
Powerformer: Efficient Privacy-Preserving Transformer with Batch Rectifier-Power
Max Function and Optimized Homomorphic Attention

Dongjin Park
Chung-Ang University

Eunsang Lee∗

Sejong University
Joon-Woo Lee∗

Chung-Ang University

Abstract
We propose an efficient non-interactive privacy-preserving
Transformer inference architecture called Powerformer.
Since softmax is a non-algebraic operation, previous stud-
ies have attempted to modify it to be HE-friendly, but these
methods have encountered issues with accuracy degradation
or prolonged execution times due to the use of multiple boot-
strappings. We propose replacing softmax with a new ReLU-
based function called the Batch Rectifier-Power max (BRP-
max) function without any unstable approximation methods,
which outperforms even original BERT performance within
BERT-Large model while requiring fewer levels, allowing it
to operate with only a single bootstrapping. We also present
a matrix multiplication algorithms specialized for attention
block that reduce the number of key-switchings by 35% to
91% compared to existing state-of-the-art methods. We de-
sign clear end-to-end HE-based implementation for private
Transformer model, and our implementation of Powerformer
on the BERT-tiny model using RNS-CKKS takes 503 seconds
on a single-threaded CPU, and to the best of our knowledge,
this is the first end-to-end non-interactive Transformer imple-
mentation using HE.

1 Introduction

The Transformer model is one of the most prominent tech-
nologies in recent times, with the Transformer-based language
model, ChatGPT, pushing the boundaries of traditional AI
capabilities by maximizing the potential of large language
models. It enables natural interactions with humans, bringing
about significant innovation. However, ChatGPT currently
operates on a Machine Learning as a Service (MLaaS) model,
where the client sends their data to the server, which then per-
forms inference using its model and returns the results to the
client. This process exposes the client’s data to the server, rais-
ing significant privacy concerns. Due to these issues, security-

*Co-corresponding authors:
eslee3209@sejong.ac.kr, jwlee2815@cau.ac.kr

conscious companies are hesitant to use ChatGPT, fearing the
potential leakage of corporate data, which ultimately limits
the full utilization of the powerful Transformer-based mod-
els. To address privacy issues in an MLaaS environment,
Privacy-Preserving Machine Learning (PPML) using HE to
perform inference on encrypted data has been actively re-
searched [3, 7, 13, 16, 19, 27]. With the increasing focus on
Transformer models, there has also been a rise in research on
secure inference for Transformers [4,6,9,21,23,28,29]. PPML
research is divided into interactive PPML, where inference
is performed through communication between the client and
server, and non-interactive PPML, where the server performs
inference on encrypted data without communication.

Interactive PPML [6,9,13,21,23,24,27] primarily employs
approaches using HE and Multi-Party Computation (MPC),
which offer the advantage of relatively fast execution times.
However, when targeting complex models like Transformers,
this approach can result in communication costs exceeding
tens of gigabytes, which can be a constraint in environments
with insufficient communication bandwidth. In contrast, non-
interactive PPML involves only the server performing compu-
tations on the client’s encrypted data without any communica-
tion, with the client simply sending their encrypted data and re-
ceiving the encrypted final results. Due to the advantage of not
requiring online communication, many studies have adopted
the non-interactive approach [3, 7, 10, 16, 19, 28, 29]. This
paper focuses on non-interactive privacy-preserving Trans-
former inference. RNS-CKKS [5] is a good choice of HE
for non-interactive Transformer inference because it offers
the advantage of performing a large number of real-number
operations quickly. Two major challenges in implementing
efficient non-interactive privacy-preserving Transformer in-
ference on RNS-CKKS are the softmax operation and the
matrix multiplication required for attention. The most critical
issue in HE-based Transformer research is that there is still no
paper that fully addresses a clear end-to-end implementation
of an HE-based Transformer model that operates stably in
practice.

Softmax Function The softmax function can be calculated
using the following equation, where the subtraction of xmax is
included for numerical stability [15].

yi =
exp(xi− xmax)

∑
m−1
j=0 exp(x j− xmax))

(1)

The two most common approaches for applying the softmax
function in HE are replacing the softmax function with a
polynomial function or accurately approximating the softmax
function itself. The first approach replaces the softmax func-
tion with a polynomial and fine-tunes the model, potentially
improving time performance in HE-based implementations,
but a key issue is the accuracy drop when the polynomial
fails to effectively replace softmax in the neural network. For
example, the replacement method for softmax function pro-
posed by Zimerman et al. [29] significantly reduces accuracy,
as shown in the experimental results provided in Section 2.1.
The second approach focuses on providing a fast and accurate
approximation. For example, the most recent research, such
as [28], approximate the softmax function using Taylor series
and Goldschmidt polynomial approximation methods. Due
to the high instability of the exponential function, it is diffi-
cult to perform accurate calculations on RNS-CKKS. As a
result, the use of the subtraction xmax for stabilizing becomes
unavoidable, which in turn requires a large number of compar-
ison operations, leading to significant computational overhead
during secure inference.

Matrix Multiplication All papers dealing with HE-based
private inference do not fully present end-to-end matrix mul-
tiplication methods for the entire Transformer network. For
example, previous studies in this research domain include
NEXUS [28] and the study by Zimerman et al [29]. NEXUS
proposes a ciphertext-plaintext multiplication algorithm for
computing the query, key, and value matrices Qi,Ki,Vi in
multi-head attention, as well as ciphertext-ciphertext multipli-
cation for the computation of QiKT

i . However, homomorphic
algorithms for subsequent multiplications, such as the mul-
tiplication with Vi or the output weight matrix W O, cannot
be found in NEXUS. Additionally, NEXUS employs a va-
riety of packing methods, such as component-wise packing,
row-wise packing, column-wise packing, and diagonal-wise
packing. However, it lacks a detailed explanation of how the
packing structure changes during inference to enable non-
interactive computation, where definitions of the aforemen-
tioned packing methods are provided in Section B.2. On the
other hand, Zimerman et al.’s work [29] does not provide de-
tailed implementation specifics, such as homomorphic matrix
multiplication algorithms, nor does it offer code for imple-
mentation in the encrypted state, making it very difficult to
reproduce their non-interactive implementation and analyze
its efficiency. Therefore, it is essential for future research
on HE-based Transformer implementation to propose a ma-
trix multiplication method specifically suitable for HE-based

private Transformer inference and to provide end-to-end im-
plementation source code of this approach.

Although the entire HE-based implementation of the Trans-
former network is not fully addressed, several matrix mul-
tiplication methods for an attention block were proposed
in HE-MPC hybrid implementation. However, the compu-
tational amount for this matrix multiplication was not opti-
mized, or there are many intermediate ciphertexts due to the
non-compact implementation, causing a significant amount
of the bootstrapping amount. For example, BOLT [23] pro-
posed a homomorphic matrix multiplication algorithm utiliz-
ing column-major packing, and while the plaintext-ciphertext
multiplication, which requires 2

√
d key switchings, is fairly

efficient the ciphertext-ciphertext matrix multiplication still re-
quires as many as d logd +2d key switchings, which is more
inefficient implementation compared to Jiang et al.’s well-
known homomorphic matrix multiplication method [10]. On
the other hand, the row-wise and column-wise packing meth-
ods used in NEXUS [28] are inefficient, as they leave many
slots unused, and our analysis indicates that the use of these
packing methods requires a large number of bootstrapping
operations. In addition, setting aside the number of bootstrap-
ping operations, implementing multi-head attention using the
matrix multiplication algorithm proposed by NEXUS requires
at least 6d2 key switchings. This imposes an excessive number
of key switchings for the Transformer model we are target-
ing, where d = 128. While Jiang et al. proposed an efficient
general ciphertext-ciphertext matrix multiplication algorithm,
this method needs to be specialized for the attention block,
which has intricate matrix operation structures.

1.1 Our Contributions
We propose an efficient end-to-end private HE-based Trans-
former implementation, called PowerFormer by addressing
two important research points in HE-based implementation.

• We introduce a new set of softmax replacement func-
tions, the Batch Rectifier-Power max (BRPmax) func-
tion set, which surpasses existing softmax replacement
methods. This novel approach achieves high numerical
stability, almost the same classification accuracy with
original BERT model, and efficient inference runtime
performance through our new training method.

• We propose a matrix multiplication operation optimized
for multi-head attention, presenting an end-to-end im-
plementation method that minimizes both the number of
key-switching operations in multi-head attention and the
number of bootstrapping operations.

Batch Rectifier-Power Max (BRPmax) Method We pro-
pose approximating the softmax function as ReLU(x +
c)p/Rd for some c, p, and Rd , where constants c, p are fixed.
With adapted batch method from batch normalization, the

2

running denominator Rd is learned during training, and it is
treated as a constant during inference, allowing the opera-
tion to be performed on encrypted data by multiplying by
the constant 1/Rd . The ReLU function is precisely approxi-
mated using the method by Lee et al. [17,18]. We numerically
demonstrate that the Powered ReLU (Rectifier-Power) func-
tion effectively substitutes the exponential function. We also
show that batch methods in distillation learning resolve dy-
namic scaling issues, a common challenge in PPML.

Optimized Homomorphic Attention We further optimize
the matrix-matrix multiplication algorithm by Jiang et al. [10].
For plaintext-ciphertext matrix multiplication, we integrate
several steps of plaintext-ciphertext multiplication from the
ciphertext-ciphertext matrix multiplication algorithm into a
single baby-step giant-step summation, which requires 85% to
91% fewer key switchings compared to [10]. We also propose
a blockwise matrix multiplication algorithm optimized for
multiplying the query matrix and key matrix, which requires
35% fewer key switchings compared to [10].

End-to-End HE-based Transformer Implementation We
present the first end-to-end non-interactive secure Trans-
former inference architecture Powerformer. This architecture
replaces non-linear operations, such as softmax, GELU, and
layer normalization, with polynomial approximations, while
leveraging our efficient matrix multiplication algorithm. Al-
though our focus is on the BERT-tiny model, the architecture
can be easily extended to other models, such as BERT-medium
and BERT-base.

We have fully implemented our architecture Powerformer
end-to-end using the RNS-CKKS library, Lattigo [1]. Unlike
NEXUS, which provided results only for individual compo-
nents executed on encrypted data, we implemented the entire
process and present the complete results. Our implementation
takes 503 seconds on a single CPU thread, which is at least
39× faster than NEXUS based on single-thread performance.
Given that this is a single-thread implementation, we expect
the runtime to be reduced by tens to hundreds of times with
GPU or hardware acceleration [12, 14].

