
DewTwo: a transparent PCS with quasi-linear prover, logarithmic
verifier and 4.5KB proofs from falsifiable assumptions

Benedikt Bünz
bb@nyu.edu

New York University

Tushar Mopuri
tmopuri@upenn.edu

University of Pennsylvania

Alireza Shirzad
alrshir@upenn.edu

University of Pennsylvania

Sriram Sridhar
srirams@berkeley.edu

University of California, Berkeley

Abstract

We construct the first polynomial commitment scheme (PCS) that has a transparent setup, quasi-
linear prover time, logN verifier time, and log logN proof size, for multilinear polynomials of size N .
Concretely, we have the smallest proof size amongst transparent PCS, with proof size less than 4.5KB
for N ≤ 230. We prove that our scheme is secure entirely under falsifiable assumptions about groups of
unknown order. The scheme significantly improves on the prior work of Dew (PKC 2023), which has
super-cubic prover time and relies on the Generic Group Model (a non-falsifiable assumption). Along the
way, we make several contributions that are of independent interest: PoKEMath, a protocol for efficiently
proving that an arbitrary predicate over committed integer vectors holds; SIPA, a bulletproofs-style inner
product argument in groups of unknown order; we also distill out what prior work required from the
Generic Group Model and frame this as a falsifiable assumption.

1

Contents

1 Introduction 4
1.1 Contributions . 5
1.2 Applications . 6
1.3 Related Work . 7

2 Preliminaries 9
2.1 Notation . 9
2.2 Multilinear polynomials . 10
2.3 Arguments of knowledge . 10

2.3.1 Setup . 10
2.4 Commitment schemes . 11
2.5 Polynomial commitment schemes . 11
2.6 Reductions of knowledge . 12

3 Groups of unknown order 14
3.1 The generic group model . 14
3.2 Assumptions . 14

3.2.1 Discrete logarithm assumption . 15
3.2.2 New assumption: modular consistency assumption 15
3.2.3 Strong RSA assumption . 16

4 Techniques 17
4.1 DewTwo . 17
4.2 Self inner product arguments (SIPA) . 20
4.3 Proof of Knowledge of Exponent Math (PoKEMath) . 21
4.4 Proof of Knowledge of Exponent, Decomposition, and Expression (PoKEDex) 21

5 DewTwo 23
5.1 Polynomial commitment from integer encoding . 23
5.2 The DewTwo protocol . 24

5.2.1 Weak-DewTwo: A PCS with weak extractability 24
5.2.2 DewTwo protocol with strong extractability . 27

6 Fast integer square decomposition 28
6.1 Our algorithm . 28

7 Toolbox: arguments of knowledge about exponents 30
7.1 Proof of Knowledge of Exponent (PoKE) . 30
7.2 Proof of Knowledge of Exponent Math (PoKEMath) . 31
7.3 Proof of Knowledge of Exponent, Decomposition, and Expression (PoKEDEx) 32
7.4 Triple PoKEDEx (TPoKEDEx) . 33

8 Self inner product arguments 36
8.1 SIPA reductions . 36
8.2 The full SIPA protocol . 37

2

8.3 Three SIPAs in parallel . 38

References 39

A Deferred discussions on assumptions 43
A.1 Implied assumptions . 43

A.1.1 Adaptive root assumption . 43
A.1.2 Hidden order assumption . 44
A.1.3 Single rational root assumption . 44
A.1.4 Multi-rational root assumption . 45

A.2 Modular consistency security in GGM . 48

B Deferred DewTwo Proofs 49
B.1 Proof of binding for Construction 1 . 49
B.2 Security of Weak-DewTwo . 50

B.2.1 Costs of Weak-Eval . 51
B.2.2 Semi-Adaptive Knowledge Soundness of Weak-Eval 51

B.3 Security of DewTwo . 59

C Newton-Raphson 61
C.1 Finding square roots . 61

D Deferred toolbox proofs 63
D.1 PoKE deferred proofs . 63
D.2 PoKEMath deferred proofs . 65
D.3 PoKEDEx deferred proofs . 67

D.3.1 Discussion of cost . 67
D.3.2 Proof of knowledge-Soundness . 68

D.4 TPoKEDEx deferred proofs . 69
D.4.1 Discussion of cost . 69
D.4.2 Proof of knowledge-Soundness . 69

E Deferred discussion on inner product argument 72
E.1 Triple inner product arguments (TIPA) . 72

E.1.1 The TIPA-i relation . 72
E.1.2 The TIPA-0 reduction . 72
E.1.3 The TIPA-i reductions . 73
E.1.4 The full TIPA protocol . 75

E.2 Deferred self inner product argument (SIPA) proofs . 76
E.2.1 Proof of Lemma 2 . 76

3

1 Introduction

Succinct arguments (SAs)1enable an untrusted prover to convince an efficient verifier that it performed
a computation correctly. Since their introduction [GMR85], there has been a Cambrian explosion in
constructions [Kil92; GKR08; GGPR13; BCTV14; Gro16; BBHR19; GWC19; CBBZ23; ACFY24]. In
parallel with these constructions, new and exciting applications have emerged. Today, succinct arguments
secure billions of dollars of cryptocurrencies, are used to improve the scalability [LXZSZ23] as well as the
privacy of cryptographic payments [Ben+14], are used to build advanced signature schemes [KCLM22],
enable electronic voting [SDW08], and certify the authenticity of photographs [NT16].

A key tool in the construction of SAs is polynomial commitment schemes (PCS). A PCS allows a prover to
commit to a multilinear polynomial p ∈ F[X1, . . . , Xµ]2 of size N = 2µ that p(y) = z, for any evaluation
point y ∈ Fµ. There are many proof systems for NP (e.g., for arithmetic circuits) in which the prover sends
polynomial oracles to the verifier, and the verifier queries these at a few evaluation points and accepts or rejects
based on these evaluations [MBKM19; GWC19; CHMMVW20; BBHR18; Set20; CBBZ23; STW23]. These
so-called polynomial interactive oracle proofs (poly-IOPs) [BFS20; CHMMVW20] are efficient in terms
of communication and verifier efficiency, modulo the sending and evaluation of these polynomial oracles.
Fortunately, these poly-IOPs can be compiled with a PCS to form an efficient, succinct argument. Given the
efficiency of existing poly-IOPs, which are often information-theoretically secure, the efficiency metrics, as
well as the cryptographic assumptions of the resulting SA almost entirely depend on the efficiency and the
assumptions of the underlying PCS. This motivates designing polynomial commitments with near-optimal
properties. There are several important evaluation criteria to optimize for in a PCS:

Transparent setup. Some schemes, e.g. KZG [KZG10] rely on a trusted setup: a trusted party is required
to run the setup algorithm. If this process is subverted, then the PCS will be insecure. Especially in
permissionless blockchains, it is unclear who should run this trusted setup. Therefore, the ideal scheme
does not rely on a trusted setup but instead has a transparent setup, which can be run in a publicly
verifiable manner.

Efficient prover. The PCS prover should be able to commit to the polynomial and generate the evaluation
proof efficiently. The PCS commitment and evaluation time are lower bounds to the SA’s prover’s
runtime. More efficient provers enable larger statements to be proven, which is particularly important
when SAs are used to outsource computation. Efficient schemes have linear or quasi-linear (in N , the
size of the polynomial) prover runtimes.

Efficient verifier. The verifier should be able to verify the PCS evaluation proofs efficiently. Ideally, the
PCS verifier runs in logarithmic time in the size of the polynomials committed to in an SA, which
corresponds to the size of the underlying computation being proven. Schemes with efficient verification
are useful for outsourcing computation to weak machines, e.g., smartphones or smart contacts.

Small proof size. The proof size of the evaluation proof, as well as the size of the commitment to a polynomial,
should be both asymptotically and practically small. This is particularly the case when the proof gets
distributed to many parties, as is the case in many blockchain applications.

1We will primarily discuss protocols as interactive arguments. However, both DewTwo and all relevant related work have
public-coin verifiers and can heuristically be turned into non-interactive SNARKs. Multiple of the discussed applications require
non-interactivity.

2Some polynomial commitments are designed for univariate polynomials. We focus on multilinear PCS’s, which can be used to
commit to and evaluate univariate polynomials and vice versa [ZXZS20].

4

Provable security from falsifiable assumptions. A fundamental goal of any cryptographic primitive is to
have provable security under reasonable cryptographic assumptions. An important property of such
assumptions is that they are efficiently falsifiable, i.e. one could design an algorithm that efficiently
shows that the assumption can be broken. Unfortunately, many PCS’s can only be proven secure under
non-falsifiable assumptions.3

1.1 Contributions

We design DewTwo, the first PCS for multilinear polynomials with a transparent setup (our scheme relies on
groups of unknown order [DGS22]) that simultaneously has quasi-linear prover time, logarithmic verification
time, and proofs that are both asymptotically (of size O(log log(N)) for polynomial size N) and practically
(of size 4.5KB for N ≤ 230) small.

We prove that our scheme is secure under falsifiable assumptions about groups of unknown order (GUO), while
all prior work based on GUO were proven secure in the generic group model (a non-falsifiable assumption).
To boost confidence in our falsifiable assumptions, we show that they all hold in the generic group model.

DewTwo improves upon, and in the case of the former builds upon, prior work: Dew [AGLMS23], and
Behemoth [SB23]. These works had asymptotically constant proof size but (1) were only secure in the
generic group model, (2) for all reasonable parameters have concretely larger proofs than DewTwo, and
(3) most importantly, have cubic prover time. We circumvent these limitations using multiple innovations, all
of which are of independent interest:

Falsifiable assumptions PoKE, which is used in Dew and Behemoth, was previously proven secure in
the generic group model [BBF19]. Following an idea from [LPS24], we distill what is necessary
from the generic group model into a falsifiable assumption: the modular consistency assumption.
The assumption intuitively states that a prover must answer certain PoKE queries consistent with a
previously committed, bounded-size integer. We prove that the assumption holds in the generic group
model and that it implies the adaptive root assumption [Wes19].

PoKEMath We develop an efficient protocol that can prove arbitrary predicates f(x) over a committed
vector of integers x ∈ ZN . Importantly, the proof size and verifier time of the protocol is independent
of how large the integers are. PoKEMath generalizes the PoKE protocol from [BBF19], and is both
extremely general and practically efficient. We further extend PoKEMath to PoKEDEx which can
handle range proofs, alongside the arbitrary predicate. That is, a PoKEDEx argument shows that
xi ∈ [ai, bi] for each i ∈ [N] and that f(x) = 0.

Efficient square root decomposition Dew, Behemoth, and DewTwo all rely on range proofs as a key
component. Dew and Behemoth prove that an integer x ∈ [a, b] by computing the square decomposition
of a related integer y = f(x, a, b) into the sum of 4 square roots. Unfortunately, the time taken
to compute such a decomposition is at least cubic in the bit-length of the integer, and for us, the
integer y encodes the entire polynomial, i.e., has Θ(N) bits. We show that the number can instead be
decomposed into log(N) many squares in O(M(N) log2(N)) = O(N log3(N)) time. Here, M(N)
is the complexity of multiplying two N -bit numbers, which is quasilinear in N for large N [HH21].

3There exists a key impossibility result for proving non-interactive succinct arguments are secure under falsifiable assumptions
[GW11]. We consider our assumption in the interactive, pre-fiat-shamir variant of the scheme.

5

Self inner product arguments As an important sub-protocol of PoKEDEx, we construct a new ‘self inner
product argument’ (SIPA) for groups of unknown order. SIPA allows a prover to convince a verifier
that ⟨x,x⟩ = v mod ℓ, for a committed vector of integers x ∈ Zk and some public prime ℓ, with
just O(log(k)) communication. Our protocol is in the spirit of classic IPA techniques [BCCGP16;
BBBPWM18], and is used to show that integers y of the aforementioned form are indeed the sum of
log(N) many squares. Thus, our overall proof size reduces to O(log log(N)).

DewTwo We put everything together by designing a polynomial commitment scheme DewTwo using
PoKEDEx. The scheme is concretely efficient and has small constants. The overall proof size is
bounded by

2⌈log⌈log 5 + 2(7(N − 2) log(N)λ+ log(N) + λ(log(N) + 1))⌉⌉+ 4

group of unknown order elements and 12λ⌈log⌈log 5+ 2(7(N − 2) log(N)λ+ log(N) + λ(log(N) +
1))⌉⌉+ 22λ bits of integers. For polynomials of size N ≤ 230, the proof contains at most 15 group
elements, requiring 192 bytes per group element (128-bit security level for hyper-elliptic curves from
[DGS22]). This can be upper bounded by 4.5KB. Our proof sizes are significantly smaller than that of
Dew or Behemoth, which require 66 and 47 group elements (12 and 9 KB), respectively. Despite, or
perhaps because of, this efficiency, our scheme is arguably simpler than prior works.

1.2 Applications

In this section, we list some unique benefits and applications of DewTwo, even amongst other polynomial
commitment schemes.

Field flexibility. A unique aspect of the DewTwo PCS is that the prover commits to the polynomial in
integer representation, and the evaluation field is only chosen at evaluation time. In fact, it is possible to
evaluate the polynomial modulo multiple integers verifiably (not just primes). This stands in contrast to
elliptic curve-based schemes, where the polynomial’s field is intrinsically tied to the order of the curve.
For example, it is impossible to commit to polynomials over a prime field smaller than 2λ-bits using an
elliptic curve, as otherwise, the curve cannot be secure. DewTwo, on the other hand, can be used to evaluate
polynomials modulo arbitrarily small integers.

Transparent proof compression. One promising application for DewTwo is the compression of large
hash-based SNARK proofs that are to be posted on a blockchain. Most zk-rollups use hash-based proof
systems, like FRI [BBHR18] and STIR [ACFY24] due to their fast prover times and transparent setup.
Unfortunately, hash-based proofs have proof sizes that are about 100 KB for even a single PCS evaluation
proof (See Table1.3). In order to compress these proofs, most deployments use an elliptic curve-based
(EC-based) proof system (e.g., one using KZG [KZG10]) to reduce the size of the final proof that is posted on
chain. This is done via what is called SNARK composition, where the EC-based proofs are used to prove
the correctness of the hash-based SNARK. Unfortunately, these EC-based proof systems generally require a
trusted setup. Using DewTwo, one could avoid the need for a trusted setup while still enjoying the benefits of
small proof sizes and efficient verification.

6

1.3 Related Work

In Table 1.3, we compare DewTwo to various relevant polynomial commitment schemes in literature. Note
that DewTwo has the smallest proof size of any polynomial commitment with a transparent setup, modulo
Bulletproofs [BBBPWM18]. Bulletproofs, however, has linear verification time, and thus does not suffice for
many applications, including for constructing verifiable computation schemes. Unlike its closest comparisons
Dew [AGLMS23] and Behemoth [SB23], DewTwo only has quasi-linear prover time. Additionally, although
DewTwo has asymptotically larger proof sizes than these schemes, for any reasonable parameter choice our
concrete proof size is significantly smaller. Compared to Dory [Lee21] and STIR [ACFY24], DewTwo has
9x and 25x smaller proofs, respectively.

Scheme P time V time |π| (Assympt.)
|π| (Concrete N = 230)

Falsif. Trans.

KZG
[KZG10]

N F
N GEC

1 P 1 GEC

32 bytes
Yes No

STIR + Redshift
[ACFY24; KPV22]

N log(N) F
NH

λ log log(N) log(N)H
λ2 F

λ log(N) log log(N)H
107 KB

Yes Yes

WHIR
[ACFY24; KPV22]

N log(N) F
NH

λ log log(N) log(N) H
λ log log(N) log(N) F

λ log(N) log log(N)H
107 KB

Yes Yes

Greyhound
[ACFY24; KPV22]

λN Zq λ
√
N Zq

λ log log(N) Zq

53 KB
Yes Yes

Bulletproofs
[BBBPWM18]

N GEC N GEC
2 log(N) GEC

1.5 KB
Yes Yes

Dory
[Lee21]

N GEC log(N) GT
6 log(N) GT

37 KB
Yes Yes

Dew
[AGLMS23]

N GGUO

N2M(N) B
log(N) F
O(1) GGUO

O(1) GGUO

12 KB
No Yes

Behemoth
[SB23]

N GGUO

N2M(N) B
log(N) F
O(1) GGUO

O(1) GGUO

9 KB
No Yes

DewTwo
This work (Theorem 5.5)

N log4(N)B
N log2 N GGUO

log(N) F
log(N) GGUO

log log(N) GGUO

4.5 KB
Yes Yes

Table 1: Comparison of several polynomial commitment schemes on various (asymptotic) metrics. We omit
the O(·) notation for brevity and denote by F a field operation, by H a hash operation, by B a bit operation, by
GEC a group operation in elliptic-curves, by GT a group operation in the pairing target group, by GGUO a
group operation in groups of unknown order, by Zq an operation on integers modulo q, and by P an elliptic
curve pairing operation.

Groups of unknown order. DewTwo requires a group of unknown order. Two candidate GUOs with
a transparent setup are class groups [BW88] and hyper-elliptic curves [DGS22]. A key challenge with
these transparent groups is that some groups will have smooth or semi-smooth order, which makes them

7

vulnerable to generic attacks. Unfortunately, it is impossible to test whether the order of a group is smooth or
semi-smooth (outside of running the attack up to a smoothness parameter). Dobson et al. [DGS22] suggest
selecting the group large enough such that with probability 1− 2−k, the fastest generic attack on a randomly
sampled group runs in time 2λ. We set our parameters in the comparison to k = 40 and λ = 128. For these
parameters, the group must have about 21536 elements. For hyper-elliptic curves with such group order, an
element can be represented using 192 bytes [DGS22]. We suggest that this is sufficiently secure but further
study in these transparent groups of unknown order is warranted.

Proofs of exponentiation. Our PoKEMath and PoKEDEx protocols are based on PoKE [BBF19] which
in turn is based on the efficient VDF [BBBF18] protocol from Wesolowski [Wes19]. Wesolowski’s protocol
showed that for some y ∈ G, y = 2T ·x with communication and verification independent of T . Fascinatingly,
our constructions show that similar protocols can be used to prove much more complicated relations while
maintaining the constant overhead in proof size.

8

2 Preliminaries

2.1 Notation

General notation. We write both groups and fields additively. We use Z to denote the set of integers.
Primes[λ, 2λ] is the set of all prime numbers in the range [2λ, 22λ].

Given a group G, we denote group elements using uppercase letters G ∈ G and n-dimensional vector
of group elements by G ∈ Gn, with Gi denoting the i-th element of the vector. Vectors are indexed as
G = [Gi]

n
i=1 = (G1, G2, . . . , Gn).

For a field F, we use lowercase letters to denote an element x ∈ F and x ∈ Fn to denote an n-dimensional
vector of field elements. We denote matrices by M ∈ Fn×n, with Mi representing the i-th row of the matrix.
We use similar notation for integers.

We use the function MSM(m,n) as the asymptotic complexity of multi-scalar multiplication of size m with
n bit scalars. We note that the state of the art multi-scalar multiplication algorithms use variants of the
Pippenger algorithm and have complexity MSM(m,n) = O(mn/logm) [Wes19].

Integer casting. For a prime field Fq and an element x ∈ Fq, we denote by x̃ the casting of x to an integer
in the range [0, q − 1]. Similarly, for a vector of field elements x ∈ Fn

q , we denote by x̃ the vector of integers
[x̃i]

n
i=1. Additionally, for a polynomial p(X) =

∑n−1
i=0 piX

i ∈ Fq[X], we denote by p̃(y) the evaluation of
the cast integer polynomial at y ∈ Z.

Vector operations. Given a vector x = [xi]
n
i=1, it can be partitioned into its left and right halves,

denoted xL = [xi]
n/2
i=1 and xR = [xn/2+i]

n/2
i=1

respectively. We use x̄ to denote the flipped vector, x :=
[xn, xn−1, . . . , x1]. We denote by x|[1:m] where m ≤ n the trimmed vector [xi]mi=1.

Binary representation. Let n be a positive integer, and let i be an integer such that 0 ≤ i < 2n. We denote
by bin(i) : Z→ {0, 1}n, the n -bit binary representation of i, arranged with the most significant bit (MSB)
first. For 1 ≤ j ≤ n, let bin(i, j) denote the j-th bit of this representation, where bin(i, 1) corresponds to the
MSB and binn(i, n) to the least significant bit (LSB).

Integer operations. Throughout the paper, We use the function M(n) as the asymptotic complexity of
multiplying two n-bit integers. We note that the state-of-the-art integer multiplication algorithms [HH21]
have complexity M(n) = O(n log n). It can also be shown that the complexity of integer division is O(M(n))
[Rei89; CA69].

Ternary relations. In this work, we consider ternary relations R consisting of tuples of the form (pp,x,w),
where pp are some public parameters, x is an instance, and w is a witness. For a particular choice of pp, the
corresponding NP relation Rpp is defined to be Rpp := {(x,w) : (pp,x,w) ∈ R}.

Inner products. Given two field vectors x ∈ Fn and y ∈ Fn, we use the notation ⟨x,y⟩ :=
∑n

i=1 xi · yi
for their inner product. We similarly use ⟨x,Y⟩ :=

∑n
i=1 xi · Yi to denote the inner product of a field vector

x ∈ Fn and a group vector Y ∈ Gn.

9

2.2 Multilinear polynomials

A multivariate polynomial is said to be multilinear if the individual degree of any variable Xi in any term
is at most 1. We use F≤1[X1, . . . , Xµ] to denote the space of all µ-variate multilinear polynomials. A
multilinear polynomial p(X1, . . . , Xµ) =

∑2µ−1
i=0 pi

∏µ
j=1X

bin(i,j)
j of size N = 2µ is uniquely defined by

its N coefficients, which we denote p := [pi]
2µ−1
i=0 . Notice that we make an exception to our vector notation

while indexing vectors corresponding to multilinear polynomials.

2.3 Arguments of knowledge

An (adaptive) argument of knowledge for a ternary relation R, consisting of public parameter, instance,
witness tuples of the form (pp,x,w), is a tuple of three algorithms ARG = (Setup,P,V). Setup is a
probabilistic polynomial-time setup algorithm that given a security parameter 1λ (in unary) and a bound
N ∈ N on the size of the instances supported, samples the public parameters pp, which define the NP relation
Rpp. P and V are probabilistic polynomial-time interactive algorithms that satisfy the following properties:

Completeness. For all N ∈ N and all expected poly-time adversaries A, the following holds

Pr

[
(x,w) ∈ Rpp =⇒ ⟨P(pp,x,w),V(pp,x)⟩ = 1

∣∣∣∣ pp← Setup(1λ, N)
(x,w)← A(pp)

]
= 1

Adaptive knowledge soundness. We say ARG is an adaptive knowledge-sound argument, if for all N ∈ N
and all expected poly-time stateful adversaries A := (A1,A2) there exists an expected poly-time extractor
Ext such that AdvAdap-KSARG,Ext,A(λ) :=

Pr

 ⟨A2(pp),V(pp,x)⟩ = 1
∧

(x,w∗) /∈ Rpp

∣∣∣∣∣∣
pp← Setup(1λ, N)
x← A1(pp)

w
∗ ← ExtA(pp,x)

 = negl(λ)

Succinctness. We say ARG is succinct if the size of the communication transcript between P(pp,x,w) and
V(pp,x) is poly(log(|w|), λ) and the running time of V(pp,x) is poly(log(|w|), |x|, λ).

2.3.1 Setup

All the arguments of knowledge in this paper have the same setup algorithm Setup, which for convenience we
present in this section. Setup takes as input the security parameter 1λ and an integer N ∈ N and outputs the
public parameters pp = (N,G,G).

Setup(1λ, N)→ pp

1. Sample the group G← GGen(1λ).
2. Sample the vector of generators G← GN .
3. Output pp := (N,G,G).

10

2.4 Commitment schemes

A commitment schemeCS over a message spaceM is a tuple of PPT algorithmsCS = (Setup,Commit,Open)
where:

1. CS.Setup(1λ,M)→ pp: On input a security parameter 1λ (unary) and a description of the message space
generates the public parameters pp.

2. CS.Commit(pp;m) → (cm; r): On input the public parameters pp and a message m ∈ M, outputs a
commitment cm and an opening hint r.

3. CS.Open(pp, cm,m, r) → {0, 1}: On input the public parameter pp, a commitment CS.Commit, a
messageM and an opening hint r, verifies the opening of cm to m using the hint r.

Binding. A commitment scheme is binding if for all PPT adversaries A,

Pr

CS.Open(pp, cm,m, r) = 1

∧
CS.Open(pp, cm,m′, r′) = 1

∧
m ̸= m′

∣∣∣∣ pp← CS.Setup(1λ)
(cm,m,m′, r, r′)← A(pp)

 = negl(λ)

2.5 Polynomial commitment schemes

Following the approach in [BFS19], we extend the commitment scheme syntax to polynomial commitment
schemes. A polynomial commitment scheme is a tuple of protocols PCS = (Setup,Commit,Open,Eval)
where (Setup,Commit,Open) is a binding commitment scheme for the message space Fq[X1, . . . , Xµ] of
µ-variate multilinear polynomials over some prime field Fq, and

• Eval(pp, cm, z,y, µ; p(X))→ b ∈ {0, 1}: is a succinct interactive public-coin argument between a PPT
prover P and verifier V . Both P and V have as input a commitment cm, evaluation value z ∈ Fq, evaluation
point y ∈ Fq, and a number of variables µ. The prover additionally knows the opening of cm to a secret
multilinear polynomial p(X) ∈ Fq[X1, . . . , Xµ]. The protocol convinces the verifier that p(y) = z.

Extractability. Any prover that succeeds in the Eval protocol must possess knowledge of a polynomial
p ∈ Fq[X1, . . . , Xµ] such that p(y) = z and cm is a commitment to p. We formalize this notion as an
argument of knowledge for the following relation:

Definition 2.1 (PCS indexed relation). Given pp = (N,G,G)← Setup(1λ, N), we define the NP relation
Rpp

PCS to be the set of tuples (
x,
w

)
=

(
(q, µ, cm,y, z,H),

p(X), p̃

)
where q ∈ N is a prime positive integer, µ ∈ N is the number of variables, cm ∈ G is a commitment, y ∈ Fµ

q

is the evaluation point, z ∈ Fq is the evaluation, p(X) ∈ F≤1
q [X1, . . . , Xµ] is a multilinear polynomial, and

H is the hint space such that:

z = p(y) mod q and PCS.Open(pp, cm, p(X), p̃) = 1.

Weak vs Strong Extractability. Depending on whether adversaries are permitted to adaptively select the
evaluation point y, we distinguish between two notions of extractability: weak and strong extractability.

11

Definition 2.2 (Strong Extractability). A polynomial commitment scheme PCS = (Setup,Commit,Open,
Eval) has strong extractability if Eval is a succinct adaptive argument of knowledge for the relation RPCS.

Before defining weak extractability, we introduce semi-adaptive arguments of knowledge, inspired by
[BISW17], which considers adaptive and non-adaptive settings. Our work focuses on adaptive and semi-
adaptive settings, with the latter bridging adaptive and non-adaptive notions. All arguments in this paper are
adaptive unless stated otherwise.

Semi-Adaptive arguments of knowledge. The definition of a semi-adaptive argument of knowledge ARG
for a ternary relation R is identical to that of an adaptive argument of knowledge, except that we relax the
notion of adaptive knowledge soundness to semi-adaptive knowledge soundness. Given a partitioning of the
instance x = (x1,x2,x3), we say ARG satisfies semi-adaptive knowledge soundness if for all N ∈ N, every
polynomial-time public-coin sampler C, and all expected poly-time adversaries A := (A1,A2,A3), there
exists an expected poly-time extractor Ext such that AdvSemi-Adap-KS

ARG,Ext,C,A (λ) :=

Pr

⟨A3(pp),V(pp,x)⟩ = 1

∧
(x,w∗) /∈ Rpp

∣∣∣∣∣∣∣∣∣∣∣∣∣

pp← Setup(1λ, N)
x1 ← A1(pp)
x2 ← C
x3 ← A2(pp,x1,x2)

x := (x1,x2,x3)

w
∗ ← ExtA(pp,x)

= negl(λ)

Remark 2.3. The difference between adaptive and semi-adaptive knowledge soundness lies in how the
instance is determined. In the semi-adaptive case, part of the instance is sampled by a public randomness,
and the adversary can adaptively select the rest. This is particularly useful in extractability definitions of
polynomial commitment schemes (see Definitions 2.2 and 2.4), where the evaluation point is chosen publicly,
but the adversary determines the polynomial’s value at that point.

Definition 2.4 (Weak Extractability). A polynomial commitment scheme PCS = (Setup,Commit,Open,
Eval) has weak extractability if Eval is a succinct semi-adaptive argument of knowledge for the relation RPCS

with an instance partition x1 = (q, µ, cm),x2 = y,x3 = z (see Section 2.3).

