Papers updated in last 31 days (Page 3 of 486 results)
Rate-1 Statistical Non-Interactive Zero-Knowledge
We give the first construction of a rate-1 statistical non-interactive zero-knowledge argument of knowledge. For the language, our construction achieves a proof length of where denotes the witness, is the security parameter, is a constant less than 1, and is a fixed polynomial that is independent of the instance or the witness size. The soundness of our construction follows from the sub-exponential hardness of either the LWE assumption, or the - assumption on prime-order groups with efficiently computable bilinear maps, or the DDH assumption. Previously, Gentry et al. (Journal of Cryptology, 2015) achieved NIZKs with statistical soundness and computational zero-knowledge with the aforementioned proof length by relying on (circular-secure) Learning with Errors assumption.
Detecting Rogue Decryption in (Threshold) Encryption via Self-Incriminating Proofs
Keeping decrypting parties accountable in public key encryption is notoriously hard since the secret key owner can decrypt any arbitrary ciphertext. Threshold encryption aims to solve this issue by distributing the power to decrypt among a set of parties, who must interact via a decryption protocol. However, such parties can employ cryptographic tools such as Multiparty Computation (MPC) to decrypt arbitrary ciphertexts without being detected. We introduce the notion of (threshold) encryption with Self-Incriminating Proofs, where parties must produce a self-incriminating proof of decryption when decrypting every ciphertext. In the standard public key encryption case, the adversary could destroy these proofs, so we strengthen our notion to guarantee that the proofs are published when decryption succeeds. This creates a decryption audit trail, which is useful in scenarios where decryption power is held by a single trusted party (e.g., a Trusted Execution Environment) who must be kept accountable. In the threshold case, we ensure that at least one of the parties who execute the decryption protocol will learn a self-incriminating proof, even if they employ advanced tools such as MPC. The fact that a party learns the proof and may leak it at any moment functions as a deterrent for parties who do not wish to be identified as malicious decryptors (e.g., a commercial operator of a service based on threshold encryption). We investigate the (im)possibility and applications of our notions while providing matching constructions under appropriate assumptions. In the threshold case, we build on recent results on Individual Cryptography (CRYPTO 2023).
Low-Latency Dynamically Available Total Order Broadcast
This work addresses the problem of Byzantine Fault-Tolerant (BFT) Total-Order Broadcast (TOB) in a dynamically available setting, where parties can transition between online and offline states without knowing the number of active parties. Existing dynamically available protocols rely on a synchronous network assumption, which means their latency remains tied to the pessimistic network delay , even when the actual network delay is . This raises the question of whether a dynamically available BFT TOB protocol can maintain safety and liveness under synchrony while committing blocks at a rate closer to the actual network delay. We answer this question affirmatively by designing the first dynamically available BFT TOB protocol that can commit blocks at the rate of where .
Constructing Committing and Leakage-Resilient Authenticated Encryption
The main goal of this work is to construct authenticated encryption (AE) that is both committing and leakage-resilient. As a first approach for this we consider generic composition as a well-known method for constructing AE schemes. While the leakage resilience of generic composition schemes has already been analyzed by Barwell et al. (Asiacrypt'17), for committing security this is not the case. We fill this gap by providing a separate analysis of the generic composition paradigms with respect to committing security, giving both positive and negative results: By means of a concrete attack, we show that Encrypt-then-MAC is not committing. Furthermore, we prove that Encrypt-and-MAC is committing, given that the underlying schemes satisfy security notions we introduce for this purpose. We later prove these new notions achievable by providing schemes that satisfy them. MAC-then-Encrypt turns out to be more difficult due to the fact that the tag is not outputted alongside the ciphertext as it is done for the other two composition methods. Nevertheless, we give a detailed heuristic analysis of MAC-then-Encrypt with respect to committing security, leaving a definite result as an open task for future work. Our results, in combination with the fact that only Encrypt-then-MAC yields leakage-resilient AE schemes, show that one cannot obtain AE schemes that are both committing and leakage-resilient via generic composition. As a second approach for constructing committing and leakage-resilient AE, we develop a generic transformation that turns an arbitrary AE scheme into one that fulfills both properties—though only a slightly weakened form of leakage resilience. The transformation relies on a keyed function that is both binding, i.e., it is hard to find key-input pairs that result in the same output, leakage-resilient pseudorandom and unpredictable.
Fuzzy Extractors are Practical: Cryptographic Strength Key Derivation from the Iris
Despite decades of effort, a chasm existed between the theory and practice of device-level biometric authentication. Deployed authentication algorithms rely on data that overtly leaks private information about the biometric; thus systems rely on externalized security measures such as trusted execution environments. The authentication algorithms have no cryptographic guarantees.
We close this chasm. We introduce a key derivation system with 105 bits of entropy and a 91% true accept rate for the iris. Our system advances
1) the feature extraction from the iris and
2) the fuzzy extractor used to derive keys. The fuzzy extractor builds on sample-then-lock (Canetti et al., Journal of Cryptology 2021). We 1) Introduce a new method of sampling that achieves a better TAR versus entropy tradeoff when features have different quality, 2) Correct their security proof, showing the minimum of min-entropy of subsets is the relevant security measure, and 3) Tighten their concrete analysis, nearly doubling security under reasonable assumptions.
Our final feature extractor incorporates ideas from the new sampling method to produce features optimized for the sample-then-lock construction. The only statistical assumption needed to show security of our system is necessary: the accuracy of min-entropy estimation.
Our quantitive level of security is well above prior work. Simhadri et al. (ISC, 2019) report bits on the iris, but they have a bug in their analysis (that we fix) that reduces their strength. Zhang et al.'s (ePrint 2021/1559) system achieves bits on the face but assumes independence between biometrics and the used error-correcting code, an assumption that cannot be easily verified. Other prior work assumes that bits of biometrics are i.i.d., an assumption that is demonstrably false. (Or that all correlation is pairwise between features (Hine et al., TIFS 2023).)
Irises used to evaluate TAR and security are class disjoint from those used for training and collecting statistics (the open dataset regime).
Cool + Cruel = Dual
Recently [Wenger et al.~IEEE S\&P 2025] claimed that the `Cool and Cruel' (C+C) approach to solving LWE with sparse secrets [Nolte et al.~AFRICACRYPT 2024] outperforms other approaches, in particular the well established primal attack.
In this work we show that
i.~C+C is an instantiation of a known dual attack [Albrecht, EUROCRYPT 2017], ii.~experimental evidence that the primal attack can outperform C+C in similar regimes to those studied by Wenger et al. and
iii.~both theoretical justification and experimental evidence that C+C is a consequence of a basis profile called the Z-shape.
To prove i.~we introduce a framework for dimension reduction in bounded distance decoding problems that may be of independent interest.
For ii.~we provide an open source implementation of the primal attack that is properly parametrised for short, sparse ternary secret LWE and guesses portions of the secret, along with an error analysis for a rounded variant of LWE that proves useful for practical cryptanalysis.
Given iii.~we falsify a claim of Nolte et al.
A Plausible Attack on the Adaptive Security of Threshold Schnorr Signatures
The standard notion of security for threshold signature schemes is static security, where the set of corrupt parties is assumed to be fixed before protocol execution. In this model, the adversary may corrupt up to t−1 out of a threshold of t parties. A stronger notion of security for threshold signatures considers an adaptive adversary, who may corrupt parties dynamically based on its view of the protocol execution, learning the corrupted parties’ secret keys as well as their states. Adaptive security of threshold signatures has become an active area of research recently due to ongoing standardization efforts. Of particular interest is full adaptive security, the analogue of static security, where the adversary
may adaptively corrupt a full t−1 parties.
We present a plausible attack on the full adaptive security of threshold Schnorr signature schemes with public key shares of the form where all secret keys lie on a polynomial. We show that a wide range of threshold Schnorr signature schemes, including all variants of FROST, Sparkle, and Lindell’22, cannot be proven fully adaptively secure without modifications or assuming the hardness of a search problem that we define in this work. We then prove a generalization that extends below t−1 adaptive corruptions.
Post-Quantum Multi-Message Public Key Encryption from Extended Reproducible PKE
A multi-message multi-recipient Public Key Encryption (mmPKE) enables batch encryption of multiple messages for multiple independent recipients in one go, significantly reducing costs, particularly bandwidth, compared to the trivial solution of encrypting each message individually. This capability is especially critical in the post-quantum setting, where ciphertext length is typically significantly larger than the corresponding plaintext.
In this work, we first observe that the generic construction of mmPKE from reproducible PKE proposed by Bellare et al. (PKC ’03) does not apply in the lattice-based setting because existing lattice-based PKE schemes do not fit the notion of reproducible PKE. To this end, we first extend their construction by proposing a new variant of PKE, named extended reproducible PKE (XR-PKE), which enables the reproduction of ciphertexts via additional hints. However, standard lattice-based PKE schemes, such as Kyber (EuroS&P '18), do not readily satisfy the XR PKE requirements. To construct XR-PKE from lattices, we introduce a novel technique for precisely estimating the impact of such hints on the ciphertext security while also establishing suitable parameters. This enables us to instantiate the first CPA-secure mmPKE and Multi-Key Encapsulation Mechanism (mmKEM) from the standard Module Learning with Errors (MLWE) lattice assumption, named mmCipher-PKE and mmCipher-KEM, respectively. We then extend our works to the identity-based setting and construct the first mmIBE and mmIB-KEM schemes. As a bonus contribution, we explore generic constructions of adaptively secure mmPKE, achieving security against adaptive corruption and chosen-ciphertext attacks.
We also provide an efficient implementation and thorough evaluation of the practical performance of our mmCipher. Our results show that mmCipher provides significant bandwidth and computational savings in practice, compared to the state-of-the-art. For example, for 1024 recipients, our mmCipher-KEM achieves a 23~45 times reduction in bandwidth overhead, reaching within 4~9% of the plaintext length (near optimal bandwidth), while also offering a 3~5 times reduction in computational cost.
Insecurity of One Ring Signature Scheme with Batch Verification for Applications in VANETs
We show that the Negi-Kumar certificateless ring signature scheme [Wirel. Pers. Commun. 134(4): 1987-2011 (2024)] is insecure against forgery attack. The signer's public key and secret key are simply invoked to compute the hash value , which cannot be retrieved by the verifier for checking their dependency. The explicit dependency between the public key and secret key is not properly used to construct some intractable problems, such as Elliptic Curve Discrete Logarithm (ECDL), Computational Diffie-Hellman (CDH), and Decisional Diffie-Hellman (DDH). An adversary can find an efficient signing algorithm functionally equivalent to the valid signing algorithm. The findings in this note could be helpful for the newcomers who are not familiar with the designing techniques for certificateless ring signature.
On the UC-(In)Security of PAKE Protocols Without the Random Oracle Model
A Password-Authenticated Key Exchange (PAKE) protocol allows two parties to jointly establish a cryptographic key, where the only information shared in advance is a low-entropy password. The first efficient PAKE protocol whose security does not rely on the random oracle model is the one by Katz, Ostrovsky and Yung (KOY, EUROCRYPT 2001). Unfortunately, the KOY protocol has only been proven secure in the game-based setting, and it is unclear whether KOY is secure in the stronger Universal Composability (UC) framework, which is the current security standard for PAKE.
In this work, we present a thorough study of the UC-security of KOY. Our contributions are two-fold:
1. We formally prove that the KOY protocol is not UC-secure;
2. We then show that the UC-security of KOY holds in the Algebraic Group Model, under the Decisional Square Diffie-Hellman (DSDH) assumption.
Overall, we characterize the exact conditions under which KOY is UC-secure. Interestingly, the DSDH assumption is stronger than DDH under which KOY can be proven game-based secure, which reveals some subtle gaps between the two PAKE security notions that have never been studied.
Kerblam — Anonymous Messaging System Protecting Both Senders and Recipients
While popular messaging apps already offer end-to-end confidentially, end-to-end metadata privacy is still far from being practical. Although several meta-data hiding systems have been developed and some like Tor have been popular, the proposed solutions lack in one or more aspects: the Tor network is prone to easy low-resourced attacks, and most others solely focus on anonymity for senders or receivers but do not both. Some recent solutions do consider end-to-end anonymity, however, they put significant restrictions on how users use the system. Particularly, the receivers must stay online or trust online servers that receive messages on behalf of receivers. This work presents a scalable end-to-end anonymity messaging system, , that overcomes the mentioned issues and restrictions. It stems from a key observation that combining the recently-emerged oblivious message retrieval (OMR) primitive with oblivious shuffling can offer the desired end-to-end anonymity without severely restricting the number of messages a sender may send or a receiver may receive. We build our solution using two non-colluding servers and recent OMR protocol HomeRun and a compatible oblivious shuffle protocol. We then extend our solution to allow larger messages by employing a novel two-server distributed oblivious RAM technique, called . Our performance analysis demonstrates that with the increase in the number and size of messages, the performance improvement brought by becomes higher. Specifically, for messages of size 1KB, our scheme only needs s to transmit a message.
Distance-Aware OT with Application to Fuzzy PSI
A two-party fuzzy private set intersection (PSI) protocol between Alice and Bob with input sets and allows Alice to learn nothing more than the points of Bob that are `` -close'' to its points in some metric space . More formally, Alice learns only the set for a predefined threshold and distance metric , while Bob learns nothing about Alice's set. Fuzzy PSI is a valuable privacy tool in scenarios where private set intersection needs to be computed over imprecise or measurement-based data, such as GPS coordinates or healthcare data. Previous approaches to fuzzy PSI rely on asymmetric cryptographic primitives, generic two-party computation (2PC) techniques like garbled circuits, or function secret sharing methods, all of which are computationally intensive and lead to poor concrete efficiency.
This work introduces a new modular framework for fuzzy PSI, {primarily built on efficient symmetric key primitives}. Our framework reduces the design of efficient fuzzy PSI to a novel variant of oblivious transfer (OT), which we term distance-aware random OT (da-ROT). This variant enables the sender to obtain two random strings , while the receiver obtains one of these values , depending on whether the receiver’s input keyword and the sender’s input keyword are close in some metric space i.e., . The da-ROT can be viewed as a natural extension of traditional OT, where the condition (choice bit) is known to the receiver. We propose efficient constructions for da-ROT based on standard OT techniques tailored for small domains, supporting distance metrics such as the Chebyshev norm, the Euclidean norm, and the Manhattan norm.
By integrating these da-ROT constructions, our fuzzy PSI framework achieves up to a reduction in communication cost and up to a reduction in computation cost compared to previous state-of-the-art protocols, across input set sizes ranging from to . Additionally, we extend our framework to compute fuzzy PSI cardinality and fuzzy join from traditional PSI-related functionalities. All proposed protocols are secure in the semi-honest model.
