) := cGGM.FullEval(∆, k),

and ci := K[ri]⊕K0
i for i ∈ [2, n]. P0 sends (c1, . . . , cn) to P1.

4. P1 sets α = α1 . . . αn := r1 . . . rn ∈ [0, N), Kαi
i := M[ri]⊕ ci for i ∈ [1, n], and

u := unitF2
(N,α, 1), w := cGGM.PuncFullEval(α, {Kαi

i }i∈[1,n]).

5. P0 outputs v and P1 outputs (u,w).

Figure 4: cGGM-based single-point COT protocol in the FCOT-hybrid model.

The same ∆ in correlated GGM trees. Note that FspCOT produces single-point COT tuples
with the same global key ∆ ∈ F2λ in a number of Extend executions. To realize FspCOT, our
protocol ΠspCOT proceeds as sketched in Section 3.1 but uses the same ∆ for the cGGM trees of
these executions, each of which samples a fresh k ← F2λ for cGGM.FullEval(∆, k). A merit of
using the same ∆ in several tree instances is that ΠspCOT only invokes one FCOT instance, and the
amortized cost per precomputed COT tuple can be small.
Security. We prove Theorem 1 by following the sketched intuition in Section 3.1 and defer the
proof to Appendix B.1. Our proof considers polynomially many concurrent Extend executions
(strictly speaking, sub-sessions with unique sub-session IDs) that uses the one-time initialized ∆.

Theorem 1. Given random permutation π : F2λ → F2λ, efficiently computable linear orthomor-
phism σ : F2λ → F2λ with efficiently computable σ−1, σ′(x) := σ(x)⊕x, and σ′−1 (Footnote 1), and
hash function H(x) := π(σ(x))⊕σ(x), protocol ΠspCOT (Figure 4) UC-realizes functionality FspCOT

(Figure 2) against any semi-honest adversary in the FCOT-hybrid model and the RPM.

Communication optimization. For t concurrent Extend executions (e.g., in COT extension),
the random c1’s in these executions can be compressed via a PRF F : F2λ × {0, 1}∗ → F2λ .
Concretely, P0 samples a PRF key kprf ← F2λ after receiving its COT outputs in all executions and
sends this key to P1. For each execution with sub-session ID ssid, the two parties locally defines
the element c1 := F (kprf, ssid). This PRF key is only used for the t concurrent executions. The
security of this optimization follows from the PRF security and the fact that, in the concurrent
executions, the COT messages chosen by the corrupted receiver cannot depend on the PRF key to
be sampled by the honest sender.
Complexity analysis. Consider the complexity per execution when the PRF-based optimization
is used in t concurrent Extend executions. ΠspCOT needs n precomputed COT tuples. P0 sends
(n−1) ·λ+ λ

t bits, and P1 sends nothing. The computation per party comes from the tree expansion

14

with N RP calls.
In the FCOT-hybrid model, the prior single-point COT protocol [YWL+20] consumes n precom-

puted COT tuples. However, P0 sends 2n · λ bits. Each party performs about N length-doubling
PRG calls, which in turn result in 2N RP calls. We can see that our protocol halves both the
computation and communication in the prior work. When looking at the whole protocol, the im-
provement is still huge. For example, the micro benchmark in Silver [CRR21] reported that 70% of
the time is spent on GGM-tree-related computation, and thus our protocol will lead to more than
30% of end-to-end computational improvement in COT.

4.1.2 Single-point sVOLE

We can also realize single-point sVOLE from our cGGM tree by using the high-level idea sketched
in Section 3.1. This protocol extends ΠspCOT by using a cGGM tree whose nodes are in a general
exponentially large extension field K. The tree expansion therein uses a hash function constructed
from a random permutation and a linear orthomorphism over K. We defer the detailed protocol
and its security proof to Appendix B.2.

4.2 Single-point sVOLE from Pseudorandom Correlated GGM
We can adapt our correlated GGM tree for a pseudorandom correlated one with the property that
the leaf node at some punctured position α is pseudorandom. This pseudorandom correlated GGM
tree pcGGM is defined in Figure 5, where the first n−1 levels preserve the correlation in Claim 1 but
all last-level nodes are processed by HS to break this correlation. The keyed hash function HS uses
some key S ∈ F2λ , which can be sampled by the sender in single-point sVOLE and, for simplicity,
is assumed to have been sent to the receiver before protocol execution. The implementation of HS

is given in Theorem 2. In fact, this pcGGM tree yields PPRF, which is proved in Appendix C.
The pseudorandomness only at the cost of the last-level correlation allows us to follow the

single-point sVOLE blueprint in [BCG+19a, WYKW21] but also take advantage of the correlation
in the first n− 1 levels. The protocol is presented in Figure 6. In this protocol, the sender P0 only
sends λ bits to the receiver P1 for each of the first n − 1 levels, given a precomputed COT tuple.
For the last level, the two parties use a COT tuple and the standard technique [IKNP03, Bea95]
to emulate the string OT as in the prior protocols. To amortize the cost per precomputed COT
tuple, the pcGGM trees in many Extend executions also use the same ∆ set by FCOT.
Security. The security against the semi-honest P0 resorts to the one-time pad s from FsVOLE.
Meanwhile, the security against the semi-honest P1 relies on that (i) the pcGGM tree with a
CCR structure has n pseudorandom off-path nodes and the punctured leaf, giving pseudoran-
dom c1, . . . , cn−1 and (crnn , ψ), and (ii) the mask of the unselected message crnn in the emulated
last-level OT is computed by applying ConvertK to a CCR response, which is for a legal CCR query
with overwhelming probability due to the uniform µ. The proof of Theorem 2 can be found in
Appendix B.3, where we consider polynomially many concurrent Extend executions, which use
the one-time initialized ∆.

Theorem 2. Given CCR function H : F2λ → F2λ, function ConvertK : F2λ → K, and keyed hash
function HS(x) := H(S⊕x) with some key S ← F2λ, protocol ΠspsVOLE−pcGGM (Figure 6) UC-realizes
functionality FspsVOLE (Figure 2) without global-key queries against any semi-honest adversary in
the (FCOT,FsVOLE)-hybrid model.

Communication optimization. ΠspsVOLE−pcGGM can be optimized as follows:

15

Parameters: Tree depth n ∈ N. Field K. Keyed hash function HS : F2λ → F2λ . Function ConvertK :
F2λ → K.
pcGGM.FullEval(∆, k): Given (∆, k) ∈ F2

2λ ,
1: X0

1 := k ∈ F2λ , X1
1 := ∆⊕ k ∈ F2λ .

2: for i ∈ [2, n− 1], j ∈ [0, 2i−1) do
3: X2j

i := HS(X
j
i−1) ∈ F2λ , X2j+1

i := Xj
i−1 ⊕X

2j
i ∈ F2λ .

4: for j ∈ [0, 2n−1), b ∈ {0, 1} do X2j+b
n := ConvertK(HS(X

j
n−1 ⊕ b)) ∈ K.

5: v := (X0
n, . . . , X

2n−1
n) ∈ K2n .

6: for i ∈ [1, n− 1] do K0
i := ⊕j∈[0,2i−1)X

2j
i ∈ F2λ .

7: (K0
n,K

1
n) := (

∑
j∈[0,2n−1)X

2j
n ,
∑

j∈[0,2n−1)X
2j+1
n) ∈ K2.

8: return (v, {K0
i }i∈[1,n−1], (K

0
n,K

1
n))

pcGGM.PuncFullEval(α, {Kαi
i }i∈[1,n], γ): Given (α, {Kαi

i }i, γ) ∈ {0, 1}n ×Kn ×K,
1: Xα1

1 := Kα1
1 ∈ F2λ .

2: for i ∈ [2, n− 1] do
3: for j ∈ [0, 2i−1), j ̸= α1 . . . αi−1 do
4: X2j

i := HS(X
j
i−1) ∈ F2λ , X2j+1

i := Xj
i−1 ⊕X

2j
i ∈ F2λ .

5: X
α1...αi−1αi

i := Kαi
i ⊕ (⊕j∈[0,2i−1),j ̸=α1...αi−1

X2j+αi

i) ∈ F2λ .
6: for j ∈ [0, 2n−1), j ̸= α1 . . . αn−1, b ∈ {0, 1} do
7: X2j+b

n := ConvertK(HS(X
j
n−1 ⊕ b)) ∈ K.

8: Xα1...αn−1αn
n := Kαn

n −
∑

j∈[0,2n−1),j ̸=α1...αn−1
X2j+αn

n ∈ K.
9: Xα

n := γ −
∑

j∈[0,2n),j ̸=αX
j
n ∈ K, w := (X0

n, . . . , X
2n−1
n) ∈ K2n .

10: return w

Figure 5: Two full-evaluation algorithms for pseudorandom correlated GGM tree.

• The two random (c1, µ) to be sent by the sender in ΠspsVOLE−pcGGM can be compressed via the
PRF technique for ΠspCOT. In t concurrent Extend executions, all such random messages can
also be compressed in batch.

• The optimization for a large field F in ΠspsVOLE−cGGM also applies.

• If F = F2, ΠspsVOLE−pcGGM degenerates to single-point COT and can do away with FsVOLE so
that the receiver need not send a difference d ∈ F. Instead, the sender locally samples Γ ∈ K
and masks this value with the sum of all last-level nodes in a pcGGM tree. This optimization
has been used in [BCG+19a].

Complexity analysis. Consider the complexity per execution when the PRF-based optimization
is used in t concurrent Extend executions. ΠspsVOLE−pcGGM uses n precomputed COT tuples and
one precomputed sVOLE tuple. P0 sends (n− 2) · λ+3 · log |K|+ λ

t bits, and P1 sends log |F| bits.
The computation is dominated by the tree expansion with 1.5N RP calls for each party. Compared
with the prior works [BCG+19a, WYKW21], our protocol roughly halve the communication, and
the reduction in computation is 25%. This computation cost includes no PRG call in ConvertK,
which can be implemented from cheap modulo operations for the field size |K| considered in many
sVOLE applications, e.g., [WYKW21, YSWW21, RS21, WYX+21].

16

Protocol ΠspsVOLE−pcGGM

Parameters: Field F and its extension field K.
Initialize: This procedure is executed only once.

1. P0 and P1 send (init) to FCOT, which returns ∆ ∈ F2λ to P0.

2. P0 and P1 send (init) to FsVOLE, which returns Γ ∈ K to P0. P0 outputs Γ.

Extend: This procedure can be executed many times. P0 and P1 input N = 2n and use pcGGM (c.f.
Figure 5) for n, K, keyed hash function HS : F2λ → F2λ , and function ConvertK : F2λ → K.

3. P0 and P1 send (extend, n) to FCOT, which returns (K[r1], . . . ,K[rn]) ∈ Fn
2λ to P0 and

((r1, . . . , rn), (M[r1], . . . ,M[rn])) ∈ Fn
2 × Fn

2λ to P1 such that M[ri] = K[ri]⊕ ri ·∆ for i ∈ [1, n].

4. P0 and P1 send (extend, 1) to FsVOLE, which returns K[s] ∈ K to P0 and (s,M[s]) ∈ F×K to P1 such
that M[s] = K[s] + s · Γ.

5. P1 samples β ← F∗, sets M[β] := M[s], and sends d := s− β ∈ F to P0.
P0 sets K[β] := K[s] + d · Γ such that M[β] = K[β] + β · Γ.

6. P0 samples (c1, µ)← F2
2λ and sets k := K[r1]⊕ c1,

(v, {K0
i }i∈[1,n−1], (K

0
n,K

1
n)) := pcGGM.FullEval(∆, k),

ci := K[ri] ⊕ K0
i for i ∈ [2, n − 1], cbn := ConvertK(HS(µ ⊕ K[rn] ⊕ b · ∆)) + Kb

n for b ∈ {0, 1}, and
ψ := K0

n +K1
n − K[β].

P0 sends (c1, . . . , cn−1, µ, c
0
n, c

1
n, ψ) to P1.

7. P1 sets α = α1 . . . αn := r1 . . . rn ∈ [0, N), Kαi
i := M[ri] ⊕ ci for i ∈ [1, n − 1], Kαn

n := crnn −
ConvertK(HS(µ⊕M[rn])), and

u := unitF(N,α, β), w := pcGGM.PuncFullEval(α, {Kαi
i }i∈[1,n], ψ +M[β]).

8. P0 outputs v and P1 outputs (u,w).

Figure 6: pcGGM-based single-point sVOLE protocol in the (FCOT,FsVOLE)-hybrid model.

Functionality FFSS

Parameters: Ring R. FSS ∈ {DPF,DCF} with domain [0, N), where domain size N = 2n for n ∈ N,
and range R.
Gen: This functionality allows polynomially many (gen) commands. Upon receiving (gen, ⟨α⟩b, ⟨β⟩Ab)
from Pb for each b ∈ {0, 1}, where (⟨α⟩b, ⟨β⟩Ab) ∈ [0, N)×R:

1. Set α := ⟨α⟩0 ⊕ ⟨α⟩1 ∈ [0, N), β := ⟨β⟩A0 + ⟨β⟩A1 ∈ R, and r ∈ RN such that

• If FSS = DPF, r(j) = 0 for j ∈ [0, N), j ̸= α, and r(α) = β.
• If FSS = DCF, r(j) = 0 for j ∈ [0, N), j ≥ α, and r(j) = β otherwise.

2. If both parties are honest, sample ⟨r⟩A0 , ⟨r⟩A1 ← RN such that ⟨r⟩A0 + ⟨r⟩A1 = r; otherwise (i.e., Pb is
corrupted), receive ⟨r⟩Ab ∈ RN from the adversary and recompute ⟨r⟩A1−b := r− ⟨r⟩Ab ∈ RN .

3. Send ⟨r⟩A0 to P0 and ⟨r⟩A1 to P1.

Figure 7: Functionality for DPF/DCF correlation generation.

17

Parameters: Domain size N = 2n for n ∈ N. Group G. Keyed hash function HS : F2λ → F2λ . Function
ConvertG : {0, 1}∗ → G.
DPF.Gen(1λ, (α, β, n,G)):
1: Parse α = α1 . . . αn ∈ {0, 1}n and β ∈ G.
2: Sample ∆← {0, 1}λ such that lsb(∆) = 1.
3: Sample ⟨s0 ∥ t0⟩0, ⟨s0 ∥ t0⟩1 ← {0, 1}λ such that ⟨s0 ∥ t0⟩0 ⊕ ⟨s0 ∥ t0⟩1 = ∆.
4: for i ∈ [1, n− 1] do
5: CWi := HS(⟨si−1 ∥ ti−1⟩0)⊕ HS(⟨si−1 ∥ ti−1⟩1)⊕ αi ·∆
6: ⟨si ∥ ti⟩0 := HS(⟨si−1 ∥ ti−1⟩0)⊕ αi · ⟨si−1 ∥ ti−1⟩0 ⊕ ⟨ti−1⟩0 · CWi

7: ⟨si ∥ ti⟩1 := HS(⟨si−1 ∥ ti−1⟩1)⊕ αi · ⟨si−1 ∥ ti−1⟩1 ⊕ ⟨ti−1⟩1 · CWi

8: ⟨highσ ∥ lowσ⟩0 := HS(⟨sn−1 ∥ tn−1⟩0 ⊕ σ) for σ ∈ {0, 1}
9: ⟨highσ ∥ lowσ⟩1 := HS(⟨sn−1 ∥ tn−1⟩1 ⊕ σ) for σ ∈ {0, 1}

10: HCW := ⟨highαn⟩0 ⊕ ⟨highαn⟩1
11: LCW0 := ⟨low0⟩0 ⊕ ⟨low0⟩1 ⊕ αn, LCW1 := ⟨low1⟩0 ⊕ ⟨low1⟩1 ⊕ αn

12: CWn := (HCW ∥ LCW0 ∥ LCW1)
13: ⟨sn ∥ tn⟩0 := ⟨highαn ∥ lowαn⟩0 ⊕ ⟨tn−1⟩0 · (HCW ∥ LCW

αn)
14: ⟨sn ∥ tn⟩1 := ⟨highαn ∥ lowαn⟩1 ⊕ ⟨tn−1⟩1 · (HCW ∥ LCW

αn)
15: CWn+1 := (⟨tn⟩0 − ⟨tn⟩1) · (ConvertG(⟨sn⟩1)− ConvertG(⟨sn⟩0) + β)
16: kb := (⟨s0 ∥ t0⟩b, {CWi}i∈[1,n+1]) for b ∈ {0, 1}
17: return (k0, k1)

DPF.Eval(b, kb, x):
1: Parse kb = (⟨s00 ∥ t00⟩b, {CWi}i∈[1,n+1]), CWn = (HCW ∥ LCW0 ∥ LCW1), and x = x1 . . . xn ∈ {0, 1}n.
2: for i ∈ [1, n− 1] do
3: ⟨sx1...xi

i ∥ tx1...xi
i ⟩b := HS(⟨sx1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩b)⊕ xi · ⟨sx1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩b ⊕ ⟨tx1...xi−1

i−1 ⟩b · CWi

4: ⟨high ∥ low⟩b := HS(⟨sx1...xn−1

n−1 ∥ tx1...xn−1

n−1 ⟩b ⊕ xn)
5: ⟨sxn ∥ txn⟩b := ⟨high ∥ low⟩b ⊕ ⟨t

x1...xn−1

n−1 ⟩b · (HCW ∥ LCWxn)
6: return yb := (−1)b · (ConvertG(⟨sxn⟩b) + ⟨txn⟩b · CWn+1)

Figure 8: Our DPF scheme with domain [0, N) and range G.

5 DPF and DCF Correlation Generation
We model DPF/DCF correlation generation in functionality FFSS (Figure 7), which includes dis-
tributed key generation and local full-domain evaluation. By putting both procedures in the same
functionality, we are able to model FSS as an ideal functionality and avoid caveats in the proof.
FFSS focuses on N = 2n for n ∈ N, and we can define a similar functionality for a general N ∈ N.
Using padding, our protocols for FFSS also works in this general case.

One can view FFSS as an alternative to the FSS key generation functionality that outputs each
FSS key in the key pair to the designated party, who locally uses its key to evaluate its shares of
the evaluation results at several points. We note that the full-domain evaluation included in FFSS

does not complicate its implementation in contrast to the known protocols [Ds17, BCG+21] of the
FSS key generation functionality. The reason is that, using the black-box evaluation technique
[Ds17], these protocols also perform full-domain evaluation. If FSS correlations are generated for
immediate use without long-term storage (e.g., [Ds17]), FFSS can be a drop-in replacement of the
FSS key generation functionality. However, we also show in Appendix E.2 that our protocols for
FFSS can be adapted to realize this key generation functionality.

18

Parameters: Domain size N = 2n for n ∈ N. Group G. Keyed hash function HS : F2λ → F2λ . Function
ConvertG : {0, 1}∗ → G.
DCF.Gen(1λ, (α, β, n,G)):
1: Parse α = α1 . . . αn ∈ {0, 1}n and β ∈ G. Let α0 := 0.
2: Run (k′0, k

′
1)← DPF.Gen(1λ, (α,−αn · β, n,G)) and store its internal variables.

3: for i ∈ [1, n] do
4: ⟨vi⟩0 := HS(⟨si−1 ∥ ti−1⟩0 ⊕ 2)
5: ⟨vi⟩1 := HS(⟨si−1 ∥ ti−1⟩1 ⊕ 2)
6: VCWi := (⟨ti−1⟩0 − ⟨ti−1⟩1) · (ConvertG(⟨vi⟩1)− ConvertG(⟨vi⟩0) + (αi − αi−1) · β)
7: kb := (k′b, {VCWi}i∈[1,n]) for b ∈ {0, 1}
8: return (k0, k1)

DCF.Eval(b, kb, x):
1: Parse kb = (k′b, {VCWi}i∈[1,n]). Let V 0

b := 0 ∈ G.
2: Run y′b := DPF.Eval(b, k′b, x) and store its internal variables.
3: for i ∈ [1, n] do
4: ⟨vx1...xi−1

i ⟩b := HS(⟨sx1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩b ⊕ 2)
5: V i

b := V i−1
b + (−1)b · (ConvertG(⟨vx1...xi−1

i ⟩b) + ⟨tx1...xi−1

i−1 ⟩b · VCWi)

6: return yb := y′b + V n
b

Figure 9: Our DCF scheme with domain [0, N) and range G.

5.1 DPF and DCF Schemes
Note that DPF/DCF scheme may be used in not only distributed settings (e.g., [Ds17]) but also
the scenarios where a trusted dealer is available (e.g., two-server PIR [GI14, BGI16]). It would be
better for us to present the two schemes alone.

We present in Figure 8 (resp., Figure 9) our DPF (resp., DCF) scheme, which is implicitly
constructed from a shared pseudorandom correlated GGM tree. For simplicity of exposition, we
slightly abuse the function ConvertG : {0, 1}∗ → G so that it can map random strings of either λ
or λ− 1 bits to pseudorandom group elements in G. Our DCF scheme makes non-black-box use of
our DPF scheme.

Note that our DPF and DCF schemes use a keyed hash function HS . When there is a trusted
dealer, the key S can be uniformly sampled by the dealer. In our DPF and DCF protocols in the
upcoming sections, it can be jointly sampled by two parties using one-time public coin-tossing.
This hash key can be reused across polynomially many FSS key pairs.
Complexity analysis. Consider the group G (e.g., in [GI14, BGI16, Ds17, BGI19, BCG+21])
with the PRG-free implementation of ConvertG (c.f. Appendix F.1).

Our DPF scheme has a full-domain evaluation that takes 1.5N RP calls, in contrast to the 2N
RP calls in the state-of-the-art construction of [BGI16]. Its key generation algorithm uses about
2n + 2 RP calls while this figure is about 4n in the prior work. In our scheme, the key size is
n · λ+ (λ+ 1) + log |G| bits, and the evaluation algorithm takes about n RP calls, both remaining
the same complexity as those in the prior work. In our DCF scheme, the full-domain evaluation
requires 2.5N RP calls, in contrast to 4N RP calls in the state-of-the-art construction [BCG+21].
Its key generation needs about 4n+ 2 RP calls, in contrast to 8n RP calls in the prior work. The
key size is n · λ + (λ + 1) + (n + 1) · log |G| bits, and the evaluation requires about 2n RP calls,
without any improvement.
Security. We prove the following theorems in Appendix D.2 and Appendix D.3. These theorems

19

Protocol ΠDPF

Parameters: Domain size N = 2n for n ∈ N. Ring R. Keyed hash function HS : F2λ → F2λ . Function
ConvertR : {0, 1}∗ →R. Let H′ := hb ◦ HS .
DPF Gen: This procedure can be executed many times. For each b ∈ {0, 1}, Pb inputs (⟨α⟩b, ⟨β⟩Ab) ∈
[0, N)×R and proceeds as follows:
1. The two parties run sub-protocol ΠPREP (Figure 11), which, for each b ∈ {0, 1}, returns ⟨∆⟩b and
{(Kb[⟨αi⟩1−b],Mb[⟨αi⟩b])}i∈[1,n] to Pb such that lsb(⟨∆⟩0 ⊕ ⟨∆⟩1) = 1, and Mb[⟨αi⟩b] = K1−b[⟨αi⟩b]⊕
⟨αi⟩b · ⟨∆⟩1−b for i ∈ [1, n].

2. The two parties send (sample, λ) to FRand, which returns W ∈ {0, 1}λ to them.

3. Pb computes ⟨s00 ∥ t00⟩b := ⟨∆⟩b ⊕W . For i ∈ [1, n− 1], Pb sends to P1−b

⟨CWi⟩b := (⊕j∈[0,2i−1)HS(⟨sji−1 ∥ t
j
i−1⟩b))⊕ ⟨αi⟩b · ⟨∆⟩b ⊕ Kb[⟨αi⟩1−b]⊕Mb[⟨αi⟩b],

receives ⟨CWi⟩1−b from P1−b, and computes CWi := ⟨CWi⟩b ⊕ ⟨CWi⟩1−b and
{⟨sji ∥ t

j
i ⟩b}j∈[0,2i) := DPF.NextLevel(i, {⟨sji−1 ∥ t

j
i−1⟩b}j∈[0,2i−1),CWi).

4. Pb samples µb ← {0, 1}λ, computes
⟨Xhighσ ∥Xlowσ⟩b := ⊕j∈[0,2n−1)HS(⟨sjn−1 ∥ t

j
n−1⟩b ⊕ σ) for σ ∈ {0, 1},

db := H′(µb ⊕ Kb[⟨αn⟩1−b])⊕ H′(µb ⊕ Kb[⟨αn⟩1−b]⊕ ⟨∆⟩b)⊕ ⟨Xhigh0 ⊕ Xhigh1⟩b,
sends (µb, db) to P1−b, and receives (µ1−b, d1−b) from P1−b. Then, Pb computes

⟨HCW⟩b := ⟨Xhigh⟨αn⟩b⟩b ⊕ H′(µb ⊕ Kb[⟨αn⟩1−b])⊕ H′(µ1−b ⊕Mb[⟨αn⟩b])⊕ ⟨αn⟩b · d1−b,

⟨LCW0⟩b := ⟨Xlow0⟩b ⊕ ⟨αn⟩b ⊕ b, ⟨LCW1⟩b := ⟨Xlow1⟩b ⊕ ⟨αn⟩b,

sends ⟨CWn⟩b := (⟨HCW⟩b ∥ ⟨LCW0⟩b ∥ ⟨LCW1⟩b) to P1−b, receives ⟨CWn⟩1−b from P1−b, and com-
putes CWn := ⟨CWn⟩b ⊕ ⟨CWn⟩1−b and

{⟨sjn ∥ tjn⟩b}j∈[0,N) := DPF.NextLevel(n, {⟨sjn−1 ∥ t
j
n−1⟩b}j∈[0,2n−1),CWn).

5. (Binary field R = F2ℓ , without FOLE)
Pb computes ⟨CWn+1⟩Ab := (

∑
j∈[0,N) ConvertR(⟨sjn⟩b)) + ⟨β⟩Ab .

(General ring R, using FOLE)
The two parties run sub-protocol ΠMULT (Figure 12), which, for each b ∈ {0, 1}, takes as input

⟨A⟩Ab := (−1)b ·
∑

j∈[0,N)⟨tjn⟩b ∈ R,

⟨B⟩Ab := (−1)1−b ·
∑

j∈[0,N) ConvertR(⟨sjn⟩b) + ⟨β⟩Ab ∈ R,

and returns ⟨CWn+1⟩Ab to Pb.
In either case, Pb sends ⟨CWn+1⟩Ab to P1−b, receives ⟨CWn+1⟩A1−b from P1−b, and computes CWn+1 :=

⟨CWn+1⟩Ab + ⟨CWn+1⟩A1−b.