1.2 Outline and Notations
Chapter 2 introduces the limitations of existing research that
replaces the softmax function in the Transformer model and
describes our BRPmax method. Chapter 3 proposes the matrix
multiplication techniques specialized for efficiently imple-
menting the attention block and compares them with existing
HE-based attention block implementations. Chapter 4 dis-
cusses additional considerations for the private Transformer
model and clearly details how to harmoniously combine the
aforementioned techniques to implement the Transformer
model end-to-end. Chapter 5 presents experimental results
that demonstrate the superiority of these techniques and shows

the specific performance of our encrypted implementation.
Chapter 6 concludes the paper. Appendix A covers the de-
tailed relationship between this paper and other key prior
works on private Transformer models, and Appendix B ex-
plains the preliminaries necessary to understand this paper, in-
cluding the Transformer model, the RNS-CKKS FHE scheme,
and the homomorphic matrix multiplication method.

In this paper, we use the following notations. ρ(v;r) de-
notes the vector v ∈ Rn that has been cyclically shifted to the
left by r positions. log(·) refers to the logarithm with base 2.
For a×b matrix X , Xi, j implies the element indexed by row i
and column j of the matrix X . Any notations in the main text
that are not defined within the main body may be defined in
Appendix B.

2 Batch Rectifier-Power-max Method

One of the most time-consuming operations in Transformer
is the softmax operation, because of the division operation
and comparison operations in this function. Division with
ciphertext in HE is challenging and typically performed using
approximation algorithms, such as Goldschmidt’s algorithm,
that utilize addition and multiplication. The wider the range
of values to be divided, the more computationally intensive
the operation becomes. To reduce this range, the largest value
among the inputs to softmax is subtracted before performing
the softmax computation. This is also done in the conventional
Transformer because of the numerical stability. However, cal-
culating this maximum value itself also requires significant
computation. For these reasons, the softmax operation is in-
efficient when performed on HE. In this section, we propose
two methods for eliminating the division operation and the
comparison operation in Transformer inference.

2.1 Limitation of Previous Softmax Implemen-
tation

In Zhang et al. [28], a method was proposed to eliminate
comparison operations by setting the amax value as a constant
during calculations. This approach is based on the observa-
tion that the amax value does not necessarily have to be the
largest value in the vector for the result to remain unaffected.
Instead, they subtract a constant larger than the actual amax,
ensuring all values become non-positive. However, Zhang et
al. did not specify which constant should be used, making the
method ambiguous and practically difficult to apply in RNS-
CKKS. Since the maximum value of the inputs to the softmax
function varies across different data points and dimensions, a
conservative constant, such as the global maximum observed
during training, must be used during inference to ensure valid
operations across all inputs.

For example, in the RTE task of the GLUE benchmark, the
global maximum value of the softmax inputs observed during
training was 63.5. If this value is considered as amax during

3

Table 1: Performance Down of ReLU(x)/
√

L on BERT model
(%).

BERT-Tiny BERT-Medium BERT-Base
RTE 5.42 10.47 17.33
CoLA 0.05 17.28 58.8
MRPC 1.96 14.46 16.91
STS-B 10.28 34.1 2.06
QNLI 0.99 4.36 54.81
Average 3.74 16.13 29.98

computation, and an input during inference has all elements
ai < 25 for all i, then exp(ai − amax) < e25−63.5 = 2−55.5.
Given that NEXUS uses a scaling factor ∆ = 250, this results
in ∆ ·m < 1, causing the message to vanish. Since the scale of
the softmax inputs varies significantly across dimensions and
data, vectors where all elements are less than 25 occur fre-
quently, making meaningful computation difficult and leading
to significant accuracy loss in the overall softmax operation.
Therefore, treating amax as a global constant has many practi-
cal limitations due to the stability of the exponential function
and the numerical capacity constraints of RNS-CKKS.

It is challenging to remove the comparison operations in
softmax using this method, so it is necessary to compute the
maximum for each input while it is still encrypted. However,
performing the maximum operation on encrypted data re-
quires executing logL sequential comparison operations. For
L = 128, this would necessitate seven maximum operations.
Since a precise maximum operation consumes significant
depth, bootstrapping must be performed between each maxi-
mum operation. Therefore, bootstrapping would need to be
used six times throughout the computation, making the pro-
cess highly inefficient. To bypass these operations, Zimerman
et al. replaced the softmax function with ReLU(x)/

√
L and

conducted fine-tuning to perform inference.
While this approach works to some extent with lightweight

models, it leads to significant performance degradation with
larger models. Table 1 shows the performance degradation
observed within BERT models of various sizes. When applied
to the BERT-Tiny model with 2 layers and 128 hidden dimen-
sions, there was a reduction in accuracy of approximately
3.7%. However, with the BERT-Medium model, which has
8 layers and 512 hidden dimensions, the accuracy dropped
by around 16%, and for the BERT-Base model with 12 layers
and 768 hidden dimensions, the accuracy decreased by 30%.
Given the nature of Transformers, which are primarily used in
large-scale models, this approach is impractical for practical
use.

2.2 Batch Method in Softmax

We propose a method similar to batch normalization to elim-
inate the division operation with ciphertext. Batch normal-

ization is a commonly used technique that normalizes inputs
using the mean and standard deviation of each batch before
applying the activation function, thereby enhancing training
stability and speed. A characteristic of this method is that,
during inference, normalization is not performed using the
mean and variance of the test data within the same compu-
tation block. Instead, the moving average of the batch-wise
mean and variance from the training dataset, known as the
running mean and running variance, is used for normalization.
This is because it is not possible to calculate the batch-wise
mean and variance during inference since operations are not
performed in batches. Despite performing normalization us-
ing the training dataset, this method is known to achieve good
performance in many tasks.

Inspired by batch normalization, a similar approach to batch
normalization can be applied to the softmax operation. Dur-
ing inference, it is difficult to perform division using values
from the test data due to the use of HE. Instead, a value
obtained from the training dataset is used for division. We
will call this value the running denominator. Since the run-
ning denominator is derived from the training dataset and is
owned by the server, it can be stored in plaintext. Dividing by
this value is equivalent to simple scalar multiplication, which
eliminates the need for heavy approximation methods like
Goldschmidt’s algorithm, providing significant computational
advantages. Therefore, it is important to devise a method that
maintains high accuracy while using this approach.

In batch normalization, the running mean and running vari-
ance are computed during the training process by continu-
ously calculating the moving average or exponential weighted
average of the means and variances of all values within each
batch for the corresponding layer. This approach minimizes
fluctuations caused by varying values in each batch, thereby
achieving stable running means and running variances. This
methodology can be analogously applied to determine the
running denominator of the softmax function. However, it is
imperative to recognize that the denominator of the softmax
function serves a different purpose compared to the running
mean and running variance. The denominator of the softmax
function normalizes each value to lie between 0 and 1, thereby
enhancing the numerical stability of the Transformer model.
Consequently, the batch method should be designed to pre-
serve this numerical stability when applied to the softmax
function.

Within a single batch, there are multiple vectors sub-
jected to the softmax operation. Let the batch size be de-
noted as B, the number of heads as h, the sequence length as
L, and the embedding dimension as dm. Each input matrix
Xi(i = 0, · · · ,B−1) in the batch yields a query matrix Qi j and
a key matrix Ki j(j = 0, · · · ,h−1) for each head, which have
dimensions L× dm/h, with dm/h = dk. The inner products
of these rows produce Ti j = Qi jKT

i j/
√

dk, resulting in matri-
ces of size L×L. The rows of these matrices contain inner
product values indicating the similarity between each query

4

and various keys. The softmax function is applied to the rows
of each Ti j. Denote each row of Ti j as Ti jk = (ti jkl)l , where
(k = 0, · · · ,L−1, l = 0, · · · ,L−1). Thus, the number of vec-
tors subjected to the softmax operation per batch is B · h ·L
and the values to consider when calculating the running de-
nominator are:

Di jk =
L−1

∑
l=0

eti jkl

If the technique used in batch normalization is directly
applied to compute the running denominator, it would in-
volve calculating the moving average values across batches ,
MovingAverage(Di jk). To enable faster ciphertext computa-
tion, we need to use a constant form of the Running Denomi-
nator. However, since the current values are not uniform, they
cannot be converted into a constant, and thus an additional
function is required. We applied the maximum operation over
the batch, MovingAverage(maxi, j,kDi jk). Instead of averag-
ing the Di jk values, employing the maximum value within the
batch, maxi, j,kDi jk as the running denominator would result
in dividing by a larger value during inference on test data, gen-
erally reducing the values to below 1 and thereby enhancing
numerical stability.

2.3 Rectifier-Power Function
Another reason why the softmax function requires a signif-
icant amount of computation time on encrypted data is the
comparison operation. Due to the large scale differences in
the exponential function, to compute accurately, it is neces-
sary to calculate the maximum value of each row in the input
matrix and subtract this maximum from each value. Since this
maximum operation is a non-arithmetic operation, a consid-
erable amount of computation time and deep computational
depth are required to accurately approximate it. Additionally,
because the maximum operation needs to be performed se-
quentially logL times, a substantial amount of bootstrapping
operations is also involved. Therefore, using functions with
significant scale differences, like the exponential function, is
unsuitable for computations on HE. On the other hand, one
of the reasons why Transformers can achieve good perfor-
mance is that the softmax function effectively emphasizes
important tokens. Thus, the scale difference of the softmax
function based on the input could impact the performance of
the Transformer.

We consider using another function instead of the exponen-
tial function. This function should resemble the shape of the
exponential function but with less variation in function values.
This led us to devise the Rectifier-Power(RP) function:

RPp,c(x) = ReLU(x+ c)p

The ReLU function yields zero for negative values, elimi-
nating the influence of negative inputs. This aligns with the
property of the exponential function, which produces very

small values for negative inputs, effectively minimizing their
impact. For positive values, a polynomial function xp is used.
It does not exhibit excessively large differences in function
values for different inputs as the exponential function does.
The offset c preserves information about some negative values
close to zero, which is characteristic of the exponential func-
tion. This prevents the loss of information that occurs when
the higher-order terms of k reduce the range below 1, and it
also helps avoid excessive focus on large values, maintaining
a stable and balanced attention distribution overall.

In RPp,c(x), the setting of p is task-dependent. In situations
where it is important to focus on specific words or phrases,
such as text classification, a higher p value may be advan-
tageous, whereas tasks that require consideration of various
contexts, such as translation or text generation, may benefit
from a lower p value. This is a unique advantage of the RP
Function, which the conventional softmax does not possess.
The setting of c follows the value of p and it is recommended
to use an offset of similar magnitude to p. An excessively
large offset for a small p could hinder the creation of balanced
attention by preventing focus on specific values, whereas an
excessively small offset for a large p could lead to unbalanced
attention, causing excessive focus on certain values.

