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Abstract

We give the first construction of a rate-1 statistical non-interactive zero-knowledge argument of knowl-
edge. For the circuitSAT language, our construction achieves a proof length of |w|+ |w|ϵ · poly(λ) where
w denotes the witness, λ is the security parameter, ϵ is a small constant less than 1, and poly(·) is a fixed
polynomial that is independent of the instance or the witness size. The soundness of our construction fol-
lows from either the LWE assumption, or the O(1)-LIN assumption on prime-order groups with efficiently
computable bilinear maps, or the sub-exponential DDH assumption. Previously, Gentry et al. (Journal
of Cryptology, 2015) achieved NIZKs with statistical soundness and computational zero-knowledge with
the aforementioned proof length by relying on the Learning with Errors (LWE) assumption.

1 Introduction

In a zero-knowledge (ZK) [GMR85] proof system for an NP language L, a prover convinces a verifier that a
statement x ∈ L without revealing any other information. In a bit more detail, a ZK proof system should
satisfy three properties, namely, completeness, soundness, and zero-knowledge. The completeness property
requires that the honest prover convinces the verifier with a proof if x ∈ L. The soundness guarantees that an
(unbounded) malicious prover cannot make the honest verifier accept the proof if x /∈ L. The zero-knowledge
property ensures that a malicious polynomial-time verifier cannot learn any other information except that
x ∈ L from its interaction with an honest prover. If the soundness of the proof system is required to hold
only against computationally-bounded provers, then it is called an argument system [BCC88] and if the zero-
knowledge property is required to hold against unbounded verifiers, then we have statistical zero-knowledge.

In the non-interactive setting (NIZK) [BFM88], the prover sends a single message (or proof) π to the
verifier and the verifier then checks the correctness of this proof. This setting has attracted significant
attention, not only due to the ubiquity of NIZKs as fundamental building blocks in cryptography [NY90,
DDN91, DN00], but also because it is notoriously hard to construct such schemes. It is well-known that
NIZKs are impossible to achieve without any trusted setup [BFM88, GO94]. Hence, to build NIZKs, it is
usually assumed that there exists a common reference string (CRS) generated by a trusted party. Throughout
this work, we will refer to NIZK for all NP in the CRS model as simply NIZK.

By now, NIZKs are known from a plethora of hardness assumptions including factoring-based assumptions
[BFM88, FLS90, BDSMP91], pairing-based assumptions [CHK03, GOS12], LWE [CCH+19, PS19, Wat24],
sub-exponential DDH [JJ21], DDH and LPN [BKM20] and LPN and MQ [DJJ24].

Statistical Zero-Knowledge. In this work, we focus on achieving statistical zero-knowledge in the non-
interactive setting. That is, we require the zero-knowledge property to hold against unbounded verifiers but
the soundness is required to hold only against computationally bounded provers. This setting is of particular
interest as it achieves everlasting security: even if one of the hardness assumptions used to build the scheme
gets broken in the future, the secret witness of the prover remains hidden.
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Minimizing Proof Length. An important measure of efficiency for a NIZK scheme is its proof length.
Starting from the seminal works of Kilian [Kil92] and Micali [Mic94], the problem of minimizing the proof
length has been extensively studied for nearly three decades. For the case of statistically-sound systems
(a.k.a. proofs), under standard complexity-theoretic assumptions, one cannot achieve proof size that is lesser
than the witness size [GH98, GVW02]. Moreover, the work of Campanelli et al. [CGKS23] showed that
under the exponential-time hypothesis, for the case of arguments of knowledge1, it is impossible to achieve
proof size o(|w|) with black-box extraction.2 Thus, there is little difference between the lower bounds on
the communication complexity for proofs and arguments of knowledge with respect to black-box extraction.
Hence, we define the rate of a NIZK proof or argument of knowledge to be |w|/|π| and call constructions
with a proof size that asymptotically approaches |w| to be rate-1.

Prior Work. Gentry et al. [GGI+15] gave an elegant construction of rate-1 NIZKs based on fully-
homomorphic encryption (FHE) [Gen09, BV11]. Specifically, for the circuitSAT language, their proof size
is |w| + poly(λ) where w is the witness, λ is the security parameter, and poly(·) is a fixed polynomial that
is independent of the instance or the witness size. Their construction achieves rate-1 as the ratio between
the size of the witness and the size of the proof approaches 1 asymptotically. This construction achieves
statistical soundness but unfortunately, does not achieve statistical zero-knowledge property.

Another interesting line of work by Katsumata et al. [KNYY19, KNYY20] constructed NIZKs for the
circuitSAT language with a proof size of |C| + poly(λ) where C is the verification circuit in the circuitSAT
instance. The security (both soundness and zero-knowledge) of their construction is computational and is
based on standard assumptions on bilinear maps. This construction does not achieve rate-1 as the size of
the verification circuit C could be polynomial in the size of the witness w.

As none of these works achieve statistical zero-knowledge, we ask:

Can we build rate-1 NIZKs with statistical zero-knowledge?

This was stated as an open problem in [PS19].

1.1 Our Result

In this work, we give a new approach to build a statistical NIZK for NP satisfying argument of knowledge
with rate-1. The soundness of our construction follows from either the O(1)-LIN assumption on prime-order
groups with efficiently computable bilinear maps, or the sub-exponential DDH assumption, or the LWE
assumption. For the circuitSAT language, our construction achieves a proof length of |w| + |w|ϵ · poly(λ)
where w is the witness, λ is the security parameter, a constant 0 < ϵ < 1, and poly(·) is a fixed polynomial
that is independent of the instance or the witness size.

Theorem 1 (Informal). Assuming the hardness of either LWE, or O(1)-LIN on prime order groups with
efficiently computable bilinear maps, or the sub-exponential DDH, there exists a statistical rate-1 NIZK
argument of knowledge.

2 Technical Overview

In this section, we describe the main techniques involved in our construction. Throughout this section, we
will be interested in constructing a non-interactive zero-knowledge (NIZK) argument of knowledge for the
circuitSAT language. Recall that an instance of this language comprises of a Boolean circuit C and an input
x. A valid witness is a string w is such that C(x,w) = 1.

1Argument of knowledge guarantees that if a polynomial-time prover creates a valid proof for a statement x, then there
exists an extractor that can extract a valid witness from this proof.

2In a nutshell, if that was the case, then we could use the extractor for the argument of knowledge to solve NP-complete
problems better than brute-forcing over all witnesses. This is not possible under the exponential-time hypothesis.
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In Section 2.1, we give a construction of a scheme that only satisfies computational zero-knowledge and
has a proof size of |C|+poly(λ). Later, in Section 2.2, we show how to decrease the proof size to |w|+poly(λ)
while still satisfying only computational ZK. Finally, in Section 2.3, we show how to upgrade the construction
to satisfy statistical zero-knowledge property with rate-1.

2.1 Starting Point

We explain a construction of NIZK with proof size |C|+ poly(λ) below.

Setup: The CRS consists of a CRS for a non-interactive extractable commitment scheme and the CRS for
a batch argument for NP (BARG) scheme [BHK17, CJJ21]. At a high-level, BARGs allow the prover
to convince a verifier that a set of k NP statements all belong to an NP language L with a proof.
The size of this proof only grows poly logarithmically in the batch size. Recent constructions have
shown how to achieve this primitive under LWE [CJJ22], bilinear maps [WW22], and sub-exponential
DDH [CGJ+23].

Prover: The prover on witness w evaluates the circuit C on (x,w). Let the computation tableau T be the
value carried by each wire in C in the above evaluation. The size of this tableau is equal to |C|.

• The prover commits to T using a “special” rate-1 extractable commitment. We will later describe
the properties that this extractable commitment needs to satisfy. Let com(T ) denote this rate-1
commitment.

• The prover then considers a batch NP language comprising of |C| NP instances. The witness to
the i-th instance is an opening for the commitment com(T ) to the input and the output wire
values of the i-th gate in the circuit. The underlying NP relation verifies that this opening is
correct w.r.t. com(T ) and then checks if the input and output values are consistent with the gate
type. If i is the output gate, then it additionally verifies whether the output wire value is 1.

• The prover generates a batch argument proof π for the above batch language and sends this proof
along with com(T ) to the verifier.

Verifier: The verifier then checks if the batch proof π verifies.

Proof Size. Let us first analyze the size of the proof in the above construction. The proof consists of
two parts: a rate-1 commitment com(T ) and the batch proof π. Since the commitment is rate-1, the size
of the first part is |T | + poly(λ). To achieve the required proof size, we need the size of |π| to be at most
poly(λ). The proof size in existing batch NP arguments is at least the size of one of the witnesses (in fact, it
grows with the size of the verification circuit for the underlying NP relation). In the above construction, the
BARG witnesses consist of the openings to the input and the output values of a particular gate. In a normal
extractable commitment, the size of each opening grows at least with the length of message. Hence, the size
of the batch proof is at least the size of the computation tableau and this does not lead to a construction with
the required proof size. To fix this issue, we rely on a rate-1 extractable commitment scheme with fully local
opening. The fully local opening property allows the size of the opening to any position (and the size of the
verification circuit for this opening) to be independent of the length of the message to be committed. Such a
commitment scheme can be constructed using a pseudorandom function in conjunction with an extractable
commitment scheme. To commit to a long message µ, we generate a PRF key k and generate a commitment
to this key using the extractable commitment scheme. We send this commitment along with µi ⊕ PRF(k, i)
for each i ∈ [|µ|]. To open to a specific position, we just need to provide an opening to the commitment to
the underlying key. Thus, even if the batch argument has a polynomial blow-up in the size of one of the
witnesses, the size of the batch NP proof is a fixed polynomial in the security parameter independent of the
length of the computation tableau. Thus, the total proof length is |C|+ poly(λ).
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Zero-Knowledge. Note that in the above construction the BARG proof uses the openings to each wire
value in the computation tableau as the underlying witnesses. Since a BARG proof could leak information
about some of the witnesses, the above proof system may not be zero-knowledge. However, we observe that if
the underlying BARG is zero-knowledge, then the above construction can be proven to satisfy zero-knowledge.
Specifically, we can consider an intermediate hybrid where we generate the BARG proof using the simulator
for the zero-knowledge BARG and then rely on the hiding property of the commitment scheme to switch the
computation tableau T to some junk value. Finally, we observe that there is a very simple transformation
from BARG to zero-knowledge BARG by additionally using NIZKs. Specifically, we consider a modified
batch NP language where the instances are the same as before but the witnesses correspond to NIZK proofs
that attest that each instance belongs to the NP language. Since the new witnesses computationally hide
all information about the old witnesses, this transformation can be easily shown to satisfy zero-knowledge
property. Additionally, the size of the new BARG proof is still a fixed polynomial in the size of the verification
circuit of the underlying NP language.

Recent works of Bitansky et al. [BKP+23] and Bradley et al. [BWW23] have shown that somewhere
extractable BARGs along with one-way functions imply a non-interactive zero-knowledge argument.3 These
can be easily updated to arguments of knowledge by committing to the witness via an extractable commit-
ment and proving via a NIZK argument that this witness is valid.

Argument of Knowledge. The argument of knowledge property is a bit more subtle to argue. We start
with the description of the knowledge extractor. On receiving a proof from a malicious prover, this extractor
checks if the proof is valid. If it is the case, it uses the extractor for the underlying extractable commitment
to extract the computation tableau. From this computation tableau, it reads off the witness and outputs
the witness string.

Assume for the sake of contradiction that there exists a malicious prover that with non-negligible proba-
bility outputs a valid proof but the output of the above extractor is an incorrect witness. It follows that the
extracted computation tableau has an inconsistency. That is, either the final output wire does not carry 1 or
there exists a gate such that the input and output wire values are inconsistent. In either case, we show how
to contradict the somewhere extractability property of the BARG. Recall that the somewhere extractability
property states that the CRS for the BARG scheme can be generated w.r.t. to a secret index i∗ and there
is an extractor that given a valid BARG proof can extract the witness for the i∗-th instance.

Let E be the event that prover is able to produce a convincing proof and the output of the extractor is
not a valid witness. To contradict the somewhere extractability property of the underlying BARG scheme,
we first make a guess i∗ where the inconsistency occurs. Let F be the event that our guess is correct and

the probability that F happens at least 1/|C|. Since E and F are independent, Pr[E ∧ F ] = Pr[E]
|C| . We

now make the crs for BARG to be binding at i∗. It follows from the crs indistinguishability property that

Pr[E ∧F ] ≥ Pr[E]
|C| − negl(λ). Now, the somewhere extractability property ensures that the witness extracted

from the BARG proof is correct except with negligible probability. This means that the openings to the
wire values are correct and the input and output wire values are consistent. This means that there is an
inconsistency between the values output by the extractor for the extractable commitment and the witness
extracted from the BARG. If E happens with non-negligible probability, then this contradicts the extraction
property of the extractable commitment scheme.

2.2 Decreasing the Proof Size

The above approach achieves a proof size of |C| + poly(λ) and hence, falls short of achieving rate-1. Our
main technical contribution is modifying the above approach to achieve this proof size.

Why a natural idea fails? A natural solution to decrease the proof length would be to use a rate-1
somewhere extractable commitment with fully local opening [DGKV22, PP22, BDSZ24] to commit to the

3The work of Bradley et al. [BWW23] additionally assumes a public-key encryption scheme (which is implied by a non-
interactive extractable commitment).
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computation tableau. In contrast to a fully extractable commitment, a somewhere extractable commitment
is extractable at a few secret positions. The main advantage of this somewhere extractability is that the
size of the commitment only grows with the number of such positions rather than growing with the length
of the entire committed message. Such a commitment is said to be rate-1 if the size of the commitment is
|B|+ poly(λ) where B is the set of positions that are extractable. Further, the size of the local opening (and
the size of the verification circuit to check the openings) are fixed polynomials that are independent of |B|.4

A natural fix to decrease the proof length in the above construction is to have the CRS for the commitment
scheme to be extractable at the positions corresponding to the witness. Thus, the size of the commitment
is now |w| + poly(λ). The size of the batch proof is poly(λ) and hence, the proof size is |w| + poly(λ). The
zero-knowledge part can be argued using a near identical argument as before.