2.6 Reductions of knowledge

In this section we state the definition of reductions of knowledge from [KP23], along with some relevant
theorems. These can be thought of as an extension of arguments of knowledge.

Definition 2.5 (Reduction of knowledge). Consider two ternary relations R1 and R2, each consisting of
tuples of the form (pp,x,w) where pp is the set of public parameters, x is the instance, and w is the witness.
We denote by the set of PPT algorithms Π = (Setup,P,V) a reduction of knowledge from R1 to R2 if Setup
is as defined in Section 2.3.1 and P and V are as follows:

• P(pp,x1,w1)→ (x2,w2): Takes as input public parameters pp, and instance-witness pair (x1,w1) and
interactively reduces the statement (pp,x1,w1) ∈ R1 to a new statement (pp,x2,w2) ∈ R2.

• V(pp,x1)→ x2: Takes as input public parameters pp, and instance x1 associated with R1. Interactively
reduces the task of checking x1 to the task of checking a new instance x2 associated with R2.

12

Let ⟨P(pp,x1,w1),V(pp,x1)⟩ → (x2,w2) denote the output of the prover in the interaction between P and
V . The reduction of knowledge Π := (Setup,P,V) must satisfy the following properties:

1. Completeness: For any PPT adversary A, given pp← Setup(1λ, N) and (x1,w1)← A(pp) such that
(pp,x1,w1) ∈ R1, we have that

x1 = x2, (pp, ⟨P(pp,x1,w1),V(pp,x1)⟩) ∈ R2

2. Knowledge soundness: For all expected poly-time stateful adversary A := (A1,A2) there exists an
expected poly-time extractor Ext such that AdvAdap-KSARG,Ext,A(λ) :=

Pr

 (pp, ⟨A2(pp),V(pp,x1)⟩) ∈ R2

∧
(pp,x1,w

∗
1) /∈ R1

∣∣∣∣∣∣
pp← Setup(1λ, N)
x1 ← A1(pp)

w
∗
1 ← ExtA(pp)

 = negl(λ)

3. Public reducibility: There exists a deterministic poly-time function φ such that for all expected poly-
time stateful adversary A := (A1,A2), given pp ← Setup(1λ, N), x1 ← A1(pp) and (x2,w2) ←
⟨A2(pp),V(pp,x1)⟩ with interaction transcript tr, we have that φ(pp,x1, tr) = x2.

We write Π : R1 → R2 to denote that protocol Π is a reduction of knowledge from relation R1 to relation
R2. It is easy to see that an argument of knowledge is a reduction of knowledge that reduces a relation R to
R⊤ := {(true,⊥)}.

Tree extraction. We also recall the following lemma from [KP23], inspired by a theorem originally in
[BCS21]. This lemma is crucial in proving the security of our protocols.

Lemma 2.6 (Lemma 6 [KP23]). Consider an m-round public-coin interactive protocol (Setup,P,V) that
satisfies the interface described in Section 2.6 and satisfies completeness and public reducibility. Then
(Setup,P,V) is a reduction of knowledge if there exists a PPT extractor Ext that, for all instances x1,
outputs a satisfying witnessw∗

1 with probability at least 1− negl(λ), given an (n1, . . . , nm)-tree of accepting
transcripts for x1 where the verifier’s randomness is sampled from space Q such that |Q|= O(2λ), and∏

i ni = poly(λ).

We do not recall the definition of an (n1, . . . , nm)-tree of accepting transcripts, as we only use this lemma for
1-round public-coin interactive protocols. An n-tree of accepting transcripts is a list of n instance-witness pairs
[(x2,i,w2,i)]

n
i=1 output by the interaction ⟨A2(pp, state),V(pp,x1)⟩ for unique public verifier challenges αi

such that (pp,x2,i,w2,i) ∈ R2 for all i ∈ [n].

Sequential composition. We now recall a theorem that shows that the sequential composition of two
reductions of knowledge yields another reduction of knowledge.

Theorem 2.7 (Theorem 5 [KP23]). Consider ternary relations R1, R2, and R3. For reductions of
knowledge Π1 = (Setup,P1,V1) : R1 → R2 and Π2 = (Setup,P2,V2) : R2 → R3, we have that
Π2 ◦Π1 = (Setup,P,V) is a reduction of knowledge from R1 to R3 where

P(pp,x1,w1) := P2(pp,P1(pp,x1,w1))

V(pp,x1) := V2(pp,V1(pp,x1))

Additionally, [Lee21] (Lemma 4) shows that sequential composition of two arguments that satisfy tree
extraction is also tree-extractable.

13

3 Groups of unknown order

At a high level, groups of unknown order are groups where the order of the group is unknown to the adversary
but group operations as well as sampling random group elements can be performed efficiently. These
primitives as well as the associated assumptions are mainly useful in the setting when unbounded integers
need to be committed to or when relations need to be verified over the integers. These groups have also been
used in constructions of accumulators [BM94; BBF19; LLX07], verifiable delay functions [Pie19; Wes19]
and range proofs [Lip03; CPP17; CGKR22].

Candidate GUOs. Some candidates for groups of unknown order include RSA groups [RSW96], class
groups [Lip12; BW88] and Jacobins of hyperelliptic curves [Bre00]. While RSA groups require a trusted
setup to generate the RSA modulus, the other two candidates do not require a trusted setup. Of the latter
two, we use hyperelliptic curves as they have the shortest representation (for a given security level) and are
believed to satisfy all the assumptions we require. Importantly, class groups do not satisfy the Strong RSA
assumption, stated in Assumption 3.6, as it is possible to compute square roots efficiently in these groups.

Security parameter. Throughout the paper, we use 2λ as the security parameter for random challenges
in the group of unknown order, where λ is the security parameter for the cryptographic primitives we are
constructing. This is due to the existence of sub-exponential algorithms[DGS22] that can break assumptions
in these groups such as the adaptive root assumption (see Definition A.1). This requires all PoKE-style
protocols to have a challenge space of size Θ(22λ) to be secure against these attacks.

In the next section, we describe the generic group model (GGM), an idealized group model for GUOs. After
that, we describe the falsifiable assumptions we require, and show that they all hold in the GGM.

3.1 The generic group model

The Generic Group Model, first defined in [DK02b] and used in prior work such as [BBF19; AGLMS23],
has a group sampler GGen that on input a security parameter outputs the description G of a group with
an (unknown) order that is sampled uniformly from a public range [A,B], such that 1/|A|= negl(λ) and
1/|B −A|= negl(λ). The group description consists of a random injective labeling function σ : Z|G| → 2ℓ,
where 2ℓ ≫ |G|, such that the labels σ(·) are the only representations of group elements visible to algorithm
in the model, known as generic group algorithms.

In particular, a generic group algorithm A is a PPT algorithm with a list L that contains the labels of all the
group elements given to A as input. Note that it does not get the group order as input. A is then allowed to
query two oracles O1 and O2. O1 samples a random r

$← Z|G| and returns σ(r) which is appended to L.
O2(i, j,±) takes two labels i, j ∈ [L] and a sign bit. For the group elements Hi, Hj corresponding to these
labels, it returns the label σ(Hi ±Hj), which is also then appended to L. Intuitively, this formulation of a
generic algorithm allows adversaries to perform operations on group elements and sample random group
elements without knowing the order or structure of the group. The GGM is not a falsifiable assumption.

3.2 Assumptions

Our constructions rely on three standard falsifiable assumptions about GUOs: the discrete logarithm
assumption (see Definition 3.1), the strong RSA assumption (see Definition 3.6), and the modular consistency
assumption (see Definition 3.4).

14

These three assumptions are the strongest on which our constructions are based. To simplify the assumption
“zoo” and reduce the total number of assumptions to three, we defer a few weaker assumptions used in our
proofs to the appendix (see Appendix A) and show that they are implied by these three assumptions. All of
our assumptions are shown to hold in the Generic Group Model (see Section 3.1). See Fig. 1 for a summary
of the assumptions and their relationships.

New Assumptions. We introduce two new assumptions in this paper: the modular consistency assumption (see
Definition 3.4), which is used in the main body, and the multi-rational root assumption (see Appendix A.1.4),
which appears in the appendix and is implied by the strong RSA assumption (see Definition 3.6). These two
new assumptions are tailored to our setting but are likely to have applications in other contexts as well.

3.2.1 Discrete logarithm assumption

The discrete logarithm assumption states that for any n ∈ N, no efficient adversary A, given the group
G← GGen(1λ) and n randomly sampled generators G← Gn, succeeds with non-negligible probability at
outputting (α1, . . . , αn, β1, . . . , βn) ∈ Z2n such that

∑n
i=1 αi ·Gi =

∑n
i=1 βi ·Gi and αi ̸= βi, for some i.

A more formal statement is as follows.

Definition 3.1 (Discrete logarithm assumption [BBF19]). The discrete logarithm assumption holds for GGen
if for any n ∈ N, every efficient adversary A, AdvDLOG

A,n (λ) ≤ negl(λ), where AdvDLOG
A,n (λ) :=

Pr

 ∑n
i=1 αi ·Gi =

∑n
i=1 βi ·Gi

∧
∃i ∈ [n] : αi ̸= βi

∣∣∣∣∣∣
G← GGen(1λ)
G← Gn

(α1, . . . , αn, β1, . . . , βn)← A(G,G)

Lemma 3.2. [BBF19] The Discrete logarithm assumption (see Definition 3.1) is secure in the Generic Group
Model (GGM, Section 3.1).

3.2.2 New assumption: modular consistency assumption

We now present our first new assumption, the modular consistency assumption, which is inspired by ideas
in [LPS24]. At a high level, it states that, given n randomly sampled generators G

$← Gn, the best an
adversary A that runs in T time can do is output a group element U obtained by performing a sequence of T
multiplications on pairs of group elements it has received or computed so far. We show in Lemma A.2 that
the modular consistency assumption implies the adaptive root assumption (see Definition A.1).

Before we state the assumption we recall the Chinese remainder theorem, which is used routinely in the
‘groups of unknown order’ setting.

Theorem 3.3 (Chinese remainder theorem). Let ℓ1, . . . , ℓT be coprime integers and let r1, . . . , rT ∈ Z, then
there exists a unique 0 ≤ x <

∏T
i=1 ℓi such that x = ri mod ℓi and there is an efficient algorithm for

computing x← CRT([ri]
T
i=1, [ℓi]

T
i=1).

Now, we state the modular consistency assumption.

Definition 3.4 (Modular consistency assumption). Let rep = poly(λ) be the number of bits used to represent
the group elements of a group generated by GGen. The modular consistency assumption holds for GGen if for

15

all n = poly(λ), all T = poly(λ), and for every (T · rep)-step stateful Turing machine A1 and every PPT
adversary A2, we have AdvMC

T,A,n(λ) ≤ negl(λ), where AdvMC
T,A,n(λ) :=

Pr

∀i ∈ [T] : ⟨ri,G⟩+ ℓi ·Qi = U

s.t. G := (G1, . . . , Gn) ∈ G
∧

⟨x,G⟩ ≠ U

∣∣∣∣∣∣∣∣∣∣∣∣

G← GGen(1λ)

G
$← Gn

U ← A1(G,G)
[ri, Qi, ℓi]

T
i=1 ← A2 s.t. ri = [ri,j]j∈[n]

ℓ1, . . . , ℓT are coprime integers
∀j ∈ [n] : xj ← CRT([ri,j]i∈[T], [ℓi]

T
i=1)

Lemma 3.5. The modular consistency assumption (see Definition 3.4) is secure in the Generic Group Model
(GGM, see Section 3.1).

Proof. We defer the proof to Appendix A.2.

3.2.3 Strong RSA assumption

At a high level, the strong RSA assumption states that no efficient adversaryA, with non-negligible probability,
can compute a non-trivial ℓth root (ℓ > 1) of a randomly sampled group element G $← G. A more formal
statement is as follows.

Definition 3.6 (Strong RSA assumption [FO97; BP97; CPP17]). The strong RSA assumption holds for GGen
if for all efficient A, AdvSRSAA (λ) ≤ negl(λ), where

AdvSRSAA (λ) := Pr

 ℓ · U = G
∧

ℓ > 1

∣∣∣∣∣∣
G← GGen(1λ)

G
$← G

(U, ℓ) ∈ G× N← A(G, G)

Lemma 3.7. [DK02a] The strong RSA assumption (see Definition 3.6) is secure in the Generic Group Model
(GGM, Section 3.1).

16

4 Techniques

In this section, we present a technical overview of the sub-protocols employed in our PCS. We start by giving
an intuitive but high-level description of each of our sub-protocols.

DewTwo The DewTwo PCS reduces the task of proving the evaluation of a committed multilinear polynomial
p(X) ∈ Fq[X1, . . . , Xµ] at a point z ∈ Fµ

q , to the task of committing to a vector of integers u ∈ ZM

and proving two statements: (i) some of these integers are within a certain range (ii) and a certain
function f(u) evaluates to 0. We provide more details in Section 4.1.

PoKEDEx The PoKEDEx protocol allows us to do precisely this: convince a verifier, for a vector u ∈ ZM

(succinctly) committed to in a commitment C, that f(u) = 0, for some function f , and that ui ∈ [ai, bi],
for each i ∈ [I] where I ⊆ [M] indicates a set of indices being range-checked. In the final version of
DewTwo, we use TPoKEDex, an optimized and specialized PoKEDEx.

PoKEMath As a stepping stone to PoKEDEx (and TPoKEDex), but also of independent applicability, we
construct the PoKEMath protocol. It allows a prover to convince a verifier holding a commitment
C, that f(u) = 0, for some public function f and vector u ∈ ZM committed within C. Notice that
PoKEMath can directly be used as a PoKEDEx (by having the function f additionally verify the range
claims), but the resulting PoKEDEx has a communication complexity that is too large for our PCS. We
optimize this naive approach using the following SIPA scheme.

SIPA The self-inner product argument (SIPA) protocol, is a bulletproof-style protocol, that enables a prover
to convince a verifier who holds a commitment C to a vector u ∈ ZM , that the inner product of u with
itself satisfies ⟨u,u⟩ mod ℓ = v. Importantly, the communication complexity between the prover and
verifier is only O(logM).

4.1 DewTwo

Our multilinear polynomial commitment scheme, DewTwo, builds upon Dew [AGLMS23], a transparent
PCS based on groups of unknown order (see Section 3). In this section, we provide a high level overview of
how our PCS works.

Vector inner products suffice. We start by observing that one can commit to a multilinear polynomial and
argue about its evaluations by instead committing to its vector of coefficients and considering the inner product
of this vector with a public vector derived from the evaluation point. Recall that the multilinear polynomial
p(X) =

∑N−1
i=0 pi

∏µ
j=1X

bin(i,j)
j ∈ F≤1

q [X1, . . . , Xµ] can equivalently be represented by its vector of
coefficients p = [pi]

N−1
i=0 ∈ FN

q , where N := 2µ. More formally, there exists a bijective mapping between the
space of polynomials F≤1

q [X1, . . . , Xµ] and the corresponding space of vectors FN
q . Furthermore, given a

commitment to the vector p, polynomial evaluation y = p(z) at a point z ∈ Fµ
q can be equivalently expressed

as the inner product y = ⟨p, zext⟩, where the tensor product zext ∈ FN
q is defined as zexti :=

∏µ
j=1 z

bin(i,j)
j

for all i ∈ [0, . . . , N − 1]. Thus, it suffices to show how to commit to a vector of field elements p ∈ FN
q and

prove its inner product with such a (public) vector zext ∈ FN
q derived from an evaluation point.

Committing to vectors. Given a group of unknown order G and a generator G ∈ G, to commit to a vector
p ∈ FN

q , we first encode the vector as an integer a via an injective and invertible encoding that maps FN
q → Z.

17

We then commit to the integer a as cm := a ·G. The latter is a binding commitment to integers in the GUO
setting (Theorem 5.2), and we show how to do the integer encoding below.

Given a vector p = [pi]
N−1
i=0 ∈ FN

q , consider the univariate integer polynomial p̃(X) ∈ Z<N [X] with p̃ as
its coefficient vector. For any integer α > q, p̃(α) =

∑N−1
i=0 p̃iα

i ∈ Z is an injective encoding of p. We
also have that it is invertible: given p̃(α), one can obtain p̃ by decomposing the integer p̃(α) into its base-α
representation to obtain the integer vector [p̃i]N−1

i=0 . It is easy to see that the corresponding field vector
p = [pi]

N−1
i=0 is the pre-image of p̃(α).

Thus, one can commit to a field vector p ∈ FN
q as cm := p̃(α) ·G.

Inner product proofs. We start with an observation: given two vectors p, r ∈ FN
q , the product p̃(α) · r̃(α)

can be expressed as follows:

p̃(α) · r̃(α) =
(
p̃0 + p̃1α+ · · ·+ p̃N−1α

N−1
)
·
(
r̃0 + r̃1α+ · · ·+ r̃N−1α

N−1
)

=
N−2∑
i=0

 ∑
j+k=i

p̃j r̃k

αi +

N−1∑
j=0

p̃j r̃N−1−jα
N−1 +

2N−2∑
i=N

 ∑
j+k=i

p̃j r̃k

αi

:= s+ (p̃0r̃N−1 + p̃1r̃N−2 + · · ·+ p̃N−1r̃0) · αN−1 + u · αN

Importantly, the middle coefficient (corresponding to αN−1) is ⟨p̃, r̃⟩, the inner product of the integer castings
of p and r̄ (the reverse of the vector r). It is easy to see that ⟨p, r̄⟩ = ⟨p̃, r̃⟩ mod q. One might thus hope that
by decomposing the product p̃(α) · r̃(α) into its base-α representation and picking out the middle coefficient,
we can obtain ⟨p, r̄⟩. However, for this to hold, α must not only be larger than q, but must also be larger
than maxi

(∑
j+k=i p̃j r̃k

)
. When this constraint holds, one can also verify that the terms s and u satisfy

0 ≤ s ≤ αN−1 and 0 ≤ u ≤ αN−1.

This gives a potential protocol for proving an inner product claim about the vector committed to in cm = p̃(α)·G
and a public vector r. Defining v := r̄, the prover can convince the verifier that ⟨p, r⟩ = ⟨p, v̄⟩ = y by
sending three values s, t, u to the verifier such that the following equation holds:

p̃(α) · ṽ(α) = s+ t · αN−1 + u · αN (1)

The verifier can then check that the appropriate bounds on s, t, u hold, check that y = t mod q and compute
ṽ(α) on its own4. Finally, it checks that:

ṽ(α) · cm = s ·G+ (t · αN−1) ·G+ (u · αN) ·G (2)
=⇒ (p̃(α) · ṽ(α)) ·G = (s+ t · αN−1 + u · αN) ·G (3)

This assures the verifier that Eq. (1) holds over the integers, except with negligible probability, under the
discrete logarithm assumption.

Roadblocks. Unfortunately, the aforementioned protocol is only sound when the elements of p̃ and r̃ are
indeed in the range [0, q − 1]. While the verifier can ensure the elements of r̃ are bounded, if the prover
chooses to use integers from outside this range while computing cm, even if the check in Eq. (2) holds, the
claimed inner product t may be incorrect. One illustrative concern is that ⟨p̃, r̃⟩ =

∑N−1
j=0 p̃j r̃j could be

4This can be done efficiently when the inner product corresponds to PCS evaluation, as we show later.

18

larger than α (due to the malicious unbounded integers) and thus ‘overflow’. That is, the prover could now
send a malicious inner product t′ := ⟨p̃, r̃⟩ mod α ̸= ⟨p̃, r̃⟩ to the verifier, and the following instance of the
check in Eq. (2) would still pass, for appropriate ‘malicious’ values s′, u′:

ṽ(α) · cm = s′ ·G+ (t′ · αN−1) ·G+ (u′ · αN) ·G

As an example, let N := 2, q := 5, α := 100, the out of bound vector p̃ := [1, 98] and the honest
vector r̃ := [3, 4]. Then, p̃(100) = 1 + 98 · 100 = 9801 and r̃(100) = 3 + 4 · 100 = 403. The product
p̃(100) · r̃(100) = 3949803 when expressed in its base-α representation gives 3 + 98 · 100 + 394 · 1002.
However, the inner product ⟨p, r⟩ = 1 · 4 + 98 · 3 = 298 ̸= 98. Clearly, the prover could cheat by sending
s′ = 3, t′ = 298 mod α = 98 and u′ = 394 in this instance.

Ensuring bounded elements. At a high level, we show that for a randomly sampled γ̃ ∈ [0, q − 1]N , if
the middle coefficient of p̃(α) · γ̃(α) is small, then p̃ is ‘bounded’ (with a caveat that we explain shortly)
with high probability. The verifier can first perform such a check using the above techniques, and then use
the guarantee that p̃ is bounded to perform the inner product check with respect to r̃. This uses the LCSZ
lemma from [BF23], which can be thought of as a generalization of the Schwartz-Zippel lemma to the case
of composite moduli and multilinear polynomials. In addition, this also generalizes the batch shortness
test techniques based on random linear combinations/subset sums used in works like [CKLR21; CGKR22;
BBCdGL18] by using only logarithmic randomness. This crucially allows the verifier to be efficient, which is
not the case when using a linear number of random elements.

Our result is built on two crucial observations:

• While the overflow in the above example was indeed due to a large element in p̃, it depends on the choice of
the vector r̃ as well, which the verifier can control.

• In the honest case, where p̃, r̃ ∈ [0, q − 1]N , it is the case that the middle coefficient of p̃(α) · γ̃(α), ⟨p̃, r̃⟩,
is always < Nq2.

Let β = Nq2, by setting α > β 5, we show that the fact that the middle coefficient of p̃(α) · γ̃(α) is smaller
than β, for γ̃ $← [0, q − 1]N , implies that p is ‘bounded’. To illustrate, suppose the prover chooses a single
element of p̃, say p̃i to be large, and the rest to be zero. The inner product ⟨p̃, γ̃⟩ = p̃i · γ̃i could be large
and overflow, causing the middle coefficient to instead be p̃i · γ̃i mod α. The above check implies that
p̃i · γ̃i = si mod α for some si < β, which gives that p̃i = si

γ̃i
mod α. Although we can only guarantee

that the prover must stick to p̃i has a bounded rational representation modulo α (with a small numerator and
denominator), we show that it suffices that the prover cannot arbitrarily use large coefficients and must stick to
such bounded rationals.

We show in Theorem 5.5 that the above ideas can be extended to the general case, where arbitrarily many
elements of p̃ are non-zero. While the details are too involved for a technical overview, at a high level,
we assume WLOG that p̃ ∈ QN . We then show that if the middle coefficient of p̃(α) · γ̃(α) < β, for
γ̃

$← [0, q − 1]N , then the elements of p̃ must all be bounded rationals (modulo α). Although we can only
guarantee that the prover must stick to bounded rationals and cannot use arbitrarily large integers, Corollary 5
in [BF23] shows that this is sufficient to ensure that the commitment can only be opened to a vector from FN

q

(see Section 5.1 for details). In our security proof, we further guarantee that if all our checks pass, this vector
must indeed satisfy the required inner product constraint.

5Looking ahead, we actually require that α ≫ β due to some additional subtleties regarding the binding property of the
commitment scheme.

19

As an additional contribution, we use the inverse LCSZ lemma from [BF23] to obtain stronger bounds on
these rationals than prior work, Dew [AGLMS23]. This allows us to choose a much smaller value for α,
significantly improving the concrete efficiency of our scheme.

Verifier efficiency. Recall that the PCS verifier, to be convinced that p(z) = y for the vector p committed to
in cm, needs to check that ⟨p, zext⟩ = y. This is done using the aforementioned ‘inner product commitment
scheme’, and we would like the verifier to run in time that is sublinear in N , the size of the polynomial. The
most expensive verifier steps are (a) computing ṽ(α), where v := zext, (b) performing the range checks (on s,
t and u) and (c) performing the expensive exponentiations ṽ(α) · cm, s′ ·G, (t′ · αN−1) ·G and (u′ · αN) ·G.

It is plausible that computing ṽ(α) might take O(N) time, as v is a vector of length N . However, we show in
Remark 5.4 that this can in fact be done in just O(µ) = O(logN) time, by exploiting the fact that v is the
tensor product of a succinct evaluation point z ∈ Fµ

6.

Reduction to PoKEDex. We capture the range checks, the exponentiations, as well as performing the check
in Eq. (1) in a single protocol called PoKEDEx (see Section 4.4). At a high level, PoKEDEx allows the prover
to commit to an integer vector (p̃(α), s, t, u) using a Pedersen commitment, and prove to the verifier that the
integers s, t, and u lie in the appropriate ranges and that the following equations hold:

p̃(α) · ṽ(α) = s+ t · αN−1 + u · αN , and
p̃(α) · γ̃(α) = s′ + t′ · αN−1 + u′ · αN

where γ
$← [0, q − 1]µ, y = t mod q, and t′ < β. We present the full construction in Section 5.2. In

the upcoming sections, we provide a technical overview of the PoKEDEx protocol, preceded by several
preliminary protocols that are used in its construction.

4.2 Self inner product arguments (SIPA)

The self inner product argument (SIPA), for a large prime ℓ > 2λ, allows a prover P to convince a verifier V
that the inner product ⟨r, r⟩ = v mod ℓ, where r ∈ ZN is a private vector committed to in a Pedersen-like
commitment C := ⟨r,G⟩7, and P and V both share: (1) the commitment key consisting of a vector of group
generators G ∈ GN , (2) the Pedersen commitment C ∈ G, and (3) the claimed inner product value v ∈ Zℓ.
What makes SIPA interesting is that the prover can do this by communicating only O(logN) many elements
of G and Zℓ to the verifier. We leverage this to reduce the communication complexity of our PoKEDEx
protocol.

Definition 1 (informal). We define the ternary relation RSIPA to consist of tuples of the form (pp =
(N,G),x = (C, ℓ, v),w = r) such that C = ⟨r,G⟩ and v = ⟨r, r⟩ mod ℓ.

Construction. WLOG we can assume the length of the vector is a power of 2, N = 2n (we can round it up
to the closest power of 2). Our SIPA construction follows the typical blueprint used to construct inner product
arguments (first introduced in [BCCGP16]): we construct a reduction of knowledge (formalized in [KP23])

SIPA.Reduce(⟨P((2n,G),x,w),V((2n,G),x)⟩)→ ((2n−1,G′),x′,w′)

6The verifier also needs to compute γ̃(α) efficiently, and we show that this can be done analogously, by showing that it suffices for
γ̃ to also be a tensor product of a random vector sampled from [0, q − 1]µ. We omit the details here for brevity.

7These Pedersen-like commitments are binding in the GUO setting, under the discrete logarithm assumption.

20

SIPA.Reduce, with only a constant amount of communication between P and V , reduces the task of checking
if (x,w) ∈ R

(2n,G)
SIPA to the easier task of checking if (x′,w′) ∈ R

(2n−1,G′)
SIPA . Our SIPA protocol iteratively

applies the SIPA.Reduce protocol n times to reduce the task of checking if (x,w) ∈ R
(2n,G)
SIPA to checking if

(x′,w′) ∈ R
(1,G′)
SIPA . The prover then directly sends the constant sized w′ = r′ to the verifier, who can now

verify that (x′, r′) ∈ R
(1,G′)
SIPA . The total communication is O(n) = O(logN), as required.

TIPA. In the construction of our polynomial commitment scheme, we would like to perform 3 SIPA protocols
of size N each, which would have naively required communicating 3k logN group elements, if one SIPA
protocol required communicating k logN group elements. In order to optimize our proof size, we design
TIPA that allows us to do this while communicating just k log(3N) group elements. We refer the reader to
Appendix E.1 for the construction of TIPA, but state the corresponding relation RTIPA here.

Definition 2 (informal). We define the ternary relation RTIPA to consist of tuples of the form (pp = (3 ·
N, (G1,G2,G3)),x = (C, ℓ, (v1, v2, v3)),w = (r1, r2, r3)) such that C = ⟨r1,G1⟩+ ⟨r2,G2⟩+ ⟨r3,G3⟩
and vi = ⟨ri, ri⟩ mod ℓ, for all i ∈ [3].

4.3 Proof of Knowledge of Exponent Math (PoKEMath)

PoKEMath protocol allows a prover to demonstrate knowledge of a preimage u ∈ Zm, committed as
U = ⟨u,G⟩, such that f(u) = 0, where f : Zm → Z is an arbitrary polynomial-time computable function.
This enables the verifier to succinctly verify a property (characterized by f) of the preimage u without needing
to compute f(u) directly.

Definition 3 (informal). We define the ternary relation RPoKEMath to consist of tuples of the form
(G, (U,m, f),u) such that U = ⟨u,G⟩ and f(u) = 0, where f : Zm → Z is a polynomial-time
computable function.