2.4 Training and Inference Method

We use knowledge distillation to fine-tune the model after
replacing the softmax function with the Rectifier-Power max
(RPmax) function. Knowledge distillation is a commonly
used technique that transfers the knowledge of a well-trained
teacher model to a student model through an additional learn-
ing step. This technique allows for reducing the size and com-
plexity of the model while maintaining performance. It typi-
cally involves applying a loss function such as mean square
error(MSE) to the logits of the teacher model, or applying a
loss function like cross entropy(CE) to the probability dis-
tribution of the teacher model. This approach enables the
generation of a more simplified HE-friendly student model,
which is well-suited for HE inference tasks, as it replaces
time-consuming ciphertext operations with plaintext training
performed in advance. [20], [22] demonstrate the efficiency of
knowledge distillation in Transformer inference. MPCFormer
achieved 97% of BERT-base performance, while SECFormer
further improved BERT-base and BERT-large performance
by 3.4% and 24.7%, respectively, compared to MPCFormer.

We follow the knowledge distillation method proposed
in [11]. Using the fine-tuned original BERT model for each
downstream task as the teacher, distillation was performed
by applying loss functions to only four key positions, rather
than to all positions of the model. These positions are (1) the
embedding layer, (2) the attention matrix in each Transformer
layer, (3) the hidden states after each Transformer layer, and
(4) the final prediction layer. The distillation is conducted in
two steps. First, MSE is applied to positions (1), (2), and (3)

5

Table 2: Comparison between Batch Max Sum and Batch
Max

accuracy (%) # epochs

RTE
Batch Sum Max 68.59 309
Batch Max 68.95 103

CoLA
Batch Sum Max 59.36 222
Batch Max 60.33 100

MRPC
Batch Sum Max 86.27 307
Batch Max 86.52 69

STS-B
Batch Sum Max 88.71 145
Batch Max 89.40 95

QNLI
Batch Sum Max 91.18 87
Batch Max 91.52 51

Average
Batch Sum Max 78.82 214
Batch Max 79.35 83.6

for the initial training phase, and then Soft CE is applied to
position (4) in the second training phase. Through this consis-
tent distillation method, we can effectively verify the utility
of the student model. In all future experiments, we will use
knowledge distillation as the default method for validation.

We made modifications to the existing running denomina-
tor for batch training. We created a new running denominator
in the form of Di jkl = maxeti jkl , and we will refer to the pre-
vious running denominator as ’batch sum max’ and the new
form as ’batch max.’ The difference in how the denomina-
tor is calculated in softmax during the knowledge distilla-
tion process affects both the model’s convergence speed and
its final performance. The batch sum max method uses the
sum of the last dimension as the denominator, which means
that changes in individual values have a significant impact
on the overall denominator. This approach makes the model
highly sensitive to frequently changing values during training,
leading to difficulties in distinguishing between important
and less important information. Ultimately, this increases the
complexity of learning and can slow down convergence. In
contrast, the batch max method uses only the largest value
in the batch as the denominator, minimizing the influence of
frequently changing values and enabling more stable learning.
This method allows the model to focus on important infor-
mation during training, resulting in faster convergence and
higher accuracy. Table 2 illustrates the impact of the batch
method on final accuracy and convergence speed under the
same conditions.

Now, our training method and inference method is ex-
plained, which effectively reduce inference latency on en-
crypted data while maintaining accuracy nearly comparable
to the original model by utilizing both the batch method and
the RP function. The original BERT model is used as the
teacher model, while the BERT model that replaces the soft-
max function with the following RPmax function is used as

the student model.

RPmaxp,c(T = [ti jkl]) =

[
RPp,c(ti jkl)

maxi, j,k,l RPp,c(ti jkl)

]
i jkl

,

where T refers to a four-dimensional batch as defined in Sec-
tion 2.2. Unlike the traditional softmax, the RPmaxk,c func-
tion uses the maximum value across the entire batch as the de-
nominator, and thus the input is not a single row but the entire
batch. During training, we extract R = maxi, j,k,l RPp,c(ti jkl)
for each batch and continuously update it by taking a moving
average with the R value obtained from the previous batch.
After performing this for several epochs, let the result of the
moving average be Rd .

When performing inference, we replace the softmax func-
tion with the following BRPmax function and compute with
the BERT model in an encrypted state.

BRPmaxp,c(T = [ti jkl]) =

[
RPp,c(ti jkl)

Rd

]
Note that the BRPmax function, unlike RPmax, is a
component-wise operation. Therefore, when performing the
actual computation, you can use the SIMD property to per-
form the ReLUp operation once in the encrypted state and
then perform plaintext multiplication with 1/Rd . The ReLUp

operation can be effectively computed using the method by
Lee et al. without any maximum functions, and since there is
no need to use bootstrapping between operations, this signifi-
cantly reduces the overall computation time.

3 Matrix Operations for Transformer

3.1 Constant Rectangle Matrix Multiplication
In the first part of multi-head attention, for each head j,
the weight matrices for query, key, and value, denoted as
W (j)

Qi
,W (j)

Ki
,W (j)

Vi
∈ RL×dk , are multiplied by X on the right

to obtain Q(j)
i ,K(j)

i ,V (j)
i . The BERT-tiny model we are tar-

geting has parameters L = dm = 128 and dk = dm/h = dm/2.
In this section, we focus on optimizing the homomorphic
multiplication of a d×d matrix and a d× ℓ matrix, where we
have d|ℓ. The case where d = 128 and ℓ= 64 corresponds to
the BERT-tiny model. The rectangular matrix multiplication
formula from Jiang et al. is as follows:

A ·W =
d/ℓ−1

∑
j=0

(
ℓ−1

∑
i=0

(φi ◦σ(A))⊙ (ψi ◦ τ(W̄))

)
jℓ: j(ℓ+1)

(2)

W̄ ∈ Rd×d refers to a square matrix created by horizontally
replicating the matrix W ∈ Rd×ℓ with d/ℓ times. Based on
this formula, the inner summation operation is performed in
the HE setting as follows.

ℓ−1

∑
i=0

(Uφ)iUσa⊙ (Uψ)iUτw̄

6

We note that, unlike in the scenario of Jiang et al., the
weight matrix is not in an encrypted state and can there-
fore be freely packed. Therefore, the server can precompute
w(i) = (Uψ)iUτw̄, and then the following operation can be
performed:

ℓ−1

∑
i=0

(Uφ)iUσa⊙w(i) (3)

In the case of a(0) =Uσa, the operation can be performed in
HE as follows:

Uσa =
d−1

∑
k=−d+1

uσ

k ⊙Rot(a;k) (4)

Additionally, we have

(Uφ)iUσa = vi⊙Rot(Uσa; i)+ v′i⊙Rot(Uσa; i−d), (5)

where vi and v′i are defined as follows:

vi[j] =

{
1 if 0≤ [j]d < d− i
0 otherwise,

v′i[j] =

{
1 if d− i≤ [j]d < d
0 otherwise.

By substituting equation 4 into 5, and then substituting
the result into 3 and simplifying, we obtain the following
equation.

ℓ−1

∑
i=0

(w(i)⊙ vi)⊙Rot

(
d−1

∑
k=−d+1

uσ

k ⊙Rot(a;k); i

)

+
ℓ−1

∑
i=0

(w(i)⊙ v′i)⊙Rot

(
d−1

∑
k=−d+1

uσ

k ⊙Rot(a;k); i−d

)

=
ℓ−1

∑
i=0

d−1

∑
k=−d+1

(w(i)⊙ vi⊙ρ(uσ

k ; i))⊙Rot(a;k+ i)

+
ℓ−1

∑
i=0

d−1

∑
k=−d+1

(w(i)⊙ v′i⊙ρ(uσ

k ; i−d))⊙Rot(a;k+ i−d)

=
d+ℓ−2

∑
j=−2d+1

s j⊙Rot(a; j),

where s j refers to the plaintext vector composed of
w(i),vi,ρ(uσ

k ; i),ρ(uσ

k ; i−d) that results from simplifying the
above equations. Now, the baby-step giant-step method can
be used to reduce the number of rotations to approximately
2
√

3d + ℓ−2 as follows.

∑
0≤ j<N2

Rot
(

∑
0≤i<N1

ρ(sN1 j+i−2d+1;2d−1−N1 j)⊙Rot(a; i)

;N1 j−2d +1
)
,

(6)

where N1 and N2 are customizable parameters determining
the number of rotations satisfying N1N2 = 3d + ℓ−2. In this

context, the inner rotations’ summation operations can be
further optimized using the double hoisting technique, which
reduces the computational load. To maximize the effect of
hoisting, N1 should be set larger than N2.

For the outer summation in the formula 2, a rotation and
sum operation is performed where each row is divided into
units of ℓ elements, summed, and then followed by a zeroing
out process. This operation follows the exact steps of Jiang et
al. Afterward, a rotation and sum operation is performed on
the resulting matrix again to replicate the same matrix, ensur-
ing that the square matrix is packed with repeated matrices
corresponding to the number of heads. For query matrix, for
instance, Q̄(j)

i = [Q(j)
i |Q

(j)
i] ∈ Rd×d will be derived as the re-

sulting matrix, where Q(j)
i is the resultant query matrix having

dimension Rd×d/2.
Additionally, we note that the same input matrix X is used

for the matrix multiplications in the computation of Q(j)
i , K(j)

i ,
and V (j)

i in multi-head attention. This allows the baby step
process in equation 6, i.e., the computation of Rot(a; i), to be
performed only once across the three matrix multiplications,
thereby further reducing the number of rotations. The process
described above constitutes our proposed algorithm, which
we name CONSTRECMATRIXMULT.

3.2 Constant Matrix Multiplication
At the final stage of multi-head attention, a L×L matrix A is
multiplied by an L×L constant matrix W O. We consider the
case of multiplication of a d×d ciphertext matrix and a d×d
plaintext matrix, which corresponds to the multiplication with
W O when d = L. Since W O is a d × d square matrix, the
situation is slightly different from above subsection. The mul-
tiplication of the square matrix W O with A can be represented
as follows:

A ·W O =
d−1

∑
i=0

(φi ◦σ(A))⊙ (ψi ◦ τ(W O)) (7)

Using this formula, if we apply the equation in 3, it can be
similarly applied as follows:

d−1

∑
i=0

(Uφ)iUσa⊙w(i)

The subsequent process proceeds similarly to the inner sum-
mation process in the above subsection. This results in approx-
imately 4

√
4d−2 rotations being performed. Since the outer

summation is not required, it can be omitted. The process
described so far is the operation of our proposed algorithm,
which we refer to as CONSTMATRIXMULT.