6. Pb computes kb := (⟨∆⟩b ⊕W, {CWi}i∈[1,n+1]) and ⟨r(j)⟩Ab := DPF.Eval(b, kb, j) for j ∈ [0, N), and
outputs ⟨r⟩Ab ∈ RN .

Figure 10: DPF correlation generation in the (FCOT,FRand,FOLE)-hybrid model.

turn to the intuition that CW1, . . . ,CWn are masked by pseudorandom CCR outputs (as the root
and the first n−1 on-path shared nodes are ∆), and CWn+1,VCW1, . . . ,VCWn are masked by some
pseudorandom ConvertG terms taking (pseudo)random CCR outputs as input.

Theorem 3. Given CCR function H : F2λ → F2λ, function ConvertG : F2λ−1 → G, and keyed hash
function HS(x) := H(S ⊕ x) with some key S ← F2λ, Figure 8 gives a DPF scheme with domain

20

Protocol ΠPREP

Initialize: This procedure is executed only once for each b ∈ {0, 1}. The two parties send (init) to Fb
COT

with identifier b, which returns ∆′
b ∈ {0, 1}λ to Pb. Pb sends lsb(∆′

b) to P1−b, receives lsb(∆′
1−b) from

P1−b, and sets ⟨∆⟩b := ∆′
b ⊕ (0λ−1 ∥ (lsb(∆′

1−b)⊕ b)) such that lsb(⟨∆⟩0 ⊕ ⟨∆⟩1) = 1.
For each b ∈ {0, 1}: Pb inputs ⟨α⟩b ∈ {0, 1}n and proceeds as follows.
1-1. The two parties send (extend, n) to Fb

COT with identifier b, which returns kb ∈ Fn
2λ to Pb and

(r1−b,m1−b) ∈ Fn
2 × Fn

2λ to P1−b such that m1−b = kb ⊕ r1−b ·∆′
b.

1-2. Pb sets gb := ⟨α⟩b ⊕ rb, sends gb to P1−b, and receives g1−b from P1−b. For i ∈ [1, n], Pb sets

Kb[⟨αi⟩1−b] := k
(i)
b ⊕ g

(i)
1−b · ⟨∆⟩b, Mb[⟨αi⟩b] := m

(i)
b ⊕ r

(i)
b · (0

λ−1 ∥ (lsb(∆′
b)⊕ (1− b))).

1-3. Pb outputs ⟨∆⟩b and {(Kb[⟨αi⟩1−b],Mb[⟨αi⟩b])}i∈[1,n].

Figure 11: Preprocessing sub-protocol for DPF/DCF correlation generation.

Protocol ΠMULT

For each b ∈ {0, 1}: Pb inputs (⟨A⟩Ab , ⟨B⟩Ab) ∈ R2 and proceeds as follows.
1. The two parties send (extend, 2) to FOLE, which, for each b ∈ {0, 1}, returns (xb, zb) ∈ R2 ×R2 to

Pb such that z0 + z1 = x0 · x1.

2. Pb computes (γb, ζb) := (⟨A⟩Ab , ⟨B⟩Ab) + (x
(b)
b ,x

(1−b)
b), sends (γb, ζb) to P1−b, receives (γ1−b, ζ1−b)

from P1−b, and defines ⟨A ·B⟩Ab := ⟨A⟩Ab · ⟨B⟩Ab + ⟨A⟩Ab · ζ1−b − x
(1−b)
b · γ1−b + z

(0)
b + z

(1)
b .

3. Pb outputs ⟨A ·B⟩Ab .

Figure 12: OLE-based multiplication sub-protocol.

[0, N) and range G.

Theorem 4. Given CCR function H : F2λ → F2λ, function ConvertG : F2ℓ → G with ℓ ∈ {λ−1, λ},
and keyed hash function HS(x) := H(S ⊕ x) with some key S ← F2λ, Figure 9 gives a DCF scheme
with domain [0, N) and range G.

5.2 DPF Correlation Generation
We define a leveled evaluation algorithm DPF.NextLevel such that, on input a level index i ∈ [1, n],
all nodes on the (i− 1)-th level of the share of a shared pseudorandom correlated GGM tree, and
the public correction word CWi for the i-th level, outputs all nodes one the i-th level.

In Figure 10, we present our DPF correlation generation protocol ΠDPF. This protocol operates
in the (FCOT,FRand,FOLE)-hybrid model. FRand is the standard coin-tossing functionality that
outputs a uniform string to both parties. FOLE is the functionality for oblivious linear evaluation
(OLE) on ring R, where P0 (resp., P1) is given random (x0, z0) ∈ RN × RN (resp., (x1, z1) ∈
RN ×RN) such that z0 + z1 equals the component-wise multiplication x0 ⊙ x1. We refer readers
to Appendix F.2 and Appendix F.3 for the definitions and instantiations of FRand and FOLE. If β
is a bit-string, ΠDPF never uses FOLE.

ΠDPF requires FRand for the following reason. Note that ΠDPF uses the same global offset ∆ as
the roots of polynomially many shared trees, each of which defines a fresh DPF correlation. So, the
two shares of this identical root should be “re-randomized” to avoid the identical per-party shares

21

of the defined correlations. The two parties do this re-randomization by calling FRand for a public
randomness W and XORing this value to their shares of ∆, respectively.

In ΠDPF, the key S of the keyed hash function HS can be produced by one FRand invocation
before protocol execution, and we omit this setup for simplicity.
Security. We prove Theorem 5 in Appendix D.4. This proof will consider polynomially many
concurrent Gen executions that uses the one-time initialized ∆. Intuitively, the security primarily
follows from the COT-based secure computation of correction words, where the COT tuples are
related to the global offset ∆ so that the transcripts are masked by CCR responses. In particular,
the intermediate transcript db is masked by a CCR response coming from a legal CCR query with
overwhelming probability due to the uniform µb.

Theorem 5. Given CCR function H : F2λ → F2λ, function ConvertR : F2λ−1 → R, and keyed
hash function HS(x) := H(S ⊕ x) with some key S ← F2λ, protocol ΠDPF (Figure 10) UC-realizes
functionality FDPF (Figure 7) against any semi-honest adversary in the (FCOT,FRand,FOLE)-hybrid
model. If R = F2ℓ for ℓ ∈ N, protocol ΠDPF never invokes FOLE.

Communication optimization. ΠDPF has the following two optimizations:

• For t concurrent Gen executions (e.g., in its applications to RAM-based computation [Ds17],
FSS-based MPC [BCG+21], and OLE extension [BCG+20], etc), each Pb can compress all µb’s
in these executions via a PRF F : F2λ×{0, 1}∗ → F2λ with a fresh key kprf,b ← F2λ sampled after
receiving its COT outputs (from both Fb

COT and F1−b
COT) in all executions. For each execution

with sub-session ID ssid, the two parties define µb := F (kprf,b, ssid).

• All invocations of FRand can be compressed via another independent PRF key sampled after the
one-time initialization of Fb

COT and F1−b
COT so that the root of each Pb’s tree is (pseudo)random.

• Another method to save the communication for random µb’s is to replace HS by a hash function
that meets “CCR for naturally derived keys” [ZRE15, GKWY20], which can also be implemented
in one RP call. Note that µb is introduced to prevent the replay attack, which results from the
manipulation of COT outputs, against the hashing mask in db. The alternative hash function
addresses this attack by adding non-repeating tweaks.

Complexity analysis (binary field). Consider the complexity per execution when the first
PRF-based optimization is used in t concurrent Gen executions. The cost is symmetric. ΠDPF uses
n COT tuples per party and one FRand call. Each party sends (n + 1) + (n + 1) · λ + λ

t + log |R|
bits. The computation per party is dominated by the tree expansion in n DPF.NextLevel calls, or
1.5N RP calls. ΠDPF runs in n+ 3 rounds (without counting the one-time setup).

In contrast, the binary-field protocol [Ds17] can be implemented from GMW-style 2PC and n
string OTs each with (λ−1)-bit payloads. One can cast these string OTs into n precomputed COT
tuples according to [IKNP03, Bea95]. Using these tuples, each party sends n+n · (3λ− 1)+ log |R|
bits, and the computation per party is dominated by the 2N RP calls in GGM tree expansion.
This protocol can proceed in 2n+ 2 rounds: one for sending n masked choice bits, two for sharing
and revealing each of the first n correction words, and one for revealing the (n + 1)-th correction
word. Our savings in computation, communication, and round complexity are about 25%, 66.6%,
and 50%, respectively.

We implement ΠPREP and ΠDPF in C++, and perform benchmarks on a pair of Amazon EC2
R5.xlarge instances. We take binary fields R = F2127 and R = F2 under computational security
parameter λ ≈ 128. The reported time include both distributed key generation and full-domain
evaluation. We set 1Gbps bandwidth with no latency as our LAN setting, and 20Mbps bandwidth

22

n = 20 n = 22 n = 24 n = 26 n = 28

R = F2127
LAN 50 120 397 1501 5920
WAN 2752 3020 3492 4786 9355

R = F2
LAN 29 30 34 52 120
WAN 2930 3132 3337 3554 3823

Table 3: The efficiency of distributed correlation generation for our DPF scheme. All numbers
are in milliseconds (ms).

with 100ms latency as our WAN setting. The results are shown in Table 3. We can see that our
protocol is practically efficient, especially for two-server PIR. Although all numbers are reported
based on one thread, performing one correlation generation for 228 127-bit values takes about 6
seconds, which is about 30% to 40% faster than the performance from a prior implementation in
the same threads [Ds17].
Complexity analysis (general ring). The two parties additionally need two precomputed OLE
tuples for the secure multiplication. Overall, each party sends (n+ 1) + (n+ 1) · λ+ λ

t + 3 · log |R|
bits, and the protocol runs in n+ 4 rounds.

In contrast, the binary-field protocol [Ds17] can be adapted for the general-ring CWn+1 in the
DPF scheme [BGI16]. Securely computing this CWn+1 consumes two OLE tuples and needs the
level-by-level 2PC, which leads to two additional bits in each OT payload per level, to share the
last-level control bit ⟨tn⟩1. Each party sends at most n + n · (3λ + 3) + 3 · log |R| bits, and the
protocol runs in 2n+ 3 rounds. The improvement is the same as the binary-field case.

5.3 DCF Correlation Generation
Our DCF protocol ΠDCF in Figure 13 extends ΠDPF by also computing n value correction words
and defining the evaluation result as per our DCF scheme. If β is a bit-string, the two parties
can compute n value correction words without using precomputed OLE tuples. Otherwise, for a
general ring element β, these correction words are obtained from OLE-based secure multiplication.
Security. We prove Theorem 6 in Appendix D.5, where polynomially many concurrent Gen exe-
cutions are considered. The security is also based on the COT- and OLE-based secure computation
of the n additional correction words of our DCF scheme. Note that the intermediate yib’s are pseu-
dorandom due the masking CCR responses, which are for the legal CCR queries with overwhelming
probability in the presence of uniform xib’s.

Theorem 6. Given CCR function H : F2λ → F2λ, function ConvertR : F2ℓ →R for ℓ ∈ {λ− 1, λ},
and keyed hash function HS(x) := H(S⊕x) with some key S ← F2λ, protocol ΠDCF (Figure 13) UC-
realizes functionality FDCF (Figure 7) against any semi-honest adversary in the (FCOT,FRand,FOLE)-
hybrid model. If R = F2ℓ for ℓ ∈ N, protocol ΠDCF never invokes FOLE.
Communication optimization. The optimizations in Section 5.2 also applies to the DCF pro-
tocol ΠDCF. Moreover, the random elements {xib}i∈[1,n] in ΠDCF can also be compressed using the
same technique for the random µb’s.
Complexity analysis (binary field). Consider the complexity per execution when the first PRF-
based optimization is used in t concurrent Gen executions. The cost is symmetric. ΠDCF consumes
n COT tuples per party and one FRand call. Each party sends (n+1)+(n+1)·λ+ λ

t +(2n+1)·log |R|
bits, and the computation per party comes from the 2.5N RP calls in the tree expansion. ΠDCF

has round complexity n+ 3, the same as ΠDPF in the binary-field case.

23

Protocol ΠDCF

Parameters: Domain size N = 2n for n ∈ N. Ring R. Keyed hash function HS : F2λ → F2λ . Function
ConvertR : {0, 1}∗ →R. Let H∗ := ConvertR ◦ HS .
DCF Gen: This procedure can be executed many times. For each b ∈ {0, 1}, Pb inputs (⟨α⟩b, ⟨β⟩Ab) ∈
[0, N)×R and proceeds as in ΠDPF (Figure 8), with the same Step 1, 2 and the following modifications
to the subsequent steps:
3. Along with ⟨CWi⟩b for i ∈ [1, n− 1], Pb samples xib ← {0, 1}λ, computes

yib := H∗(xib ⊕ Kb[⟨αi⟩1−b])− H∗(xib ⊕ Kb[⟨αi⟩1−b]⊕ ⟨∆⟩b) + ⟨β⟩Ab − 2 · ⟨αi⟩b · ⟨β⟩Ab ,
sends (xib, y

i
b) to P1−b, receive (xi1−b, y

i
1−b) from P1−b, and computes

⟨αi · β⟩Ab := ⟨αi⟩b · ⟨β⟩Ab − H∗(xib ⊕ Kb[⟨αi⟩1−b]) + H∗(xi1−b ⊕Mb[⟨αi⟩b]) + ⟨αi⟩b · yi1−b.

4. Along with ⟨CWn⟩b, Pb repeats Step 3 for i = n and computes ⟨αn · β⟩Ab .

5. For i ∈ [1, n] and j ∈ [0, 2i−1), Pb computes ⟨vji ⟩b := HS(⟨sji−1 ∥ t
j
i−1⟩b ⊕ 2) and ⟨α0 · β⟩Ab := 0. Pb

computes ⟨CWn+1⟩Ab by using ⟨αn · β⟩Ab instead of ⟨β⟩Ab , and:
(Binary field R = F2ℓ , without FOLE) For i ∈ [1, n] in parallel:
Pb computes ⟨VCWi⟩Ab := (

∑
j∈[0,2i−1) ConvertR(⟨vji ⟩b)) + ⟨αi · β⟩Ab − ⟨αi−1 · β⟩Ab .

(General ring R, using FOLE) For i ∈ [1, n] in parallel:
The two parties run sub-protocol ΠMULT (Figure 12), which, for each b ∈ {0, 1}, takes as input

⟨Ai⟩Ab := (−1)b ·
∑

j∈[0,2i−1)⟨t
j
i−1⟩b ∈ R,

⟨Bi⟩Ab := (−1)1−b ·
∑

j∈[0,2i−1) ConvertR(⟨vji ⟩b) + ⟨αi · β⟩Ab − ⟨αi−1 · β⟩Ab ∈ R,

and returns ⟨VCWi⟩Ab to Pb.
In either case, along with ⟨CWn+1⟩Ab , Pb sends ⟨VCWi⟩Ab to P1−b, receives ⟨VCWi⟩A1−b from P1−b, and
computes VCWi := ⟨VCWi⟩Ab + ⟨VCWi⟩A1−b.

6. Pb computes kb := (⟨∆⟩b ⊕ W, {CWi}i∈[1,n+1], {VCWi}i∈[1,n]) and ⟨r(j)⟩Ab := DCF.Eval(b, kb, j) for
j ∈ [0, N), and outputs ⟨r⟩Ab ∈ RN .

Figure 13: DCF correlation generation in the (FCOT,FRand,FOLE)-hybrid model.

In contrast, the state-of-the-art protocol of [BCG+21] requires n string OTs to run GMW-style
2PC. The string OTs consume n precomputed COT tuples and have payloads of (λ−1)+2 · log |R|
bits. Using n COT tuples, each party sends n + n · (3λ − 1 + 5 · log |R|) + log |R| bits, and the
computation per party is dominated by the 4N RP calls in GGM tree expansion in 2n+2 rounds.
Our savings in computation and round complexity are 37.5% and 50%, respectively. For a typical
ring R with size |R| ≈ 2λ, the communication reduction is about 62.5%. When R is sufficiently
small, this reduction can be 66.6%.
Complexity analysis (general ring). ΠDCF also works for general R at the cost of additionally
using 2n+2 precomputed OLE tuples. This general-ring version proceeds in n+4 rounds, and the
overall outgoing communication per party is (n+ 1) + (n+ 1) · λ+ λ

t + (4n+ 3) · log |R| bits.
In contrast, the OT-based protocol [BCG+21] can run in 2n + 3 rounds. Each party sends at

most n+ n · (3λ+ 3+ 4 · log |R|) + (3n+ 3) · log |R| bits and uses 2n+ 2 OLE tuples. Our savings
in communication and round complexity are about 50% ∼ 66.6% and 50%, respectively, for typical
ring size |R| ≤ 2λ.

24

Acknowledgements
Work of Kang Yang is supported by the National Key Research and Development Program of China
(Grant No. 2022YFB2702000), and by the National Natural Science Foundation of China (Grant
Nos. 62102037, 61932019). Work of Xiao Wang is supported by DARPA under Contract No.
HR001120C0087, NSF award #2016240, #2236819, and research awards from Meta and Google.
The views, opinions, and/or findings expressed are those of the author(s) and should not be in-
terpreted as representing the official views or policies of the Department of Defense or the U.S.
Government. Work of Jiang Zhang is supported by the National Key Research and Development
Program of China (Grant No. 2022YFB2702000), and by the National Natural Science Foundation
of China (Grant Nos. 62022018, 61932019). Work of Zheli Liu is supported by the National Natural
Science Foundation of China (Grant No. 62032012).

References
[ALSZ13] Gilad Asharov, Yehuda Lindell, Thomas Schneider, and Michael Zohner. More effi-

cient oblivious transfer and extensions for faster secure computation. In Ahmad-Reza
Sadeghi, Virgil D. Gligor, and Moti Yung, editors, ACM CCS 2013, pages 535–548.
ACM Press, November 2013.

[BBC+21] Dan Boneh, Elette Boyle, Henry Corrigan-Gibbs, Niv Gilboa, and Yuval Ishai.
Lightweight techniques for private heavy hitters. In 2021 IEEE Symposium on Security
and Privacy, pages 762–776. IEEE Computer Society Press, May 2021.

[BCG+19a] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Peter Rindal,
and Peter Scholl. Efficient two-round OT extension and silent non-interactive secure
computation. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan
Katz, editors, ACM CCS 2019, pages 291–308. ACM Press, November 2019.

[BCG+19b] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Efficient pseudorandom correlation generators: Silent OT extension and more. In
Alexandra Boldyreva and Daniele Micciancio, editors, CRYPTO 2019, Part III, vol-
ume 11694 of LNCS, pages 489–518. Springer, Heidelberg, August 2019.

[BCG+20] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, and Peter Scholl.
Efficient pseudorandom correlation generators from ring-LPN. In Daniele Micciancio
and Thomas Ristenpart, editors, CRYPTO 2020, Part II, volume 12171 of LNCS,
pages 387–416. Springer, Heidelberg, August 2020.

[BCG+21] Elette Boyle, Nishanth Chandran, Niv Gilboa, Divya Gupta, Yuval Ishai, Nishant
Kumar, and Mayank Rathee. Function secret sharing for mixed-mode and fixed-
point secure computation. In Anne Canteaut and François-Xavier Standaert, editors,
EUROCRYPT 2021, Part II, volume 12697 of LNCS, pages 871–900. Springer, Hei-
delberg, October 2021.

[BCG+22] Elette Boyle, Geoffroy Couteau, Niv Gilboa, Yuval Ishai, Lisa Kohl, Nicolas Resch,
and Peter Scholl. Correlated pseudorandomness from expand-accumulate codes. In
Yevgeniy Dodis and Thomas Shrimpton, editors, CRYPTO 2022, Part II, volume
13508 of LNCS, pages 603–633. Springer, Heidelberg, August 2022.

25

[BCGI18] Elette Boyle, Geoffroy Couteau, Niv Gilboa, and Yuval Ishai. Compressing vector
OLE. In David Lie, Mohammad Mannan, Michael Backes, and XiaoFeng Wang, edi-
tors, ACM CCS 2018, pages 896–912. ACM Press, October 2018.

[Bea95] Donald Beaver. Precomputing oblivious transfer. In Don Coppersmith, editor,
CRYPTO’95, volume 963 of LNCS, pages 97–109. Springer, Heidelberg, August 1995.

[BGI16] Elette Boyle, Niv Gilboa, and Yuval Ishai. Function secret sharing: Improvements
and extensions. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, An-
drew C. Myers, and Shai Halevi, editors, ACM CCS 2016, pages 1292–1303. ACM
Press, October 2016.

[BGI19] Elette Boyle, Niv Gilboa, and Yuval Ishai. Secure computation with preprocessing
via function secret sharing. In Dennis Hofheinz and Alon Rosen, editors, TCC 2019,
Part I, volume 11891 of LNCS, pages 341–371. Springer, Heidelberg, December 2019.

[BHKR13] Mihir Bellare, Viet Tung Hoang, Sriram Keelveedhi, and Phillip Rogaway. Efficient
garbling from a fixed-key blockcipher. In 2013 IEEE Symposium on Security and
Privacy, pages 478–492. IEEE Computer Society Press, May 2013.

[BMRS21] Carsten Baum, Alex J. Malozemoff, Marc B. Rosen, and Peter Scholl. Mac’n’cheese:
Zero-knowledge proofs for boolean and arithmetic circuits with nested disjunctions.
In Tal Malkin and Chris Peikert, editors, CRYPTO 2021, Part IV, volume 12828 of
LNCS, pages 92–122, Virtual Event, August 2021. Springer, Heidelberg.

[BN18] Srimanta Bhattacharya and Mridul Nandi. Full indifferentiable security of the xor of
two or more random permutations using the χ2 method. In Jesper Buus Nielsen and
Vincent Rijmen, editors, EUROCRYPT 2018, Part I, volume 10820 of LNCS, pages
387–412. Springer, Heidelberg, April / May 2018.

[Can01] Ran Canetti. Universally composable security: A new paradigm for cryptographic
protocols. In 42nd FOCS, pages 136–145. IEEE Computer Society Press, October
2001.

[CKKZ12] Seung Geol Choi, Jonathan Katz, Ranjit Kumaresan, and Hong-Sheng Zhou. On the
security of the “free-XOR” technique. In Ronald Cramer, editor, TCC 2012, volume
7194 of LNCS, pages 39–53. Springer, Heidelberg, March 2012.

[CRR21] Geoffroy Couteau, Peter Rindal, and Srinivasan Raghuraman. Silver: Silent VOLE
and oblivious transfer from hardness of decoding structured LDPC codes. In Tal
Malkin and Chris Peikert, editors, CRYPTO 2021, Part III, volume 12827 of LNCS,
pages 502–534, Virtual Event, August 2021. Springer, Heidelberg.

[CS14] Shan Chen and John P. Steinberger. Tight security bounds for key-alternating ciphers.
In Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 327–350. Springer, Heidelberg, May 2014.

[DIO21] Samuel Dittmer, Yuval Ishai, and Rafail Ostrovsky. Line-point zero knowledge and
its applications. In 2nd Conference on Information-Theoretic Cryptography, 2021.

[DNNR17] Ivan Damgård, Jesper Buus Nielsen, Michael Nielsen, and Samuel Ranellucci. The
TinyTable protocol for 2-party secure computation, or: Gate-scrambling revisited. In

26

Jonathan Katz and Hovav Shacham, editors, CRYPTO 2017, Part I, volume 10401 of
LNCS, pages 167–187. Springer, Heidelberg, August 2017.

[DPSZ12] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty com-
putation from somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran
Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages 643–662. Springer,
Heidelberg, August 2012.

[Ds17] Jack Doerner and abhi shelat. Scaling ORAM for secure computation. In Bhavani M.
Thuraisingham, David Evans, Tal Malkin, and Dongyan Xu, editors, ACM CCS 2017,
pages 523–535. ACM Press, October / November 2017.

[GGM84] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random func-
tions (extended abstract). In 25th FOCS, pages 464–479. IEEE Computer Society
Press, October 1984.

[GI14] Niv Gilboa and Yuval Ishai. Distributed point functions and their applications. In
Phong Q. Nguyen and Elisabeth Oswald, editors, EUROCRYPT 2014, volume 8441
of LNCS, pages 640–658. Springer, Heidelberg, May 2014.

[GKCG22] Kanav Gupta, Deepak Kumaraswamy, Nishanth Chandran, and Divya Gupta. Llama:
A low latency math library for secure inference. Privacy Enhancing Technologies
Symposium (PETS 2022), 2022.

[GKWY20] Chun Guo, Jonathan Katz, Xiao Wang, and Yu Yu. Efficient and secure multiparty
computation from fixed-key block ciphers. In 2020 IEEE Symposium on Security and
Privacy, pages 825–841. IEEE Computer Society Press, May 2020.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or
A completeness theorem for protocols with honest majority. In Alfred Aho, editor,
19th ACM STOC, pages 218–229. ACM Press, May 1987.

[GNN17] Satrajit Ghosh, Jesper Buus Nielsen, and Tobias Nilges. Maliciously secure oblivious
linear function evaluation with constant overhead. In Tsuyoshi Takagi and Thomas
Peyrin, editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages 629–659.
Springer, Heidelberg, December 2017.

[GPR+21] Gayathri Garimella, Benny Pinkas, Mike Rosulek, Ni Trieu, and Avishay Yanai. Obliv-
ious key-value stores and amplification for private set intersection. In Tal Malkin and
Chris Peikert, editors, CRYPTO 2021, Part II, volume 12826 of LNCS, pages 395–425,
Virtual Event, August 2021. Springer, Heidelberg.

[HK21] David Heath and Vladimir Kolesnikov. One hot garbling. In Giovanni Vigna and
Elaine Shi, editors, ACM CCS 2021, pages 574–593. ACM Press, November 2021.

[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols - Techniques
and Constructions. ISC. Springer, Heidelberg, 2010.

[HSS17] Carmit Hazay, Peter Scholl, and Eduardo Soria-Vazquez. Low cost constant round
MPC combining BMR and oblivious transfer. In Tsuyoshi Takagi and Thomas Peyrin,
editors, ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages 598–628. Springer,
Heidelberg, December 2017.

27

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers
efficiently. In Dan Boneh, editor, CRYPTO 2003, volume 2729 of LNCS, pages 145–
161. Springer, Heidelberg, August 2003.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious
arithmetic secure computation with oblivious transfer. In Edgar R. Weippl, Stefan
Katzenbeisser, Christopher Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM
CCS 2016, pages 830–842. ACM Press, October 2016.

[KPR18] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ great
again. In Jesper Buus Nielsen and Vincent Rijmen, editors, EUROCRYPT 2018,
Part III, volume 10822 of LNCS, pages 158–189. Springer, Heidelberg, April / May
2018.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR
gates and applications. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Mag-
nús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, ICALP 2008,
Part II, volume 5126 of LNCS, pages 486–498. Springer, Heidelberg, July 2008.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank
Burra. A new approach to practical active-secure two-party computation. In Reihaneh
Safavi-Naini and Ran Canetti, editors, CRYPTO 2012, volume 7417 of LNCS, pages
681–700. Springer, Heidelberg, August 2012.