PoKEMath builds on the Proof of Knowledge of Exponent Representation (PoKERep) [BBF19], which we
refer to as PoKE in this paper for simplicity.

Definition 4 (informal). We define the relation RPoKE as the set of tuples (G, (U,m),u) such thatU = ⟨u,G⟩.

In PoKE, the verifier sends a challenge ℓ
$← Primes[λ, 2λ] to the prover. For each i ∈ [m], the prover uses

this challenge to decompose ui as ui = qi · ℓ+ ri, where qi ∈ Z and ri ∈ [0, ℓ− 1] for every i ∈ [m]. The
prover then commits to q by computing Q = ⟨q,G⟩ and sends (Q, r) to the verifier. The verifier accepts if
U = ℓ ·Q+ ⟨r,G⟩, which would imply that ⟨u,G⟩ = ⟨ℓ · q+ r,G⟩. Soundness follows from the fact that if
this check passes for overwhelmingly many challenges, an extractor could use several ‘good’ challenges, say
[ℓi]i∈[t], and corresponding remainders [ri]i∈[t], and solve for u using the Chinese Remainder Theorem.

In PoKEMath, the verifier additionally checks that f(r) = 0 mod ℓ. Essentially, PoKEMath reduces the
computation of f over a vector of potentially large integers u to a computation over a vector r of the same
length, but with values bounded by the size of the challenge ℓ.

4.4 Proof of Knowledge of Exponent, Decomposition, and Expression (PoKEDex)

A desired protocol for the DewTwo construction is PoKEDEx which is an extension of PoKEMath protocol
that additionally allows the verifier to check that certain elements of the preimage u lie in a range [a, b].

21

Definition 5 (informal). We define the ternary relation RPoKEDEx to consist of tuples of the form
(G, (U,m, t, (ai, bi)

t
i=1, f),u) such that

(a) U = ⟨u,G⟩,
(b) f(u) = 0, and
(c) ∀i ∈ [m− t+ 1,m] : ui ∈ [ai, bi].

Items (a) and (b) are guaranteed by a PoKEMath. Item (c) can be achieved by further extending the
PoKEMath protocol to contain a range proof for ui being in the range [ai, bi], for each i ∈ [m− t+ 1,m].

Prior range proofs. A technique used in prior works [AGLMS23; Gro05; Lip03], constructs a range proof
that shows that v ∈ [a, b] by arguing that both b − v and v − a are positive, via the Lagrange four square
theorem and a proof that both b− v and v − a can be decomposed into a sum of four squares. While this
approach, due to a constant-size decomposition, yields constant-size range proof, the prover’s asymptotic
complexity is proportional to the complexity of finding the four-square decomposition, which is Ω(n3) [PT18].

Our approach. We improve on this approach by

(i) Improving the square decomposition prover complexity: We propose a novel algorithm that
decomposes a non-negative n-bit integer into a sum of logarithmically many squares, in contrast to
the constant number of squares (e.g., 4) used in prior work. Our approach reduces the Ω(n3) prover
complexity to O(M(n) log2 n) bit operations, where M(n) is the complexity of n-bit multiplication,
which is O(n log n) [HH21]. The full algorithm is detailed in Section 6.

(ii) Batching the positivity arguments: Observe that v ∈ [a, b] if and only if (b − v)(v − a) ≥ 0.
Therefore, Unlike [AGLMS23] that separately proves positivity of (b− v) and (v − a), we only prove
positivity for (b− v)(v − a). Now the prover invokes only one square decomposition, obtaining the
vector u = (u1, . . . , ulogn), where (b− v)(v − a) is an n-bit integer, such that:

(b− v)(v − a) = u21 + · · ·+ u2m = ⟨u,u⟩ (4)

At a high level, our range proof for v ∈ [a, b] works as follows: the prover computes u ∈ Zlogn as in Eq. (4)
and sends V := v ·G1 +

∑logn
i=1 ui ·Gi+1 to the verifier. The prover and verifier then engage in a PoKEMath

protocol to check that V = ⟨(v,u),G⟩ and f(v,u) = 0, where

f(v,u) := ⟨u,u⟩ − (v − a)(b− v) (5)

Naively, given a verifier’s challenge ℓ, PoKEMath would require that the prover send a vector r = (v,u)
mod ℓ to the verifier, who then checks that f(r) = 0 mod ℓ. This would involve O(log n) communication.

However, we notice that the check f(r) = 0 mod ℓ can be expressed as

(v − a)(b− v) = ⟨u,u⟩ mod ℓ

This is precisely the kind of statement that SIPA can handle. Recall that SIPA has a communication complexity
that is logarithmic in the length of the input instance, which in this case is O(log n). Thus, our construction of
PoKEDEx uses SIPA to check the above equation, which allows us to reduce the communication complexity
of the range proof to O(log log n). The full construction is presented in Section 7.3.

22

5 DewTwo

In this section, we provide a detailed presentation of DewTwo, a transparent multilinear polynomial
commitment scheme (PCS) designed for the groups of unknown order setting. We improve upon prior work,
Dew [AGLMS23] and Behemoth [SB23] in the prover time, proof size, parameter specification and underlying
assumptions (see Section 1.3 for a full comparison).

First, in Section 5.1, we recall a commitment scheme for multilinear polynomials implicit in prior work. Then,
in Section 5.2, we equip this commitment scheme with an evaluation protocol, presenting DewTwo as a
full-fledged polynomial commitment scheme.

5.1 Polynomial commitment from integer encoding

Prior work, DARK [BFS19] and Dew [AGLMS23], shows how to commit to a univariate polynomial using
an integer encoding of the polynomial. We modify this slightly to the multilinear setting, and present the
construction in a self-contained manner in this section.

Definition 5.1 (Polynomial integer encoding). Let q ∈ N be a prime integer, µ ∈ N the number of variables,
and p(X) ∈ Fq[X1, . . . , Xµ] a multilinear polynomial of size N = 2µ (see Section 2.2). Denote by
p ∈ FN

q the coefficient vector corresponding to p, and let p̃ ∈ ZN represent this vector cast to integers, where
p̃i ∈ [0, q−1] for all i ∈ [N]. The integer encoding of p atα ∈ Z is defined as a map f : Fq[X1, . . . , Xµ]→ Z
and is denoted by:

f(p(X)) = p̃(α) =
N∑
i=0

p̃iα
i

Computing the integer encoding of a polynomial is equivalent to evaluating a univariate polynomial at an
integer α which can be done via the Horner’s rule [Knu98, Section 4.6.4] in O(N ·M(logα)) bit operations.

Polynomial integer decoding. We define reprα(x) → (y0, y1, . . . , yn) as the algorithm that decodes an
integer x into its coefficient vector (y0, y1, . . . , yn) in base α. In other words, the algorithm computes the
representation of x in base α.

reprα(x)→ (y0, y1, . . . , yn)

1. Initialize i = 0.
2. While x > 0:

(a) Compute yi = x mod α.
(b) Update x = ⌊x/α⌋.
(c) Increment i = i+ 1.

3. Return the coefficients y0, y1, . . . , yn.

To decode an integer into a polynomial over a finite field, we first apply the polynomial integer decoding
algorithm reprα(·), which retrieves the coefficient vector of the polynomial in base α. Next, we cast this
coefficient vector to field elements to reconstruct the polynomial.

However, It is important to note that, the encoding-decoding process succeeds only if α is significantly larger
(as large as q7µ) than the coefficients of the polynomial. Consequently, |p̃(α)|= Ω(N). This implies that the

23

integer encoding cannot serve directly as a succinct commitment to the polynomial. Instead, following the
approach of DARK [BFS19] and Dew [AGLMS23], we employ the exponentiation of the integer encoding to
commit to the polynomial. The construction is as follows:

Construction 1 (Commitment scheme). Let q ∈ N be a prime integer, µ ∈ N the number of variables,
and N = 2µ. The commitment scheme CS = (Setup,Commit,Open) for the message space M =
Fq[X1, . . . , Xµ], characterized by the tuple (q, µ), is constructed as follows:

• CS.Setup(1λ, (q, µ))→ pp: On input of the unary security parameter 1λ, the message space characterized
by the prime order of the field q ∈ N, satisfying λ < log q, and the number of variables µ ∈ N, satisfying
4 ≤ µ ≤ λ/4, it samples a group G← GGen(1λ) and a generator G← G. It then outputs pp = (G,α),
where α := q7µ.

• CS.Commit(pp, p) → (cm, p̃): To commit to a multilinear polynomial p ∈ Fq[X1, . . . , Xµ] using the
public parameter pp, compute cm = p̃(α) ·G, where p̃(α) is the integer encoding of p, and obtain p̃ as
described in Definition 5.1.

• CS.Open(pp, cm, p, p̃)→ 0, 1: To verify an opening, given the public parameters pp, the commitment cm,
the polynomial p (the message), and the integer evaluation vector p̃ (the hint vector), perform the following
checks:

– cm =
∑N−1

i=0 p̃iα
i.

– p ∈ Fq[X1, . . . , Xµ] with a coefficient vector p such that p = p̃ mod q.

– p̃ ∈ HN whereH =
{
a
b ∈ Q : 0 ≤ |ab |≤ (Nq2µ+1 + 1), 0 < b ≤ N8µ · (2µ)λ

}
and output 1 if all checks pass.

Theorem 5.2. The commitment scheme CS = (Setup,Commit,Open) described in Construction 1 is binding
under the modular consistency assumption (see Definition 3.4).

Proof. The proof is deferred to Appendix B.1.

Remark 5.3. In Construction 1, the hint spaceH is defined to ensure that coefficients of the polynomial are
bounded rationals – this is required to ensure binding of the commitment scheme (see Corollary 5 in [BF23]).

5.2 The DewTwo protocol

We extend the commitment scheme introduced in Construction 1 to a polynomial commitment scheme by
adding an evaluation protocol to obtain DewTwo. First, we build a polynomial commitment scheme with
weak extractability (see Definition 2.4), meaning that its only extractable for random evaluation points. Then
we extend it to a polynomial commitment scheme with strong extractability (see Definition 2.2), meaning that
it is extractable for arbitrary evaluation points.

5.2.1 Weak-DewTwo: A PCS with weak extractability

Weak-DewTwo inherits the same setup, commitment and opening procedures as Construction 1. Here, we
present the evaluation protocol for Weak-DewTwo, denoted by Weak-Eval which has weak extractability (see

24

Definition 2.4). We emphasize that in the prominent application of polynomial commitment schemes, namely
compiling a PIOP to a SNARK, the evaluation point is indeed chosen randomly and hence Weak-DewTwo
suffices.

Before presenting the Weak-DewTwo protocol, we define some helper algorithms:

Helper Method: CoeffSplit. Similar to the function of the same name in Dew [AGLMS23], this method
intuitively splits the product ab into three parts (based on its base-α representation): a left part s, containing all
terms with degree less than i; a middle term t, containing the i-th degree term; and a right part u, containing
all terms with degree greater than i.

CoeffSplit(i, a, b, α)→ (s, t, u)

Parse: i ∈ N, a, b, s, t, u, α ∈ Z
1. Compute c = ab and let c = (c0, . . . , cm) be the vector representing c in base α where m := ⌈logα c⌉.
2. Output (s, t, u) where

c =

m∑
j=0

cjα
j

=

i−1∑
j=0

cjα
j + ciα

i +

m∑
j=i+1

c⃗jα
j

= s+ tαi + uαi+1

Helper method: MonomialExpand. The MonomialExpand algorithm expands a µ-variate evaluation
point y ∈ Fµ

q into a N -dimensional vector r ∈ FN
q representing all possible monomials of a multilinear

polynomial evaluated at this point.

MonomialExpand(y)→ r

1. For all i ∈ {0, . . . , N − 1}: compute ri =
∏µ−1

j=0 y
ij
j where ij is the j-th bit of the binary representation of i

and the product is over integers.
2. Output the monomial expansion r = [ri]

N
i=0.

Weak-Eval

⟨P(pp,x,w),V(pp,x)⟩:

Parse: x = (q ∈ N, µ ∈ N, cm ∈ G,y ∈ Fµ
q , z ∈ Fq), w = (p ∈ Fq[X1, . . . , Xµ], p̃ ∈ ZN),

pp := (3 log λN,G,G).

1. P and V compute r :=MonomialExpand(y) and rf := r.
2. P and V compute the integer encoding σ := r̃f (α).
3. P splits up the integer σ · p̃(α) by invoking

(s, t, u) = CoeffSplit(N − 1, p̃(α), σ, α)

25

4. P casts the evaluation z ∈ Fq to z̃ ∈ Z and computes the quotiont w ∈ Z such that t = z̃ + wq.
5. P computes a batch commitment to the integers w, s, t, and u

U = w ·G2 + s ·G3 + t ·G4 + u ·G5

and sends U to V .
6. P and V invoke the TPoKEDex (See Argument 6) on the following instance-witness pair

xTPoKEDex =(cm, U, (0, Nqµ+1αN−2), (0, Nqµ+1), (0, qµ+1αN−2), g(·))
wTPoKEDex =(p̃(α), (w, s, t, u))

where g : Z5 → Z is a function that on input (p̃(α), w, s, t, u), outputs 0 iff
(a) t = z + wq, and
(b) σ · p̃(α) = s+ tαN−1 + uαN .

Remark 5.4 (Verifier efficiency). The verifier does not need to compute σ. Instead, it can just compute the
value of σ mod ℓ required in TPoKEDex where ℓ ∈ Primes[λ, 2λ] is a random challenge. however, a naive
implementation of performing a simple integer encoding after the monomial expansion would, even with
the mod ℓ, result in a Ω(N) many O(λ) bit-operations, making the verifier non-succinct. To address this,
V leverages the fact that the polynomiak r̃f (x) has the succinct representation

r̃f (X) =

µ∏
i=1

(
1 + rµ−iX

2 i−1
)
,

and computes r̃f (α) by computing
∏µ

i=1

(
1 + rµ−i α

2 i−1
)

. The powers of α can be efficiently computed
using repeated squaring, requiring O(µ) number of O(λ)-bit multiplications. Additionally, multiplying the
powers with ri and aggregating the results also requires O(µ) many O(λ)-bit multiplications. As a result, the
total verifier time complexity is just O(µM(λ)).

Theorem 5.5. Let CS = (Setup,Commit,Open) be the commitment scheme defined in Construction 1.
Then Weak-DewTwo = (Setup,Commit,Open,Weak-Eval) is a polynomial commitment scheme with weak
extractability under the modular consistency (see Definition 3.4), strong RSA (see Definition 3.6), and discrete
logarithm (see Definition 3.1) assumptions.

Furthermore, let µ ∈ N be the number of variables, N = 2µ ∈ N be the polynomial size, and λ ∈ N be the
security parameter; Weak-DewTwo has the following properties:

1. Prover complexity is O(λN log2(λN)) group operations, and O(λN log4(λN)) bit operations.
2. Verifier complexity is O(λ+ log λN) group operations, and O(λ log λ logN) bit operations.
3. The proof size is O(log logNλ) group elements and O(λ log logNλ) bits of integers (Concretely 4.5 KB

for µ = 30 and λ = 128).
4. The public parameter size is O(logNλ) group elements.

Proof. The completeness is straightforward to check. The proof for binding follows from the binding property
of the commitment scheme in Section 2.4 which is deferred to Appendix B.2. The discussion of the costs and
the proof for weak extractability are also deferred to Appendix B.2.

26

5.2.2 DewTwo protocol with strong extractability

We introduce DewTwo, a PCS with strong extractability, which ensures security even when the evaluation
point is chosen arbitrarily or adversarially. DewTwo invokes Weak-DewTwo twice: once with a random
evaluation point and once with the claimed evaluation point. Intuitively, the first invocation (with the random
point) ensures that the commitment is well-formed, while the second invocation (with the claimed point)
verifies the actual claimed evaluation. This design parallels the approach in [AGLMS23], where the protocol
is similarly divided into two sub-protocols, TEST and IPP.

Eval

⟨P(pp,x,w),V(pp,x)⟩:

Parse: x = (q ∈ N, µ ∈ N, cm ∈ G,y ∈ Fµ
q , zy ∈ Fq), w = (p ∈ Fq[X1, . . . , Xµ], p̃ ∈ ZN),

pp := (3 log λN,G,G).

1. V generates a random evaluation point r $← Fµ
q and sends r to P .

2. P sends the claimed evaluation zr to V .
3. P and V compute two instances for Weak-DewTwo:

xr = (q, µ, cm, r, zr) and xy = (q, µ, cm,y, zy)

4. V outputs 1 if and only if the two invoked Weak-DewTwo verifiers accept:

Weak-Eval(⟨P(pp,xr,w),V(pp,xr)⟩) ∧ Weak-Eval(⟨P(pp,xy,w),V(pp,xy)⟩)

Theorem 5.6. Let CS = (Setup,Commit,Open) be the commitment scheme defined in Construction 1. Then
DewTwo = (Setup,Commit,Open,Eval) is a PCS with strong extractability under the modular consistency
(see Definition 3.4), strong RSA (see Definition 3.6), and discrete logarithm (see Definition 3.1) assumptions.

Furthermore, let µ ∈ N be the number of variables, N = 2µ ∈ N be the polynomial size, and λ ∈ N be the
security parameter; Weak-DewTwo has the following properties:

1. Prover complexity is O(λN log2(λN)) group operations, and O(λN log4(λN)) bit operations.
2. Verifier complexity is O(λ+ log λN) group operations, and O(λ log λ logN) bit operations.
3. The proof size is O(log logNλ) group elements and O(λ log logNλ) bits of integers (Concretely 9 KB

for µ = 30 and λ = 128).
4. The public parameter size is O(logNλ) group elements.

Proof. The completeness is straightforward to check. The proof for binding follows from the binding property
of the commitment scheme in Appendix B.1 which is deferred in Appendix B.2. The proof for strong
extractability are also deferred in Appendix B.3.

The costs of DewTwo are effectively double that of Weak-DewTwo since it invokes Weak-DewTwo
twice. Hence, the discussion for costs of DewTwo follows from the discussion for Weak-DewTwo (see
Appendix B.2).

27

6 Fast integer square decomposition

The problem of integer square decomposition concerns how to represent a non-negative n-bit integer x as a
sum of k squares, i.e.,

x = y21 + y22 + . . .+ y2k.

Finding these representations is used in proving that a committed integer x is non-negative (since it can be
expressed as the sum of k squares). Furthermore, one can show that a committed integer x lies within a given
interval [a, b] by proving that both x− a and b− x are non-negative, i.e., the product (b− x)(x− a) can be
written as a sum of k squares.

Lagrange’s theorem shows that such a representation always exists for k = 4, meaning that every non-negative
integer can be expressed as a sum of four squares [DSV03]. Moreover, for constructing range proofs,
Groth introduced a technique [Gro05] that reduces the size of the representation to k = 3. While such a
representation always exists for some k ∈ N, finding one is non-trivial. To the best of our knowledge, all
previous works on range proofs that rely on integer square decomposition to establish positivity, such as
[AGLMS23; Gro05; LAN01], have used variants of the Rabin-Shallit algorithm [RS86] to find a constant-size
decomposition. The state-of-the-art Pollack-Trevino algorithm [PT18] finds a constant-size decomposition in
an expected O(n2/log n) arithmetic operations, or equivalently Ω(n3) bit operations.

In this work, we propose a new algorithm IntegerSquareDecompose that decomposes an n-bit integer into a
sum of at most log n squares, instead of constant number of squares, and runs in quasi-linear time. Specifically,
it has a complexity of O(M(n) log2 n) = Õ(n) bit operations.

6.1 Our algorithm

Our new IntegerSquareDecompose algorithm is a greedy algorithm that iteratively identifies the largest
square that can be subtracted from the input integer, removes it, and continues this process until the integer is
reduced to zero.

Integer square roots. The most computationally expensive part of this algorithm is the repeated integer
square root calculation. The integer square root of a non-negative integer x is the integer y = ⌊

√
x⌋. As a

subprotocol, we use the function

SquareRoot(a, δ)→ b

that takes in an integer a and an error tolerance δ and outputs a rational b such that |b−
√
a|≤ δ. The error

tolerance δ is set to a value 0.1 < 1 in our case. SquareRoot uses the Newton-Raphson method [AH85,
Chapter 3], a classical root-finding algorithm, and we present the full construction in Appendix C. We show in
Corollary C.4 that SquareRoot requires O(M(n) log n) bit operations for an n-bit integer a and constant δ.

Given SquareRoot as a black-box. we show how to compute the integer square root of an integer x below.

IntegerSquareRoot(x)→ y

1. Compute y ← ⌊SquareRoot(x, 0.1)⌋.
2. If (y + 1)2 ≤ x: update y ← y + 1.

28

3. If y2 > x: update y ← y − 1.

Lemma 6.1. The algorithm IntegerSquareRoot(x) outputs y = ⌊
√
x⌋ using O(M(n) log n) bit operations.

Proof. Corollary C.4 gives that SquareRoot(x, 0.1) requires O(M(n) log n) bit operations and outputs b such
that b ∈ [

√
x− 0.1,

√
x+ 0.1]. Thus ⌊b⌋ ∈ {⌊

√
x⌋ − 1, ⌊

√
x⌋, ⌊
√
x⌋+ 1}. This implies that Steps 2 and 3

ensure that the final output y = ⌊
√
x⌋, and the additional number of bit operations required is O(M(n)).

Integer square decomposition. IntegerSquareDecompose iteratively uses the IntegerSquareRoot algorithm
to decompose an n-bit integer x into the sum of log n squares, as detailed below.

IntegerSquareDecompose(x)→ y

1. Set xrem := x and i := 0.
2. While xrem > 0:
3. Define yi := IntegerSquareRoot(xrem).
4. Update xrem ← xrem − y2i .
5. Output y.

Lemma 6.2. Let x ∈ N be an n-bit non-negative integer. The algorithm IntegerSquareDecompose(x)

outputs y ∈ Zlogn+5 such that x =
∑logn+5

i=1 y2i and requires O(M(n) log2 n) bit operations.

Proof. At each step, xrem decreases by ⌊√xrem⌋2, and since ⌊√xrem⌋2 ≥ 1 for xrem ≥ 1, xrem strictly
decreases, and in at most k = x iterations outputs the vector y = (y1, . . . , yk) that satisfies x = y21 + y22 +
· · ·+ y2k by construction.

For runtime, let xi be the value of xrem in the i’th iteration. In each iteration xi decreases by at least
(
√
xi − 1)2, leading to xi+1 ≤ 2

√
xi − 1 =⇒ xi+1 < 2

√
xi. Taking the logarithm of both sides:

log xi+1 < log 2 +
1

2
log xi =⇒ ⌈log xi+1⌉ ≤ ⌈1 +

1

2
log xi⌉ =⇒ ⌈log xi+1⌉ ≤ 2 +

1

2
⌈log xi⌉

Define ni := ⌈log xi⌉ be the bit length of xi, then this implies that ni+1 ≤ 2+ 1
2ni. Let n be the bit length of

x, this implies that n2 ≤ 2+ n
2 , n3 ≤ 2+ 2

2 +
n
4 = 3+ n

4 , n4 ≤ 2+ 3
2 +

n
8 , and so on. More formally, it can

be shown via induction that nk ≤ 4 + n
2k−1 . Thus nk = 4 when k = log n+ 2, which means after log n+ 2

iterations, xrem has bit length 4.

This implies that xrem ≤ 15, which implies that the number of additional iterations is at most 3 (as there
are only 3 squares smaller than 15). Thus the total number of iterations required is at most log n+ 5, and
each iterations costs O(M(n) log n) bit operations as the most expensive part of each iteration is computing
IntegerSquareRoot. This implies that the entire algorithm requires O(M(n) log2 n) bit operations.

29

7 Toolbox: arguments of knowledge about exponents

In this section, we describe a sequence of arguments of knowledge which serve as a toolbox for constructing
our polynomial commitment scheme, but could also be of independent interest.

First, we introduce PoKE (Section 7.1), which was originally proposed in [BBF19]. However, we provide an
alternative security proof based on a new falsifiable assumption (see Definition 3.4), rather than relying on the
Generic Group Model (GGM). Then, we present our novel extensions of PoKE: PoKEMath (Section 7.2) and
PoKEDEx (Section 7.3). Finally, we introduce TPoKEDex (Section 7.4), an optimized version of PoKEDEx
that is specifically tailored for constructing DewTwo.

7.1 Proof of Knowledge of Exponent (PoKE)

PoKE (originally called PoKERep in [BBF19]) is a proof of knowledge of a representation in terms of public
bases G1, . . . , Gm. Specifically, given a Pedersen commitment U , the prover demonstrates knowledge of
an integer vector u ∈ Zm such that U = u1G1 + · · · + umGm. The goal of the protocol is to verify the
knowledge of potentially large integers u more succinctly than by transmitting u itself. We formally define
the PoKE relation below.

Definition 7.1 (PoKE relation[BBF19]). Given pp = (N,G,G) ← Setup(1λ, N), we define the proof of
knowledge of exponent relation Rpp

PoKE as follows:(
x,
w

)
=

(
(U,m),

u

)
where U ∈ G is the commitment, m ∈ N is the size of the witness and u ∈ Zm is the witness integer vector
such that

m ≤ N and U = ⟨u,G|[1:m]⟩.

PoKE [BBF19]

⟨P(pp,x,w),V(pp,x)⟩:

Parse. : pp := (N,G,G), xPoKE := (U,m), wPoKE := u

1. If m > N , V rejects. Otherwise, continues.
2. V samples a random challenge Primes[λ, 2λ] and sends it to P .
3. P computes the vectors r := [ri]

m
i=1 and q := [qi]

m
i=1 such that it holds that ui = l · qi + ri.

4. P computes Q := ⟨q,G|[1:m]⟩ and sends (Q, r) to V .
5. V computes R := ⟨r,G|[1:m]⟩ and checks that U ?

= ℓ ·Q+R.

Theorem 7.2. PoKE is a public-coin argument of knowledge (see Section 2.3) for the indexed relation Rpp
PoKE

in the standard model under the Modular consistency assumption (see Definition 3.4). Moreover, let each
witness component ui have bit-length of at most n≫ λ, PoKE has the following properties:

• Prover time is MSM(m,n) group operations and O(mM(n)) bit operations.
• Verifier time is MSM(m, 2λ) group operations.

30

• Proof size is 1 group element and 2mλ bits.

Proof. Completeness and complexity of the argument are straightforward to check. We defer the proof of
knowledge-soundness to Appendix D.1.

7.2 Proof of Knowledge of Exponent Math (PoKEMath)

PoKEMath is an extension of PoKE where, given a Pedersen commitment U , the prover not only demonstrates
knowledge of the preimage integer vector u, but also proves that u is a root of a specified function f , i.e.,
f(u) = 0. Essentially, this allows the prover to verify any polynomial-time computable property (represented
by the function f) of the witness vector u much more succinctly than by explicitly computing f(u).

Definition 7.3. Given pp = (N,G,G)← Setup(1λ, N), we define Rpp
PoKEMath as the set of tuples:(

x,
w

)
=

(
(U,m, f),

u

)
where U ∈ G is a commitment, m ∈ N is the size of the witness vector, f : Zm → Z is a function and
u ∈ Zm is the witness integer vector such that

m ≤ N, U = ⟨u,G|[1:m]⟩, f(u) = 0

PoKEMath

⟨P(pp,x,w),V(pp,x)⟩:

Parse. pp := (N,G,G), xPoKEMath := (U,m, f), wPoKEMath := u

1. If m > N , V rejects. Otherwise, continues.
2. V samples a random challenge ℓ

$← Primes[λ, 2λ] and sends it to P .
3. P computes the vectors r := [ri]

m
i=1 and q := [qi]

m
i=1 such that it holds that

ui = ℓ · qi + ri

4. P computes Q := ⟨q,G⟩ and sends (Q, r) to V .
5. V computes R := ⟨r,G⟩ and checks that

U
?
= ℓ ·Q+R

f(r)
?
= 0 mod ℓ

Theorem 7.4. PoKEMath is a public-coin argument of knowledge (see Section 2.3) for the ternary relation
Rpp

PoKEMath under the modular consistency (see Definition 3.4) and strong RSA (see Definition 3.6) assumptions.

Moreover, let the function f be a function computable by a size s arithmetic circuit and let each witness
component ui have a bit length of at most n, then PoKE has the following properties:

• Prover time is MSM(m,n) group operations and O(mM(n)) bit operations.
• Verifier time is MSM(m,λ) group operations and O(sM(λ)) bit operations.

31

• Proof size is 1 group element plus 2mλ bits.

Proof. Completeness and complexity of the argument are straightforward to check. We defer the proof of
knowledge-soundness to Appendix D.2.

7.3 Proof of Knowledge of Exponent, Decomposition, and Expression (PoKEDEx)

PoKEDEx, is an extension of PoKEMath (see Section 7.2) where some exponents must also be range-
constrained. Specifically, given a Pedersen commitment U , the prover demonstrates knowledge of an integer
vector u ∈ Zm such that U = ⟨u,G|[1:m]⟩, and the last t components of u are constrained to lie within a
given range. We formally define the PoKEDEx relation below.