3.3 Blockwise Matrix Multiplication
In Sections 3.1 and 3.2, we discussed homomorphic algo-
rithms for multiplication with weight matrices. In this subsec-

7

tion, we discuss a homomorphic algorithm for computation
of Q(j)

i K(j)T
i in Equation 11. This computation is divided into

two parts: performing the transpose operation on K(j)T
i to

obtain K(j)T
i and then multiplying Q(j)T

i and K(j)T
i to obtain

each Q(j)
i K(j)T

i . We use the transpose operation as described
in Jiang et al.’s method, and thus, we only discuss the mul-
tiplication of Q(j)

i and K(j)T
i . We note that Q(j)

i ∈ Rd×d/2

and K(j)T
i ∈ Rd/2×d for d = L. In this operation, since the

resulting matrix is Rd×d , one might trivially consider zero-
padding each Q(j)

i and K(j)T
i to treat them as d×d matrices

and perform the matrix operations using Jiang et al.’s method.
However, we note that the dimension of the vectors actually
being multiplied is d/2, and we propose a method to further
optimize this computation.

First, let’s split the Q(j)
i matrix vertically into two square

matrices, denoted as Q(j)
i,0 and Q(j)

i,1 ∈ Rd/2×d/2. Similarly,

the K(j)
i matrix can be split vertically into K(j)

i,0 and

K(j)
i,1 ∈ Rd/2×d/2. Then, since Q(j)

i =

[
Q(j)

i,0

Q(j)
i,1

]
and K(j)T

i =[
K(j)T

i,0 |K
(j)T
i,1

]
, Q(j)

i K(j)T
i can be expressed as follows.

Q(j)
i K(j)T

i =

[
Q(j)

i,0 K(j)T
i,0 Q(j)

i,0 K(j)T
i,1

Q(j)
i,1 K(j)T

i,0 Q(j)
i,1 K(j)T

i,1

]
Since we derived square matrices by vertically copying the
same matrix when multiplying by the weight matrix, Q̄(j)

i and
K̄(j)T

i have the following forms.

Q̄(j)
i = [Q(j)

i |Q
(j)
i] =

[
Q(j)

i,0 Q(j)
i,0

Q(j)
i,1 Q(j)

i,1

]
, K̄(j)T

i =

[
K(j)T

i

K(j)T
i

]
=

[
K(j)T

i,0 K(j)T
i,1

K(j)T
i,0 K(j)T

i,1

]

In this case, Q(j)
i K(j)T

i can be calculated by performing block-
wise matrix multiplication between each of the block matrices.

In other words, for A =

[
A00 A01
A10 A11

]
, B =

[
B00 B01
B10 B11

]
,

let us define A⊡B =

[
A00B00 A01B01
A10B10 A11B11

]
. Then the follow-

ing equation holds.

Q(j)
i K(j)T

i = Q̄(j)
i ⊡ K̄(j)T

i

Now, we design an efficient homomorphic operation for
A⊡B. The A⊡B operation can be transformed as follows.

A⊡B =
d/2−1

∑
k=0

(φ̃k ◦ σ̃(A))⊙ (ψ̃k ◦ τ̃(B))

Here, for each transformation f (f = σ,τ,φ,ψ), f̃ is defined
as follows.

f̃ (A) =
[

f (A00) f (A01)
f (A10) f (A11)

]

The key factor in determining the computation amount at
this stage is the number of non-zero diagonals in the matrix
representation for each transformation. Specifically, we need
to consider the representations U σ̃,U τ̃,Ṽ ,W̃ for σ̃, τ̃, φ̃, ψ̃. The
number of non-zero diagonals in U σ̃ is the same as the number
of non-zero diagonals in Uσ for a d/2×d/2 matrix, which
is 2 ·d/2−1 = d−1. The number of non-zero diagonals in
U τ̃ is approximately twice that of the U τ̃ matrix for a d/2×
d/2 matrix. This is because, in τ, only a single rotation can
achieve a cyclic shift in one column, while in τ̃, two types of
rotations are required to rotate a single column. As a result,
the number of non-zero diagonals in U τ̃ is the same as in
U σ̃, which is 2 · d/2− 1 = d− 1. Ṽ represents a blockwise
column shifting operation and has two non-zero diagonals. W̃
represents a blockwise row shifting operation and, unlike W ,
which has one non-zero diagonal, has two non-zero diagonals.
The reason is similar to that for τ̃.

If the A⊡B operation is performed using zero-padding on
A and B and optimized with a baby-step giant-step approach,
approximately 2

√
2d + 2

√
d + 3d = 3d +(2

√
2+ 2)

√
d ro-

tations are required, which is significantly less than the
2
√

d + 2
√

d + 4 · d/2 = 2d + 4
√

d in Jiang et al.’s method.
As demonstrated by the experimental results in Section 5.2,
this difference is substantial in practice, and thus we employ
the method of performing the Q̄(j)

i ⊡ K̄(j)T
i operation to com-

pute Q(j)
i K(j)T

i . The process described so far is the operation
of the proposed algorithm, which we refer to as CIPHER-
TEXTMATRIXMULTBLOCK.

3.4 Parallel Homomorphic Algorithms for Ma-
trix Computations

Jiang et al. [10] proposed a method for performing two homo-
morphic matrix multiplications simultaneously using parallel
row-major packing. We also adopt this method to adapt the
proposed matrix multiplication algorithms, which are compat-
ible with row-major packing, to work with parallel row-major
packing. This conversion process involves only the following
two steps:

• Double the steps for all rotations.

• Replace the constant vectors used in plaintext-ciphertext
multiplication for each of the two matrix multipli-
cation algorithms with a new vector that alternates
the values from the two original vectors. Specifi-
cally, replace the corresponding constant vectors a =
[a0,a1, · · · ,an/2−1] and b = [b0,b1, · · · ,bn/2−1] with
[a0,b0,a1,b1, · · · ,an/2−1,bn/2−1].

For example, consider the case of modifying the CON-
STMATRIXMULT algorithm to obtain the ciphertext
A1W1/A2W2 when given a ciphertext in which two matrices
A1 and A2 are packed in the form of (A1/A2). Recall that

8

the CONSTMATRIXMULT algorithm involves computing a
double summation as shown in Equation 6. Let the vector rm

for the matrix multiplication with W1 be denoted as r(1)m , and
the vector rm for the matrix multiplication with W2 be denoted
as r(2)m . To modify the CONSTMATRIXMULT algorithm to be
compatible with parallel packing, simply replace the vector rm

in Equation 6 with the vector r(1)m /r(2)m , and replace the rotation
steps i and N1 j−2d +1 with 2i and 2(N1 j−2d +1), respec-
tively. We refer to the algorithms CONSTRECMATRIXMULT,
TRANSPOSE, CIPHERTEXTMATRIXMULTBLOCK, CIPHER-
TEXTRECMATRIXMULT, and CONSTMATRIXMULT, each
modified to be compatible with parallel row-major packing,
as PARCONSTRECMATRIXMULT, PARTRANSPOSE, PAR-
CIPHERTEXTMATRIXMULTBLOCK, PARCIPHERTEXTREC-
MATRIXMULT, and PARCONSTMATRIXMULT, respectively.

Additionally, we propose a method to perform homomor-
phic operations for matrix multiplication in the feed-forward
network more efficiently by utilizing the parallel packing
structure. Consider the case of multiplying a 128x128
matrix Y by a matrix WF1 ∈ R128×512. Let us denote the four
submatrices that compose WF1 as W (1)

F1 , W (2)
F1 , W (3)

F1 , and W (4)
F1 ,

such that WF1 = [W (1)
F1 |W

(2)
F1 |W

(3)
F1 |W

(4)
F1]. Given the ciphertext

(Y/Y) as input, we then perform CONSTMATRIXMULT

for W (1)
F1 and W (2)

F1 , and CONSTMATRIXMULT for W (3)
F1

and W (4)
F1 in parallel (i.e., by executing PARCONSTMA-

TRIXMULT), thereby computing (T1/T2) = (YW (1)
F1 /YW (2)

F1)

and (T3/T4) = (YW (3)
F1 /YW (4)

F1). Next, consider the case
of multiplying the ciphertexts (T1/T2) and (T3/T4), which
have passed through the activation function, by the second
weight matrix. Let us denote the four submatrices that
compose the matrix WF2 as W (1)

F2 , W (2)
F2 , W (3)

F2 , and W (4)
F2 ,

such that W T
F2 = [W (1)T

F2 |W
(2)T
F2 |W

(3)T
F2 |W

(4)T
F2]T . Then, by

performing the CONSTMATRIXMULT algorithm twice in
parallel (i.e., executing PARCONSTMATRIXMULT), we
compute (T1W (1)

F2 /T2W (2)
F2) and (T3W (3)

F2 /T4W (4)
F2). What we

aim to obtain is Z = ∑
3
j=0 TjW

(j)
F2 . This can be achieved by

adding the two ciphertexts to obtain the ciphertext ct and then
proceeding with the following steps. ct← ct +Rot(ct;1)
ct← ct⊙ (1d×d/0d×d)
ct← ct +Rot(ct;−1)

3.5 Microbenchmarks

In this section, we compare the performance of the proposed
homomorphic matrix algorithm with other existing algorithms.
One of the effective metrics for estimating the complexity is
the number of key-switching operations. Therefore, we com-
pare the number of key-switching operations used by each al-
gorithm by counting the number of non-scalar multiplications,
rotations, and substitutions [28] that involve key-switching.

Table 3: Comparison of the number of key switchings across
different homomorphic matrix multiplication algorithms. The
specific number of key-switchings for the parameters d = 128
and ℓ= 64 are also provided.

#key-switch
equation value

Case 1

NEXUS 2dℓ 16384
Jiang et al. 4ℓ+2

√
2d +2

√
d + log(d/ℓ) 312

BOLT 2
√

d 23
Powerformer 2

√
3d + ℓ+ log(d/ℓ) 44

Case 2

NEXUS d2 16384
Jiang et al. 4d +2

√
2d +2

√
d 567

BOLT d logd +2d 1152
Powerformer 5d/2+4

√
d 366

Case 4

NEXUS 2d2 32768
Jiang et al. 4d +2

√
2d +2

√
d 567

BOLT 2
√

d 23
Powerformer 4

√
d 46

MHA

NEXUS ≥ 6d2 ≥ 98304
Jiang et al. 27d/2+12

√
2d +12

√
d 2380

BOLT 3d logd +4d +8
√

d 3291
Powerformer 4d +3

√
14d +8

√
d +2

√
2d 853

Table 3 presents the microbenchmarks for the homomorphic
matrix algorithms. In this table, the number of key-switching
operations is based on the BERT-tiny model we are targeting,
with values of d = 128 and ℓ= 64.