[Pat09] Jacques Patarin. The “coefficients H” technique (invited talk). In Roberto Maria
Avanzi, Liam Keliher, and Francesco Sica, editors, SAC 2008, volume 5381 of LNCS,
pages 328–345. Springer, Heidelberg, August 2009.

[RS08] Phillip Rogaway and John P. Steinberger. Constructing cryptographic hash functions
from fixed-key blockciphers. In David Wagner, editor, CRYPTO 2008, volume 5157
of LNCS, pages 433–450. Springer, Heidelberg, August 2008.

[RS21] Peter Rindal and Phillipp Schoppmann. VOLE-PSI: Fast OPRF and circuit-PSI
from vector-OLE. In Anne Canteaut and François-Xavier Standaert, editors, EURO-
CRYPT 2021, Part II, volume 12697 of LNCS, pages 901–930. Springer, Heidelberg,
October 2021.

[SGRR19] Phillipp Schoppmann, Adrià Gascón, Leonie Reichert, and Mariana Raykova. Dis-
tributed vector-OLE: Improved constructions and implementation. In Lorenzo Caval-
laro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, ACM CCS 2019,
pages 1055–1072. ACM Press, November 2019.

[WYKW21] Chenkai Weng, Kang Yang, Jonathan Katz, and Xiao Wang. Wolverine: Fast, scalable,
and communication-efficient zero-knowledge proofs for boolean and arithmetic circuits.
In 2021 IEEE Symposium on Security and Privacy, pages 1074–1091. IEEE Computer
Society Press, May 2021.

[WYX+21] Chenkai Weng, Kang Yang, Xiang Xie, Jonathan Katz, and Xiao Wang. Mystique:
Efficient conversions for zero-knowledge proofs with applications to machine learning.
In Michael Bailey and Rachel Greenstadt, editors, USENIX Security 2021, pages 501–
518. USENIX Association, August 2021.

28

[YSWW21] Kang Yang, Pratik Sarkar, Chenkai Weng, and Xiao Wang. QuickSilver: Efficient
and affordable zero-knowledge proofs for circuits and polynomials over any field. In
Giovanni Vigna and Elaine Shi, editors, ACM CCS 2021, pages 2986–3001. ACM
Press, November 2021.

[YWL+20] Kang Yang, Chenkai Weng, Xiao Lan, Jiang Zhang, and Xiao Wang. Ferret: Fast
extension for correlated OT with small communication. In Jay Ligatti, Xinming Ou,
Jonathan Katz, and Giovanni Vigna, editors, ACM CCS 2020, pages 1607–1626. ACM
Press, November 2020.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing
data transfer in garbled circuits using half gates. In Elisabeth Oswald and Marc
Fischlin, editors, EUROCRYPT 2015, Part II, volume 9057 of LNCS, pages 220–250.
Springer, Heidelberg, April 2015.

29

A Circular Correlation Robustness for Restricted Queries
In some of our protocols, we use a public keyed hash function HS and require that the responses
from the CCR oracle Occr

HS ,∆
(·, ·) are pseudorandom from the view of the distinguisher unaware of

the global key ∆. The distinguisher can only make restricted queries to this CCR oracle in the
sense that all oracle queries are the type 5 operations for O(xj , bj) = Occr

HS ,∆
(xj , bj) in Definition 3.

The considered operations are reminiscent of those under the definition of “circular correlation
robustness for naturally derived keys” [ZRE15, GKWY20] in the Half-Gate-based circuit garbling,
except that (i) the hash function and the oracle are tweak-free, (ii) a small set of public values τ
can be added to hash/oracle inputs, and (iii) two syntactically identical operations are not allowed.

Definition 3. Let H : {0, 1}λ → {0, 1}λ be a function, O : {0, 1}λ × {0, 1} → {0, 1}λ be an oracle,
and T ⊆ {0, 1}λ \ {0λ} be a set of linearly independent strings. Qi is a natural and non-trivial
operation (NNO) if it defines a result xi ∈ {0, 1}λ such that (i) xi is in one of the following types:

1. xi ← {0, 1}λ.

2. xi := xj ⊕ xk, where xj , xk were defined by two distinct NNOs Qj , Qk.

3. xi := xj ⊕ τ , where xj was defined by an NNO Qj, and τ ∈ T .

4. xi := H(xj), where xj was defined by an NNO Qj.

5. xi := O(xj , bj), where xj was defined by an NNO Qj, and bj ∈ {0, 1}.

and (ii) xi syntactically differs from any xj that was defined by an NNO Qj.

Let RealHS ,∆(·) be a real-world oracle, which, on input a natural and non-trivial operation, sets
H(·) = HS(·) and O(·, ·) = Occr

HS ,∆
(·, ·), executes this operation as per Definition 3, and returns

the defined result. The ideal-world oracle IdealHS
(·) is identical to RealHS ,∆(·), except that it sets

O(·, ·) to an oracle that returns a fresh uniform string upon every invocation. We have the following
lemma.

Lemma 1 (Circular correlation robustness for restricted queries). Let H : {0, 1}λ → {0, 1}λ be
a (t, q, ρ, ϵ)-CCR function, and χ be a distribution on {0, 1}λ with min-entropy at least ρ. Let
HS(x) := H(S ⊕ x) for S, x ∈ {0, 1}λ. There exists a polynomial poly(·) such that, for any PPT
distinguisher D running in time at most t − poly(λ) and querying the oracle RealHS ,∆(·) with at
most q natural and non-trivial operations, it holds that∣∣∣∣∣∣ Pr

∆←χ,S←χ,
coins←U

[
DRealHS,∆(·)(1λ) = 1

]
− Pr

coins′←U ,S←χ,
coins←U

[
DIdealHS (·)(1λ) = 1

]∣∣∣∣∣∣ ≤ 2ϵ+
q2 · 2|T |

2λ+1
,

where U denotes the uniform distribution on bit-strings of an unspecified polynomial length, coins
denotes the random coins used to define the results of type 1 operations, and coins′ denotes the
random coins used to define the results of type 5 operations in IdealHS

(·).

Proof. We prove this lemma via the following two lemmas.

Lemma 2. Let U and coins be defined as per Lemma 1. Let collreal denote the event that, during
the interaction between D and RealHS ,∆(·), there exists two defined results x, x′ ∈ {0, 1}λ such that
x = x′. It holds that

Pr
∆←χ,S←χ,
coins←U

[collreal] ≤ ϵ+
q2 · 2|T |

2λ+1
.

30

Proof. For some f ′ ∈ Fλ,λ, define a hybrid oracle Hybf ′,∆(·) that is identical to RealHS ,∆(·) except
that it executes a type 4 operation by defining xi := f ′(xj) and executes a type 5 operation by
defining xi := f ′(xj ⊕∆)⊕ bj ·∆. In other words, Hybf ′,∆(·) replaces the HS calls in RealHS ,∆(·) by
f ′ calls. Let collhyb denote the event that, during the interaction between D and Hybf ′,∆(·), there
exist two results x, x′ ∈ {0, 1}λ defined by two operations such that x = x′.

First, we proceed to prove that∣∣∣∣∣∣ Pr
∆←χ,S←χ,
coins←U

[collreal]− Pr
∆←χ,f ′←Fλ,λ,

coins←U

[
collhyb

]∣∣∣∣∣∣ ≤ ϵ. (3)

Assume that, for the sake of contradiction, (3) does not hold for some deterministic polynomial-time
D. We show that the following adversary A can use D to break the CCR property of H:

1. A internally runs D and samples ∆ ← χ. Upon receiving a natural and non-trivial operation
Qi from D, A proceeds as follows:

• If Qi is a type 1/2/3 operation, execute it as required. In particular, the results of type 1
operations are defined by the random coins coins← U .

• If Qi is a type 4 operation with input xj , query the CCR oracle with (xj , 0), receive a response
r, and define the result of Qi to r.

• If Qi is a type 5 operation with input (xj , bj), query the CCR oracle with (xj ⊕∆, 0), receive
a response r, and define the result of Qi to r ⊕ bj ·∆.

2. A terminates when D terminates. It outputs 1 if there exist two defined results x, x′ such that
x = x′; otherwise it outputs 0.

A makes at most q queries to the CCR oracle since there are at most q natural and non-trivial
operations. A is polynomial-time since D is polynomial-time.

If A is given Occr
H,S(·, ·) for some S ← χ, then D interacts with an emulated oracle that perfectly

functions as RealHS ,∆(·). During the interaction between D and this emulated oracle, collreal occurs
with the same probability as that in the case where D interacts with the real oracle RealHS ,∆(·).
Although D does not know the key S in the emulation (in contrast to the public S in RealHS ,∆(·)),
this does not affect the probability of collreal since every operation only depends on the previous
responses from the given oracle. One can consider the event collreal in the emulated and the real
cases under the same probability space, i.e., the same literal values of ∆, (unknown) S, and coins
in both two cases. Since D is deterministic, an induction from the first operation queried by D
shows that the responses are the same in the two cases given the same ∆, S, and coins. Depending
on these responses, the occurrence of collreal is the same. Thus,

Pr
S←χ

[
AOccr

H,S(·,·)(1λ) = 1
]
= Pr

∆←χ,S←χ,
coins←U

[collreal] .

If A is given f∗(·, ·) for some f∗ ← Fλ+1,λ, then D interacts with an emulated oracle that
perfectly functions as Hybf ′,∆(·) for the random function f ′(·) := f∗(·, 0). Likewise, we have

Pr
f∗←Fλ+1,λ

[
Af∗(·,·)(1λ) = 1

]
= Pr

∆←χ,f ′←Fλ,λ,
coins←U

[
collhyb

]
.

By the contradiction assumption, A breaks the CCR property of H.

31

Second, we prove in the following induction that

Pr
∆←χ,f ′←Fλ,λ,

coins←U

[
collhyb

]
≤ q2 · 2|T |

2λ+1
. (4)

As the base case, (4) trivially holds if there is only one operation. Then, assume that (4) holds for
exact 1 ≤ q′−1 ≤ q−1 operations and consider the q′-th operation that defines a result x ∈ {0, 1}λ.
Let collhyb(i) be the event that, during the interaction between D and Hybf ′,∆(·), there exist two
results x, x′ ∈ {0, 1}λ such that x = x′ in the first i ∈ N operations. collhyb = collhyb(q) and

Pr
∆←χ,f ′←Fλ,λ,

coins←U

[
collhyb(q

′)
]

= Pr
∆←χ,f ′←Fλ,λ,

coins←U

[
collhyb(q

′) | collhyb(q
′ − 1)

]
· Pr
∆←χ,f ′←Fλ,λ,

coins←U

[
collhyb(q

′ − 1)
]

+ Pr
∆←χ,f ′←Fλ,λ,

coins←U

[
collhyb(q

′) | ¬collhyb(q
′ − 1)

]
· Pr
∆←χ,f ′←Fλ,λ,

coins←U

[
¬collhyb(q

′ − 1)
]

= Pr
∆←χ,f ′←Fλ,λ,

coins←U

[
collhyb(q

′ − 1)
]

+ Pr
∆←χ,f ′←Fλ,λ,

coins←U

[
collhyb(q

′) | ¬collhyb(q
′ − 1)

]
· Pr
∆←χ,f ′←Fλ,λ,

coins←U

[
¬collhyb(q

′ − 1)
]

≤ Pr
∆←χ,f ′←Fλ,λ,

coins←U

[
collhyb(q

′ − 1)
]
+ Pr

∆←χ,f ′←Fλ,λ,
coins←U

[
collhyb(q

′) | ¬collhyb(q
′ − 1)

]
For each result x′ ∈ {0, 1}λ defined in the previous q′ − 1 operations, it syntactically holds that

x⊕ x′ =

(⊕
i∈I

xi

)
⊕

⊕
j∈J

f ′(xj)

⊕(⊕
k∈K

f ′(xk ⊕∆)

)
⊕ b ·∆⊕

⊕
τ∈T

bτ · τ

since x, x′ can be expressed as a linear combination of operations. Note that the non-triviality of
operations ensures that the case “I = J = K = ∅ and b = 0 and each bτ = 0” is impossible.
Conditioned on ¬collhyb(q′ − 1), there are two cases for such x and x′:

• I = J = K = ∅ and b = 0 and at least one bτ ̸= 0. By the definition of T , x⊕ x′ ̸= 0.

• At least one I,J ,K ̸= ∅ or b ̸= 0. This case is identical to that at least one I,J ,K ̸= ∅ since
b ̸= 0 implies that K is not trivially empty, given that (i) b ̸= 0 implies at least one syntactical
term of the form f ′(xk ⊕∆) for some k ∈ K, and (ii) any xk for k ∈ K is distinct conditioned
on ¬collhyb(q′ − 1) (i.e., the additive terms in K cannot be canceled due to previous collisions).
The probability of this case equals that of the event that a random string (resulting from at least
one nonempty I,J ,K) lies in the space spanned by linearly independent strings in T (for any
Boolean coefficients {bτ}τ∈T specified by operations). This probability is bounded by 2|T |/2λ.

Combining the two cases, we can see that x = x′ occurs with probability at most 2|T |/2λ. Taking
a union bound over all x′’s in the previous q′ − 1 operations,

Pr
∆←χ,f ′←Fλ,λ,

coins←U

[
collhyb(q

′) | ¬collhyb(q
′ − 1)

]
≤ (q′ − 1) · 2|T |

2λ
.

32

Using the induction assumption, we have that

Pr
∆←χ,f ′←Fλ,λ,

coins←U

[
collhyb(q

′)
]
≤ Pr

∆←χ,f ′←Fλ,λ,
coins←U

[
collhyb(q

′ − 1)
]

+ Pr
∆←χ,f ′←Fλ,λ,

coins←U

[
collhyb(q

′) | ¬collhyb(q
′ − 1)

]
≤ (q′ − 1)2 · 2|T |

2λ+1
+

(q′ − 1) · 2|T |

2λ
<
q′2 · 2|T |

2λ+1

The above induction shows that (4) holds. This lemma follows from (3) and (4).

Lemma 3. Let U , coins, and coins′ be defined as per Lemma 1, and collreal be the event defined as
per Lemma 2. It holds that∣∣∣∣∣∣ Pr

∆←χ,S←χ,
coins←U

[
DRealHS,∆(·)(1λ) = 1

]
− Pr

coins′←U ,S←χ,
coins←U

[
DIdealHS (·)(1λ) = 1

]∣∣∣∣∣∣ ≤ ϵ+ Pr
∆←χ,S←χ,
coins←U

[collreal]

Proof. Assume that this lemma does not hold for some deterministic polynomial-time D. The
following adversary A can use D to break the CCR property of H.

1. A internally runs D and samples S ← χ. Upon receiving a natural and non-trivial operation Qi

from D, A proceeds as follows:

• If Qi is a type 1/2/3/4 operation, execute it as required. In particular, the results of type 1
operations are defined by the random coins coins← U .

• If Qi is a type 5 operation with input (xj , bj) and xj was not included in previous operations,
query the CCR oracle with (xj ⊕S, bj), receive a response r, and define the result of Qi to r.
If Qi is a type 5 operation with input (xj , bj) and xj was included in some previous operation,
sample s← {0, 1}λ and define the result of Qi to s.

2. A terminates when D terminates and outputs whatever D outputs.

A makes at most q queries to the CCR oracle since there are at most q natural and non-trivial
operations. A is polynomial-time since D is polynomial-time.

Consider the case where A is given Occr
H,∆(·, ·) for some ∆ ← χ. We analyze the event collreal

during the interaction between D and either the oracle emulated by A or the oracle RealHS ,∆(·)
under the same probability space. That is, the randomness ∆, S, and coins take the same values in
both cases, respectively (note that, in the emulated case, collreal does not depend on the randomness
s in the presence of any colliding xj ∈ {0, 1}λ; otherwise, there will be a circularity).

For any given deterministic D, the initial operation is the same regardless of the oracle given
to it. Assume that the event collreal does not occur. By the assumption, an induction based on the
same ∆, S, and coins shows that every defined result and every queried operation are the same in
the two cases. Thus, for any fixed ∆, S, and coins, the event (DRealHS,∆(·)(1λ) = 1)∧¬collreal occurs
if and only if the event (DA(·)(1λ) = 1) ∧ ¬collreal occurs. Since, in the emulation, A outputs 1 if
and only if the distinguisher D outputs 1, we can see that the latter event occurs if and only if
(AOccr

H,∆(·,·)(1λ) = 1) ∧ ¬collreal occurs. It follows from the well-known Difference Lemma that∣∣∣∣∣∣ Pr∆←χ

[
AOccr

H,∆(·,·)(1λ) = 1
]
− Pr

∆←χ,S←χ,
coins←U

[
DRealHS,∆(·)(1λ) = 1

]∣∣∣∣∣∣ ≤ Pr
∆←χ,S←χ,
coins←U

[collreal] . (5)

33

If A is given f∗(·, ·) for some f∗ ← Fλ+1,λ, we have

Pr
f∗←Fλ+1,λ

[
Af∗(·,·)(1λ) = 1

]
= Pr

coins′←U ,S←χ,
coins←U

[
DIdealHS (·)(1λ) = 1

]
(6)

for the following reasons. First, if there is no collision in the execution of type 5 operations, the
uniqueness of xj ’s ensures that the output of the random function f∗ (when D is given an oracle
emulated by A) are as uniform and pairwise independent as those uniformly sampled (when D
is given IdealHS

(·)). Second, if there exists at least one collision, the result defined by the first
operation with the conflicting xj is still uniform as per f∗. For the subsequent results with respect
to the same xj , their uniformness and pairwise independence are ensured by the sampling of A.

Using the contradiction assumption and (5), (6), we have∣∣∣∣ Pr∆←χ

[
AOccr

H,∆(·,·)(1λ) = 1
]
− Pr

f∗←Fλ+1,λ

[
Af∗(·,·)(1λ) = 1

]∣∣∣∣
=

∣∣∣∣∣∣
 Pr

∆←χ

[
AOccr

H,∆(·,·)(1λ) = 1
]
− Pr

∆←χ,S←χ,
coins←U

[
DRealHS,∆(·)(1λ) = 1

]
+

 Pr
∆←χ,S←χ,
coins←U

[
DRealHS,∆(·)(1λ) = 1

]
− Pr

coins′←U ,S←χ,
coins←U

[
DIdealHS

(·)(1λ) = 1
]∣∣∣∣∣∣

≥

∣∣∣∣∣∣
∣∣∣∣∣∣ Pr
∆←χ,S←χ,
coins←U

[
DRealHS,∆(·)(1λ) = 1

]
− Pr

coins′←U ,S←χ,
coins←U

[
DIdealHS (·)(1λ) = 1

]∣∣∣∣∣∣
−

∣∣∣∣∣∣ Pr∆←χ

[
AOccr

H,∆(·,·)(1λ) = 1
]
− Pr

∆←χ,S←χ,
coins←U

[
DRealHS,∆(·)(1λ) = 1

]∣∣∣∣∣∣
∣∣∣∣∣∣ > ϵ,

which contradicts the CCR property of H.

This lemma follows from Lemma 2 and Lemma 3.

34

B Security Proofs and Detailed Protocol in Section 4
B.1 Proof of Theorem 1
Theorem 1. Given random permutation π : F2λ → F2λ, efficiently computable linear orthomor-
phism σ : F2λ → F2λ with efficiently computable σ−1, σ′(x) := σ(x)⊕x, and σ′−1 (Footnote 1), and
hash function H(x) := π(σ(x))⊕σ(x), protocol ΠspCOT (Figure 4) UC-realizes functionality FspCOT

(Figure 2) against any semi-honest adversary in the FCOT-hybrid model and the RPM.

Proof. We consider polynomially many concurrent Extend executions, each of which is implicitly
assigned the same session ID but a unique sub-session ID. We focus on the setting where there is
exact one corrupted party3 and first analyze its correctness.
Correctness analysis. The correctness relies on the two cGGM full-evaluation algorithms. The
outputs of cGGM.PuncFullEval and cGGM.FullEval are identical everywhere except the punctured
point. Moreover, the correlation at the punctured point follows from Corollary 1.
Corrupted P0. In the one-time Initialize execution:

1. Upon receiving the first (init) from A to FCOT, S waits for A to choose the global key ∆. Then,
S sends (init) and ∆ to FspCOT.

Then, in each Extend execution:

2. Upon receiving (extend, n) from A to FCOT, S waits for A to choose the COT transcript
(K[r1], . . . ,K[rn]).

3. S receives (c1, . . . , cn) from A and computes

(v, . . .) := cGGM.FullEval(∆,K[r1]⊕ c1).

Then, S sends (extend, N) and v to FspCOT.

The simulation is perfect. Without loss of generality, assume a deterministic environment Z.
The view of A only includes ∆ in the one-time Initialize execution and (K[r1], . . . ,K[rn]) in each
concurrent Extend execution. These transcripts, which are essentially chosen by Z, must take the
same literal values in the two worlds since Z is deterministic, and the transcripts can depend on
no transcript from the honest P1.

In the concurrent executions, the output (u,w)’s are identically distributed in the two worlds
conditioned on some literal values of the one-time initialized ∆ and all (K[r1], . . . ,K[rn])’s. First, in
each Extend execution, the real-world index α of the only non-zero entry of u is as execution-wise
uniform as the ideal-world one due to the execution-wise uniform COT choice bits for the honest P1.
Thus, the u’s in the concurrent executions have the same distribution in the two worlds. Second,
in each Extend execution additionally conditioned on some literal values of u, the vector w takes
the same value w = v∗ ⊕ u · ∆ in the two worlds. In the real world, the well-formed transcript
(c1, . . . , cn) of the semi-honest P0 and the correctness of ΠspCOT guarantee that the literal value of
v∗ in this equality comes from (v∗, . . .) := cGGM.FullEval(∆,K[r1]⊕c1). Note that the randomness

3We omit the case where both parties are honest. The reason is that, in most eventual applications (e.g., generic
2PC/MPC, zero-knowledge proofs, and private set intersection) of FspCOT (or FspsVOLE), the semi-honest security in
this case trivially holds if secure channel is available (see [HL10, Section 2.3]) and the consistency w = v + u · ∆
holds. Besides this consistency, the distribution of ((v,∆), (u,w)) will not skew the joint output distribution in these
applications. Hence, we need not consider the distribution of ((v,∆), (u,w)) when both parties are honest.

35

c1 chosen by Z is identical in the two worlds due to the deterministic Z. Thus, the ideal-world v
is the same as the real-world v∗ conditioned on the fixed transcripts, and so is the w.
Corrupted P1. In the ideal world, S emulates the random permutation π and its inverse π−1
throughout the lifespan of the distinguishing game. These two oracles are used for all concurrent
Extend executions. During the distinguishing game in either world, let Qπ denote an ordered list
of the adversary’s query/answer pairs to/from the random permutation or its inverse (note that
(x, y) ∈ Qπ means that the adversary learns π(x) = y, regardless of whether it queried π(x) or
π−1(y)), and QO denote an ordered list of the adversary’s query/answer pairs to/from the “oracle”
emulated by the non-corrupted machine(s) (i.e., the honest P0 plus the subroutine FCOT in the
real world, or the simulator S in the ideal world). One can think that, for each Extend execution,
QO records the query {(ri,M[ri])}i∈[1,n] (i.e., the COT output chosen by the corrupted P1) with its
answer (c1, . . . , cn) (i.e., the transcript sent by the honest P0).
S has access to Qπ and QO in the ideal world, and the transcript viewed by Z in either world

includes the spCOT global key ∆ (the honest P0’s output in the one-time Initialize execution),
the honest P0’s output v in each Extend execution, and the two ordered lists Qπ and QO. We first
focus on the ordered transcript Q := (∆,Qπ,QO) (where the pairs of Qπ and QO are interleaved;
we will consider this order but use this notation for the simplicity of exposition) and discuss the
output v in each Extend execution later. Let p = p(λ) := |Qπ| and q = q(λ) := |QO| (note that q
is the number of concurrent Extend executions).
S works as follows. In the one-time Initialize execution:

1. Upon receiving the first (init) from A to FCOT, S sends (init) to FspCOT.

Then, in each Extend execution:

2. Upon receiving (extend, n) from A to FCOT, S waits for A to choose the COT transcript
((r1, . . . , rn), (M[r1], . . . ,M[rn])).

3. S sends random (c1, . . . , cn)← Fn
2λ

to A and computes

u := unitF2(N, r1 . . . rn, 1),

w := cGGM.PuncFullEval(r1 . . . rn, {M[ri]⊕ ci}i∈[1,n]).

Then, S sends (extend, N) and (u,w) to FspCOT.

• Global-key query. S performs the global-key query in the following cases:

– query1: Z queries the random permutation π with x or its inverse π−1 with y. For every
({(ri,M[ri])}i∈[1,n], {ci}i∈[1,n]) ∈ QO, S does:
1. S computes

{zi}i∈[1,n] := cGGM.OffPath(r1 . . . rn, {M[ri]⊕ ci}i∈[1,n]),
∀j ∈ [2, n] : wj := ⊕i∈[1,j−1]zi,

(7)

where cGGM.OffPath is a macro such that, on input a path α and n sums {Kαi
i }i∈[1,n] used

in cGGM.PuncFullEval to define an n-level correlated GGM tree except the n on-path nodes,
it outputs the n off-path nodes for the path α. This macro ensures that, for j ∈ [1, n],

zj = (M[rj]⊕ cj)⊕ “other rj-side nodes on the j-th level defined
by the off-path nodes {zi}i∈[1,j−1]”.

(8)

36

2. For every j ∈ [2, n], S extracts ∆′1 ∈ F2λ and sends (guess,∆′1) to FspCOT if Z queries π
with x, or extracts ∆′2 ∈ F2λ and (guess,∆′2) to FspCOT if Z queries π−1 with y, where

∆′1 := σ−1(x)⊕ wj , ∆′2 :=

{
σ−1(y ⊕ zj)⊕ wj , if rj = 0
σ′−1(y ⊕ zj)⊕ wj , if rj = 1

(9)

Note that σ′(x) := σ(x) ⊕ x is a permutation as σ : F2λ → F2λ is an orthomorphism, and
its inverse σ′−1 should be well-defined.

– query2: A new pair ({(ri,M[ri])}i∈[1,n], {ci}i∈[1,n]) is added to QO. Using this pair, S computes
{zi}i∈[1,n] and {wj}j∈[2,n] as per (7). Then, for every (x, y) ∈ Qπ and every j ∈ [2, n], S uses
(9) to extract ∆′1 and ∆′2, and sends (guess,∆′1) and (guess,∆′2) to FspCOT.