Unfortunately, the proof of soundness (specifically, argument of knowledge) breaks down completely.
Recall that in the previous proof, we first make a guess for the position where there is an inconsistency in
the computational tableau. Once we receive the proof, we extract the entire computation tableau and check
whether our guess was correct or not. However, since the size of the commitment in the new construction is
much less than the size of the computation tableau, it is infeasible to extract the computation tableau that
was committed to by the prover. Therefore, we cannot reliably check if our guess was correct or not and the
above proof fails to go through. Other natural fixes such as making the extractable commitment binding at
the input and output wire values of a guessed gate also fail as the prover can start cheating at a different
gate once the distribution of the CRS changes. In hindsight, the barriers we face in proving the argument
of knowledge property is similar to those faced while trying to construct SNARGs for NP using somewhere
extractable BARGs.

Our approach in a nutshell. The main problem with the above approach is that it seems infeasible to
catch a malicious prover who cheats in generating the computation tableau while having the total communi-
cation cost to be independent of the tableau size. While batch arguments allow one to argue that the prover
cannot cheat at any particular step of the tableau generation, what we really need is a method to ensure
that the prover cannot cheat at every step.

The first observation that allows us to design such an approach is that the computation tableau is
completely determined by the witness. This means that if we extract the witness, then we can compute the
honest computation tableau. However, this observation alone is not sufficient to prove soundness as we still
need to surmount significant challenges. Specifically, we still need a mechanism to ensure that the computed
tableau is consistent with the the prover’s tableau used in generating the proof. However, note that the
size of the proof is much less than the size of the computation tableau and hence, this task seems highly
non-trivial.

To resolve this, we build the computation tableau “one-step-at-a-time” inside the batch argument. Specif-
ically, we view the computation tableau as part of an external memory that can be updated by the batch
argument. At each step, the batch argument takes a digest of the current state of the computation tableau
(called a snapshot), computes the output of a single gate, and then updates the digest using the output of
this gate. If the digest is computed using a Merkle tree, then these updates can be done in poly(log |C|, λ)
time.

We now explain how generating the computation tableau in a step-by-step manner allows us to overcome
the aforementioned challenge. Observe that extracting the “candidate” witness allows us to precisely compute
the digest of each snapshot of the tableau generation. The key idea behind our proof is to ensure that at any
step i of the tableau generation that the digest used by the prover is consistent with the digest computed
using the extracted witness. This implies that all the steps prior to step-i have been computed correctly
due to the “binding” property of the digest. If we can ensure that this holds in the final step, then we are
guaranteed that all the steps have been computed correctly and hence, the extracted witness is correct.

4We note that we can also allow the size of the openings to be |B|ϵ for a small enough constant 0 < ϵ < 1. But we ignore
this to keep the exposition simple.
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Our Construction. Our constructions builds on the construction of flexible SNARGs for RAM programs
given in [KLVW23].

• The CRS comprises of a hash key for a collision-resistant hash function, a hash key for a somewhere
extractable hash function, CRS for a rate-1 extractable commitment and a CRS for a BARG scheme.

• The prover uses the witness w to evaluate the circuit C on the input (x,w) to generate the computation
tableau T . T comprises of the input x along with values carried by each internal wire in the circuit
(we will deal with the witness separately).

• Let n be the number of gates in the circuit C. Let T1, . . . , Tn be the snapshots of the computation
tableau at the end of evaluating gates 1, 2, . . . , n respectively. In a bit more detail, to compute Ti, we
evaluate the first i gates in the circuit using the inputs (x,w). Let Wi be the sequence of |C| wire
values where the wires corresponding to the outputs of the first i gates are correctly set and the rest of
the values set to 0. Ti is computed as x∥Wi. Note that Tn = T and let T0 be the initial computation
tableau that is populated with input x and with 0s for each internal wire.

• The prover hashes each Ti for i ∈ [n]∪{0} using a Merkle tree to generate the hash digests h0, h1, . . . , hn.
The prover then hashes these values using a somewhere extractable hash function to generate a hash
digest h.

• The prover also generates a rate-1 extractable commitment with fully local openings to the witness w.
Let us denote the commitment by com(w).

• The prover then considers a batch NP language consisting of n statements. The witness to the i-th
instance comprises of openings to hi, hi+1 w.r.t. to the hash digest h along with certain other openings
ρ. If the i-th gate in the circuit reads particular bit(s) of the witness, then ρ includes those openings
from com(w). Else, if it reads certain input wires or other internal wires, then the openings to those
values w.r.t. to hi are included in ρ. Finally, ρ also includes the opening to output wire of the i-th
gate in hi.

The relation function checks if all the openings are correct and computes the output of the i-th gate
using the values of the input wires. If it is the final output gate, it additionally checks if the computed
output is 1. It then checks if the opening to the output wire value in hi is the default value (which is
0). If it is the case, it checks if hi+1 is correctly obtained from hi with the output wire value of the
i-th gate correctly set to the above computed output. Note that this can be done for Merkle tree using
the openings to the output wire of the i-th gate in hi.

• It generates a batch proof π for the above batch language and sends (π, com(w), h) to the verifier along
with local opening to h0 w.r.t. to h. The verifier checks if the proof verifies, the local opening to h0 is
correct and if h0 is the output of the Merkle tree on T0 (which can be computed from the statement).

Proof Size. The size of com(w) is |w|+poly(λ) and the size of h is poly(λ). Note that size of each openings
used in the witness of the BARG language is poly(λ) and therefore, the size of π is poly(λ). The size of the
opening to h0 is poly(λ) and hence, the overall proof size in our construction is |w|+ poly(λ).

Argument of Knowledge. The knowledge extractor is similar to the previous construction. It first verifies
if the proof is valid and if it the case, it uses the extractor for the underlying extractable commitment to
compute the candidate witness and outputs this. To prove that this extractor succeeds, we rely on techniques
developed in the work of Kalai et al. [KLVW23] for constructing flexible SNARGs for RAM programs. Let
us give more details.

Let T1, . . . , Tn be the snapshots of the tableau generation procedure using the candidate witness extracted
by the extractor. We maintain an invariant that if the hash key for the somewhere extractable hash function
is extractable at location i and the prover produces an accepting proof, then hi that is extracted from the
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hash digest h is consistent with the tableau Ti (except with negligible probability). We prove this invariant
using induction with the base case being i = 0.

The base case holds trivially (as the proof includes an opening to h0) and suppose the invariant holds for
the i-th step. Let us generate the hash key of the somewhere extractable hash function to be extractable at
location i+ 1 and let hi+1 be value that is extracted from h. We need to show that hi+1 is consistent with
Ti+1. Below we provide a brief sketch of this argument.

• Since the invariant holds in the i-th step, it follows that if the hash key of the somewhere extractable
hash function is set to be extractable at location i, then hi extracted from h is consistent with Ti.

• We first change the CRS for the somewhere extractable BARG scheme to be binding at the i-th instance.
It follows from the CRS indistinguishability property for the BARG scheme that hi computed as above
is still consistent with Ti.

• We now extract the witness for i-th BARG instance using the corresponding extractor. By somewhere
extractability, this witness is a valid witness for the i-th instance except with negligible probability.
Note that this witness corresponds to openings to hi, hi+1 w.r.t. h along with certain other openings
denoted by ρ.

• Since the somewhere extractable hash function is binding at location i and the witness is valid, it
follows that hi extracted from the digest h is identical to the hi extracted from the witness of the
BARG scheme except with negligible probability.

• We now rely on the collision-resistance of Merkle tree and the binding of the commitment to the
witness w to show that values used in the computation of the i-th gate is consistent with Ti except
with negligible probability. Since the extracted witness from the BARG is correct, it follows that the
output of the i-th gate is computed correctly. Once again relying on the collision-resistance of Merkle
tree, it follows that hi+1 that is extracted from the BARG scheme is consistent with Ti+1.

• Now, if we switch the hash key of the somewhere extractable hash function to be binding at location
i+ 1, we still maintain the invariant that hi+1 that is extracted from the BARG witness is consistent
with Ti+1 except with negligible probability. This property directly follows from the index hiding of
the hash key.

• Once again relying on the binding property of somewhere extractable hash function at location i+ 1,
we infer that the invariant is maintained at step i+ 1 as the BARG witness is valid.

This argument is reminiscent of the “two-key” trick [NY90] where we alternate between extracting the
hash digests using somewhere extractable BARG and somewhere extractable hash. Extending this argument
to the final step shows that hn is consistent with Tn. We can now rely on the somewhere extractability of
the BARG at the final instance along with the the collision-resistance of the Merkle tree to prove that the
value carried by the output wire in Tn is 1. Thus, the witness extracted by us is valid.

Zero-Knowledge. An astute reader would have noticed that the above construction does not directly
satisfy the zero-knowledge property. Specifically, the digest h could reveal information about some of the
bits of some hi which in turn leaks information about the tableau Ti. Since Ti consists of the internal wire
values, we cannot afford to leak this information. To fix this, we use techniques developed in constructing
adaptive garbling schemes [GS18a, GOS18, GS18b, AL18] to protect the memory content. Specifically, we
mask each internal wire value using the output of a PRF and we commit to the key using an extractable
commitment. The batch argument additionally takes an opening to this commitment and ensures that the
masks are correctly computed. This does not affect the argument of knowledge proof as we can extract
the PRF key from the commitment and ensure that at each step, the digest is consistent with the masked
tableau rather than the plaintext tableau. This masking ensures that even if hi is leaked, no information
about the underlying wire values is revealed to the verifier.
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2.3 Statistical Zero-Knowledge

Zero-knowledge for the construction described above relies on i) Zero-knowledge of the BARG scheme, ii)
rate-1 extractable commitment scheme which hides the witness, and iii) the pseudorandomness of the PRF
which masks the intermediate snapshots T1, . . . , Tn of the computation. We now show how to modify the
construction in order to get a NIZK with statistical zero-knowledge, while preserving the optimal rate.

Our first (and easiest) modification is to use a statistical zero-knowledge BARG. This can be easily built
from a standard BARG and a statistical NIZK (with poor rate) using the same construction described earlier.

To solve the second issue, we show how to build a rate-1 extractable commitment scheme which can
be set in two different modes: a statistically hiding mode and an extractable mode. In the extractable
mode, an extractor can use the trapdoor (sampled along with the CRS) to extract the committed message.
In the statistically hiding mode, the committed message is statistically hidden. We additionally need this
commitment to have a local opening property. In particular, we need the size of the opening to any location
to be |m|ϵ ·poly(λ) (where m is the committed message) for a small enough constant 0 < ϵ < 1. To construct
such a rate-1 commitment, we rely on a technique developed by Paneth and Pass [PP22] which uses on
a rate-1 OT scheme. Specifically, we chop the message m into k blocks m1, . . . ,mk for k = |m|1−ϵ. The
commitment key in the extraction mode comprises of k receiver OT messages with choice bit being 0 in
each of them. To commit to m, the committer computes k sender OT messages using (m1,⊥), (m2,⊥),
. . ., (mk,⊥) as the sender messages. If the underlying OT has rate-1, then the size of the commitment is
|m| + |m|1−ϵ · poly(λ). Hence, the asymptotic rate achieved by this construction is 1. The local opening to
some location i comprises (mi∗ ,⊥) along with the sender randomness used to generate the i∗-th OT message
where i∗ is the block that includes i. Thus, the size of the local opening is |m|ϵ · poly(λ). Additionally, if
the underlying OT scheme achieves statistical sender privacy, then we can set the commitment keys to be
receiver OT messages with the choice bits set to 1 and we can show that the commitment statistically hides
the message.

Finally, we need a new approach to hide the intermediate snapshots of the computation as PRFs only
provide computational pseudorandomness. In our new approach, instead of hiding the snapshots T0, . . . , Tn

using a PRF, we will compute them in the plain. From here, we proceed exactly as in the previous construc-
tion: first, hash each Ti using a Merkle tree to obtain hi, and then hash the values h0, . . . , hn using a SEH
to obtain h. The main difference is that now we use a special SEH that we call dual-mode SEH to hash the
digests h0, . . . , hn. This SEH can be set in two different modes: a statistically hiding mode and a somewhere
extractable mode. In the somewhere extractable mode, the hash key binds to a secret location i and an
extractor can use the trapdoor to extract the input bit at location i from the digest. In the statistically
hiding mode, the digest provides no information about the input. To construct such a SEH, we rely on the
construction of SEH from the work of Kalai et al. [KLVW23] based on rate-1 OT. The hash key in this
construction comprises of log k receiver OT messages where k is the length of the input. To hash an input,
we first construct a complete binary tree where the leaves are assigned the values corresponding to the bits
of the input and the value assigned to any node in level-ℓ is the sender OT message using the ℓ-th receiver
message in the hash key and the sender strings being equal to the values of its children. The digest is the
value assigned to the root. In the somewhere extractable mode, the choice bits in the hash key consists of
the bits of the secret location i. To modify this construction to have a statistically hiding mode, we add an
additional leaf with a default symbol and have the hash key point to this location. If the underlying OT has
statistical sender privacy, then it follows that the input is statistically hidden in this mode.

In the real scheme, the commitment and the dual-mode SEH are set up in the statistically hiding mode
and this allows us to prove statistical zero-knowledge. On the other hand, in the argument of knowledge
proof, we switch them to extractable mode and we can use a similar argument as in the previous scheme.