The matrix multiplication operations required for multi-
head attention can be categorized into four cases:

Case 1: Calculation of Qi,Ki,Vi as shown in Equation 10,
which corresponds to the multiplication of a d×d
ciphertext matrix and a d× ℓ plaintext matrix.

Case 2: Calculation of QiKT
i as shown in Equation 11,

which corresponds to the multiplication of a d×
d/2 ciphertext matrix and a d/2×d ciphertext ma-
trix.

Case 3: Calculation of multiplication by Vi as shown in
Equation 12, which corresponds to the multipli-
cation of a d×d ciphertext matrix and a d×d/2
ciphertext matrix.

Case 4: Calculation of multiplication by W O, which corre-
sponds to the multiplication of a d×d ciphertext
matrix and a d×d plaintext matrix.

In Case 3, we use the matrix multiplication technique pro-
posed by Jiang et al. [10], while for Cases 1, 2, and 4, we
propose new optimized algorithms. Table 3 compares the
number of key switchings for Powerformer with other algo-
rithms for Cases 1, 2, and 4, and also provides the specific
number of key switchings for BERT-tiny (d = 128, ℓ= 64).

It is important to note that the packing methods compatible
with each algorithm differ. Both Jiang et al. and Powerformer

9

use row-major packing, which allows for a direct performance
comparison in each case. As shown in Table 3, Powerformer
outperforms the technique by Jiang et al. in all cases. On the
other hand, NEXUS uses a combination of component-wise,
row-wise, and column-wise packing, while BOLT employs
both column-major packing and diagonal-major packing. One
effective way to fairly compare the number of key switchings
between Powerformer and NEXUS or BOLT, which use dif-
ferent packing methods, is to compare the total number of key
switchings consumed in multi-head attention. In this compar-
ison, we exclude the key switchings required for softmax, as
our focus is on comparing matrix multiplication algorithms. It
can be observed that Powerformer uses the fewest key switch-
ings in multi-head attention. Since NEXUS does not provide
a specific matrix multiplication algorithm for Case 3, we
excluded Case 3 when calculating the number of key switch-
ings used in multi-head attention in NEXUS. Nonetheless,
NEXUS still consumes the most key switchings.

4 Implementation of Homomorphic Trans-
former Encoder

In this section, we propose a homomorphic Transformer en-
coder architecture. We target the Bert-tiny model as described
in Figure 3. Our goal is to present an architecture for a ho-
momorphic Transformer encoder that can be implemented
in RNS-CKKS, utilizing the proposed RP function and opti-
mized homomorphic matrix algorithms.

4.1 Parallel Row-Major Packing
Since the embedding dimension d and sequence length L
of the BERT-tiny model we are targeting are both 128, the
dimension of the input matrix X is 128×128, consisting of
a total of 214 real numbers. First, we need to decide how to
pack the input matrix X into a ciphertext in the form of a 1-
dimensional vector. As shown in Table 3, since the proposed
matrix multiplication algorithms perform multi-head attention
the fastest while being compatible with row-major packing, it
is desirable to adopt row-major packing. However, since we
set the polynomial modulus degree N to 216, the number of
slots n allocated to one ciphertext is 215, which is twice the
number of elements in X . Thus, if we use row-major packing,
extra slots will be left unused.

One way to pack this input matrix into a ciphertext is to
pack the values of X in the first half of the ciphertext us-
ing row-major packing and fill the remaining half with zeros.
However, this approach is inefficient as it wastes half of the
ciphertext slots. Therefore, we use parallel row-major pack-
ing [10] to pack the input matrix X as (X/X), ensuring that
all intermediate matrices of the Transformer inference are
always packed into ciphertexts using parallel row-major pack-
ing. This allows two matrix multiplications to be performed
in parallel, reducing the computation time. Specifically, we

Table 4: Comparison between GELU + BRPmax, ReLU +
BRPmax, and Original BERT (%)

GELU + RPmax ReLU + RPmax Original
CoLA 60.33 59.33 58.80
MRPC 86.52 86.27 85.54
QNLI 91.52 90.99 91.10
RTE 68.95 70.40 70.04
STS-B 89.40 89.24 89.82
Average 79.35 79.25 79.06

note that the multi-head attention in the BERT-tiny model has
2 heads. Originally, the CONSTRECMATRIXMULT, TRANS-
POSE, CIPHERTEXTMATRIXMULTBLOCK, and CIPHERTEX-
TRECMATRIXMULT algorithms need to be executed twice in
total—once for each head—but by using parallel row-major
packing, they can be executed in parallel just once.

Additionally, the row-major packing we use has the ad-
vantage of compactly storing data by utilizing all slots of
the ciphertext, which can significantly reduce the number of
bootstrappings required. In PowerTransformer, all bootstrap-
pings are performed on a single ciphertext. For example, if
we assume bootstrapping is performed right after layer nor-
malization, the size of the intermediate matrix is 128×128.
In NEXUS, which uses row-wise or column-wise packing, a
total of 128 bootstrappings would be required, whereas Pow-
erTransformer requires only a single bootstrapping, making it
128× more efficient.

4.2 GELU and Layer Normalization

The GELU function in the BERT model is a nonlinear func-
tion, and as such, several studies have explored approximating
GELU [6, 21, 28]. In NEXUS [28], GELU is approximated
using a piecewise polynomial, which requires computing an
approximation polynomial for the sign function three times.
We simply replace GELU with a ReLU approximation poly-
nomial [18], which requires only one computation of the ap-
proximation polynomial for the sign function, resulting in a
shorter computation time compared to NEXUS. According to
Table 4, the ReLU used with RPmax also outperforms the orig-
inal model with GELU and original softmax function, while
showing an acceptable performance loss of 0.1% compared
to the model with GELU and RPmax. Therefore, to gain a
time advantage, we used ReLU in the Feed Forward Network.
We also confirmed through experiments that replacing ReLU
does not lead to any loss in accuracy.

We approximate layer normalization in a manner similar
to [28]. The nonlinear function y = 1√

x is approximated us-
ing an iterative algorithm based on Newton’s method [25].
Also, we numerically confirm that when applying both the
algorithm based on Newton’s method and the precise ReLU
approximation, there is no change in accuracy in plaintext.

10

4.3 Workflow of the Proposed Architecture
Now, based on the components described so far, we will out-
line the workflow of the proposed homomorphic Transformer
architecture.

• First, the client encrypts the input matrix X using the
parallel row-major packing. This ciphertext stores the
data in the form of ctx = (X/X). The client then sends
this ciphertext to the server, and from that point onward,
after which the server takes over the computations.

• The PARCONSTRECMATRIXMULT algorithm is ex-
ecuted three times on the input ciphertext in the
form of (X/X) to compute ([Qi0 |Qi0]/[Qi1 |Qi1]),
([Ki0 |Ki0]/[Ki1 |Ki1]), and ([Vi0 |Vi0]/[Vi1 |Vi1]).

• Using the ciphertext ([Ki0 |Ki0]/[Ki1 |Ki1]) as input, the
PARTRANSPOSE algorithm is performed to compute
([Ki0 |Ki0]

T/[Ki1 |Ki1]
T).

• The PARCIPHERTEXTMATRIXMULTBLOCK algorithm
is performed on the two ciphertexts ([Qi0 |Qi0]/[Qi1 |Qi1])
and ([Ki0 |Ki0]

T/[Ki1 |Ki1]
T) to compute (Qi0KT

i0/Qi1KT
i1).

• The PARCIPHERTEXTRECMATRIXMULT al-
gorithm is performed on the two ciphertexts
(Qi0KT

i0/Qi1KT
i1) and ([Vi0 |Vi0]/[Vi1 |Vi1]), followed

by a component-wise approximate softmax op-
eration. This results in the following cipher-
text: [BRPmax(Qi0KT

i0)Vi0 |BRPmax(Qi0KT
i0)Vi0]/

[BRPmax(Qi1KT
i1)Vi1 |BRPmax(Qi1KT

i1)Vi1].

• Let the current ciphertext be denoted as ct. To perform
concatenation on this ciphertext, the following operation
is performed:
ct← ct⊙ ([1d×d/2|0d×d/2]/[0d×d/2|0d×d/2])+Rot(ct⊙
([0d×d/2|0d×d/2]/[1d×d/2|0d×d/2]);−(d−1))
ct← ct +Rot(ct;−1)
This results in the following ciphertext:
[BRPmax(Qi0KT

i0)Vi0 |BRPmax(Qi1KT
i1)Vi1]/

[BRPmax(Qi0KT
i0)Vi0 |BRPmax(Qi1KT

i1)Vi1].

• The PARCONSTMATRIXMULT algorithm is executed to
obtain the following result:
([BRPmax(Qi0KT

i0)Vi0 |BRPmax(Qi1KT
i1)Vi1]W

O/

[BRPmax(Qi0KT
i0)Vi0 |BRPmax(Qi1KT

i1)Vi1]W
O).

• An approximate layer normalization is performed, which
we will denote as (Z/Z).

• Using the PARCONSTMATRIXMULT algorithm twice
on the input (Z/Z), we compute the following results,
respectively. (T1/T2) = (ZW1/ZW2)
(T3/T4) = (ZW3/ZW4).

• An approximate ReLU is applied to each of the two
ciphertexts.
(T1/T2)← (ReLU(T1)/ReLU(T2))
(T3/T4)← (ReLU(T3)/ReLU(T4))

• The PARCONSTMATRIXMULT algorithm is applied
to the two inputs (T1/T2) and (T3/T4), resulting in
(T1V1/T2V2) and (T3V3/T4V4), respectively. These are
then added together to compute (T1V1 + T3V3/T2V2 +
T4V4). After that, the following steps are performed.

ct← ct +Rot(ct;1)
ct← ct⊙ (1d×d/0d×d)
ct← ct +Rot(ct;−1)
This finally results in (T1V1+T2V2+T3V3+T4V4/T1V1+
T2V2 +T3V3 +T4V4), which is the output after applying
the feed-forward network.

• Perform approximate layer normalization.