In either case, if S receives (success) from FspCOT for some guess ∆, S will program the random
permutation π and its inverse π−1 such that, for the {zi}i∈[1,n] and {wj}j∈[2,n] computed from
every pair in QO up to this time and every j ∈ [2, n],

π(σ(∆⊕ wj)) = σ(∆⊕ wj)⊕ rj · (∆⊕ wj)⊕ zj , (10)

which must hold in the real world due to the construction of H and the definition of zj and wj .
After the programming, S uses the global key ∆ extracted from FspCOT to emulate FCOT and
(c1, . . . , cn) for any incomplete Extend execution by following the specification in ΠspCOT.

We use the H-coefficient technique [Pat09, CS14] to prove that this ideal world is computation-
ally indistinguishable from the real one. Without loss of generality, we consider a deterministic
environment Z and the transcript Q, which is a part of the joint distribution of the view of A and
the output of the honest P0 (note that the remaining part of this joint distribution is the v’s in all
Extend executions, and its consistency with Q will be checked in the end).

We borrow the summary of the H-coefficient technique from [GKWY20]. Let T be the set of
attainable transcripts for some information-theoretic distinguisher, and let Prreal [·] and Prideal [·] be
the probabilities in the real and ideal worlds, respectively. The H-coefficient technique divides T
into a “bad” subset Tbad and a “good” subset Tgood := T \ Tbad, and shows that

Prideal [Q ∈ Tbad] ≤ ϵ1, ∀Q ∈ Tgood :
Prreal [Q]
Prideal [Q]

≥ 1− ϵ2.

Then, the advantage of the distinguisher is at most ϵ1 + ϵ2.
A transcript Q = (∆,Qπ,QO) is bad if it falls into one of the following cases:

• bad1. There exist two distinct transcript pairs (({(ri,M[ri])}i∈[1,n], {ci}i∈[1,n]), j) ∈ QO × [2, n]
and (({(r′i,M[r′i])}i∈[1,n], {c′i}i∈[1,n]), j′) ∈ QO × [2, n] such that(

wj = w′j′
)
∨
(
σ(wj)⊕ rj · (∆⊕ wj)⊕ zj = σ(w′j′)⊕ r′j′ · (∆⊕ w′j′)⊕ z′j′

)
,

where zj , wj , z′j′ , and w′j′ are defined as per (7). This case captures the collision between the
queries to the random permutation or its inverse.

• bad2. There exists a (({(ri,M[ri])}i∈[1,n], {ci}i∈[1,n]), j) ∈ QO × [2, n] such that(
(σ(∆⊕ wj), . . .) ∈ Qπ ∨ (. . . , σ(∆⊕ wj)⊕ rj · (∆⊕ wj)⊕ zj) ∈ Qπ

)
∧
(
π(σ(∆⊕ wj)) ̸= σ(∆⊕ wj)⊕ rj · (∆⊕ wj)⊕ zj

)
,

where zj and wj are defined as per (7). This case captures the inconsistency in the already
defined entries of the random permutation and its inverse.

37

Consider bad1 in the ideal world. For any two distinct pairs in QO × [2, n],

Prideal

[(
wj = w′j′

)
∨
(
σ(wj)⊕ rj · (∆⊕ wj)⊕ zj = σ(w′j′)⊕ r′j′ · (∆⊕ w′j′)⊕ z′j′

)]
≤ Prideal

[
wj = w′j′

]
+ Prideal

[
σ(wj)⊕ rj · (∆⊕ wj)⊕ zj = σ(w′j′)⊕ r′j′ · (∆⊕ w′j′)⊕ z′j′

]
= 2−λ + 2−λ = 2 · 2−λ,

where the equality follows from that (i) the ci’s are uniform and pairwise independent in the ideal
world, and (ii) each zi is as uniform as ci due to (8). Taking a union bound over all distinct pairs
in QO × [2, n], it holds that

Prideal [bad1] ≤
q2(n− 1)2

2λ
. (11)

As for bad2, it is sufficient to bound Prideal [bad2 | ¬bad1] using the following three sub-cases.
In the first sub-case where

∀(({(ri,M[ri])}i∈[1,n], {ci}i∈[1,n]), j) ∈ QO × [2, n] :

(σ(∆⊕ wj), . . .) /∈ Qπ ∧ (. . . , σ(∆⊕ wj)⊕ rj · (∆⊕ wj)⊕ zj) /∈ Qπ,

it is clear that bad2 will not happen.
Otherwise, in the following two complement sub-cases, S can extract the global key ∆ (which is

a part of the transcript Q) by solving either x = σ(∆⊕wj) or y = σ(∆⊕wj)⊕ rj · (∆⊕wj)⊕ zj as
per (9). Then, S will use ∆ to program π and π−1 to keep (10). If the programming succeeds, bad2
will not happen since (10) holds for every pair in QO and every j ∈ [2, n]. After the programming,
the consistency trivially holds for any future pair in QO and j ∈ [2, n] since ∆ is known.

In the second sub-case where a new query to π or π−1 triggers the programming (i.e., query1
case), the programming must succeed conditioned on ¬bad1. The condition ¬bad1 ensures that, for
every (({(ri,M[ri])}i∈[1,n], {ci}i∈[1,n]), j) ∈ QO× [2, n], the pre-image x := σ(∆⊕wj) and the image
y := σ(∆ ⊕ wj) ⊕ rj · (∆ ⊕ wj) ⊕ zj to be programmed do not incur collision. More importantly,
these two entries are not determined by the query/answer pairs in Qπ up to this time. Otherwise,
∃(x, . . .) ∈ Qπ or ∃(. . . , y) ∈ Qπ ahead of the current query such that the programming must have
happened for the same QO (i.e., contradicting that the programming is triggered by the current
query). Hence, all pairs in QO can be programmed as per (10). The answer to the current query is
determined by the programmed result. The surely successful programming makes bad2 impossible.

Consider the third sub-case where the programming arises from a new pair added to QO (i.e.,
query2 case). Assume that the global key ∆ to be used in the programming is extracted from this
pair, an existing (x∗, . . .) ∈ Qπ or (. . . , y∗) ∈ Qπ, and j∗ ∈ [2, n]. Note that either (x∗, . . .) ∈ Qπ

or (. . . , y∗) ∈ Qπ has been given to Z and cannot be programmed. We bound the probability of
this undesired sub-case. In the ideal world,

Prideal [(x
∗ = σ(∆⊕ wj∗)) ∨ (y∗ = σ(∆⊕ wj∗)⊕ rj∗ · (∆⊕ wj∗)⊕ zj∗)]

≤ Prideal [x
∗ = σ(∆⊕ wj∗)] + Prideal [y

∗ = σ(∆⊕ wj∗)⊕ rj∗ · (∆⊕ wj∗)⊕ zj∗]
= Prideal

[
wj∗ = σ−1(x∗)⊕∆

]
+ Prideal [zj∗ = y∗ ⊕ σ(∆⊕ wj∗)⊕ rj∗ · (∆⊕ wj∗)]

= 2−λ + 2−λ = 2 · 2−λ,

where zj∗ and wj∗ are computed from the newly added pair, and the probability is taken over the
uniform cj∗ . Taking a union bound over Qπ ×QO × [2, n], we can see that this sub-case happens
with probability at most 2pq(n− 1)/2λ.

38

Combining the above three sub-cases, we have that

Prideal [bad2 | ¬bad1] ≤
2pq(n− 1)

2λ
. (12)

Using (11) and (12), it holds that

Prideal [Q ∈ Tbad] = Prideal [bad1 ∨ bad2]
= Prideal [bad1] + Prideal [bad2]− Prideal [bad1 ∧ bad2]
= Prideal [bad1] + Prideal [bad2 | ¬bad1] · Prideal [¬bad1]
≤ Prideal [bad1] + Prideal [bad2 | ¬bad1]

≤ q2(n− 1)2 + 2pq(n− 1)

2λ
.

We proceed to bound the ratio of Prreal [Q] to Prideal [Q] for some fixed good transcript Q =
(∆,Qπ,QO). Let L ⊆ QO × [2, n] such that

∀(({(ri,M[ri])}i∈[1,n], {ci}i∈[1,n]), j) ∈ L :

(σ(∆⊕ wj), . . .) ∈ Qπ ∨ (. . . , σ(∆⊕ wj)⊕ rj · (∆⊕ wj)⊕ zj) ∈ Qπ.

Conditioned on ¬(bad1∨bad2) implicit in good transcripts, L induces a subset Qπ(L) ⊆ Qπ. There
exists a bijective correspondence between a (x, y) ∈ Qπ(L) and the (zj , wj) computed as per (7)
from a pair in L such that x = σ(∆⊕ wj) and y = σ(∆⊕ wj)⊕ rj · (∆⊕ wj)⊕ zj . It is clear that
|L| = |Qπ(L)| ≤ min(|Qπ| , |QO| · (n− 1)) = min(p, q(n− 1)).

For X ⊆ Qπ, let π ∼ X be the event that the permutation π is consistent with the queries
and answers in X , i.e., ∀(x, y) ∈ X : π(x) = y. Let c(j) ∼ QO be the event that the {ci}i∈[1,j] in
each Extend execution take the literal values in QO. For Y ⊆ QO × [2, n], let (π,∆) ∼ Y be the
real-world event that π and the global key ∆ are consistent with the pairs in Y, i.e.,

∀(({(ri,M[ri])}i∈[1,n], {ci}i∈[1,n]), j) ∈ Y :

π(σ(∆⊕ wj))⊕ σ(∆⊕ wj)⊕ rj · (∆⊕ wj) = zj

for zj and wj computed from (7). Let (a)b := a · · · (a− b+ 1) be falling factorial.
In the real world, π is a random permutation without programming, and

Prreal [Q] = Prreal [c(1) ∼ QO ∧ (π,∆) ∼ QO × [2, n] | π ∼ Qπ ∧∆]

· Prreal [π ∼ Qπ ∧∆]

= Prreal [c(1) ∼ QO ∧ (π,∆) ∼ QO × [2, n] | π ∼ Qπ ∧∆]

· Prreal [π ∼ Qπ] · Prreal [∆]

= Prreal

[
(π,∆) ∼ QO × [2, n]

∣∣∣∣ π ∼ Qπ ∧∆
∧ c(1) ∼ QO

]
· Prreal [c(1) ∼ QO | π ∼ Qπ ∧∆] · Prreal [π ∼ Qπ] · Prreal [∆]

= Prreal

[
(π,∆) ∼ L
∧ (π,∆) ∼ (QO × [2, n]) \ L

∣∣∣∣ π ∼ Qπ ∧∆
∧ c(1) ∼ QO

]
· Prreal [c(1) ∼ QO] · Prreal [π ∼ Qπ] · Prreal [∆]

= Prreal

[
(π,∆) ∼ (QO × [2, n]) \ L

∣∣∣∣ π ∼ Qπ ∧∆
∧ c(1) ∼ QO ∧ (π,∆) ∼ L

]
· Prreal

[
(π,∆) ∼ L

∣∣∣∣ π ∼ Qπ ∧∆
∧ c(1) ∼ QO

]
· 1

(2λ)q
· 1

(2λ)p
· 1
2λ

39

Conditioned on ¬bad2 in the good transcript, the definition of L implies that

Prreal

[
(π,∆) ∼ L

∣∣∣∣ π ∼ Qπ ∧∆
∧ c(1) ∼ QO

]
= 1.

Moreover, ¬bad1 ensures that, for each (({(ri,M[ri])}i∈[1,n], {ci}i∈[1,n]), j) ∈ QO× [2, n], the permu-
tation entries π(σ(∆⊕ wj)) and π−1(σ(∆⊕ wj)⊕ rj · (∆⊕ wj)⊕ zj) are not determined by other
pairs in QO × [2, n]. For those pairs in (QO × [2, n]) \ L, these two entries are even not determined
by all queries in Qπ due to ¬bad2 and the definition of L. By the randomness of π, we have

Prreal

[
(π,∆) ∼ (QO × [2, n]) \ L

∣∣∣∣ π ∼ Qπ ∧∆
∧ c(1) ∼ QO ∧ (π,∆) ∼ L

]
=

1

(2λ − p)q(n−1)−|L|
.

Using these results, we have

Prreal [Q] =
1

(2λ − p)q(n−1)−|L| · (2λ)p · (2λ)q+1

=
1

(2λ)p+q(n−1)−|L| · (2λ)q+1
.

(13)

In the ideal world, it holds that

Prideal [Q] = Prideal [π ∼ Qπ | c(n) ∼ QO ∧∆] · Prideal [c(n) ∼ QO ∧∆]

= Prideal

[
π ∼ Qπ(L)
∧ π ∼ Qπ \ Qπ(L)

∣∣∣∣ c(n) ∼ QO ∧∆

]
· Prideal [c(n) ∼ QO] · Prideal [∆]

= Prideal

[
π ∼ Qπ \ Qπ(L)

∣∣∣∣ c(n) ∼ QO ∧∆
∧ π ∼ Qπ(L)

]
· Prideal [π ∼ Qπ(L) | c(n) ∼ QO ∧∆] · 1

(2λ)qn · 2λ
.

By the programmed π and π−1 conditioned on ¬bad2, the defined Qπ(L) implies that

Prideal [π ∼ Qπ(L) | c(n) ∼ QO ∧∆] = 1,

Prideal

[
π ∼ Qπ \ Qπ(L)

∣∣∣∣ c(n) ∼ QO ∧∆
∧ π ∼ Qπ(L)

]
≤ 1

(2λ − |Qπ(L)|)p−|Qπ(L)|
=

1

(2λ − |L|)p−|L|
.

Using |L| ≤ q(n− 1), the above results, and (13), we have

Prideal [Q] ≤
1

(2λ − |L|)p−|L|
· 1

(2λ)qn · 2λ

≤ 1

(2λ − q(n− 1))p−|L|
· 1

(2λ)q(n−1) · (2λ)q+1

=
1

(2λ)p+q(n−1)−|L| · (2λ)q+1
= Prreal [Q] .

By the H-coefficient technique, Z can only distinguish the two worlds with advantage at most
(q2(n− 1)2 + 2pq(n− 1))/2λ if it is only given the transcript Q = (∆,Qπ,QO). In fact, this is the
advantage that Z can distinguish the two worlds since the output v’s in all Extend executions
must be consistent with Q (or rather, its resulting ∆ and the (u,w)’s) in the real world (due to
the correctness of ΠspCOT) and the ideal world. Thus, this theorem holds.

40

Protocol ΠspsVOLE−cGGM

Parameters: Field F and its extension field K with |K| ≥ 2λ.
Initialize: This procedure is executed only once.

1. P0 and P1 send (init) to FsVOLE, which returns ∆ ∈ K to P0. P0 outputs ∆.

Extend: This procedure can be executed many times. P0 and P1 input N = 2n and use cGGM (c.f.
Figure 3) for n and K.

2. P0 and P1 send (extend, n + 1) to FsVOLE, which returns (K[s0], . . . ,K[sn]) ∈ Kn+1 to P0 and
((s0, . . . , sn), (M[s0], . . . ,M[sn])) ∈ Fn+1 ×Kn+1 to P1 such that M[si] = K[si] + si ·∆ for i ∈ [0, n].

3. P1 samples β ← F∗ and (r1, . . . , rn) ← Fn
2 , sets M[β] := M[s0] and M[ri] := ri · M[β] − M[si] for

i ∈ [1, n], and sends (d0, d1, . . . , dn) := (s0, s1, . . . , sn)− (1, r1, . . . , rn) · β ∈ Fn+1 to P0.
P0 sets K[β] := K[s0] + d0 ·∆ and K[ri] := −K[si]− di ·∆ for i ∈ [1, n] such that M[β] = K[β] + β ·∆
and M[ri] = K[ri] + ri · K[β] for i ∈ [1, n].

4. P0 samples c1 ← K and sets k := −K[r1] + c1,

(v, {K0
i }i∈[1,n]) := cGGM.FullEval(K[β], k),

and ci := K[ri] +K0
i for i ∈ [2, n]. P0 sends (c1, . . . , cn) to P1.

5. P1 sets α = α1 . . . αn := r1 . . . rn ∈ [0, N), Kαi
i := (−1)ri · (−M[ri] + ci) for i ∈ [1, n], and

u := unitF(N,α, β),

w := cGGM.PuncFullEval(α, {Kαi
i }i∈[1,n]) + unitF(N,α,M[β]).

6. P0 outputs v and P1 outputs (u,w).

Figure 14: cGGM-based single-point sVOLE protocol in the FsVOLE-hybrid model.

B.2 Single-point sVOLE from Correlated GGM Tree
Our cGGM-based single-point sVOLE protocol is presented in Figure 14. The intuition behind
this protocol has been summarized in Section 3.1. In this appendix, we will prove its security in
Theorem 7 and present two communication optimizations, followed by the complexity analysis of
the optimized protocol.

Theorem 7. Given random permutation π : K→ K, efficiently computable linear orthomorphism
σ : K → K with efficiently computable σ−1, σ′(x) := σ(x) − x, and σ′−1 (Footnote 1), and hash
function H(x) := π(σ(x)) + σ(x), protocol ΠspsVOLE−cGGM (Figure 14) UC-realizes functionality
FspsVOLE (Figure 2) against any semi-honest adversary in the FsVOLE-hybrid model and the RPM,
for |K| ≥ 2λ.

Proof. This proof is similar to that in Appendix B.1. We consider polynomially many concurrent
Extend executions, each of which is implicitly assigned the same session ID but a unique sub-
session ID. We also focus on the setting where there is exact one corrupted party for the same
reason in Appendix B.1.
Correctness analysis. The correctness resorts to the property of cGGM tree.
Corrupted P0. In the one-time Initialize execution:

1. Upon receiving the first (init) from A to FsVOLE, S waits for A to choose the global key ∆.
Then, S sends (init) and ∆ to FspsVOLE.

41

Then, in each Extend execution:
2. Upon receiving (extend, n+1) from A to FsVOLE, S waits for A to choose the sVOLE transcript

(K[s0], . . . ,K[sn]).

3. S sends random (d0, d1, . . . , dn)← Fn+1 to A.

4. S receives (c1, . . . , cn) from A and computes

K[β] := K[s0] + d0 ·∆,
K[r1] := −K[s1]− d1 ·∆,

(v, . . .) := cGGM.FullEval(K[β],−K[r1] + c1).

Then, S sends (extend, N) and v to FspsVOLE.
The simulation is perfect. Without loss of generality, assume a deterministic environment Z.

Note that the view of A includes ∆ in the one-time Initialize execution, and (K[s0], . . . ,K[sn]) and
(d0, d1, . . . , dn) in each concurrent Extend execution. ∆ is the first transcript chosen by Z so it is
identical in the two worlds. The transcript (d0, d1, . . . , dn) in each concurrent execution is uniform
and independent in the real world (due to the execution-wise uniform one-time pad) and the ideal
world. The transcript (K[s0], . . . ,K[sn])’s in all Extend executions are chosen by Z and can only
depend on the (d0, d1, . . . , dn)’s therein. Thus, they will take the same literal values conditioned on
some fixed (d0, d1, . . . , dn)’s in the concurrent executions.

In the concurrent executions, the output (u,w)’s are identically distributed in the two worlds
conditioned on some literal values of the one-time initialized ∆ and all (K[s0], . . . ,K[sn])’s’ and
(d0, d1, . . . , dn)’s. First, in each Extend execution, the real-world index α of the only non-zero
entry of u is as execution-wise uniform as the ideal-world one due to the execution-wise uniform
COT choice bits for the honest P1, and the value β is identically distributed in the two worlds. As
a result, the u’s in the concurrent executions have the same distribution in the two worlds. Second,
in each Extend execution additionally conditioned on some literal values of u, the vector w takes
the same value w = v∗ ⊕ u · ∆ in the two worlds. In the real world, the well-formed transcript
(c1, . . . , cn) of the semi-honest P0 and the correctness of ΠspsVOLE−cGGM guarantee that the literal
value of v∗ in this equality comes from

(v∗, . . .) := cGGM.FullEval(K[s0] + d0 ·∆,K[s1] + d1 ·∆+ c1).

Note that the randomness c1 chosen by Z is identical in the two worlds due to the deterministic
Z. Thus, the ideal-world v is the same as the real-world v∗ conditioned on the fixed transcripts,
yielding the same w in the two worlds.
Corrupted P1. In the ideal world, S emulates the random permutation π and its inverse π−1
throughout the lifespan of the distinguishing game. These two oracles are used for all concurrent
Extend executions. During the distinguishing game in either world, let Qπ denote an ordered list
of the adversary’s query/answer pairs to/from the random permutation or its inverse (note that
(x, y) ∈ Qπ means that the adversary learns π(x) = y, regardless of whether it queried π(x) or
π−1(y)), and QO denote an ordered list of the adversary’s query/answer pairs to/from the “oracle”
emulated by the non-corrupted machine(s) (i.e., the honest P0 plus the subroutine FsVOLE in the
real world, or the simulator S in the ideal world). One can think that, for each Extend execution,
QO records the query ((β,M[β]), {(ri,M[ri])}i∈[1,n]) (i.e., the effective sVOLE output chosen by the
corrupted P1) with its answer (c1, . . . , cn) (i.e., the transcript sent by the honest P0). S has access
to Qπ and QO in the ideal world.
S works as follows. In the one-time Initialize execution:

42

1. Upon receiving the first (init) from A to FsVOLE, S sends (init) to FspsVOLE.
Then, in each Extend execution:
2. Upon receiving (extend, n+1) from A to FsVOLE, S waits for A to choose the sVOLE transcript

((s0, . . . , sn), (M[s0], . . . ,M[sn])).

3. S receives (d0, d1, . . . , dn) from A and extracts ((β,M[β]), {(ri,M[ri])}i∈[1,n]).

4. S sends random (c1, . . . , cn)← Kn to A and computes

u := unitF(N, r1 . . . rn, β),

w := cGGM.PuncFullEval(r1 . . . rn, {(−1)ri · (−M[ri] + ci)}i∈[1,n]) + unitF(N, r1 . . . rn,M[β]).

Then, S sends (extend, N) and (u,w) to FspsVOLE.

• Global-key query. S performs the global-key query in the following cases:

– query1: Z queries the random permutation π with x or its inverse π−1 with y. For every
((β,M[β]), {(ri,M[ri])}i∈[1,n], {ci}i∈[1,n]) ∈ QO, S does:
1. S computes

{zi}i∈[1,n] := cGGM.OffPath(r1 . . . rn, {(−1)ri · (−M[ri] + ci)}i∈[1,n]),

∀j ∈ [2, n] : wj :=
∑

i∈[1,j−1]zi,

where cGGM.OffPath is a macro such that, on input a path α and n sums {Kαi
i }i∈[1,n] used

in cGGM.PuncFullEval to define an n-level correlated GGM tree except the n on-path nodes,
it outputs the n off-path nodes for the path α. This macro ensures that, for j ∈ [1, n],

zj = (−1)rj · (−M[rj] + cj)− “other rj-side nodes on the j-th level
defined by the off-path nodes {zi}i∈[1,j−1]”.

2. For every j ∈ [2, n], S extracts K[β]′1 ∈ K and sends (guess, β−1 ·(M[β]−K[β]′1)) to FspsVOLE

if Z queries π with x, or extracts K[β]′2 ∈ K and (guess, β−1 · (M[β] − K[β]′2)) to FspsVOLE

if Z queries π−1 with y, where

K[β]′1 := σ−1(x) + wj , K[β]′2 :=

{
σ−1(−y + zj) + wj , if rj = 0
σ′−1(−y − zj) + wj , if rj = 1

Note that σ′(x) := σ(x) − x is a permutation as σ : K → K is an orthomorphism, and its
inverse σ′−1 should be well-defined.

– query2: A new pair ((β,M[β]), {(ri,M[ri])}i∈[1,n], {ci}i∈[1,n]) is added to QO. Using this pair,
S computes {zi}i∈[1,n] and {wj}j∈[2,n] as per (7). Then, for every (x, y) ∈ Qπ and every
j ∈ [2, n], S extracts K[β]′1 and K[β]′2, and sends (guess, β−1 · (M[β]−K[β]′1)) and (guess, β−1 ·
(M[β]− K[β]′2)) to FspsVOLE.

In either case, if S receives (success) from FspsVOLE for some guess ∆, S will program the random
permutation π and its inverse π−1 such that, for the offset K[β] := M[β] − β ·∆, the {zi}i∈[1,n]
and {wj}j∈[2,n] computed from every pair in QO up to this time, and every j ∈ [2, n],

π(σ(K[β]− wj)) = σ(K[β]− wj) + (−1)rj · (−rj · (K[β]− wj) + zj),

which must hold in the real world due to the construction of H and the definition of zj and wj .
After the programming, S uses the global key ∆ extracted from FspsVOLE to emulate FsVOLE and
(c1, . . . , cn) in any incomplete Extend execution by following the specification in ΠspsVOLE−cGGM.

43

The ideal world is computationally indistinguishable from the real one. The advantage of a
deterministic environment Z can be bounded via the H-coefficient technique as in Appendix B.1.
A remarkable difference is that S query FspsVOLE with ∆ ∈ K by first extracting K[β] from the
transcript Q and then guessing ∆ := β−1 · (M[β] − K[β]). For any given β ̸= 0 (due to the semi-
honest P1) and M[β], there is a bijective correspondence between K[β] and ∆. We omit the similar
probability analysis and claim that Z can only distinguish the two worlds with advantage at most
(q2(n− 1)2 + 2pq(n− 1))/ |K|, where p = |Qπ| and q = |QO|.

Communication optimization. We have the following two optimizations:

• The PRF-based optimization of our single-point COT protocol ΠspCOT also applies to t concur-
rent Extend executions (e.g., in sVOLE extension).

• If F is a large field (i.e., |F| ≥ 2ρ for some statistical security parameter ρ ∈ N), the two parties
can directly use a random precomputed sVOLE tuple for M[β] = K[β]+β ·∆ as β ∈ F is nonzero
with overwhelming probability. This optimization has been used in [WYKW21].

Complexity analysis. Consider the complexity per execution when the PRF-based optimization
is used in t concurrent Extend executions. In the FsVOLE-hybrid model, ΠspsVOLE−cGGM needs n+1
precomputed sVOLE tuples. P0 sends (n− 1) · log |K|+ λ

t bits while P1 sends (n+ 1) · log |F| bits.
The computation per party comes from the tree expansion with N RP calls.

Casted into the (FCOT,FsVOLE)-hybrid model for comparison, the single-point sVOLE protocols
[BCG+19a, WYKW21] use n precomputed COT tuples and one precomputed sVOLE tuple. These
protocols use a COT tuple to emulate a string OT, where the sender P0 sends 2λ bits to the
receiver P1. The outgoing communication of P0 is 2(n − 1) · λ + 3 · log |K| bits, and the outgoing
communication of P1 is log |F| bits. Each party performs 2N RP calls. The overall communication
of ΠspsVOLE−cGGM is roughly identical to that of the prior protocols if |F| ≈ |K|. However, for
|F| ≪ |K|, ΠspsVOLE−cGGM still halves the communication of the prior protocols. The reduction in
computation is 50%.