2.4 Relation to RAM SNARGs

We note that the above idea of hashing the external memory and passing the digest as input to a batch
argument has already appeared in the context of constructing SNARGs for RAM computations [KPY19,
CJJ22, KLVW23, BD24]. As we explain below, these results cannot be directly used to construct a rate-1
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NIZK.
SNARGs for RAM computation constructed in Kalai et al. [KPY19] and Choudhuri et al. [CJJ22] satisfied

a form of soundness where the adversarial prover is forced to send the external memory in the clear along
with a proof for a wrong statement about the RAM program. To use this to construct a NIZK scheme, we
can consider a RAM program to access the witness as the database and perform the NP verification check.
To satisfy statistical zero-knowledge property, we need to commit to the database using a statistically hiding
commitment. The RAM program can use this commitment as external memory and takes the decommitment
as part of its private state. It then runs the NP verification circuit on the decommitted witness and checks its
validity. However, we cannot give the RAM SNARG proof and the decommitment in the clear as they may
leak information about the underlying witness. Instead, we can give a NIZK proof (with poor rate) that the
RAM SNARG verifier will accept the underlying proof using the decommitment as the private state. This
can be shown to be sound and satisfy statistical zero-knowledge. However, this construction fails to achieve
rate-1. Note that the size of the decommitment to any statistically hiding commitment is at least as large
as the message (from standard incompressibility argument). Thus, NIZK proof size grows as poly(|w|, λ) as
it takes the decommitment as a witness. Hence, this approach doesn’t seem to give a rate-1 statistical NIZK
argument.

Ben-David [BD24] considered a stronger soundness notion where the adversarial prover only sends a
hash of the database but produces two proofs for the output of the computation being 0 and 1. This
notion of soundness is again insufficient for our purposes as there doesn’t seem a way to produce another
proof (different from the one given by the prover) from the hash of the database. In a recent work, Kalai et
al. [KLVW23] considered a stronger soundness definition called partial input soundness. Intuitively speaking,
partial input soundness guarantees that if a RAM program “touches” only a few positions of the external
memory, then if we hash the external memory using a somewhere extractable hash family that is extractable
at those positions, a prover cannot generate a proof for a wrong statement about such a RAM program.
In our setting, the program that checks the validity of the witness touches O(|C|) positions in the external
memory and hence, the size of a flexible RAM SNARG proof is Ω(|C|). In contrast, our techniques ensure
that the size of this proof is |w| + poly(λ) though our RAM program touches |C| locations of the external
memory.

3 Preliminaries

Let λ denote the cryptographic security parameter. We assume that all cryptographic algorithms implicitly
take 1λ as input. A function µ(·) : N → R+ is said to be negligible if for any polynomial poly(·) there
exists λ0 such that for all λ > λ0 we have µ(λ) < 1

poly(λ) . We will use negl(·) to denote an unspecified

negligible function and poly(·) to denote an unspecified polynomial function. For any i ∈ [n], let xi denote
the symbol at the i-th co-ordinate of x, and for any T ⊆ [n], let xT ∈ {0, 1}|T | denote the projection of x to
the co-ordinates indexed by T . We use supp(X) to denote the support of a random variable X.

For a probabilistic algorithm A, we denote A(x; r) to be the output of A on input x with the content
of the random tape being r. When r is omitted, A(x) denotes a distribution. For a finite set S, we denote
x ← S as the process of sampling x uniformly from the set S. We will use PPT to denote Probabilistic
Polynomial Time algorithm. We assume w.l.o.g. that the length of the randomness for all cryptographic
algorithms is λ.

Definition 1. We say that two distribution ensembles {Xλ}λ∈N and {Yλ}λ∈N are computationally indis-
tinguishable if for every non-uniform PPT distinguisher D, we have |Pr[D(1λ, Xλ) = 1]| − Pr[D(1λ, Yλ) =
1]| ≤ negl(λ).

3.1 Non-Interactive Zero-Knowledge

Non-interactive zero-knowledge (NIZKs) schemes allows a prover to non-interactively prove that a given
statement is in an NP-language. At the moment, NIZKs are known from a variety of hardness assumptions
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such as factoring-based assumptions [BFM88, FLS90, BDSMP91], pairing-based assumptions [GOS06], LWE
[CCH+19, PS19], or subexponential DDH [JJ21].

Definition 2 (Non-interactive zero-knowledge). A non-interactive zero-knowledge (NIZK) argument of
knowledge (AoK) for a NP language L, with corresponding instance-witness relation R : X ×W → {0, 1}, is
a tuple of algorithms (Setup,P,V) such that:

• Setup(1λ)→ crs : It is a PPT algorithm that takes as input the unary encoding of the security parameter
1λ and outputs a common reference string crs.

• P(crs, x, w)→ π : It is a PPT algorithm that takes as input a common reference string crs, a statement
x ∈ X and a witness w ∈ W. It outputs a proof π.

• V(crs, x, π) → b : It is a deterministic algorithm that takes as input a common reference string crs, a
statement x ∈ X and a proof π. It outputs a bit b ∈ {0, 1}.

A NIZK-AoK satisfies the following properties:

• Completeness. For every x ∈ X and w ∈ W such that R(x,w) = 1, we have:

Pr

[
V(crs, x, π) = 1 :

crs← Setup(1λ),
π ← P(crs, x, w)

]
= 1

• Argument of Knowledge. There exists a PPT extractor Ext = (Ext1,Ext2) such that for every
non-uniform PPT prover P∗, we have:

Pr

 V(crs, x, π) = 1 ∧R(x,w) = 0 :
(crs, td)← Ext1(1

λ),
(x, π)← P∗(crs),
w ← Ext2(td, x, π)

 ≤ negl(λ)

• Zero-knowledge. There exists a PPT simulator Sim such that for any x ∈ X and w ∈ W such that
R(x,w) = 1, we have:{

(crs, π) : crs← Setup(1λ), π ← P(crs, x, w)
}
≈c

{
(crs, π) : (crs, π)← Sim(1λ, x)

}
.

If the two distributions described above are statistically indistinguishable then we say that the NIZK
achieves statistical zero-knowledge.

NIZK argument of knowledge can be constructed from a NIZK and an extractable commitment. Specif-
ically, we commit to the witness using an extractable commitment and prove that the committed value is a
valid witness. This construction satisfies both zero-knowledge and argument of knowledge properties. NIZK
arguments are known from factoring [FLS90], or from bilinear maps [GOS12], or from LWE [CCH+19, PS19],
or sub-exponential DDH [JJ21].

Theorem 2. Assuming either factoring, or O(1)-LIN assumption on prime-order groups with efficiently
computable bilinear maps, or LWE, or sub-exponential DDH assumption, there exists a NIZK argument of
knowledge.

3.2 Somewhere Extractable Hash Families

Definition 3 (Somewhere Extractable Hash). A somewhere extractable hash family consists of the following
polynomial time algorithms:

• Gen(1λ, N, i∗)→ (hk, td) : It is a probabilistic setup algorithm that takes as input the security parameter
1λ, the message length N , and an index i∗ ∈ [N ]. It outputs a hashing key hk and a trapdoor td.
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• Hash(hk, x) → v : It is a deterministic algorithm that takes as input a hashing key hk and a message
x ∈ {0, 1}N , and outputs a hash value v ∈ {0, 1}ℓhash .

• Open(hk, x, j)→ (b, ρ) : It is a deterministic algorithm that takes as input a hashing key hk, a message
x ∈ {0, 1}N and an index j ∈ [N ]. It outputs a bit b ∈ {0, 1} and an opening ρ ∈ {0, 1}ℓopen .

• Verify(hk, v, j, b, ρ) → {0, 1} : It is a deterministic algorithm that takes as input a hashing key hk, a
hash value v, an index j ∈ [N ], a bit b and an opening ρ, and it outputs 1 (accept) or 0 (reject).

• Extract(td, v)→ u : It is a deterministic algorithm that takes as input the trapdoor td and a hash value
v, and it outputs a bit u ∈ {0, 1}.

We want a somewhere extractable hash family to satisfy the following properties:

• Efficiency: The size of the hashing key |hk|, the size of the hash ℓhash, the size of the opening ℓopen
and the running time of Verify are all bounded by poly(λ, logN).

• Opening completeness: For every x ∈ {0, 1}N , j ∈ [N ], we have

Pr

 b = xj

∧ Verify(hk, v, j, b, ρ) = 1
:

(hk, td)← Gen(1λ, N, i∗),
v = Hash(hk, x),
(b, ρ) = Open(hk, x, j)

 = 1

• Index hiding: For any N = poly(λ), (i0, i1) ∈ [N ], we have:

{
hk : (hk, td)← Gen(1λ, N, i0)

}
≈c

{
hk : (hk, td)← Gen(1λ, N, i1)

}
• Collision-Resistance: For any non-uniform PPT adversary A, we have:

Pr

[
x ̸= x′

∧ Hash(hk, x) = Hash(hk, x′)
:

(hk, td)← Gen(1λ, N, i∗),
(x, x′)← A(hk)

]
≤ negl(λ)

• Somewhere statistically (resp. computational) binding w.r.t. opening: For any all-powerful
(resp. non-uniform PPT) adversary A = (A1,A2), we have:

Pr

 u ̸= b ∧ Verify(hk, v, i∗, b, ρ) = 1 :

(1N , i∗, st)← A1(1
λ),

(hk, td)← Gen(1n, N, i∗),
(v, i∗, b, ρ)← A2(st, hk),
u← Extract(td, v)

 ≤ negl(λ)

Remark 1 ([DGKV22, KLVW23]). Notice that we can easily convert any such somewhere extractable hash
family into one that is extractable on m indices I = {i1, . . . , im} by running each algorithm m times and
concatenating the outputs. Under this transformation, the sizes of ℓhash, ℓopen and the efficiency of the Verify
will be |I| · poly(λ, logN). We will use the shorthand notation Gen(1n, N, I) to denote this construction, in
which case Extract(td, v) will output m bits (ui)i∈I .

Remark 2. We note that collision-resistance is implied by index hiding and somewhere statistical/computational
binding w.r.t. to opening.

[KLVW23] showed how to construct a somewhere extractable hash family satisfying the above properties
assuming a rate-1 string OT. This can be constructed from DCR [DJ01], from QR/DDH/LWE [DGI+19] or
from O(1)-LIN assumption on prime-order groups with efficiently computable bilinear maps.

Theorem 3. Assuming either QR or DDH or LWE or O(1)-LIN assumption on prime-order groups with
efficiently computable bilinear maps, there exists a construction of somewhere extractable hash family.
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3.2.1 Dual-Mode Somewhere Extractable Hash

We also define a variant of SEH where the hashing key can be set in a statistically hiding mode, meaning
that the input x ∈ {0, 1}N is statistically hidden given v ← Hash(hk, x).

Definition 4. A dual-mode somewhere extractable hash family consists of the following polynomial time
algorithms:

• Gen(1λ, N) → hk : It is a probabilistic setup algorithm that takes as input the security parameter 1λ

and the message length N . It outputs a hashing key hk.

• ExtGen(1λ, N, i∗) → (hk, td) : It is a probabilistic setup algorithm that takes as input the security
parameter 1λ, the message length N , and an index i∗ ∈ [N ]. It outputs a hashing key hk and a
trapdoor td.

• Hash(hk, x), Open(hk, x, j), Verify(hk, v, j, b, ρ) and Extract(td, v) are defined as in Definition 3.

A dual-mode SEH should fulfill all the properties described in Definition 3 (with respect to ExtGen) and
additionally it fulfills the following properties:

• Mode indistinguishability. For every λ,N ∈ N and any i ∈ [N ] we have:{
hk← Gen(1λ, N)

}
≈c

{
hk : (hk, td)← ExtGen(1λ, N, i)

}
.

Note that index hiding is implied by mode indistinguishability.

• Statistical hiding: For any inputs x, x′ ∈ {0, 1}N we have:{
(hk, v) :

hk← Gen(1n, N)
v = Hash(hk, x)

}
≈s

{
(hk, v) :

hk← Gen(1n, N)
v = Hash(hk, x′)

}
.

Remark 3. We remark that the construction of SEH from rate-1 OT from [KLVW23] can be easily extended
into a dual-mode SEH by using a (semi-honest) statistically sender secure rate-1 OT [DGI+19, ADD+22,
BBDP22, BDS23]. At a high level, we will start by hashing Hash(x||r) where x ∈ {0, 1}N is the input to
be hashed and r is some uniformly chosen bit. If we use a statistically sender secure rate-1 OT in the SEH
construction of [KLVW23], we will get a SEH for which all the hashed bits of the input are statistically
hidden, except for the extractable one. Hence, in the statistically hiding mode, we just set the extractable
index to be N + 1, which corresponds to r. Thus, by the statistical sender security of the underlying rate-1
OT we will have that Hash(hk, x||r) ≈s Hash(hk, x

′||r) for any x, x′ ∈ {0, 1}N .

3.3 Somewhere Extractable Batch Arguments

We recall the notion of batch arguments (BARGs). This is an argument system to succinctly prove that
multiple instances x1, . . . , xk belong to an NP language L via witnesses w1, . . . , wk, with the communication
complexity less than

∑
|wi|. At the moment, we know BARG constructions from several standard assump-

tions such as LWE [CJJ22], pairings [WW22], subexponential DDH [CGJ+23], or a mixture of assumptions
[CJJ21, HJKS22].

In particular, let BatchCSAT be the following language:

BatchCSAT = {(C, x1, . . . , xk) : ∃w1, . . . , wk s.t. ∀i ∈ [k], C(xi, wi) = 1},

where Cn : {0, 1}n×{0, 1}m(n) → {0, 1} is a Boolean circuit of size s(n) that checks a relation with instance
size n and witness size m(n). For simplicity, we use s and m instead of s(n) and m(n).