Quantum-Safe Public Key Blinding from MPC-in-the-Head Signature Schemes
Key blinding produces pseudonymous digital identities by rerandomizing public keys of a digital signature scheme. It is used in anonymous networks to provide the seemingly contradictory goals of anonymity and authentication. Current key blinding schemes are based on the discrete log assumption. Eaton, Stebila and Stracovsky (LATINCRYPT 2021) proposed the first key blinding schemes from lattice assumptions. However, the large public keys and lack of QROM security means they are not ready to replace existing solutions.
We present a new way to build key blinding schemes form any MPC-in-the-Head signature scheme. These schemes rely on well-studied symmetric cryptographic primitives and admit short public keys. We prove a general framework for constructing key blinding schemes and for proving their security in the quantum random oracle model (QROM).
We instantiate our framework with the recent AES-based Helium signature scheme (Kales and Zaverucha, 2022). Blinding Helium only adds a minor overhead to the signature and verification time. Both Helium and the aforementioned lattice-based key blinding schemes were only proven secure in the ROM. This makes our results the first QROM proof of Helium and the first fully quantum-safe public key blinding scheme.
General Functional Bootstrapping using CKKS
The Ducas-Micciancio (DM) and Chilotti-Gama-Georgieva-Izabachene (CGGI) cryptosystems provide a general privacy-preserving computation capability. These fully homomorphic encryption (FHE) cryptosystems can evaluate an arbitrary function expressed as a general look-up table (LUT) via the method of functional bootstrapping. The main limitation of DM/CGGI functional bootstrapping is its efficiency because this procedure has to bootstrap every encrypted number separately. A different bootstrapping approach, based on the Cheon-Kim-Kim-Song (CKKS) FHE scheme, can achieve much smaller amortized time due to its ability to bootstrap many thousands of numbers at once. However, CKKS does not currently provide a functional bootstrapping capability that can evaluate a general LUT. An open research question is whether such capability can be efficiently constructed. We give a positive answer to this question by proposing and implementing a general functional bootstrapping method based on CKKS-style bootstrapping. We devise a theoretical toolkit for evaluating an arbitrary function using the theory of trigonometric Hermite interpolations, which provides control over noise reduction during functional bootstrapping. Our experimental results for 8-bit LUT evaluation show that the proposed method achieves the amortized time of 0.72 milliseconds, which is three orders of magnitude faster than the DM/CGGI approach and 6.8x faster than (a more restrictive) amortized functional bootstrapping method based on the Brakerski/Fan-Vercauteren (BFV) FHE scheme.
NIZK Amplification via Leakage-Resilient Secure Computation
Suppose that we are given a weak \emph{Non-Interactive Zero-Knowledge} (NIZK) proof system for NP with non-negligible soundness and zero-knowledge errors, denoted by and , respectively. Is it possible to to reduce these errors to a negligible level? This problem, known as NIZK amplification, was introduced by Goyal, Jain, and Sahai (Crypto'19) and was further studied by Bitansky and Geier (Crypto'24).
The latter work provides amplification theorems for proofs and arguments, assuming the existence of one-way functions and public-key encryption, respectively. Unfortunately, their results only apply when the security level, , is a constant bounded away from zero. Amplifying NIZK with an inverse polynomial security level remains an open problem and was stated as the main open question in both works.
In this work, we resolve the NIZK amplification problem and show how to amplify any non-trivial NIZK proof system that has a noticeable, inverse-polynomial level of security. As in previous works, we amplify proofs and arguments assuming the existence of one-way functions and public-key encryption, respectively. Furthermore, assuming the existence of collision-resistant hash functions, we preserve, for the first time, properties such as statistical zero-knowledge and proof succinctness.
Our main technical contribution is a new \emph{leakage-resilient secure multiparty} protocol that computes any public-output functionality with information-theoretic security against an adversary that corrupts an arbitrary subset of parties and obtains bounded leakage from each honest party. Our protocol operates in the pairwise correlated randomness model. Previous works relied on stronger setup assumptions in the form of -wise correlations and either supported a smaller corruption threshold or suffered from an exponential dependency on the number of parties. To transform our protocol into a NIZK amplifier, we introduce a new intermediate notion of \emph{leakage-resilient NP secret sharing}, that may be of independent interest.
Quantum Rewinding for IOP-Based Succinct Arguments
We analyze the post-quantum security of succinct interactive arguments constructed from interactive oracle proofs (IOPs) and vector commitment schemes. Specifically, we prove that an interactive variant of the *BCS transformation* is secure in the standard model against quantum adversaries when the vector commitment scheme is collapse binding.
Prior work established the post-quantum security of Kilian's succinct interactive argument, a special case of the BCS transformation for one-message IOPs (i.e., PCPs). That analysis is inherently limited to one message because the reduction, like all prior quantum rewinding reductions, aims to extract classical information (a PCP string) from the quantum argument adversary. Our reduction overcomes this limitation by instead extracting a *quantum algorithm* that implements an IOP adversary; representing such an adversary classically may in general require exponential complexity.
Along the way we define *collapse position binding*, which we propose as the ``correct'' definition of collapse binding for vector commitment schemes, eliminating shortcomings of prior definitions.
As an application of our results, we obtain post-quantum secure succinct arguments, in the standard model (no oracles), with the *best asymptotic complexity known*.
Fair Signature Exchange
We introduce the concept of Fair Signature Exchange (FSE). FSE enables a client to obtain signatures on multiple messages in a fair manner: the client receives all signatures if and only if the signer receives an agreed-upon payment. We formalize security definitions for FSE and present a practical construction based on the Schnorr signature scheme, avoiding computationally expensive cryptographic primitives such as SNARKs. Our scheme imposes minimal overhead on the Schnorr signer and verifier, leaving the signature verification process unchanged from standard Schnorr signatures. Fairness is enforced using a blockchain as a trusted third party, while exchanging only a constant amount of information on-chain regardless of the number of signatures exchanged. We demonstrate how to construct a batch adaptor signature scheme using FSE, and our FSE construction based on Schnorr results in an efficient implementation of a batch Schnorr adaptor signature scheme for the discrete logarithm problem. We implemented our scheme to show that it has negligible overhead compared to standard Schnorr signatures. For instance, exchanging signatures on the Vesta curve takes approximately ms for the signer and ms for the verifier, with almost zero overhead for the signer and x overhead for the verifier compared to the original Schnorr protocol.
A Fast Multiplication Algorithm and RLWE-PLWE Equivalence for the Maximal Real Subfield of the -th Cyclotomic Field
This paper proves the RLWE-PLWE equivalence for the maximal real subfields of the cyclotomic fields with conductor , where is an odd prime, and and are integers. In particular, we show that the canonical embedding as a linear transform has a condition number bounded above by a polynomial in . In addition, we describe a fast multiplication algorithm in the ring of integers of these real subfields. The multiplication algorithm uses the fast Discrete Cosine Transform (DCT) and has computational complexity . This work extends the results of Ahola et al., where the same claims are proved for a single prime .
Fully-Homomorphic Encryption from Lattice Isomorphism
The lattice isomorphism problem (LIP) asks, given two lattices and , to decide whether there exists an orthogonal linear map from to . In this work, we show that the hardness of (a circular variant of) LIP implies the existence of a fully-homomorphic encryption scheme for all classical and quantum circuits. Prior to our work, LIP was only known to imply the existence of basic cryptographic primitives, such as public-key encryption or digital signatures.
Powerformer: Efficient and High-Accuracy Privacy-Preserving Language Model with Homomorphic Encryption
We propose Powerformer, an efficient homomorphic encryption (HE)-based privacy-preserving language model (PPLM) designed to reduce computation overhead while maintaining model performance. Powerformer incorporates three key techniques to optimize encrypted computations:
1. A novel distillation technique that replaces softmax and layer normalization (LN) with computationally efficient power and linear functions, ensuring no performance degradation while enabling seamless encrypted computation.
2. A pseudo-sign composite approximation method that accurately approximates GELU and tanh functions with minimal computational overhead.
3. A homomorphic matrix multiplication algorithm specifically optimized for Transformer models, enhancing efficiency in encrypted environments.
By integrating these techniques, Powerformer based on the BERT-base model achieves a 45% reduction in computation time compared to the state-of-the-art HE-based PPLM without any loss in accuracy.
Reality Check on Side-Channels: Lessons learnt from breaking AES on an ARM Cortex A processor
Side-channel analysis (SCA) has posed a significant threat to systems for nearly three decades. Numerous practical demonstrations have targeted everyday devices, such as smartcards, cryptocurrency wallets, and smartphones. However, much of the research in the public domain has focused on low-end microcontrollers, limiting our understanding of the challenges involved in attacking more complex systems. In this work, we conduct a reality check on SCA by targeting a high-performance ARM Cortex-A72 out-of-order processor, commonly found in smartphones. We evaluate the practical effort required for key recovery attacks, considering various threat models, from basic to advanced. Our results show that while basic approaches fail, advanced approaches like deep learning-based SCA can successfully recover the secret key. This multi-tier evaluation approach is crucial for comprehensive risk assessment and informed decision-making regarding mitigation strategies, balancing security, performance, and area constraints.
MOAI: Module-Optimizing Architecture for Non-Interactive Secure Transformer Inference
The advent of Large Language Models (LLM) has brought about a new wave productivity, revolutionizing business operations while keeping cost relatively low. The human-like interface of LLM enables it to be easily integrated with business functions, thereby freeing up precious human resources for more complex, valuable tasks. However, due to the intensive computation and memory requirements of LLM inference, it is preferable and cheaper to deploy LLMs with the Cloud Service Providers (CSP) that offer high performance computation resources and low-latency networking. Nevertheless, privacy concerns have been raised about the possibility of data leakage to the CSP. In this work, we seek to address such privacy concerns through the use of Fully Homomorphic Encryption (FHE). FHE enables the CSP to work on data in its encrypted form, thus ensuring that the data stay private and secure. We propose the implementation of LLM inference with FHE. While a series of prior work have demonstrated that it is possible to execute LLM inference in a private manner, it remains a challenge to design a solution that is practical.
Our contributions are as follows: We provide the first end-to-end open-source implementation of a non-interactive transformer inference with FHE. We report an amortized time of 9.6 minutes of one input with 128 tokens when evaluating the BERT model on CPU. Our packing methods for encrypted matrices remove the need to repack ciphertext between encrypted matrix multiplication and activation layers. Additionally, we introduce interleaved batching to eliminate the internal rotations during ciphertext matrix multiplications. Our approach also avoids HE rotations in evaluations of the softmax and layerNorm, leading to a speedup of 4.22× and 122× than existing works respectively. Our implementation supports arbitrary token lengths, in contrast with existing solutions that requires a full token embedding. Our implementation can be found at GitHub.
Tight Multi-User Security of CCM and Enhancement by Tag-Based Key Derivation Applied to GCM and CCM
Laconic Pre-Constrained Encryption
The recent work of Ananth et al. (ITCS 2022) initiated the study of pre-constrained encryption (PCE) which achieves meaningful security even against the system authority, without assuming any trusted setup. They provided constructions for special cases such as pre-constrained Attribute Based Encryption (PC-ABE) for point functions and pre-constrained Identity Based Encryption (PC-IBE) for general functions from the Learning with Errors (LWE) assumption. For the most general notion of PCE for circuits, they provided a construction from indistinguishability obfuscation (iO) and moreover, proved a lower bound showing that the reliance on iO was inherent. In all their constructions, the size of the public key scales linearly with the size of the constraint input to the setup algorithm.\smallskip
In this work we initiate the study of laconic pre-constrained encryption, where the public key is sublinear in the size as well as number of constraints input to the setup algorithm. We make the following contributions:
1. We construct laconic pre-constrained ABE for point functions and laconic pre-constrained IBE for general functions from LWE which achieves succinct public keys, thus improving upon the work of Ananth et al.
2. For general constraints, we sidestep the lower bound by Ananth et al. by defining a weaker static notion of pre-constrained encryption (sPCE), which nevertheless suffices for all known applications. We show that laconic sPCE is impossible to achieve in the strongest malicious model of security against authority and provide the first construction of semi-malicious laconic sPCE for general constraints from LWE in the random oracle model.
3. For general constraints, to achieve malicious security without iO, we provide constructions of non-laconic sPCE from a variety of assumptions including DDH, LWE, QR and DCR. Our LWE based construction satisfies unconditional security against malicious authorities.
4. As an application of our sPCE, we provide the first construction of pre-constrained group signatures supporting general constraints, achieving unconditional anonymity and unlinkability against malicious authorities from the LWE assumption. The only other construction by Bartusek et al. supports the restricted set/database membership constraint, and achieves computational security from the DDH assumption.
Along the way, we define and construct the notion of pre-constrained Input Obfuscation which may be of independent interest.
Lower Bounds on the Bottleneck Complexity of Secure Multiparty Computation
Secure multiparty computation (MPC) is a cryptographic primitive which enables multiple parties to jointly compute a function without revealing any extra information on their private inputs. Bottleneck complexity is an efficiency measure that captures the load-balancing aspect of MPC protocols, defined as the maximum amount of communication required by any party. In this work, we study the problem of establishing lower bounds on the bottleneck complexity of MPC protocols. While the previously known techniques for lower bounding total communication complexity can also be applied to bottleneck complexity, they do not provide nontrivial bounds in the correlated randomness model, which is commonly assumed by existing protocols achieving low bottleneck complexity, or they are applied only to functions of limited practical interest. We propose several novel techniques for lower bounding the bottleneck complexity of MPC protocols. Our methods derive nontrivial lower bounds even in the correlated randomness model and apply to practically relevant functions including the sum function and threshold functions. Furthermore, our lower bounds demonstrate the optimality of some existing MPC protocols in terms of bottleneck complexity or the amount of correlated randomness.
A Generic Framework for Practical Lattice-Based Non-interactive Publicly Verifiable Secret Sharing
Non-interactive publicly verifiable secret sharing (PVSS) schemes enable the decentralized (re-)sharing of secrets in adversarial environments, allowing anyone to verify the correctness of distributed shares. Such schemes are essential for large-scale decentralized applications, including committee-based systems that require both transparency and robustness. However, existing PVSS schemes rely on group-based cryptography, resulting them vulnerable to quantum attacks and limiting their suitability for post-quantum applications.
In this work, we propose the first practical, fully lattice-based, non-interactive PVSS scheme, grounded on standard lattice assumptions for post-quantum security. At the heart of our design is a generic framework that transforms vector commitments and linear encryption schemes into efficient PVSS protocols. We enhance vector commitments by incorporating functional hiding and proof of smallness, ensuring that encrypted shares are both verifiable and privacy-preserving. Our construction introduces two tailored lattice-based encryption schemes, each supporting efficient proofs of decryption correctness. This framework provides strong verifiability guarantees while maintaining low proof sizes and computational efficiency, making it suitable for systems with large numbers of participants.