The above steps represent the workflow for a single encoder
layer, and repeating this process twice will complete the com-
putation for the entire BERT-tiny model. After the server
completes the computations, it sends the ciphertext, where the
matrix Y is packed in the form of (Y/Y), back to the client.
The client can then decrypt this to obtain the result matrix Y .

5 Experimental Results

5.1 BRPmax Performance Evaluation
We used a learning rate of 3×10−5 for fine-tuning in down-
stream tasks, and a learning rate of 1×10−5 for distillation
learning. In all settings, we applied a batch size of 32, AdamW
optimizer with a weight decay of 1×10−2, and early stopping
after 10 rounds based on the validation set. All models were
evaluated on five tasks from the GLUE benchmark: RTE,
CoLA, MRPC, STS-B, and QNLI, to compare their perfor-
mance.

The effectiveness of BRPmax was validated through the
comparison in Table 5. We experiment with BERT models
replacing the softmax function with each following function
used in the previous works and our proposed models. After
fine-tuning each modified model, we compare the accuracy
and the number of epochs used for each task.

• 2Quad: The 2Quad({xi}) = (xi+c)2

∑ j(x j+c)2 function used in
SecFormer [22]

• ZBD+ & Distill: The ReLU({xi})/
√

L function used
by Zimerman et al [29] (Although distillation was not
used in Zimerman et al.’s paper, we use distillation in
this experiment.)

• BRPmax1,0: The BRPmax function with basic parame-
ters p = 1 and c = 0

• BRPmax5,5: The BRPmax function with parameters
p = 5 and c = 5

Figure 1 focuses on comparing the average accuracy differ-
ence with the original BERT-base model and average epochs

11

in the fine-tuning for each modified model. Table 6 is the re-
sult of the comparison of BRPmax and original BERT in the
BERT-Base and BERT-Large to demonstrate the performance
of BPRmax method in the larger model.

Table 5 and Figure 1 show that replacing the function with
the 2Quad function resulted in the lowest performance, with a
noticeable decrease in accuracy. While the method of Zimer-
man et al., when used with distillation, mitigated the signif-
icant accuracy drop seen in Table 1 to some extent, there
was still a meaningful decrease in accuracy. The BRPmax1,0
method is similar to Zimerman et al.’s approach in that it uses
the ReLU function, except that it differs in applying the batch
method. Even by applying the batch method alone, we can
see overall better performance. Additionally, the BRPmax5,5
function, which applies the power of ReLU and adjusts the
offset accordingly, shows a significant increase in accuracy
on average. The number of epochs required for fine-tuning is
also noticeably reduced when using BRPmax, indicating that
the computational load for model fine-tuning is also improved.
The BRPmaxp,c model is the only distillation method that out-
performs the original model and consumes the fewest epochs
to converge. Additionally, since the parameter p, which can be
tuned task-wise, has not been fully optimized, there is room
for further performance improvements.

Table 6 presents the efficiency of BRPmax in both BERT-
base and BERT-large models. Transformer models are primar-
ily used in large-scale LLMs, and increasingly larger models
are being developed. Given this trend, models used for in-
ference need to perform well even with deeper architectures.
The BRPmax function also surpasses the performance of the
original model in the BERT-large model, which has 336M
parameters.

Figure 1: Average Accuracy Difference with Original BERT
and Epochs comparison

5.2 Evaluation of Homomorphic Matrix Mul-
tiplication

In sections 5.2 and 5.3, we provide experimental results on
RNS-CKKS. We use a polynomial degree of N = 216 and
n = 215 slots. The sparse secret encapsulation method [2] is
employed. The Hamming weight of the main secret key is set

to 192, and the Hamming weight of the ephemeral secret is
set to 32. The default scaling factor is 245, and 55-bit primes
are used for both the special modulus and base modulus. The
number of special moduli is 3. The COEFFSTOSLOTS and
SLOTSTOCOEFFS procedures are performed with three lev-
els using the level collapsing technique. The approximation
polynomial degrees for the cosine function and inverse sine
function are 63 and 1, respectively. The number of double-
angle formulas is 2. The available number of levels is 16. The
total modulus used is 55+45×16+55×3+55×14= 1,710
bits, which achieves 128-bit security under the sparse secret
encapsulation method. The simulation is conducted using Lat-
tigo [1], a representative RNS-CKKS library, on AMD Ryzen
Threadripper PRO 5995WX at 2.7GHz with 512 GB RAM,
running the Ubuntu 20.04 operating system.

0

10

20

30

40

50

60

70

0 2 4 6 8 10 12 14 16

ru
nn

in
g

tim
e(

s)

starting level

ParCiphertextMatrixMult
ParCiphertextMatrixMultBlock
ParCiphertextRecMatrixMult
ParConstMatrixMult
ParConstRecMatrixMult
ParTranspose

Figure 2: Runtimes of various homomorphic algorithms for
matrix multiplication and Matrix Transposition at different
levels.

Figure 2 compares the runtimes of the matrix operation
algorithms from [10] and the proposed algorithms at various
starting levels. We used the same parameters and also consis-
tently used the Lattigo library to ensure a fair comparison.

For matrix transposition, we use the PARTRANSPOSE algo-
rithm, which is identical to the matrix transposition algorithm
presented in [10]. For matrix multiplication, while [10] uses
the PARCIPHERTEXTMATRIXMULT algorithm, we use the
PARCIPHERTEXTMATRIXMULTBLOCK, PARCIPHERTEX-
TRECMATRIXMULT, PARCONSTMATRIXMULT, and PAR-
CONSTRECMATRIXMULT algorithms depending on the sit-
uation. Figure 2 shows that using the proposed algorithms
significantly reduces the runtimes for matrix multiplication.

Meanwhile, one notable observation in Figure 2 is that the
runtime of the algorithms increases almost linearly with each
level. This is because, in the RNS-CKKS algorithm, the num-
ber of RNS moduli used increases linearly with the levels.
Therefore, we designed the homomorphic Transformer archi-
tecture so that the matrix multiplication algorithms would
operate at the lowest possible level.

12

Table 5: Comparison of accuracy(%) and epochs across distill methods in BERT-Base
RTE CoLA MRPC STS-B QNLI Average

accs epochs accs epochs accs epochs accs epochs accs epochs accs epochs
2Quad 64.62 257 55.24 100 82.11 182 87.54 183 90.90 78 76.08 160
ZBD+ & Distill 70.04 184 57.53 100 85.54 134 88.72 196 91.01 45 78.57 131.8
BRPmax1,0 70.04 143 58.55 100 86.03 108 88.83 88 91.03 99 78.89 107.6
BRPmax5,5 68.95 103 60.33 100 86.52 69 89.40 95 91.52 51 79.35 83.6
Original BERT 70.04 - 58.80 - 85.54 - 89.82 - 91.10 - 79.06 -

Table 6: Comparison of BRPmax and Original BERT in
BERT-Base and BERT-Large (%)

BRPmax Original difference

CoLA
BERT-Base 60.33 58.80 1.53
BERT-Large 64.07 64.33 -0.26

MRPC
BERT-Base 86.52 85.54 0.98
BERT-Large 88.24 87.25 0.98

QNLI
BERT-Base 91.52 91.10 0.42
BERT-Large 92.49 91.73 0.77

RTE
BERT-Base 68.95 70.04 -1.08
BERT-Large 74.73 75.45 -0.72

STS-B
BERT-Base 89.40 89.82 -0.41
BERT-Large 90.42 90.53 -0.12

Average
BERT-Base 79.35 79.06 0.29
BERT-Large 81.99 81.86 0.13

5.3 Evaluation of the proposed Bert-Tiny Ar-
chitecture

We implemented the homomorphic Transformer architecture
of the Bert-tiny model on RNS-CKKS. We use the STSB (Se-
mantic Textual Similarity Benchmark) from the GLUE tasks
as our dataset. Table 7 shows the runtime for each component
of the proposed Transformer architecture Powerformer for
the Bert-Tiny model. The total inference time is 503 seconds.
The approximate ReLU entry excludes the time spent per-
forming ReLU operations during approximate softmax. As
shown in Table 7, bootstrapping operations dominate the over-
all runtime. The relatively lower runtime of the homomorphic
matrix algorithms compared to bootstrapping is due to the
architecture being optimized to perform homomorphic matrix
algorithms at the lowest possible level.

Additionally, Table 7 also provides a comparison with
NEXUS. NEXUS does not provide an end-to-end imple-
mentation, so Table 7 do not include their end-to-end results.
However, in the case of BERT-Tiny, NEXUS involves seven
bootstrapping stages, and each stage requires 128 bootstrap-
pings, resulting in a total of 7× 128 = 864 bootstrappings.
Thus, we can estimate the total bootstrapping time. It should
be noted that bootstrapping in the SEAL library [26] used by
NEXUS is slower than that in Lattigo [1]. Therefore, for a
fair comparison, we estimated the bootstrapping time using
the same library, Lattigo, and the same parameters as ours.

Table 7: Comparison of the execution time per component
between the NEXUS for the Bert-Tiny model and the pro-
posed Powerformer architecture. The asterisk(*) indicates an
estimated value.

component #call time(s)

Power
former

PARCONSTRECMATRIXMULT 6 49
PARTRANSPOSE 2 11
PARCIPHERTEXTMATRIXMULTBLOCK 2 28
bootstrapping 11 243
approximate ReLU 4 23
approximate softmax 2 13
PARCIPHERTEXTRECMATRIXMULT 2 34
approximate layer normalization 4 23
PARCONSTMATRIXMULT 10 79
total 503

NEXUS bootstrapping 896 19793*
total ≥19793*

Even excluding the execution times of matrix multiplication
algorithms, softmax, and other operations in NEXUS, it is
evident that our implementation is significantly faster.

One notable point is that we achieved 503 seconds us-
ing a single CPU thread, which could be reduced by tens
to hundreds of times with the use of GPU accelerators or
hardware accelerators [12, 14]. The NEXUS paper utilizes
multi-threading, but to be accelerated by a GPU or hardware
accelerator, it must eventually be implemented as a single
thread before conversion.

6 Conclusion

We proposed an efficient non-interactive privacy-preserving
Transformer inference architecture. We suggested replacing
softmax with the proposed BRPmax function, which main-
tains accuracy while requiring small computation amount.
We presented matrix-matrix multiplication algorithms spe-
cialized for attention operation that reduce the number of
key-switchings significantly. Our implementation of Power-
former on the BERT-tiny model using RNS-CKKS scheme
completed inference in 503 seconds on a single-threaded
CPU, marking a significant milestone as the first end-to-end
non-interactive transformer implementation using HE.

13

References
[1] Lattigo v5. Online: https://github.com/tuneinsight/lattigo,

Nov. 2023. EPFL-LDS, Tune Insight SA.