Note that our protocol ΠspsVOLE−cGGM only invokes FsVOLE, which requires less setup cost than
FCOT and FsVOLE in the prior protocols.

B.3 Proof of Theorem 2
Theorem 2. Given CCR function H : F2λ → F2λ, function ConvertK : F2λ → K, and keyed hash
function HS(x) := H(S⊕x) with some key S ← F2λ, protocol ΠspsVOLE−pcGGM (Figure 6) UC-realizes
functionality FspsVOLE (Figure 2) without global-key queries against any semi-honest adversary in
the (FCOT,FsVOLE)-hybrid model.

Proof. We consider polynomially many concurrent Extend executions, each of which is implicitly
assigned the same session ID but a unique sub-session ID.
Correctness analysis. By definition, the outputs of pcGGM.PuncFullEval and pcGGM.FullEval are
identical at every non-punctured point. For the punctured point α, it holds that

w(α) = ψ +M[β]−
∑

j∈[0,2n),j ̸=αw
(j)

= ψ +M[β]−
∑

j∈[0,2n),j ̸=α v
(j)

=
∑

j∈[0,2n) v
(j) − K[β] +M[β]−

∑
j∈[0,2n),j ̸=α v

(j)

= v(α) + β · Γ

as required by single-point sVOLE.

44

Corrupted P0. In the one-time Initialize execution:

1. Upon receiving the first (init) from A to FCOT, S waits for A to choose the COT global key ∆.

2. Upon receiving the first (init) from A to FsVOLE, S waits for A to choose the sVOLE global key
Γ. Then, S sends (init) and Γ to FspsVOLE.

Then, in each Extend execution:

3. Upon receiving (extend, n) from A to FCOT, S waits for A to choose the COT transcript
(K[r1], . . . ,K[rn]).

4. Upon receiving (extend, 1) from A to FsVOLE, S waits for A to choose the sVOLE transcript
K[s].

5. S sends random d← F to A.

6. S receives (c1, . . . , cn−1, µ, c
0
n, c

1
n, ψ) from A and computes

(v, . . .) := pcGGM.FullEval(∆,K[r1]⊕ c1).

Then, S sends (extend, N) and v to FspsVOLE.

The simulation is perfect. Without loss of generality, assume a deterministic environment Z.
The view of A consists of (∆,Γ) in the one-time Initialize execution, and (K[r1], . . . ,K[rn]), K[s],
and d in each concurrent Extend execution. Note that (∆,Γ) is the first transcript chosen by Z
and is identical in the two worlds. The transcript d in each concurrent execution is uniform and
independent in the real world (due to the execution-wise uniform one-time pad s) and the ideal
world. The other transcripts are chosen by Z and, conditioned on some fixed d’s in all concurrent
executions, have the same literal values in the two worlds as they can only depend on the d’s.

In the concurrent executions, the output (u,w)’s are identically distributed in the two worlds
conditioned on some literal values of the one-time initialized (∆,Γ) and all (K[r1], . . . ,K[rn])’s,
K[s]’s, and d’s. First, in each Extend execution, the real-world index α of the only non-zero entry
of u is as uniform and independent as the ideal-world one due to the execution-wise uniform COT
choice bits in the presence of the corrupted P0, and the value β is identically distributed in the two
worlds. As a result, the real-world u’s in the concurrent executions are identically distributed as
the ideal-world ones. Second, in each Extend execution additionally conditioned on some literal
value of u, the vector w takes the same value, i.e., w = v∗ + u · Γ, in the two worlds. In the
real world, it follows from the well-formed transcript (c1, . . . , cn−1, µ, c

0
n, c

1
n, ψ) of the semi-honest

P0 and the correctness of ΠspsVOLE−pcGGM that the literal value of v∗ in this equality comes from
(v∗, . . .) := pcGGM.FullEval(∆,K[r1] ⊕ c1). Note that the randomness c1 chosen by Z is identical
in the two worlds due to the deterministic Z. Thus, the ideal-world v must be identical to the
real-world v∗ conditioned on the fixed transcripts, leading to the same w in the two worlds.
Corrupted P1. In the one-time Initialize execution:

1. Upon receiving the first (init) from A to FCOT, S does nothing.

2. Upon receiving the first (init) from A to FsVOLE, S sends (init) to FspsVOLE.

Then, in each Extend execution:

3. Upon receiving (extend, n) from A to FCOT, S waits for A to choose the COT transcript
((r1, . . . , rn), (M[r1], . . . ,M[rn])).

45

4. Upon receiving (extend, 1) from A to FsVOLE, S waits for A to choose the sVOLE transcript
(s,M[s]).

5. S receives d from A and extracts β := s− d.

6. S sends random (c1, . . . , cn−1, µ, c
0
n, c

1
n, ψ)← Fn

2λ
×K3 to A and computes

u := unitF(N, r1 . . . rn, β),

w := pcGGM.PuncFullEval(r1 . . . rn, {Kri
i }i∈[1,n], ψ +M[β]).

Then, S sends (extend, N) and (u,w) to FspsVOLE.

We use hybrid argument to prove that the two worlds are computationally indistinguishable.

• Hybrid0. This is the real world.

• Hybrid1. This hybrid is identical to the previous one, except that S emulates FCOT and, in each
Extend execution, the transcript (c1, . . . , cn−1, µ, c

0
n, c

1
n, ψ) sent to A is computed as follows.

S has access to the real-world oracle RealHS ,∆(·) (c.f. Lemma 1) for some ∆← {0, 1}λ and uses
it for all concurrent Extend executions. At the beginning of each concurrent execution: First,
S queries RealHS ,∆(·) with Q1 : X

α1
1 := xor1 ← {0, 1}λ. Then, for i ∈ [2, n− 1], it does:

– Query RealHS ,∆(·) with Qi,1 : temp1 := O(xori−1, αi).
– Query RealHS ,∆(·) with Qi,2 : temp2 := temp1 ⊕ xori−1.
– If αi = 0, regard temp1 as Xα1...αi−1αi

i and temp2 as xori (without new query).
– If αi = 1, regard temp1 as xori and temp2 as Xα1...αi−1αi

i (without new query).

Finally, it queries RealHS ,∆(·) with the following operations:

Qn,1 : R0 := O(xorn−1, 0),
Qn,2 : temp := xorn−1 ⊕ 1,

Qn,3 : R1 := O(temp, 0),
Qn,4 : rand← {0, 1}λ,
Qn,5 : pad := O(rand, 0).

S defines Xα1...αn−1αn
n := ConvertK(Rαn), Xn := ConvertK(Rαn) and compute {Kαi

i }i∈[1,n] and
Kαn

n from α := r1 . . . rn, {Xα1...αi−1αi

i }i∈[1,n], and Xn.

In the rest of this execution, S uses these oracle responses for the transcript of the honest P0:

ci := Kαi
i ⊕M[ri], ∀i ∈ [1, n− 1]

µ := rand⊕M[rn],

crnn := Kαn
n + ConvertK(HS(rand)),

crnn := Kαn
n + ConvertK(pad),

ψ := Kαn
n +Kαn

n − K[β].

The resulting transcript is equivalently defined as in the previous hybrid under the identically
distributed global ∆ and the identically distributed c1 and µ in each Extend execution. There-
fore, this hybrid is identically distributed as the previous one.
Now, S can directly use the path α := r1 . . . rn, the n off-path nodes, and the punctured leaf Xn

to define all pcGGM-tree leaves, i.e., the output v of the honest P0.

46

• Hybrid2. This hybrid is identical to the previous one, except that S has access to the ideal-world
oracle IdealHS

(·) instead of the real-world oracle RealHS ,∆(·) in Lemma 1. It follows from the
lemma that this hybrid is computationally indistinguishable from the previous one.
In each Extend execution, the n off-path nodes are uniform due to IdealHS

(·) and serve as one-
time pad for {Kαi

i }i∈[1,n−1], leading to uniform {ci}i∈[1,n−1]. Meanwhile, the µ and pad in each
concurrent execution are also uniform due to IdealHS

(·).

• Hybrid3. This hybrid is identical to the previous one, except that, in each Extend execution, S
replaces crnn , crnn , and ψ by random values. This hybrid is computationally indistinguishable from
the previous one since, from the construction of Kαn

n and Kαn
n , Xα1...αn−1αn

n , ConvertK(pad), and
Xn essentially serve as pseudorandom one-time pad for crnn , crnn , and ψ, respectively.

• Hybrid4. This hybrid is identical to the previous one, except that S emulates FsVOLE and, in
each Extend execution, (i) follows protocol ΠspsVOLE−pcGGM to compute the output (u,w) of the
corrupted P1 by using its internal randomness extracted from the emulated FCOT and FsVOLE

or the transcript received from A (i.e., the extracted β := s− d), and the transcript sent by S,
and (ii) sends (extend, N) and (u,w) to FspsVOLE.
This hybrid is identically distributed as the previous one since, from the correctness of protocol
ΠspsVOLE−pcGGM, the only difference between the two hybrids is where and how the spsVOLE
global key Γ is defined, and the real-world Γ is sampled in FsVOLE and identically distributed as
the ideal-world one in FspsVOLE.
It is clear that this hybrid is the ideal world.

The above hybrid argument completes this proof.

47

C PPRF from Pseudorandom Correlated GGM
We first recall the following definition of PPRF.

Definition 4 (Puncturable Pseudorandom Function, [BCG+19b]). A (single-point) PPRF scheme
PPRF with key space K, punctured key space KP , domain X , and range G, where G is an Abelian
group, has the following syntax:

• kpprf ← PPRF.Gen(1λ). On input 1λ, output a key kpprf ∈ K.

• kpprf{α} ← PPRF.Punc(kpprf , α). On input a key kpprf ∈ K and a punctured point α ∈ X , output
a punctured key kpprf{α} ∈ KP .

• y ← PPRF.Eval(kpprf , x). On input a key kpprf ∈ K and a point x ∈ X , output the result y ∈ G.

• {y,⊥} ← PPRF.PuncEval(α, kpprf{α}, x). On input a punctured key kpprf{α} ∈ KP and a point
x ∈ X , output the result y ∈ G if x ̸= α; otherwise output ⊥.

A PPRF scheme PPRF is secure if the following properties hold.

• Correctness. For any x, α ∈ X , it holds that

Pr

[
kpprf ← PPRF.Gen(1λ),
kpprf{α} ← PPRF.Punc(kpprf , α)

:
PPRF.Eval(kpprf , x)
= PPRF.PuncEval(α, kpprf{α}, x)

]
= 1.

• Pseudorandomness. For any PPT adversary A, and any α ∈ X chosen by A, it holds that∣∣∣∣∣∣Pr
 kpprf ← PPRF.Gen(1λ),
kpprf{α} ← PPRF.Punc(kpprf , α),
y ← PPRF.Eval(kpprf , α)

: A(1λ, α, kpprf{α}, y) = 1

− Pr

 kpprf ← PPRF.Gen(1λ),
kpprf{α} ← PPRF.Punc(kpprf , α),
y ← G

: A(1λ, α, kpprf{α}, y) = 1

∣∣∣∣∣∣ ≤ negl(λ).

In Figure 15, we present a pcGGM-based PPRF scheme, whose security is proved in Theorem 8.

Theorem 8. Given CCR function H : F2λ → F2λ, function ConvertK : F2λ → K, and keyed hash
function HS(x) := H(S ⊕ x) with some key S ← F2λ, Figure 15 gives a PPRF scheme with domain
[0, N) and range K.

Proof. It is clear that this PPRF scheme is correct, and we focus on its pseudorandomness. For
any α ∈ {0, 1}n chosen by A, we write Exptreal(1

λ, α) (resp., Exptideal(1
λ, α)) for the distribu-

tion of (kpprf{α}, y) resulting from the experiment where kpprf ← PPRF.Gen(1λ), kpprf{α} ←
PPRF.Punc(kpprf , α), and y ← PPRF.Eval(kpprf , α) (resp., the one where kpprf ← PPRF.Gen(1λ),
kpprf{α} ← PPRF.Punc(kpprf , α), and y ← K). Let Exptrand(1

λ, α) be the distribution resulting
from the hybrid experiment where kpprf{α} ← Fn−1

2λ
× K and y ← K. This theorem follows from

the following two lemmas.

Lemma 4. For any PPT adversary A, and any α ∈ X chosen by A,∣∣∣∣Pr [(kpprf{α}, y)
← Exptreal(1

λ, α)
: A(1λ, α, kpprf{α}, y) = 1

]
− Pr

[
(kpprf{α}, y)
← Exptrand(1

λ, α)
: A(1λ, α, kpprf{α}, y) = 1

]∣∣∣∣ ≤ negl(λ).

48

Parameters: Domain size N = 2n for n ∈ N. Field K. pcGGM (c.f. Figure 5) for n and K.
PPRF.Gen(1λ):
1: return kpprf := (∆, k)← F2

2λ .

PPRF.Punc(kpprf , α):
1: Parse kpprf = (∆, k) ∈ F2

2λ and α = α1 . . . αn ∈ {0, 1}n.
2: Run (v, {K0

i }i∈[1,n−1], (K
0
n,K

1
n)) := pcGGM.FullEval(∆, k).

3: for i ∈ [1, n− 1] do Kαi
i := αi ·∆⊕K0

i .
4: return kpprf{α} := {Kαi

i }i∈[1,n].

PPRF.Eval(kpprf , x):
1: Parse kpprf = (∆, k) ∈ F2

2λ .
2: Run (v, {K0

i }i∈[1,n−1], (K
0
n,K

1
n)) := pcGGM.FullEval(∆, k).

3: return v(x).

PPRF.PuncEval(α, kpprf{α}, x): // Output ⊥ if x = α

1: Parse kpprf{α} = {Kαi
i }i∈[1,n] ∈ Fn−1

2λ
×K.

2: Run w := pcGGM.PuncFullEval(α, {Kαi
i }i∈[1,n],⊥).

3: return w(x).

Figure 15: Puncturable pseudorandom function with domain [0, N) and range K.

Proof. Let Expthyb(1
λ, α) be identical to Exptrand(1

λ, α), except that

Xα1...αn−1αn
n := ConvertK(Rαn), y := ConvertK(Rαn)

for some R0, R1 ← F2λ .
First, we prove that, for any PPT A and any α ∈ {0, 1}n chosen by A,∣∣∣∣Pr [(kpprf{α}, y)

← Exptreal(1
λ, α)

: A(1λ, α, kpprf{α}, y) = 1

]
− Pr

[
(kpprf{α}, y)
← Expthyb(1

λ, α)
: A(1λ, α, kpprf{α}, y) = 1

]∣∣∣∣ ≤ negl(λ).

(14)

Assume that this does not hold for some A. Then, there exists an adversary B can break Lemma 1
for the CCR hash function H and T = {1}. B is given an oracle O′ ∈ {RealHS ,∆, IdealHS

} considered
in Lemma 1, where ∆← F2λ , and works as follows.
1. B internally runs A and receives α ∈ {0, 1}n from A.

2. B queries O′ with Q1 : X
α1
1 := xor1 ← {0, 1}λ. Then, for i ∈ [2, n− 1], it does:

• Query O′ with Qi,1 : temp1 := O(xori−1, αi).
• Query O′ with Qi,2 : temp2 := temp1 ⊕ xori−1.
• If αi = 0, regard temp1 as Xα1...αi−1αi

i and temp2 as xori (without new query).
• If αi = 1, regard temp1 as xori and temp2 as Xα1...αi−1αi

i (without new query).

Finally, it queries O′ with the following operations:

Qn,1 : R0 := O(xorn−1, 0),
Qn,2 : temp := xorn−1 ⊕ 1,

Qn,3 : R1 := O(temp, 0).

49

S defines Xα1...αn−1αn
n := ConvertK(Rαn) and y := ConvertK(Rαn).

3. B computes kpprf{α} := {Kαi
i }i∈[1,n] from α and the n off-path nodes, sends (kpprf{α}, y) to A,

and outputs whatever A outputs.

On the one hand, if B is given RealHS ,∆(·) for some ∆← F2λ , then

∀i ∈ [2, n− 1] : X
α1...αi−1αi

i = HS

(
∆⊕

⊕
j∈[1,i−1]X

α1...αj−1αj

j

)
⊕ αi ·

(
∆⊕

⊕
j∈[1,i−1]X

α1...αj−1αj

j

)
,

Rαn = HS

(
∆⊕ (

⊕
j∈[1,n−1]X

α1...αj−1αj

j)⊕ αn

)
,

Rαn = HS

(
∆⊕ (

⊕
j∈[1,n−1]X

α1...αj−1αj

j)⊕ αn

)
.

The resulting (kpprf{α}, y) is identically distributed as that from Exptreal(1
λ, α). On the other hand,

if B is given IdealHS
(·), then we have uniformly sampled {Xα1...αi−1αi

i }i∈[1,n−1] and (R0, R1). The
resulting (kpprf{α}, y) is identically distributed as that from Expthyb(1

λ, α). Hence, it follows from
the contradiction assumption that B breaks Lemma 1 for the CCR hash function H and T = {1}.

Second, it is easy to see that, due to the pseudorandomness of ConvertK,∣∣∣∣Pr [(kpprf{α}, y)
← Expthyb(1

λ, α)
: A(1λ, α, kpprf{α}, y) = 1

]
− Pr

[
(kpprf{α}, y)
← Exptrand(1

λ, α)
: A(1λ, α, kpprf{α}, y) = 1

]∣∣∣∣ ≤ negl(λ).

(15)

Using (14) and (15), one can see that this lemma holds.

Lemma 5. For any PPT adversary A, and any α ∈ X chosen by A,∣∣∣∣Pr [(kpprf{α}, y)
← Exptrand(1

λ, α)
: A(1λ, α, kpprf{α}, y) = 1

]
− Pr

[
(kpprf{α}, y)
← Exptideal(1

λ, α)
: A(1λ, α, kpprf{α}, y) = 1

]∣∣∣∣ ≤ negl(λ).

Proof. Let Expthyb(1
λ, α) be identical to Exptrand(1

λ, α), except that

Xα1...αn−1αn
n := ConvertK(Rαn)

for some Rαn ← F2λ .
First, we prove that, for any PPT A and any α ∈ {0, 1}n chosen by A,∣∣∣∣Pr [(kpprf{α}, y)

← Exptideal(1
λ, α)

: A(1λ, α, kpprf{α}, y) = 1

]
− Pr

[
(kpprf{α}, y)
← Expthyb(1

λ, α)
: A(1λ, α, kpprf{α}, y) = 1

]∣∣∣∣ ≤ negl(λ).

(16)

Assume that this does not hold for some A. We use this adversary A to construct the adversary B,
which is given an oracle O′ ∈ {RealHS ,∆, Ideal} for some ∆ ← F2λ , against Lemma 1 for the CCR
hash function H and T = {1}.

1. B internally runs A and receives α ∈ {0, 1}n from A.

50

2. B queries O′ with Q1 : X
α1
1 := xor1 ← {0, 1}λ. Then, for i ∈ [2, n− 1], it does:

• Query O′ with Qi,1 : temp1 := O(xori−1, αi).
• Query O′ with Qi,2 : temp2 := temp1 ⊕ xori−1.
• If αi = 0, regard temp1 as Xα1...αi−1αi

i and temp2 as xori (without new query).
• If αi = 1, regard temp1 as xori and temp2 as Xα1...αi−1αi

i (without new query).

Finally, it proceeds as follows:

• If αn = 0, query O′ with Qn,1 : Rαn := O(xorn−1, 0).
• If αn = 1, query O′ with:

Qn,1 : temp := xorn−1 ⊕ 1,

Qn,2 : Rαn := O(temp, 0).

B defines Xα1...αn−1αn
n := ConvertK(Rαn) and samples y ← K.

3. B computes kpprf{α} := {Kαi
i }i∈[1,n] from α and the n off-path nodes, sends (kpprf{α}, y) to A,

and outputs whatever A outputs.

On the one hand, if B is given RealHS ,∆(·) for some ∆ ← F2λ , then the resulting (kpprf{α}, y)
is identically distributed as that from Exptideal(1

λ, α). On the other hand, if B is given IdealHS
(·),

then {Xα1...αi−1αi

i }i∈[1,n−1] and Rαn are uniformly sampled. The resulting (kpprf{α}, y) is identically
distributed as that from Expthyb(1

λ, α). Therefore, it follows from the contradiction assumption
that B breaks Lemma 1 for the CCR hash function H and T = {1}.

Second, using the pseudorandomness of ConvertK, we have that∣∣∣∣Pr [(kpprf{α}, y)
← Expthyb(1

λ, α)
: A(1λ, α, kpprf{α}, y) = 1

]
− Pr

[
(kpprf{α}, y)
← Exptrand(1

λ, α)
: A(1λ, α, kpprf{α}, y) = 1

]∣∣∣∣ ≤ negl(λ).

(17)

This lemma is immediate from (16) and (17).

Combining the above two lemmas, this theorem holds.

51

D Security Proofs in Section 5
D.1 Proofs of Two Correctness Lemmas for DPF and DCF
Before introducing our two correctness lemmas, we have the following claim.

Claim 2. For any n ∈ N, x, α ∈ {0, 1}n, i ∈ [0, n], and b ∈ {0, 1}, it holds in DPF.Eval that

⟨sx1...xi
i ∥ tx1...xi

i ⟩b = ⟨si ∥ ti⟩b,

where the right-hand term is in the scope of DPF.Gen, if x1 . . . xi = α1 . . . αi.

Proof. This claim follows from that ⟨sx1...xi
i ∥ tx1...xi

i ⟩b (resp., ⟨si ∥ ti⟩b) is a deterministic function of
the same share ⟨s00 ∥ t00⟩b = ⟨s0 ∥ t0⟩b of the root, the prefix x1 . . . xi (resp., α1 . . . αi), and the same
public correction words CW1, . . . ,CWi used in the two algorithms.

Lemma 6. For any n ∈ N, x, α ∈ {0, 1}n, and i ∈ [0, n], it holds in DPF.Eval that

⟨sx1...xi
i ∥ tx1...xi

i ⟩0 ⊕ ⟨sx1...xi
i ∥ tx1...xi

i ⟩1 =

∆ , if x1 . . . xi = α1 . . . αi, i < n
(HCW ⊕ HCW∗) ∥ 1 , if x = α
0λ , if x1 . . . xi ̸= α1 . . . αi

where HCW∗ := ⟨highαn⟩0 ⊕ ⟨highαn⟩1 is implicitly defined in DPF.Gen.

Proof. We prove Lemma 6 via induction. By construction, we can see that

⟨s00 ∥ t00⟩0 ⊕ ⟨s00 ∥ t00⟩1︸ ︷︷ ︸
In DPF.Eval

= ⟨s0 ∥ t0⟩0 ⊕ ⟨s0 ∥ t0⟩1︸ ︷︷ ︸
In DPF.Gen

= ∆,

which is exactly the base case i = 0 of our induction (note that n ≥ 1). For the induction step,
we assume that Lemma 6 holds for i− 1 ≥ 0 and consider i ≤ n. There are two cases:

• i = n. In this case, it holds that

⟨sx1...xn
n ∥ tx1...xn

n ⟩0 ⊕ ⟨sx1...xn
n ∥ tx1...xn

n ⟩1
= ⟨high ∥ low⟩0 ⊕ ⟨tx1...xn−1

n−1 ⟩0 · (HCW ∥ LCWxn)

⊕ ⟨high ∥ low⟩1 ⊕ ⟨tx1...xn−1

n−1 ⟩1 · (HCW ∥ LCWxn)

= ⟨high ∥ low⟩0 ⊕ ⟨high ∥ low⟩1
⊕ (⟨tx1...xn−1

n−1 ⟩0 ⊕ ⟨tx1...xn−1

n−1 ⟩1) · (⟨highαn⟩0 ⊕ ⟨highαn⟩1 ∥ ⟨lowxn⟩0 ⊕ ⟨lowxn⟩1 ⊕ αn ⊕ xn)

1. x1 . . . xn−1 = α1 . . . αn−1 and xn = αn (i.e., x = α). The induction assumption and Claim 2
for x1 . . . xn−1 = α1 . . . αn−1 ensure ⟨high ∥ low⟩b = ⟨highxn ∥ lowxn⟩b for each b ∈ {0, 1}, where
the left-hand term comes from DPF.Eval and the right-hand one is in the scope of DPF.Gen.
The induction assumption also gives ⟨tx1...xn−1

n−1 ⟩0 ⊕ ⟨tx1...xn−1

n−1 ⟩1 = lsb(∆) = 1. Thus,

⟨sx1...xn
n ∥ tx1...xn

n ⟩0 ⊕ ⟨sx1...xn
n ∥ tx1...xn

n ⟩1 = (HCW ⊕ HCW∗) ∥ (αn ⊕ xn) = (HCW ⊕ HCW∗) ∥ 1.

2. x1 . . . xn−1 = α1 . . . αn−1 but xn = αn (i.e., x1 . . . xn ̸= α1 . . . αn). It follows from the same
analysis as the previous sub-case that

⟨sx1...xn
n ∥ tx1...xn

n ⟩0 ⊕ ⟨sx1...xn
n ∥ tx1...xn

n ⟩1 = 0λ−1 ∥ 0 = 0λ.

52

3. x1 . . . xn−1 ̸= α1 . . . αn−1 (i.e., x1 . . . xn ̸= α1 . . . αn). Using the induction assumption, we
have ⟨sx1...xn−1

n−1 ∥ tx1...xn−1

n−1 ⟩0 = ⟨sx1...xn−1

n−1 ∥ tx1...xn−1

n−1 ⟩1 and ⟨high ∥ low⟩0 = ⟨high ∥ low⟩1. Thus,

⟨sx1...xn
n ∥ tx1...xn

n ⟩0 ⊕ ⟨sx1...xn
n ∥ tx1...xn

n ⟩1 = 0λ−1 ∥ 0 = 0λ.

• i < n. In this case, it holds that

⟨sx1...xi
i ∥ tx1...xi

i ⟩0 ⊕ ⟨sx1...xi
i ∥ tx1...xi

i ⟩1
= HS(⟨s

x1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩0)⊕ xi · ⟨sx1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩0 ⊕ ⟨tx1...xi−1

i−1 ⟩0 · CWi

⊕ HS(⟨s
x1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩1)⊕ xi · ⟨sx1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩1 ⊕ ⟨tx1...xi−1

i−1 ⟩1 · CWi

= HS(⟨s
x1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩0)⊕ HS(⟨s
x1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩1)
⊕ xi · (⟨sx1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩0 ⊕ ⟨sx1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩1)
⊕ (⟨tx1...xi−1

i−1 ⟩0 ⊕ ⟨tx1...xi−1

i−1 ⟩1) · (HS(⟨si−1 ∥ ti−1⟩0)⊕ HS(⟨si−1 ∥ ti−1⟩1)⊕ αi ·∆)

1. x1 . . . xi−1 = α1 . . . αi−1 and xi = αi (i.e., x1 . . . xi = α1 . . . αi). By the induction assumption,
⟨sx1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩0 ⊕ ⟨sx1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩1 = ∆. Claim 2 for x1 . . . xi−1 = α1 . . . αi−1 gives

⟨sx1...xi
i ∥ tx1...xi

i ⟩0 ⊕ ⟨sx1...xi
i ∥ tx1...xi

i ⟩1 = (xi ⊕ αi) ·∆ = ∆.