Linear-Time Accumulation Schemes
Proof-carrying data (PCD) is a powerful cryptographic primitive for computational integrity in a distributed setting. State-of-the-art constructions of PCD are based on accumulation schemes (and, closely related, folding schemes).
We present WARP, the first accumulation scheme with linear prover time and logarithmic verifier time. Our scheme is hash-based (secure in the random oracle model), plausibly post-quantum secure, and supports unbounded accumulation depth.
We achieve our result by constructing an interactive oracle reduction of proximity that works with any linear code over a sufficiently large field. We take a novel approach by constructing a straightline extractor that relies on erasure correction, rather than error-tolerant decoding like prior extractors. Along the way, we introduce a variant of straightline round-by-round knowledge soundness that is compatible with our extraction strategy.
Dynamic Security: A Realistic Approach to Adaptive Security With Applications to Strong FaF Security
Secure multiparty computation allows multiple parties to jointly compute a function while maintaining security even in the presence of malicious adversaries. There are two types of adversaries in the literature: static adversaries, which choose the parties to corrupt before the protocol begins; and adaptive adversaries, which can corrupt parties during the execution of the protocol based on the messages exchanged by the parties. While adaptive security provides a more robust security guarantee, it may require too much in certain scenarios. Indeed, the adversary must allocate some of its resources to corrupt the parties; however, certain parties might be more susceptible to corruption, for instance, if they have not updated their operating system to the latest version.
To address this, we introduce a new security notion called \emph{dynamic security}. Here, adversaries may corrupt new parties \emph{during and after} the protocol's execution, but \emph{cannot choose} targets based on the messages. A protocol is said to be -dynamically secure if it is possible to simulate any adversary that can corrupt up to parties during the execution and thereafter. Dynamic security provides meaningful security for many real-world scenarios. Moreover, it circumvents known lower bounds on the communication complexity of adaptive security, allowing for more efficient protocols such as committee-based ones, which would be insecure against adaptive adversaries.
We further explore dynamic security and establish the following results.
1. We show a surprising connection between dynamic security and the seemingly unrelated notion of security with friends and foes (FaF security), introduced by Alon et al. (CRYPTO 2020), which aims to protect honest parties not only from adversaries but also against other honest parties. The notion of -\emph{strong FaF security} strengthens this by requiring the simulatability of the joint view of any malicious parties alongside any honest parties to be indistinguishable from their real-world view. We show that -dynamic security and -strong FaF security are equivalent.
2. We consider the feasibility of -dynamic security and show that every -party functionality can be computed with computational -dynamic security (with guaranteed output delivery) if and only if . By our previous result, this also solves an open problem left by Alon et al. on the feasibility of strong FaF security.
A Pure Indistinguishability Obfuscation Approach to Adaptively-Sound SNARGs for NP
We construct an adaptively-sound succinct non-interactive argument (SNARG) for NP in the CRS model from sub-exponentially-secure indistinguishability obfuscation ( ) and sub-exponentially-secure one-way functions. Previously, Waters and Wu (STOC 2024), and subsequently, Waters and Zhandry (CRYPTO 2024) showed how to construct adaptively-sound SNARGs for NP by relying on sub-exponentially-secure indistinguishability obfuscation, one-way functions, and an additional algebraic assumption (i.e., discrete log, factoring, or learning with errors). In this work, we show that no additional algebraic assumption is needed and vanilla (sub-exponentially-secure) one-way functions already suffice in combination with .
Security of Linear Secret Sharing Schemes with Noisy Side-Channel Leakage
Secret sharing is a foundational cryptographic primitive for sharing secret keys in distributed systems. In a classical threshold setting, it involves a dealer who has a secret, a set of users to whom shares of the secret are sent, and a threshold which is the minimum number of shares required to recover the secret. These schemes offer an all-or-nothing security approach where less than shares reveal no information about the secret. But these guarantees are threatened by side-channel attacks which can leak partial information from each share. Initiated by Benhamouda et. al. (CRYPTO'18), the security of such schemes has been studied for precise and worst-case bounded leakage models. However, in practice, side-channel attacks are inherently noisy. In this work, we propose a noisy leakage model for secret sharing, where each share is independently leaked to an adversary corrupted by additive noise in the underlying field . Under this model, we study the security of linear secret sharing schemes, and show bounds on the mutual information (MI) and statistical distance (SD) security metrics. We do this by using the MacWilliams' identity from the theory of error-correcting codes. For a given secret, it enables us to bound the the statistical deviation of the leaked shares from uniform as , where is the Fourier bias of the added noise. Existing analyses for the security of linear -threshold schemes only bound the SD metric, and show resilience for schemes with . In this work, we show that these constraints are artifacts of the bounded leakage model. In particular, we show that -threshold schemes over with leak bits about the secret, given the bias of added noise satisfies . To the best of our knowledge, this is the first attempt towards understanding the side-channel security of linear secret sharing schemes for the MI metric.
On the Adaptive Security of Key-Unique Threshold Signatures
In this work, we investigate the security assumptions required to prove the adaptive security of threshold signatures. Adaptive security is a strong notion of security that allows an adversary to corrupt parties at any point during the execution of the protocol, and is of practical interest due to recent standardization efforts for threshold schemes. Towards this end, we give two different impossibility results.
We begin by formalizing the notion of a key-unique threshold signature scheme, where public keys have a unique correspondence to secret keys and there is an efficient algorithm for checking that public keys are well-formed. Key-uniqueness occurs in many threshold schemes that are compatible with standard, single-party signatures used in practice, such as BLS, ECDSA, and Schnorr signatures.
Our first impossibility result demonstrates that it is impossible to prove the adaptive security of any key-unique threshold signature scheme under any non-interactive computational assumption for a broad class of reductions, in the range , where is the total number of parties, is the number of corrupted parties, and is the threshold. We begin by ruling out full adaptive security (i.e., corruptions) for key-unique threshold signatures under non-interactive computational assumptions, including, but not limited to, the discrete logarithm (DL), computational Diffie-Hellman (CDH), and q-Strong Diffie-Hellman (q-SDH) assumptions. We then generalize this impossibility result for all such that .
Our second impossibility result applies specifically to key-unique threshold Schnorr signatures, currently an active area of research. We demonstrate that, even under the interactive computational assumptions One-More Discrete Logarithm (OMDL) and Algebraic OMDL (AOMDL), it is impossible to prove adaptive security for in the programmable ROM with rewinding.
Taken together, our results underscore the difficulty of achieving adaptive security for key-unique threshold signatures. However, we believe this work can open a new line of research, by indicating assumptions and properties to aim for when constructing adaptively secure threshold schemes.
Simple Public Key Anamorphic Encryption and Signature using Multi-Message Extensions
Anamorphic encryption (AE) considers secure communication in the presence of a powerful surveillant (typically called a ``dictator'') who only allows certain cryptographic primitives and knows all the secret keys in a system. The basic idea is that there is a second (anamorphic) mode of encryption that allows for transmitting an anamorphic message using a double key to a receiver who can decrypt this message using the same double key. From the point of view of the dictator, the encryption keys as well as the ciphertexts in the regular and anamorphic modes are indistinguishable. The most recent works in this field consider public key anamorphic encryption (PKAE), i.e., the sender of an anamorphic message requires an encryption double key (or no key at all), and the receiver requires an associated decryption double key. Known constructions, however, either work only for schemes that are mostly of theoretical interest or come with conceptual limitations, assuming additional unnecessary properties (e.g., randomness recoverability and CCA security).
In this paper, we ask whether we can design PKAE schemes without such limitations and be closer to practically used PKE schemes. In fact, such schemes are more likely to be allowed by a cognizant dictator. Moreover, we initiate the study of identity-based anamorphic encryption (IBAE), as the IBE setting seems to be a natural choice for a dictator. For both PKAE and IBAE, we show how well-known IND-CPA and IND-CCA secure primitives can be extended by an anamorphic encryption channel. In contrast to previous work, we additionally consider CCA (rather than just CPA) security notions for the anamorphic channel and also build upon CPA (rather than only CCA) secure PKE.
Finally, we ask whether it is possible to port the recent concept of anamorphic signatures, which considers constructing symmetric anamorphic channels in case only signature schemes are allowed by the dictator, to the asymmetric setting, which we denote by public-key anamorphic signatures (PKAS). Moreover, we consider IND-CCA security for the anamorphic channel of our PKAS.
Space-Lock Puzzles and Verifiable Space-Hard Functions from Root-Finding in Sparse Polynomials
Timed cryptography has initiated a paradigm shift in the design of cryptographic protocols: Using timed cryptography we can realize tasks fairly, which is provably out of range of standard cryptographic concepts. To a certain degree, the success of timed cryptography is rooted in the existence of efficient protocols based on the sequential squaring assumption.
In this work, we consider space analogues of timed cryptographic primitives, which we refer to as space-hard primitives. Roughly speaking, these notions require honest protocol parties to invest a certain amount of space and provide security against space constrained adversaries. While inefficient generic constructions of timed-primitives from strong assumptions such as indistinguishability obfuscation can be adapted to the space-hard setting, we currently lack concrete and versatile algebraically structured assumptions for space-hard cryptography.
In this work, we initiate the study of space-hard primitives from concrete algebraic assumptions relating to the problem of root-finding of sparse polynomials. Our motivation to study this problem is a candidate construction of VDFs by Boneh et al. (CRYPTO 2018) which are based on the hardness of inverting permutation polynomials. Somewhat anticlimactically, our first contribution is a full break of this candidate. However, we then revise this hardness assumption by dropping the permutation requirement and considering arbitrary sparse high degree polynomials. We argue that this type of assumption is much better suited for space-hardness rather than timed cryptography. We then proceed to construct both space-lock puzzles and verifiable space-hard functions from this assumption.
The Rényi Smoothing Parameter and Its Applications in Lattice-Based Cryptography
The smoothing parameter is a cornerstone concept in lattice-based cryptography. Traditionally defined using the distance, this standard formulation can be overly stringent compared to the (or statistical) distance more commonly employed in cryptographic contexts. Recent work has proposed relaxed definitions based on Kullback-Leibler (KL) divergence and distance, thereby loosening the constraints required for the distance to vanish. However, the additive nature of the distance can be limiting for cryptographic applications where probability preservation is essential. In this paper, we introduce the {Rényi smoothing parameter} of a lattice, based on Rényi divergence, to address this limitation. The advantages of Rényi divergence in cryptographic settings are well known thanks to its multiplicative nature. The Rényi smooting parameter provides a tunable framework that interpolates between the and distances, offering enhanced flexibility. We present two complementary methods to study the averaging behavior of the Rényi flatness factor: one uses classical tools such as the Minkowski-Hlawka ensemble and Rogers’ formula for computing lattice function moments; the other employs Construction A lattices derived from random codes. Finally, we illustrate how this new perspective yields improvements in lattice-based cryptographic constructions.
Tighter Quantum Security for Fiat-Shamir-with-Aborts and Hash-and-Sign-with-Retry Signatures
We revisit the quantum security (in the QROM) of digital signature schemes that follow the Fiat-Shamir-with-aborts (FSwA) or the probabilistic hash-and-sign with retry/abort (HSwA) design paradigm. Important examples of such signature schemes are Dilithium, SeaSign, Falcon+ and UOV. In particular, we are interested in the UF-CMA-to-UF-NMA reduction for such schemes. We observe that previous such reductions have a reduction loss that is larger than what one would hope for, or require a more stringent notion of zero-knowledge than one would hope for.
We resolve this matter here by means of a novel UF-CMA-to-UF-NMA reduction that applies to FSwA and HSwA signature schemes simultaneously, and that offers an improved reduction loss (without making the zero-knowledge assumption more stringent).
AsconAEAD128 Revisited in the Multi-user Setting
After more than half a decade since its initiation, NIST declared Ascon as the winner of the LwC competition. In the first public draft of AsconAEAD128, NIST recognized that Ascon has limitations when used in multi-user applications. To mitigate this, NIST prescribed the use of a -bit key in multi-user applications and produced an instantiation on how to process this extra key size in the current AsconAEAD128 API. While doing so, they identified a limitation of this new scheme (which we refer to as mu-Ascon in this document): mu-Ascon is vulnerable to committing attack and hence cannot be used in cases where committing security is required. On the other hand, the full key-binding property in Ascon, which separated it from other sponge-type constructions, has been used to show that Ascon is much stronger in the sense that it presents a key recovery resistance even in the case where some intermediate state is recovered. We remark that the current mu-Ascon has the limitation that only a partial key is bound during initialization and finalization. In this work, we propose some alternative instantiations of AsconAEAD128 API for multi-user applications. In comparison with the current mu-Ascon proposal, our first construction Ascon-256.v2 guarantees CMT-4 committing security up to 64 bits, and our second construction Ascon-256.v3 leads to both CMT-4 committing security and full 256-bit key binding. Structurally, our instantiations use only an extra-permutation call to provide these extra security features compared to mu-Ascon, which has a negligible overhead in terms of performance (given the lightweight nature of the Ascon permutation).
LP2+: a robust symmetric-key AKE protocol with perfect forward secrecy, and an advocacy for thorough security proofs
Symmetric-key authenticated key establishment (AKE) protocols are particularly well suited in resource constraint environments such as internet of things (IoT) devices. Moreover, they often rely on better understood assumptions than asymmetric ones. In this paper, we review the security model for symmetric-key AKE protocols. We show why several existing models allow trivial attacks while they do not protect against some non-trivial ones. We fix these issues with our new security definitions.
We show that the protocols and of Boyd et al. do not satisfy the claimed security properties. We propose a new 2-message protocol based on them, called . This protocol is proved to satisfy correctness, weak synchronization robustness, entity authentication, key indistinguishability and, as a consequence, it admits perfect forward secrecy. An instantiation of is presented, whose security only relies on that of a pseudo-random function (PRF). Its total execution time in normal cases is dominated by only 14 evaluations of the PRF, making it a lightweight protocol that is particularly well suited for resource-constrained environments such as IoT devices.
The flaws found in the security models as well as in the security arguments could have been avoided with precise and detailed proofs. We thus take this paper as an opportunity to advocate for thorough security proofs. Therefore, we have made the choice of rigor over concision.
Refined TFHE Leveled Homomorphic Evaluation and Its Application
TFHE is a fully homomorphic encryption scheme over the torus that supports fast bootstrapping. Its primary evaluation mechanism is based on gate bootstrapping and programmable bootstrapping (PBS), which computes functions while simultaneously refreshing noise. PBS-based evaluation is user-friendly and efficient for small circuits; however, the number of bootstrapping operations increases exponentially with the circuit depth. To address the challenge of efficiently evaluating large-scale circuits, Chillotti et al. introduced a leveled homomorphic evaluation (LHE) mode at Asiacrypt 2017. This mode decouples circuit evaluation from bootstrapping, resulting in a speedup of hundreds of times over PBS-based methods. However, the remaining circuit bootstrapping (CBS) becomes a performance bottleneck, even though its frequency is linear with the circuit depth.