[2] BOSSUAT, J.-P., TRONCOSO-PASTORIZA, J., AND HUBAUX, J.-P.
Bootstrapping for approximate homomorphic encryption with negligi-
ble failure-probability by using sparse-secret encapsulation. In Inter-
national Conference on Applied Cryptography and Network Security
(2022), Springer, pp. 521–541.

[3] BRUTZKUS, A., GILAD-BACHRACH, R., AND ELISHA, O. Low la-
tency privacy preserving inference. In International Conference on
Machine Learning (2019), PMLR, pp. 812–821.

[4] CHEN, T., BAO, H., HUANG, S., DONG, L., JIAO, B., JIANG, D.,
ZHOU, H., LI, J., AND WEI, F. The-x: Privacy-preserving transformer
inference with homomorphic encryption. In Findings of the Association
for Computational Linguistics: ACL 2022 (2022), pp. 3510–3520.

[5] CHEON, J. H., HAN, K., KIM, A., KIM, M., AND SONG, Y. A full
rns variant of approximate homomorphic encryption. In Selected Areas
in Cryptography–SAC 2018: 25th International Conference, Calgary,
AB, Canada, August 15–17, 2018, Revised Selected Papers 25 (2019),
Springer, pp. 347–368.

[6] DONG, Y., LU, W.-J., ZHENG, Y., WU, H., ZHAO, D., TAN, J.,
HUANG, Z., HONG, C., WEI, T., AND CHEN, W. Puma: Secure
inference of llama-7b in five minutes. arXiv preprint arXiv:2307.12533
(2023).

[7] GILAD-BACHRACH, R., DOWLIN, N., LAINE, K., LAUTER, K.,
NAEHRIG, M., AND WERNSING, J. Cryptonets: Applying neural
networks to encrypted data with high throughput and accuracy. In Inter-
national conference on machine learning (2016), PMLR, pp. 201–210.

[8] HALEVI, S., AND SHOUP, V. Algorithms in helib. In Advances in
Cryptology–CRYPTO 2014: 34th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 17-21, 2014, Proceedings, Part I 34 (2014),
Springer, pp. 554–571.

[9] HAO, M., LI, H., CHEN, H., XING, P., XU, G., AND ZHANG, T. Iron:
Private inference on transformers. Advances in neural information
processing systems 35 (2022), 15718–15731.

[10] JIANG, X., KIM, M., LAUTER, K., AND SONG, Y. Secure outsourced
matrix computation and application to neural networks. In Proceedings
of the 2018 ACM SIGSAC conference on computer and communications
security (2018), pp. 1209–1222.

[11] JIAO, X., YIN, Y., SHANG, L., JIANG, X., CHEN, X., LI, L., WANG,
F., AND LIU, Q. Tinybert: Distilling bert for natural language under-
standing. arXiv preprint arXiv:1909.10351 2019 (2019).

[12] JUNG, W., KIM, S., AHN, J. H., CHEON, J. H., AND LEE, Y. Over
100x faster bootstrapping in fully homomorphic encryption through
memory-centric optimization with gpus. IACR Transactions on Cryp-
tographic Hardware and Embedded Systems (2021), 114–148.

[13] JUVEKAR, C., VAIKUNTANATHAN, V., AND CHANDRAKASAN, A.
{GAZELLE}: A low latency framework for secure neural network
inference. In 27th USENIX security symposium (USENIX security 18)
(2018), pp. 1651–1669.

[14] KIM, S., KIM, J., KIM, M. J., JUNG, W., KIM, J., RHU, M., AND
AHN, J. H. Bts: An accelerator for bootstrappable fully homomorphic
encryption. In Proceedings of the 49th annual international symposium
on computer architecture (2022), pp. 711–725.

[15] LECUN, Y., BENGIO, Y., AND HINTON, G. Deep learning. nature
521, 7553 (2015), 436–444.

[16] LEE, E., LEE, J.-W., LEE, J., KIM, Y.-S., KIM, Y., NO, J.-S., AND
CHOI, W. Low-complexity deep convolutional neural networks on
fully homomorphic encryption using multiplexed parallel convolu-
tions. In International Conference on Machine Learning (2022), PMLR,
pp. 12403–12422.

[17] LEE, E., LEE, J.-W., NO, J.-S., AND KIM, Y.-S. Minimax approx-
imation of sign function by composite polynomial for homomorphic
comparison. IEEE Transactions on Dependable and Secure Computing
19, 6 (2021), 3711–3727.

[18] LEE, J., LEE, E., LEE, J.-W., KIM, Y., KIM, Y.-S., AND NO, J.-S.
Precise approximation of convolutional neural networks for homomor-
phically encrypted data. IEEE Access 11 (2023), 62062–62076.

[19] LEE, J.-W., KANG, H., LEE, Y., CHOI, W., EOM, J., DERYABIN, M.,
LEE, E., LEE, J., YOO, D., KIM, Y.-S., ET AL. Privacy-preserving
machine learning with fully homomorphic encryption for deep neural
network. iEEE Access 10 (2022), 30039–30054.

[20] LI, D., WANG, H., SHAO, R., GUO, H., XING, E. P., AND ZHANG,
H. MPCFORMER: fast, performant and provate transformer inference
with MPC. In The Eleventh International Conference on Learning
Representations, ICLR 2023, Kigali, Rwanda, May 1-5, 2023 (2023).

[21] LU, W.-J., HUANG, Z., GU, Z., LI, J., LIU, J., REN, K., HONG, C.,
WEI, T., AND CHEN, W. Bumblebee: Secure two-party inference
framework for large transformers. Cryptology ePrint Archive (2023).

[22] LUO, J., ZHANG, Y., ZHANG, Z., ZHANG, J., MU, X., WANG, H.,
YU, Y., AND XU, Z. SecFormer: Fast and accurate privacy-preserving
inference for transformer models via SMPC. In Findings of the Associ-
ation for Computational Linguistics ACL 2024 (2024).

[23] PANG, Q., ZHU, J., MÖLLERING, H., ZHENG, W., AND SCHNEI-
DER, T. Bolt: Privacy-preserving, accurate and efficient inference for
transformers. Cryptology ePrint Archive (2023).

[24] PARK, J., KIM, M. J., JUNG, W., AND AHN, J. H. Aespa: Accuracy
preserving low-degree polynomial activation for fast private inference.
arXiv preprint arXiv:2201.06699 (2022).

[25] QU, H., AND XU, G. Improvements of homomorphic secure evaluation
of inverse square root. In International Conference on Information and
Communications Security (2023), Springer, pp. 110–127.

[26] Microsoft SEAL (release 4.1). https://github.com/Microsoft/
SEAL, Jan. 2023. Microsoft Research, Redmond, WA.

[27] SRINIVASAN, W. Z., AKSHAYARAM, P., AND ADA, P. R. Delphi:
A cryptographic inference service for neural networks. In Proc. 29th
USENIX secur. symp (2019), vol. 3.

[28] ZHANG, J., LIU, J., YANG, X., WANG, Y., CHEN, K., HOU, X., REN,
K., AND YANG, X. Secure transformer inference made non-interactive.
Cryptology ePrint Archive (2024).

[29] ZIMERMAN, I., BARUCH, M., DRUCKER, N., EZOV, G., SOCEANU,
O., AND WOLF, L. Converting transformers to polynomial form
for secure inference over homomorphic encryption. arXiv preprint
arXiv:2311.08610 (2023).

A Related Works

Softmax The softmax operation in Equation 1 requires ex-
ponential function and division operations, which are not
supported by HE. Therefore, several studies have attempted
to replace these operations with polynomial approximations
[4, 28, 29].

Zimerman et al. [29] approximate the softmax function
using the following equation, where L is the length of the
sequence:

ReLU(x)√
L

(8)

They approximate the ReLU operation using the method by
Lee et al. [18]. However, as mentioned in Chapter 3, actual

14

https://github.com/tuneinsight/lattigo
https://github.com/Microsoft/SEAL
https://github.com/Microsoft/SEAL

experiments show that this approach can lead to the significant
accuracy loss or even failure to converge.

Another method for approximating softmax uses the fol-
lowing equation [4]:

S(xi) = xi ·T

(
∑

j
ReLU

((x j

2
+1
)3
))

(9)

Here, T is a 3-layer neural network that includes two acti-
vation functions. Assuming that each activation function re-
quires, on average, one bootstrapping, this method is expected
to need at least three bootstrappings. In contrast, our proposed
method requires only one bootstrapping.

As previously mentioned, [28] replaces xmax with an appro-
priate constant during inference when performing Equation 1.
This replacement constant must be predetermined as a suffi-
ciently large value. However, this can cause the exp(xi−xmax)
value to become very small, resulting in extremely low val-
ues that resemble noise in RNS-CKKS, which uses fixed-
point arithmetic, potentially causing numerical issues. Our
proposed method is safe from such numerical issues.

In interactive PPML studies [9, 23], softmax is typically
performed using MPC techniques. However, this approach
does not align with our goal of performing softmax non-
interactively without communication.

Homomorphic Matrix Multiplication Transformer infer-
ence on encrypted data requires both ciphertext-plaintext ma-
trix multiplication and ciphertext-ciphertext matrix multipli-
cation. Since RNS-CKKS supports element-wise operations
and rotations on one-dimensional vectors, it is necessary to
utilize these features to implement matrix multiplication.

Jiang et al. [10] implement ciphertext-ciphertext matrix
multiplication using matrix permutations and element-wise
multiplications to compute the product of two matrices A and
B. Matrix permutations can be expressed as matrix-vector
multiplications, which are performed using the method by
Halevi and Shoup [8]. While we adopt this idea, Transformers
also require plaintext-ciphertext matrix multiplication, for
which we further optimize the algorithm. Additionally, we
propose a blockwise multiplication algorithm optimized for
the d× d/2 and d/2× d matrix multiplications required in
the implementation of this Transformer architecture.

The ciphertext-plaintext matrix multiplication described by
NEXUS [28] requires communication between the client and
server, which does not align with the non-interactive nature
of most ciphertext-plaintext matrix multiplications in Trans-
formers beyond the initial one. Furthermore, when using the
ciphertext-ciphertext matrix multiplication method proposed
by NEXUS to multiply the query matrix and key matrix, it
requires (d/2)2 rotations, which is far less efficient compared
to the 2d +4

√
d rotations required by our proposed method.