Definition 7.5. Given pp = (N,G,G)← Setup(1λ, N), we define Rpp
PoKEDEx as the set of tuples:(

x,
w

)
=

(
(U,m, t, (ai, bi)

t
i=1, f)

u

)
where U ∈ G is the commitment, m ∈ N is the size of the witness vector, t ∈ N is the number of range-
constrained witness components, f : Zm → Z is a function and u ∈ Zm is the witness integer vector.
Moreover, let (ai, bi)ti=1 and each witness component ui be n-bit integers. We say (x,w) ∈ Rpp

PoKEDEx if and
only if:

m+ t⌈2n⌉ ≤ N, U = ⟨u,G|[1:m]⟩, f(u) = 0,

∀i ∈ [t] : um−t+i ∈ [ai, bi]

The construction of PoKEDEx is as follows. For an intuitive explanation of the construction, refer to
Section 4.4 of the techniques.

PoKEDEx

⟨P(pp,x,w),V(pp,x)⟩:

Parse: pp = (N,G,G), x = (U,m, t, (ai, bi)
t
i=1, f) and w = u.

1. If m > N , V rejects. Otherwise, continues.
2. For each i ∈ [m− t+ 1,m], i.e. ranged witness indices:
3. P computes the integer square decomposition of the integer (ui − ai)(bi − ui)

vi := IntegerSquareDecompose((ui − ai)(bi − ui))

and sends the bit length mi := |vi| to V .
4. P concatenates the decompositions v := (vm−t+1 || . . . || vm) and sends the Pedersen commitment

V := ⟨v,G|[m+1:m+|v|]⟩ to V .
5. V samples a random stitching challenge β

$← Primes[λ, 2λ] and sends it to P .
6. P and V compute U ′ := β · U + V and G′ := (β ·G|[1:m] || G|[m+1:m+|v|]).
7. P and V define f ′(u,v) to be the function that outputs 0 if and only if:

(a) f(u) = 0, and

32

(b) (ui − ai)(bi − ui) = ⟨vi,vi⟩, for all i ∈ [m− t+ 1,m] where vi is the i-th sub-vector of v of
length mi.

8. P and V compute the PoKEMath public parameters as ppPoKEMath := (N,G,G′).
9. P and V compute the PoKEMath instance as xPoKEMath := (f ′, U ′,m+ |v|).

10. P computes the PoKEMath witness as wPoKEMath := (u,v).
11. P and V run PoKEMath(⟨P(ppPoKEMath,xPoKEMath,wPoKEMath),V(ppPoKEMath,xPoKEMath)⟩).

Theorem 7.6. PoKEDEx is a public-coin argument of knowledge for the indexed relation Rpp
PoKEDEx under

the modular consistency (Definition 3.4) and strong RSA (see Definition 3.6) assumptions.

Moreover, let (ai, bi)ti=1 and each witness component ui be n-bit integers, and f be a function computable by
a size s arithmetic circuit. PoKEDEx has the following properties:

• Prover time is O (MSM(m+ t log n, n)) group operations and O(M(n)(m+ t log n)) bit operations.
• Verifier time is O (MSM(m+ t log n, λ)) group operations and O(M(λ)(s+ t log n)) bit operations.
• Proof size is 2 group elements plus O(λ(m+ t log(n)) + t log log(n)) bits.

Proof. Completeness of the argument is straightforward to check. We defer the complexity analysis and proof
of knowledge-soundness to Appendix D.3.

7.4 Triple PoKEDEx (TPoKEDEx)

In this section, we introduce TPoKEDex, an optimized version of PoKEDEx tailored to meet the requirements
of DewTwo. Specifically, TPoKEDex is invoked once in Weak-DewTwo (see Argument 1) and twice in
DewTwo (see Argument 2). The proof length in PoKEDEx consists of two components: group elements sent
and bits sent. The optimization in TPoKEDex focuses on reducing the bits sent by replacing the range proof
inside PoKEMath with TIPA, a Bulletproof-style range proof. This exponentially reduces the proof size from
O(n) to O(log log n).

Definition 7.7. Given pp = (N,G,G)← Setup(1λ, N), we define the triple knowledge of exponent ranged
math relation denoted by TPoKEDex as the set of tuples:(

x,
w

)
=

(
(C,U, (ai, bi)

4
i=2, f)

(c,u)

)
where (C,U) ∈ G2 are commitments, f : Z5 → Z is a function, and (c,u) ∈ Z5 are witness components
such that c ∈ Z, u ∈ Z4. Moreover, let (ai, bi)4i=2 and each witness component ui or c be n-bit integers. We
say (x,w) ∈ Rpp

TPoKEDex if and only if:

C = c ·G1, U = u1 ·G2 + u2 ·G3 + u3 ·G4 + u4 ·G5,

u2 ∈ [a2, b2], u3 ∈ [a3, b3], u4 ∈ [a4, b4],

5 + 3⌈2n⌉ ≤ N, f(c, u1, u2, u3, u4) = 0

33

TPoKEDex

⟨P(pp,x,w),V(pp,x)⟩:

Parse: pp = (N,G,G), x = (C,U, (ai, bi)
4
i=2, f) and w = (c,u).

1. If m > N , V rejects. Otherwise, continues.

Stitching procedure

2. V samples a random stitching challenge β
$← Primes[λ, 2λ] and sends it to P .

3. P and V compute the stitched generator vector and the stitched commitment

G′ := (βG1, G2, G3, G4, G5), U ′ := βC + U

Unrolling PoKEMath

4. V samples a random challenge ℓ
$← Primes[λ, 2λ] and sends it to P .

5. P computes the remainder vector r := [ri]
5
i=1 and the quotient vector q := [qi]

5
i=1 such that:

c = ℓ · q1 + r1

ui = ℓ · qi + ri ∀i ∈ {2, 3, 4, 5}

6. P computes a commitment to the quotient vector q, i.e. Q := ⟨q,G′⟩, and sends (Q, r) to V .
7. V computes a commitment to the remainder vector r, i.e. R := ⟨r,G′⟩, and checks that

U ′
?
= ℓ ·Q+R

f(r)
?
= 0 mod ℓ

Invoking TIPA

8. P computes the integer decomposition vectors (see Section 6) v3,v4,v5 where

vi := IntegerSquareDecompose((ui − ai)(bi − ui))

9. P computes γ := ⌈log(max{v3,v4,v5})⌉ to V and pads enough zeros separately to v3, v4, and v5 to make
them of equal length 2γ .

10. P defines the concatenated decomposition vector v := (v3 || v4 || v5) of total length 3× 2γ .
11. P computes the Pedersen commitment V := ⟨v,G|[6:5+|v|]⟩ and sends V to V .
12. P and V computes TIPA instance and public parameters (see Definition 8.6):

ppTIPA := (3 · 2γ ,G,G|[6:5+|v|])
xTIPA := (V, ℓ, (r3, r4, r5))

13. P computes TIPA witness (see Definition 8.6) as

wTIPA := ((v3,v4,v5))

14. P and V invoke TIPA (see Argument 8) and V outputs

TIPA(⟨P(ppTIPA,xTIPA,wTIPA),V(ppTIPA,xTIPA)⟩)

34

Remark 7.8. The PoKEMath argument (see Argument 4) is unrolled within the TPoKEDex argument (see Argument 6)
rather than being invoked as a black-box. This approach provides white-box access to the remainder vector r ∈ Z5,
which is subsequently used in the TIPA argument (see Argument 8).

Theorem 7.9. TPoKEDex (Argument 6) is a public-coin argument of knowledge (see Section 2.3) for the indexed
relation Rpp

TPoKEDex in the standard model under the Modular consistency (see Definition 3.4), and strong RSA (see
Definition 3.6), and Discrete log assumption (see Definition 3.1).

Moreover, let (ai, bi)3i=1 and witness components c and ui-s be n-bit integers, and f be a function computable by a size
s arithmetic circuit. TPoKEDex has the following properties:

• Prover time is O(MSM(log n, n) + log n) group operations and O(M(n) log2 n) bit operations.
• Verifier time is O(λ+ log n) group operations and O(sM(λ)) bit operations.
• Proof size is upper bounded by O(log log n) group elements and O(λ log log n) bits.

Proof. Completeness of the argument is straightforward to check. We defer the complexity analysis and proof of
knowledge-soundness to Appendix D.4.

35

8 Self inner product arguments
To optimize our PoKEDEx protocol, we construct a bulletproofs [BBBPWM18] style ‘self inner product argument’
(SIPA) in groups of unknown order. In particular, we design an argument for the following relation:

Definition 8.1 (SIPA relation). Given pp = (N,G,G)← Setup(1λ, N), we define the NP relation Rpp
SIPA to be the set

of tuples (
x,
w

)
=

(
(C, ℓ, v),

r

)
where C ∈ G, ℓ ∈ N is a prime larger than 2λ, v ∈ Zℓ, and r ∈ ZN such that

C = ⟨r,G⟩ and v = ⟨r, r⟩ mod ℓ =

N∑
i=1

r2i mod ℓ

Remark 8.2. Like the protocols in Section 7, in our use cases of RSIPA, we often only require an r ∈ Zm, where
m ≤ N . However, since handling the case where m ̸= N is a straightforward extension of the current argument, we
omit this nuance for ease of exposition.

8.1 SIPA reductions
In this section we present a reduction of knowledge that reduces an instance of the SIPA relation into another instance of
half the length using a random chalenge from the verifier. Intuitively, given pp = (2n,G,G), we want to reduce the
problem of checking if a tuple (x,w) ∈ Rpp

SIPA to the easier problem of checking if the tuple (x′,w′) ∈ Rpp′

SIPA, where
pp′ := (2n−1,G,G′).

As a preliminary we define the following function fold, that takes as input a vector G ∈ G2n , an integer i ∈ N
and challenges α ∈ Zi, and ‘folds’ G in half i times with respect to the challenges α. For i = 0, we define
fold(G, 0,⊥) := G. We also recall the notation GL and GR that denote the left and right halves of G respectively.

fold(G, i,α)→ G′

1. Set G′ := G.
2. For each j ∈ [i]:
3. Fold G′ ← αj ·G′L +G′R.
4. Output G′.

To conform to the definition of a reduction of knowledge, we now define the following sequence of relations, with one
relation for each i ∈ {0, 1, . . . , n}.

Definition 8.3 (SIPA-i relation). Given pp = (2n,G,G)← Setup(1λ, 2n), we define the NP relation Rpp
SIPA-i to be the

set of tuples (
x,
w

)
=

(
(C, ℓ, v,α),

r

)
where C ∈ G, ℓ ∈ N is a prime larger than 2λ, v ∈ Zℓ, α ∈ [0, ℓ)i and r ∈ Z2n−i

such that

G′ := fold(G, i,α), C = ⟨r,G′⟩, v = ⟨r, r⟩ mod ℓ

Note that RSIPA-0 is precisely RSIPA. We now present a reduction of knowledge SIPA.Reducei from RSIPA-i to
RSIPA-(i+1).

36

SIPA.Reducei

⟨P(pp,x,w),V(pp,x)⟩:

Parse: pp = (2n,G,G), x = (C, ℓ, v,α = [αj]
i
j=1) and w = r.

1. P and V compute G′ := fold(G, i,α).
2. P computes CL := ⟨rL,G′R⟩ and CR := ⟨rR,G′L⟩.
3. P computes vL := ⟨rL, rL⟩ mod ℓ and vC := ⟨rL, rR⟩ mod ℓ.
4. P sends CL, CR, vL, vC to V .
5. V samples αi+1

$← [0, ℓ) and sends it to P .
6. P sets r′ := rL + αi+1 · rR.
7. P and V set

C ′ := CL + αi+1 · C + α2
i+1 · CR,

vR := v − vL mod ℓ,

v′ := vL + 2 · αi+1 · vC + α2
i+1 · vR mod ℓ

8. Define x′ := (C ′, ℓ, v′, [αj]
i+1
j=1) and w′ := r′.

9. P receives output (x′,w′) and V receives output x′.

Lemma 8.4. For G := Setup and the P , V above, define SIPA.Reducei := (G,P,V). If the discrete log assumption
(Definition 3.1) and the strong RSA (Definition 3.6) hold, SIPA.Reducei is a reduction of knowledge from RSIPA-i
to RSIPA-(i+1). The prover time is O(2n) group operations, the verifier time is O(2n) group operations, and the
communication complexity is 2|G|+2|Zℓ|.

We defer the proof of this lemma to Appendix E.2.1.

8.2 The full SIPA protocol
We now present the full argument for Rpp

SIPA for a given pp = (2n,G,G), which applies SIPA.Reduce iteratively to
shrink the size of the instance to length 1, and then directly checks the instance of length 1 using a PoKE (which is
slightly more efficient than the prover sending the witness in the clear to the verifier).

SIPA

⟨P(pp,x,w),V(pp,x)⟩:

Parse: pp = (2n,G,G), x = (C, ℓ, v) and w = r.

1. Define x0 := x and w0 := w.
2. For i in [0, . . . , n− 1]:
3. (xi+1,wi+1)← SIPA.Reducei(⟨P(pp,xi,wi),V(pp,xi)⟩).
4. Parse xn = (C ′, ℓ, v′,α) and wn = r′.
5. P sends r′ to V .
6. V accepts if

C ′ = r′ · fold(G, n,α), and
v′ = r′ · r′ mod ℓ

Theorem 8.5. If the discrete log assumption (Definition 3.1) and the strong RSA assumption (Definition 3.6) hold, then
SIPA := (Setup,P,V), with P and V as above, is an argument of knowledge for RSIPA. The prover time is O(2n) group
operations, the verifier time is O(2n) group operations, and the communication complexity is 2n|G|+2n|Zℓ|+|r′|.

37

Proof. For each i ∈ [0, . . . , n−1], given that the aforementioned assumptions hold, Lemma 8.4 shows that SIPA.Reducei
is a reduction of knowledge from RSIPA-i to RSIPA-(i+1).

SinceV directly checks that (xn,wn) ∈ RSIPA-(n), which is the trivial argument of knowledge for RSIPA-(n). Theorem 2.7
implies that SIPA is an argument of knowledge for RSIPA.

The efficiency claims follows from the efficiency claims of SIPA.Reducei, and the fact that the instance sizes keep going
down by a factor of 2 for each i ∈ [0, 1, . . . , n− 1], resulting in instance sizes 2n, 2n−1, . . . , 2, 1.

Communication complexity optimization. In our use case, and potentially in other applications, the integer r′ might
be too large for the prover to send directly to the verifier. In this case the final check can be performed using PoKEMath,
with the prover using another randomly sampled generator, say H (H can also be included in pp), to commit to the
quotient q such that r′ · r′ = v′ + q · ℓ. The prover sends the commitment Q := q ·H to the verifier, and the verifier
sends a random challenge β

$← [0, 2λ] to the prover. The prover and verifier then compute the combined commitment
β · C ′ + Q to the vector (r′, q) under the generators (β · fold(G, n,α), H). The prover can now use PoKEMath to
convince the verifier that f(r′, q) := r′ · r′ − v′ − q · ℓ = 0, which requires communicating 1 group element and 2
elements of Zℓ′ , where ℓ′ ∈ Primes[λ, 2λ] is the PoKEMath challenge. This optimization does not affect prover or
verifier efficiency asymptotically, and reduces the communication complexity to at most

(2n+ 1)|G|+2n|Zℓ|+cost(PoKEMath) ≤ (2n+ 2)|G|+2n|Zℓ|+4λ.

The random challenge β ensures that there is no overflow from the terms committed to using fold(G, n,α) and H .
Commitments are ‘stitched’ together in this manner in both prior work (PoKE2 from [BBF19]), as well as in our
PoKEDEx construction (Section 7.3).

8.3 Three SIPAs in parallel
In the construction of our polynomial commitment scheme, we would like to perform 3 SIPA protocols. In order to
optimize our proof size, it would help to design a more efficient way to do this than running 3 separate SIPA protocols.
Towards this end, we define the TIPA (Triple Inner Product Argument) relation as follows:

Definition 8.6 (TIPA relation). Given pp = (3N,G, (G1,G2,G3)) ← Setup(1λ, 3N), we define the NP relation
Rpp

TIPA to be the set of tuples (
x,
w

)
=

(
(C, ℓ, (v1, v2, v3)),

(r1, r2, r3)

)
where (G1,G2,G3) ∈ G3N , C ∈ G, ℓ ∈ N is a prime larger than 2λ, v1, v2, v3 ∈ Zℓ, and r1, r2, r3 ∈ ZN such that

C = ⟨r1,G1⟩+ ⟨r2,G2⟩+ ⟨r3,G3⟩, and vi = ⟨ri, ri⟩ mod ℓ ∀ i ∈ [3]

Our TIPA protocol, which is an argument of knowledge for RTIPA, proceeds similarly to the SIPA protocol, by iteratively
reducing the size of the instances by half, and finally directly checking the obtained instance of constant size. We defer
the construction and proofs to Appendix E.1, but state our final theorem below.

Theorem 8.7. If the discrete log assumption (see Definition 3.1) and the strong RSA assumption (see Definition 3.6)
hold, then TIPA is an argument of knowledge for RTIPA. The prover time is O(2n) group operations, the verifier time is
O(2n) group operations, and the communication complexity is 2n|G|+6n|Zℓ|+12λ.

38

References
[ACFY24] G. Arnon, A. Chiesa, G. Fenzi, and E. Yogev. “STIR: Reed-Solomon Proximity Testing with Fewer

Queries”. In: CRYPTO 2024, Part X. Ed. by L. Reyzin and D. Stebila. Vol. 14929. LNCS. Springer,
Cham, Aug. 2024, pp. 380–413. doi: 10.1007/978-3-031-68403-6_12.

[AGLMS23] A. Arun, C. Ganesh, S. V. Lokam, T. Mopuri, and S. Sridhar. “Dew: A Transparent Constant-Sized
Polynomial Commitment Scheme”. In: PKC 2023, Part II. Ed. by A. Boldyreva and V. Kolesnikov.
Vol. 13941. LNCS. Springer, Cham, May 2023, pp. 542–571. doi: 10.1007/978-3-031-31371-
4_19.

[AH85] K. E. Atkinson and W. Han. Elementary numerical analysis. Wiley New York, 1985.
[BBBF18] D. Boneh, J. Bonneau, B. Bünz, and B. Fisch. “Verifiable Delay Functions”. In: CRYPTO 2018, Part I.

Ed. by H. Shacham and A. Boldyreva. Vol. 10991. LNCS. Springer, Cham, Aug. 2018, pp. 757–788.
doi: 10.1007/978-3-319-96884-1_25.

[BBBPWM18] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. “Bulletproofs: Short Proofs
for Confidential Transactions and More”. In: 2018 IEEE Symposium on Security and Privacy. IEEE
Computer Society Press, May 2018, pp. 315–334. doi: 10.1109/SP.2018.00020.

[BBCdGL18] C. Baum, J. Bootle, A. Cerulli, R. del Pino, J. Groth, and V. Lyubashevsky. “Sub-linear Lattice-
Based Zero-Knowledge Arguments for Arithmetic Circuits”. In: CRYPTO 2018, Part II. Ed. by
H. Shacham and A. Boldyreva. Vol. 10992. LNCS. Springer, Cham, Aug. 2018, pp. 669–699. doi:
10.1007/978-3-319-96881-0_23.

[BBF19] D. Boneh, B. Bünz, and B. Fisch. “Batching Techniques for Accumulators with Applications to
IOPs and Stateless Blockchains”. In: CRYPTO 2019, Part I. Ed. by A. Boldyreva and D. Micciancio.
Vol. 11692. LNCS. Springer, Cham, Aug. 2019, pp. 561–586. doi: 10.1007/978-3-030-26948-
7_20.

[BBHR18] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. “Fast Reed-Solomon Interactive Oracle Proofs
of Proximity”. In: ICALP 2018. Ed. by I. Chatzigiannakis, C. Kaklamanis, D. Marx, and D. Sannella.
Vol. 107. LIPIcs. Schloss Dagstuhl, July 2018, 14:1–14:17. doi: 10.4230/LIPIcs.ICALP.2018.14.

[BBHR19] E. Ben-Sasson, I. Bentov, Y. Horesh, and M. Riabzev. “Scalable Zero Knowledge with No Trusted
Setup”. In: CRYPTO 2019, Part III. Ed. by A. Boldyreva and D. Micciancio. Vol. 11694. LNCS.
Springer, Cham, Aug. 2019, pp. 701–732. doi: 10.1007/978-3-030-26954-8_23.

[BCCGP16] J. Bootle, A. Cerulli, P. Chaidos, J. Groth, and C. Petit. “Efficient Zero-Knowledge Arguments for
Arithmetic Circuits in the Discrete Log Setting”. In: EUROCRYPT 2016, Part II. Ed. by M. Fischlin
and J.-S. Coron. Vol. 9666. LNCS. Springer, Berlin, Heidelberg, May 2016, pp. 327–357. doi:
10.1007/978-3-662-49896-5_12.

[BCS21] J. Bootle, A. Chiesa, and K. Sotiraki. “Sumcheck Arguments and Their Applications”. In:
CRYPTO 2021, Part I. Ed. by T. Malkin and C. Peikert. Vol. 12825. LNCS. Virtual Event:
Springer, Cham, Aug. 2021, pp. 742–773. doi: 10.1007/978-3-030-84242-0_26.

[BCTV14] E. Ben-Sasson, A. Chiesa, E. Tromer, and M. Virza. “Scalable Zero Knowledge via Cycles of Elliptic
Curves”. In: CRYPTO 2014, Part II. Ed. by J. A. Garay and R. Gennaro. Vol. 8617. LNCS. Springer,
Berlin, Heidelberg, Aug. 2014, pp. 276–294. doi: 10.1007/978-3-662-44381-1_16.

[Ben+14] E. Ben-Sasson et al. “Zerocash: Decentralized Anonymous Payments from Bitcoin”. In: 2014 IEEE
Symposium on Security and Privacy. IEEE Computer Society Press, May 2014, pp. 459–474. doi:
10.1109/SP.2014.36.

[BF10] R. L. Burden and J. D. Faires. Numerical analysis. 2010.
[BF23] B. Bünz and B. Fisch. “Multilinear Schwartz-Zippel Mod N and Lattice-Based Succinct Arguments”.

In: TCC 2023, Part III. Ed. by G. N. Rothblum and H. Wee. Vol. 14371. LNCS. Springer, Cham,
2023, pp. 394–423. doi: 10.1007/978-3-031-48621-0_14.

[BFS19] B. Bünz, B. Fisch, and A. Szepieniec. Transparent SNARKs from DARK Compilers. Cryptology
ePrint Archive, Report 2019/1229. 2019. url: https://eprint.iacr.org/2019/1229.

[BFS20] B. Bünz, B. Fisch, and A. Szepieniec. “Transparent SNARKs from DARK Compilers”. In: EURO-
CRYPT 2020, Part I. Ed. by A. Canteaut and Y. Ishai. Vol. 12105. LNCS. Springer, Cham, May 2020,
pp. 677–706. doi: 10.1007/978-3-030-45721-1_24.

39

https://doi.org/10.1007/978-3-031-68403-6_12
https://doi.org/10.1007/978-3-031-31371-4_19
https://doi.org/10.1007/978-3-031-31371-4_19
https://doi.org/10.1007/978-3-319-96884-1_25
https://doi.org/10.1109/SP.2018.00020
https://doi.org/10.1007/978-3-319-96881-0_23
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.4230/LIPIcs.ICALP.2018.14
https://doi.org/10.1007/978-3-030-26954-8_23
https://doi.org/10.1007/978-3-662-49896-5_12
https://doi.org/10.1007/978-3-030-84242-0_26
https://doi.org/10.1007/978-3-662-44381-1_16
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1007/978-3-031-48621-0_14
https://eprint.iacr.org/2019/1229
https://doi.org/10.1007/978-3-030-45721-1_24

[BISW17] D. Boneh, Y. Ishai, A. Sahai, and D. J. Wu. Lattice-Based SNARGs and Their Application to
More Efficient Obfuscation. Cryptology ePrint Archive, Report 2017/240. 2017. url: https:
//eprint.iacr.org/2017/240.

[BM94] J. Benaloh and M. de Mare. “One-Way Accumulators: A Decentralized Alternative to Digital
Signatures”. In: Advances in Cryptology — EUROCRYPT ’93. Ed. by T. Helleseth. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1994, pp. 274–285. isbn: 978-3-540-48285-7.

[BP97] N. Bari and B. Pfitzmann. “Collision-Free Accumulators and Fail-Stop Signature Schemes Without
Trees”. In: EUROCRYPT’97. Ed. by W. Fumy. Vol. 1233. LNCS. Springer, Berlin, Heidelberg, May
1997, pp. 480–494. doi: 10.1007/3-540-69053-0_33.

[Bre00] R. P. Brent. “Public Key Cryptography with a Group of Unknown Order”. In: 2000. url: https:
//api.semanticscholar.org/CorpusID:14178879.

[BW88] J. Buchmann and H. C. Williams. “A Key-Exchange System Based on Imaginary Quadratic Fields”.
In: Journal of Cryptology 1.2 (June 1988), pp. 107–118. doi: 10.1007/BF02351719.

[CA69] S. A. Cook and S. O. Aanderaa. “On the minimum computation time of functions”. In: Transactions
of the American Mathematical Society 142 (1969), pp. 291–314.

[CBBZ23] B. Chen, B. Bünz, D. Boneh, and Z. Zhang. “HyperPlonk: Plonk with Linear-Time Prover and High-
Degree Custom Gates”. In: EUROCRYPT 2023, Part II. Ed. by C. Hazay and M. Stam. Vol. 14005.
LNCS. Springer, Cham, Apr. 2023, pp. 499–530. doi: 10.1007/978-3-031-30617-4_17.

[CGKR22] G. Couteau, D. Goudarzi, M. Klooß, and M. Reichle. “Sharp: Short Relaxed Range Proofs”. In: ACM
CCS 2022. Ed. by H. Yin, A. Stavrou, C. Cremers, and E. Shi. ACM Press, Nov. 2022, pp. 609–622.
doi: 10.1145/3548606.3560628.

[CHMMVW20] A. Chiesa, Y. Hu, M. Maller, P. Mishra, P. Vesely, and N. P. Ward. “Marlin: Preprocessing zkSNARKs
with Universal and Updatable SRS”. In: EUROCRYPT 2020, Part I. Ed. by A. Canteaut and Y. Ishai.
Vol. 12105. LNCS. Springer, Cham, May 2020, pp. 738–768. doi: 10.1007/978-3-030-45721-
1_26.

[CKLR21] G. Couteau, M. Klooß, H. Lin, and M. Reichle. “Efficient Range Proofs with Transparent Setup
from Bounded Integer Commitments”. In: EUROCRYPT 2021, Part III. Ed. by A. Canteaut and
F.-X. Standaert. Vol. 12698. LNCS. Springer, Cham, Oct. 2021, pp. 247–277. doi: 10.1007/978-
3-030-77883-5_9.

[CPP17] G. Couteau, T. Peters, and D. Pointcheval. “Removing the Strong RSA Assumption from Arguments
over the Integers”. In: EUROCRYPT 2017, Part II. Ed. by J.-S. Coron and J. B. Nielsen. Vol. 10211.
LNCS. Springer, Cham, 2017, pp. 321–350. doi: 10.1007/978-3-319-56614-6_11.

[DGS22] S. Dobson, S. Galbraith, and B. Smith. “Trustless unknown-order groups”. In: Mathematical
Cryptology 1.2 (2022), 25–39. url: https://journals.flvc.org/mathcryptology/article/
view/130579.

[DK02a] I. Damgard and M. Koprowski. Generic Lower Bounds for Root Extraction and Signature Schemes
in General Groups. Cryptology ePrint Archive, Report 2002/013. 2002. url: https://eprint.
iacr.org/2002/013.

[DK02b] I. Damgård and M. Koprowski. “Generic Lower Bounds for Root Extraction and Signature Schemes
in General Groups”. In: EUROCRYPT 2002. Ed. by L. R. Knudsen. Vol. 2332. LNCS. Springer,
Berlin, Heidelberg, 2002, pp. 256–271. doi: 10.1007/3-540-46035-7_17.

[DSV03] G. P. Davidoff, P. Sarnak, and A. Valette. Elementary number theory, group theory, and Ramanujan
graphs. Vol. 55. 1. Cambridge university press Cambridge, 2003.

[FO97] E. Fujisaki and T. Okamoto. “Statistical Zero Knowledge Protocols to Prove Modular Polynomial
Relations”. In: CRYPTO’97. Ed. by B. S. Kaliski Jr. Vol. 1294. LNCS. Springer, Berlin, Heidelberg,
Aug. 1997, pp. 16–30. doi: 10.1007/BFb0052225.