Definition 5 (Somewhere extractable BARGs). A somewhere extractable batch argument for BatchCSAT
with L-succinctness consists of the following polynomial time algorithms:
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• Gen(1λ, 1k, 1s, i∗) → (crs, td) : It is a PPT algorithm that takes as input the unary encoding of the
security parameter 1λ, the number of instances 1k, the circuit size 1s and an index i∗ ∈ [k]. It outputs
a common reference string crs and a trapdoor td.

• P(crs, C, {xi}i∈[k], {wi}i∈[k]) → π: It is a PPT algorithm that takes crs, a circuit C, k statements
x1, . . . , xk ∈ {0, 1}n and k witnesses w1, . . . , wk ∈ {0, 1}m. It outputs a proof π.

• V(crs, C, {xi}i∈[k], π) → b: It is a deterministic algorithm that takes crs, a circuit C, k statements
{xi}i∈[k] and a proof π. It outputs a bit b ∈ {0, 1}.

• Extract(td, C, {xi}i∈[k], π) → w∗: It is a deterministic algorithm that takes a trapdoor td, a circuit C,
k statements {xi}i∈[k] and a proof π. It outputs a witness w∗ for instance xi∗ .

We want a somewhere extractable batch argument to satisfy the following properties:

• L-succinctness: The crs and the proof π have length at most L(k, λ) · poly(s), and the verifier runs
in time L(k, λ) · poly(s) + k · poly(n, λ).

• Completeness: For all λ ∈ N, all k, n ∈ poly(λ), all circuits C : {0, 1}n × {0, 1}m → {0, 1} at size
most s and all (x1, . . . , xk) and (w1, . . . , wk) such that C(xi, wi) = 1 and any i∗ ∈ [k], we have:

Pr

[
1← V(crs, C, {xi}i∈[k], π) :

(crs, td)← Gen(1λ, 1k, 1s, i∗)
π ← P(crs, C, {xi}i∈[k], {wi}i∈[k])

]
= 1.

• Index hiding: For all k, s = poly(λ), i0, i1 ∈ [k]

{
crs : (crs, td)← Gen(1λ, 1k, 1s, i0)

}
≈c

{
crs : (crs, td)← Gen(1λ, 1k, 1s, i1)

}
• Somewhere argument of knowledge: There exists a PPT extractor Ext such that for any PPT
adversary A and for any k, s = poly(λ), and any index i∗ ∈ [k] we have that

Pr

 1← V(crs, C, {xi}i∈[k], π)
∧

C(xi∗ , w
∗) ̸= 1

:
(crs, td)← Gen(1λ, 1k, 1s, i∗)
(C, {xi}i∈[k], π)← A(crs)

w∗ ← Ext(td, C, {xi}i∈[k], π)

 ≤ negl.

Index BARGs. We say that a somewhere extractable BARG scheme is an index seBARG if the instances
x1, . . . , xk are all of the form xi = i; however, in the L-succinctness property we require that the verification
algorithm runs in time L(k, λ) · poly(s), since it doesn’t have to read all the instances anymore.

Theorem 4 ([CJJ22, DGKV22, PP22, WW22, CGJ+23, KLVW23]). Assuming either LWE or sub-exponential
DDH or O(1)-LIN assumption on prime-order groups with efficiently computable bilinear maps, there exists
a construction of somewhere extractable index BARGs with poly(λ, log k)-succinctness.

4 Rate-1 Dual-Mode Fully Local Extractable Commitments

In this section we present a new commitment scheme with some special properties: i) It is dual-mode,
meaning that we can set the CRS to be in either extractable or statistically hiding mode, ii) It is local
openable, meaning that opening a bit of the message should only require a opening of sublinear size, and iii)
It is rate 1, meaning that the size of the commitment is identical to the size of the message (up to sublinear
additive factors).

Definition 6 (Dual-Mode Fully-local extractable commitment). A dual-mode fully-local extractable com-
mitment (FLC) scheme parametrized by k, ℓ ∈ N consists of the following polynomial time algorithms:
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• Setup(1λ, k, ℓ)→ crs : It is a PPT algorithm that takes in the unary encoding of the security parameter
1λ and output a common reference string crs.

• ExtSetup(1λ, k, ℓ) → (crs, td) : It is a PPT algorithm that takes in the unary encoding of the security
parameter 1λ and output a common reference string crs and a trapdoor td.

• Com(crs,m) → (com, st) : It is a PPT algorithm that takes in crs and the message m ∈ {0, 1}k and
outputs a commitment string com (which can be decomposed as com = (d1, . . . ,dℓ)) and a state st.

• LocOpen(crs, com, st,m, i) : It is a deterministic algorithm that takes in crs, a commitment com, a state
st, a message m = (m1, . . . ,mk) and an index i ∈ [k], and outputs a opening ρ.

• LocVer(crs,dj ,mi, ρ) → b : It is a deterministic algorithm that takes in a crs, a commitment (c,dj)
where j ∈ [ℓ], a message mi and the opening ρ and outputs a bit b ∈ {0, 1}.

• Extract(td, com)→ m : It is a deterministic algorithm that takes in the trapdoor td and a commitment
string com and outputs a message m.

We require a dual-mode fully-local extractable commitment to satisfy the following properties:

• Mode indistinguishability: For every λ, k, ℓ ∈ N we have:{
crs← Setup(1λ, k, ℓ)

}
≈c

{
crs : (crs, td)← ExtSetup(1λ, k, ℓ)

}
• Local Opening Completeness: For every message m = (m1, . . . ,mk) and any indices j ∈ [ℓ], i ∈ [k]
such that j ∈ {(i− 1)k/ℓ, . . . , ik/ℓ}, we have:

Pr

 LocVer(crs,dj ,mi, ρ) = 1− negl(λ) :
(crs, td)← ExtSetup(1λ),
(com, st)← Com(crs,m)
ρ← LocOpen(crs, com, st,m, i)

 = 1

where com = (d1, . . . ,dℓ).

• Statistical Hiding: For any two messages m0,m1 of equal length that is poly(λ), we have:{
(crs, com) : (crs, td)← Setup(1λ), com← Com(crs,m0)

}
≈s{

(crs, com) : (crs, td)← Setup(1λ), com← Com(crs,m1)
}

• Extraction Correctness: For any PPT adversary A, we have:

Pr

 ∧iLocVer(crs,dj ,mi, ρi) = 1 ∧m ̸= m′ :
(crs, td)← ExtSetup(1λ),
(com,m, {ρi}i)← A(crs),
m′ ← Extract(td, com)

 ≤ negl(λ)

where com = (d1, . . . ,dℓ) and m = (m1, . . . ,mk).

• Efficiency: The rate-1 property states that |com| = k + o(k) · poly(λ). Additionally, we require that
LocVer runs in time o(k) · poly(λ), which also implies that |ρ| = o(k) · poly(λ).

Remark 4 (Simple construction achieving computational hiding). If we drop the statistically hiding property,
then this notion can be easily achieved with an extractable commitment and a PRF. To commit to the message,
simply compute a commitment to the PRF key K and compute m′ = m ⊕ (PRF(K, 1), . . . ,PRF(K, k)).
It is easy to see that this construction is extractable and local openable. This construction only achieves
computational hiding, as the PRF only provides computational pseudorandomness.
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4.1 Rate-1 Dual-Mode Fully Local Extractable Commitment from Rate-1 OT

We present a generic construction from rate-1 oblivious transfer with (semi-honest) statistical sender security
[DGI+19, ADD+22, BBDP22, BDS23]. At the moment, we know how to build this primitive from hardness
assumptions such as DCR [DJ01], LWE [BDGM19], DDH, QR [DGI+19], k-LIN [KLVW23] or a combination
of DDH and LPN [BBDP22, BDS23].

Definition 7 (Rate-1 oblivious transfer). A rate-1 oblivious transfer (OT) consists of the following algo-
rithms:

• OTR(1λ, b)→ (st, ot1) : It is a PPT algorithm that takes in the unary encoding of the security parameter
1λ and a bit b ∈ {0, 1}, and outputs a private state st and an OT receiver message ot1.

• OTS(ot1, (m0,m1); r) → ot2 : It is a PPT algorithm that takes in an OT message ot1 and a pair of
messages (m0,m1) (using random coins r ∈ λ), and outputs an OT sender message ot2

• OTD(st, ot2) → m : It is a deterministic algorithm that takes in a private state st and an OT sender
message ot2, and outputs a message m.

• Correctness: For every λ ∈ N b ∈ {0, 1} and every pair of messages (m0,m1) we have:

Pr

[
OTD(st, ot2) = mb :

(st, ot1)← OTR(1λ, b)
ot2 ← OTS(ot1, (m0,m1))

]
= 1− negl(λ).

• Receiver security: For every λ ∈ N we have that:{
ot1 : (st, ot1)← OTR(1λ, 0)

}
≈c

{
ot1 : (st, ot1)← OTR(1λ, 1)

}
• Semi-honest statistical sender security: For every λ ∈ N, any b ∈ {0, 1} and any pair of messages
(m0,m1) we have:{

(ot2, st) :
(st, ot1)← OTR(1λ, b)

ot2 ← OTS(ot1, (m0,m1))

}
≈s

{
(ot2, st) :

(st, ot1)← OTR(1λ, b)
ot2 ← OTS(ot1, (mb,mb))

}
.

• Efficiency: We require that |ot2| = |mb|+ poly(λ).

We need an additional property for the rate-1 OT called verifiable correctness, which was defined in
[KLVW23].

Definition 8. An OT scheme (OTR,OTS,OTD) is said to be verifiable correct if there is polynomial-time
deterministic algorithm Valid(ot1,m0,m1, r)→ {0, 1} such that:

• If 1 = Valid(ot1,m0,m1, r) then

Pr

[
OTD(st, ot2) = mb :

(st, ot1)← OTR(1λ, b)
ot2 ← OTS(ot1, (m0,m1); r)

]
= 1.

• For all b,m0,m1, r,

Pr
[
1 = Valid(ot1,m0,m1, r) : (st, ot1)← OTR(1λ, b)

]
= 1− negl(λ).

Rate-1 OT schemes with (semi-honest) statistical sender security can be built from DDH, QR or LWE
[DGI+19, BBDP22]. We now sketch a construction of a (semi-honest) statistical sender secure rate-1 OT
from O(1)−LIN assumption. This follows from a simple modification of the construction given in [KLVW23].
Like in [KLVW23], we give a construction of a rate-1 batch OT scheme which implies a rate-1 string OT.
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Rate-1 OT with semi-honest statistical sender security from O(1)−LIN. We show how to modify
the rate-1 OT from O(1)−LIN assumption given in [KLVW23] to provide semi-honest statistical sender
security.

• Receiver’s message: Let b ∈ {0, 1}n−k be the vector of receiver’s choice bits. Pad these bits with
default bits to obtain a vector of length n. We will slightly abuse the notation and use b to denote
this padded vector. Let X ∈ {0, 1}n×n be a matrix whose diagonal elements are given by b. Let
Y ∈ {0, 1}(k+n)×n be another matrix that as X in the bottom block and zeroes elsewhere. The

receiver chooses a random matrix B ∈ Z(k+n)×n
p with rank k. This is done by choosing the first k rows

of B uniformly at random and then choosing the last n rows to be random linear combinations of the
first k rows. Let the (k + i)-th row be given by vi · B[1, . . . , k] where B[1, . . . , k] denotes the first k
rows of B. The receiver’s message is given by g(B+Y). Note that the k-LIN assumption implies that

gB chosen as above is indistinguishable from gU where U is uniformly chosen from Z(k+n)×n
p . This

ensures that the receiver’s choice bits are computationally hidden.

• Sender’s message. Let s0, s1 ∈ {0, 1}n−k be the vector of sender’s inputs in the batch OT. The
sender samples 2k random elements from Zp and extends s0, s1 with k elements each to obtain new
vectors in Zn

p . We slightly abuse the notation and denote the new vectors as s0, s1 respectively. The
sender computes

h = g(B+Y)·(s1−s0) ⊙ g0
k∥s0 .

where ⊙ denotes point-wise product. It then parses h = (h1,h2,h3) ∈ Gk × Gn−k × Gk. For each
i ∈ [n− k], it computes zi = DDLog(h2,i) where DDLog is the Distributed Discrete Log introduced in
[BGI16]. It sends (h1, (z1, . . . , zn−k)).

• Output Computation. Let ui = (−vi, ei) be the vector that is in the left kernel of B for each i ∈ [n]
(where ei is the i-th unit vector of length n). This implies that for each i ∈ [n− k],

((−vi) ⋄ h1) · h2,i = gui((B+Y)·(s1−s0)+0k∥s0) = gsbi,i

where (−vi) ⋄h1 denotes applying the linear map −vi to the exponent of the group elements h1. This
means that with probability at least 1 − 1/nλ, for each i ∈ [n − k], DDLog((−vi) ⋄ h1)) ⊕ zi = sbi,i.
Therefore, by union bound, the probability of correctness of the complete construction is 1−1/λ. This
can be bootstrapped to 1− negl(λ) correctness via the same techniques in [DGI+19].

• Statistical Sender Privacy. Note that except with negligible probability, zi = DDLog((−vi) ⋄
h1)) ⊕ sbi,i. This can be simulated given the knowledge of the output and h1. Furthermore, since
the last k elements of s1 − s0 are uniformly chosen from Zk

p, it follows that B[1, . . . , k] · (s1 − s0) is
uniformly distributed with overwhelming probability. This means that h1 is uniformly distributed and
this completes the statistical sender security proof.

Construction. We give a formal description of a rate-1 FLC from rate-1 OT. Let (OTR,OTS,OTD) be a
rate-1 OT which is verifiable correct.