2. x1 . . . xi−1 = α1 . . . αi−1 but xi = αi (i.e., x1 . . . xi ̸= α1 . . . αi). It follows from the same
analysis as the previous sub-case that

⟨sx1...xi
i ∥ tx1...xi

i ⟩0 ⊕ ⟨sx1...xi
i ∥ tx1...xi

i ⟩1 = 0 ·∆ = 0λ.

3. x1 . . . xi−1 ̸= α1 . . . αi−1 (i.e., x1 . . . xi ̸= α1 . . . αi). It follows from the induction assumption
that ⟨sx1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩0 = ⟨sx1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩1. Thus,

⟨sx1...xi
i ∥ tx1...xi

i ⟩0 ⊕ ⟨sx1...xi
i ∥ tx1...xi

i ⟩1 = 0λ.

Combining the base case and the induction step completes this proof.

Lemma 7. For any n ∈ N, x, α ∈ {0, 1}n, let p ∈ [0, n] such that x1 . . . xp = α1 . . . αp is the longest
common prefix of x and α. It holds in DCF.Eval that

V n
0 + V n

1 = αp+1 · β,

where, if p = n, we define αp+1 := αn for completeness.

Proof. By the construction, it holds that

V n
0 + V n

1 =
∑

i∈[1,n] (ConvertG(⟨v
x1...xi−1

i ⟩0) + ⟨tx1...xi−1

i−1 ⟩0 · VCWi)

−
∑

i∈[1,n] (ConvertG(⟨v
x1...xi−1

i ⟩1) + ⟨tx1...xi−1

i−1 ⟩1 · VCWi)

=
∑

i∈[1,n] (ConvertG(⟨v
x1...xi−1

i ⟩0)− ConvertG(⟨v
x1...xi−1

i ⟩1))

+
∑

i∈[1,n] ((⟨t
x1...xi−1

i−1 ⟩0 − ⟨tx1...xi−1

i−1 ⟩1) · VCWi)

=
∑

i∈[1,n] (ConvertG(⟨v
x1...xi−1

i ⟩0)− ConvertG(⟨v
x1...xi−1

i ⟩1))

+
∑

i∈[1,n]

(
(⟨tx1...xi−1

i−1 ⟩0 − ⟨tx1...xi−1

i−1 ⟩1) · (⟨ti−1⟩0 − ⟨ti−1⟩1)

· (ConvertG(⟨vi⟩1)− ConvertG(⟨vi⟩0) + (αi − αi−1) · β)
)

(18)

Consider the following two cases:

53

• p = n (i.e., x = α). For every i ∈ [1, n], we have x1 . . . xi−1 = α1 . . . αi−1 and, from Lemma 6
and Claim 2 for x1 . . . xi−1 = α1 . . . αi−1,

∀b ∈ {0, 1} : ⟨vx1...xi−1

i ⟩b = HS(⟨s
x1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩b ⊕ 2) = HS(⟨si−1 ∥ ti−1⟩b ⊕ 2) = ⟨vi⟩b,
(⟨tx1...xi−1

i−1 ⟩0 − ⟨tx1...xi−1

i−1 ⟩1) · (⟨ti−1⟩0 − ⟨ti−1⟩1) = (⟨tx1...xi−1

i−1 ⟩0 − ⟨tx1...xi−1

i−1 ⟩1)2 = 1.
(19)

Using (18) and (19), we can see that

V n
0 + V n

1 =
∑

i∈[1,n]

(αi − αi−1) · β = αn · β.

• p ∈ [0, n − 1] (i.e., x ̸= α). For every i ∈ [1, p + 1], we also have x1 . . . xi−1 = α1 . . . αi−1 and
(19) from Lemma 6 and Claim 2 for x1 . . . xi−1 = α1 . . . αi−1. Moreover, for every i ∈ [p+ 2, n],
x1 . . . xi−1 ̸= α1 . . . αi−1 and thus

⟨sx1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩0 = ⟨sx1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩1,
⟨vx1...xi−1

i ⟩0 = HS(⟨s
x1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩0 ⊕ 2) = HS(⟨s
x1...xi−1

i−1 ∥ tx1...xi−1

i−1 ⟩1 ⊕ 2) = ⟨vx1...xi−1

i ⟩1
(20)

by Lemma 6. Using (18), (19), and (20), we have that

V n
0 + V n

1 =
∑

i∈[1,p+1]

(αi − αi−1) · β = αp+1 · β.

The above two cases conclude this proof.

D.2 Proof of Theorem 3
Theorem 3. Given CCR function H : F2λ → F2λ, function ConvertG : F2λ−1 → G, and keyed hash
function HS(x) := H(S ⊕ x) with some key S ← F2λ, Figure 8 gives a DPF scheme with domain
[0, N) and range G.

Proof. Correctness. The correctness follows from the construction where

y0 + y1 = (ConvertG(⟨sxn⟩0) + ⟨txn⟩0 · CWn+1)− (ConvertG(⟨sxn⟩1) + ⟨txn⟩1 · CWn+1)

= (ConvertG(⟨sxn⟩0)− ConvertG(⟨sxn⟩1)) + (⟨txn⟩0 − ⟨txn⟩1) · CWn+1

= (ConvertG(⟨sxn⟩0)− ConvertG(⟨sxn⟩1))
+ (⟨txn⟩0 − ⟨txn⟩1) · (⟨tn⟩0 − ⟨tn⟩1) · (ConvertG(⟨sn⟩1)− ConvertG(⟨sn⟩0) + β).

(21)

If x = α ∈ {0, 1}n, Lemma 6 and Claim 2 ensures that

∀b ∈ {0, 1} : ⟨sxn ∥ txn⟩b = ⟨sn ∥ tn⟩b,
(⟨txn⟩0 − ⟨txn⟩1) · (⟨tn⟩0 − ⟨tn⟩1) = (⟨txn⟩0 − ⟨txn⟩1)2 = 1.

Thus, y0 + y1 = β. Otherwise, using Lemma 6 for x ̸= α leads to y0 + y1 = 0.
Security. Consider the hybrids {Hybn,G,d}d∈[0,3] in Figure 16. We have the following lemmas.

Lemma 8. Let H : {0, 1}λ → {0, 1}λ be a (T, 4n, λ − 1, ϵ)-CCR function, χ be a distribution
on {0, 1}λ with min-entropy at least λ − 1, S ← χ be a public key, and HS(x) := H(S ⊕ x) for

54

Hybn,G,d(1
λ, b, α, β):

1: Parse α = (α1, ..., αn) ∈ {0, 1}n and β ∈ G.
2: Sample ∆← {0, 1}λ−1 ∥ 1 and ⟨s0 ∥ t0⟩b ← {0, 1}λ.
3: for i ∈ [1, n− 1] do
4: if d ∈ {1, 2, 3} then
5: Sample CWi ← {0, 1}λ
6: else // d = 0
7: CWi := HS(⟨si−1 ∥ ti−1⟩b)⊕ HS(⟨si−1 ∥ ti−1⟩b ⊕∆)⊕ αi ·∆
8: ⟨si ∥ ti⟩b := HS(⟨si−1 ∥ ti−1⟩b)⊕ αi · ⟨si−1 ∥ ti−1⟩b ⊕ ⟨ti−1⟩b · CWi

9: if d ∈ {1, 2, 3} then
10: Sample ⟨high0 ∥ low0⟩1−b, ⟨high1 ∥ low1⟩1−b ← {0, 1}λ
11: else // d = 0
12: ⟨high0 ∥ low0⟩1−b := HS(⟨sn−1 ∥ tn−1⟩b ⊕∆)
13: ⟨high1 ∥ low1⟩1−b := HS(⟨sn−1 ∥ tn−1⟩b ⊕∆⊕ 1)

14: if d ∈ {2, 3} then
15: Sample CWn ← {0, 1}λ+1 and HCW∗ ← {0, 1}λ−1

16: else // d ∈ {0, 1}
17: ⟨high0 ∥ low0⟩b := HS(⟨sn−1 ∥ tn−1⟩b)
18: ⟨high1 ∥ low1⟩b := HS(⟨sn−1 ∥ tn−1⟩b ⊕ 1)
19: HCW := ⟨highαn⟩b ⊕ ⟨highαn⟩1−b

20: LCW0 := ⟨low0⟩b ⊕ ⟨low0⟩1−b ⊕ αn

21: LCW1 := ⟨low1⟩b ⊕ ⟨low1⟩1−b ⊕ αn

22: CWn := (HCW ∥ LCW0 ∥ LCW1) and HCW∗ := ⟨highαn⟩b ⊕ ⟨highαn⟩1−b

23: if d = 3 then
24: Sample CWn+1 ← G
25: else // d ∈ {0, 1, 2}
26: ⟨sn ∥ tn⟩b := ⟨high

αn ∥ lowαn⟩b ⊕ ⟨tn−1⟩b · (HCW ∥ LCW
αn)

27: CWn+1 := (−1)b · (⟨tn⟩b − (⟨tn⟩b ⊕ 1))
· ((−1)1−b · (ConvertG(⟨sn⟩b)− ConvertG(⟨sn⟩b ⊕ HCW ⊕ HCW∗)) + β)

28: return kb := (⟨s0 ∥ t0⟩b, {CWi}i∈[1,n+1])

Figure 16: The hybrids for the DPF security.

x ∈ {0, 1}λ. There exists such a polynomial poly(·) that, for any b ∈ {0, 1}, (α, β) ∈ {0, 1}n × G,
and any PPT adversary A running in time T ′ ≤ T − poly(λ), it holds that∣∣∣Pr [kb ← Hybn,G,0(1

λ, b, α, β) : A(1λ, kb) = 1
]

− Pr
[
kb ← Hybn,G,1(1

λ, b, α, β) : A(1λ, kb) = 1
]∣∣∣ ≤ 2ϵ+

32n2

2λ+1
.

Proof. Without loss of generality, we fix b ∈ {0, 1} and (α, β) ∈ {0, 1}n × G. We assume that, for
the sake of contradiction, there exists such an adversary A that can distinguish the two hybrids
with advantage more than ϵ within time T ′. We construct the following adversary B that is given
an oracle O′ ∈ {RealHS ,∆, IdealHS

} and can use A to break Lemma 1. Let T = {1}.

1. B queries O′ with Q1 : ⟨s0 ∥ t0⟩b ← {0, 1}λ. Then, for i ∈ [1, n− 1], it does:

• Query O′ with Qi,1 : temp1 := HS(⟨si−1 ∥ ti−1⟩b).
• Query O′ with Qi,2 : temp2 := O(⟨si−1 ∥ ti−1⟩b, αi).
• Query O′ with Qi,3 : CWi := temp1 ⊕ temp2.

55

• If αi = 0 and ⟨ti−1⟩b = 0, regard temp1 as ⟨si ∥ ti⟩b (without new query).
• If αi = 0 and ⟨ti−1⟩b = 1, regard temp2 as ⟨si ∥ ti⟩b (without new query).
• If αi = 1 and ⟨ti−1⟩b = 0, query O′ with Qi,4 : ⟨si ∥ ti⟩b := temp1 ⊕ ⟨si−1 ∥ ti−1⟩b.
• If αi = 1 and ⟨ti−1⟩b = 1, query O′ with Qi,4 : ⟨si ∥ ti⟩b := temp2 ⊕ ⟨si−1 ∥ ti−1⟩b.

Finally, it queries O′ with the following operations:

Qn,1 : ⟨high0 ∥ low0⟩1−b := O(⟨sn−1 ∥ tn−1⟩b, 0),
Qn,2 : temp := ⟨sn−1 ∥ tn−1⟩b ⊕ 1,

Qn,3 : ⟨high1 ∥ low1⟩1−b := O(temp, 0).

2. B runs kb ← Hybn,G,0(1
λ, b, α, β) except that it uses the responses from O′ to instantiate the

variables under the same names in Hybn,G,0, instead of evaluating these variables by itself.

3. B invokes A(1λ, kb) and outputs whatever A outputs.

Since the input length n = n(λ), the runtime of the distinguisher B is bounded by T ′+poly(λ) ≤ T
for some implicit polynomial poly(·). There are at most q = 4n operations, which are natural and
non-trivial as per Definition 3.

Here, χ is a distribution on {0, 1}λ such that (i) the LSB of any ∆ ← χ is 1, and (ii) the high
λ − 1 bits of ∆ are uniform. χ has min-entropy λ − 1. On the one hand, if B is given RealHS ,∆(·)
for some ∆← χ, then

∀i ∈ [1, n− 1] : CWi = HS(⟨si−1 ∥ ti−1⟩b)⊕ HS(⟨si−1 ∥ ti−1⟩b ⊕∆)⊕ αi ·∆,
⟨high0 ∥ low0⟩1−b = HS(⟨sn−1 ∥ tn−1⟩b ⊕∆),

⟨high1 ∥ low1⟩1−b = HS(⟨sn−1 ∥ tn−1⟩b ⊕∆⊕ 1).

The key kb in this case is identically distributed as that in Hybn,G,0. Thus,

Pr
∆←χ

[
BRealHS,∆(·)(1λ) = 1

]
= Pr

[
kb ← Hybn,G,0(1

λ, b, α, β) : A(1λ, kb) = 1
]
. (22)

On the other hand, if B is given IdealHS
(·), then

∀i ∈ [1, n− 1] : CWi = HS(⟨si−1 ∥ ti−1⟩b)⊕O(⟨si−1 ∥ ti−1⟩b, αi),

⟨high0 ∥ low0⟩1−b = O(⟨sn−1 ∥ tn−1⟩b, 0),
⟨high1 ∥ low1⟩1−b = O(⟨sn−1 ∥ tn−1⟩b ⊕ 1, 0)

are uniform since O returns a uniform string upon every invocation. Thus, the key kb in this case
is identically distributed as that in Hybn,G,1, and

Pr
[
BIdealHS (·)(1λ) = 1

]
= Pr

[
kb ← Hybn,G,1(1

λ, b, α, β) : A(1λ, kb) = 1
]
. (23)

Using the contradiction assumption and (22), (23), we can see that∣∣∣∣ Pr∆←χ

[
BRealHS,∆(·)(1λ) = 1

]
− Pr

[
BIdealHS (·)(1λ) = 1

]∣∣∣∣ > 2ϵ+
32n2

2λ+1
,

which contradicts with Lemma 1 for the (T, 4n, λ− 1, ϵ)-CCR H and T = {1}.

56

Lemma 9. For any b ∈ {0, 1}, and (α, β) ∈ {0, 1}n ×G, it holds that

{kb | kb ← Hybn,G,1(1
λ, b, α, β)} ≡ {kb | kb ← Hybn,G,2(1

λ, b, α, β)}.

Proof. Lemma 9 follows from the fact that, in Hybn,G,1, the string

⟨highαn ∥ low0 ∥ low1 ∥ highαn⟩1−b

is uniform and serves as an one-time pad for the plaintext

⟨highαn ∥ (low0 ⊕ αn) ∥ (low1 ⊕ αn) ∥ highαn⟩b.

Therefore, the resulting ciphertext

(HCW ∥ LCW0 ∥ LCW1 ∥HCW∗)

in Hybn,G,1 is as uniform as its counterpart in Hybn,G,2.

Lemma 10. There exists such a polynomial polyconv(·) that, for any (Tconv, ϵconv)-pseudorandom
ConvertG : {0, 1}λ−1 → G, any b ∈ {0, 1}, (α, β) ∈ {0, 1}n ×G, and any PPT adversary A running
in time T ≤ Tconv − polyconv(λ), it holds that∣∣∣Pr [kb ← Hybn,G,2(1

λ, b, α, β) : A(1λ, kb) = 1
]

− Pr
[
kb ← Hybn,G,3(1

λ, b, α, β) : A(1λ, kb) = 1
]∣∣∣ ≤ ϵconv.

Proof. Without loss of generality, we fix b ∈ {0, 1} and (α, β) ∈ {0, 1}n × G. We assume that, for
the sake of contradiction, there exists such an adversary A that can distinguish the two hybrids
with advantage more than ϵconv within time T . We construct the following adversary B that has
black-box access to the adversary A and can break the (Tconv, ϵconv)-pseudorandomness of ConvertG.

1. B receives an element r ∈ G from the challenger.

2. B follows the steps of Hybn,G,2(1
λ, b, α, β) except that it sets

CWn+1 := (−1)b · (⟨tn⟩b − (⟨tn⟩b ⊕ 1)) · ((−1)1−b · (ConvertG(⟨sn⟩b)− r) + β).

In the end, B generates a key kb.

3. B invokes A(1λ, kb) and outputs whatever A outputs.

The runtime of B is at most T + polyconv(λ) ≤ Tconv for some implicit polyconv(·).
If r := ConvertG(s) for some s← {0, 1}λ−1, then kb is identically distributed as that in Hybn,G,2

since the uniform HCW∗ in Hybn,G,2 gives the uniform ⟨sn⟩b ⊕ HCW ⊕ HCW∗. Thus,

Pr
[
s← {0, 1}λ−1, r := ConvertG(s) : B(1λ, r) = 1

]
= Pr

[
kb ← Hybn,G,2(1

λ, b, α, β) : A(1λ, kb) = 1
] (24)

Instead, if r ← G, then the distribution of kb is identical to that in Hybn,G,3 since CWn+1 in this
hybrid has the same uniform distribution as r. Therefore,

Pr
[
r ← G : B(1λ, r) = 1

]
= Pr

[
kb ← Hybn,G,3(1

λ, b, α, β) : A(1λ, kb) = 1
]

(25)

57

Using the contradiction assumption and (24), (25), we can see that∣∣∣Pr [s← {0, 1}λ−1, r := ConvertG(s) : B(1λ, r) = 1
]

− Pr
[
r ← G : B(1λ, r) = 1

] ∣∣∣ > ϵconv,

which contradicts with the (Tconv, ϵconv)-pseudorandomness of ConvertG.

Lemma 6 gives {kb | kb ← Hybn,G,0(1
λ, b, α, β)} ≡ {kb | (k0, k1) ← DPF.Gen(1λ, (α, β, n,G))}

for any b ∈ {0, 1} and (α, β) ∈ {0, 1}n × G. Meanwhile, Hybn,G,3(1
λ, b, α, β) yields a simulator

Sim(1λ, b, Leak(f•α,β)) that outputs a key of n · λ + (λ + 1) + log |G| random bits. This theorem
immediately follows from Lemma 8, 9 and 10.

D.3 Proof of Theorem 4
Theorem 4. Given CCR function H : F2λ → F2λ, function ConvertG : F2ℓ → G with ℓ ∈ {λ−1, λ},
and keyed hash function HS(x) := H(S ⊕ x) with some key S ← F2λ, Figure 9 gives a DCF scheme
with domain [0, N) and range G.

Proof. Correctness. In DCF.Eval, it holds that

y0 + y1 = (DPF.Eval(0, k′0, x) + V n
0) + (DPF.Eval(1, k′1, x) + V n

1)

If x = α ∈ {0, 1}n, Lemma 7 and the DPF correctness ensure y0 + y1 = (−αn · β) + αn · β = 0. If
x < α, there exists such an index p ∈ [0, n− 1] that

x1 . . . xp = α1 . . . αp ∧ xp+1 = 0 ∧ αp+1 = 1.

Using Lemma 7 and the DPF correctness, we have y0 + y1 = 0 + αp+1 · β = β. Similarly, if x > α,
we can also find an index p ∈ [0, n− 1] that results in

x1 . . . xp = α1 . . . αp ∧ xp+1 = 1 ∧ αp+1 = 0,

and y0 + y1 = 0 + αp+1 · β = 0 holds according to Lemma 7 and the DPF correctness. The above
analysis shows that our DCF scheme is correct.
Security. The following proof is similar to that for our DPF scheme (c.f. Appendix D.2), except
that we deal with n VCWi’s in n additional hybrids Hybn,G,3+1, . . . ,Hybn,G,3+n. We first consider
the hybrids {Hybn,G,d}d∈[0,3] in Figure 17 and prove the following lemmas.

Lemma 11. Let H : {0, 1}λ → {0, 1}λ be a (T, 6n, λ − 1, ϵ)-CCR function, χ be a distribution
on {0, 1}λ with min-entropy at least λ − 1, S ← χ be a public key, and HS(x) := H(S ⊕ x) for
x ∈ {0, 1}λ. There exists such a polynomial poly(·) that, for any b ∈ {0, 1}, (α, β) ∈ {0, 1}n × G,
and any PPT adversary A running in time T ′ ≤ T − poly(λ), it holds that∣∣∣Pr [kb ← Hybn,G,0(1

λ, b, α, β) : A(1λ, kb) = 1
]

− Pr
[
kb ← Hybn,G,1(1

λ, b, α, β) : A(1λ, kb) = 1
]∣∣∣ ≤ 2ϵ+

144n2

2λ+1
.

Proof. Without loss of generality, we fix b ∈ {0, 1} and (α, β) ∈ {0, 1}n × G. We assume that, for
the sake of contradiction, there exists such an adversary A that can distinguish the two hybrids
with advantage more than ϵ within time T ′. We can construct the following adversary B that is
given an oracle O′ ∈ {RealHS ,∆, IdealHS

} and can use A to break Lemma 1. Let T = {1, 2}.

58

Hybn,G,d(1
λ, b, α, β):

1: Parse α = (α1, ..., αn) ∈ {0, 1}n and β ∈ G.
2: Sample ∆← {0, 1}λ−1 ∥ 1 and ⟨s0 ∥ t0⟩b ← {0, 1}λ.
3: for i ∈ [1, n− 1] do
4: if d ∈ {1, 2, 3} then
5: Sample CWi ← {0, 1}λ and ⟨vi⟩1−b ← {0, 1}λ
6: else // d = 0
7: CWi := HS(⟨si−1 ∥ ti−1⟩b)⊕ HS(⟨si−1 ∥ ti−1⟩b ⊕∆)⊕ αi ·∆
8: ⟨vi⟩1−b := HS(⟨si−1 ∥ ti−1⟩b ⊕∆⊕ 2)

9: ⟨vi⟩b := HS(⟨si−1 ∥ ti−1⟩b ⊕ 2)
10: VCWi := (−1)b · (⟨ti−1⟩b − (⟨ti−1⟩b ⊕ 1))

· ((−1)1−b · (ConvertG(⟨vi⟩b)− ConvertG(⟨vi⟩1−b)) + (αi − αi−1) · β)
11: ⟨si ∥ ti⟩b := HS(⟨si−1 ∥ ti−1⟩b)⊕ αi · ⟨si−1 ∥ ti−1⟩b ⊕ ⟨ti−1⟩b · CWi

12: if d ∈ {1, 2, 3} then
13: Sample ⟨high0 ∥ low0⟩1−b, ⟨high1 ∥ low1⟩1−b, ⟨vn⟩1−b ← {0, 1}λ
14: else // d = 0
15: ⟨high0 ∥ low0⟩1−b := HS(⟨sn−1 ∥ tn−1⟩b ⊕∆)
16: ⟨high1 ∥ low1⟩1−b := HS(⟨sn−1 ∥ tn−1⟩b ⊕∆⊕ 1)
17: ⟨vn⟩1−b := HS(⟨sn−1 ∥ tn−1⟩b ⊕∆⊕ 2)

18: if d ∈ {2, 3} then
19: Sample CWn ← {0, 1}λ+1 and HCW∗ ← {0, 1}λ−1

20: else // d ∈ {0, 1}
21: ⟨high0 ∥ low0⟩b := HS(⟨sn−1 ∥ tn−1⟩b)
22: ⟨high1 ∥ low1⟩b := HS(⟨sn−1 ∥ tn−1⟩b ⊕ 1)
23: HCW := ⟨highαn⟩b ⊕ ⟨highαn⟩1−b

24: LCW0 := ⟨low0⟩b ⊕ ⟨low0⟩1−b ⊕ αn

25: LCW1 := ⟨low1⟩b ⊕ ⟨low1⟩1−b ⊕ αn

26: CWn := (HCW ∥ LCW0 ∥ LCW1) and HCW∗ := ⟨highαn⟩b ⊕ ⟨highαn⟩1−b

27: ⟨vn⟩b := HS(⟨sn−1 ∥ tn−1⟩b ⊕ 2)
28: VCWn := (−1)b · (⟨tn−1⟩b − (⟨tn−1⟩b ⊕ 1))

· ((−1)1−b · (ConvertG(⟨vn⟩b)− ConvertG(⟨vn⟩1−b)) + (αn − αn−1) · β)
29: if d = 3 then
30: Sample CWn+1 ← G
31: else // d ∈ {0, 1, 2}
32: ⟨sn ∥ tn⟩b := ⟨high

αn ∥ lowαn⟩b ⊕ ⟨tn−1⟩b · (HCW ∥ LCW
αn)

33: CWn+1 := (−1)b · (⟨tn⟩b − (⟨tn⟩b ⊕ 1))
· ((−1)1−b · (ConvertG(⟨sn⟩b)− ConvertG(⟨sn⟩b ⊕ HCW ⊕ HCW∗))− αn · β)

34: return kb := (⟨s0 ∥ t0⟩b, {CWi}i∈[1,n+1], {VCWi}i∈[1,n])

Figure 17: The hybrids for the DCF security.

1. B queries O′ with Q1 : ⟨s0 ∥ t0⟩b ← {0, 1}λ. Then, for i ∈ [1, n− 1], it does:

• Query O′ with Qi,1 : temp1 := HS(⟨si−1 ∥ ti−1⟩b).
• Query O′ with Qi,2 : temp2 := O(⟨si−1 ∥ ti−1⟩b, αi).
• Query O′ with Qi,3 : CWi := temp1 ⊕ temp2.
• Query O′ with Qi,4 : temp3 := ⟨si−1 ∥ ti−1⟩b ⊕ 2.
• Query O′ with Qi,5 : ⟨vi⟩1−b := O(temp3, 0).
• If αi = 0 and ⟨ti−1⟩b = 0, regard temp1 as ⟨si ∥ ti⟩b (without new query).

59

• If αi = 0 and ⟨ti−1⟩b = 1, regard temp2 as ⟨si ∥ ti⟩b (without new query).
• If αi = 1 and ⟨ti−1⟩b = 0, query O′ with Qi,6 : ⟨si ∥ ti⟩b := temp1 ⊕ ⟨si−1 ∥ ti−1⟩b.
• If αi = 1 and ⟨ti−1⟩b = 1, query O′ with Qi,6 : ⟨si ∥ ti⟩b := temp2 ⊕ ⟨si−1 ∥ ti−1⟩b.