[GG03] J. V. Z. Gathen and J. Gerhard. Modern Computer Algebra. 2nd ed. USA: Cambridge University
Press, 2003. isbn: 0521826462.

[GGPR13] R. Gennaro, C. Gentry, B. Parno, and M. Raykova. “Quadratic Span Programs and Succinct NIZKs
without PCPs”. In: EUROCRYPT 2013. Ed. by T. Johansson and P. Q. Nguyen. Vol. 7881. LNCS.
Springer, Berlin, Heidelberg, May 2013, pp. 626–645. doi: 10.1007/978-3-642-38348-9_37.

40

https://eprint.iacr.org/2017/240
https://eprint.iacr.org/2017/240
https://doi.org/10.1007/3-540-69053-0_33
https://api.semanticscholar.org/CorpusID:14178879
https://api.semanticscholar.org/CorpusID:14178879
https://doi.org/10.1007/BF02351719
https://doi.org/10.1007/978-3-031-30617-4_17
https://doi.org/10.1145/3548606.3560628
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-45721-1_26
https://doi.org/10.1007/978-3-030-77883-5_9
https://doi.org/10.1007/978-3-030-77883-5_9
https://doi.org/10.1007/978-3-319-56614-6_11
https://journals.flvc.org/mathcryptology/article/view/130579
https://journals.flvc.org/mathcryptology/article/view/130579
https://eprint.iacr.org/2002/013
https://eprint.iacr.org/2002/013
https://doi.org/10.1007/3-540-46035-7_17
https://doi.org/10.1007/BFb0052225
https://doi.org/10.1007/978-3-642-38348-9_37

[GKR08] S. Goldwasser, Y. T. Kalai, and G. N. Rothblum. “Delegating computation: interactive proofs
for muggles”. In: 40th ACM STOC. Ed. by R. E. Ladner and C. Dwork. ACM Press, May 2008,
pp. 113–122. doi: 10.1145/1374376.1374396.

[GMR85] S. Goldwasser, S. Micali, and C. Rackoff. “The Knowledge Complexity of Interactive Proof-
Systems (Extended Abstract)”. In: 17th ACM STOC. ACM Press, May 1985, pp. 291–304. doi:
10.1145/22145.22178.

[Gro05] J. Groth. “Non-interactive Zero-Knowledge Arguments for Voting”. In: ACNS 05International
Conference on Applied Cryptography and Network Security. Ed. by J. Ioannidis, A. Keromytis,
and M. Yung. Vol. 3531. LNCS. Springer, Berlin, Heidelberg, June 2005, pp. 467–482. doi:
10.1007/11496137_32.

[Gro16] J. Groth. “On the Size of Pairing-Based Non-interactive Arguments”. In: EUROCRYPT 2016, Part II.
Ed. by M. Fischlin and J.-S. Coron. Vol. 9666. LNCS. Springer, Berlin, Heidelberg, May 2016,
pp. 305–326. doi: 10.1007/978-3-662-49896-5_11.

[GW11] C. Gentry and D. Wichs. “Separating succinct non-interactive arguments from all falsifiable
assumptions”. In: 43rd ACM STOC. Ed. by L. Fortnow and S. P. Vadhan. ACM Press, June 2011,
pp. 99–108. doi: 10.1145/1993636.1993651.

[GWC19] A. Gabizon, Z. J. Williamson, and O. Ciobotaru. PLONK: Permutations over Lagrange-bases for
Oecumenical Noninteractive arguments of Knowledge. Cryptology ePrint Archive, Report 2019/953.
2019. url: https://eprint.iacr.org/2019/953.

[HH21] D. Harvey and J. van der Hoeven. “Integer multiplication in time O(nlog n)”. In: Annals of
Mathematics 193.2 (2021), pp. 563 –617. doi: 10.4007/annals.2021.193.2.4. url: https:
//doi.org/10.4007/annals.2021.193.2.4.

[KC09] D. R. Kincaid and E. W. Cheney. Numerical analysis: mathematics of scientific computing. Vol. 2.
American Mathematical Soc., 2009.

[KCLM22] I. Khaburzaniya, K. Chalkias, K. Lewi, and H. Malvai. “Aggregating and Thresholdizing Hash-based
Signatures using STARKs”. In: ASIACCS 22. Ed. by Y. Suga, K. Sakurai, X. Ding, and K. Sako.
ACM Press, 2022, pp. 393–407. doi: 10.1145/3488932.3524128.

[Kil92] J. Kilian. “A Note on Efficient Zero-Knowledge Proofs and Arguments (Extended Abstract)”. In:
24th ACM STOC. ACM Press, May 1992, pp. 723–732. doi: 10.1145/129712.129782.

[KM03] S. Kwek and K. Mehlhorn. “Optimal search for rationals”. In: Information Processing Letters 86.1
(2003), pp. 23–26. issn: 0020-0190. doi: https://doi.org/10.1016/S0020-0190(02)00455-
6. url: https://www.sciencedirect.com/science/article/pii/S0020019002004556.

[Knu98] D. E. Knuth. The art of computer programming, Volume II: Seminumerical Algorithms, 3rd Edition.
Addison-Wesley, 1998. isbn: 0201896842. url: https://www.worldcat.org/oclc/312898417.

[KP23] A. Kothapalli and B. Parno. “Algebraic Reductions of Knowledge”. In: CRYPTO 2023, Part IV. Ed. by
H. Handschuh and A. Lysyanskaya. Vol. 14084. LNCS. Springer, Cham, Aug. 2023, pp. 669–701.
doi: 10.1007/978-3-031-38551-3_21.

[KPV22] A. A. Kattis, K. Panarin, and A. Vlasov. “RedShift: Transparent SNARKs from List Polynomial
Commitments”. In: ACM CCS 2022. Ed. by H. Yin, A. Stavrou, C. Cremers, and E. Shi. ACM Press,
Nov. 2022, pp. 1725–1737. doi: 10.1145/3548606.3560657.

[KZG10] A. Kate, G. M. Zaverucha, and I. Goldberg. “Constant-Size Commitments to Polynomials and Their
Applications”. In: ASIACRYPT 2010. Ed. by M. Abe. Vol. 6477. LNCS. Springer, Berlin, Heidelberg,
Dec. 2010, pp. 177–194. doi: 10.1007/978-3-642-17373-8_11.

[LAN01] H. Lipmaa, N. Asokan, and V. Niemi. Secure Vickrey Auctions without Threshold Trust. Cryptology
ePrint Archive, Report 2001/095. 2001. url: https://eprint.iacr.org/2001/095.

[Lee21] J. Lee. “Dory: Efficient, Transparent Arguments for Generalised Inner Products and Polynomial
Commitments”. In: TCC 2021, Part II. Ed. by K. Nissim and B. Waters. Vol. 13043. LNCS. Springer,
Cham, Nov. 2021, pp. 1–34. doi: 10.1007/978-3-030-90453-1_1.

[Lip03] H. Lipmaa. “On Diophantine Complexity and Statistical Zero-Knowledge Arguments”. In: ASI-
ACRYPT 2003. Ed. by C.-S. Laih. Vol. 2894. LNCS. Springer, Berlin, Heidelberg, 2003, pp. 398–415.
doi: 10.1007/978-3-540-40061-5_26.

41

https://doi.org/10.1145/1374376.1374396
https://doi.org/10.1145/22145.22178
https://doi.org/10.1007/11496137_32
https://doi.org/10.1007/978-3-662-49896-5_11
https://doi.org/10.1145/1993636.1993651
https://eprint.iacr.org/2019/953
https://doi.org/10.4007/annals.2021.193.2.4
https://doi.org/10.4007/annals.2021.193.2.4
https://doi.org/10.4007/annals.2021.193.2.4
https://doi.org/10.1145/3488932.3524128
https://doi.org/10.1145/129712.129782
https://doi.org/https://doi.org/10.1016/S0020-0190(02)00455-6
https://doi.org/https://doi.org/10.1016/S0020-0190(02)00455-6
https://www.sciencedirect.com/science/article/pii/S0020019002004556
https://www.worldcat.org/oclc/312898417
https://doi.org/10.1007/978-3-031-38551-3_21
https://doi.org/10.1145/3548606.3560657
https://doi.org/10.1007/978-3-642-17373-8_11
https://eprint.iacr.org/2001/095
https://doi.org/10.1007/978-3-030-90453-1_1
https://doi.org/10.1007/978-3-540-40061-5_26

[Lip12] H. Lipmaa. “Secure Accumulators from Euclidean Rings without Trusted Setup”. In: ACNS
12International Conference on Applied Cryptography and Network Security. Ed. by F. Bao, P.
Samarati, and J. Zhou. Vol. 7341. LNCS. Springer, Berlin, Heidelberg, June 2012, pp. 224–240. doi:
10.1007/978-3-642-31284-7_14.

[LLX07] J. Li, N. Li, and R. Xue. “Universal Accumulators with Efficient Nonmembership Proofs”. In:
ACNS 07International Conference on Applied Cryptography and Network Security. Ed. by J. Katz
and M. Yung. Vol. 4521. LNCS. Springer, Berlin, Heidelberg, June 2007, pp. 253–269. doi:
10.1007/978-3-540-72738-5_17.

[LPS24] H. Lipmaa, R. Parisella, and J. Siim. “Constant-Size zk-SNARKs in ROM from Falsifiable Assump-
tions”. In: EUROCRYPT 2024, Part VI. Ed. by M. Joye and G. Leander. Vol. 14656. LNCS. Springer,
Cham, May 2024, pp. 34–64. doi: 10.1007/978-3-031-58751-1_2.

[LXZSZ23] T. Liu, T. Xie, J. Zhang, D. Song, and Y. Zhang. Pianist: Scalable zkRollups via Fully Distributed
Zero-Knowledge Proofs. Cryptology ePrint Archive, Report 2023/1271. 2023. url: https://
eprint.iacr.org/2023/1271.

[MBKM19] M. Maller, S. Bowe, M. Kohlweiss, and S. Meiklejohn. “Sonic: Zero-Knowledge SNARKs from
Linear-Size Universal and Updatable Structured Reference Strings”. In: ACM CCS 2019. Ed. by
L. Cavallaro, J. Kinder, X. Wang, and J. Katz. ACM Press, Nov. 2019, pp. 2111–2128. doi:
10.1145/3319535.3339817.

[NT16] A. Naveh and E. Tromer. “PhotoProof: Cryptographic Image Authentication for Any Set of Permissible
Transformations”. In: 2016 IEEE Symposium on Security and Privacy. IEEE Computer Society
Press, May 2016, pp. 255–271. doi: 10.1109/SP.2016.23.

[Pie19] K. Pietrzak. “Simple Verifiable Delay Functions”. In: ITCS 2019. Ed. by A. Blum. Vol. 124. LIPIcs,
Jan. 2019, 60:1–60:15. doi: 10.4230/LIPIcs.ITCS.2019.60.

[PT18] P. Pollack and E. Treviño. “Finding the Four Squares in Lagrange’s Theorem.” In: Integers 18.A15
(2018), pp. 7–17.

[Rei89] J. H. Reif. “Optimal size integer division circuits”. In: Proceedings of the twenty-first annual ACM
symposium on Theory of computing. 1989, pp. 264–273.

[RS86] M. O. Rabin and J. O. Shallit. “Randomized algorithms in number theory”. In: Communications on
Pure and Applied Mathematics 39.S1 (1986), S239–S256.

[RSW96] R. L. Rivest, A. Shamir, and D. A. Wagner. Time-lock Puzzles and Timed-release Crypto. Tech. rep.
USA, 1996.

[SB23] I. A. Seres and P. Burcsi. Behemoth: transparent polynomial commitment scheme with constant
opening proof size and verifier time. Cryptology ePrint Archive, Report 2023/670. 2023. url:
https://eprint.iacr.org/2023/670.

[SDW08] D. Sandler, K. Derr, and D. S. Wallach. “VoteBox: A Tamper-evident, Verifiable Electronic Voting
System”. In: USENIX Security 2008. Ed. by P. C. van Oorschot. USENIX Association, 2008,
pp. 349–364.

[Set20] S. Setty. “Spartan: Efficient and General-Purpose zkSNARKs Without Trusted Setup”. In: CRYPTO 2020,
Part III. Ed. by D. Micciancio and T. Ristenpart. Vol. 12172. LNCS. Springer, Cham, Aug. 2020,
pp. 704–737. doi: 10.1007/978-3-030-56877-1_25.

[STW23] S. Setty, J. Thaler, and R. Wahby. Customizable constraint systems for succinct arguments. Cryptology
ePrint Archive, Report 2023/552. 2023. url: https://eprint.iacr.org/2023/552.

[Wes19] B. Wesolowski. “Efficient Verifiable Delay Functions”. In: EUROCRYPT 2019, Part III. Ed.
by Y. Ishai and V. Rijmen. Vol. 11478. LNCS. Springer, Cham, May 2019, pp. 379–407. doi:
10.1007/978-3-030-17659-4_13.

[ZXZS20] J. Zhang, T. Xie, Y. Zhang, and D. Song. “Transparent Polynomial Delegation and Its Applications
to Zero Knowledge Proof”. In: 2020 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, May 2020, pp. 859–876. doi: 10.1109/SP40000.2020.00052.

42

https://doi.org/10.1007/978-3-642-31284-7_14
https://doi.org/10.1007/978-3-540-72738-5_17
https://doi.org/10.1007/978-3-031-58751-1_2
https://eprint.iacr.org/2023/1271
https://eprint.iacr.org/2023/1271
https://doi.org/10.1145/3319535.3339817
https://doi.org/10.1109/SP.2016.23
https://doi.org/10.4230/LIPIcs.ITCS.2019.60
https://eprint.iacr.org/2023/670
https://doi.org/10.1007/978-3-030-56877-1_25
https://eprint.iacr.org/2023/552
https://doi.org/10.1007/978-3-030-17659-4_13
https://doi.org/10.1109/SP40000.2020.00052

A Deferred discussions on assumptions
A.1 Implied assumptions
In Section 3.2 and consequently in the main body, we focus only on the strongest assumptions underlying our work.
However, to prove the security of certain constructions, it is more convenient to work with weaker assumptions that are
implied by these stronger ones. Here, we present these weaker assumptions and demonstrate how they follow from the
stronger ones.

Multi-Rational Root
Assumption

Single-Rational Root
Assumption

Strong RSA
Assumption

Hidden-Order
Assumption

Adaptive Root
Assumption

Modular Consistency
Assumption

G
en

er
ic

 G
ro

up
 M

od
el

 (G
G

M
)

Lemma 3.4Lemma A.4 Lemma A.2

Lemma A.8 Lemma A.6

Discrete Logarithm
Assumption

BBF18

DK02

Figure 1: Assumptions used in this work. New assumptions are highlighted

A.1.1 Adaptive root assumption

At a high level, the adaptive root assumption says that no efficient adversary, with non-negligible probability, can output
a random prime ℓth root of a chosen group element W . A more formal statement is as follows.

Definition A.1 (Adaptive root assumption [Wes19]). We say that the adaptive root assumption holds for GGen if for all
efficient stateful adversaries A = (A1,A2), AdvARA (λ) ≤ negl(λ), where

AdvARA (λ) := Pr

 ℓ ·X = Y ̸= 0

∣∣∣∣∣∣∣∣
G← GGen(1λ)
Y ← A1(G)
ℓ← Primes[λ, 2λ]
X ← A2(ℓ)

Lemma A.2. The modular consistency assumption implies the adaptive root assumption, meaning it is strictly stronger
than the adaptive root assumption.

Proof. Suppose there exists an adversary A = (A1,A2) that breaks the adaptive root assumption with non-negligible
probability. We will show that we can construct an adversary B = (B1,B2) that breaks the modular consistency
assumption.

B1(G,G)→ U

1. Run A1 on input G to get Y and the internal adaptive root state
AR.state.

2. Output U := Y and pass AR.state to B2.

43

By construction B1 runs in at most poly(λ) steps. We can define T in terms of the running time of A1.

B2 → [ri, Qi, ℓi]
T
i=1

1. Prase the internal state as AR.state.
2. Initialize an empty list of size T .
3. For i ∈ [T]:
4. Sample ℓi

$← Primes[λ, 2λ].
5. Set Xi ← A2(ℓ) on internal state AR.state.
6. Append (0, Xi, ℓi) to the list.
7. Output the list.

Clearly, B2 also runs in polynomial time. By a counting argument, notice that for a non-negligible fraction of Y output
by A1, there must be a non-negligible number of ℓi such that A2 outputs a valid Xi. If this were not the case, then the
probability of success of the adversary AdvARA (λ) would be negligible.

Now, we need to actually check that the modular consistency assumption is broken. Since all remainders are set to 0, the
CRT solution x = 0. By construction, each Xi is such that ℓi ·Xi = Y . Since Y ̸= 0, we have that ⟨0,G⟩ = 0 ̸= Y .
Thus, B breaks the modular consistency assumption.

A.1.2 Hidden order assumption

The hidden order assumption states that an efficient adversary cannot compute a multiple of the order of a given random
group element. A more formal statement of the assumption is as follows.

Definition A.3 (Hidden order assumption). For a group of unknown order G← GGen(1λ), the Order assumption holds
if for any adversary A:

Pr

 W ̸= 0 ∧ x ·W = 0

∣∣∣∣∣∣
G← GGen(1λ)
A(G)→ (W,x)
where |x|≤ 2poly(λ) and W ∈ G

Lemma A.4. [BBF19, Lemma 2] The adaptive root assumption implies the hidden order assumption, meaning it is
strictly stronger than the hidden order assumption.

A.1.3 Single rational root assumption

Definition A.5 (Single rational root assumption). GGen satisfies the single rational root assumption if for all efficientA,
AdvSRRA (λ) ≤ negl(λ), where:

AdvSRRA (λ) := Pr

m · U = r ·G

∧
m and r are coprime

∧
m ̸= 1

∣∣∣∣∣∣∣∣∣∣
G← GGen(1λ)

G
$← G

(U,m, r) ∈ G× N× N← A(G, G)

We now prove the following lemma.

Lemma A.6. The strong RSA assumption implies the single rational root assumption, meaning it is strictly stronger
than the single rational root assumption.

44

Proof. We will prove the contrapositive: given an adversary A that breaks the single rational root assumption, we show
that we can construct an adversary B = (B1,B2) that breaks the strong RSA assumption. The adversary B1 works as
follows:

B(G, G)→ (U, ℓ)

1. Obtain (U ′,m, r)← A(G, G).
2. Compute the Bezout coefficients a, b such that

am+ br = 1

3. Set U := b · U ′ + a ·G and ℓ := m.
4. Output (U, ℓ).

The adversary A(G, G) with non-negligible probability outputs U ′,m, r such that m ̸= 1 and m and r are co-prime
and m · U ′ = r ·G. B then essentially uses Shamir’s trick: for U := b · U ′ + a ·G, clearly

m · U = m · (b · U ′ + a ·G)

= b ·m · U ′ + a ·m ·G
= b · r ·G+ a ·m ·G
= (am+ br) ·G = 1 ·G

Since B succeeds in outputting such a tuple with non-negligible probability, it breaks the strong RSA assumption.

A.1.4 Multi-rational root assumption

We now state our second new assumption, the multi-rational root assumption, which is implied by the strong RSA
assumption. At a high level, it states that for any n ∈ N, no efficient adversaryA, except with negligible probability, can
find a non-trivial ‘rational root’ of a vector of randomly sampled generators G $← Gn. A group element U is said to be
an (m, r)’th rational root of G if m · U = ⟨r,G⟩ and m and ri are coprime, for some i ∈ [n]. It is additionally said to
be non-trivial if m ̸= 1.

Definition A.7 (Multi-rational root assumption). GGen satisfies the multi-rational root assumption if, for all n ∈ N =
poly(λ) and all efficient A, AdvMRR

A,n (λ) ≤ negl(λ), where AdvMRR
A,n (λ) :=

Pr

m · U = ⟨r,G⟩

∧
∃i ∈ [N] : m and ri are coprime

∧
m ̸= 1

∣∣∣∣∣∣∣∣∣∣
G← GGen(1λ)

G
$← Gn

(U,m, r) ∈ G× N× Nn ← A(G,G)

We now state our main lemma about the multi-rational root assumption, but defer the proof to Appendix A.1.4.

Lemma A.8. The strong RSA assumption implies the multi-rational root assumption, meaning it is strictly stronger
than the multi-rational root assumption.

Proof. Given an adversary A that breaks the multi-rational root assumption for some particular n = poly(λ), we show
that we can construct an adversary B that breaks the single rational root assumption. This along with Lemma A.6
implies that the strong RSA assumption implies the strong rational root assumption. The adversary B (parametrized by
a bound B that we fix later) works as follows:

45

B(G, G)→ (U,m, r)

1. For i ∈ [n]:
2. Sample αi

$← [0, B).
3. Set Gi := αi ·G.
4. Obtain (U ′,m′, r′)← A(G,G).
5. Compute coprime m and r such that:

r

m
=

n∑
i=1

αir
′
i

m′

6. Output (U := U ′,m, r).

The adversary A(G,G) with non-negligible probability outputs U ′,m′, r′ such that m ̸= 1, ri < m for all i ∈ [n], m
is co-prime with at least one ri, say for i = i′, and

m′ · U ′ = ⟨r′,G⟩

Replacing Gi with αi ·G for each i ∈ [n], we get:

m′ · U ′ =

(
n∑

i=1

r′i · αi

)
·G

Let a := gcd(
∑n

i=1 αir
′
i,m

′). Since r and m are coprime numbers such that
r

m
=

∑n
i=1 αir

′
i

m′
, if it were not the case

that m · U ′ = r ·G, then

m · U ′ ̸= r ·G
=⇒ a ·m · U ′ ̸= a · r ·G

=⇒ m′ · U ′ ̸=
n∑

i=1

αir
′
i ·G (a contradiction)

Thus it must be the case that m · U ′ = r ·G.

Probability of B succeeding over choice of α. If m ̸= 1, then B has succeeded in breaking the single rational root
assumption. That is, if gcd(m,

∑n
i=1 ri · αi) < m, B succeeds. Or equivalently, if

∑n
i=1 αi · ri ̸= 0 mod m.

Thus, it is enough to upper bound the probability that
∑n

i=1 αi · ri = 0 mod m, over the choice of α := [αi]
n
i=1. Since

m ̸= 1 it has a prime factor p. Since for any x = 0 mod m, it must also be that x = 0 mod p, the aforementioned
probability is upper bounded by

Pr
α

$←[0,B)n
[

n∑
i=1

αi · ri = 0 mod p]

We know that there exists an ri′ that is coprime with m, which means it must also be coprime with p. For any fixed
value of α′ := [αi]i∈[n],i̸=i′ , let sα′ := r−1i′ · (

∑
i∈[n],i̸=i′ αi · ri) mod p. The above probability now is equal to:

Pr
α

$←[0,B)n
[αi′ = −sα′ mod p] = Pr

αi′
$←[0,B)

[αi′ = c mod p]

46

The equality follows from the observation that the probability on the left is precisely the average over all choices of α′
of the probability on the right, with k = −sα′ .

Since αi′ is sampled from the space [0, B), if p|B, then αi′ is uniform mod p (each possible value mod p appears the
same number of times). More generally, let t := B mod p. Then if αi′

$← [0, B − t), again it looks uniform, but if
αi′

$← [B − t, B), the probability of it being c mod p is at most 1/t (at most one value that is equal to −k mod p).
Thus, we have:

Pr
α

$←[0,B)n
[αi′ = −sα′ mod p] = Pr

αi′
$←[0,B)

[αi′ = c mod p]

=

(
1− t

B

)
Pr

αi′
$←[0,B−t)

[αi′ = c mod p]

+

(
t

B

)
Pr

αi′
$←[B−t,B)

[αi′ = c mod p]

≤
(
1− t

B

)
1

p
+

(
t

B

)
1

t

≤ 1

p
+

(
1

B
− t

Bp

)
≤ 1

p
+

1

B

Thus, the probability that the m output by B remains greater than 1, given thatA succeeds in breaking the single rational
root assumption is lower bounded by 1−Pr

α
$←[0,B)n

[αi′ = −sα′ mod p]. We now proceed to analyze the probability
A succeeds in breaking the single rational root assumption, given as inputs G := [αi ·G]i∈[n].

Probability of A succeeding. Recall that A(G,G) succeeds with non-negligible probability if G is indeed randomly
sampled from Gn. Thus, we will just lower bound the probability over the choice of α that G seems randomly sampled.

The argument is similar to the earlier one. Let B′ be an upper bound on the size of the group. If we sample αi

from [0, B). The bad case is that αi is not uniform mod |G|. For t := B mod |G|, this can only be the case if
αi ∈ [B − t, B). Note that t < |G|< B′ < B. So as long as each αi

$← [0, B − t], G appears randomly sampled
from Gn. This happens with probability (1− t/B)n ≥ (1−B′/B)n. We can set B := nB′, and use the inequality(
1− 1

x

)x

≥ 1

4
for x ≥ 2. Thus, for at least a 1/4 fraction of choices of α, G is truly random.

Let the adversaryA(G, G) succeed with non-negligible probability pwhenG $← Gn, then it succeeds with non-negligible
probability at least

p

4
over the randomness of A and the choice of α.

Overall probability of B succeeding. Recall that the probability that B succeeds given that A succeeds is lower
bounded by

Pr
α

$←[0,B)n
[B succeeds|A succeeds] ≥ 1− Pr

α
$←[0,B)n

[αi′ = −sα′ mod p]

≥ 1− 1

p
− 1

B

For B = nB′ = O(1/2λ), this can be lower bounded by a constant c′. Thus, the overall probability of B succeeding is
lower bounded by

Pr
α

$←[0,B)n
[B succeeds|A succeeds] Pr[A succeeds] ≥ c′p

4

47

Where the latter probability is over the choice of α as well as the randomness ofA. Thus,A succeeds with non-negligible
probability for the choice B := nB′, where B′ is the upper bound on the size of the group implicit in GGen.

A.2 Modular consistency security in GGM
Here, we prove the Lemma 3.5.

Proof. Let A = (A1,A2) be a generic adversary that plays the modular consistency game. We will show that A
succeeds with at most negligible probability.
Since A1 is a T · rep-step Turing machine, the output element U of A1 can be represented as

∑N
i=1 αi ·Gi with each

αi ≤ 2T+2. This holds since a T · rep-step Turing machine can make at most T queries to O2 (as it needs at least rep
steps to read the output of each query). Here, N is the number of queries made to O1.

WLOG, let the generators sampled in the game be G = (G1, . . . , Gn). Then, suppose we have that for all i ∈ [T],
⟨ri,G⟩+ ℓiQi = U . This implies that

n∑
j=1

ri,j ·Gj +

N∑
j=1

ℓi · βi,j ·Gj =

N∑
j=1

αj ·Gj

=⇒
n∑

j=1

(ri,j + ℓi · βi,j) ·Gj +

N∑
j=n+1

ℓi · βi,j ·Gj =

N∑
j=1

αj ·Gj

Unless the event DLOG happens (which can happen with at most negligible probability), we first have that ℓi · βi,j = αj

for all i ∈ [T] and j > n. In particular, this implies that ℓi|αj for all i ∈ [T] and j > n. However, since the ℓi are all
coprime, this can only happen if αj >

∏
i∈[T] ℓi > 2T+2, which is a contradiction or if αj = 0 for all j > n.

Similarly, we also have with overwhelming probability that ri,j + ℓi · βi,j = αj for all i ∈ [T] and j ∈ [n]. In particular,
for any j, this implies that ri,j = αj mod ℓi for all i ∈ [T]. Using the Chinese Remainder Theorem, there is a unique
solution of for αj modulo

∏
i∈[T] ℓi. However, this product is larger than the bound on αj – hence it must hold that

xj = αj for all j ∈ [n]. This implies that ⟨x,G⟩ = U with overwhelming probability.

48

B Deferred DewTwo Proofs
In this section we present the rest of our deferred proofs.

B.1 Proof of binding for Construction 1
The binding property (see Section 2.4) of the DewTwo protocol relies on two factors: (a) the modular consistency
assumption, and (b) the properties of the hint space. Here, instead of using the modular consistency assumption, we use
the hidden order assumption which is implied by the adaptive root assumption [BBF19, Lemma 2]; Hence, implied by
the modular consistency Lemma A.2.

Before proving the binding property of the DewTwo protocol, we state a lemma that will be used in the proof.