• Setup(1λ) :

1. Run (stOT , ot1)← OTR(1λ, 1).

2. Sample u←$ {0, 1}t.
3. Output crs = (ot1,u).

• ExtSetup(1λ) :

1. Run (stOT , ot1)← OTR(1λ, 0).
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2. Sample u←$ {0, 1}t.
3. Output crs = (ot1,u) and td = stOT .

• Com(crs,m) :

1. Parse m = (m1, . . . ,mℓ) where each mi ∈ {0, 1}t and t = k/ℓ.

2. For all i ∈ [ℓ] compute ot2,i ← OTS(ot1, (mi,u); ri) using random coins ri ←$ {0, 1}λ.
3. Output com = {ot2,i}i∈[ℓ] and st = {ri}i∈[ℓ].

• LocOpen(crs, com, st,m, i ∈ [k]) :

1. Parse com = {ot2,i}i∈[ℓ], st = {ri}i∈[ℓ], and m = (m1, . . . ,mj)

2. Let j ∈ [ℓ] such that i ∈ {(j − 1)k/ℓ, jk/ℓ}.
3. Output ρ = (rj ,mj).

• LocVer(dj ,mi, ρ) :

1. Parse dj = ot2,j , ρ = (rj ,mj) and mj = (mj,1, . . . ,mj,k/ℓ).

2. If ot2,j ← OTS(ot1, (mj ,u); rj), if mj,i mod k/ℓ = mi and if 1 = Valid(ot1,mj ,u, rj), output 1.

• Extract(td, com) :

1. Parse td = stOT and com = {ot2,i}i∈[ℓ].

2. For all i ∈ [ℓ] compute mi ← OTD(stOT , ot2,i).

3. Output m = (m1, . . . ,mℓ)

Efficiency. Set ℓ = k1−ϵ for ϵ > 0. The commitment com is composed by {ot2,i}i∈[ℓ] where

• |ot2,i| = k/ℓ+ poly(λ) = kϵ + poly(λ).

Hence the rate ϱcom is

ϱcom =
|com|
|m|

=
k1−ϵ · |ot2,i|

k
= 1 +

poly(λ)

kϵ
.

On the other hand, the size of the opening ρ for a position i ∈ [k] is

|ρ| = |rj |+mj = kϵ + poly(λ)

which is sublinear in the size of the message k. Finally, the algorithm LocVer runs in time P (kϵ, λ) for a
fixed polynomial P . For a proper choice of ϵ we have that LocVer runs in time o(k) · poly(λ).

Remark 5. Note that the choice of ϵ can be tuned at setup time. In particular, the parameter ϵ > 0 (which
determines the size of the opening ρ and the runtime of LocVer) can be as small as we want. This will be
important to set up the parameters that allow us to achieve rate-1 NIZKs with statistical zero-knowledge (see
Section 5).

Analysis. We now proceed with the analysis of the scheme. Local opening completeness follows easily from
the verifiable correctness of the underlying OT scheme. We proceed to show all other security properties of
the scheme.

Lemma 1. The construction presented above is dual-mode indistinguishable given that the underlying rate-1
OT is receiver secure.
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Proof. Assume that there is an adversary A that breaks the mode indistinguishability of the commitment
scheme. This adversary can be directly used as an adversary against the receiver security of the underlying
OT.

Lemma 2. The construction presented above has extraction correctness given that the underlying rate-1 OT
is verifiable correct.

Proof. Let (com,m, {ρi}) be the output of the adversary in the extraction correctness game. If LocVer(crs,dj ,mi, ρi) =
1 for all i ∈ [k] then this means that ot2,j ← OTS(ot1, (mj ,u); rj),mj,i mod k/ℓ = mi and 1 = Valid(ot1,mj ,u, rj).
By the verifiable correctness of the underlying OT scheme, this immediately implies that for all j ∈ [ℓ] com-
pute mj ← OTD(stOT , ot2,j).

Lemma 3. The construction presented above is statistical hiding given that the underlying rate-1 OT is
semi-honest statistical sender secure.

Proof. In the statistically hiding mode, the crs is composed by ot1 which is the output of OTR(1λ, 1) and
the commitment is of the form ot2,i ← OTS(ot1, (mi,u); ri). Thus, breaking statistically hiding of the
commitment is equivalent to breaking statistical sender security of the underlying OT.

5 Rate-1 Statistical Non-Interactive Zero-Knowledge

In this section we show how to build a rate-1 NIZK for which the zero-knowledge property holds statistically.

Building Blocks. The construction uses the following building blocks:

• A rate-1 dual-mode fully local extractable commitment scheme (SetupC ,ExtSetupC ,Com, LocOpen, LocVer,ExtractC)
(see Definition 6), for which the local openings have sublinear size mε, for any ε < 0 (see Remark 5).

• A dual-mode somewhere extractable hash family (GenH ,ExtGenH ,HashH ,OpenH ,VerifyH ,ExtractH)
with statistical hiding (Definition 6).

• A NIZK-AoK (SetupN ,PN ,VN ) with statistical zero knowledge for an NP language LN described
below.

• A somewhere extractable batch argument (GenB ,PB ,VB ,ExtractB) for the language defined below.
Let s(n) be the size of Cn. For simplicity, we will use s instead of s(n).

• A (MDGen,MDHash,MDRead,MDVerify,MDWrite) be a Merkle-Damg̊ard hash tree using a collision
resistant hash key hk. MDRead gives a local opening to any location i. MDVerify checks if this opening
is correct. MDWrite to write to a location i first takes takes a local opening to location i, runs MDVerify
and then, updates the hash using the updated value at location i.

• A NIZK-AoK (SetupN ′ ,PN ′ ,VN ′) with statistical zero knowledge for the language

L′ = {(hkH , v, 0, st0) : ∃ρ0 s.t. VerifyH(hk0, v, 0, st0, ρ0) = 1}.

Construction. We give the formal description of a rate-1 NIZK-AoK for CSAT.

• Setup(1λ) :

1. Sample crsC ← SetupC(1
λ).

2. Sample crsN ← SetupN (1λ) and crsN ′ ← SetupN ′(1λ).

3. Sample hk← GenH(1λ, N, 1) where N = T · λ.
4. Sample hk′ ← MDGen(1λ).
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5. Sample (crsB , tdB)← GenB(1
λ, 1k, 1s, 1) where k = T .

6. Output crs = (crsC , crsN , crsN ′ , crsB , hk, hk
′).

• P(crs, x, w) : Let x ∈ {0, 1}n and w ∈ {0, 1}m.

1. Compute (com, stw)← Com(crsC , w).

2. Let init0 = x∥0S and compute st0 = MDHash(hk′, init0).

3. Evaluate Cn(w, x) to compute all the values carried by each wire. Let wiren+m+1, . . . ,wiren+m+S

be the values carried by the internal wires.

4. For every g from 1 to T :

(a) Let i and j be the input wires to g-th gate and let ℓ be the output wire.

(b) Set (bgi , ρ
g
i ) = MDRead(hk′, stg−1, initg−1, i), (b

g
j , ρ

g
j ) = MDRead(hk′, stg−1, initg−1, j) and (bgℓ , ρ

g
ℓ ) =

MDRead(hk′, stg−1, initg−1, ℓ).

(c) Let initg be same as initg−1 except that ℓ-th entry is set to wireℓ.

(d) Compute stg = MDHash(hk′, initg).

5. Compute v = Hash(hk, st0∥ . . . ∥stT ) and for each i ∈ [0, T ], compute (sti, ρi)← Open(hk, v, st0∥ . . . ∥stT , i).
6. Decompose com into (d1, . . . ,dm) where each block di contains wi.

5

7. For each g ∈ [T ], compute the witness w̃g for the language described below with the instance
being x̃g = (crsN , v, hk, st0, g,d

g
i ,d

g
j ).

8. Compute πB = PB(crsB , (x̃1, . . . , x̃T ), (w̃1, . . . , w̃T )).

9. Set x′ = (hk, v, 0, st0) and w′ = ρ0. Compute σ ← PN ′(crsN ′ , x′, w′).

10. Output π = (com, v, (st0, σ), πB).

• V(crs, x, π) :

1. Parse π as (com, v, (st0, σ), πB)

2. Compute init0 = x∥0S and check if st0 = MDHash(hk′, init0).

3. Decompose com into (d1, . . . ,dm) where each block di contains the bit wi.

4. Set x′ = (hk, v, 0, st0) and check if VN ′(crsN ′ , x′, σ) = 1.

5. For each g ∈ T , set x̃g = (crsN , v, hk, st0, g,d
g
i ,d

g
j ).

6. Check if VB(crsB , (x̃1, . . . , x̃T ), πB) = 1.

7. If all the checks pass, V outputs 1.

Language for BARGs. We describe a language for our BARG scheme.

• Input: The CRS for a NIZK scheme crsN , the hash digests v, hash key hk for SEH, a hash key hk′ for
MDHash, st∗0 ∈ {0, 1}λ, an index g ∈ [T ] and two blocks dg

i ,d
g
j of the commitment.

• Witness: A proof πN .

• Description of Relation Circuit: The circuit checks if VN (crsN , (crsC , v, hk, hk
′, st∗0, com, g,dg

i ,d
g
j ), πN ) =

1 for the NP language LN defined below. Let s be the size of this relation circuit.

• Description of LN : x̃g = (crsC , v, hk, hk
′, st∗0, g,d

g
i ,d

g
j ) ∈ LN if there exists a witness (stg−1, ρg−1),

(stg, ρg), (b
g
i , ρ

g
i ), (d

g
i , δ

g
i ), (b

g
j , ρ

g
j ), (d

g
j , δ

g
j ), (b

g
ℓ , ρ

g
ℓ ) such that:

5This can be done by decomposing (c1, . . . , cℓ) (as per Definition 6) and computing (d1, . . . ,dm) where di(j−1)+1 = · · · =
di(j−1) = cj for all i ∈ [k/ℓ] and j ∈ [ℓ]. In other words, each block di is identical to the block cj for which we can open wi.
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1. If g = 1, check if st∗0 = st0.

2. Check if VerifyH(hk, v, g − 1, stg−1, ρg−1) = 1 and VerifyH(hk, v, g, stg, ρg) = 1.

3. Let i and j be the input wires to g-th gate in C and let ℓ be the output wire.

4. If i ∈ [m] (that is, if i corresponds to a witness wire that is given as input to the circuit), check if
LocVer(crsC ,d

g
i , b

g
i , δ

g
i ) = 1. Similarly, if j ∈ [m] (that is, if i corresponds to a witness wire that

is given as input to the circuit), check if LocVer(crsC ,d
g
j , b

g
j , δ

g
j ) = 1.

5. Check ifMDVerify(hk′, stg−1, b
g
i , ρ

g
i ) = 1,MDVerify(hk′, stg−1, b

g
j , ρ

g
j ) = 1 andMDVerify(hk′, stg−1, b

g
ℓ , ρ

g
ℓ ) =

1.

6. Check if bgℓ = 0.

7. Compute bℓ = NAND(bgi , b
g
j ). If g = T , check if bℓ = 1.

8. Check if stg = MDWrite(hk′, v, ℓ, (bgℓ , ρ
g
ℓ ), bℓ).

5.1 Proof Size

We first prove the following claim which will be used in the analysis of the proof size.

Claim 1. The size of a proof πB the BARG scheme presented above is |w|ε · poly(log T, λ) for some ε < 0.

Proof. In order to prove this claim, we start by showing that the NIZK verifier for language LN runs
in time |w|εN · poly(λ). The NIZK verifier runs in time PN (|CN |, λ) where CN is the relation circuit for
LN , for some fixed polynomial PN . Notice that all operations in CN run in time poly(λ), except for
LocVer(crsC ,d

g
i , b

g
i , δ

g
i ) = 1 and LocVer(crsC ,d

g
j , b

g
j , δ

g
j ) = 1 (in case any of i, j ∈ [m]). In order to prove this,

it is sufficient to prove that that the language LN can be verified using a poly(λ) circuit as the NIZK verifier
has a poly(λ) overhead over the size of this circuit.

• The size of stg−1 and stg are poly(λ) as we set the SEH to be extractable at a single location from 1 to
T .

• Since the SEH has local openings, it follows that the size of ρg and ρg−1 are poly(log T, λ) = poly(λ).
Therefore, the size of VerifyH is poly(λ).

• The size of MDVerify and the size of the openings ρgi , ρ
g
j , ρ

g
ℓ are poly(λ).

• The computation of the PRF and the bit bℓ can be done using a poly(λ) sized circuit.

• MDWrite can be done using a circuit of size poly(λ).

Hence, it follows that the LN can be verified using a circuit of size poly(λ) and this completes the proof of
the claim.

By definition, LocVer runs in time |w|εC for any εC < 0. Setting εC to be small enough so that
PN (|CN |, λ) = |w|ε′ · poly(λ) yields that VerifyN runs in time sublinear in |w|. Note that, using the FLC
construction of Section 4.1, we have full control over the choice of εC (see Remark 5).

Finally, the BARG scheme adds an overhead of QB(|CV |, log T, λ) where |CV | is the NIZK verifier circuit,
for some fixed polynomial QB . Again, by setting ε′ to be small enough, we obtain the desired result.

Size of the proof π. The proof π is composed by (com, v, (st0, σ), πB) where:

• |com| = |w|+ o(|w|) · poly(λ).

• |v| = poly(λ), since we just need to extract sti (which is of size poly(λ)).

• |st0| = poly(λ) and |σ| = poly(λ) since the underlying NIZK for language L′ only blows up the size of
the proof by a factor of poly(λ) when compared to the size of the witness ρ, which is |ρ0| = poly(λ).
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• |πB | = o(|w|) · poly(log T, λ) (from Claim 1).

Thus, we have that the rate ϱπ of the proof is

ϱπ =
π

|w|
=
|com|+ |v|+ |st0|+ |σ|+ |πB |

|w|
=
|w|+ o(|w|) · poly(λ)

|w|
= 1 + o(|w|) · poly(λ)/|w|

which approaches 1 for large enough |w|.