Finally, it queries O′ with the following operations:

Qn,1 : ⟨high0 ∥ low0⟩1−b := O(⟨sn−1 ∥ tn−1⟩b, 0),
Qn,2 : temp := ⟨sn−1 ∥ tn−1⟩b ⊕ 1,

Qn,3 : ⟨high1 ∥ low1⟩1−b := O(temp, 0),
Qn,4 : temp′ := ⟨sn−1 ∥ tn−1⟩b ⊕ 2,

Qn,5 : ⟨vn⟩1−b := O(temp′, 0).

2. B runs kb ← Hybn,G,0(1
λ, b, α, β) except that it uses the responses from O′ to instantiate the

variables under the same names in Hybn,G,0, instead of evaluating these variables by itself.

3. B invokes A(1λ, kb) and outputs whatever A outputs.
Since the input length n = n(λ), the runtime of the distinguisher B is bounded by T ′+poly(λ) ≤ T
for some implicit polynomial poly(·). There are at most q = 6n operations, which are natural and
non-trivial as per Definition 3.

Here, χ is a distribution on {0, 1}λ such that (i) the LSB of any ∆ ← χ is 1, and (ii) the high
λ − 1 bits of ∆ are uniform. χ has min-entropy λ − 1. On the one hand, if B is given RealHS ,∆(·)
for some ∆← χ, then

∀i ∈ [1, n− 1] : CWi = HS(⟨si−1 ∥ ti−1⟩b)⊕ HS(⟨si−1 ∥ ti−1⟩b ⊕∆)⊕ αi ·∆,
⟨high0 ∥ low0⟩1−b = HS(⟨sn−1 ∥ tn−1⟩b ⊕∆),

⟨high1 ∥ low1⟩1−b = HS(⟨sn−1 ∥ tn−1⟩b ⊕∆⊕ 1),

∀i ∈ [1, n] : ⟨vi⟩1−b = HS(⟨sn−1 ∥ tn−1⟩b ⊕∆⊕ 2).

The resulting key kb has the same form as that in Hybn,G,0. Therefore,

Pr
∆←χ

[
BRealHS,∆(·)(1λ) = 1

]
= Pr

[
kb ← Hybn,G,0(1

λ, b, α, β) : A(1λ, kb) = 1
]
. (26)

On the other hand, if B is given IdealHS
(·), then

∀i ∈ [1, n− 1] : CWi = HS(⟨si−1 ∥ ti−1⟩b)⊕O(⟨si−1 ∥ ti−1⟩b, αi),

⟨high0 ∥ low0⟩1−b = O(⟨sn−1 ∥ tn−1⟩b, 0),
⟨high1 ∥ low1⟩1−b = O(⟨sn−1 ∥ tn−1⟩b ⊕ 1, 0),

∀i ∈ [1, n] : ⟨vi⟩1−b = O(⟨si−1 ∥ ti−1⟩b ⊕ 2, 0),

are uniform since O returns a uniform string upon every invocation. Thus, the key kb in this case
is identically distributed as that in Hybn,G,1, and

Pr
[
BIdealHS (·)(1λ) = 1

]
= Pr

[
kb ← Hybn,G,1(1

λ, b, α, β) : A(1λ, kb) = 1
]
. (27)

Using the contradiction assumption and (26), (27), we can see that∣∣∣∣ Pr∆←χ

[
BRealHS,∆(·)(1λ) = 1

]
− Pr

[
BIdealHS (·)(1λ) = 1

]∣∣∣∣ > 2ϵ+
144n2

2λ+1
,

which contradicts with Lemma 1 for the (T, 6n, λ− 1, ϵ)-CCR H and T = {1, 2}.

60

Lemma 12. For any b ∈ {0, 1}, and (α, β) ∈ {0, 1}n ×G, it holds that

{kb | kb ← Hybn,G,1(1
λ, b, α, β)} ≡ {kb | kb ← Hybn,G,2(1

λ, b, α, β)}.

sketch. Similar to that for Lemma 9 using one-time pad.

Lemma 13. There exists such a polynomial polyconv(·) that, for any (Tconv, ϵconv)-pseudorandom
ConvertG : {0, 1}λ−1 → G, any b ∈ {0, 1}, (α, β) ∈ {0, 1}n ×G, and any PPT adversary A running
in time T ≤ Tconv − polyconv(λ), it holds that∣∣∣Pr [kb ← Hybn,G,2(1

λ, b, α, β) : A(1λ, kb) = 1
]

− Pr
[
kb ← Hybn,G,3(1

λ, b, α, β) : A(1λ, kb) = 1
]∣∣∣ ≤ ϵconv.

sketch. Similar to that for Lemma 10 which exploits the uniformness of HCW∗, except that the
adversary B sets

CWn+1 := (−1)b · (⟨tn⟩b − (⟨tn⟩b ⊕ 1)) · ((−1)1−b · (ConvertG(⟨sn⟩b)− r)− αn · β)

for an element r ∈ G received from the challenger.

Then, we move to consider the subsequent n hybrids Hybn,G,d for d ∈ [4, n+ 3], where Hybn,G,d

is identical to Hybn,G,d−1 except that the correction word VCWd−3 ∈ G in Hybn,G,d is replaced by
a uniform element in G. We prove the following lemma.

Lemma 14. There exists such a polynomial poly′conv(·) that, for any (Tconv, ϵconv)-pseudorandom
ConvertG : {0, 1}λ → G, any d ∈ [4, n+3], b ∈ {0, 1}, (α, β) ∈ {0, 1}n×G, and any PPT adversary
A running in time T ≤ Tconv − poly′conv(λ), it holds that∣∣∣Pr [kb ← Hybn,G,d−1(1

λ, b, α, β) : A(1λ, kb) = 1
]

− Pr
[
kb ← Hybn,G,d(1

λ, b, α, β) : A(1λ, kb) = 1
]∣∣∣ ≤ ϵconv.

Proof. Without loss of generality, we fix d ∈ [4, n + 3], b ∈ {0, 1} and (α, β) ∈ {0, 1}n × G. We
assume that, for the sake of contradiction, there exists such an adversary A that can distinguish the
two hybrids with advantage more than ϵconv within time T . We construct the following adversary
B that can use A to break the (Tconv, ϵconv)-pseudorandomness of ConvertG.

1. B receives an element r ∈ G from the challenger.

2. B follows the steps of Hybn,G,d−1(1
λ, b, α, β) except that it sets

VCWd−3 := (−1)b · (⟨td−4⟩b − (⟨td−4⟩b ⊕ 1))

· ((−1)1−b · (ConvertG(⟨vd−3⟩b)− r) + (αd−3 − αd−4) · β).

In the end, B generates a key kb.

3. B invokes A(1λ, kb) and outputs whatever A outputs.

61

The runtime of B is at most T + poly′conv(λ) ≤ Tconv for some implicit poly′conv(·).
If r := ConvertG(s) for some s← {0, 1}λ, then kb is identically distributed as in Hybn,G,d−1 since

⟨vd−3⟩1−b in Hybn,G,d−1 is as uniform as s, and they lead to the same distribution of VCWd−3. Thus

Pr
[
s← {0, 1}λ, r := ConvertG(s) : B(1λ, r) = 1

]
= Pr

[
kb ← Hybn,G,d−1(1

λ, b, α, β) : A(1λ, kb) = 1
] (28)

Instead, if r ← G, then the distribution of kb is identical to that in Hybn,G,d since VCWd−3 in this
hybrid has the same uniform distribution as r. Therefore,

Pr
[
r ← G : B(1λ, r) = 1

]
= Pr

[
kb ← Hybn,G,d(1

λ, b, α, β) : A(1λ, kb) = 1
]

(29)

Using the contradiction assumption and (28), (29), we can see that∣∣∣Pr [s← {0, 1}λ, r := ConvertG(s) : B(1λ, r) = 1
]

− Pr
[
r ← G : B(1λ, r) = 1

] ∣∣∣ > ϵconv,

which contradicts with the (Tconv, ϵconv)-pseudorandomness of ConvertG.

Lemma 6 gives {kb | kb ← Hybn,G,0(1
λ, b, α, β)} ≡ {kb | (k0, k1) ← DCF.Gen(1λ, (α, β, n,G))}

for any b ∈ {0, 1} and (α, β) ∈ {0, 1}n × G. Meanwhile, Hybn,G,n+3(1
λ, b, α, β) yields a simulator

Sim(1λ, b, Leak(f<α,β)) that outputs a key of n · λ + (λ + 1) + (n + 1) · log |G| random bits. This
theorem immediately follows from Lemma 11, 12, 13 and 14.

D.4 Proof of Theorem 5
Theorem 5. Given CCR function H : F2λ → F2λ, function ConvertR : F2λ−1 → R, and keyed
hash function HS(x) := H(S ⊕ x) with some key S ← F2λ, protocol ΠDPF (Figure 10) UC-realizes
functionality FDPF (Figure 7) against any semi-honest adversary in the (FCOT,FRand,FOLE)-hybrid
model. If R = F2ℓ for ℓ ∈ N, protocol ΠDPF never invokes FOLE.

Proof. We consider polynomially many concurrent Gen executions, each of which is implicitly
assigned the same session ID but a unique sub-session ID.
Correctness analysis. It would be helpful to show the correctness of protocol ΠDPF before this
security proof. In the one-time Initialize execution of sub-protocol ΠPREP, we have

∆ = ⟨∆⟩0 ⊕ ⟨∆⟩1 := ∆′0 ⊕∆′1 ⊕ (0λ−1 ∥ (lsb(∆′0)⊕ lsb(∆′1)⊕ 1)) s.t. lsb(∆) = 1

and, for each Gen execution,

(K1−b[⟨α1⟩b], . . . ,K1−b[⟨αn⟩b])⊕ (⟨α1⟩b, . . . , ⟨αn⟩b) · ⟨∆⟩1−b
:= k1−b ⊕ ((⟨α1⟩b, . . . , ⟨αn⟩b)⊕ rb) · ⟨∆⟩1−b ⊕ (⟨α1⟩b, . . . , ⟨αn⟩b) · ⟨∆⟩1−b

= k1−b ⊕ rb ·
(
∆′1−b ⊕

(
0λ−1 ∥ (lsb(∆′b)⊕ (1− b))

))
= (k1−b ⊕ rb ·∆′1−b)⊕ rb ·

(
0λ−1 ∥ (lsb(∆′b)⊕ (1− b))

)
= (Mb[⟨α1⟩b], . . . ,Mb[⟨αn⟩b]).

62

In each Gen execution, we have ⟨s00 ∥ t00⟩0 ⊕ ⟨s00 ∥ t00⟩1 = ∆ regardless of W and want to show
that each correction word securely computed in ΠDPF is well-defined as in DPF.Gen so that the
correctness of our DPF scheme (c.f. Section D.2) applies. For i ∈ [1, n− 1],

CWi = ⟨CWi⟩0 ⊕ ⟨CWi⟩1
:= (⊕j∈[0,2i−1)HS(⟨sji−1 ∥ t

j
i−1⟩0))⊕ ⟨αi⟩0 · ⟨∆⟩0 ⊕ K0[⟨αi⟩1]⊕M0[⟨αi⟩0]

⊕ (⊕j∈[0,2i−1)HS(⟨sji−1 ∥ t
j
i−1⟩1))⊕ ⟨αi⟩1 · ⟨∆⟩1 ⊕ K1[⟨αi⟩0]⊕M1[⟨αi⟩1]

= HS(⟨s
α1...αi−1

i−1 ∥ tα1...αi−1

i−1 ⟩0)⊕ HS(⟨s
α1...αi−1

i−1 ∥ tα1...αi−1

i−1 ⟩1)⊕ αi ·∆. (By Lemma 6)

For CWn = (HCW ∥ LCW0 ∥ LCW1) := ⟨CWn⟩0 ⊕ ⟨CWn⟩1, it holds that

HCW := ⟨HCW⟩0 ⊕ ⟨HCW⟩1

= ⟨Xhigh⟨αn⟩0⟩0 ⊕ H′(µ0 ⊕ K0[⟨αn⟩1])⊕ H′(µ1 ⊕M0[⟨αn⟩0])⊕ ⟨αn⟩0 · d1

⊕ ⟨Xhigh⟨αn⟩1⟩1 ⊕ H′(µ1 ⊕ K1[⟨αn⟩0])⊕ H′(µ0 ⊕M1[⟨αn⟩1])⊕ ⟨αn⟩1 · d0

= ⟨Xhigh⟨αn⟩0⟩0 ⊕ ⟨Xhigh⟨αn⟩1⟩1
⊕ H′(µ1 ⊕ K1[⟨αn⟩0])⊕ H′(µ1 ⊕M0[⟨αn⟩0])⊕ ⟨αn⟩0 · d1
⊕ H′(µ0 ⊕ K0[⟨αn⟩1])⊕ H′(µ0 ⊕M1[⟨αn⟩1])⊕ ⟨αn⟩1 · d0

= ⟨Xhigh⟨αn⟩0⟩0 ⊕ ⟨Xhigh⟨αn⟩1⟩1
⊕ ⟨αn⟩0 · (⟨Xhigh0⟩1 ⊕ ⟨Xhigh1⟩1)⊕ ⟨αn⟩1 · (⟨Xhigh0⟩0 ⊕ ⟨Xhigh1⟩0)

= ⟨Xhighαn⟩0 ⊕ ⟨Xhighαn⟩1 = ⟨highαn⟩0 ⊕ ⟨highαn⟩1, (By Lemma 6)
LCW0 := ⟨Xlow0⟩0 ⊕ ⟨Xlow0⟩1 ⊕ αn = ⟨low0⟩0 ⊕ ⟨low0⟩1 ⊕ αn, (By Lemma 6)
LCW1 := ⟨Xlow1⟩0 ⊕ ⟨Xlow1⟩1 ⊕ αn = ⟨low1⟩0 ⊕ ⟨low1⟩1 ⊕ αn. (By Lemma 6)

When R is a binary field (so that +/− is essentially ⊕), we have

CWn+1 = ⟨CWn+1⟩A0 + ⟨CWn+1⟩A1

:=

 ∑
j∈[0,N)

ConvertR(⟨sjn⟩0)

+ ⟨β⟩A0 +

 ∑
j∈[0,N)

ConvertR(⟨sjn⟩1)

+ ⟨β⟩A1

= (⟨tn⟩0 − ⟨tn⟩1) · (ConvertR(⟨sn⟩1)− ConvertR(⟨sn⟩0) + β). (By Lemma 6)

When R is general, the OLE-based multiplication ensures

CWn+1 = ⟨CWn+1⟩A0 + ⟨CWn+1⟩A1
= (⟨A⟩A0 + ⟨A⟩A1) · (⟨B⟩A0 + ⟨B⟩A1) (By OLE-based multiplication)

=

 ∑
j∈[0,N)

⟨tjn⟩0 −
∑

j∈[0,N)

⟨tjn⟩1

 ·
 ∑

j∈[0,N)

ConvertR(⟨sjn⟩1)−
∑

j∈[0,N)

ConvertR(⟨sjn⟩0) + β

= (⟨tn⟩0 − ⟨tn⟩1) · (ConvertR(⟨sn⟩1)− ConvertR(⟨sn⟩0) + β). (By Lemma 6)

The above correction words are those defined in DPF.Gen.
It is clear that the two parties are symmetric in ΠDPF. Thus, without loss of generality, we fix

b ∈ {0, 1} and consider the case where Pb is corrupted.
Corrupted Pb. In the one-time Initialize execution of sub-protocol ΠPREP,

63

• Upon receiving (init) from A to Fb
COT, S waits for A to choose ∆′b.

Upon receiving (init) from A to F1−b
COT, S sends uniform lsb(∆′1−b)← {0, 1} to A.

Then, in each Gen execution,

1-1. Upon receiving (extend, n) from A to Fb
COT, S waits for A to choose kb.

Upon receiving (extend, n) from A to F1−b
COT, S waits for A to choose (rb,mb).

1-2. S sends uniform g1−b ← {0, 1}n to A.

2. Upon receiving (sample, λ) from A to FRand, S sends uniform W ← {0, 1}λ to A.

3. For i ∈ [1, n− 1], S sends uniform ⟨CWi⟩1−b ← {0, 1}λ to A.

4. S sends uniform (µ1−b, d1−b)← {0, 1}λ × {0, 1}λ−1 to A.
Then, S sends uniform ⟨CWn⟩1−b ← {0, 1}λ+1 to A.

5. (Binary field R = F2ℓ, without FOLE)
S sends uniform ⟨CWn+1⟩A1−b ←R to A.
(General ring R, using FOLE)
In sub-protocol ΠMULT, S emulates FOLE and sends uniform transcripts to A.
Then, S sends uniform ⟨CWn+1⟩A1−b ←R to A.

6. S follows protocol ΠDPF to compute the output ⟨r⟩Ab of the corrupted Pb by using its input
(⟨α⟩b, ⟨β⟩Ab), its internal randomness extracted from the emulated subroutine ideal functionalities
or directly received from A, and the uniform transcripts sent by S.
Then, S sends (gen, ⟨α⟩b, ⟨β⟩Ab) and ⟨r⟩Ab to FDPF.

We use hybrid argument to prove that the two worlds are computationally indistinguishable.

• Hybrid0. This is the real world.

• Hybrid1. This hybrid is identical to the previous one, except that S emulates Fb
COT, F1−b

COT, FRand,
and FOLE, and sends random lsb(∆′1−b) in the one-time Initialize execution of sub-protocol
ΠPREP. Moreover, in each Gen execution, it is given the corrupted party’s input (⟨α⟩b, ⟨β⟩Ab)
and the honest party’s input (⟨α⟩1−b, ⟨β⟩A1−b), and sends toA the transcripts computed as follows.
S has access to the real-world oracle RealHS ,∆(·) (c.f. Lemma 1) for some ∆← {0, 1}λ such that
lsb(∆) = 1 and uses it for all concurrent Gen executions. At the beginning of each concurrent
execution: First, S recovers α = ⟨α⟩b ⊕ ⟨α⟩1−b and β = ⟨β⟩Ab + ⟨β⟩A1−b, and queries RealHS ,∆(·)
with Q1 : ⟨s0 ∥ t0⟩b ← {0, 1}λ. Then, for i ∈ [1, n− 1], it does:

– Query RealHS ,∆(·) with Qi,1 : temp1 := HS(⟨si−1 ∥ ti−1⟩b).
– Query RealHS ,∆(·) with Qi,2 : temp2 := O(⟨si−1 ∥ ti−1⟩b, αi).
– Query RealHS ,∆(·) with Qi,3 : CWi := temp1 ⊕ temp2.
– If αi = 0 and ⟨ti−1⟩b = 0, regard temp1 as ⟨si ∥ ti⟩b (without new query).
– If αi = 0 and ⟨ti−1⟩b = 1, regard temp2 as ⟨si ∥ ti⟩b (without new query).
– If αi = 1 and ⟨ti−1⟩b = 0, query RealHS ,∆(·) with Qi,4 : ⟨si ∥ ti⟩b := temp1 ⊕ ⟨si−1 ∥ ti−1⟩b.

64

– If αi = 1 and ⟨ti−1⟩b = 1, query RealHS ,∆(·) with Qi,4 : ⟨si ∥ ti⟩b := temp2 ⊕ ⟨si−1 ∥ ti−1⟩b.

Finally, it queries RealHS ,∆(·) with the following operations:

Qn,1 : ⟨high0 ∥ low0⟩1−b := O(⟨sn−1 ∥ tn−1⟩b, 0),
Qn,2 : temp := ⟨sn−1 ∥ tn−1⟩b ⊕ 1,

Qn,3 : ⟨high1 ∥ low1⟩1−b := O(temp, 0),
Qn,4 : rand← {0, 1}λ,
Qn,5 : pad := O(rand, 0).

In the rest of this execution, S uses these oracle responses for the transcript of the honest P1−b.
We stress that, before S is required to send some transcript, it can compute the corresponding
symmetric transcript to be sent by A since S can follow ΠDPF to run a copy of the semi-honest
Pb on-the-fly by using its input, its internal randomness extracted from the emulated subroutine
ideal functionalities or directly received from A, and the transcripts sent by S so far. In details,
S proceeds as follows:

1. S sends uniform g1−b.
2. S emulates FRand by sending W := ⟨∆⟩b ⊕ ⟨s0 ∥ t0⟩b, where ⟨∆⟩b is computed by running Pb

on-the-fly.
3. For i ∈ [1, n− 1], S sends ⟨CWi⟩1−b := CWi ⊕ ⟨CWi⟩b, where ⟨CWi⟩b is computed by running
Pb on-the-fly.

4. S runs Pb on-the-fly to compute Mb[⟨αn⟩b] and {⟨Xhighσ ∥Xlowσ⟩b}σ∈{0,1} . Then, it defines

⟨Xhigh0 ∥Xlow0⟩1−b := ⟨Xhigh0 ∥Xlow0⟩b ⊕ HS(⟨sn−1 ∥ tn−1⟩b)⊕ ⟨high0 ∥ low0⟩1−b,
⟨Xhigh1 ∥Xlow1⟩1−b := ⟨Xhigh1 ∥Xlow1⟩b ⊕ HS(⟨sn−1 ∥ tn−1⟩b ⊕ 1)⊕ ⟨high1 ∥ low1⟩1−b,

and sends

µ1−b := rand⊕Mb[⟨αn⟩b]⊕ ⟨∆⟩b,
d1−b := H′(µ1−b ⊕Mb[⟨αn⟩b])⊕ hb(pad)⊕ ⟨Xhigh0 ⊕ Xhigh1⟩1−b.

5. S follows DPF.Gen (c.f. Figure 8) to compute CWn and CWn+1. Then, S runs Pb on-the-fly to
compute ⟨CWn⟩b and sends ⟨CWn⟩1−b := CWn⊕⟨CWn⟩b. Finally, S sends uniform transcripts
in sub-protocol ΠMULT if R is not binary, runs Pb on-the-fly to compute ⟨CWn+1⟩Ab , and sends
⟨CWn+1⟩A1−b := CWn+1 − ⟨CWn+1⟩Ab .

Note that lsb(∆′1−b) is uniform in the two hybrids. In each Gen execution, g1−b, W , µ1−b,
and the P1−b’s transcripts in sub-protocol ΠMULT are also uniform in the two hybrids, and
{⟨CWi⟩1−b}i∈[1,n+1] and d1−b are equivalently defined as in the previous hybrid. The two hybrids
are identically distributed since ∆ and the per-execution transcripts have the same distribution.
Now, in each Gen execution, S can (i) follow protocol ΠDPF to compute the output ⟨r⟩Ab of the
corrupted Pb by using its input, its internal randomness extracted from the emulated subroutine
ideal functionalities or directly received from A, and the transcripts sent by S, and (ii) send
(gen, ⟨α⟩b, ⟨β⟩Ab) and ⟨r⟩Ab to FDPF, whose output consistency also holds in the previous hybrid
due to the well-formed transcript of the semi-honest Pb and the correctness of protocol ΠDPF.

65

• Hybrid2. This hybrid is identical to the previous one, except that S has access to the ideal-world
oracle IdealHS

(·) instead of the real-world oracle RealHS ,∆(·) in Lemma 1. It follows from the
lemma that this hybrid is computationally indistinguishable from the previous one.
Now, the per-execution {⟨CWi⟩1−b}i∈[1,n] and d1−b can be uniformly sampled instead due to the
execution-wise random one-time pad from IdealHS

(·).

• Hybrid3. This hybrid is identical to the previous one, except that, in each Gen execution, S
sends random ⟨CWn+1⟩A1−b. This hybrid is computationally indistinguishable from the previous
one due to the execution-wise pseudorandom one-time pad CWn+1 from ConvertR.
In this hybrid, all transcripts in each Gen execution are independent of (⟨α⟩1−b, ⟨β⟩A1−b), the
input of the honest P1−b in the execution. It is clear that this hybrid is the ideal world.

The above hybrid argument completes this proof.

D.5 Proof of Theorem 6
Theorem 6. Given CCR function H : F2λ → F2λ, function ConvertR : F2ℓ →R for ℓ ∈ {λ− 1, λ},
and keyed hash function HS(x) := H(S⊕x) with some key S ← F2λ, protocol ΠDCF (Figure 13) UC-
realizes functionality FDCF (Figure 7) against any semi-honest adversary in the (FCOT,FRand,FOLE)-
hybrid model. If R = F2ℓ for ℓ ∈ N, protocol ΠDCF never invokes FOLE.

Proof. We consider polynomially many concurrent Gen executions, each of which is implicitly
assigned the same session ID but a unique sub-session ID.
Correctness analysis. The correctness of protocol ΠDCF follows from the correctness of ΠDPF

(c.f. Section D.4), except that we need to show that the correction words {VCWi}i∈[1,n] are also
well-formed as in DCF.Gen. The secure computation of these correction words is similar to that of
CWn+1, and the correctness can be checked likewise using Lemma 6, the fact that ⟨vji ⟩b depends on
⟨sji−1 ∥ t

j
i−1⟩b, and the correctly shared {αi · β}i∈[1,n]. We omit the checking for {VCWi}i∈[1,n] and

only check that each αi · β ∈ R is correctly shared as follows:

⟨αi · β⟩A0 + ⟨αi · β⟩A1
:= ⟨αi⟩0 · ⟨β⟩A0 − H∗(xi0 ⊕ K0[⟨αi⟩1]) + H∗(xi1 ⊕M0[⟨αi⟩0]) + ⟨αi⟩0 · yi1

+ ⟨αi⟩1 · ⟨β⟩A1 − H∗(xi1 ⊕ K1[⟨αi⟩0]) + H∗(xi0 ⊕M1[⟨αi⟩1]) + ⟨αi⟩1 · yi0
= ⟨αi⟩0 · ⟨β⟩A0 + ⟨αi⟩1 · ⟨β⟩A1

− H∗(xi1 ⊕ K1[⟨αi⟩0]) + H∗(xi1 ⊕M0[⟨αi⟩0]) + ⟨αi⟩0 · yi1
− H∗(xi0 ⊕ K0[⟨αi⟩1]) + H∗(xi0 ⊕M1[⟨αi⟩1]) + ⟨αi⟩1 · yi0

= ⟨αi⟩0 · ⟨β⟩A0 + ⟨αi⟩1 · ⟨β⟩A1
+ ⟨αi⟩0 · (⟨β⟩A1 − 2 · ⟨αi⟩1 · ⟨β⟩A1) + ⟨αi⟩1 · (⟨β⟩A0 − 2 · ⟨αi⟩0 · ⟨β⟩A0)

= (⟨αi⟩0 + ⟨αi⟩1 − 2 · ⟨αi⟩0 · ⟨αi⟩1) · (⟨β⟩A0 + ⟨β⟩A1) = αi · β.