In this paper, we refine the LHE mode by mitigating the high cost of CBS. First, we patch the NTT-based CBS algorithm proposed by Wang et al. [WWL+, Eurocrypt 2024], accelerating their algorithm by up to 2.6 . Then, observing the suboptimal parallelism and high complexity of modular reduction in NTT under CBS parameters, we extend WWL+ to an FFT-based algorithm by redesigning the pre-processing method and introducing a split FFT technique. This achieves the fastest CBS implementation with the smallest key size, outperforming the open-source WWL+ implementation by up to 12.1 (resp. 5.12 compared to our patched algorithm), and surpassing TFHEpp [MBM+, USENIX 2021] by 3.42 with a key size reduction of 33.2 . Furthermore, we proposed an improved integer input LHE mode by extending our CBS algorithm to support higher precision and combining it with additional optimizations such as multi-bit extraction. Compared to the previous integer input LHE mode proposed by Bergerat et al. [BBB+, JoC 2023], our approach is up to 10.7 faster with a key size reduction of up to 4.4 .
To demonstrate the practicality of our improved LHE mode, we apply it to AES transciphering and general homomorphic look-up table (LUT) evaluation. For AES evaluation, our method is 4.8 faster and reduces the key size by 31.3 compared to the state-of-the-art method, Thunderbird [WLW+, TCHES 2024]. For LUT evaluation, we compare our results with the recent work of Trama et al. [TCBS, ePrint 2024/1201], which constructs a general 8-bit processor of TFHE. Our method not only achieves faster 8-to-8 LUT evaluation but also improves the efficiency of most heavy 8-bit bivariate instructions by up to 21 and the 16-bit sigmoid function by more than 26 .
Simulatability SOA Does Not Imply Indistinguishability SOA in the CCA Setting
Contrary to expectation, we show that simulation-based selective-opening security (SSO) does not imply indistinguishability-based selective opening security (ISO) in the CCA setting, making them incomparable in the presence of either encryption randomness leakage (sender opening) or secret key leakage (receiver opening). This contrasts the CPA case, where SSO-CPA is known to be strictly stronger than ISO-CPA in the presence of sender and/or receiver opening. Our separation result holds relative to all message distributions with sufficiently high min-entropy. On the other hand, restricting to message distributions with low enough min-entropy gives rise to an implication.
Our separation result does not rely on the presence of selective openings. At a glance, this may seem to contradict known equivalence results between indistinguishability, semantic security, and selective opening security under trivial openings. We reconcile the apparent contradiction by showing that the selective-opening CCA landscape splits into a “high-entropy” and a “low-entropy” world which must be considered separately.
Algebraic Cryptanalysis of AO Primitives Based on Polynomial Decomposition Applications to Rain and Full AIM-IIIIV
The LowMC-based post-quantum signature scheme Picnic was selected as a third-round candidate for NIST PQC, attracting wide attention to the design of efficient and secure post-quantum signature schemes using Symmetric Techniques for Advanced Protocols (STAP). Symmetric primitives designed for advanced protocols such as secure multi-party computation (MPC), fully homomorphic encryption (FHE), and zero-knowledge (ZK) proof systems, with the goal of reducing the number of multiplication operations, are referred to as arithmetic-oriented (AO) primitives. These cryptographic primitives are typically constructed over large finite fields, which makes classical statistical analysis methods like differential and linear cryptanalysis inefficient. Due to their inherent algebraic properties, the mainstream security evaluation approaches are based on algebraic attacks. In this paper, we analyze the security of the MPC-friendly primitives \textsc{Rain} (CCS 2022) and AIM (CCS 2023) used in the post-quantum signature schemes Rainier and AIMer. Existing algebraic attacks on \textsc{Rain} and AIM were conducted over . We propose a novel algebraic attack over that uses the polynomial decomposition to reduce degrees of equations. By further combining with the guess-and-determine technique, meet-in-the-middle modeling, and resultant, we are able to attack \textsc{Rain} and the full AIM. Specifically, we successfully attacked 2-round \textsc{Rain} with primitive calls, 3-round \textsc{Rain} with primitive calls, for the -bit key. For the full AIM, we successfully attacked it with primitive calls for the -bit key. The attack complexities mainly lie in solving univariate polynomial equations and computing resultants, and hence the complexity evaluations are accurate.
Super-Quadratic Quantum Speed-Ups and Guessing Many Likely Keys
We study the fundamental problem of guessing cryptographic keys, drawn from some non-uniform probability distribution , as e.g. in LPN, LWE or for passwords. The optimal classical algorithm enumerates keys in decreasing order of likelihood. The optimal quantum algorithm, due to Montanaro (2011), is a sophisticated Grover search.
We give the first tight analysis for Montanaro's algorithm, showing that its runtime is , where denotes Rényi entropy with parameter .
Interestingly, this is a direct consequence of an information theoretic result called Arikan's Inequality (1996) -- which has so far been missed in the cryptographic community -- that tightly bounds the runtime of classical key guessing by .
Since for every non-uniform distribution , we thus obtain a \emph{super-quadratic} quantum speed-up over classical key guessing.
To give some numerical examples, for the binomial distribution used in Kyber, and for a typical password distribution, we obtain quantum speed-up . For the -fold Bernoulli distribution with parameter as in LPN, we obtain . For small error LPN with as in Alekhnovich encryption, we even achieve \emph{unbounded} quantum speedup .
As another main result, we provide the first thorough analysis of guessing in a multi-key setting.
Specifically, we consider the task of attacking many keys sampled independently from some distribution , and aim to guess a fraction of them.
For product distributions , we show that any constant fraction of keys can be guessed within classically and quantumly per key, where denotes Shannon entropy.
In contrast, Arikan's Inequality implies that guessing a single key costs classically and quantumly.
Since , this shows that in a multi-key setting the guessing cost per key is substantially smaller than in a single-key setting, both classically and quantumly.
Separations between simulation-based and simulation-free formulations of security for public key encryption
Simulation-based formulation of security enables us to naturally capture our intuition for security. However, since the simulation-based formulation is rather complicated, it is convenient to consider alternative simulation-free formulations which are easy to manipulate but can be employed to give the same security as the simulation-based one. So far the indistinguishability-based and comparison-based formulations have been introduced as such ones. Regarding the security for public key encryption, while these three formulations are shown equivalent in most settings, some relations among these formulations of non-malleability under the valid ciphertext condition, in which an adversary fails if it outputs an invalid ciphertext, remain open. This work aims to help to consider the appropriateness of the formulations of security by clarifying the above open relations among the formulations of non-malleable encryption.
Formal Security and Functional Verification of Cryptographic Protocol Implementations in Rust
We present an effective methodology for the formal verification of
practical cryptographic protocol implementations written in
Rust. Within a single proof framework, we show how to develop
machine-checked proofs of diverse properties like runtime safety,
parsing correctness, and cryptographic protocol security. All
analysis tasks are driven by the software developer who writes
annotations in the Rust source code and chooses a backend prover for
each task, ranging from a generic proof assistant like F to
dedicated crypto-oriented provers like ProVerif and SSProve Our
main contribution is a demonstration of this methodology on Bert13,
a portable, post-quantum implementation of TLS 1.3 written in Rust
and verified both for security and functional correctness. To our
knowledge, this is the first security verification result for a
protocol implementation written in Rust, and the first verified
post-quantum TLS 1.3 library.
Collision Attacks on Reduced RIPEMD-128
RIPEMD-128 is an ISO/IEC standard hash function based on a double-branch Merkle-Damgård structure. Its compression function includes two branches with distinct Boolean functions and message expansion permutations. To perform a collision attack, differential characteristics must be constructed simultaneously for both branches under the same message word difference, and the message modification order must align with conditions in both branches. These factors make collision attacks on (reduced) RIPEMD-128 highly challenging.
In 2014, an attack on 40 steps of RIPEMD-128 was achieved by Wang with no state differences in round 3. In this work, we analyze message permutation properties and propose two new structures for creating message differences. These structures enable high-probability local collisions in both branches of round 3, extending the attack to more steps. Notably, the second structure can eliminate all state differences in round 3, allowing the attack to cover more than three whole rounds.
To ensure practical attacks, we limit the number of conditions based on our message modification strategy and use multi-step message modification techniques to control more conditions. As a result, we successfully generate colliding message pairs for 46-step and 54-step reduced RIPEMD-128, with time complexities of approximately and , respectively.
Multi-Party Distributed Point Functions with Polylogarithmic Key Size from Invariants of Matrices
Distributed point functions (DPFs), introduced in 2014, are a widely used primitive in secure computation for a wide variety of applications. However, until now, constructions for DPFs with polylogarithmic-size keys have been known only for the two-party setting. We propose a scheme for a polylogarithmic-size DPF for an arbitrary number of parties. We use a technique where a secret-shared vector is mapped to collinear vectors by public matrices serves as an invariant for off-path leaves. We show, using a technique by Shamir, that when we work over Z_pq , these vectors are hard to compute if factoring is hard.
We also show that our scheme is a secure DPF, provided that two new assumptions hold, one of which is related to Generic Group Model and the other to MinRank. The output of our scheme is in the exponent in some group where Diffie-Hellman type problems are hard. Although this limits the usability of our scheme, we believe that our scheme is the first distributed point function for more than two parties with a key size that is polylogarithmic in the size of the domain and that does not use fully homomorphic encryption.
A Novel Leakage Model in OpenSSL’s Miller-Rabin Primality Test
At Crypto 2009, Heninger and Shacham presented a branch-and-prune algorithm for reconstructing RSA private keys given a random fraction of its private components. This method is widely adopted in side-channel attacks, and its complexity is closely related to the specific leakage pattern encountered. In this work, we identified a novel leakage model in the Miller-Rabin primality test implemented in OpenSSL. Under certain side-channel attacks against fixed-window modular exponentiation (e.g., recovering the least significant bits from each window), the proposed model enables staggered recovery of bits in and , reducing uncertainty in key reconstruction. In particular, this model includes previously undocumented scenarios where full key recovery is achievable without branching. To understand how the proposed leakage model could contribute to attacks on modular exponentiation, we investigated the global and local behavior of key reconstruction. Our evaluation demonstrates that the proposed scenarios enable more efficient key reconstruction and retain this advantage when additional erasure bits are introduced. Moreover, in specific cases, successful reconstruction remains achievable within practical time even if the bits obtained are less than 50%. Finally, we conducted a series of experiments to confirm the practicality of our assumption, successfully recovering the lower 4 bits from each 6-bit window.
Unbiasable Verifiable Random Functions from Generic Assumptions
We present conceptually simple and practically competitive constructions of verifiable random functions (VRF) that fulfill strong notions of unbiasability recently introduced by Giunta and Stewart. VRFs with such strong properties were previously only known in the random oracle model or from the decisional Diffie–Hellman assumption with preprocessing. In contrast, our constructions are based on generic assumptions and are thus the first to be plausibly post-quantum secure in the standard model (without any setup). Moreover, our transformation preserves useful properties of the underlying VRF such as aggregatability, (a form of) key-homomorphism, small entropy loss, and computability in ; and it even yields a symmetric unbiasable VRF whose pseudorandomness holds even when the input and the key are swapped.
To underscore the importance of a provably unbiasability in the standard model, we showcase a potential security weakness in the folklore VUF-then-Hash construction. Lastly, we discuss and remedy several issues regarding the definition of unbiasability, and outline a path towards a lattice-based instantiation of VRFs.
Incompressible Encryption with Everlasting Security
Recently, the concept of incompressible encryption has emerged as a powerful enhancement to key-leakage resilience. In an incompressible encryption scheme, an adversary who intercepts ciphertexts is forced to dedicate a significant amount of memory to store them in full if they wish to extract any information about the plaintext later when the secret key becomes available. Given two messages, the security game involves two adversaries: the first adversary receives an encryption of one of the messages and produces a compressed state. Then, the second adversary, given both the secret key and the compressed state, attempts to determine which message was encrypted.
Several positive results exist in incompressible cryptography. On the one hand, there are constructions based on minimal assumptions but with a poor rate (i.e., rate tends to 0). On the other hand, there are rate-1 constructions that achieve optimal efficiency but rely on strong cryptographic assumptions, such as obfuscation.
A stronger security notion, known as everlasting security, has been proposed for incompressible encryption. In this formulation, the second adversary, who receives the compressed state and the secret key, is allowed to be computationally unbounded. While this notion is conceptually appealing, no constructions of everlasting incompressible encryption are currently known, regardless of the underlying assumption or even in idealized models.
In this work, we give the first construction of everlasting incompressible encryption. In fact, we show that everlasting incompressible encryption is inherent in any sufficiently secure public-key encryption scheme. Specifically, we prove that any public-key encryption scheme with subexponential security (when instantiated with an appropriate security parameter) already satisfies the definition of everlasting incompressible encryption with subexponential security. Furthermore, our scheme achieves rate-1, improving upon existing results even for the weaker notion of standard incompressible encryption.
OptAttest: Verifying Multi-List Multi-Hop History via a Hybrid Zero-Knowledge Architecture
To prevent privacy-preserving digital assets from becoming instruments of despotism via unitary-executivist compliance regimes, we propose OptAttest, a hybrid zero-knowledge architecture. This system empowers users to optionally generate verifiable attestation history for the current (Hop 0) and immediately preceding (Hop 1) transactions involving their private commitments. For crucial 0-hop multi-list attestations, users employ Zero-Knowledge Proofs (ZKPs) of claims from selected Verifiable Credentials (VCs). Users achieve per-transaction efficiency with diverse VC types by pre-computing and caching proofs of their VC validity. This approach avoids mandated adherence to singular, fallible external standards. Opted-in lightweight updates create cryptographic accumulator summaries, verified by network infrastructure (e.g., Layer 2 scaling solutions using Zero-Knowledge Virtual Machines), and are paired with user-managed Intermediate Attestation Data Packets (IADPs) containing detailed evidence. For comprehensive verification, users can then generate full recursive proofs from these IADPs for their attestation-enabled funds, leveraging native zkVM recursion. The protocol facilitates optional attestation generation, not enforcement, allowing downstream policy application. Aiming to cultivate a permissionless ethos, we propose a user-centric balance between privacy and verifiable accountability, distinct from models compelling broader data access. Folding schemes are noted as potential future enhancements for recursive proof efficiency.
On Proving Equivalence Class Signatures Secure from Non-interactive Assumptions
Equivalence class signatures (EQS), introduced by Hanser
and Slamanig (AC’14, J.Crypto’19), sign vectors of elements from a bi-
linear group. Their main feature is “adaptivity”: given a signature on a
vector, anyone can transform it to a (uniformly random) signature on any
multiple of the vector. A signature thus authenticates equivalence classes
and unforgeability is defined accordingly. EQS have been used to improve
the efficiency of many cryptographic applications, notably (delegatable)
anonymous credentials, (round-optimal) blind signatures, group signa-
tures and anonymous tokens. EQS security implies strong anonymity
(or blindness) guarantees for these schemes which hold against malicious signers without trust assumptions.