Lemma B.1. Let x ̸= y and x, y ∈ H = {ab ∈ Q : |ab |≤ A, 0 < b ≤ B}. Then we have

1

B2
≤ |x− y|≤ 2A

Proof of Lemma B.1. Let x = xa

xb
, y = ya

yb
, and xa, xb, ya, yb ∈ Z. The lower-bound is derived as follows:

|x− y|=
∣∣∣∣xa

xb
− ya

yb

∣∣∣∣ = ∣∣∣∣xayb − yaxb

xbyb

∣∣∣∣ ≤ 1

xbyb
≤ 1

B2

The upper-bound is derived as follows:

|x− y|≤ maxH−minH = A− (−A) = 2A

Proof. If there exists a PPT adversaryA that breaks the binding property of CS with non-negligible probability ϵ(λ), i.e.

Pr

CS.Open(pp, cm, p, p̃) = 1

∧
CS.Open(pp, cm, p′, p̃′) = 1

∧
p ̸= p′

∣∣∣∣ pp← CS.Setup(1λ)
(cm, p,p′, p̃, p̃′)← A(pp)

 ≥ ϵ(λ)

CS.Open outputs 1 for both pairs of (p, p̃) and (p′, p̃′); therefore we have:

1. Both opening hints lie in the correct hint space, i.e. p̃, p̃′ ∈ HN where

H =
{a
b
∈ Q : |a

b
|≤ A, 0 < b ≤ B

}
where A = Nq2µ+1 + 1 and B = N8µ · (2µ)λ.

2. Both of the hints lead to the same commitment:(
N−1∑
i=0

p̃iα
i

)
·G =

(
N−1∑
i=0

p̃′iα
i

)
·G→

(
N−1∑
i=0

(p̃i − p̃′i)α
i

)
·G = 0

Now there are two possibilities for the exponent
∑N−1

i=0 (p̃i − p̃′i)α
i, either it’s zero or non-zero.

• Case 1 (Non-Zero exponent event):
∑N−1

i=0 (p̃i− p̃′i)α
i ̸= 0, In this case we useA to break the hidden order assumption

(see Definition A.3). Specifically, Aord, the adversary for the hidden order assumption, takes on input (G, G,G),
invokes A to get (cm, p, p′, p̃, p̃′), and outputs (W = G, x =

∑N−1
i=0 (p̃i − p̃′i)α

i).

49

• Case 2 (Zero exponent event):
∑N−1

i=0 (p̃i − p̃′i)α
i = 0, we show that this case is impossible. WLOG, let j be the

largest index such that p̃j ̸= p̃′j . This implies that
∑j

i=0(p̃i − p̃′i)α
i = 0 or equivalently

(p̃j − p̃′j)α
j =

j−1∑
i=0

(p̃i − p̃′i)α
i

By taking the absolute value of both sides and replacing the upper-bound of the Lemma B.1 in the right-hand side, we
get

∣∣(p̃j − p̃′j)α
j
∣∣ = ∣∣∣∣∣

j−1∑
i=0

(p̃i − p̃′i)α
i

∣∣∣∣∣ ≤ 2A

j−1∑
i=0

αi

Also, in a geometric series where α = q7µ > 2, we have
∑j−1

i=0 αi = αj−1/(α− 1) ≤ αj−1; hence, we simplify the
above equation by: ∣∣(p̃j − p̃′j)α

j
∣∣ ≤ 2Aαj−1

Now by using the lower-bound of the Lemma B.1 we get

αj

B2
≤
∣∣(p̃j − p̃′j)α

j
∣∣ ≤ 2Aαj−1

Now, If we could show that αj/B2 > 2Aαj−1, or equivalently, α > 2AB2, we get a contradiction and we’re done
with the proof. Basically, this inequality is a guideline to choose the parameters of the scheme. By plugging the A
and B, we get

α ≥ 2AB2 = 2(Nq2µ+1 + 1) · (N8µ.(2µ)λ)2

By plugging the parameters mentioned in the construction, i.e. α = q7µ, N4 ≤ q, µ ≤ λ/4 and 3 ≤ λ < log q, we
get

q7µ ≥ 2(q2µ+1.25 + 1)q4µ · q2+log µ

We claim that the above equality holds for µ ≥ 4. This is because if µ ≥ 4, then qµ ≥ 4 q3+log µ. Hence,

q7µ = q6µ qµ ≥ q6µ (4 q3+log µ) = 4 q6µ+3+log µ ≥ 2(q2µ+1 + 1) q4µ q2+log µ,

where the last step uses q2µ+1 + 1 ≤ 2 q2µ+1.

Therefore, by the hidden order assumption which is implied by the adaptive root assumption, and by analyzing the above
two cases, we have:

Pr[A success] = Pr[A success|zero exponent] Pr[zero exponent]
+ Pr[Asuccess|non-zero exponent] Pr[non-zero exponent]
= 0 + Pr[Aord success]
≤ negl(λ)

B.2 Security of Weak-DewTwo
In this section, we present the deferred proof of the DewTwo protocol presented in Section 5.2.

50

B.2.1 Costs of Weak-Eval

Cost of CoeffSplit (Algorithm 5.2.1). Let a and b be n-bit integers, CoeffSplit first multiplies a and b in O(M(n)),
then invokes a constant number of integer divisions of size O(n) bits; Hence, the complexity of CoeffSplit is O(M(n)).

Cost of MonomialExpand (Algorithm 5.2.1). It computes a vector of size N , where each entry is computed in at
most O(logµ) = O(log logN) field multiplications. A q bit field multiplication costs at most M(log(q)) = O(λ log λ).
Then the total complexity of MonomialExpand is O(Nλ log λ log logN).

Prover time. The prover time consists of (i) O(µ) field operations for Steps 1 and 2 (see Remark 5.4) or equiv-
alently O(µ log q) = O(µλ) bit operations (ii) O(logαN) = O(λN logN) bit operations for invoking CoeffSplit
(iii) O(MSM(log nTPoKEDex, nTPoKEDex) + log nTPoKEDex) group operations and O(M(nTPoKEDex) log

2 nTPoKEDex) bit
operations for invoking TPoKEDex. By plugging nTPoKEDex = O(log(Nqµ+1αN−2)) = O(λN logN), we get

O(MSM(log(λN logN), λN logN) + log(λN logN)) =
(λN logN) log(λN logN)

log log(λN logN)
+ log(λN logN)

= O(λN log2(λN))

group operations and

O(M(λN logN) log2(λN logN)) = λN logN log3(λN logN)

= O(λN log4(λN))

bit operations.

Verifier time. The verifier time consists of (i) O(µ) field operations, or equivalently O(log q) = O(λ) bit operations
for Steps 1 and 2 (ii) O(λ + log nTPoKEDex) group operations and O(sTPoKEDexM(λ)) bit operations for invoking
TPoKEDex. By plugging nTPoKEDex = O(λN logN) and sTPoKEDex = logN we get O(λ+log λN) group operations
and O(logNM(λ)) bit operations. By summing up the above, we get O(λ + log λN) group operations, and
O(λ log λ logN) bit operations.

Proof size. The proof consists of 1 group element in Step 5 and 2⌈log⌈log 2nTPoKEDex + 5⌉⌉+ 3 group elements and
12λ⌈log⌈log 2nTPoKEDex + 5⌉⌉ + 22λ bits. For TPoKEDex invocation in Step 6. By the following upper bound for
nTPoKEDex:

nTPoKEDex ≤ log(Nqµ+1αN−2)

= log(N) + (µ+ 1) log(q) + (N − 2) log(α)

< µ+ λ(µ+ 1) + (2µ − 2)7µλ (6)

asymptotically, we get nTPoKEDex = O(λN logN) which leads to a total proof size of O(log log λN) group elements
and O(λ log log λN) bits. Concretely, using Eq. (6), for µ = 30 and λ = 128, we get nTPoKEDex = 2.8× 1013 which
gives us 16 group elements, i.e. 3KB plus 1.5 KB bit elements which leads to a proof size of 4.5KB.

B.2.2 Semi-Adaptive Knowledge Soundness of Weak-Eval

Lemma B.2 (Corollary 1 from [BF23]). For all n such that

log n ≥ 8µ2 + log2(2µ) · λ

we have that for any µ-linear polynomial f that is coprime with n (all coefficients of f are coprime with n),

Pr
X←[0,m)µ

[f(X) ≡ 0 mod n] ≤ 2−λ +
µ

m

51

The above lemma implies following corollaries that we will use in our proof.

Corollary B.3 (Local zero to global zero). Let f be a µ-linear polynomial coprime with n such that 8µ2+log2(2µ) ·λ ≤
log n and for a random y ← [0,m)µ, f(y) ≡ 0 mod n; then f is the zero polynomial mod n, or equivalently:

Pr[f(y) = 0 for all inputs y ∈ [0,m)µ] ≥ 1− 2−λ − µ

m

Corollary B.4 (Modulus upper bound). Let f be a µ-linear polynomial that is coprime with n and not identically zero.
If f(y) ≡ 0 mod n for a random point y ← [0,m)µ, then it must hold that

n < N8µ + 2µλ.

We also use the following lemma in the proof:

Lemma B.5 (Lemma 1 from [BF23]: Evaluation bound). For any µ-linear polynomial f and m ≥ 2:

Pr
x←[0,m)µ

[
|f(x)| ≤ 1

mµ
· ∥f∥∞

]
≤ 3µ

m

where ∥f∥∞ denotes the maximum over the absolute values of all coefficients of f

Lemma B.6 (Theorem 1 from [KM03]). Let x be an arbitrary number in QM = {pq : p, q ∈ {1, . . . ,M}}. Suppose
we are given an oracle that takes an input y and answers query of the form ”Is x ⩽ y ?”. Then we can identify the
number x in Θ(logM) time and space by making at most 2 log2 M +O(1) queries to the oracle.

Now, we prove the knowledge-soundness of the Weak-Eval protocol.

Proof. Fix an arbitrary expected polynomial time stateful adversary pair A = (A1,A2,A3) for the semi-adaptive
knowledge-soundness game of Weak-Eval.

Building an extractor for the reduction of knowledge. The first step of the proof is to define an extractor. By
construction of Weak-Eval, using A, we can define a pair of stateful adversaries TPoKEDex.A = (TPoKEDex.A1,
TPoKEDex.A2) for the adaptive soundness game of TPoKEDex. TPoKEDex.A1 is described below:

TPoKEDex.A1(pp)

1. Invoke the Weak-Eval adversary A1(pp) to get x1 := (q, µ, cm).
2. Invoke the public-coin challenger C(pp,x1) to get x2 := y.
3. Invoke the Weak-Eval adversary A2(pp,x1) to get x2 := z.
4. Run the Steps 1 to 6 of Weak-Eval to compute xTPoKEDex. Output xTPoKEDex.

We define TPoKEDex.A2 to be the TPoKEDex sub-protocol of A2. Now, the adaptive knowledge-soundness of
TPoKEDex implies that there exists an extractor TPoKEDex.Ext that extracts the witness wTPoKEDex from with a
non-negligible probability ϵTPoKEDex(λ). We use this extractor to construct an extractor Ext for Weak-Eval. Intuitively,
the extractor Ext runs the TPoKEDex.Ext to extract the integer c used to construct the commitment cm and represents c
in base α. Then, extracts a rational representation of the form ci = (miα+ ni)/ki for each coefficient ci.

Ext(pp,x)

1. Run the Steps 1 to 6 of Weak-Eval to compute xTPoKEDex.
2. Invoke TPoKEDex.Ext(pp,TPoKEDex.x) to obtain wTPoKEDex = (c,u).
3. Express c in base α as, i.e. invoke (c0, . . . , ck) := reprα(c). If k > N − 1, abort.

52

4. For each i ∈ {0, . . . , N − 1}, do the following:
(a) Invoke the algorithm described in Lemma B.6 to obtain mi/ki which is the closest fraction to ci/α. If

ki > N8µ · (2µ)λ, the extractor aborts.
(b) Compute ni = ciki −miα.
(c) Set p̃i = ni

ki
+ mi−1

ki−1
where m−1 = 0 and k−1 = 1.

5. Compute p = p̃ mod q and output (p, p̃).

The remainder of the proof demonstrates that the extractor successfully extracts a valid witness w∗ = (p, p̃) for the
semi-adaptive instance with overwhelming probability, thereby ensuring that Section 2.5 holds.

Extraction success probability. We need to show that if the TPoKEDex extractor succeeds, with overwhelming
probability, the following conditions hold:

1. Commitment Opening: PCS.Open(pp, cm, p, p̃) = 1:
(a) p̃ ∈ HN whereH =

{
a
b ∈ Q : 0 ≤ |ab |≤ (Nq2µ+1), 0 < b ≤ N8µ · (2µ)λ

}
(b) C = (

∑2µ−1
i=0 p̃iα

i) ·G1

(c) p ∈ Fq[X1, . . . , Xµ] with a coefficient vector p such that p = p̃ mod q.
2. Polynomial Evaluation: z = p(y) mod q,

Note that Item 1c is satisfied by construction of the extractor. We now show that Items 1, 1b and 2 are satisfied with
overwhelming probability.

Proving Item 1a. To prove that the extracted opening is valid, i.e., p̃ ∈ HN , we first show that the extracted coefficients
from TPoKEDex can be written as

ci =
miα+ ni

ki
for all i ∈ {0 . . . , N − 1} (7)

where mi, ni, ki ∈ Z, mi ≥ 0, |ni|< α, ki > 0 and gcd(mi, ki) = gcd(ni, ki) = gcd(ki, α) = 1. By construction,
ci < α; Hence, we immediately get mi < ki. Moreover, note that for each ci, there is at least one trivial instance of
such a representation, which is of the form ci =

0α+ci
1 (note that gcd(0, 1) = 1). We aim to show the existence of a

representation for each ci with further constraints on both the numerator and denominator. Looking ahead, these bounds
will allow us to extract a valid opening for the commitment scheme, i.e. allows us to show p̃ ∈ HN .

The TPoKEDex extractor outputs integers c, h, s, t, u such that with overwhelming probability we have:

C = c ·G, U = h ·G2 + s ·G3 + t ·G4 + u ·G5 (8)
c · σ = s+ t · αN−1 + u · αN t = z + h · q

such that 0 ≤ s < Nqµ+1αN−2, 0 ≤ t < Nqµ+1 and 0 ≤ u < qµ+1αN−2. Further, we can write s = s0 + s1 and
plug it into Eq. (8) to get:

c · σ = s0 + s1 · αN−2 + t · αN−1 + u · αN (9)

where by definition s1 = ⌊ s
αN−2 ⌋ < Nqµ+1 and s0 = s mod αN−2 which implies s0 < αN−2. The decomposition

of s into s0 and s1 is done to show a bound on the term preceding the central term, i.e. t · αN−1 using the carefully
crafted check on s in the protocol. No through a series of comparisons between the LHS and RHS of Eq. (9), we derive
bounds on the coefficients mi, ki, and ni.

Comparing LHS and RHS of Eq. (9) in base-α. On the RHS of Eq. (9), the coefficient of αN−2 is s1 and the
coefficient of αN−1 is t, which are both bounded as shown earlier. On the LHS, by definition, the coefficient of αN−2

and αN−1, are ⌊ c·σ
αN−2 ⌋ mod α and ⌊ c·σ

αN−1 ⌋ mod α respectively.

⌊ c · σ
αN−2

⌋
mod α =

⌊∑N−1
i=0 ci · αi

∑N−1
j=0 rN−1−j · αj

αN−2

⌋
mod α

53

=

⌊∑N−1
i=0

∑N−1
j=0 ci · rN−1−j · αi+j

αN−2

⌋
mod α

=

∑0≤i+j<N−2 ci · rN−1−j · αi+j

αN−2 +
∑

i+j=N−2
ci · rN−1−j

+α ·

 ∑
i+j>N−2

ci · rN−1−j · αi+j−N+1

 mod α

=

⌊∑
0≤i+j≤N−3 ci · rN−1−j · αi+j

αN−2

⌋
+

N−2∑
i=0

ci · ri+1 mod α (10)

We denote by e as the fraction inside the above equation. Equating the coefficients of αN−2 on both sides, we get that∑N−2
i=0 ciri+1 = s1 − ⌊e⌋ mod α, which implies there exists m ∈ Z such that

N−2∑
i=0

ciri+1 = (s1 − ⌊e⌋) +mα (11)

Using any rational representation of the form specified in Eq. (7), rewrite Eq. (11) as follows:

N−2∑
i=0

(
miα+ ni

ki

)
ri+1 = (s1 − ⌊e⌋) +mα

or equivalently,

α

(
N−2∑
i=0

mi

ki
ri+1 −m

)
= s1 − ⌊e⌋ −

N−2∑
i=0

ni

ki
ri+1

Define L := lcm(k0, . . . , kN−2) for the chosen representation. Then, we have

(s1 − ⌊e⌋)L−
N−2∑
i=0

Lni

ki
ri+1 = α

N−2∑
i=0

Lmi

ki
ri+1 − αmL (12)

Local zero to global zero modulus α. We can rewrite Eq. (12) as the following:

(s1 − ⌊e⌋)L−
N−2∑
i=0

Lni

ki
ri+1 = α

(
N−2∑
i=0

Lmi

ki
ri+1 −mL

)
= 0 mod α (13)

=⇒ p1(y) = 0 mod α (14)

where p1(X) is a polynomial with coefficients Lni

ki
for all i ∈ [N − 2] and a constant term (s1 − ⌊e⌋)L. We aim to use

Corollary B.3 for p1, hence we need to argue that:

• p1(X) is coprime with α: Since ki = gcd(L,α) for all i ∈ {0. . . . , N − 2}, then we have gcd(L,α) = 1. Hence,
all the coefficients are coprime with α.

• Modulus α is lower-bounded by N8µ · (2µ)λ We prove the following holds:

α = q7µ > 27µλ > 228µ
2 ?
> N8µ · (2µ)λ = 28µ

2

· 2λ · µλ (15)

54

which reduces to showing

220µ
2−λ ?

> µλ.

Taking base-2 logarithms on both sides and rearranging gives us:

20µ2 ?
> λ(1 + log2 µ) ≥ 4µ(1 + log2 µ)

Note that both sides are strictly increasing functions of µ and for µ = 7, the left-hand side is 980 and the right-hand side
is approximately 107. Since the left-hand side grows much faster, the inequality holds for all µ ≥ 7.

Now, ensured the conditions for using Corollary B.3 are met, note that p1 evaluates to 0 on the random point r which is
derived from the random point y. Therefore, by using Corollary B.3 on Eq. (14), we see that except with negligible
probability 2−λ + µ

q , p1 is identical to an all zero polynomial modulu α.

global zero Modulus α to global zero on integers. Here, we show that all the coefficients of p1 are smaller than the
modulus α; Hence, are prime to α. This, along with p1 being identical to the zero polynomial modulus α, implies that
p1 is identical to zero on integers. The proof is as follows:

• For coefficients Lni

ki
, we know that for all i ∈ {0, . . . , N − 2}: by construction we have that gcd(ki, α) = 1 and

hence L = lcm(k1, . . . , kN−2). Also by definition, we have |ni|< α and hence gcd(ni, α) = 1. Therefore, we have
gcd(Lni

ki
, α) = 1.

• For the constant term (s1−⌊e⌋)L, we already established that gcd(L,α) = 1. Now, we wish to upperbound ⌊s1− e⌋
to show that the constant term is smaller than α and hence coprime to α. we know that by definition 0 ≤ s1 < Nqµ+1.
To argue about e, recall that due to extractability of TPoKEDex, with overwhelming probability, each term on the
RHS of Eq. (9) is positive. Also by construction we have 0 ≤ ri ≤ qµ which implies σ = r̃(α) > 0. This means that
c ≥ 0 and we have 0 ≤ ci ≤ α. Hence, we have:

0 ≤ ⌊e⌋ =

⌊∑
0≤i+j≤N−3 ci · rN−1−j · αi+j

αN−2

⌋

≤

⌊∑N−3
i=0

∑N−3−i
j=0 qµ · αi+j+1

αN−2

⌋

≤
⌊
N2 · qµ · αN−2

αN−2

⌋
= N2 · qµ

Therefore, we have ⌊s1 − e⌋ ≤ max{e, s1}. We know that s1 ≤ Nqµ+1 and ⌊e⌋ ≤ N2qµ. Now, note that q > N ;
because q > 2λ and N < 2λ/4. Hence, we have

⌊s1 − e⌋ ≤ max{s1} ≤ Nqµ+1 ≤ qµ+2 ≤ q7µ = α

Therefore, we have gcd(⌊s1 − e⌋, α) = 1. Hence all the coeffitions of p1 are coprime to α and 0 modulus α. Therefore,
p1 is identical to the zero polynomial on integers.

Upper bounding L. Now p1 being identical to the zero polynomial implies that the left and right hand sides of Eq. (13)
are identically zero. Hence, we have:

N−2∑
i=0

Lmi

ki
ri+1 = mL = 0 mod L (16)

55

and also

N−2∑
i=0

Lni

ki
ri+1 = (s1 − ⌊e⌋)L = 0 mod L (17)

=⇒ p2(y) = 0 mod L (18)

where p2(X) is a polynomial with coefficients [Lni/ki]
N−2
i=0 . Since L = lcm(k1, . . . , kN−2), the coefficients of the p2

are coprime to L. Hence, we can use Corollary B.4 to calculate a bound on the size of L:

L < N8µ · (2µ)λ (19)

Upper bounding ki and mi. Since by definition L = lcm(k0, . . . , kN−2), in turn implies that each ki < N8µ · (2µ)λ.
Also, note that since ci < α for all i, we have that mi ≤ ki for all i, else ci ≥ α.

Upper bounding ni. To bound the numerator term ni, we use Lemma B.5. In equation (17), we have

p2(r) = (s1 − ⌊e⌋)L ≤ Nqµ+1 · L

Lemma B.5 implies that ∥f∥∞< qµ · (Nqµ+1L). Hence, for all i ≤ N − 2, we must have that∣∣∣∣Lni

ki

∣∣∣∣ ≤ qµ ·Nqµ+1L =⇒ |ni|≤ q2µ+1 ·N · ki

Final representation for i ≤ N − 2. We have now showed that for each extracted ci where i ≤ N − 2, there exists
ki < N8µ · (2µ)λ, |ni|< q2µ+1 ·N · ki and mi ≤ ki such that

ci =
miα+ ni

ki

Handling case i = N − 1. Note that so far we only obtained representations for c1, . . . , cN−2 with corresponding
bounds on ki-s, mi-s and ni-s. For the case i = N − 1, we put an extra constraint of nN−1 = 0. Looking ahead, this
constraint is used to recover the commitment and prove Item 1b.

We go back to Eq. (9) and denote by u′ coefficient of α2N−2. On the RHS, due to the bound 0 ≤ u ≤ qµ+1αN−2, the
coefficient of α2N−2 is bounded by qµ+1, i.e. u′ < qµ+1. On the LHS, we have the coefficient of α2N−2 as ⌊ c·σ

α2N−2 ⌋
mod α. We can simplify this as follows:

⌊ c · σ
α2N−2

⌋
mod α =

⌊∑N−1
i=0 ciα

i
∑N−1

j=0 rN−1−jα
j

α2N−2

⌋
mod α

=

⌊∑N−1
i=0

∑N−1
j=0 cirN−1−jα

i+j

α2N−2

⌋
mod α

=

⌊∑
i+j<2N−2 cirN−1−jα

i+j

α2N−2

⌋
+ cN−1r0 mod α

Let the fraction inside the above floor term be e′. Similar to the bound on the floor term from earlier, we can bound this
term:

⌊e′⌋ ≤

⌊∑N−1
i=0

∑N−1
j=0 qµαi+j+1

α2N−2

⌋

56

≤
⌊
N2qµα2N−2

α2N−2

⌋
= N2qµ

Equating the coefficients of α2N−2 on both sides, we get cN−1r0 = u′ − ⌊e′⌋ mod α. Applying an analysis similar to
those applied for Eq. (11), we have:(

mN−1α+ nN−1

kN−1

)
r0 = u′ − ⌊e′⌋ mod α

Note that we have a constraint of mN−1 = 0. Also, the above modular equation implies that there exists m ∈ Z such
that:

nN−1r0 − (u′ − ⌊e′⌋)kN−1 = mkN−1α = 0 mod α

Similar to the analysis for i < N − 1, we can show that 1. the polynomial nN−1r0 − (u′ − ⌊e′⌋)kN−1 is coprime to α
and 2. the modulus α is big enough; Hence, by Corollary B.3 and the fact that u′ − ⌊e′⌋ < α, we have:

nN−1r0 − (u′ − ⌊e′⌋)kN−1 = 0

which implies

nN−1r0 = (u′ − ⌊e′⌋)kN−1 = 0 mod kN−1

By Corollary B.4, we have that kN−1 < N8µ · (2µ)λ. Moreover, by applying Lemma B.5, we get

|ni| ≤ qµ ·Nqµ+1 = Nq2µ+1

Final step: p̃ ∈ H. For all i ∈ {0, . . . , N} We defined p̃i =
ni

ki
+ mi−1

ki−1
. Now we want to show p̃i ∈ H where

H =
{

a
b ∈ Q : 0 ≤ |ab |≤ (Nq2µ+1 + 1), 0 ≤ b ≤ N8µ · (2µ)λ

}
. We define l = lcm(ki, ki−1) < L and we hava that

p̃i =
ni · l

ki
+mi−1 · l

ki−1

l

We use the above form to derive our bounds on the numerator and denominator:

• Numerator: We know that |ni|< Nq2µ+1 · ki and mi−1 < ki−1. Hence,

ni
l

ki
+mi−1

l

ki−1
< (Nq2µ+1 + 1) · l < (Nq2µ+1 + 1) ·N8µ · (2µ)λ

• Denominator: We know that l = lcm(ki, ki−1) < L < N8µ · (2µ)λ.

By definition ofH, we have that p̃ ∈ HN .

Proving Item 1b. We have

(
N−1∑
i=0

p̃iα
i

)
·G1 =

(
N−1∑
i=0

(
ni

ki
+

mi−1

ki−1

)
αi

)
·G1

=

(
N−1∑
i=0

ni

ki
αi

)
·G1 +

(
N−2∑
i=−1

mi

ki
αi+1

)
·G1

57

=

(
m−1
k−1

+
nN−1

kN−1
αN−1 +

N−2∑
i=0

miα+ ni

ki
αi

)
·G1 Note that m1 = mN−1 = 0

=

(
N−1∑
i=0

miα+ ni

ki
αi

)
·G1

= cm

Proving Item 2. So far, we only showed that the opening hint has the correct format. Now, we show that the extracted
polynomial p derived from the opening p̃ has the correct evaluation, i.e. p(y) = z. To show this, consider the coefficient
of αN−1 on the LHS.⌊ c · σ

αN−1

⌋
mod α =

⌊∑N−1
i=0 ciα

i
∑N−1

j=0 rN−1−jα
j

αN−1

⌋
mod α

=

⌊∑N−1
i=0

∑N−1
j=0 cirN−1−jα

i+j

αN−1

⌋
mod α

=

∑i+j<N−1 cirN−1−jα
i+j

αN−1 +
∑

i+j=N−1
cirN−1−j

+α
∑

i+j>N−1
cirN−1−jα

i+j−N+1

 mod α

=

⌊∑
i+j<N−1 cirN−1−jα

i+j

αN−1

⌋
+

N−1∑
i=0

ciri mod α

=

⌊∑
i+j<N−2 cirN−1−jα

i+j

αN−1 +

∑N−2
i=0 ciri+1

α

⌋
+

N−1∑
i=0

ciri mod α

=

⌊
e+ s1 − ⌊e⌋

α

⌋
+m+

N−1∑
i=0

ciri mod α

=

N−1∑
i=0

ciri +m mod α

=

N−1∑
i=0

(
miα+ ni

ki

)
ri +

N−2∑
i=0

mi

ki
ri+1 mod α

=

N−1∑
i=0

(
ni

ki
+

mi−1

ki−1

)
ri mod α

=

N−1∑
i=0

p̃iri mod α

Therefore, we get
∑N−1

i=0 p̃iri = t mod α where the last few equalities follow from equations (11) and (16), defining
m−1 = 0, k−1 = 1. From the check made in TPoKEDex, we also know that with overwhelming probability t = z
mod q. Since α = 0 mod q, we can equate the LHS and RHS to get

p̃(y) = t mod α =⇒ p(y) = z mod q

58

B.3 Security of DewTwo
Here, we prove that Eval is an argument of knowledge for the relation Definition 2.1 with adaptive knowledge soundness.
We prove that for all N ∈ N and all expected poly-time stateful adversaries A := (A1,A2) there exists an expected
poly-time extractor Ext such that AdvAdap-KSARG,Ext,A(λ) :=

Pr

⟨A2(pp),V(pp,x)⟩ = 1

∧
(x,w∗) /∈ Rpp

Eval

∣∣∣∣∣∣∣∣∣
pp← Setup(1λ, N)
(q, µ, cm,y, z)← A1(pp)

x := (q, µ, cm,y, z)

w
∗ ← ExtA(pp,x)

 = negl(λ)

Note that Weak-Eval is invoked twice in Eval; Hence, for any pair of expected poly-time stateful adversaries
A := (A1,A2) we can define two tuples of expected poly-time stateful adversaries Weak-Eval.A := (Weak-Eval.A1,
Weak-Eval.A2,Weak-Eval.A3). Moreover, the semi-adaptive knowledge-soundness of Weak-Eval implies the
existance of an expected poly-time extractor Weak-Eval.Ext that fails with a negligible probability, which we denote
by ϵWeak-Eval(λ). We define the extractor Ext to invoke Weak-Eval.Ext and output the extracted witness. The rest of
the proof shows that Ext is a valid extractor for Eval.