Online/Offline Verification. We observe that for a slight modificaion of our construction, it is possible
to split the verification into an offline/online steps where a majority of the verifier work is done in the offline
step before receiving the proof. First, note that com is anyway public and available to the verifier. We can
thus turn the BARG language into an index language (akin to [CJJ22]), by simply Merkle hashing com into
a hash value u, and then giving as part of the BARG witness w̃i the local opening for the right block of com
that needs to be fetched at step i of the computation. Then,

• Offline Phase. In this phase, the verifier can compute the partial hash6 of x∥0S . Furthermore, the
partial hash of 0S can be computed once and for all and this partial hash could be made part of the
CRS. Therefore, the verifier only needs to read x in the offline phase (which includes the circuit C
in the case where we use a Universal Turing machine) and compute the partial hash of x∥0S in time
|C| · poly(λ). Therefore, the running time of the offline phase is at most |C| · poly(λ).

• Online Phase. Once the verifier receives the proof, it can combine the partial hash of x∥0S with w′

to obtain st0 = MDHash(hk′, init0) in time |w′| ·poly(λ). After the verifier computes st0, it runs VerifyH
and VerifyB . VerifyH can be computed in time poly(λ) and VerifyB for the case of index BARG takes
time poly(log T, λ) · poly(s) = poly(λ) (from Claim 1). Therefore, the total running time of the online
verifier is |w| · poly(λ).

5.2 Analysis

We now proceed with the analysis of our scheme.

Theorem 5 (Completeness). The NIZK construction presented above is complete given that the underlying
fully-local extractable commitment is local opening complete, the dual-mode SEH is opening complete and the
underlying NIZKs and BARG scheme are complete.

Proof. Assume that x ∈ L and that w is the corresponding witness. We will show that 1 ← V(crs, x, π)
where π = (w′, v, (st0, ρ0), com, πB).

First, by the completeness of N ′, we have that VN ′(crsN ′ , x′, σ) = 1 where x′ = (hk, v, 0, st0) ∈ L′ by
construction.

By construction and opening completeness of the underlying extractable commitment and SEH, we have
that Xg = (crsC , v, hk, hk

′, st∗0, com, g,dg
i ,d

g
i ,d

g
j ) ∈ LN by all g ∈ [T ]. Let wg be the corresponding witness.

Then, VN (crsN , Xg, πg) = 1 by the completeness of the underlying NIZK, where πg ← PN (crsN , Xg, wg).
Moreover, by the completeness of the underlying (index) BARG, we have that VB(crsB , (crsN , crsC , v, hk, hk

′, st0, com), πB) =
1 where πB = PB(crsB , (crsN , crsC , v, hk, hk

′, st0, com), (w1, . . . , wT )) for wi = πi.

Theorem 6 (Argument of knowledge). The NIZK construction presented above is an argument of knowledge
given that the underlying SEH is index hiding and SSB, the underlying BARG is index hiding and somewhere
extractable, the underlying NIZK is an argument of knowledge and the underlying Merkle-Damg̊ard hash
function is collision resistant.

Proof. Let (ExtN,1,ExtN,2) be the extractor of the underlying NIZK scheme. We will start by describing the
extractor Ext = (Ext1,Ext2).

6By partial hash, we mean computing all the internal nodes in the Merkle-Damg̊ard hash tree that are “influenced” by a
part of the input and then giving out the “highest” ancestors of those nodes. The size of the partial hash is at most one hash
value for each level of the tree and hence, this size is at most poly(λ).
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Ext1(1
λ) :

• (crsC , tdC)← ExtSetupC(1
λ).

• (crsN , tdN )← ExtN,1(1
λ) and (crsN ′ , tdN ′)← ExtN ′,1(1

λ).

• (hkH , tdH)← ExtGenH(1λ, N, T ).

• Sample hk′ ← MTGen(1λ).

• (crsB , tdB)← GenB(1
λ, 1k, 1s, T ).

• Output crs = (crsC , crsN , crsB , hk, hk
′) and td = (tdC , tdN , tdH , tdB).

Ext2(td, x, π) :

• Check if V(crs, x, π) = 1. If not, output ⊥.

• Else, parse π as (com, v, (st0, σ), πB).

• Extract w ← ExtractC(tdC , com).

We start by moving into a hybrid where both the extractable commitment and the SEH are moved from
the statistially hiding mode into the extractable mode. The proof follows the following sequence of hybrids.

• Hyb0 : This is the argument of knowledge game described in Definition 2.

• Hyb1 : This hybrid is identical to the previous one except that we set (crsC , tdC)← ExtSetupC(1
λ)

Claim 2. Hyb0 and Hyb1 are indistinguishable given that the FLC is dual-mode indistinguishable.

The hybrids are identical except for the mode in which the setup of the FLC is set to (either statistically
hiding mode or extractable mode). Hence, we could use an adversary that distinguishes the hybrids
to break the mode indistinguishability of the underlying FLC.

• Hyb2 : This hybrid is identical to the previous one except that we set (hkH , tdH)← ExtGenH(1λ, N, T ).

Claim 3. Hyb1 and Hyb2 are indistinguishable given that the SEH is dual-mode indistinguishable.

The hybrids are identical except for the mode in which the setup of the SEH is set to (either statistically
hiding mode or somewhere extractable mode). Hence, we could use an adversary that distinguishes
the hybrids to break the mode indistinguishability of the underlying SEH.

To prove argument of knowledge, it is sufficient to prove the following statement for hybrid Hyb2:

If output of Ext2 it not ⊥, then R(x,w) = 1 except with negligible probability.

Let (w, k) be the witness extracted by the extractor described above. Let us define sti that is computed
as follows.

1. Set init0 = x∥0S .

2. For every g from 1 to i:

(a) Let i′ and j′ be the input wires to g-th gate and let ℓ be the output wire.

(b) Let α = initg,i′ and β = initg,j′ .

(c) Compute γ = NAND(α, β).

(d) Let initg be same as initg−1 except that ℓ-th entry is set to γ.
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3. Compute sti = MTHash(hk, initi).

Let (ExtN,1,ExtN,2) be the extractor of the underlying NIZK scheme. Additionally let (ExtN ′,1,ExtN ′,2)
be the extractor for the NIZK for language L′. We prove the following claim about the above computed sti.

Lemma 4. For any i ∈ [N ] and for any PPT adversary P∗, consider the following experiment.

1. Generate crs = (crsC , crsN , crsN ′ , crsB , hk, hk
′) where

(a) (crsC , tdC)← ExtSetupC(1
λ)

(b) (crsN , tdN )← ExtN,1(1
λ) and (crsN ′ , tdN ′)← ExtN ′,1(1

λ),

(c) (hkH , tdH)← ExtGenH(1λ, N, i) where N = (T + 1) · λ,
(d) (crsB , tdB)← GenB(1

λ, 1k, 1s, i) where k = T .

(e) Sample hk′ ← MTGen(1λ).

2. (x, π)← P∗(crs), where π = (com, v, (st0, σ0), πB)

Then, we have
Pr [sti ̸= st∗i ∧ V(crs, x, π) = 1 : st∗i ← ExtractH(tdH , v)] ≤ negl(λ).

Proof. We will prove this claim via induction on i. We start by analyzing the base case where i = 0.

Basis i = 0. Note that if V(crs, x, π) = 1, then it means that st0 that is sent as part of π satisfies
st0 = MTHash(hk′, x∥0S) and VerifyN ′(crsN ′ , x′, σ) = 1. Using ExtN ′,2 we can extract ρ0 such that (st0, ρ0)
is a valid opening of v at location 0 (otherwise we could break the AoK of the NIZK for L′). It now follows
from the somewhere binding property of SEH that st∗0 = st0 and hence, the claim holds at i = 0.

Induction step. We will now show that if the induction hypothesis holds for i − 1 then it also holds for
i. We will prove this via a hybrid argument.

• Hyb0 : Consider the following experiment:

1. Generate crs = (crsC , crsN , crsB , hk, hk
′) where

(a) (crsC , tdC)← ExtSetupC(1
λ)

(b) (crsN , tdN )← ExtN,1(1
λ), (crsN ′ , tdN ′)← ExtN ′,1(1

λ)

(c) (hk, tdH)← ExtGenH(1λ, N, i− 1) where N = (T + 1) · λ,
(d) (crsB , tdB)← GenB(1

λ, 1k, 1s, i− 1) where k = T .

(e) Sample hk′ ← MTGen(1λ).

2. (x, π)← P∗(crs), where π = (com, v, (st0, σ), πB).

3. st∗i−1 ← ExtractH(tdH , v).

4. If V(crs, x, π) = 1, then we output 1 if any of the following conditions hold.

(a) sti−1 ̸= st∗i−1

Note that by induction hypothesis, the probability that we output 1 in Hyb0 is negligible.

• Hyb1 : This hybrid is identical to the previous one except that we generate crsB as (crsB , tdB) ←
GenB(1

λ, 1k, 1s, i) . Concretely,

1. Generate crs = (crsC , crsN , crsB , hk, hk
′) where

(a) (crsC , tdC)← ExtSetupC(1
λ)

(b) (crsN , tdN )← ExtN,1(1
λ), (crsN ′ , tdN ′)← ExtN ′,1(1

λ)
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(c) (hk, tdH)← GenH(1λ, N, i− 1) where N = (T + 1) · λ,
(d) (crsB , tdB)← GenB(1

λ, 1k, 1s, i) where k = T .

(e) Sample hk′ ← MTGen(1λ).

2. (x, π)← P∗(crs), where π = (com, v, (st0, σ), πB).

3. st∗i−1 ← ExtractH(tdH , v).

4. If V(crs, x, π) = 1, then we output 1 if any of the following conditions hold.

(a) sti−1 ̸= st∗i−1

Claim 4. Hybrids Hyb0 and Hyb1 are indistinguishable given that the BARG scheme is index hiding.

We show from the index hiding property of the BARG scheme that the probability that we output 1
in Hyb1 is negligible. Suppose for the sake of contradiction assume that the probability we output 1 in
Hyb1 is non-negligible. We show that we can break the index hiding property of BARG. We interact
with this challenger and send i and i − 1 as the challenge index locations. We receive crsB from the
challenger. We generate the rest of the components of the CRS as before and send this to the prover.
After receiving the proof, we compute st∗i−1 and sti as before. If the proof verifies and st∗i−1 ̸= sti,
we output 1. Eles, we output 0. Note that if crsB is generated with respect to location i, then the
reduction mimics Hyb1. Else, it mimics Hyb0. Therefore, this reduction can break the index hiding
property of the BARG scheme with non-negligible advantage and this is a contradiction.

• Hyb2 : This hybrid is identical to the previous one, except that we extract w∗
i ← ExtN,2(tdN , π′

i), where
π′
i ← ExtractB(tdB , πB). Additionally, output 1 if either sti−1 ̸= st∗i−1 or w∗

i is not a valid witness for

the instance of LN given by (crsC , v, hk, hk
′, st∗0, com, i,di

j ,d
j
ℓ). Concretely,

1. Generate crs = (crsC , crsN , crsB , hk, hk
′) where

(a) (crsC , tdC)← ExtSetupC(1
λ)

(b) (crsN , tdN )← ExtN,1(1
λ), (crsN ′ , tdN ′)← ExtN ′,1(1

λ)

(c) (hk, tdH)← GenH(1λ, N, i− 1) where N = T · λ,
(d) (crsB , tdB)← GenB(1

λ, 1k, 1s, i) where k = T .

(e) Sample hk′ ← MTGen(1λ).

2. (x, π)← P∗(crs), where π = (com, v, (st0, σ), πB).

3. Compute π′
i ← ExtractB(tdB , πB) and w∗

i ← ExtN,2(tdN , π′
i).

4. st∗i−1 ← ExtractH(tdH , v).

5. If V(crs, x, π) = 1, then we output 1 if any of the following conditions holds.

(a) sti−1 ̸= st∗i−1

(b) w∗
i is not a valid witness for the instance of LN given by (crsC , v, hk, hk

′, st∗0, com, i,di
j ,d

j
ℓ)

Claim 5. Hybrids Hyb1 and Hyb2 are indistinguishable given that the underlying BARG is somewhere
extractable and the underlying NIZK is an argument of knowledge.

We prove from the somewhere argument of knowledge property of BARG scheme and the knowledge
extraction property of NIZK, the probability that we output 1 in Hyb2 is negligible. We do this in two
steps. We consider a sub-hybrid we we first extract π′

i using ExtractB and output 1 if the proof π verifies
and either sti−1 ̸= st∗i−1 or if π′

i is not a valid witness for the index language with the instance being

(crsC , v, hk, hk
′, st∗0, com, i,di

j ,d
j
ℓ). The probability that we output 1 in this sub-hybrid is negligible

from the somewhere argument of knowledge property of the BARG scheme. Now, we use the extractor
for the NIZK to extract w∗

i from π′
i and replace the second condition in the previous sub-hybrid to w∗

i

being a valid witness for the instance (crsC , v, hk, hk
′, st∗0, com, i,di

j ,d
j
ℓ) of LN . The probability that

we output 1 in this hybrid is negligible from the argument of knowledge property of the NIZK scheme.
Note that the final hybrid is identical to Hyb2.
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• Hyb3 : This hybrid is identical to the previous one except that we parse w∗
i as ((st

′
i−1, ρ

′
i−1), (st

′
iρ

′
i), (c

g
i′ , ν

g
i′),

δgi′ , δ
g
j′ , (c

g
j′ , ν

g
j′), (c

g
ℓ , ν

g
ℓ )). Additionally, we output 1 if either sti−1 ̸= st∗i−1 or w∗

i is not a valid witness

for the instance of LN given by (crsC , v, hk, hk
′, st∗0, com, i,di

j ,d
j
ℓ) or st

′
i−1 ̸= st∗i−1. Concretely,

1. Generate crs = (crsC , crsN , crsB , hk, hk
′) where

(a) (crsC , tdC)← ExtSetupC(1
λ)

(b) (crsN , tdN )← ExtN,1(1
λ), (crsN ′ , tdN ′)← ExtN ′,1(1

λ)

(c) (hk, tdH)← GenH(1λ, N, i− 1) where N = T · λ,
(d) (crsB , tdB)← GenB(1

λ, 1k, 1s, i) where k = T .