Unforgeability of the original EQS construction is proven directly in
the generic group model. While there are constructions from standard
assumptions, these either achieve prohibitively weak security notions
(PKC’18) or they require a common reference string (AC’19, PKC’22),
which reintroduces trust assumptions avoided by EQS.
In this work we ask whether EQS schemes that satisfy the original secu-
rity model can be proved secure under standard (or even non-interactive)
assumptions with standard techniques. Our answer is negative: assum-
ing a reduction that, after running once an adversary breaking unforge-
ability, breaks a non-interactive computational assumption, we construct
efficient meta-reductions that either break the assumption or break class-
hiding, another security requirement for EQS.
Exploring General Cyclotomic Rings in Torus-Based Fully Homomorphic Encryption: Part I - Prime Power Instances
In this article, we delve into the domain of fully homomorphic encryption over the torus, focusing on the algebraic techniques required for managing polynomials within cyclotomic rings defined by prime power indices. Our study encompasses essential operations, such as modulo reduction, efficient homomorphic evaluation of trace operators, blind extraction, and the blind rotation pivotal to the bootstrapping process, all redefined within this mathematical context.
Through the extensive application of duality theory and trace operators in general cyclotomic rings or fields, we systematize and enhance these operations, introducing a simplified formulation of bootstrapping alongside an effective packing strategy. This investigation serves as an initial step toward addressing the broader case of composite cyclotomic indices, which we expect will open up new avenues for cryptographic applications and functionalities.
Generalized BGV, BFV, and CKKS for Homomorphic Encryption over Matrix Rings
Some of the most valuable applications of homomorphic encryption, such as encrypted machine learning inference, require efficient large-scale plaintext-ciphertext and ciphertext-ciphertext matrix multiplications. Current state-of-the-art techniques for matrix multiplications all build on the ability to pack many ciphertexts into a ciphertext and compute on them in a Single Instruction, Multiple Data (SIMD) manner. However, to fit the operation of matrix multiplication into this computational model, a large number of additional costly operations need to be performed, such as the rotation of elements between the plaintext slots.
In this work, we propose an orthogonal approach to performing encrypted matrix operations with BGV-like encryption schemes, where the plaintext and ciphertext spaces are generalized to a matrix ring of arbitrary dimension. To deal with the inherent problem of noncommutativity in the case of matrix rings, we present a new superoperator technique to better represent linear and quadratic expressions in the secret key, which allows for the relinearization of ciphertexts after multiplication. The security of the modified encryption schemes is based on Module-LWE with module rank equal to the dimension of the matrices. With this construction, we demonstrate that Ring-LWE, Module-LWE, and LWE are potentially equally efficient for homomorphic encryption, both in terms of useful information density and noise growth, only for different sizes of matrices.
Delegated PSI from Homomorphic Encryptions
This paper presents an efficient protocol for private set intersection in a setting with multiple set owners and a semi-honest cloud server. The core idea is to reduce the intersection computation to secure operations over Bloom filters, enabling both scalability and efficiency. By leveraging this transformation, our protocols achieve strong privacy guarantees while minimizing computation and communication overhead.
DFS: Delegation-friendly zkSNARK and Private Delegation of Provers
Zero-Knowledge Succinct Non-interactive Arguments of Knowledge (zkSNARKs) lead to proofs that can be succinctly verified but require huge computational resources to generate. Prior systems outsource proof generation either through public delegation, which reveals the witness to the third party, or, more preferably, private delegation that keeps the witness hidden using multiparty computation (MPC). However, current private delegation schemes struggle with scalability and efficiency due to MPC inefficiencies, poor resource utilization, and suboptimal design of zkSNARK protocols.
In this paper, we introduce DFS, a new zkSNARK that is delegation-friendly for both public and private scenarios. Prior work focused on optimizing the MPC protocols for existing zkSNARKs, while DFS uses co-design between MPC and zkSNARK so that the protocol is efficient for both distributed computing and MPC. In particular, DFS achieves linear prover time and logarithmic verification cost in the non-delegated setting. For private delegation, DFS introduces a scheme with zero communication overhead in MPC and achieves malicious security for free, which results in logarithmic overall communication; while prior work required linear communication. Our evaluation shows that DFS is as efficient as state-of-the-art zkSNARKs in public delegation; when used for private delegation, it scales better than previous work. In particular, for constraints, the total communication of DFS is less than KB, while prior work incurs GB, which is linear to the circuit size. Additionally, we identify and address a security flaw in prior work, EOS (USENIX'23).
LatticeFold: A Lattice-based Folding Scheme and its Applications to Succinct Proof Systems
Folding is a recent technique for building efficient recursive SNARKs. Several elegant folding protocols have been proposed, such as Nova, Supernova, Hypernova, Protostar, and others. However, all of them rely on an additively homomorphic commitment scheme based on discrete log, and are therefore not post-quantum secure and require a large (256-bit) field. In this work we present LatticeFold, the first lattice-based folding protocol based on the Module SIS problem. This folding protocol naturally leads to an efficient recursive lattice-based SNARK and an efficient PCD scheme. LatticeFold supports folding low-degree relations, such as R1CS, as well as high-degree relations, such as CCS. The key challenge is to construct a secure folding protocol that works with the Ajtai commitment scheme. The difficulty is ensuring that extracted witnesses are low norm through many rounds of folding. We present a novel technique using the sumcheck protocol to ensure that extracted witnesses are always low norm no matter how many rounds of folding are used. Since LatticeFold can operate over a small (64-bit) field, our evaluation of the final proof system suggests that it is as performant as Hypernova, while providing plausible post-quantum security. Moreover, LatticeFold operates over the same module structure used by fully homomorphic encryption (FHE) and lattice signatures schemes, and can therefore benefit from software optimizations and custom hardware designed to accelerate these lattice schemes.
Sabot: Efficient and Strongly Anonymous Bootstrapping of Communication Channels
Anonymous communication is vital for enabling individuals to participate in social discourse without fear of marginalization or persecution. An important but often overlooked part of anonymous communication is the bootstrapping of new communication channels, generally assumed to occur out-of-band. However, if the bootstrapping discloses metadata, communication partners are revealed even if the channel itself is fully anonymized. We propose Sabot, the first anonymous bootstrapping protocol that achieves both strong cryptographic privacy guarantees and bandwidth-efficient communication. In Sabot, clients cooperatively generate a private relationship matrix, which encodes who wants to contact whom. Clients communicate with k ≥ 2 servers to obtain “their” part of the matrix and augment the received information using Private Information Retrieval (PIR) to learn about their prospective communication partners. Compared to previous solutions, Sabot achieves stronger privacy guarantees and reduces the bandwidth overhead by an order of magnitude.
How to Verify that a Small Device is Quantum, Unconditionally
A proof of quantumness (PoQ) allows a classical verifier to efficiently test if a quantum machine is performing a computation that is infeasible for any classical machine. In this work, we propose a new approach for constructing PoQ protocols where soundness holds unconditionally assuming a bound on the memory of the prover, but otherwise no restrictions on its runtime. In this model, we propose two protocols:
1. A simple protocol with a quadratic gap between the memory required by the honest parties and the memory bound of the adversary. The soundness of this protocol relies on Raz's (classical) memory lower bound for matrix inversion (Raz, FOCS 2016).
2. A protocol that achieves an exponential gap, building on techniques from the literature on the bounded storage model (Dodis et al., Eurocrypt 2023).
Both protocols are also efficiently verifiable. Despite having worse asymptotics, our first protocol is conceptually simple and relies only on arithmetic modulo 2, which can be implemented with one-qubit Hadamard and CNOT gates, plus a single one-qubit non-Clifford gate.
Decentralized Data Archival: New Definitions and Constructions
We initiate the study of a new abstraction
called incremental decentralized data archival ( ).
Specifically, imagine that there is an ever-growing, massive database such as a blockchain, a comprehensive human knowledge base like Wikipedia, or the Internet archive. We want to build a decentralized archival of such datasets
to ensure long-term robustness and sustainability.
We identify several important properties
that an scheme should satisfy. First,
to promote heterogeneity and decentralization,
we want to encourage even weak nodes with limited space (e.g., users' home computers) to contribute. The minimum space requirement to contribute should be approximately independent of the data size. Second, if a collection of nodes together receive rewards commensurate with contributing a total of blocks of space, then we want the following reassurances: 1) if is at least the database size, we should be able to reconstruct the entire dataset; and 2) these nodes should actually be commiting roughly space in aggregate --- even when is much larger than the data size, the nodes should be storing redundant copies of the database rather than storing just one copy, and yet impersonating arbitrarily many pseudonyms to get unbounded rewards.
We propose new definitions that mathematically formalize the aforementioned requirements of an scheme.
We also devise an efficient construction in the random oracle model which satisfies the desired security requirements. Our scheme incurs only audit cost, as well as update cost for both the publisher and each node, where hides polylogarithmic factors. Further, the minimum space provisioning required to contribute is as small as polylogarithmic.
Our construction exposes several interesting technical challenges. Specifically, we show that a straightforward application of the standard hierarchical data structure fails, since both our security definition and the underlying cryptographic primitives we employ lack the desired compositional guarantees. We devise novel techniques to overcome these compositional issues, resulting in a construction with provable security while still retaining efficiency. Finally, our new definitions also make a conceptual contribution, and lay the theoretical groundwork for the study of . We raise several interesting open problems along this direction.
Low-Latency Bootstrapping for CKKS using Roots of Unity
We introduce Sparse Roots of Unity (SPRU) bootstrapping, a new bootstrapping algorithm for the CKKS homomorphic encryption scheme for approximate arithmetic. The original CKKS bootstrapping method relies on homomorphically evaluating a polynomial that approximates modular reduction modulo q. In contrast, SPRU bootstrapping directly embeds the additive group modulo q into the complex roots of unity, which can be evaluated natively in the CKKS scheme. This approach significantly reduces the multiplicative depth required for bootstrapping, enabling the use of a smaller ring dimension and improving efficiency. In practice, using the OpenFHE C++ library, SPRU bootstrapping achieves up to a 5× reduction in latency when applied to ciphertexts with a small number of slots.
Improved Alternating-Moduli PRFs and Post-Quantum Signatures
We revisit the alternating-moduli paradigm for constructing symmetric-key primitives with a focus on constructing efficient protocols to evaluate them using secure multi-party computation (MPC). The alternating-moduli paradigm of Boneh, Ishai, Passelègue, Sahai, and Wu (TCC 2018) enables the construction of various symmetric-key primitives with the common characteristic that the inputs are multiplied by two linear maps over different moduli.
The first contribution focuses on efficient two-party evaluation of alternating-moduli pseudorandom functions (PRFs), effectively building an oblivious PRF. We present a generalized alternating-moduli PRF construction along with methods to lower the communication and computation. We then provide several variants of our protocols with different computation and communication tradeoffs for evaluating the PRF. Most of our protocols are in the hybrid model while one is based on specialized garbling. Our most efficient protocol effectively is about faster and requires less communication.
Our next contribution is the efficient evaluation of the one-way function (OWF) proposed by Dinur, Goldfeder, Halevi, Ishai, Kelkar, Sharma, and Zaverucha (CRYPTO 21) where , and is multiplication mod . This surprisingly simple OWF can be evaluated within MPC by secret sharing over , locally computing , performing a modulus switching protocol to shares, followed by locally computing the output shares .
We design a bespoke MPC-in-the-Head (MPCitH) signature scheme that evaluates the aforementioned OWF, achieving state-of-the-art performance. The resulting signature has a size ranging from to KB, achieving between reduction compared to the prior work. To the best of our knowledge, this is only larger than the smallest signature based on symmetric-key primitives, including the latest NIST post-quantum cryptography competition submissions. We also show that our core techniques can be extended to build very small post-quantum ring signatures for rings of small to medium size, which are competitive with state-of-the-art lattice-based schemes. Our techniques are in fact more generally applicable to set membership in MPCitH.
Learning with Alternating Moduli, Arora-Ge over Composite Moduli, and Weak PRFs
In TCC 2018, Boneh, Ishai, Passelègue, Sahai, and Wu propose candidates of weak and strong PRFs by evaluating linear functions over coprime moduli alternatively. Such PRFs can be evaluated by low-depth circuits and are MPC-friendly. However, they have not been able to base the security of their PRFs on well-formed assumptions other than assuming that the PRF constructions themselves are secure.
In this paper, we formalize a new assumption called Learning with Alternating Moduli (LAM). We show that over certain large moduli, the LAM assumption is as hard as the Learning with Errors (LWE) assumption. For LAM over constant moduli, we do not know how to base its hardness on the LWE assumption. Instead, we provide
(i) polynomial-time attacks on LAM with constant prime-power moduli and certain constant non-prime-power moduli, and
(ii) evidence of the sub-exponential hardness of LAM with other moduli by analyzing the effect of typical attacks.
More specifically, we put forward two new attacks. The first attack is a recursive algorithm that solves LWE with certain constant composite moduli and error distributions. The algorithm extends the Arora-Ge algorithm for LWE from prime moduli to composite moduli, and it also solves LAM for certain parameters. The second attack is a polynomial-time attack that rules out the existence of weak PRFs in for any prime .
Based on our studies, we propose candidate weak PRFs in for some distinct primes based on LAM over constant moduli, or the Learning with Rounding (LWR) assumption over constant moduli. Compared to the weak PRF candidates by Boneh et al., our weak PRF candidates live in the same complexity class while having the advantage of being based on well-formed assumptions.
Registered Functional Encryption for Pseudorandom Functionalities from Lattices: Registered ABE for Unbounded Depth Circuits and Turing Machines, and More
Registered functional encryption (RFE) is a generalization of public-key encryption that enables computation on encrypted data (like classical FE), but without needing a central trusted authority. Concretely, the users choose their own public keys and register their keys together with a function with an (untrusted) key curator. The key curator aggregates all of the individual public keys into a short master public key, which serves as the public key of the FE scheme.
Currently, we only know RFE constructions for restricted functionalities using standard assumptions, or for all circuits using powerful tools such as indistinguishability obfuscation, and only in the non-uniform model. In this work, we make progress on this front by providing the first lattice-based constructions of RFE for pseudorandom functionalities, where the model of computation is either non-uniform (unbounded depth circuits) or uniform (Turing machines). Intuitively, we call a functionality pseudorandom if the output of the circuit is indistinguishable from uniform for every input seen by the adversary. Security relies on LWE and a recently introduced primitive called pseudorandom FE (prFE), which currently can be instantiated from evasive LWE.