To show that Ext extracts a valid witness, again we need to show that Items 1 and 2 hold. Due to the knowledge-soundness
of Weak-Eval.Ext, we know that Item 1 holds with overwhelming probability. We only show that Item 2 holds.

Note that the second call is not made with a random y, but with y in the instance. Let y′ ∈ ZN be the exponential
expansion of y as a monomial product: For i ∈ [N],

y′i =

µ−1∏
j=0

yij

j

and σ =
∑N−1

i=0 y′N−1−iα
i. Also, due to the extractability of TPoKEDex, similar to Eq. (9), we also have the equation

c · σ = s0 + s1 · αN−2 + t · αN−1 + u · αN (20)

Additionally, we know from the knowledge-soundness proof for Argument 1 that each ci is of the form stated in Eq. (7).
Now, consider the coefficient of αN−2 on both sides of Eq. (20). On the right hans side, we have s1. On the left hand
side, we have ⌊ c · σ

αN−2

⌋
=

⌊∑N−1
i=0 ciα

i
∑N−1

j=0 y′N−1−jα
j

αN−2

⌋
mod α

=

⌊∑N−1
i=0

∑N−1
j=0 ciy

′
N−1−jα

i+j

αN−2

⌋
mod α

=

⌊∑
i+j<N−2 ciy

′
N−1−jα

i+j

αN−2

⌋
+

N−2∑
i=0

ciy
′
i+1 mod α

Equating both sides, we get

N−2∑
i=0

ciy
′
i+1 = s1 − ⌊e⌋ mod α

This implies that there exists m ∈ Z such that

N−2∑
i=0

miα+ ni

ki
y′i+1 = (s1 − ⌊e⌋) +mα =⇒ α

(
N−2∑
i=0

mi

ki
y′i+1 −m

)
= (s1 − ⌊e⌋)−

N−2∑
i=0

ni

ki
y′i+1

59

=⇒
N−2∑
i=0

mi

ki
y′i+1 = m ∈ Z

Now, consider the coefficient of αN−1 on the LHS.

⌊ c · σ
αN−1

⌋
=

⌊∑N−1
i=0 ciα

i
∑N−1

j=0 y′N−1−jα
j

αN−1

⌋
mod α

=

⌊∑N−1
i=0

∑N−1
j=0 ciy

′
N−1−jα

i+j

αN−1

⌋
mod α

=

⌊∑
i+j<N−1 ciy

′
N−1−jα

i+j

αN−1

⌋
+

N−1∑
i=0

ciy
′
i mod α

=

⌊∑
i+j<N−2 ciy

′
N−1−jα

i+j

αN−1 +

∑N−2
i=0 ciy

′
i+1

α

⌋
+

N−1∑
i=0

ciy
′
i mod α

=

⌊
e+ s1 − ⌊e⌋

α

⌋
+m+

N−1∑
i=0

ciy
′
i mod α

=

N−1∑
i=0

(
ni

ki
+

mi−1

ki−1

)
y′i mod α

=

N−1∑
i=0

p̃iy
′
i mod α

Hence, we have that p̃(y) = t mod α. Since α = 0 mod q and z = t mod q, we also have that p(y) = z mod q,
completing the proof.

60

C Newton-Raphson
The Newton-Raphson method is a numerical root-finding algorithm, meaning that given a univariate function f(x)
and an initial guess x0, it iteratively refines the guess to find x∗ such that f(x∗) = 0. A single iteration of the
Newton-Raphson method is given by the following update rule:

xn+1 = xn −
f(xn)

f ′(xn)

The following theorem guarantees the convergence of the Newton-Raphson method under certain conditions.

Theorem C.1 ([KC09], Chapter 3). Let f be an increasing and convex function on real numbers with continues f ′′
everywhere. If f has a zero, then the zero is unique and the Newton-Raphson method converges to it from any initial
guess x0.

We confine our discussion on the convergence and complexity of the algorithm to the special case of finding the square
root of a number a.

C.1 Finding square roots
To find the square root of a number a, we use the Newton-Raphson method to find the root of the following function:

f(x) :=

{
x2 − a if x ̸= 0

0 o.w.

The update rule for the case x > 0 is:

f(x) = x2 − a =⇒ xn+1 = xn −
x2
n − a

2xn
=

1

2

(
xn +

a

xn

)
(21)

by the definition of f(x) and the Theorem C.1 we have the following lemma.

Lemma C.2 ([BF10; KC09]). The recursion Eq. (21) converges to r =
√
a for any error tolerance δ > 0 and any

initial guess x0. Moreover, the convergence is quadratic, i.e., for some constant c > 0:

|xn+1 − r| ≤ c (xn − r)
2

(n ≥ 0)

which leads to the following algorithm which is very ancient and is credited to Heron, who lived sometime between 100
B.C. and 100 A.D. [KC09].

SquareRoot(a, δ)→ b

1. Initialize xold := 1 and xnew :=
xold+

a
xold

2 .
2. While |xnew − xold|> δ:

(a) Save the previous answer xold := xnew.

(b) Update the answer xnew :=
xold+

x
xold

2 .
3. Output b = xnew.

Corollary C.3. The SquareRoot algorithm computes the square root of a number a with an error tolerance δ in
O(log log(a/δ)) iterations.

61

Proof. Due to lemma C.2, the algorithm converges quadratically, which implies that the number of bits discovered
at each iteration is doubled. Therefore, the algorithm incurs logarithmic cost in the number of desired bits, log(a/δ),
which gives us O(log log a/δ).

Now, we state the complexity of the SquareRoot algorithm with δ = 0.1, tailored for our application in Section 6.

Corollary C.4. The SquareRoot algorithm computes the square root of an n-bit number a with an error tolerance
δ = 0.1 in O(log nM(n)).

Proof. By Corollary C.3, the algorithm requires O(log n) iterations. In each iteration, the algorithm complexity is
dominated by the cost of the division operation, which is O(M(n)) as shown in [GG03, Theorem 9.8].

62

D Deferred toolbox proofs
D.1 PoKE deferred proofs
Here, we present the deferred knowledge soundness proof of Theorem 7.2 under the modular consistency assumption
(see Definition 3.4): Assume for contradiction that there exist polynomial time adversaries PoKE.A := (PoKE.A1,
PoKE.A2) such that for all polynomial-time extractors Ext∗ we have (see Section 2.3):

AdvAdap-KS
PoKE,Ext∗,PoKE.A > ϵ(λ)

We show that this implies a contradiction to the MCA assumption. In particular, we build PoKE.Ext, an extractor for
PoKE, and use it to build an adversary for MCA. We then show that the advantage of the MCA adversary is equal to the
advantage of PoKE.A which is non-negligible.

PoKE Extractor. We first construct PoKE.TrExt that given the desired size T , constructs a list of accepting transcripts
of size T by rewinding the adversary PoKE.A2 as many times as needed:

PoKE.TrExt(pp,x, T)→ tr

1. Set Tr := ∅.
2. While |Tr|< T:

(a) Invoke the verifier’s next-message function

(st, ℓi) := V(∅, vk,x)

to get a fresh random challenge.
(b) Invoke the adversary’s next-message function on the fresh challenge

(Qi, ri) := PoKE.A2(∅, state, ℓi)

where r := (ri,1, . . . , ri,m) ∈ Zm and Qi ∈ G are the responses.
(c) If the verifier accepts, i.e.

V(st, vk,x, (Qi, ri)) = 1

then record the accepting partial transcript Tr← Tr ∪ {(ℓi, ri)}.
3. Output the set of accepting transcripts Tr.

We now construct PoKE.Ext which invokes PoKE.TrExt to obtain T accepting transcripts and uses the Chinese
remainder theorem to extract the witness:

PoKE.Ext(pp,x, state)→ w
∗

1. Let PoKE.A1 be a T -step Turing machine.
2. Invoke the accepting transcript extractor:

Tr← PoKE.TrExt(pp,x,T)

3. For j ∈ [m], Invoke the CRT algorithm given by the Chinese remainder
theorem (see Theorem 3.3) on the partial transcripts

uj := CRT([ri,j]
T
i=1, [ℓi]

T
i=1)

63

Then output the unique CRT solution u = (u1, . . . , um)

Adversary runtime. Note that the CRT algorithm is efficient; hence, the PoKE.Ext runtime is proportional to the
PoKE.TrExt runtime. Since the PoKE.A’s success probability is ϵ(λ), then the average runtime of PoKE.TrExt is
polynomial Tϵ(λ). Since T , the running time of PoKE.A1, is polynomial time, the PoKE.Ext is efficient.

Reduction to MCA. We show how to build a pair of adversaries MC.A = (MC.A1,MC.A2) for the MCA game
using the pair of adversaries PoKE.A = (PoKE.A1,PoKE.A2). We then show that the advantage of MC.A is greater
than the advantage of PoKE.A.

The adversary MC.A1 is defined as follows. We denote the runtime of MC.A1 by T .

MC.A1(G,G)→ (U, state)

1. Set pp := (N,G,G) where N := |G|.
2. Invoke PoKE adversary

(x,PoKE.state) := A1(pp)

3. Set U := x and state := (PoKE.state,x), and output (U, state).

MC.A2(state)→ [ri, Qi, ℓi]
T
i=1

1. Parse state := (PoKE.state,x)
2. Invoke the accepting transcript extractor:

Tr← PoKE.TrExt(pp,x,T)

3. Parse Tr := [ri,Qi, ℓi]
T
i=1 and output ([Qi]

T
i=1, [ri]

T
i=1)

Advantage Analysis. Let T = poly(λ) be the runtime of PoKE.A1. Let T ′ = O(T) = poly(λ) be the runtime
for MC.A1. We show that the advantage of MC.A = (MC.A1,MC.A2) where MC.A1 is a T ′-step (or equivalently
T ′′-rep) Turing machine is non-negligible. We have AdvMC

GGen,T ′′,MC.A1,MC.A2,n(λ) =

Pr

∀i ∈ [T] : ⟨ri,G⟩+ ℓiQi = U

s.t. G := (G1, . . . , Gn) ∈ G
∧

⟨x,G⟩ ≠ U

∣∣∣∣∣∣∣∣∣∣
G← GGen(1λ)
(U, st)← A1(G)
[ri, Qi, ℓi]

T
i=1 ← A2(st) s.t. ri = [ri,j]j∈[n]

ℓ1, . . . , ℓT are co-prime integers
∀j ∈ [n] : xj ← CRT([ri,j]i∈[T], [ℓi]

T
i=1)

By construction and using the fact that the CRT solution is unique, x ∈ Zn is also the output of PoKE.Ext rewinding
PoKE.A. Hence, we have AdvMC

GGen,T ′,MC.A1,MC.A2,n(λ) =

Pr

 ⟨A2(pp, state),V(pp,x)⟩ = 1
∧

(x,w∗) /∈ Rpp

∣∣∣∣∣∣
pp← Setup(1λ, N)
(x, state)← A1(pp)

w
∗ ← ExtA(pp,x, state)

 ≥ ϵ(λ)

This concludes the proof.

64

D.2 PoKEMath deferred proofs
Here, we present the deferred proof of Theorem 7.4. Note that here we use (a) the multi-rational root assumption (see
Definition A.7) which is implied by the strong RSA assumption (see Lemma A.8), (b) the adaptive root (AR) assumption
(see Definition A.1) which is implied by the modular consistency assumption (see Definition 3.4 and Lemma A.2) and,
(c) the knowledge-soundness of PoKE (see Theorem 7.2) which is also implied by the modular consistency assumption
(see Theorem 7.2).

Before proceeding with the proof, we first present a lemma stating that any remainder vector r from an accepting
transcript of PoKE is equal to the witness modulo the corresponding challenge. This is straightforward to prove in the
Generic Group Model (GGM); however, without GGM, the proof relies on the single-rational root assumption.

Lemma D.1. Fix N ∈ N, an expected poly-time stateful adversaryA := (A1,A2) for the knowledge-soundness game of
PoKE, and the corresponding expected poly-time extractor PoKE.Ext. Assuming that mult-rational (see Definition A.7)
root assumption holds, we have

Pr

 ⟨PoKE.A2(pp),V(pp,x)⟩ accepts on transcript (ℓ,Q, r)
∧

r ̸= u∗ mod ℓ

∣∣∣∣∣∣
pp← Setup(1λ, N)
x← PoKE.A1(pp)
u∗ ← PoKE.Ext(pp,x)

 = negl(λ)

Proof. Since PoKE is knowledge-sound, with overwhelming probability, we have

u∗1 ·G1 + · · ·+ u∗m ·Gm = U

On the other hand, since (ℓ, U, r) is an accepting transcript, we have

U = ℓQ+ (r1G1 + · · ·+ rmGm)

which implies

u∗1 ·G1 + · · ·+ u∗m ·Gm = ℓQ+ (r1G1 + · · ·+ rmGm)

Now, assume for contradiction and WLOG that i ∈ [m] is the smallest index, such that for all j > i, u∗i = ri mod ℓ,
Hence, for some q1, . . . qm ∈ Z and 0 < s1, . . . , si < ℓ we will have

∀j ∈ [i] : u∗j = rj + qjℓ+ si

∀j ∈ {i+ 1, . . . ,m} : u∗i = ri + qiℓ

As a result, we have

((r1 + q1ℓ+ s1)G1 + · · ·+ (ri + qiℓ+ si)Gi) + ((ri+1 + qi+1ℓ)Gi+1 + · · ·+ (rm + qmℓ)Gm)

= ℓQ+ (r1G1 + · · ·+ rmGm)

canceling out the riGi terms, we get

((q1ℓ+ s1)G1 + · · ·+ (qiℓ+ si)Gi) + (qi+1ℓGi+1 + · · ·+ qmℓGm) = ℓQ

which implies

s1G1 + · · ·+ siGi = ℓ(Q− q1G1 − · · · − qmGm)

Now, this gives us a strategy to build an adversary for the multi-rational root assumption (see Definition A.7).

65

MRR.A(G,G)→ (UMRR,mMRR, rMRR)

1. Invoke the setup algorithm pp := Setup(1λ, N).
2. Invoke the PoKE adversary x := PoKE.A1(pp).
3. Invoke the PoKE extractor u∗ := PoKE.Ext(pp,x)
4. Invoke the interactive argument ⟨PoKE.A2(pp),V(pp,x)⟩ and acquire an accepting transcript (ℓ,Q, r).
5. Parse the extracted witness components of the form

∀j ∈ [i] : u∗j = rj + qjℓ+ si

∀j ∈ {i+ 1, . . . ,m} : u∗i = ri + qiℓ

6. Output the following:

UMRR := Q− q1G1 − · · · − qmGm

mMRR := ℓ

rMRR := (s1, . . . , si)

By the above analysis and the fact that ℓ ∈ Primes[λ, 2λ] and 0 < si < ℓ, then we have ℓ ̸= 0 and gcd(ℓ, si) = 1 which
means that the adversary MRR.A wins the multi-rational root assumption game with non-negligible probability.

Now we proceed with the knowledge-soundness proof of PoKEMath.

Proof. Assume for contradiction that there exist N ∈ N, a non-negligible function ϵ(λ), and polynomial time adversaries
PoKEMath.A := (PoKEMath.A1,PoKEMath.A2) such that for all polynomial-time extractors Ext∗ we have

AdvAdap-KS
PoKEMath,Ext∗,PoKEMath.A = Pr[Adap-KS ∧ U ̸= ⟨u,G⟩] + Pr[Adap-KS ∧ f(u) ̸= 0] > ϵ(λ)

PoKEMath Extractor. Since PoKE is a sub-protocol of PoKEMath, we can define the PoKE adversary pair
PoKE.A = (PoKE.A1,PoKE.A2) by using PoKEMath.A. Moreover, Due to the knowledge-soundness of PoKE,
There exists PoKE.Ext; Hence, we define PoKEMath.Ext to invoke PoKE.Ext and output the extracted witness.

By the construction of the extractor, with overwhelming probability, we have ⟨u,G⟩ = U ; hence,

Pr[Adap-KS ∧ f(u) ̸= 0] = negl(λ) =⇒ Pr[Adap-KS ∧ f(u) ̸= 0] = ϵ(λ)− negl(λ)

meaning that Pr[Adap-KS ∧ f(u) ̸= 0] is non-negligible.

AR adversaries. By using the given PoKEMath adversary PoKEMath.A and the constructed PoKEMath.Ext, we
build AR adversaries (AR.A1,AR.A2) as follows:

AR.A1(G)→ Y

1. invoke the setup algorithm pp := Setup(1λ, N).
2. invoke the PoKEMath knowledge-soundness adversary xPoKEMath := PoKEMath.A1(pp).
3. Extract the underlying PoKEMath witness u∗ := PoKEMath.Ext(pp,xPoKEMath).
4. Compute the first move for adaptive root Y := f(u∗)G
5. Pass u∗ as the state to the other adaptive root adversary.

66

AR.A2(ℓ)→ X

1. Obtains u∗ as the state.
2. Invoke the interaction ⟨PoKEMath.A2(pp),PoKEMath.V(pp,x1)⟩ to acquire an accepting transcript (Q, r).
3. Compute the integer division k := (f(u∗)− f(r))/ℓ
4. Compute the integer division k′ := f(r/ℓ).
5. Output the root X := (k + k′)G.

Since PoKE is knowledge-sound, by Lemma D.1, we have that u∗ = r mod ℓ. Hence, we have

f(u∗) = f(r) mod ℓ =⇒ f(u∗) = f(r) + kℓ for some k ∈ Z

On the other hand, since PoKEMath.V accepts, we have

f(r) = 0 mod ℓ =⇒ f(r) = k′ℓ for some k′ ∈ Z

Hence, we have f(u∗) = (k + k′)ℓ. Also, if f(u∗) ̸= 0, then Y ̸= 0. Hence the above implies that AR.A wins the AR
game with non-negligible probability. This gives us a contradiction to the adaptive root assumption, and hence the proof
is complete.

D.3 PoKEDEx deferred proofs
In this section we present the deferred proof of Theorem 7.6; namely, we discuss the cost of the PoKEDEx protocol, and
prove its knowledge-soundness.

D.3.1 Discussion of cost

Prover Efficiency. The prover complexity ofPoKEDEx consists of (i) invoking t instances of IntegerSquareDecompose,
which requires a total of tM(nisd) log

2 nisd bit operations, plugging nisd = 2n we get tM(2n) log2(2n) (ii) computing a
pedersen commitment of size |v|= t log(2n), which requires O(MSM(t log(2n), n)) group operations. (iii) invoking
PoKEMath which incurs MSM(mPoKEMath, n) group operations and O(mPoKEMath ·M(nPoKEMath)) bit operations,
plugging mPoKEMath = m + t log(2n) and nPoKEMath = n, we get O (MSM(m+ t log n, n)) group operations and
O(M(n)(m+ t log(2n))) bit operations.

By summing up the above, we get a total of O (MSM(m+ t log n, n)) group operations and O(M(n)(m+ t log n)) bit
operations.

Verifier Efficiency. The verifier complexity of PoKEDEx is dominated by invoking PoKEMath which incurs
MSM(mPoKEMath, λ) group operations and O(sPoKEMathM(λ)) bit operations. Plugging mPoKEMath = m+ t log(2n)
and sPoKEMath = O(s+ t log n), we get a total of O (MSM(m+ t log n, λ)) group operations and O(M(λ)(s+ t log n))
bit operations.

Proof Size. The proof consists of (i) a single group element for the commitment to the decomposition vector (ii) t
integers each of size ⌈log⌈log(2n) + 5⌉⌉ (iii) the proof for the invoked PoKEMath which consists of a single group
element and 2mPoKEMathλ bits, plugging mPoKEMath = m + t log 2n (keeping the constants for accuracy), we get
2λ(m+ t⌈log 2n⌉) bits.

By summing up the above, we get a total proof size of 2 group elements and ⌈log⌈log(2n) + 5⌉⌉+ 2λ(m+ t⌈log 2n⌉)
bits.

67

D.3.2 Proof of knowledge-Soundness

Here, we prove the knowledge-soundness of PoKEDEx using (a) the knowledge-soundness of PoKEMath which is
implied by the modular consistency and strong RSA assumptions (see Theorem 7.4) and, (b) the adaptive root assumption
(see Definition A.1) which is also implied by the modular consistency assumption (see Lemma A.2).

Since PoKEMath is a sub-protocol of PoKEDEx, a pair of adversaries A = (A1,A2) for the knowledge-soundness
game in PoKEDEx implies a pair of adversaries PoKEMath.A = (PoKEMath.A1,PoKEMath.A2) for the knowledge-
soundness game of PoKEMath. PoKEMath.A1 invokes Steps 2 to 7 of A1 to get xPoKEMath. PoKEMath.A2 invokes
the rest of PoKEDEx. Due to the knowledge-soundness of PoKEMath, there exists an extractor PoKEMath.Ext that
extracts the PoKEMath witness with a negligible probability of failure. Now we define PoKEDEx.Ext that invokes
PoKEMath.Ext and outputs the extracted witness.

PoKEDEx.Ext(pp,x)→ w
∗

1. Invoke Steps 2 to 7 of the interaction between A1 and V to get ppPoKEMath and xPoKEMath.
2. Invoke the PoKEMath extractor (u∗,v∗) := PoKEMath.Ext(ppPoKEMath,xPoKEMath).
3. Output the first part of the PoKEMath witness: w∗ := u∗.

Now, we argue that with overwhelming probability the extracted witness w∗ is a valid witness for PoKEDEx. Since
f ′(u,v) = 0, by definition of f ′ (see Step 7), we have

(a) f(u) = 0
(b) For all i ∈ [m− t+ 1,m]: (ui − ai)(bi − ui) = ⟨vi,vi⟩, where vi is the i-th sub-vector of v of length mi. This

implies that (ui − ai)(bi − ui) ≥ 0 or equivalently ui ∈ [ai, bi].

It only remains to argue that ⟨u∗,G|[1:m]⟩ = U which leverges the stitching technique. Assume for contradiction that
⟨u∗,G|[1:m]⟩ ≠ U . We build the following adversaries for the adaptive root assumption (see Definition A.1).

AR.A1(G)→ Y

1. Invoke pp := Setup(1λ, N).
2. Invoke xPoKEDEx := PoKEDEx.A1(pp)
3. Invoke Steps 2 to 7 of the interaction between A1 and V to get ppPoKEMath, xPoKEMath, and V .
4. Invoke the PoKEMath extractor (u∗,v∗) := PoKEMath.Ext(ppPoKEMath,xPoKEMath).
5. Pass (pp,xPoKEDEx) as the state and output Y := ⟨v∗,G|[m+1:m+|v|]⟩ − V

AR.A2(ℓ)→ X

1. Parse pp and xPoKEDEx := (U,m, t, (ai, bi)
t
i=1, f) as the state.

2. Invoke the PoKEDEx extractor u∗ := PoKEDEx.Ext(pp,xPoKEDEx).
3. Output X := U − ⟨u∗,G|[1:m]⟩

By extractability of PoKEMath, we have βU + V = ⟨(u∗,v∗),G′⟩ or equivalently

βU + V = ⟨u∗, βG|[1:m]⟩+ ⟨v∗,G|[m+1:m+|v|]⟩

rearranging the above, we get

⟨v∗,G|[m+1:m+|v|]⟩ − V = βU − β⟨u∗,G|[1:m]⟩ = β(U − ⟨u∗,G|[1:m]⟩) ̸= 0

68

which implies that Y ̸= 0 and hence the adaptive root assumption is broken. This gives us a contradiction to the adaptive
root assumption, and hence the proof is complete.

D.4 TPoKEDEx deferred proofs
In this section we present the deferred proof of Theorem 7.9; namely, we discuss the cost of the TPoKEDex protocol,
and prove its knowledge-soundness.

D.4.1 Discussion of cost

Prover Complexity. The prover complexity of TPoKEDex consists of (i) a constant number of operations for stitching
(ii)MSM(mPoKEMath, nPoKEMath) = O(MSM(1, n)) group operations andO(mPoKEMathM(nPoKEMath)) = O(5·M(n))
= O(M(n)) bit operations for the unrolled PoKEMath (iii) O(M(n) log2(n)) bit operations for computing the
integer square decompositions (iv) MSM(3× 2nTIPA , n) = O(MSM(log n, n)) group operations for commiting to the
decomposition vector (v) O(2nTIPA) = O(log(2n)) = O(log n) group operations for TIPA.

Hence, a total of O(MSM(log n, n) + log n) group operations and O(M(n) log2 n) bit operations are required.

Verifier Complexity. The verifier complexity of TPoKEDex consists of (i) a constant number of operations for
stitching (ii) O(MSM(mPoKEMath, λ)) = O(MSM(1, λ)) group operations and O(s · M(λ)) bit operations for the
unrolled PoKEMath (iii) O(2nTIPA) = O(log 2n) = O(log n) group operations for TIPA.

Hence, a total of O(MSM(1, λ), log n) group operations and O(sM(λ)) bit operations are required.

Proof Size. The proof consists of 1 group element and 2mPoKEMathλ = 10λ bits for the unrolled PoKEMath, and
2nTIPA + 2 = 2⌈log⌈log(2n) + 5⌉⌉+ 2 group elements and 6nTIPA(2λ) + 12λ = 12λ⌈log⌈log(2n) + 5⌉⌉+ 12λ bits
for TIPA.

Hence, a total of 2⌈log⌈log(2n) + 5⌉⌉+ 3 group elements and 12λ⌈log⌈log(2n) + 5⌉⌉+ 22λ bits is requires.

D.4.2 Proof of knowledge-Soundness

Here, we prove the knowledge-soundness of TPoKEDex using (a) the knowledge-soundness of TIPA which is implied
by the strong RSA and discrete log assumption (see Theorem E.4) and, (b) the knowledge-soundness of PoKE which is
implied by the modular consistency assumption (see Theorem 7.2) and, (c) the knowledge-soundness of PoKEMath
which is implied by the modular consistency and strong RSA assumptions (see Theorem 7.4) and, (d) the adaptive root
assumption (see Definition A.1) which is implied by the modular consistency assumption (see Lemma A.2).

Assuming that we have polynomial time adversaries TPoKEDex.A := (TPoKEDex.A1,TPoKEDex.A2), we build a
TPoKEDex extractor as follows:

TPoKEDex Extractor. Since PoKE is a sub-protocol of TPoKEDex, we can define the PoKE adversary pair
PoKE.A = (PoKE.A1,PoKE.A2) by using TPoKEDex.A. Moreover, Due to the knowledge-soundness of PoKE,
There exists PoKE.Ext; Hence, we define TPoKEDex.Ext as follows:

TPoKEDex.Ext(pp,x)→ w
∗

1. Invoke Steps 2 and 3 of the interaction between A1 and V to get

ppPoKE = (N,G,G′)

xPoKE = (U ′,m)

69

2. Invoke the PoKE extractor and output u∗ := PoKE.Ext(ppPoKE,xPoKE).

Now, we have to prove that with overwhelming probability the following hold:

1. c ·G1 = C and ⟨u, (G1, G2, G3, G4)⟩ = U
2. f(c,u) = 0
3. u1 ∈ [a1, b1], u2 ∈ [a2, b2], u3 ∈ [a3, b3]

Proving Item 1. Here, we use the stitching argument, similar to the proof in Appendix D.3.2. By the knowledge-
soundness of PoKE, we know that for the extracted (c∗, u∗) with overwhelming probability, ⟨(c∗, u∗),G′⟩ = U ′ which
implies

⟨c∗, βG1⟩+ ⟨u∗,G|[2:5]⟩ = βC + U =⇒ ⟨u∗,G|[2:5]⟩ − U = β(C − ⟨c∗, G1⟩)

This gives us a stretegy to break the adaptive root assumption (see Definition A.1):

AR.A1(G)→ Y

1. Invoke xTPoKEDex := TPoKEDex.A1(pp) where xTPoKEDex = (C,U, (ai, bi)
4
i=2, f).

2. Invoke w∗ := TPoKEDex.Ext(pp,xTPoKEDex) where w∗ := (c∗,u∗).
3. Output Y := ⟨u∗,G|[2:5]⟩ − U

AR.A2(β)

1. Output the adaptive root X := C − ⟨c∗, G1⟩

Now, if either c · G1 ̸= C or ⟨u, (G1, G2, G3, G4)⟩ ≠ U , Y ̸= 0 and the above adversaries break the adaptive root
assumption. Hence, with overwhelming probability, we have

c ·G1 = C

⟨u,G|[2:5]⟩ = U

Proving Item 2. Since TPoKEDex runs a full PoKEMath protocol (unrolled), we can use the exact argument for
PoKEMath in Appendix D.2. In particular, if single rational root assumption (see Definition A.5) and adaptive root
assumption (see Definition A.1) hold, then with overwhelming probability

f(c,u) = 0

Proving Item 3. In this part, we use the same technique as the one we used to prove Item 2. However, the function
being checked is implicitly defined by the TIPA relation, unlike the scenario in PoKEDEx, where the function was
explicitly checked in the definition of f . Here, we define g : Z → Z as g(X) = X − |X| which is an indicator for
positivity.