(e) Sample hk′ ← MTGen(1λ).

2. (x, π)← P∗(crs), where π = (com, v, (st0, σ), πB).

3. Compute π′
i ← ExtractB(tdB , πB) and w∗

i ← ExtN,2(tdN , π′
i).

4. Parse w∗
i as ((st′i−1, ρ

′
i−1), (st

′
iρ

′
i), (c

g
i′ , ν

g
i′), δ

g
i′ , δ

g
j′ , (c

g
j′ , ν

g
j′), (c

g
ℓ , ν

g
ℓ )).

5. st∗i−1 ← ExtractH(tdH , v).

6. If V(crs, x, π) = 1, then we output 1 if any of the following conditions holds.

(a) sti−1 ̸= st∗i−1

(b) w∗
i is not a valid witness for the instance of LN given by (crsC , v, hk, hk

′, st∗0, com, i,di
j ,d

j
ℓ)

(c) st′i−1 ̸= st∗i−1.

Claim 6. Hybrids Hyb2 and Hyb3 are indistinguishable given that the SEH is somewhere extractable.

We prove using the somewhere binding property of the SEH that the probability that we output 1
in Hyb3 is negligible. Assume for the sake of contradiction that the probability we output 1 in Hyb3
is non-negligible. Since the probability we output 1 in Hyb2 is negligible, we infer that the following
event happens with non-negligible probability: (i) the proof π verifies, (ii) sti−1 = st∗i−1, (iii) w∗

i is a

valid witness for the instance of LN given by (crsC , v, hk, hk
′, st∗0, com, i,di

j ,d
j
ℓ), and (iv) st′i−1 ̸= st∗i−1.

Since w∗
i is a valid witness, it follows that (st′i−1, ρ

′
i−1) is a valid opening to v. If st′i−1 ̸= st∗i−1, then

this breaks the somewhere binding property of SEH and this is a contradiction.

• Hyb4 : This hybrid is identical to the previous one except that we compute ŵ ← ExtC(tdC , com) we
output 1 if either i) sti−1 ̸= st∗i−1 or ii) w∗

i is not a valid witness for the instance of LN given by

(crsC , v, hk, hk
′, st∗0, com, i,di

j ,d
j
ℓ) or iii) st′i−1 ̸= st∗i−1 or iv) cgi ̸= ŵi if i ∈ [m] or cgj ̸= ŵj if j ∈ [m].

Concretely,

1. Generate crs = (crsC , crsN , crsB , hk, hk
′) where

(a) (crsC , tdC)← ExtSetupC(1
λ)

(b) (crsN , tdN )← ExtN,1(1
λ), (crsN ′ , tdN ′)← ExtN ′,1(1

λ)

(c) (hk, tdH)← GenH(1λ, N, i− 1) where N = T · λ,
(d) (crsB , tdB)← GenB(1

λ, 1k, 1s, i) where k = T .

(e) Sample hk′ ← MTGen(1λ).

2. (x, π)← P∗(crs), where π = (com, v, (st0, σ), πB).

3. Compute π′
i ← ExtractB(tdB , πB) and w∗

i ← ExtN,2(tdN , π′
i).

4. Parse w∗
i as ((st′i−1, ρ

′
i−1), (st

′
iρ

′
i), (c

g
i′ , ν

g
i′), δ

g
i′ , δ

g
j′ , (c

g
j′ , ν

g
j′), (c

g
ℓ , ν

g
ℓ )).

5. ŵ ← ExtC(tdC , com)

6. st∗i−1 ← ExtractH(tdH , v).

7. If V(crs, x, π) = 1, then we output 1 if any of the following conditions holds.
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(a) sti−1 ̸= st∗i−1

(b) w∗
i is not a valid witness for the instance of LN given by (crsC , v, hk, hk

′, st∗0, com, i,di
j ,d

j
ℓ)

(c) st′i−1 ̸= st∗i−1.

(d) cgi ̸= ŵi if i ∈ [m] or cgj ̸= ŵj if j ∈ [m].

Claim 7. Hybrids Hyb3 and Hyb4 are indistinguishable given that the underlying FLC has extraction
correctness.

Assume for the sake of contradiction that we output 1 in Hyb4 is non-negligible probability. Since
the probability we output 1 in Hyb3 is negligible, the following event happens with non-negligible
probability: (i) the proof π verifies, ii) sti−1 = st∗i−1, iii) w̃∗

i is a valid witness for the instance of LN

given by (crsC , v, hk, hk
′, st∗0, com, i,di

j ,d
j
ℓ), iii) st′i−1 = st∗i−1. Then if we output 1 in this hybrid it

is because cgi ̸= ŵi or cgj ̸= ŵj , which breaks the extraction correctness of the underlying fully-local
extractable commitment.

• Hyb5 : This hybrid is identical to the previous one except that we output 1 if either i) sti−1 ̸= st∗i−1

or ii) w̃∗
i is not a valid witness for the instance of LN given by (crsC , v, hk, hk

′, st∗0, com, i,di
j ,d

j
ℓ) or

iii) st′i−1 ̸= st∗i−1 or iv) cgi ̸= ŵi if i ∈ [m] or cgj ̸= ŵj if j ∈ [m], or v) (bgi′ , ρ
g
i′) ̸= (cgi′ , ν

g
i′) or

(bgj′ , ρ
g
j′) ̸= (cgj′ , ν

g
j′) or (b

g
ℓ , ρ

g
ℓ ) ̸= (cgℓ , ν

g
ℓ ). Concretely,

1. Generate crs = (crsC , crsN , crsN ′ , crsB , hk, hk
′) where

(a) (crsC , tdC)← ExtSetupC(1
λ)

(b) (crsN , tdN )← ExtN,1(1
λ), (crsN ′ , tdN ′)← ExtN ′,1(1

λ)

(c) (hk, tdH)← GenH(1λ, N, i− 1) where N = T · λ,
(d) (crsB , tdB)← GenB(1

λ, 1k, 1s, i) where k = T .

(e) Sample hk′ ← MTGen(1λ).

2. (x, π)← P∗(crs), where π = (com, v, (st0, σ), πB).

3. Compute π′
i ← ExtractB(tdB , πB) and w∗

i ← ExtN,2(tdN , π′
i).

4. Parse w∗
i as ((st′i−1, ρ

′
i−1), (st

′
iρ

′
i), (c

g
i′ , ν

g
i′), δ

g
i′ , δ

g
j′ , (c

g
j′ , ν

g
j′), (c

g
ℓ , ν

g
ℓ )).

5. Let (bgi′ , ρ
g
i′), (b

g
j′ , ρ

g
j′), (b

g
ℓ , ρ

g
ℓ ) be the local openings to the i-th, j-th and the ℓ-th locations in sti−1.

6. ŵ ← ExtC(tdC , com)

7. st∗i−1 ← ExtractH(tdH , v).

8. If V(crs, x, π) = 1, then we output 1 if any of the following conditions holds.

(a) sti−1 ̸= st∗i−1

(b) w∗
i is not a valid witness for the instance of Ln given by (crsC , v, hk, hk

′, st∗0, com, i,di
j ,d

j
ℓ)

(c) st′i−1 ̸= st∗i−1.

(d) cgi ̸= ŵi if i ∈ [m] or cgj ̸= ŵj if j ∈ [m].

(e) (bgi′ , ρ
g
i′) ̸= (cgi′ , ν

g
i′) or (b

g
j′ , ρ

g
j′) ̸= (cgj′ , ν

g
j′) or (b

g
ℓ , ρ

g
ℓ ) ̸= (cgℓ , ν

g
ℓ ).

Claim 8. Hybrids Hyb4 and Hyb5 are indistinguishable given that MTHash is collision-resistant.

We prove using the collision-resistance of the MTHash that the probability we output 1 in Hyb5 is
negligible. Assume for the sake of contradiction that we output 1 in Hyb5 is non-negligible probability.
Since the probability we output 1 in Hyb4 is negligible, the following event happens with non-negligible
probability: (i) the proof π verifies, (ii) sti−1 = st∗i−1, (iii) w

∗
i is a valid witness for the instance of LN

given by (crsC , v, hk, hk
′, st∗0, com, i,di

j ,d
j
ℓ), (iv) st

′
i−1 = st∗i−1, and (v) (bgi′ , ρ

g
i′) ̸= (cgi′ , ν

g
i′) or (b

g
j′ , ρ

g
j′) ̸=

(cgj′ , ν
g
j′) or (bgℓ , ρ

g
ℓ ) ̸= (cgℓ , ν

g
ℓ ). It follows from conditions (ii) and (iv) that sti−1 = st′i−1. Since w∗

i

is a valid witness, it follows that (cgi′ , ν
g
i′), (c

g
j′ , ν

g
j′), (c

g
ℓ , ν

g
ℓ ) are valid openings to sti−1. However, if

condition (v) happens, then we have found a collision to the MTHash function family and this is a
contradiction.
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• Hyb6 : This hybrid is identical to the previous one except that we output 1 if either i) sti−1 ̸= st∗i−1

or ii) w̃∗
i is not a valid witness for the instance of LN given by (crsC , v, hk, hk

′, st∗0, com, i,di
j ,d

j
ℓ) or

iii) st′i−1 ̸= st∗i−1 or iv) cgi ̸= ŵi if i ∈ [m] or cgj ̸= ŵj if j ∈ [m], or v) (bgi′ , ρ
g
i′) ̸= (cgi′ , ν

g
i′) or

(bgj′ , ρ
g
j′) ̸= (cgj′ , ν

g
j′) or (b

g
ℓ , ρ

g
ℓ ) ̸= (cgℓ , ν

g
ℓ ), or vi) st

′
i ̸= sti. Concretely,

1. Generate crs = (crsC , crsN , crsN ′ , crsB , hk, hk
′) where

(a) (crsC , tdC)← ExtSetupC(1
λ)

(b) (crsN , tdN )← ExtN,1(1
λ), (crsN ′ , tdN ′)← ExtN ′,1(1

λ)

(c) (hk, tdH)← GenH(1λ, N, i− 1) where N = T · λ,
(d) (crsB , tdB)← GenB(1

λ, 1k, 1s, i) where k = T .

(e) Sample hk′ ← MTGen(1λ).

2. (x, π)← P∗(crs), where π = (com, v, (st0, σ), πB).

3. Compute π′
i ← ExtractB(tdB , πB) and w∗

i ← ExtN,2(tdN , π′
i).

4. Parse w∗
i as ((st′i−1, ρ

′
i−1), (st

′
iρ

′
i), (c

g
i′ , ν

g
i′), δ

g
i′ , δ

g
j′ , (c

g
j′ , ν

g
j′), (c

g
ℓ , ν

g
ℓ )).

5. Let (bgi′ , ρ
g
i′), (b

g
j′ , ρ

g
j′), (b

g
ℓ , ρ

g
ℓ ) be the local openings to the i-th, j-th and the ℓ-th locations in

sti−1.

6. ŵ ← ExtC(tdC , com)

7. st∗i−1 ← ExtractH(tdH , v).

8. If V(crs, x, π) = 1, then we output 1 if any of the following conditions holds.

(a) sti−1 ̸= st∗i−1

(b) w∗
i is not a valid witness for the instance of Ln given by (crsC , v, hk, hk

′, st∗0, com, i,di
j ,d

j
ℓ)

(c) st′i−1 ̸= st∗i−1.

(d) (bgi′ , ρ
g
i′) ̸= (cgi′ , ν

g
i′) or (b

g
j′ , ρ

g
j′) ̸= (cgj′ , ν

g
j′) or (b

g
ℓ , ρ

g
ℓ ) ̸= (cgℓ , ν

g
ℓ ).

(e) cgi ̸= ŵi if i ∈ [m] or cgj ̸= ŵj if j ∈ [m].

(f) st′i ̸= sti.

Claim 9. Hybrids Hyb5 and Hyb6 are indistinguishable by the correctness of MTWrite.

Since w∗
i is a valid witness and (bgi , b

g
j ) = (cgi , c

g
j ), it follows from the perfect extraction of com that

the output of the gate i that is computed in w∗
i is same as the output computed as part of initi. Since

initi−1 and initi only differ at the ℓ-th location, it follows from the correctness of MTWrite that sti = st′i.
Hence, the probability that we output 1 in Hyb6 is negligible.

• Hyb7 : This hybrid is identical to the previous one except that we output 1 if either i) w̃∗
i is not a

valid witness for the instance of LN given by (crsC , v, hk, hk
′, st∗0, com, i,di

j ,d
j
ℓ) or ii) st′i−1 ̸= st∗i−1 or

iii) cgi ̸= ŵi if i ∈ [m] or cgj ̸= ŵj if j ∈ [m], or iv) (bgi′ , ρ
g
i′) ̸= (cgi′ , ν

g
i′) or (bgj′ , ρ

g
j′) ̸= (cgj′ , ν

g
j′) or

(bgℓ , ρ
g
ℓ ) ̸= (cgℓ , ν

g
ℓ ), or v) st

′
i ̸= sti. Concretely,

1. Generate crs = (crsC , crsN , crsN ′ , crsB , hk, hk
′) where

(a) (crsC , tdC)← ExtSetupC(1
λ)

(b) (crsN , tdN )← ExtN,1(1
λ), (crsN ′ , tdN ′)← ExtN ′,1(1

λ)

(c) (hk, tdH)← GenH(1λ, N, i− 1) where N = T · λ,
(d) (crsB , tdB)← GenB(1

λ, 1k, 1s, i) where k = T .