The security proof is similar to Appendix D.4. Assume that Pb is corrupted.
Corrupted Pb. In the one-time Initialize execution of sub-protocol ΠPREP,

• Upon receiving (init) from A to Fb
COT, S waits for A to choose ∆′b.

Upon receiving (init) from A to F1−b
COT, S sends uniform lsb(∆′1−b)← {0, 1} to A.

66

Then, in each Gen execution,

1-1. Upon receiving (extend, n) from A to Fb
COT, S waits for A to choose kb.

Upon receiving (extend, n) from A to F1−b
COT, S waits for A to choose (rb,mb).

1-2. S sends uniform g1−b ← {0, 1}n to A.

2. Upon receiving (sample, λ) from A to FRand, S sends uniform W ← {0, 1}λ to A.

3. For i ∈ [1, n− 1], S sends uniform (⟨CWi⟩1−b, xi1−b, yi1−b)← {0, 1}λ × {0, 1}λ ×R to A.

4. S sends uniform (µ1−b, d1−b)← {0, 1}λ × {0, 1}λ−1 to A.
Then, S sends uniform (⟨CWn⟩1−b, xn1−b, yn1−b)← {0, 1}λ+1 × {0, 1}λ ×R to A.

5. (Binary field R = F2ℓ, without FOLE)
S sends uniform (⟨CWn+1⟩A1−b, {⟨VCWi⟩A1−b}i∈[1,n])←Rn+1 to A.
(General ring R, using FOLE)
In sub-protocol ΠMULT, S emulates FOLE and sends uniform transcripts to A.
Then, S sends uniform (⟨CWn+1⟩A1−b, {⟨VCWi⟩A1−b}i∈[1,n])←Rn+1 to A.

6. S follows protocol ΠDCF to compute the output ⟨r⟩Ab of the corrupted Pb by using its input
(⟨α⟩b, ⟨β⟩Ab), its internal randomness extracted from the emulated subroutine ideal functionalities
or directly received from A, and the uniform transcripts sent by S.
Then, S sends (gen, ⟨α⟩b, ⟨β⟩Ab) and ⟨r⟩Ab to FDCF.

We use hybrid argument to prove that the two worlds are computationally indistinguishable.

• Hybrid0. This is the real world.

• Hybrid1. This hybrid is identical to the previous one, except that S emulates Fb
COT, F1−b

COT, FRand,
and FOLE, and sends random lsb(∆′1−b) in the one-time Initialize execution of sub-protocol
ΠPREP. Moreover, in each Gen execution, it is given the corrupted party’s input (⟨α⟩b, ⟨β⟩Ab)
and the honest party’s input (⟨α⟩1−b, ⟨β⟩A1−b), and sends toA the transcripts computed as follows.
S has access to the real-world oracle RealHS ,∆(·) (c.f. Lemma 1) for some ∆← {0, 1}λ such that
lsb(∆) = 1 and uses it for all concurrent Gen executions. At the beginning of each concurrent
execution: First, S recovers α = ⟨α⟩b ⊕ ⟨α⟩1−b and β = ⟨β⟩Ab + ⟨β⟩A1−b, and queries RealHS ,∆(·)
with Q1 : ⟨s0 ∥ t0⟩b ← {0, 1}λ. Then, for i ∈ [1, n− 1], it does:

– Query RealHS ,∆(·) with Qi,1 : temp1 := HS(⟨si−1 ∥ ti−1⟩b).
– Query RealHS ,∆(·) with Qi,2 : temp2 := O(⟨si−1 ∥ ti−1⟩b, αi).
– Query RealHS ,∆(·) with Qi,3 : CWi := temp1 ⊕ temp2.
– Query RealHS ,∆(·) with Qi,4 : temp3 := ⟨si−1 ∥ ti−1⟩b ⊕ 2.
– Query RealHS ,∆(·) with Qi,5 : ⟨vi⟩1−b := O(temp3, 0).
– Query RealHS ,∆(·) with Qi,6 : randi ← {0, 1}λ.
– Query RealHS ,∆(·) with Qi,7 : padi := O(randi, 0).
– If αi = 0 and ⟨ti−1⟩b = 0, regard temp1 as ⟨si ∥ ti⟩b (without new query).
– If αi = 0 and ⟨ti−1⟩b = 1, regard temp2 as ⟨si ∥ ti⟩b (without new query).

67

– If αi = 1 and ⟨ti−1⟩b = 0, query RealHS ,∆(·) with Qi,8 : ⟨si ∥ ti⟩b := temp1 ⊕ ⟨si−1 ∥ ti−1⟩b.
– If αi = 1 and ⟨ti−1⟩b = 1, query RealHS ,∆(·) with Qi,8 : ⟨si ∥ ti⟩b := temp2 ⊕ ⟨si−1 ∥ ti−1⟩b.

Finally, it queries RealHS ,∆(·) with the following operations:

Qn,1 : ⟨high0 ∥ low0⟩1−b := O(⟨sn−1 ∥ tn−1⟩b, 0),
Qn,2 : temp := ⟨sn−1 ∥ tn−1⟩b ⊕ 1,

Qn,3 : ⟨high1 ∥ low1⟩1−b := O(temp, 0),
Qn,4 : temp′ := ⟨sn−1 ∥ tn−1⟩b ⊕ 2,

Qn,5 : ⟨vn⟩1−b := O(temp′, 0),
Qn,6 : rand← {0, 1}λ,
Qn,7 : pad := O(rand, 0),
Qn,8 : randn ← {0, 1}λ,
Qn,9 : padn := O(randn, 0).

In the rest of this execution, S uses these oracle responses for the transcript of the honest P1−b.
We stress that, before S is required to send some transcript, it can compute the corresponding
symmetric transcript to be sent by A since S can follow ΠDCF to run a copy of the semi-honest
Pb on-the-fly by using its input, its internal randomness extracted from the emulated subroutine
ideal functionalities or directly received from A, and the transcripts sent by S so far. In details,
S proceeds as follows:

1. S sends uniform g1−b.
2. S emulates FRand by sending W := ⟨∆⟩b ⊕ ⟨s0 ∥ t0⟩b, where ⟨∆⟩b is computed by running Pb

on-the-fly.
3. For i ∈ [1, n− 1], S runs Pb on-the-fly to compute Mb[⟨αi⟩b] and ⟨CWi⟩b, and sends

⟨CWi⟩1−b := CWi ⊕ ⟨CWi⟩b,
xi1−b := randi ⊕Mb[⟨αi⟩b]⊕ ⟨∆⟩b,
yi1−b := (−1)⟨αi⟩b ·

(
H∗(xi1−b ⊕Mb[⟨αi⟩b])− ConvertR(padi)

)
+ ⟨β⟩A1−b − 2 · ⟨αi⟩1−b · ⟨β⟩A1−b.

4. S runs Pb on-the-fly to compute Mb[⟨αn⟩b] and {⟨Xhighσ ∥Xlowσ⟩b}σ∈{0,1} . Then, it defines

⟨Xhigh0 ∥Xlow0⟩1−b := ⟨Xhigh0 ∥Xlow0⟩b ⊕ HS(⟨sn−1 ∥ tn−1⟩b)⊕ ⟨high0 ∥ low0⟩1−b,
⟨Xhigh1 ∥Xlow1⟩1−b := ⟨Xhigh1 ∥Xlow1⟩b ⊕ HS(⟨sn−1 ∥ tn−1⟩b ⊕ 1)⊕ ⟨high1 ∥ low1⟩1−b,

and sends

µ1−b := rand⊕Mb[⟨αn⟩b]⊕ ⟨∆⟩b,
d1−b := H′(µ1−b ⊕Mb[⟨αn⟩b])⊕ hb(pad)⊕ ⟨Xhigh0 ⊕ Xhigh1⟩1−b,
xn1−b := randn ⊕Mb[⟨αn⟩b]⊕ ⟨∆⟩b,
yn1−b := (−1)⟨αn⟩b ·

(
H∗(xn1−b ⊕Mb[⟨αn⟩b])− ConvertR(padn)

)
+ ⟨β⟩A1−b − 2 · ⟨αn⟩1−b · ⟨β⟩A1−b.

68

5. S follows DCF.Gen (c.f. Figure 9) to compute CWn, CWn+1, and {VCWi}i∈[1,n]. Then, S runs
Pb on-the-fly to compute ⟨CWn⟩b and sends ⟨CWn⟩1−b := CWn ⊕ ⟨CWn⟩b. Finally, S sends
uniform transcripts in sub-protocol ΠMULT if R is not binary, runs Pb on-the-fly to compute
⟨CWn+1⟩Ab and {⟨VCWi⟩Ab }i∈[1,n], and sends

⟨CWn+1⟩A1−b := CWn+1 − ⟨CWn+1⟩Ab ,
∀i ∈ [1, n] : ⟨VCWi⟩A1−b := VCWi − ⟨VCWi⟩Ab .

Note that lsb(∆′1−b) is uniform in the two hybrids. In each Gen execution, g1−b, W , {xi1−b}i∈[1,n],
µ1−b, and the P1−b’s transcripts in sub-protocol ΠMULT are also uniform in the two hybrids, and
{⟨CWi⟩1−b}i∈[1,n+1], {⟨VCWi⟩A1−b}i∈[1,n], {yi1−b}i∈[1,n], and d1−b are equivalently defined as in the
previous hybrid. The two hybrids are identically distributed since ∆ and the per-execution
transcripts have the same distribution.
Now, in each Gen execution, S can (i) follow protocol ΠDCF to compute the output ⟨r⟩Ab of the
corrupted Pb by using its input, its internal randomness extracted from the emulated subroutine
ideal functionalities or directly received from A, and the transcripts sent by S, and (ii) send
(gen, ⟨α⟩b, ⟨β⟩Ab) and ⟨r⟩Ab to FDCF, whose output consistency also holds in the previous hybrid
due to the well-formed transcript of the semi-honest Pb and the correctness of protocol ΠDCF.

• Hybrid2. This hybrid is identical to the previous one, except that S has access to the ideal-world
oracle IdealHS

(·) instead of the real-world oracle RealHS ,∆(·) in Lemma 1. It follows from the
lemma that this hybrid is computationally indistinguishable from the previous one.
Now, the per-execution {⟨CWi⟩1−b}i∈[1,n], {padi}i∈[1,n], {⟨vi⟩1−b}i∈[1,n], and d1−b can be uni-
formly sampled instead due to the execution-wise uniform one-time pad from IdealHS

(·).

• Hybrid3. This hybrid is identical to the previous one, except that, in each Gen execution, S
sends random ⟨CWn+1⟩A1−b, {yi1−b}i∈[1,n], and {⟨VCWi⟩A1−b}i∈[1,n]. This hybrid is computationally
indistinguishable from the previous one due to the execution-wise pseudorandom one-time pad
CWn+1, {ConvertR(padi)}i∈[1,n], and {VCWi}i∈[1,n] from ConvertR.
In this hybrid, all transcripts in each Gen execution are independent of (⟨α⟩1−b, ⟨β⟩A1−b), the
input of the honest P1−b in the execution. It is clear that this hybrid is the ideal world.

The above hybrid argument completes this proof.

69

E PCG and FSS Protocols
In the main body of this paper, we present distributed protocols to produce the fully expanded
correlations of popular PCGs (i.e., COT and sVOLE) and FSSs (i.e., DPF and DCF). In this
appendix, we discuss how to construct distributed protocols that only output sublinearly short
forms of such correlations.

E.1 (Single-point) Subfield VOLE with Silent Preprocessing
In a PCG scheme [BCG+19b, BCG+19a, BCG+20], the correlation generation consists of a seed
generation algorithm and a seed expansion algorithm. The generation algorithm produces two short
PCG seeds, and the expansion algorithm expands each seed into a long correlation share. In the
2PC setting where no trusted dealer runs the generation algorithm, two parties run a PCG protocol
that securely computes this generation algorithm so that each party obtains its PCG seed. The
subsequent seed expansion can be locally done by each party.

The silent preprocessing feature in the PCG protocol requires that the (online) generation phase
consumes sublinear communication and produces two sublinearly short PCG seeds, which are to
be locally expanded on demand.

As our pcGGM tree yields PPRF (see Appendix C) under the CCR assumption, one can prove
that this pcGGM tree also yields (single-point) sVOLE PCG scheme via a similar proof to that in
[BCG+19a]. In our pcGGM-based spsVOLE PCG, the sender’s PCG seed includes (∆, k) and the
global key Γ, and the receiver’s PCG seed is (α, {Kαi

i }i∈[1,n], β, ψ + M[β]), where the transcripts
are defined as per our spsVOLE protocol ΠspsVOLE−pcGGM (Figure 6). The expansion algorithm per
party is straightforward.

We can adapt ΠspsVOLE−pcGGM into a silent spsVOLE PCG protocol by simply outputting the
PCG seeds without expansion, but there are some subtle issues to be explained. First, in the
silent spsVOLE PCG protocol with the corrupted receiver, the honest sender’s output includes the
global offset ∆ so that this offset is no longer hidden from the view of the environment Z as in
ΠspsVOLE−pcGGM. As a result, we cannot prove the pseudorandomness of protocol transcripts under
the CCR assumption. However, this challenge is reminiscent of that confronted in our cGGM-based
COT/sVOLE protocol. Intuitively, we can also address issue by resorting to the programmable
random permutation and a relaxed PCG seed generation functionality with the global-key queries
of ∆.

Second, the silent spsVOLE PCG protocol requires one additional FCOT instance for the last-
level transcript in ΠspsVOLE−pcGGM. Observe that the last-level string OT with the payload (c0n, c

1
n)

in ΠspsVOLE−pcGGM is emulated by a precomputed COT tuple under the global key ∆. When the
receiver is corrupted, the simulator cannot learn Kαn

n from the receiver’s PCG seed in the ideal
world. Thus, the simulator can only simulate cαn

n with a random value, which will be detected by Z
checking its consistency with the ∆ in the sender’s PCG seed. A fix to this issue is to use another
independent FCOT instance with another independent global key ∆′ and use ∆′ to emulate the last-
level OT. Since ∆′ is hidden from Z, the pseudorandomness of Kαn

n follows from the correlation
robustness of hash function.

By running t concurrent Extend executions in this silent spsVOLE PCG protocol and using
LPN encoding, we obtain a silent sVOLE PCG protocol. We note that, different from the sVOLE
PCG protocol in [BCG+19a], our protocol reuses the same global offset ∆ across polynomially
many PCG seeds.

70

E.2 FSS Key Generation
In contrast to the functionality FFSS for FSS correlation generation, the functionality for FSS key
generation distributes a pair of FSS keys to the two parties. It is required for an FSS key generation
protocol to realize this functionality with communication sublinear in the domain size of functions.

We want to adapt our two FSS correlation generation protocols, ΠDPF (Figure 10) and ΠDCF

(Figure 13), into the FSS key generation protocols by simply outputting the FSS keys computed
therein. However, we again confront the subtle issue that the global offset ∆ is available to the
environment Z since it can observe the outputs (i.e., FSS keys) of the two parties. This issue can
be addressed by using the programmable random permutation and a relaxed FSS key generation
functionality allowing the queries of ∆.

Moreover, the adaption of each FSS key generation protocol also requires one additional FCOT

instance per party. Consider the DPF key generation protocol ΠDPF−Gen, which follows ΠDPF but
only outputs the two parties’s keys. ΠDPF−Gen should change the way to compute the intermediate
transcript d1−b for each b ∈ {0, 1}. The reason is that, in the DPF key generation, the environment
Z is given both parties’ DPF keys. Now, the environment Z that corrupts Pb can compute ⟨∆⟩1−b
(which underlies d1−b) from the key k1−b output by P1−b and the public randomness W output
by FRand. Unfortunately, the simulator with kb and the transcripts of subroutine functionalities
in this case cannot simulate the d1−b consistent with the ideal-world ⟨∆⟩1−b since kb reveals no
information about ⟨highαn⟩1−b (or rather, ⟨Xhighαn⟩1−b).

To address this issue, we can use the same technique as in our single-point sVOLE PCG (c.f.
Appendix E.1). That is, each party can invoke an independent FCOT instance with a global key
∆∗b and use the COT tuples precomputed from this instance to define d1−b. Since Z cannot see
∆∗b , the simulator can simulate d1−b by a random value due to the correlation robustness of hash
function.

Likewise, we can construct a DCF key generation protocol ΠDCF−Gen, which follows ΠDCF except
that each party Pb uses one additional FCOT instance to define its intermediate transcripts db and
{yib}i∈[1,n]. Each DCF key kb to be output by ΠDCF−Gen is implicitly computed in ΠDCF.

71

F Supplementary Preliminaries
F.1 Pseudorandom Conversion
Implementation of ConvertG. This function maps ℓ-bit random strings into pseudorandom ele-
ments in G and can be implemented as follows. Let ρ ∈ N be the statistical security parameter. On
input an ℓ-bit random string x: if (2ℓ mod |G|)/2ℓ ≤ 2−ρ,4 it computes the remainder x mod |G|
and outputs this remainder as a group element in G; otherwise, it computes Gext(x) mod |G| for
some PRG Gext : {0, 1}ℓ → {0, 1}ℓ0 , where ℓ0 := ⌈log |G|⌉ + ρ, and outputs this remainder as a
group element in G. In either case, the bias is bounded by 2−ρ.

We focus on ℓ = λ− 1 by default in the following definition but slightly abuse this definition in
our pcGGM and DCF to also convert a random string with ℓ = λ bits. We stress that this abuse
does not affect the security since one can always discard the LSB of a λ-bit random string to fit
this string for the following ConvertG. This abuse is just for the simplicity of exposition.
Definition 5 (Pseudorandomness of ConvertG). ConvertG : {0, 1}λ−1 → G is (t, ϵ)-pseudorandom
if, for any distinguisher D running in time at most t, and any finite group G, it holds that∣∣∣Pr [s← {0, 1}λ−1, r := ConvertG(s) : D(1λ, r) = 1

]
− Pr

[
r ← G : D(1λ, r) = 1

] ∣∣∣ ≤ ϵ.
Theorem 9. Let ρ ∈ N be the statistical security parameter, G be an arbitrary finite group,
Gext : {0, 1}λ−1 → {0, 1}ℓ0 be a (t, ϵ)-secure PRG where ℓ0 := ⌈log |G|⌉ + ρ. There exists such a
polynomial poly(·) that the implementation of ConvertG in this appendix is (t′, ϵ′)-pseudorandom as
per Definition 5, where

(t′, ϵ′) =

{
(∞, 2−ρ) , if 2λ−1 mod |G|

2λ−1 ≤ 2−ρ

(t− poly(λ), ϵ+ 2−ρ) , otherwise
.

Proof. Define M := 2λ−1 mod |G|. Consider two cases regarding G:
• Case (i): M/2λ−1 ≤ 2−ρ. Let X (resp., Y) denote the uniform distribution of s ← [0, 2λ−1)

(resp., s ← [0, 2λ−1 − M)), where s can be viewed as a string in {0, 1}λ−1. The statistical
distance

SD(X,Y) =
1

2
·

∑
s′∈supp(X)∪supp(Y)

∣∣Pr [X = s′
]
− Pr

[
Y = s′

]∣∣
=

1

2
·

∑
s′∈[0,2λ−1)

∣∣Pr [X = s′
]
− Pr

[
Y = s′

]∣∣
=

1

2
·
(
(2λ−1 −M) ·

(
1

2λ−1 −M
− 1

2λ−1

)
+M · 1

2λ−1

)
=

M

2λ−1
≤ 2−ρ.

Since ConvertG is a deterministic function using modulo operation and a bijective mapping, we
have SD(ConvertG(X),ConvertG(Y)) ≤ SD(X,Y) ≤ 2−ρ. Observe that r := ConvertG(Y) is
equivalent to the uniform sampling r ← G. We can see that the distributions of r in the two
worlds have statistical distance at most 2−ρ, which is the upper bound of the advantage of any
computationally unbounded distinguisher D.

4A special case is that |G| is a power of two such that |G| divides 2ℓ.

72

• Case (ii): M/2λ−1 > 2−ρ. In this case, ConvertG will invoke the PRG Gext. We assume that,
for the sake of contradiction, ConvertG is not (t′, ϵ′)-pseudorandom for some distinguisher D. Let
ω : [0, |G|) → G be the bijective mapping. We can construct a PRG adversary A that, given a
challenge c ∈ {0, 1}ℓ0 from the PRG challenger, interprets c ∈ [0, 2ℓ0), sends r := ω(c mod |G|)
to D, and outputs whatever D outputs. The runtime of A is at most t′ + poly(λ) ≤ t for some
fixed polynomial poly(·).
Similar to the analysis in Case (i), the following computational indistinguishability is bounded
by the statistical distance of c:∣∣∣Pr [r ← G : D(1λ, r) = 1

]
− Pr

[
c← [0, 2ℓ0), r := ω(c mod |G|) : D(1λ, r) = 1

]∣∣∣
=
∣∣∣Pr [c← [0, 2ℓ0 − 2ℓ0 mod |G|), r := ω(c mod |G|) : D(1λ, r) = 1

]
− Pr

[
c← [0, 2ℓ0), r := ω(c mod |G|) : D(1λ, r) = 1

]∣∣∣
≤ 2ℓ0 mod |G|

2ℓ0
<
|G|
2ℓ0
≤ 2−ρ.

(30)

Due to the construction of A, we have that

Pr
[
c← {0, 1}ℓ0 : A(1λ, c) = 1

]
= Pr

[
c← [0, 2ℓ0), r := ω(c mod |G|) : D(1λ, r) = 1

]
,

Pr
[
s← {0, 1}λ−1, c := Gext(s) : A(1λ, c) = 1

]
= Pr

[
s← {0, 1}λ−1, r := ConvertG(s) : D(1λ, r) = 1

]
.

(31)

Using the contradiction assumption and (30), (31), we can see∣∣∣Pr [s← {0, 1}λ−1, c := Gext(s) : A(1λ, c) = 1
]

− Pr
[
c← {0, 1}ℓ0 : A(1λ, c) = 1

] ∣∣∣ > ϵ′ − 2ρ = ϵ,

contradicting the (t, ϵ)-pseudorandomness of Gext.

This theorem follows from the above two cases.

F.2 Coin-tossing
In Figure 18, we present the functionality FRand for random coin-tossing, where two parties can
obtain a uniformly sampled string R ∈ {0, 1}λ.

This functionality can be implemented in the FCOT-hybrid model. The high-level idea is that a
precomputed COT tuple M1−b[r1−b] = Kb[r1−b]⊕ r1−b ·∆b, where Pb has (∆b,Kb[r1−b]) ∈ {0, 1}λ ×
{0, 1}λ and P1−b has (r1−b,M1−b[r1−b]) ∈ {0, 1} × {0, 1}λ, is an information-theoretic message
authentication code [NNOB12, DPSZ12]. From this perspective, r1−b is a uniform bit authenticated
under the global key ∆b and the one-time key Kb[r1−b], and the resulting MAC tag is M1−b[r1−b].
This authenticated bit r1−b (only known to P1−b) can be “opened” (like a commitment) by P1−b
sending (r1−b,M1−b[r1−b]) to Pb, who checks M1−b[r1−b] = Kb[r1−b] ⊕ r1−b ·∆b. By each party Pb

73

Functionality FRand

Sample: Upon receiving (sample, ℓ) from P0 and P1, sample R← {0, 1}ℓ and send R to P0 and P1.

Figure 18: Functionality for coin-tossing.

Functionality FOLE

Parameters: Ring R.
Extend: This functionality allows polynomially many (extend) commands. Upon receiving (extend, N)
from P0 and P1:

1. If both parties are honest, sample (x0, z0), (x1, z1) ← RN × RN such that z0 + z1 = x0 ⊙ x1;
otherwise (i.e., Pb is corrupted), receive (xb, zb) ∈ RN ×RN from the adversary, sample x1−b ←RN ,
and recompute z1−b := xb ⊙ x1−b − zb ∈ RN .

2. Send (x0, z0) to P0 and (x1, z1) to P1.

Figure 19: Functionality for OLE.

opening a COT tuple for its rb, the two parties can flip a uniform coin r := r0 ⊕ r1. To produce a
random λ-bit string R, λ precomputed COT tuple are required for each party.

The above opening can be batched using the technique [DNNR17] in the RPM. In this batched
opening where the two parties agree on a compression function f , each Pb computes Cb :=
f(Mb[rb,1], . . . ,Mb[rb,λ]) and sends ((rb,1, . . . , rb,λ), Cb) to P1−b, who uses these values to check

Cb = f(K1−b[rb,1]⊕ rb,1 ·∆1−b, . . . ,K1−b[rb,λ]⊕ rb,λ ·∆1−b).

The compression function f can be implemented in the way that f(x1, . . . , xn) := ⊕i∈[1,n]H(xi) for
some correlation-robust hash function H : {0, 1}λ → {0, 1}λ, which can be instantiated in the RPM
[GKWY20]. The resulting coin-tossing protocol is one-round in the FCOT-hybrid model, and each
party sends 2λ bits.

F.3 Oblivious Linear Evaluation
In Figure 19, we present the functionality FOLE for oblivious linear evaluation (OLE), where two
parties obtain their additive shares of the component-wise multiplication result x0 ⊙ x1 ∈ RN .
FOLE can be efficiently realized from, e.g., linearly homomorphic encryption [DPSZ12, KPR18],
oblivious transfer [KOS16, GNN17], or DPF [BCG+20], under their respective assumptions.

74

	Introduction
	Our Contribution
	Concurrent Work

	Preliminaries
	Notation
	Security Model and Functionalities
	Circular Correlation Robustness
	Function Secret Sharing

	Technical Overview
	Improved COT/sVOLE from Correlated GGM Trees
	DPF/DCF from Shared Pseudorandom Correlated GGM Trees

	Subfield VOLE Extension
	Single-point COT and sVOLE from Correlated GGM
	Single-point COT
	Single-point sVOLE

	Single-point sVOLE from Pseudorandom Correlated GGM

	DPF and DCF Correlation Generation
	DPF and DCF Schemes
	DPF Correlation Generation
	DCF Correlation Generation

	Circular Correlation Robustness for Restricted Queries
	Security Proofs and Detailed Protocol in Section 4
	Proof of Theorem 1
	Single-point sVOLE from Correlated GGM Tree
	Proof of Theorem 2

	PPRF from Pseudorandom Correlated GGM
	Security Proofs in Section 5
	Proofs of Two Correctness Lemmas for DPF and DCF
	Proof of Theorem 3
	Proof of Theorem 4
	Proof of Theorem 5
	Proof of Theorem 6

	PCG and FSS Protocols
	(Single-point) Subfield VOLE with Silent Preprocessing
	FSS Key Generation

	Supplementary Preliminaries
	Pseudorandom Conversion
	Coin-tossing
	Oblivious Linear Evaluation