We illustrate the versatility of these new functionalities for RFE by leveraging them to achieve key-policy and ciphertext-policy registered attribute-based encryption and registered predicate encryption schemes (KP-RABE, CP-RABE and RPE) for both unbounded depth circuits and Turing machines. Existing RABE constructions support only bounded depth circuits, and prior to our work there neither existed RABE for uniform models of computation nor RPE. As an appealing feature, all our constructions enjoy asymptotic optimality in the sense that their parameters depend neither on the length of public attributes nor the size of policies.
Along the way, we can also improve on the state-of-the-art for classical attribute-based encryption (ABE) and predicate encryption (PE). Specifically, we obtain new constructions for KP-ABE, CP-ABE and PE for Turing machines with optimal asymptotic parameters. For KP-ABE, this is an in improvement in terms of efficiency, whereas for CP-ABE and PE we are not aware of any prior purely lattice-based construction supporting Turing machines.
Improved Lattice Blind Signatures from Recycled Entropy
Blind signatures represent a class of cryptographic primitives enabling privacy-preserving authentication with several applications such as e-cash or e-voting. It is still a very active area of research, in particular in the post-quantum setting where the history of blind signatures has been hectic. Although it started to shift very recently with the introduction of a few lattice-based constructions, all of the latter give up an important characteristic of blind signatures (size, efficiency, or security under well-known assumptions) to achieve the others. In this paper, we propose another design which revisits the link between the two main procedures of blind signatures, namely issuance and showing, demonstrating that we can significantly alleviate the second one by adapting the former. Concretely, we show that we can harmlessly inject excess randomness in the issuance phase, and then recycle the entropy surplus during showing to decrease the complexity of the zero-knowledge proof which constitutes the main component of the signature. This leads to a blind signature scheme with small sizes, low complexity, and that still relies on well-known lattice assumptions.
Plonkify: R1CS-to-Plonk transpiler
Rank-1 Constraint Systems (R1CS) and Plonk constraint systems are two commonly used circuit formats for zero-knowledge succinct non-interactive arguments of knowledge (zkSNARKs). We present Plonkify, a tool that converts a circuit in an R1CS arithmetization to Plonk, with support for both vanilla gates and custom gates. Our tool is able to convert an R1CS circuit (compiled from the Circom circuit description language) with 250,938 constraints to a vanilla Plonk circuit with 589,829 constraints, or a jellyfish turbo Plonk circuit with 370,086 constraints. This represents a and reduction in the number of constraints over the respective naïve conversions.
Further, we make several optimizations to the Circom compiler in order to minimize the number of non-zero elements in the generated R1CS circuits, and to facilitate conversion to Plonks. When recompiled with our optimized version of Circom, the aforementioned circuit sees a 49% reduction in the number of non-zero elements, with only a 0.4% increase in the number of constraints. The same circuit can now be represented in just 422,610 vanilla Plonk constraints, or 312,163 high-degree ones.
Multiparty Homomorphic Secret Sharing and More from LPN and MQ
We give the first constructions of multiparty pseudorandom correlation generators, distributed point functions, and (negligible-error) homomorphic secret sharing for constant-degree polynomials for any number of parties without using LWE or iO. Our constructions are proven secure under the combination of LPN with dimension , samples, and noise rate for a small constant , and MQ with variables and equations.
As applications of our results, we obtain from the same assumptions secure multiparty computation protocols with sublinear communication and silent preprocessing, as well as private information retrieval for servers and size- databases with optimal download rate and client-to-server communication .
Multiparty FHE Redefined: A Framework for Unlimited Participants
Multiparty fully homomorphic encryption (MPFHE) is a generalization of (multi-key) fully homomorphic encryption ((MK)FHE) that lives on the cusp between multiparty computation (MPC) and FHE, enabling a computation over encrypted data using multiple keys. However, contrary to MKFHE it seeks to reduce the noise inflation based on the number of parties by allowing the parties to first compute shared data in MPC before executing the computation in FHE. Generally, MPFHE protocols have required ad-hoc constructions and adaptations to already existing protocols. In this work we present a new framework that standardizes the approach of MPFHE to allow the use of a broad spectrum of MPC and FHE protocols, while eliminating the noise inflation based on the participating number of parties. This presents the first ever multiparty FHE protocol which allows an arbitrary number of participants. We then show a case study of this using the FINAL scheme and show that we reduce the required key material by 40-99.9% compared to the MKFHE FINAL scheme, FINALLY, 8-71% compared to the AKÖ scheme, and 65-70% compared to the Park-Rovira scheme. Moreover, we reduce the bootstrapping time for the AKÖ, Park-Rovira, and KMS schemes by 75-99.7%.
Diving Deep Into UC: Uncovering and Resolving Issues in Universal Composability
Introduced by Canetti in 2001, Universal Composability (UC) is a widely adopted security model that enables the specification and proof of security for a broad range of protocols, offering strong security guarantees.
At its core lies the universal composition theorem (UC theorem), which ensures that protocols proven secure within the framework remain secure even when deployed in real-world environments with multiple instances of them.
In this work, we present two key contributions. First, we identify several problems with the UC framework, in particular the UC Theorem. They include counterexamples, limitations that make it unusable for important classes of protocols, and weaknesses in its proof. These problems reveal flaws in nearly all the fundamental concepts of UC.
Secondly, we update the main concepts of UC to address these problems. Although these revisions are nontrivial, our updated definitions are intended to stay as closely aligned with the original model as possible, while providing greater simplicity overall. To ensure the validity of these updates, we present a proof of the updated UC theorem, which is more detailed and modular than the original.
Higher-Order Deterministic Masking with Application to Ascon
Side-channel attacks (SCAs) pose a significant threat to the implementations of lightweight ciphers, particularly in resource-constrained environments where masking—the primary countermeasure—is constrained by tight resource limitations.
This makes it crucial to reduce the resource and randomness requirements of masking schemes. In this work, we investigate an approach to minimize the randomness complexity of masking algorithms. Specifically, we explore the theoretical foundations of
deterministic higher-order masking, which relies solely on offline randomness present in the initial input shares and eliminates the need for online (fresh) randomness during internal computations.
We demonstrate the feasibility of deterministic masking for ciphers such as Ascon, showing that their diffusion layer can act as a refresh subcircuit. This ensures that, up to a threshold number, probes placed in different rounds remain independent. Based on this observation, we propose composition theorems for deterministic masking
schemes. On the practical side, we extend the proof of first- and second-order probing security for Ascon’s protected permutation from a single round to an arbitrary number of rounds
A Decomposition Approach for Evaluating Security of Masking
Masking is a common countermeasure against side-channel attacks that encodes secrets into multiple shares, each of which may be subject to leakage. A key question is under what leakage conditions, and to what extent, does increasing the number of shares actually improve the security of these secrets. Although this question has been studied extensively in low-SNR regimes, scenarios where the adversary obtains substantial information—such as on low-noise processors or through static power analysis—have remained underexplored.
In this paper, we address this gap by deriving necessary and sufficient noise requirements for masking security in both standalone encodings and linear gadgets. We introduce a decomposition technique that reduces the relationship between an extended-field variable and its leakage into subproblems involving linear combinations of the variable’s bits. By working within binary subfields, we derive optimal bounds and then lift these results back to the extended field.
Beyond binary fields, we also present a broader framework for analyzing masking security in other structures, including prime fields. As an application, we prove a conjecture by Dziembowski et al. (TCC 2016), which states that for an additive group with its largest subgroup , a -noisy leakage satisfying ensures that masking enhances the security of the secret.
IP Masking with Generic Security Guarantees under Minimum Assumptions, and Applications
Leakage-resilient secret sharing is a fundamental building block for securing implementations against side-channel attacks. In general, such schemes correspond to a tradeoff between the complexity of the resulting masked implementations, their security guarantees and the physical assumptions they require to be effective.
In this work, we revisit the Inner-Product (IP) framework, where a secret is encoded by two vectors , such that their inner product is equal to . So far, the state of the art is split in two.
On the one hand, the most efficient IP masking schemes (in which is public but random) are provably secure with the same security notions (i.e., in the abstract probing model) as Boolean masking, yet at the cost of a slightly more expensive implementation. Hence, their theoretical interest and practical relevance remain unclear.
On the other hand, the most secure IP masking schemes (in which is secret) lead to expensive implementations. We improve this state of the art by investigating the leakage resilience of IP masking with public coefficients in the bounded leakage model, which depicts well implementation contexts where the physical noise is negligible. Furthermore, we do that without assuming independent leakage from the shares, which may be challenging to enforce in practice. In this model, we show that if bits are leaked from the shares of the encoding over an -bit field, then, with probability at least over the choice of , the scheme is -leakage resilient.
We additionally show that in large Mersenne-prime fields, a wise choice of the public coefficients can yield leakage resilience up to , in the case where one physical bit from each share is revealed to the adversary. The exponential rate of the leakage resilience we put forward significantly improves upon previous bounds in additive masking, where the past literature exhibited a constant exponential rate only. We additionally discuss the applications of our results, and the new research challenges they raise.
Enabling Puncturable Encrypted Search over Lattice for Privacy-Preserving in Mobile Cloud
Searchable encryption (SE) has been widely studied for mobile cloud computing, allowing data encrypted search. However, existing SE schemes cannot support the fine-grained searchability revocation. Puncturable encryption (PE) can revoke the decryption ability for a specific message, which can potentially alleviate this issue. Moreover, the threat of quantum computing remains an important concern, leading to privacy leakage in the mobile cloud. Consequently, designing a post-quantum puncturable encrypted search scheme is still far-reaching. In this paper, we propose PunSearch, the first puncturable encrypted search scheme over lattice for data privacy-preserving in mobile cloud. PunSearch provides a fine-grained searchability revocation while enjoying quantum safety. Different from existing PE schemes, we construct a novel trapdoor generation mechanism through evaluation algorithms and pre-image sampling technique. We then design a search permission verification method to revoke the searchability for specific keywords. Furthermore, we formulate a new IND-Pun-CKA model and utilize it to analyze the security of PunSearch. Comprehensive performance evaluation indicates that the computational overheads of Encrypt, Trapdoor, Search, and Puncture algorithms in PunSearch are just 0.064, 0.005, 0.050, and 0.311 times of other prior arts, respectively under the best cases. These results demonstrate that PunSearch is effective and secure in mobile cloud computing.
On the Fiat–Shamir Security of Succinct Arguments from Functional Commitments
We study the security of a popular paradigm for constructing SNARGs, closing a key security gap left open by prior work. The paradigm consists of two steps: first, construct a public-coin succinct interactive argument by combining a functional interactive oracle proof (FIOP) and a functional commitment scheme (FC scheme); second, apply the Fiat–Shamir transformation in the random oracle model. Prior work did not consider this generalized setting nor prove the security of this second step (even in special cases).
We prove that the succinct argument obtained in the first step satisfies state-restoration security, thereby ensuring that the second step does in fact yield a succinct non-interactive argument. This is provided the FIOP satisfies state-restoration security and the FC scheme satisfies a natural state-restoration variant of function binding (a generalization of position binding for vector commitment schemes).
Moreover, we prove that notable FC schemes satisfy state-restoration function binding, allowing us to establish, via our main result, the security of several SNARGs of interest (in the random oracle model). This includes a security proof of Plonk, in the ROM, based on ARSDH (a falsifiable assumption).
Improved Quantum Linear Attacks and Application to CAST
This paper studies quantum linear key-recovery attacks on block ciphers.
The first such attacks were last-rounds attacks proposed by Kaplan et al. (ToSC 2016), which combine a linear distinguisher with a guess of a partial key. However, the most efficient classical attacks use the framework proposed by Collard et al. (ICISC 2007), which computes experimental correlations using the Fast Walsh-Hadamard Transform. Recently, Schrottenloher (CRYPTO 2023) proposed a quantum version of this technique, in which one uses the available data to create a quantum \emph{correlation state}, which is a superposition of subkey candidates where the amplitudes are the corresponding correlations. A limitation is that the good subkey is not marked in this state, and cannot be found easily.
In this paper, we combine the correlation state with another distinguisher. From here, we can use Amplitude Amplification to recover the right key. We apply this idea to Feistel ciphers and exemplify different attack strategies on LOKI91 before applying our idea on the CAST-128 and CAST-256 ciphers. We demonstrate the approach with two kinds of distinguishers, quantum distinguishers based on Simon's algorithm and linear distinguishers. The resulting attacks outperform the previous Grover-meet-Simon attacks.
Accountable Light Client Systems for Proof-of-Stake Blockchains
A major challenge for blockchain interoperability is having an on-chain light client protocol that is both efficient and secure. We present a protocol that provides short proofs about the state of a decentralised consensus protocol while being able to detect misbehaving parties. To do this naively, a verifier would need to maintain an updated list of all participants' public keys which makes the corresponding proofs long. In general, existing solutions either lack accountability or are not efficient. We define and design a committee key scheme with short proofs that do not include any of the individual participants' public keys in plain. Our committee key scheme, in turn, uses a custom designed SNARK which has a fast prover time. Moreover, using our committee key scheme, we define and design an accountable light client system as the main cryptographic core for building bridges between proof of stake blockchains. Finally, we implement a prototype of our custom SNARK for which we provide benchmarks.
Permutation-Based Hashing with Stronger (Second) Preimage Resistance - Application to Hash-Based Signature Schemes
The sponge is a popular construction of hash function design. It operates with a -bit permutation on a -bit state, that is split into a -bit inner part and an -bit outer part. However, the security bounds of the sponge are most often dominated by the capacity : If the length of the digest is bits, the construction achieves -bit collision resistance and -bit second preimage resistance (and a slightly more complex but similar bound for preimage resistance). In certain settings, these bounds are too restrictive. For example, the recently announced Chinese call for a new generation of cryptographic algorithms expects hash functions with 1024-bit digests and 1024-bit preimage and second preimage resistance, rendering the classical sponge design basically unusable, except with an excessively large permutation. We present the SPONGE-DM construction to salvage the sponge in these settings. This construction differs from the sponge by evaluating the permutation during absorption in a Davies-Meyer mode. We also present SPONGE-EDM, that evaluates potentially round-reduced permutations during absorption in Encrypted Davies-Meyer mode, and SPONGE-EDM , that optimizes the amount of feed-forward data in this construction. We prove that these constructions generically achieve -bit collision resistance as the sponge does, but they achieve -bit preimage resistance and -bit second preimage resistance, where is the maximum size of the first preimage in blocks. With such constructions, one could improve the security (resp., efficiency) without sacrificing the efficiency (resp., security) of hash-based signature schemes whose security relies solely on the (second) preimage resistance of the underlying hash functions. Also, one could use the -bit Keccak permutation with capacity and rate to achieve -bit collision resistance and -bit preimage and second preimage resistance, without making extra permutation calls. To encourage further cryptanalysis, we propose two concrete families of instances of SPONGE-EDM (expected to be weaker than SPONGE-DM), using SHA3 and Ascon. Moreover, we concretely demonstrate the security and performance advantages of these instances in the context of hashing and hash-based signing.