Assume for contradiction that there exists i ∈ {2, 3, 4} such that ui ̸∈ [ai, bi] or equivalently (bi − ui)(ui − ai) < 0.
Now we can define adaptive root adversaries AR.A1 and AR.A2:

AR.A1(G)→ Y

1. Invoke pp := Setup(1λ, N).
2. Invoke xTPoKEDex := TPoKEDex.A1(pp)

70

3. Invoke (c∗,u∗) := TPoKEDex.Ext(pp,xTPoKEDex)
4. Set i ∈ {1, 2, 3} to be the index such that ui ̸∈ [ai, bi].
5. Output Y = g((bi − ui)(ui − ai)) ·G = 2(bi − ui)(ui − ai) ·G

AR.A2(ℓ)→ X

1. Interact with TPoKEDex.A2(pp) by feeding it a random stitching challenge β
$← Fq and PoKE challenge

ℓ ∈ Fq to obtain a transcript tr.
2. If V does not accept on the transcript tr, return to Step 1.
3. Parse i ∈ {1, 2, 3} from the state.
4. Output X := (g((bi−1 − ui)(ui − ai−1))/ℓ)G.

Due to the soundness property of TIPA, with overwhelming probability, for all j ∈ {2, 3, 4} and for some kj ∈ N,
m ∈ N, and vj ∈ Zm we have

(bj − rj)(rj − aj) = ⟨vj ,vj⟩ mod ℓ

(bj − rj)(rj − aj) = ⟨vj ,vj⟩+ kjℓ

Due to Lemma D.1, with overwhelming probability we have

(bi−1 − ui)(ui − ai−1) = ⟨vi,vi⟩+ kiℓ+ k′iℓ

Since (bi−1 − ui)(ui − ai−1) < 0 and ⟨vi,vi⟩ ≥ 0, we have

g((bi−1 − ui)(ui − ai−1)) = (bi−1 − ui)(ui − ai−1)− |(bi−1 − ui)(ui − ai−1)|
= ⟨vi,vi⟩+ kiℓ+ k′iℓ− |⟨vi,vi⟩+ kiℓ+ k′iℓ|
= ⟨vi,vi⟩+ kiℓ+ k′iℓ− ⟨vi,vi⟩+ |kiℓ+ k′iℓ|
= 2ℓ(ki + k′i)

Then the above construction for AR.A2 is computing g((bi−1 − ui)(ui − ai−1))/ℓ = 2(ki + k′i) and outputting
X := 2(ki + k′i)G which breaks the adaptive root assumption. Hence, with overwhelming probability, we have
ui ∈ [ai, bi] for all i ∈ {2, 3, 4}. This concludes the proof of knowledge-soundness of TPoKEDex.

71

E Deferred discussion on inner product argument
E.1 Triple inner product arguments (TIPA)
In this section we first recall the TIPA relation, and proceed to present the corresponding deferred constructions and
proofs.

Definition [restated] 1 (TIPA relation). Given pp = (3N,G, (G1,G2,G3)) ← Setup(1λ, 3N), we define the NP
relation Rpp

TIPA to be the set of tuples (
x,
w

)
=

(
(C, ℓ, (v1, v2, v3)),

(r1, r2, r3)

)
where (G1,G2,G3) ∈ G3N , C ∈ G, ℓ ∈ N is a prime larger than 2λ, v1, v2, v3 ∈ Zℓ, and r1, r2, r3 ∈ ZN such that

C = ⟨r1,G1⟩+ ⟨r2,G2⟩+ ⟨r3,G3⟩ and vi = ⟨ri, ri⟩ mod ℓ ∀ i ∈ [3]

We construct an argument of knowledge for RTIPA by definining a sequence of relations, RTIPA-i, for i ∈ [0, 1, . . . , n]
and constructing reductions of knowledge from RTIPA-i to RTIPA-(i+1), for each i ∈ [1, . . . , n].

E.1.1 The TIPA-i relation

As a preliminary we define the following function triplefold, that takes as input a vector G ∈ 3 · G2n , an integer
i ∈ N and challenges α ∈ Zi, and ‘folds’ G in half i times with respect to the challenges α. For i = 0, we define
triplefold(G, 0,⊥) := G.

triplefold(G, i,α)→ G′

1. Set (G′1,G′2,G′3) := G.
2. For each j ∈ [i]:
3. For each k ∈ [3]:
4. Fold G′k ← αj ·G′kL +G′kR.
5. Output G′ := (G′1,G

′
2,G

′
3).

We now define the following relations for each i ∈ [0, 1, . . . , n].

Definition E.1 (TIPA-i relation). Given pp = (3 ·2n,G, (G1,G2,G3))← Setup(1λ, 3 ·2n), we define the NP relation
Rpp

TIPA-i to be the set of tuples (
x,
w

)
=

(
(C, ℓ, v, γ,α),
(r1, r2, r3)

)
where C ∈ G, ℓ ∈ N is a prime larger than 2λ, v ∈ Zℓ, γ ∈ [0, ℓ), α ∈ [0, ℓ)i and r1, r2, r3 ∈ Z2n−i

such that for
(G′1,G

′
2,G

′
3) := triplefold((G1,G2,G3), i,α):

C = ⟨r1,G′1⟩+ ⟨r2,G′2⟩+ ⟨r3,G′3⟩ and v =

3∑
i=1

γi−1 · ⟨ri, ri⟩ mod ℓ

Notice that for concrete efficiency, we have ‘batched’ the three inner product claims using a random challenge γ.

E.1.2 The TIPA-0 reduction

In this section we present a reduction of knowledge TIPA.Reduce0 from RTIPA to RTIPA-0.

72

TIPA.Reduce0

⟨P(pp,x,w),V(pp,x)⟩:

Parse: pp = (3 · 2n,G, (G1,G2,G3)), x = (C, ℓ, (v1, v2, v3)) and w = (r1, r2, r3).

1. V samples γ $← Zℓ and sends it to P .
2. P and V set

v′ := v1 + γ · v2 + γ2 · v3 mod ℓ

3. Define x′ := (C, ℓ, v′, γ) and w′ := (r1, r2, r3).
4. P receives output (x′,w′) and V receives output x′.

Lemma E.2. For G := Setup and the P , V above, define TIPA.Reduce0 := (G,P,V). If the discrete log assumption
(Definition 3.1) holds, TIPA.Reduce0 is a reduction of knowledge from RTIPA to RTIPA-0. The prover time is O(1)
scalar operations, the verifier time is O(1) scalar operations, and the communication complexity is 1|Zℓ|.

Proof. Completeness and public reducibility follow from inspection, analogous to the proof of Lemma 8.4.

Knowledge soundness. We prove knowledge soundness via tree extraction (Lemma 2.6), which states that if a
candidate reduction of knowledge satisfies completeness and public reducibility, it is enough to show that it satisfied tree
extractability. That is, there exists a PPT extractor Ext that for all instances x ∈ RSIPA-i outputs a satisfying witnessw∗
with probability at least 1− negl(λ), given an n-tree of accepting transcripts for x where the verifier’s randomness is
sampled from space Q such that |Q|= O(2λ), and n = poly(λ). In our setting, n = 3 and Q = [0, ℓ).

For each j ∈ [3], let the transcript trj contain (x′j ,w
′
j) and the verifier’s challenge to the prover, γj . For each j ∈ [3],

parsing x′j as (C, ℓ, v′j , γj) and w′j as (r1,j , r2,j , r3,j), since trj is accepting, it must be the case that:

C = ⟨r1,j ,G1⟩+ ⟨r2,j ,G2⟩+ ⟨r3,j ,G3⟩,
and

v′j = ⟨r1,j , r1,j⟩+ γj · ⟨r2,j , r2,j⟩+ γ2
j · ⟨r3,j , r3,j⟩ mod ℓ

=⇒ v1 + γj · v2 + γ2
j · v3 = ⟨r1,j , r1,j⟩+ γj · ⟨r2,j , r2,j⟩+ γ2

j · ⟨r3,j , r3,j⟩ mod ℓ

=⇒ 0 = (⟨r1,j , r1,j⟩ − v1) + γj · (⟨r2,j , r2,j⟩ − v2) + γ2
j · (⟨r3,j , r3,j⟩ − v3) mod ℓ

It must be the case that, except with negligible probability, ri,1 = ri,2 = ri,3 for all i ∈ [3]. If not, we could break the
discrete logarithm assumption (Definition 3.1) for (G1,G2,G4), which is a uniformly random vector sampled from
G3·2n . Thus, we can define ri := ri,1, for all i ∈ [3].

We can now say that for each j ∈ [3]:

0 = (⟨r1, r1⟩ − v1) + γj · (⟨r2, r2⟩ − v2) + γ2
j · (⟨r3, r3⟩ − v3) mod ℓ

We can define a polynomial p(X) ∈ Zℓ[X] of degree 2 to be p(X) := (⟨r1, r1⟩ − v1) +X · (⟨r2, r2⟩ − v2) +X2 ·
(⟨r3, r3⟩ − v3). For each j ∈ [4], define β′j ∈ Zℓ to be β′j := βj mod ℓ, and notice that each β′j is a distinct element of
Zℓ. Since for all j ∈ [4], p(β′j) = 0, the coefficients of the above polynomial must all be 0 (as elements of Zℓ), implying
that vj = ⟨rj , rj⟩ mod ℓ, for each j ∈ [3]. Thus a PPT extractor Ext can output this satisfying witness (r1, r2, r3)
corresponding to x with probability at least 1− negl(λ).

E.1.3 The TIPA-i reductions

We now present a reduction of knowledge TIPA.Reducei from RTIPA-i to RTIPA-(i+1), for each i ∈ [1, . . . , n].

73

TIPA.Reducei

⟨P(pp,x,w),V(pp,x)⟩:

Parse: pp = (3 · 2n,G, (G1,G2,G3)), x = (C, ℓ, v, γ,α) and w = (r1, r2, r3).

1. P and V compute (G′1,G
′
2,G

′
3) := triplefold((G1,G2,G3), i,α).

2. P computes CL :=
∑3

j=1⟨rjL,G′jR⟩ and CR :=
∑3

j=1⟨rjR,G′jL⟩.
3. For j ∈ [3]: P computes vjL := ⟨rjL, rjL⟩ mod ℓ and vjC := ⟨rjL, rjR⟩ mod ℓ.
4. P computes

vL := v1L + γ · v2L + γ2 · v3L mod ℓ

vC := v1C + γ · v2C + γ2 · v3C mod ℓ

5. P sends CL, CR, [vjL]j∈[3], [vjC]j∈[3] to V .
6. V samples αi+1

$← [0, 2λ] and sends it to P .
7. For j ∈ [3]:
8. P sets r′j := rjL + αi+1 · rjR.
9. P and V set

vR := v − vL mod ℓ,

v′ := vL + 2 · α · vC + α2 · vR mod ℓ

10. P and V set C ′ := CL + α · C + α2 · CR.
11. Define x′ := (C ′, ℓ, v′, γ, [αj]

i+1
j=1) and w′ := (r′1, r

′
2, r
′
3).

12. P receives output (x′,w′) and V receives output x′.

Lemma E.3. For G := Setup and the P , V above, define TIPA.Reducei := (G,P,V). If the discrete log assumption
(Definition 3.1) and the multi-rational root assumption (Definition A.7) hold, TIPA.Reducei is a reduction of knowledge
from RTIPA-i to RTIPA-(i+1). The prover time is O(2n) group operations, the verifier time is O(2n) group operations,
and the communication complexity is 2|G|+6|Zℓ|.

Proof sketch. The proof of the aforementioned lemma follows similarly to that of Lemma 8.4, with the following
modification.

In the proof of security of SIPA.Reducei, the transcripts were used to say:1 β1 β2
1

1 β2 β2
2

1 β3 β2
3

CL

C
CR

 =

β1 · r1 r1
β2 · r2 r2
β3 · r3 r3

G′

In the case of TIPA.Reducei, the transcripts will give us:

1 β1 β2
1

1 β2 β2
2

1 β3 β2
3

CL

C
CR

 =

β1 · r1,1 r1,1
β2 · r1,2 r1,2
β3 · r1,3 r1,3

G′1 +

β1 · r2,1 r2,1
β2 · r2,2 r2,2
β3 · r2,3 r2,3

G′2 +

β1 · r3,1 r3,1
β2 · r3,2 r3,2
β3 · r3,3 r3,3

G′3

Again, for notational convenience we define:

For notational convenience, we define

M :=

1 β1 β2
1

1 β2 β2
2

1 β3 β2
3

 and Ri :=

β1 · rj,1 rj,1
β2 · rj,2 rj,2
β3 · rj,3 rj,3

 ∀j ∈ [3]

74

As before, one can compute P := adj(M) such that PM = det(M) · I3. Defining m := det(M), this gives that:

m ·

CL

C
CR

 = PR1G
′
1 + PR2G

′
2 + PR3G

′
3

The multi-rational root assumption (Definition A.7) implies that, except with negligible probability, m must divide
PR1, PR2 and PR3. This is because if not, this implies the existence of an efficient adversary A(G,G1,G2,G3)
that with non-negligible can output (U,m, r1, r2, r3) such that m ·U = r1 ·G1 + r2 ·G2 + r3 ·G3, where m > 1 and
for j ∈ [3] there exists at least one kj such that m and rj,kj are coprime.

Along the same lines as the proof of Lemma A.8, we can use this adversaryA to build an adversary B(G,G) that breaks
the multi-rational root assumption. Given G, B samples α1, α2, α3

$← [0, 3B′), where B′ is an upperbound on the

order of G, and for each j ∈ [3] sets Gj := αj ·G. As before, with probability at least
(
1− 1

3

)3

≥ 1

4
over the choice

of α1, α2 and α3, G1, G2 and G3 look truly random. Thus B can just obtain (U,m, r1, r2, r3)← A(G,G1,G2,G3)
such that m · U = (α1r1 + α2r2 + α3r3) ·G and output (U,m, r := α1r1 + α2r2 + α3r3). Clearly B succeeds with
non-negligible probability, thus breaking the multi-rational root assumption.

The argument to show that the extracted (r1, r2, r3) satisfies v =
∑3

i=1 γ
i−1 · ⟨ri, ri⟩ mod ℓ is a straightforward

adaptation of the one in the proof of Lemma 8.4.

E.1.4 The full TIPA protocol

We now present the full argument for Rpp
TIPA for a given pp = (3 · 2n,G, (G1,G2,G3)), which applies TIPA.Reduce

iteratively to shrink the size of the instance to length 3, and which is directly checked.

TIPA

⟨P(pp,x,w),V(pp,x)⟩:

Parse: pp = (3 · 2n,G, (G1,G2,G3)), x = (C, ℓ, (v1, v2, v3)) and w = (r1, r2, r3).

1. Define x0 := x and w0 := w.
2. For i in [0, . . . , n− 1]:
3. (xi+1,wi+1)← TIPA.Reducei(⟨P(pp,xi,wi),V(pp,xi)⟩).
4. Parse xn = (C ′, ℓ, (v′1, v

′
2, v
′
3),α) and wn = (r′1, r

′
2, r
′
3).

5. P sends (r′1, r′2, r′3) to V .
6. V accepts if for (G′1, G′2, G′3)← triplefold((G1,G2,G3), n,α):

C ′ = r′1 ·G′1 + r′2 ·G′2 + r′3 ·G′3, and
v′j = r′j · r′j mod ℓ ∀j ∈ [3]

Theorem E.4. If the discrete log assumption (Definition 3.1) and the multi-rational root assumption (Definition A.7)
hold, then TIPA := (Setup,P,V), with P and V as above, is an argument of knowledge for RTIPA. The prover
time is O(2n) group operations, the verifier time is O(2n) group operations, and the communication complexity is
2n|G|+6n|Zℓ|+

∑3
j=1|r′j |.

The proof of this theorem is analogous to that of Theorem 8.5. Once again, as an optimization we can use PoKEMath
at the end instead of directly sending (r′1, r

′
2, r
′
3) to the verifier, bringing the communication complexity down to

(2n+ 1)|G|+6n|Zℓ|+cost(PoKEMath) ≤ (2n+ 2)|G|+6n|Zℓ|+12λ.

75

E.2 Deferred self inner product argument (SIPA) proofs
In this section we present the deferred knowledge soundness proof of Theorem 7.2.

E.2.1 Proof of Lemma 2

In this section we present the deferred proof of Lemma 8.4.

Proof. Completeness. Completeness follows directly from the construction of SIPA.Reducei. If (x,w) ∈ Rpp
SIPA-i,

then parsing x as (C, ℓ, v,α = [αj]
i
j=1), w as r and setting G′ := fold(G, i,α), it must be the case that C = ⟨r,G′⟩

and v = ⟨r, r⟩. Given any αi+1 ∈ [0, 2λ], we can set:

C ′ := CL + αi+1 · C + α2
i+1 · CR,

vR := v − vL mod ℓ,

v′ := vL + 2 · αi+1 · vC + α2
i+1 · vR mod ℓ,

r′ := rL + αi+1 · rR

Setting x′ := (C ′, ℓ, v′, , [αj]
i+1
j=1) and w′ := r′, it is easy to see that given the verifier challenge αi+1, SIPA.Reduce

(⟨P(pp,x,w),V(pp,x)⟩) outputs precisely (x′,w′). Defining G′′ := fold(G, i+ 1, [αj]
i+1
j=1) we now have that:

C ′ = ⟨rL,GR⟩+ αi+1 · C + α2
i+1 · ⟨rR,GL⟩ = ⟨r′,G′′⟩,

v′ = ⟨rL, rL⟩+ 2 · αi+1 · ⟨rL, rR⟩+ α2
i+1 · ⟨rR, rR⟩ mod ℓ = ⟨r′, r′⟩ mod ℓ

Thus we have that (x′,w′) ∈ Rpp
SIPA-(i+1), as required.

Public reducibility. Public reducibility can be shown as follows: φ(pp,x, tr)→ x
′ merely parses x as (C, ℓ, v,α =

[αj]
i
j=1), obtains C ′, v′ and αi+1 from tr, and outputs x′ := (C ′, ℓ, v′,α′ := [αj]

i+1
j=1).

Knowledge soundness. We prove knowledge soundness via tree extraction (Lemma 2.6), which states that if a
candidate reduction of knowledge satisfies completeness and public reducibility, it is enough to show that it satisfied tree
extractability. That is, there exists a PPT extractor Ext that for all instances x ∈ RSIPA-i outputs a satisfying witnessw∗
with probability at least 1− negl(λ), given an n-tree of accepting transcripts for x where the verifier’s randomness is
sampled from space Q such that |Q|= O(2λ), and

∏
i ni = poly(λ). In our setting, n = 4 and Q = [0, ℓ).

For each j ∈ [4], let the transcript trj contain (x′j ,w′j)← SIPA.Reducei(⟨P(pp,x,w),V(pp,x)⟩), CL, CR, vL and vC ,
where the verifier’s challenge to the prover is βj . For each j ∈ [4], parsing x′j as (Cj , ℓ, vj , ([αk]

i
k=1, βj))8 andw′j as rj ,

since trj is accepting, it must be the case that for G′j := fold(G, i+ 1, ([αk]
i
k=1, βj)) and G′ := fold(G, i, [αk]

i
k=1):

Cj = ⟨rj ,G′j⟩
=⇒ CL + βj · C + β2

j · CR = ⟨rj , βj ·G′L +G′R⟩, and
vj = ⟨rj , rj⟩ mod ℓ

=⇒ vL + 2 · βj · vC + β2
j · vR = ⟨rj , rj⟩ mod ℓ

The first equation, for j ∈ [3], can be rewritten as:1 β1 β2
1

1 β2 β2
2

1 β3 β2
3

CL

C
CR

 =

β1 · r1 r1
β2 · r2 r2
β3 · r3 r3

G′

8Assume that any element vk, for any subscript k, in the rest of this proof is an element of Zℓ. We sometimes omit writing the
necessary mod ℓ for brevity.

76

For notational convenience, we now define

M :=

1 β1 β2
1

1 β2 β2
2

1 β3 β2
3

 and R :=

β1 · r1 r1
β2 · r2 r2
β3 · r3 r3

Let P := adj(M) ∈ Z3×3, the adjugate matrix of M such that PM = det(M) ·I3, where det(M) is the determinant
of the matrix M and I3 ∈ Z3×3 is the identity matrix. Defining m := det(M), it is now easy to see that:

PM

CL

C
CR

 = m ·

CL

C
CR

 = (PR)G′

Let P1, P2 and P3 be the rows of P . It is easy to see that a′ := P1R, r′ := P2R and b′ := P3R are vectors in
∈ Z2n−i such that m · CL = ⟨a′,G′⟩, m · C = ⟨r′,G′⟩ and m · CR = ⟨b′,G′⟩. Additionally, the extractor Ext can
compute these vectors in a, r and b in polynomial time.

The multi-rational root assumption (Definition A.7) implies that, except with negligible probability, m must divide a′, r′

and b′. Thus we can define a := a′/m ∈ Z2n−i , r := r′/m ∈ Z2n−i and b := b′/m ∈ Z2n−i , such that CL = ⟨a,G′⟩,
C = ⟨r,G′⟩ and CR = ⟨b,G′⟩.

Now, using all 4 transcripts, we can write:
1 β1 β2

1

1 β2 β2
2

1 β3 β2
3

1 β4 β2
4

ar
b

G′ =

β1 · r1 r1
β2 · r2 r2
β3 · r3 r3
β4 · r4 r4

G′

=⇒

a+ β1 · r+ β2

1 · b
a+ β2 · r+ β2

2 · b
a+ β3 · r+ β2

3 · b
a+ β4 · r+ β2

4 · b

G′ =

β1 · r1 r1
β2 · r2 r2
β3 · r3 r3
β4 · r4 r4

G′

It must be the case that, except with negligible probability, a+ βj · r+ β2
j · b = (βj · ri||ri) for each j ∈ [4]. If not, Ext

(which runs in polynomial time) could use a+ βj · r+ β2
j · b ̸= (βj · ri||ri) to break the discrete logarithm assumption

(Definition 3.1) for G′, which is a uniformly random vector sampled from G2n−i . Comparing the left half of each of
these vectors with the right half multiplied by βj , we get:

aL + βj · rL + β2
j · bL = βj · (aR + βj · rR + β2

j · bR)
=⇒ aL + βj · rL + β2

j · bL = βj · aR + β2
j · rR + β3

j · bR
=⇒ aL + (rL − aR) · βj+(bL − rR) · β2

j − bR · β3
j = 0

Defining the polynomial p(X) ∈ Z2n−i−1

[X] of degree 3 to be p(X) := aL+(rL−aR) ·X+(bL−rR) ·X−bR ·X ,
this implies that p(βj) = 0 for each j ∈ [4]. This implies that the coefficients of the polynomial must all be 0 and thus
rL = aR, rR = bL and aL = bR = 02

n−i−1 . Plugging this back into the original equation, we get that for each j ∈ [4],

rL + βj · rR = rj

By definition, C = ⟨r,G′⟩, so we just have to show that ⟨r′, r′⟩ = v. Recall that for each j ∈ [4]:

vL + 2 · βj · vC + β2
j · vR = ⟨rj , rj⟩ mod ℓ

77

=⇒ vL + 2 · βj · vC + βj2 · vR = ⟨rL, rL⟩+ 2 · βj · ⟨rL, rR⟩+ β2
j · ⟨rR, rR⟩ mod ℓ

=⇒ (vL − ⟨rL, rL⟩) + 2 · (vC−⟨rL, rR⟩)βj + (vR − ⟨rR, rR⟩)β2
j = 0 mod ℓ

As before, we can define a polynomial p(X) ∈ Zℓ[X] of degree 2 to be p(X) := (vL − ⟨rL, rL⟩) + 2 · (vC −
⟨rL, rR⟩)X + (vR − ⟨rR, rR⟩)X2. For each j ∈ [4], define β′j ∈ Zℓ to be β′j := βj mod ℓ, and notice that each
β′j is a distinct element of Zℓ. Since for all j ∈ [4], p(β′j) = 0, the coefficients of the above polynomial must all
be 0 (as elements of Zℓ), implying that: vL = ⟨rL, rL⟩ mod ℓ, vC = ⟨rL, rR⟩ mod ℓ and vR = ⟨rR, rR⟩ mod ℓ.
Thus ⟨r, r⟩ = ⟨rL, rL⟩+ ⟨rR, rR⟩ = vL + vR mod ℓ. However, by definition, vR = v − vL mod ℓ, implying that
v = ⟨r, r⟩ mod ℓ.

To summarize, the extractor Ext works as follows:

Ext([trj]
4
j=1)→ w

∗

1. For each j ∈ [4]:
2. Obtain x′j = (Cj , ℓ, vj , ([αk]

i
k=1, βj)) and w′j = rj from trj .

3. Use [βj]
3
j=1 and [rj]

3
j=1 to define the matrices M ∈ Z3×3 and R ∈ Z3×2n−i .

4. Compute P := adj(M) and m := det(M).
5. Compute r := P2R/m.
6. Output w∗ := r.

Efficiency. The efficiency claims follow from inspection.

78

	Abstract
	Contents
	1 Introduction
	1.1 Contributions
	1.2 Applications
	1.3 Related Work

	2 Preliminaries
	2.1 Notation
	2.2 Multilinear polynomials
	2.3 Arguments of knowledge
	2.3.1 Setup

	2.4 Commitment schemes
	2.5 Polynomial commitment schemes
	2.6 Reductions of knowledge

	3 Groups of unknown order
	3.1 The generic group model
	3.2 Assumptions
	3.2.1 Discrete logarithm assumption
	3.2.2 New assumption: modular consistency assumption
	3.2.3 Strong RSA assumption

	4 Techniques
	4.1 DewTwo
	4.2 Self inner product arguments (SIPA)
	4.3 Proof of Knowledge of Exponent Math (PoKEMath)
	4.4 Proof of Knowledge of Exponent, Decomposition, and Expression (PoKEDex)

	5 DewTwo
	5.1 Polynomial commitment from integer encoding
	5.2 The DewTwo protocol
	5.2.1 Weak-DewTwo: A PCS with weak extractability
	5.2.2 DewTwo protocol with strong extractability

	6 Fast integer square decomposition
	6.1 Our algorithm

	7 Toolbox: arguments of knowledge about exponents
	7.1 Proof of Knowledge of Exponent (PoKE)
	7.2 Proof of Knowledge of Exponent Math (PoKEMath)
	7.3 Proof of Knowledge of Exponent, Decomposition, and Expression (PoKEDEx)
	7.4 Triple PoKEDEx (TPoKEDEx)

	8 Self inner product arguments
	8.1 SIPA reductions
	8.2 The full SIPA protocol
	8.3 Three SIPAs in parallel

	References
	A Deferred discussions on assumptions
	A.1 Implied assumptions
	A.1.1 Adaptive root assumption
	A.1.2 Hidden order assumption
	A.1.3 Single rational root assumption
	A.1.4 Multi-rational root assumption

	A.2 Modular consistency security in GGM

	B Deferred DewTwo Proofs
	B.1 Proof of binding for con:vector-commitment
	B.2 Security of Weak-DewTwo
	B.2.1 Costs of Weak-Eval
	B.2.2 Semi-Adaptive Knowledge Soundness of Weak-Eval

	B.3 Security of DewTwo

	C Newton-Raphson
	C.1 Finding square roots

	D Deferred toolbox proofs
	D.1 PoKE deferred proofs
	D.2 PoKEMath deferred proofs
	D.3 PoKEDEx deferred proofs
	D.3.1 Discussion of cost
	D.3.2 Proof of knowledge-Soundness

	D.4 TPoKEDEx deferred proofs
	D.4.1 Discussion of cost
	D.4.2 Proof of knowledge-Soundness

	E Deferred discussion on inner product argument
	E.1 Triple inner product arguments (TIPA)
	E.1.1 The TIPA-i relation
	E.1.2 The TIPA-0 reduction
	E.1.3 The TIPA-i reductions
	E.1.4 The full TIPA protocol

	E.2 Deferred self inner product argument (SIPA) proofs
	E.2.1 Proof of Lemma 2