The authors of [4, 29] did not provide an algorithm for ma-
trix multiplication. In interactive PPML, it is common to im-

plement matrix multiplication using MPC, but in BOLT [23],
matrix multiplication is performed on encrypted data using
HE, which can be compatible with non-interactive PPML.
While the ciphertext-plaintext matrix multiplication proposed
in BOLT is efficient, the ciphertext-ciphertext matrix mul-
tiplication requires d logd rotations. Considering the use
of d = 128, this is less efficient compared to our proposed
method, which requires 2d +4

√
d.

Non-Interactive Transformer Inference Architecture As
previously mentioned, research on secure Transformer infer-
ence is divided into studies that use interactive approaches
[4, 6, 9, 20, 21, 23] and those that use non-interactive ap-
proaches [28, 29]. Interactive methods generally offer faster
execution times but require significant communication. In
contrast, non-interactive methods allow the server to perform
the entire inference process on encrypted data without on-
line communication, making them advantageous in environ-
ments with limited communication capabilities. Although
non-interactive methods may take longer to execute, they can
be accelerated by tens to hundreds of times using GPUs or
hardware accelerators.

Additionally, [29] does not provide specific implementation
details, such as matrix multiplication methods, and while [28]
emphasizes its non-interactive nature, the plaintext-ciphertext
matrix multiplication used in that study requires communica-
tion, which compromises the non-interactive property when
executing architectures with multiple encoder layers. There-
fore, our work represents the first fully non-interactive secure
Transformer architecture, and we plan to release our end-to-
end source code publicly.

B Preliminaries

B.1 Transformer

In this paper, we focus on homomorphically implementing
a Transformer-based model, BERT (Bidirectional Encoder
Representations from Transformers) using the RNS-CKKS
scheme. The BERT-tiny model consists of two identical en-
coder blocks, where each encoder block sequentially performs
multi-head attention, layer normalization, feed-forward net-
work, and layer normalization.

First, the input sentence is tokenized, and each token un-
dergoes an embedding process to become a fixed-size vector.
After embedding, we obtain the L×dm matrix X , which serves
as the input to the first encoder block. The multi-head atten-
tion mechanism has h heads, and for each head, the query,
key, and value matrices are computed by multiplying the input
matrix X with the corresponding weight matrices. If the query,
key, and value weight matrices for head j (j = 0,1, · · · ,h−1)
are denoted as W (j)

Qi
, W (j)

Ki
, and W (j)

Vi
∈Rdm×dm/h, respectively,

the following matrix multiplications need to be performed:

15

Q(j)
i = XW (j)

Qi
,K(j)

i = XW (j)
Ki

,V (j)
i = XW (j)

Vi
. (10)

For each head, the following L×L matrix is computed:

Q(j)
i K(j)T

i√
d/2

(11)

Next, apply softmax and multiply by V (j)
i to obtain the fol-

lowing L×dm/h matrix:

Yj = so f tmax

(
Q(j)

i K(j)T
i√

d/2

)
V (j)

i . (12)

The Yj matrices for the multiple heads are concatenated hor-
izontally to form the L× dm matrix [Y0|Y1| · · · |Yh−1]. After
that, the weight matrix W O is multiplied on the right, and
according to the skip connection, matrix X is added, resulting
in [Y0|Y1| · · · |Yh−1]W O +X , which completes the multi-head
attention process.

Next, layer normalization is performed to obtain the ma-
trix Y . In the subsequent feed-forward network, the weight
matrix WF1 ∈ Rdm×dh is first multiplied to obtain YWF1, fol-
lowed by applying GELU and then multiplying by the second
weight matrix WF2 ∈ Rdh×dm on the right. After that, layer
normalization is performed. The process described so far con-
stitutes one encoder layer, and the BERT model repeats this
encoder layer several times with the same structure, though
with different weight parameters. In this paper, our homomor-
phic implementation focuses on the BERT-tiny model, which
has parameters dm = L = 128, h = 2, and dh = 512. Figure 3
shows the architecture of one encoder block in the BERT-tiny
model.

B.2 RNS-CKKS Fully HE
RNS-CKKS is a fully HE scheme that supports fixed-point
arithmetic on encrypted data. In the RNS-CKKS scheme, a
ciphertext is represented as a pair (b,a) ∈ R2

Q with respect to
some large integer Q, where RQ = ZQ[X]/(XN + 1). A real
vector u ∈ RN/2 is encrypted into a single ciphertext, and we
denote the number of slots N/2 as n. Homomorphic opera-
tions are performed simultaneously on each slot in parallel.
If the ciphertext of a vector u ∈ Rn is simply denoted as [u],
then homomorphic addition, scalar multiplication, non-scalar
multiplication, and rotation can be described as follows:

• [u]⊕ [v] = [u+ v]

• [u]⊗ v = u⊗ [v] = [u⊙ v]

• [u]⊠ [v] = [u⊙ v]

• Rot([u];r) = [ρ(u;r)],

where u ⊙ v denotes Hadamard multiplication, i.e.,
component-wise multiplication, and ⟨u⟩r denotes the vector u

MatMul MatMul MatMul

Transpose

MatMul

Softmax

MatMul

Concat

MatMul

Add&Norm

MatMul

GeLU

MatMul

Add&Norm

128x128

128x64

128x64

128x64

64x128

128x128

128x128

128x64

128x128

128x128

128x128

128x512

128x512

128x128

128x128

Q K V

KT

X2
(two heads)

X

Figure 3: Overview of one encoder block of BERT-tiny Trans-
former architecture.

that has been cyclically shifted to the left by r positions. For
simplicity, the RNS-CKKS approximation errors have been
omitted from the above equations.

Each ciphertext has a parameter ℓ called the level, which
represents the number of consecutive homomorphic multipli-
cations it can perform. With each multiplication operation,
the level decreases by one, and once it reaches zero, no fur-
ther homomorphic multiplications can be performed. At this
point, a bootstrapping process must be performed to restore
the ciphertext to a higher level.

The m× m matrix A = (ai j) should be packed into a
one-dimensional vector to be stored in a ciphertext, and
there are various methods for matrix packing. In row-
wise packing [28], each row of the matrix is packed into
a single ciphertext as follows: {Enc(ai,1,ai,2, · · · ,ai,m)}m

i=1.
Similarly, in column-wise packing [28], the matrix is
packed as follows: {Enc(a1, j,a2, j, · · · ,am, j)}m

j=1. In row-
major packing [10, 13], all rows of the matrix are packed
into a single ciphertext by concatenating all row vectors
in order as follows: Enc(a1,1,a1,2, · · · ,a1,m,a2,1, · · · ,am,m).
Similarly, in column-major packing [23], the matrix is
packed as follows: Enc(a1,1,a2,1, · · · ,am,1,a1,2, · · · ,am,m).
In diagonal-major packing [23], all diagonals of the
matrix are packed into a single ciphertext by con-
catenating all diagonal elements in order as follows:
Enc(a1,1,a2,2, · · · ,am,m,a1,2,a2,3 · · · ,am−1,m,am,1, · · ·).

16

B.3 Homomorphic Matrix Operations
Jiang et al. [10] proposed an efficient method for performing
homomorphic matrix operations. Their idea involves repre-
senting matrix multiplication as a combination of matrix per-
mutations and Hadamard multiplication, both of which are
suitable for homomorphic evaluation. In [10], the following
matrix permutations for a d×d matrix A = [Ai, j] are defined:

σ(A)i j = Ai,i+ j, τ(A)i j = Ai+ j, j,

φ(A)i j = Ai, j+1, ψ(A)i j = Ai+1, j.

Using these permutations, the matrix multiplication can be
expressed as follows:

A ·B =
d−1

∑
k=0

(φk ◦σ(A))⊙ (ψk ◦ τ(B)) (13)

We assume that each matrix is packed into a vector of size
d2 using a row-major packing. Applying a permutation to
each matrix A can be considered equivalent to performing a
certain linear transform on each packed vector a ∈Rd2

. Then,
the linear Transformer corresponding to the permutation f
(f = σ,τ,φ,ψ) is equivalent to multiplying by a matrix U f ∈
Rd2×d2

, and thus we have f (A)i j = (U f · a)d·i+ j. Then, the
equation corresponding to Equation 13 becomes as follows:

d−1

∑
k=0

((Uφ)kUσa)⊙ (Uψ)kUτb) (14)

Here, the matrix-vector multiplication U f ·a can be computed
using the equation U f ·a = ∑k(u

f
k ⊙ρ(a; tk)) for some finite

sequence t = (tk) ∈ (−d2/2,d2/2], as suggested by Halevi
and Shoup [8]. Here, u f

k refers to the k-th diagonal of the
matrix U f . We will estimate the computation time for the
homomorphic matrix multiplication based on the number of
key switching operations, where key switching corresponds
to both rotations and non-scalar multiplications. The number
of rotations is equal to the number of non-zero components in
t, which corresponds to the number of nonzero diagonals in
the matrix U f , denoted as N(U f). For each permutation, the
number of nonzero diagonals is N(Uσ) = 2d−1, N(Uτ) = d,
N(Uφ) = 2, and N(Uψ) = 1. Applying the Baby-step Giant-
step algorithm for σ and τ requires approximately 2

√
N(U f)

rotations. For φ and ψ, 2 and 1 rotations are needed, respec-
tively. Using this approach to perform the operation in 13,
approximately (2

√
2+1)

√
d +3d rotations and d ciphertext

multiplications are required.
A similar algorithm can be used to perform the transpose

operation. The permutation matrix U t for the transpose op-
eration t(A) = AT has 2d− 1 nonzero diagonals, requiring
approximately 2

√
2d rotations. Since the transpose operation

follows Jiang et al.’s method, the detailed algorithm can be
found in [10]. In our paper, this algorithm is referred to as
CIPHERTEXTMATRIXMULT.

17

	Introduction
	Our Contributions
	Outline and Notations

	Batch Rectifier-Power-max Method
	Limitation of Previous Softmax Implementation
	Batch Method in Softmax
	Rectifier-Power Function
	Training and Inference Method

	Matrix Operations for Transformer
	Constant Rectangle Matrix Multiplication
	Constant Matrix Multiplication
	Blockwise Matrix Multiplication
	Parallel Homomorphic Algorithms for Matrix Computations
	Microbenchmarks

	Implementation of Homomorphic Transformer Encoder
	Parallel Row-Major Packing
	GELU and Layer Normalization
	Workflow of the Proposed Architecture

	Experimental Results
	BRPmax Performance Evaluation
	Evaluation of Homomorphic Matrix Multiplication
	Evaluation of the proposed Bert-Tiny Architecture

	Conclusion
	Related Works
	Preliminaries
	Transformer
	RNS-CKKS Fully HE
	Homomorphic Matrix Operations