An almost key-homomorphic post-quantum block cipher with key rotation and security update for long-term secret storage
In this paper, we propose a new block cipher primitive, based on ring-LWE, which allows key rotation with a possible security update. This makes it possible to double the security of the ciphertext with each key rotation. Our scheme could therefore be used for long-term secret storage, allowing the security of the ciphertext to be adapted to the attacker's computing power, without the need for decryption.
We propose an implementation of our cryptographic scheme and prove its security.
Adaptive Hardcore Bit and Quantum Key Leasing over Classical Channel from LWE with Polynomial Modulus
Quantum key leasing, also known as public key encryption with secure key leasing (PKE-SKL),
allows a user to lease a (quantum) secret key to a server for decryption purpose, with the capability of revoking the key afterwards.
In the pioneering work by Chardouvelis et al (arXiv:2310.14328), a PKE-SKL scheme utilizing classical channels was successfully built upon the noisy trapdoor claw-free (NTCF) family. This approach, however, relies on the superpolynomial hardness of learning with errors (LWE) problem, which could affect both efficiency and security of the scheme.
In our work, we demonstrate that the reliance on superpolynomial hardness is unnecessary, and that LWE with polynomial-size modulus is sufficient to achieve the same goal.
Our approach enhances both efficiency and security, thereby improving the practical feasibility of the scheme on near-term quantum devices.
To accomplish this, we first construct a \textit{noticeable} NTCF (NNTCF) family with the adaptive hardcore bit property, based on LWE with polynomial-size modulus. To the best of our knowledge, this is the first demonstration of the adaptive hardcore bit property based on LWE with polynomial-size modulus, which may be of independent interest.
Building on this foundation, we address additional challenges in prior work to construct the first PKE-SKL scheme satisfying the following properties:
(\textit{i}) the entire protocol utilizes only classical communication, and can also be lifted to support homomorphism.
(\textit{ii}) the security is solely based on LWE assumption with polynomial-size modulus.
As a demonstration of the versatility of our noticeable NTCF, we show that an efficient proof of quantumness protocol can be built upon it. Specifically, our protocol enables a classical verifier to test the quantumness while relying exclusively on the LWE assumption with polynomial-size modulus.
Glacius: Threshold Schnorr Signatures from DDH with Full Adaptive Security
Threshold signatures are one of the most important cryptographic primitives in distributed systems. The threshold Schnorr signature scheme, an efficient and pairing-free scheme, is a popular choice and is included in NIST's standards and recent call for threshold cryptography. Despite its importance, most threshold Schnorr signature schemes assume a static adversary in their security proof. A recent scheme proposed by Katsumata et al. (Crypto 2024) addresses this issue. However, it requires linear-sized signing keys and lacks the identifiable abort property, which makes it vulnerable to denial-of-service attacks. Other schemes with adaptive security either have reduced corruption thresholds or rely on non-standard assumptions such as the algebraic group model (AGM) or hardness of the algebraic one-more discrete logarithm (AOMDL) problem.
In this work, we present Glacius, the first threshold Schnorr signature scheme that overcomes all these issues. Glacius is adaptively secure based on the hardness of decisional Diffie-Hellman (DDH) in the random oracle model (ROM), and it supports a full corruption threshold , where is the total number of signers and is the signing threshold. Additionally, Glacius provides constant-sized signing keys and identifiable abort, meaning signers can detect misbehavior. We also give a formal game-based definition of identifiable abort, addressing certain subtle issues present in existing definitions, which may be of independent interest.
Addendum to How Small Can S-boxes Be?
In ToSC 2025(1), Jia et al. proposed an SAT-aided automatic search tool for the S-box design. A part of the functionality of this tool is to search for implementations of an S-box with good area and gate-depth complexity. However, it is well-known that the gate depth complexity cannot precisely reflect the latency of an implementation. To overcome this problem, Rasoolzadeh introduced the concept of latency complexity, a more precise metric for the latency cost of implementing an S-box than the gate depth complexity in the real world.
In this addendum, we adapt Jia et al.'s tool to prioritize latency as the primary metric and area as the secondary metric to search for good implementations for existing S-boxes. The results show that the combination of Jia et al.'s tool and Rasoolzadeh's latency complexity can lead to lower-latency S-box implementations. For S-boxes used in LBlock, Piccolo, SKINNY-64, RECTANGLE, PRESENT and TWINE, which are popular targets in this research line, we find new implementations with lower latency. We conducted synthesis comparisons of the area and latency under multiple standard libraries, where our results consistently outperformed in terms of latency. For example, for LBlock-S0, our solution reduces latency by around 50.0% ∼73.8% compared to previous implementations in TSMC 90nm library with the latency-optimized synthesis option.
A Framework for Advanced Signature Notions
The beyond unforgeability features formalize additional security properties for signature schemes. We develop a general framework of binding properties for signature schemes that encompasses existing beyond unforgeability features and reveals new notions. Furthermore, we give new results regarding various transforms: We show that the transform by Cremers et al. (SP'21) achieves all of our security notions and provide requirements such that this is also the case for the transform by Pornin and Stern (ACNS'05). Finally, we connect our framework to unforgeability notions.
FINALLY: A Multi-Key FHE Scheme Based on NTRU and LWE
Multi-key fully homomorphic encryption (MKFHE), a generalization of
fully homomorphic encryption (FHE), enables a computation over encrypted data
under multiple keys. The first MKFHE schemes were based on the NTRU primitive,
however these early NTRU based FHE schemes were found to be insecure due to the
problem of over-stretched parameters. Recently, in the case of standard (non-multi
key) FHE a secure version, called FINAL, of NTRU has been found. In this work
we extend FINAL to an MKFHE scheme, this allows us to benefit from some of
the performance advantages provided by NTRU based primitives. Thus, our scheme
provides competitive performance against current state-of-the-art multi-key TFHE,
in particular reducing the computational complexity from quadratic to linear in the
number of keys.
Zero-Trust Post-quantum Cryptography Implementation Using Category Theory
This paper blends post-quantum cryptography (PQC) and zero trust
architecture (ZTA) to secure the access for AI models, formalized through
the abstract mathematical lens of category theory. In this work, latticebased
PQC primitives are assigned ZTA components that include microsegmentation
and context-aware authentication, leading to a visual compositional
framework that describes cryptographic workflows as morphisms
and trust policies as functors, showing how category theory allows for
fine-grained policies and adaptive trust. This quantum-resistant algorithm
viewing perspective offers an ease for protection against adversarial
AI threats. The paper uses a concrete implementation to attest to the
effectiveness of the theoretical contribution, rendering it a crypto-agile
transition using categorical proofs for AI security .
Efficient Pairings Final Exponentiation Using Cyclotomic Cubing for Odd Embedding Degrees Curves
Uncategorized
Uncategorized
In pairings-based cryptographic applications, final exponentiation with a large fixed exponent ensures distinct outputs for the Tate pairing and its derivatives. Despite notable advancements in optimizing elliptic curves with even embedding degrees, improvements for those with odd embedding degrees, particularly those divisible by , remain underexplored. This paper introduces three methods for applying cyclotomic cubing in final exponentiation and enhancing computational efficiency. The first allows for the execution of one cyclotomic cubing based on the final exponentiation structure. The second leverages some existing seeds structure to enable the use of cyclotomic cubing and extends this strategy to generate new seeds. The third allows generating sparse ternary representation seeds to apply cyclotomic cubing as an alternative to squaring. These optimizations improve performance by up to when computing the final exponentiation for the optimal Ate pairing on and , the target elliptic curves of this study.
Last updated: 2025-05-26
Electromagnetic Side-Channel Analysis of PRESENT Lightweight Cipher
Side-channel vulnerabilities pose an increasing threat to cryptographically protected devices. Consequently, it is crucial to observe information leakages through physical parameters such as power consumption and electromagnetic (EM) radiation to reduce susceptibility during interactions with cryptographic functions. EM side-channel attacks are becoming more prevalent. PRESENT is a promising lightweight cryptographic algorithm expected to be incorporated into Internet-of-Things (IoT) devices in the future. This research investigates the EM side-channel robustness of PRESENT using a correlation attack model. This work extends our previous Correlation EM Analysis (CEMA) of PRESENT with improved results. The attack targets the Substitution box (S-box) and can retrieve 8 bytes of the 10-byte encryption key with a minimum of 256 EM waveforms. This paper presents the process of EM attack modelling, encompassing both simple and correlation attacks, followed by a critical analysis.
Partially Registered Multi-authority Attribute-based Encryption
Attribute-based encryption can be considered a generalization of public key encryption, enabling fine-grained access control over
encrypted data using predetermined access policies. In general, we distinguish between key-policy and ciphertext-policy attribute-based encryption schemes. Our new scheme is built upon the multi-authority
attribute-based encryption with an honest-but-curious central authority
scheme in a key-policy setting presented earlier by Božović et al., and it
can be considered an extension of their scheme. In their paper, trust was
shared between the central authority and the participating authorities,
who were responsible for issuing attribute-specific secret keys. The central authority was not capable of decrypting any message as long as there
exists an honest attribute authority. In our new scheme, we maintain this
feature, and add another level of security by allowing users to participate
in the key generation process and contribute to the final user-specific attribute secret keys. Users gain more control over their own secret keys,
and they will be the only parties with access to the final user-specific
secret keys. Furthermore, no secure channels, only authenticated communication channels are needed between users and authorities. After the
modifications our scheme will be closer to the registered multi-authority
attribute-based encryption. We refer to our scheme as a partially registered type of multi-authority attribute-based encryption scheme. We
prove the security of our scheme in the Selective-ID model.
Laurent Polynomial-Based Linear Transformations for Improved Functional Bootstrapping
Following Gentry's seminal work (STOC 2009), Fully Homomorphic Encryption (FHE) has made significant advancements and can even evaluate functions in the bootstrapping process, called functional bootstrapping. Recently, Liu and Wang (ASIACRYPT 2023) proposed a new approach to functional bootstrapping, which bootstrapped ciphertexts in 7ms amortized time. Their methods packed the secret key of the TFHE cryptosystem into a ciphertext of the BFV cryptosystem, followed by performing functional bootstrapping of TFHE within BFV. However, while this yields high amortized efficiency, it faces high latency and computational complexity of ciphertext-ciphertext multiplications due to use of large BFV plaintext primes that serve as the TFHE ciphertext modulus, , to maximize SIMD slots.
In this work, we adapt their techniques to achieve lower latency functional bootstrapping by relaxing the requirement for prime BFV plaintext modulus to prime powers, . We first introduce an improved linear transformation stage, multiplying Laurent Polynomial packed secret key and ciphertexts, and , evaluating a linear map. With this, we reduce the number of operations needed to evaluate the linear phase of bootstrapping. Finally, we generalize their functional bootstrapping procedure from plaintext space to via leveraging the digit extraction algorithm, achieving a theoretical complexity of ciphertext-ciphertext multiplications. Additionally, we enable a multi-valued bootstrapping scheme that permits the evaluation of multiple functions over a shared input. To the best of our knowledge, this is the first demonstration of such a method for TFHE ciphertexts that relies predominantly on BFV-based techniques.
In our experiments, we achieve overall runtimes as low as 49.873s, representing latency reductions of at least , while noting a slowdown in amortized performance.
LEAF: A Low-Latency Evaluation Architecture for Feedforward Block in Privacy-Preserving Transformer Inference
Fully homomorphic encryption (FHE) is an appealing and promising solution for privacy-preserving transformer inference to protect users' privacy. However, the huge computational overhead makes it unrealistic to apply FHE in real-world transformers for large language models (LLM). Current FHE-based approaches to secure transformer inference face significant performance challenges, with total latency exceeding 5 hours for 32-input batches.
The feedforward block, comprising a large-scale matrix multiplication followed by a GELU evaluation, is widely recognized as one of the most computationally intensive components in privacy-preserving transformer inference. In the state-of-the-art system NEXUS, evaluating the feedforward block incurs a total latency of 5,378 seconds, processing up to 32 inputs per batch.
We aim to reduce the latency and propose LEAF, a low-latency evaluation architecture for the feedforward block. LEAF introduces a novel combination of fast matrix multiplication and an asymptotically efficient algorithm for computing non-polynomial activations. When evaluated on the BERT-base model, LEAF reduces total latency to 53.4 seconds, offering a speedup over the state-of-the-art method in the same environment. Our implementations are available.
On the Power of Sumcheck in Secure Multiparty Computation
Lund et al. (JACM 1992) invented the powerful Sumcheck protocol that has been extensively used in complexity theory and in designing concretely efficient (zero-knowledge) arguments. In this work, we systematically study Sumcheck in the context of secure multi-party computation (MPC). Our main result is a new unified framework for lifting semi-honest MPC protocols to maliciously secure ones, with a small {\em constant} multiplicative overhead in {\em both} computation and communication. In general, our approach applies to any semi-honest, linear secret-sharing based dishonest majority MPC secure up to additive attacks, where linear secret-sharing can be enhanced with an authentication mechanism. At a high-level, our approach has a highly distributive flavor, where the parties jointly emulate a Sumcheck prover to prove the correctness of MPC semi-honest evaluations in zero-knowledge, while simultaneously emulating a Sumcheck verifier to verify the proof themselves.
Equipped with our new techniques, we design a SPDZ-style MPC protocol with online communication per party and sublinear preprocessing based on efficient pseudorandom correlation generators (PCGs), where is the circuit size. This substantially improves the communication achieved in Le Mans (CRYPTO 2022), the state-of-the-art in the SPDZ line of works. Technically, the savings are obtained by using a Sumcheck-based mechanism to check \emph{unverified} authenticated multiplication triple relations, which requires only {\em standard Beaver triples} and random authenticated shares, rather than additional unverified authenticated triples needed by a ``sacrifice'' strategy.
We also show concrete benefits for honest majority MPC protocols based on Shamir secret sharing. Compared to the best known approach in this scenario (Goyal et al. CRYPTO 2020) based on {\em fully linear interactive oracle proofs} (FLIOPs), asymptotically we achieve the same additive overhead in computation and additive overhead in communication. However, we replace the double sharings used there with random sharings, and reduce the soundness error from to , where is the underlying field.
Towards Better Integral Distinguishers over Based on Exact Coefficients of Monomials
Symmetric primitives used in multi-party computation, fully homomorphic encryption, and zero-knowledge proofs are often defined over Finite Field with or an odd prime . Integral attack is one of the most effective methods against such primitives due to the common use of low-degree non-linear layers. This in turn highlights the importance of a deeper understanding of degree growth. For ciphers defined over , numerous works have explored the growth of the algebraic degree. However, these methods cannot be directly applied to . At CRYPTO 2020, Beyne et al. extended the integral cryptanalysis to by comparing degree with when using data. However, given that the precise degree evaluation remains fundamentally challenging and often computationally infeasible, one may lose better integral distinguishers.
In this paper, we present the first automatic search model over based on the exact coefficient of the monomial contained in the algebraic representation. This model is constructed following the Computation-Traceback-Determine framework, where is represented by several sums of multinomial coefficients under specific conditions. The existence of integral properties is then transformed into a determination of whether these sums can consistently equal . This determination is facilitated by four newly developed propositions based on Lucas Theorem. To demonstrate the effectiveness of our framework, we apply it to all variants of GMiMC. As a result, we achieve the best integral distinguishers for GMiMC-erf/-crf using large primes when they are used as block ciphers. For GMiMC-nyb/-mrf using 32/64-bit primes, our integral distinguishers cover more rounds than all other attacks. Meanwhile, all distinguishers we identified are no worse than those trivial ones predicted only considering the maximal degree. This shows the necessity of considering exact coefficients when searching for integral distinguishers over . Our framework is further employed to assess the security of two HADES designs: HadesMiMC and Poseidon2 . The results reveal that the full rounds at the beginning and end of HADES provide sufficient resistance against integral cryptanalysis.
Poseidon and Neptune: Gröbner Basis Cryptanalysis Exploiting Subspace Trails
At the current state of the art, algebraic attacks are the most efficient method for finding preimages and collisions for arithmetization-oriented hash functions, such as the closely related primitives Poseidon/Poseidon2 and Neptune. In this paper, we revisit Gröbner basis (GB) attacks that exploit subspace trails to linearize some partial rounds, considering both sponge and compression modes.
Starting from Poseidon's original security evaluation, we identified some inaccuracies in the model description that may lead to misestimated round requirements. Consequently, we reevaluate and improve the proposed attack strategy. We find that depending on the concrete instantiation, the original security analysis of Poseidon under- or overestimates the number of rounds needed for security. Moreover, we demonstrate that GB attacks leveraging subspace trails can outperform basic GB attacks for Poseidon/Poseidon2 and Neptune.
We propose a variant of the previous attack strategy that exploits a crucial difference between Poseidon/Poseidon2 and Neptune: while Poseidon's inverse round functions have a high degree, Neptune's inverse external rounds maintain the same degree as the forward rounds. Using this new model, we demonstrate that Neptune's security in compression mode cannot be reduced to its security against the Constrained-Input-Constrained-Output (CICO) problem. To the best of our knowledge, this is the first time a concrete example has been provided where finding preimages is easier than solving the corresponding CICO problem.
Our results emphasize the importance of considering the mode of operation in security analysis while confirming the overall security of Poseidon/Poseidon2 and Neptune against the presented algebraic attacks.
LatticeFold+: Faster, Simpler, Shorter Lattice-Based Folding for Succinct Proof Systems
Folding is a technique for building efficient succinct proof systems. Many existing folding protocols rely on the discrete-log based Pedersen commitment scheme, and are therefore not post-quantum secure and require a large (256-bit) field. Recently, Boneh and Chen constructed LatticeFold, a folding protocol using lattice-based commitments which is plausibly post-quantum secure and can operate with small (64-bit) fields. For knowledge soundness, LatticeFold requires the prover to provide a range proof on all the input witnesses using bit-decomposition, and this slows down the prover. In this work we present LatticeFold+, a very different lattice-based folding protocol that improves on LatticeFold in every respect: the prover is five to ten times faster, the verification circuit is simpler, and the folding proofs are shorter. To do so we develop two novel lattice techniques. First, we develop a new purely algebraic range proof which is much more efficient than the one in LatticeFold, and may be of independent interest. We further shrink the proof using double commitments (commitments of commitments). Second, we show how to fold statements about double commitments using a new sumcheck-based transformation.
Security Analysis of NIST Key Derivation Using Pseudorandom Functions
Key derivation functions can be used to derive variable-length random strings that serve as cryptographic keys. They are integral to many widely-used communication protocols such as TLS, IPsec and Signal. NIST SP 800-108 specifies several key derivation functions based on pseudorandom functions such as \mode{CMAC} and \mode{HMAC}, that can be used to derive additional keys from an existing cryptographic key. This standard either explicitly or implicitly requests their KDFs to be variable output length pseudorandom function, collision resistant, and preimage resistant. Yet, since the publication of this standard dating back to the year of 2008, until now, there is no formal analysis to justify these security properties of KDFs.
In this work, we give the formal security analysis of key derivation functions in NIST SP 800-108. We show both positive and negative results regarding these key derivation functions. For KCTR-CMAC, KFB-CMAC, and KDPL-CMAC that are key derivation functions based on CMAC in counter mode, feedback mode, and double-pipeline mode respectively, we prove that all of them are secure variable output length pseudorandom functions and preimage resistance. We show that KFB-CMAC and KDPL-CMAC are collision resistance. While for KCTR-CMAC, we can mount collision attack against it that requires only six block cipher queries and can succeed with probability 1/4. For KCTR-HMAC, KFB-HMAC, and KDPL-HMAC that are key derivation functions based on HMAC in modes, we show that all of them behave like variable output length pseudorandom functions. When the key of these key derivation functions is of variable length, they suffer from collision attacks. For the case when the key of these key derivation function is of fixed length and less than bits where is the input block size of the underlying compression function, we can prove that they are collision resistant and preimage resistant.
Everlasting Fully Dynamic Group Signatures
Group signatures allow a user to sign anonymously on behalf of a group of users while allowing a tracing authority to trace the signer's identity in case of misuse. In Chaum and van Heyst's original model (EUROCRYPT'91), the group needs to stay fixed. Throughout various attempts, including partially dynamic group signatures and revocations, Bootle et al. (ACNS'16, J. Cryptol.) formalized the notion of fully dynamic group signatures (FDGS), enabling both enrolling and revoking users of the group. However, in their scheme, the verification process needs to take into account the latest system information, and a previously generated signature will be invalidated as soon as, for example, there is a change in the group. We therefore raise a research question: Is it possible to construct an FDGS under which the validity of a signature can survive future changes in the system information?
In this paper, we propose Everlasting Fully Dynamic Group Signatures (EFDGS) that allow signers to generate signatures that do not require verification with any specific epoch. Specifically, once the signatures are created, they are valid forever. It also guarantees that the signer can only output such a signature when she is a valid user of the system. We realize the above new model by constructing a plausibly post-quantum standard-lattice-based EFDGS.
A Provably Secure W-OTS based on MQ Problem
In 2022, Antonov showed that SHA-256 does not satisfy some secure property that SPHINCS needs, and a fogery attack based on this observation reduces the concrete classical security by approximately 40 bits of security. This illustrates a more general concern: the provable security of some hash-based signature schemes can be compromised when implemented with certain real-world hash functions, and motivates the need to design new functions with rigorous, provable security guarantees. Besides, it has been shown that from W-OTS to W-OTS , the security requirement for the hash function's collision resistance can be relaxed to second-preimage resistance (SPR), which means that it is possible to use some functions with SPR property to instantiate the underlying function family in W-OTS , and obtain a provably secure W-OTS .
In this paper, we use multivariate quadratic functions (MQ functions) to instantiate in W-OTS , which yields the first provably secure W-OTS To prove its security, we need to derive the SPR property of MQ functions. The key is to show the -hardness of finding second preimages.
Furthermore, we prove the multi-function, multi-target one-wayness (MM-OW) and the multi-function, multi-target second-preimage resistance (MM-SPR) of MQ functions, which implies the provable security of MQ-based W-OTS in the multi-user setting, on the condition that the number of users is for some , where is the security parameter.
Enhancing Provable Security and Efficiency of Permutation-based DRBGs
We revisit the security analysis of the permutation-based deterministic random bit generator~(DRBG) discussed by Coretti et al. at CRYPTO 2019. Specifically, we prove that their construction, based on the sponge construction, and hence called Sponge-DRBG in this paper, is secure up to queries in the seedless robustness model, where is the required min-entropy and is the sponge capacity. This significantly improves the provable security bound from the existing to the birthday bound. We also show that our bound is tight by giving matching attacks.
As the Multi-Extraction game-based reduction proposed by Chung et al. at Asiacrypt 2024 is not applicable to Sponge-DRBG in a straightforward manner, we further refine and generalize the proof technique so that it can be applied to a broader class of DRBGs to improve their provable security.
We also propose a new permutation-based DRBG, dubbed POSDRBG, with almost the optimal output rate , outperforming the output rate of Sponge-DRBG, where is the output size of the underlying permutation and . We prove that POSDRBG is tightly secure up to queries. Thus, to the best of our knowledge, POSDRBG is the first permutation-based DRBG that achieves the optimal output rate of 1, while maintaining the same level of provable security as Sponge-DRBG in the seedless robustness model.
Diamond iO: A Straightforward Construction of Indistinguishability Obfuscation from Lattices
Indistinguishability obfuscation (iO) has seen remarkable theoretical progress, yet it remains impractical due to its high complexity and inefficiency. A common bottleneck in recent iO schemes is the reliance on bootstrapping techniques from functional encryption (FE) into iO, which requires recursively invoking the FE encryption algorithm for each input bit—creating a significant barrier to practical iO schemes.
In this work, we propose diamond iO, a new lattice-based iO construction that replaces the costly recursive encryption process with lightweight matrix operations. Our construction is proven secure under the learning with errors (LWE) and evasive LWE assumptions, as well as our new assumption—all-product LWE—in the pseudorandom oracle model. By leveraging the FE scheme for pseudorandom functionalities introduced by Agrawal et al. (ePrint’24) in a non-black-box manner, we remove the reliance on prior FE-to-iO bootstrapping techniques and thereby significantly reduce complexity. We further show that a variant of the all-product LWE assumption reduces to standard LWE, and we argue that known attacks on evasive LWE do not threaten our construction.
Breaking Poseidon Challenges with Graeffe Transforms and Complexity Analysis by FFT Lower Bounds
Poseidon and Poseidon2 are cryptographic hash functions designed for efficient zero-knowledge proof protocols and have been widely adopted in Ethereum applications. To encourage security research, the Ethereum Foundation announced a bounty program in November 2024 for breaking the Poseidon challenges, i.e. solving the CICO (Constrained Input, Constrained Output) problems for round-reduced Poseidon constructions. In this paper, we explain how to apply the Graeffe transform to univariate polynomial solving, enabling efficient interpolation attacks against Poseidon. We will provide an open-source code and details our approach for solving several challenges valued at $20000 in total. Compared to existing attacks, we improves 2^{13} and 2^{4.5} times in wall time and memory usage, respectively. For all challenges we solved, the cost of memory access turns out to be an essential barrier, which makes the security margin much larger than expected. We actually prove that the memory access cost for FFT grows as the 4/3-power of the input size, up to a logarithmic factor. This indicates the commonly used pseudo linear estimate may be overly conservative. This is very different from multivariate equation solving whose main bottleneck is linear algebra over finite fields. Thus, it might be preferable to choose parameters such that the best known attack is interpolation, as it presents more inherent hardness.
DewTwo: a transparent PCS with quasi-linear prover, logarithmic verifier and 4.5KB proofs from falsifiable assumptions
We construct the first polynomial commitment scheme (PCS) that has a transparent setup, quasi-linear prover time, verifier time, and proof size, for multilinear polynomials of size . Concretely, we have the smallest proof size amongst transparent PCS, with proof size less than KB for . We prove that our scheme is secure entirely under falsifiable assumptions about groups of unknown order. The scheme significantly improves on the prior work of Dew (PKC 2023), which has super-cubic prover time and relies on the Generic Group Model (a non-falsifiable assumption). Along the way, we make several contributions that are of independent interest: PoKEMath, a protocol for efficiently proving that an arbitrary predicate over committed integer vectors holds; SIPA, a bulletproofs-style inner product argument in groups of unknown order; we also distill out what prior work required from the Generic Group Model and frame this as a falsifiable assumption.
Somewhat Homomorphic Encryption from Linear Homomorphism and Sparse LPN
We construct somewhat homomorphic encryption from the sparse learning-parities-with-noise problem, along with any assumption that implies linearly homomorphic encryption (e.g., the decisional Diffie-Hellman or decisional composite residuosity assumptions). Our resulting schemes support an a-priori bounded number of homomorphic operations: multiplications followed by poly( ) additions, where is a security parameter. These schemes have compact ciphertexts: before and after homomorphic evaluation, the bit length of each ciphertext is a fixed polynomial in the security parameter , independent of the number of homomorphic operations that the scheme supports. This gives the first constructions of somewhat homomorphic encryption that can evaluate the class of bounded-degree polynomials without relying on lattice assumptions or bilinear maps.
Our new encryption schemes are conceptually simple: much as in Gentry, Sahai, and Waters’ fully homomorphic encryption scheme, ciphertexts in our scheme are matrices, homomorphic addition is matrix addition, and homomorphic multiplication is matrix multiplication. Moreover, when encrypting many messages at once and performing many homomorphic evaluations at once, the bit length of the ciphertexts in (some of) our schemes can be made arbitrarily close to the bit length of the plaintexts. The main limitation of our schemes is that they require a large evaluation key, whose size scales with the complexity of the homomorphic computation performed, though this key can be re-used across any polynomial number of encryptions and evaluations. Our construction builds on recent work of Dao, Ishai, Jain, and Lin, who construct a homomorphic secret-sharing scheme from the sparse-LPN assumption.
Almost-Total Puzzles and Their Applications
Public-coin protocols are cryptographic protocols in which all messages sent by a specific party (typically the receiver or verifier) consist solely of random bits. These protocols have been extensively studied due to their advantageous properties in several scenarios, such as the parallel repetition of interactive arguments, and the design of secure multi-party computation with low round complexity, among others. Curiously, constructions of public-coin protocols remain limited, particularly when optimization is sought in additional factors like round complexity or hardness assumptions.
We introduce the concept of , a novel cryptographic primitive characterized by two key properties: (i) hardness against any efficient adversary, and (ii) an "almost-total" guarantee of the existence of solutions, even when the puzzle generator is malicious. We demonstrate that this primitive can be derived from one-way functions in public-coin, requiring only two rounds. By leveraging this primitive, we obtain a family of new results in both the classical and post-quantum settings, based on the of (post-quantum) one-way functions, including:
- five-round post-quantum extractable commitments and witness-indistinguishable arguments of knowledge, where the (knowledge) extractors achieve the
( ) simulation proposed by Lombardi, Ma, and Spooner [FOCS'22];
- five-round classical extractable commitments that ;
- five-round classical delayed-input strong witness-indistinguishable arguments of knowledge, and delayed-input witness-hiding arguments of knowledge;
- the five-round post-quantum analogue of the last item, but with the difference that (1) the input can be delayed until the third round, and (2) post-quantum arguments of knowledge are again defined w.r.t. -simulation;
- -round post-quantum non-malleable commitments.