(e) Sample hk′ ← MTGen(1λ).

2. (x, π)← P∗(crs), where π = (com, v, (st0, σ), πB).

3. Compute π′
i ← ExtractB(tdB , πB) and w∗

i ← ExtN,2(tdN , π′
i).
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4. Parse w∗
i as ((st′i−1, ρ

′
i−1), (st

′
iρ

′
i), (c

g
i′ , ν

g
i′), δ

g
i′ , δ

g
j′ , (c

g
j′ , ν

g
j′), (c

g
ℓ , ν

g
ℓ )).

5. Let (bgi′ , ρ
g
i′), (b

g
j′ , ρ

g
j′), (b

g
ℓ , ρ

g
ℓ ) be the local openings to the i-th, j-th and the ℓ-th locations in

sti−1.

6. ŵ ← ExtC(tdC , com)

7. If V(crs, x, π) = 1, then we output 1 if any of the following conditions holds.

(a) w∗
i is not a valid witness for the instance of Ln given by (crsC , v, hk, hk

′, st∗0, com, i,di
j ,d

j
ℓ)

(b) st′i−1 ̸= st∗i−1.

(c) cgi ̸= ŵi if i ∈ [m] or cgj ̸= ŵj if j ∈ [m].

(d) (bgi′ , ρ
g
i′) ̸= (cgi′ , ν

g
i′) or (b

g
j′ , ρ

g
j′) ̸= (cgj′ , ν

g
j′) or (b

g
ℓ , ρ

g
ℓ ) ̸= (cgℓ , ν

g
ℓ ).

(e) st′i ̸= sti.

Claim 10. Hybrids Hyb6 and Hyb7 are indistinguishable by the correctness of MTWrite.

Notice that the only difference in Hyb5 and Hyb6 is that in Hyb6, we no longer extract st∗i−1 from v

and do not check if sti−1
?
= st∗i−1. Hence, the probability that we output 1 in Hyb6 is at most the

probability that we output 1 in Hyb5 and this is negligible.

• Hyb8 : This hybrid is identical to the previous one except that we set hk to be (hk, tdH)← GenH(1λ, N, i).

1. Generate crs = (crsC , crsN , crsN ′ , crsB , hk, hk
′) where

(a) (crsC , tdC)← ExtSetupC(1
λ)

(b) (crsN , tdN )← ExtN,1(1
λ), (crsN ′ , tdN ′)← ExtN ′,1(1

λ)

(c) (hk, tdH)← GenH(1λ, N, i) where N = T · λ,
(d) (crsB , tdB)← GenB(1

λ, 1k, 1s, i) where k = T .

(e) Sample hk′ ← MTGen(1λ).

2. (x, π)← P∗(crs), where π = (com, v, (st0, σ), πB).

3. Compute π′
i ← ExtractB(tdB , πB) and w∗

i ← ExtN,2(tdN , π′
i).

4. Parse w∗
i as ((st′i−1, ρ

′
i−1), (st

′
iρ

′
i), (c

g
i′ , ν

g
i′), δ

g
i′ , δ

g
j′ , (c

g
j′ , ν

g
j′), (c

g
ℓ , ν

g
ℓ )).

5. Let (bgi′ , ρ
g
i′), (b

g
j′ , ρ

g
j′), (b

g
ℓ , ρ

g
ℓ ) be the local openings to the i-th, j-th and the ℓ-th locations in

sti−1.

6. ŵ ← ExtC(tdC , com)

7. If V(crs, x, π) = 1, then we output 1 if any of the following conditions holds.

(a) w∗
i is not a valid witness for the instance of Ln given by (crsC , v, hk, st

∗
0, com, i)

(b) st′i−1 ̸= st∗i−1.

(c) cgi ̸= ŵi if i ∈ [m] or cgj ̸= ŵj if j ∈ [m].

(d) (bgi′ , ρ
g
i′) ̸= (cgi′ , ν

g
i′) or (b

g
j′ , ρ

g
j′) ̸= (cgj′ , ν

g
j′) or (b

g
ℓ , ρ

g
ℓ ) ̸= (cgℓ , ν

g
ℓ ).

(e) st′i ̸= sti.

Claim 11. Hybrids Hyb7 and Hyb8 are indistinguishable given that the underlying SEH is index hiding.

We show from the index hiding property of SEH that the probability that we output 1 in Hyb8 is
negligible. Assume for the sake of contradiction that the probability that we output 1 in Hyb8 is
negligible. We break the index hiding property of SEH. We interact with the challenger and provide
(i−1) and i as the challenge locations and obtain crsH . We generate the rest of the components in the
CRS as before and send to the prover. On obtaining the proof, we make the same checks as in Hyb7
and output 1 if and only if the output of the experiment described in the hybrids outputs 1. Note that
if crsH is generated with respect to location i, the this reduction mimics Hyb8. Else, it mimics Hyb7.
Therefore, this reduction contradicts the index hiding property of SEH.
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• Hyb9 : This hybrid is identical to the previous one except that we compute st∗i ← ExtractH(tdH , v) and

output 1 if either i) w̃∗
i is not a valid witness for the instance of LN given by (crsC , v, hk, hk

′, st∗0, com, i,di
j ,d

j
ℓ)

or ii) st′i−1 ̸= st∗i−1 or iii) cgi ̸= ŵi if i ∈ [m] or cgj ̸= ŵj if j ∈ [m], or iv) (bgi′ , ρ
g
i′) ̸= (cgi′ , ν

g
i′) or

(bgj′ , ρ
g
j′) ̸= (cgj′ , ν

g
j′) or (b

g
ℓ , ρ

g
ℓ ) ̸= (cgℓ , ν

g
ℓ ), or v) st

′
i ̸= sti, or vi) st

′
i ̸= sti. Concretely,

1. Generate crs = (crsC , crsN , crsN ′ , crsB , hk, hk
′) where

(a) (crsC , tdC)← ExtSetupC(1
λ)

(b) (crsN , tdN )← ExtN,1(1
λ), (crsN ′ , tdN ′)← ExtN ′,1(1

λ)

(c) (hk, tdH)← GenH(1λ, N, i) where N = T · λ,
(d) (crsB , tdB)← GenB(1

λ, 1k, 1s, i) where k = T .

(e) Sample hk′ ← MTGen(1λ).

2. (x, π)← P∗(crs), where π = (com, v, (st0, σ), πB).

3. Compute π′
i ← ExtractB(tdB , πB) and w∗

i ← ExtN,2(tdN , π′
i).

4. Parse w∗
i as ((st′i−1, ρ

′
i−1), (st

′
iρ

′
i), (c

g
i′ , ν

g
i′), δ

g
i′ , δ

g
j′ , (c

g
j′ , ν

g
j′), (c

g
ℓ , ν

g
ℓ )).

5. Let (bgi′ , ρ
g
i′), (b

g
j′ , ρ

g
j′), (b

g
ℓ , ρ

g
ℓ ) be the local openings to the i-th, j-th and the ℓ-th locations in

sti−1.

6. ŵ ← ExtC(tdC , com)

7. st∗i ← ExtractH(tdH , v).

8. If V(crs, x, π) = 1, then we output 1 if any of the following conditions holds.

(a) w∗
i is not a valid witness for the instance of Ln given by (crsC , v, hk, st

∗
0, com, i)

(b) st′i−1 ̸= st∗i−1.

(c) cgi ̸= ŵi if i ∈ [m] or cgj ̸= ŵj if j ∈ [m].

(d) (bgi′ , ρ
g
i′) ̸= (cgi′ , ν

g
i′) or (b

g
j′ , ρ

g
j′) ̸= (cgj′ , ν

g
j′) or (b

g
ℓ , ρ

g
ℓ ) ̸= (cgℓ , ν

g
ℓ ).

(e) st′i ̸= sti.

(f) st∗i ̸= st′i.

Claim 12. Hybrids Hyb8 and Hyb9 are indistinguishable given that the underlying SEH is is somewhere
extractable.

Observe that since w∗
i is a valid witness, it follows from the somewhere binding property of SEH that

the probability that we output 1 in Hyb9 is negligible. This argument is similar to Claim 6.

• Hyb10 : This hybrid is identical to the previous one except that we output 1 if st∗i ̸= sti.

1. Generate crs = (crsC , crsN , crsN ′ , crsB , hk, hk
′) where

(a) (crsC , tdC)← ExtSetupC(1
λ)

(b) (crsN , tdN )← ExtN,1(1
λ), (crsN ′ , tdN ′)← ExtN ′,1(1

λ)

(c) (hk, tdH)← GenH(1λ, N, i) where N = T · λ,
(d) (crsB , tdB)← GenB(1

λ, 1k, 1s, i) where k = T .

(e) Sample hk′ ← MTGen(1λ).

2. (x, π)← P∗(crs), where π = (com, v, (st0, σ), πB).

3. st∗i ← ExtractH(tdH , v).

4. If V(crs, x, π) = 1, then we output 1 if any of the following conditions holds.

(a) st∗i ̸= sti.

Claim 13. Hybrids Hyb9 and Hyb10 are indistinguishable.
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Observe that if st′i = sti and st′i = st∗i with overwhelming probability in Hyb9, it follows that sti = st∗i
with overwhelming probability. As we are making fewer checks in Hyb10, the probability that we
output 1 in Hyb10 is at most the probability that we output 1 in Hyb9. Hence, the probability that we
output 1 in Hyb10 is negligible. This completes the induction step.

This completes the proof of the Lemma.

It remains to show that output of the final gate (i.e., the T -th gate) computed in initT is 1 except with
negligible probability if the proof π is accepting. Suppose this is not the case. Let stT be the digest of initT .
Let (0, ρT ) be the opening to the T -th location in stT . By applying Lemma 4 at location T , we have that
st∗T (extracted from v) is same as stT except with negligible probability. Let π′

T ← ExtractB(tdB , πB) and
w∗

T ← ExtN,2(tdN , π′
T ) (where πB is part of π).

It follows from somewhere soundness of the BARG and the knowledge extraction of NIZK that w∗
T is a

valid witness to the language LN with the instance being (crsC , v, hk, hk
′, st∗0, T,d

T
i ,d

T
j ). Parse this witness

as
(st′T−1, ρ

′
T−1), (st

′
T ρ

′
T ), (c

g
i′ , ν

g
i′), (e

g
i′ , σ

g
i′), (c

g
j′ , ν

g
j′), (e

g
j′ , σ

g
j′), (c

g
ℓ , ν

g
ℓ )

where (i′, j′) are the input wires to the T -th gate and ℓ is the output wire. It follows from somewhere binding
property of SEH that st′T = st∗T except with negligible probability. Since w∗

T is a valid witness, it follows that
there is a valid opening (1, ρ′T ) to the T -th location in st∗T . However, this contradicts the collision resistance
of the MTHash.

This completes the proof of the theorem.

Finally, we show that the scheme has statistical zero-knowledge.

Theorem 7 (Zero-knowledge). The NIZK construction presented above is statistical zero-knowledge given
that the underlying NIZKs have statistical zero-knowledge and the fully local extractable commitment is
statistically hiding.

Proof. We will first describe the simulator Sim. Let SimN be the simulator for the underlying NIZK scheme
and SimN ′ be the simulator for the NIZK for language L′.

Sim(1λ, (C, x)) :

• Sample (crsC , tdC)← SetupC(1
λ), crsN ′ ← SetupN ′(1λ), (hk, tdH)← GenH(1λ, N), hk′ ← MDGen(1λ),

and (crsB , tdB)← GenB(1
λ, 1k, 1s, 1).

• Compute (com, ρ)← ComC(crsC , 0
m).

• Set init0 = x||0S . Let st0 = MDHash(hk′, init0).

• For each g ∈ [T ],

– Set initg exactly as initg−1 except that ℓ-th coordinate is set to d←$ {0, 1}.
– Compute stg = MDHash(hk, initg).

• Compute v = Hash(hk, st0∥ . . . ∥stT ).

• Use SimN to compute (crsN , π1, . . . , πT )← SimN (1λ, , X1, . . . , XT ) where eachXg = (crsC , v, hk, hk
′, st∗0, com, g)

for each g ∈ [T ].

• Compute πB as in the real scheme and set π = (w′, v, (st0, σ), πB) where st0 and σ are set as in the
real scheme. Set crs = (crsC , hk, hk

′, crsB , crsN , crsN ′).

• Output (crs, π).
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We now show that for any (C, x) and w ∈ {0, 1}m such that C(w, x) = 1, we have:{
(crs, π) : crs← Setup(1λ), π ← P(crs, x, w)

}
≈c

{
(crs, π) : (crs, π)← Sim(1λ, (C, x))

}
.

The proof follows from the following sequence of hybrids.

• Hyb0 : This is the distribution of the honestly generated (crs, π).

• Hyb1 : This hybrid is identical to the previous one except that we simulate the NIZK proofs π1, . . . , πT

and crsN using SimN .

Claim 14. Hybrids Hyb0 and Hyb1 are statistically indistinguishable given that the underlying NIZK
for language LN is statistical zero-knowledge.

Assume for the sake of contradiction that Hyb0 and Hyb1 are distinguishable with non-negligible ad-
vantage. We give a reduction that breaks the zero-knowledge property of the NIZK. The reduction gen-
erates hk, hk′, crsN ′ , crsB , crsC as in the previous hybrid. It then computes v, com as in Hyb0. For each
g ∈ [T ], it generates the witness wg for the instance Xg = (crsC , v, hk, hk

′, st∗0, com, g,dg
i ,d

g
j ) as in Hyb0.

It gives (X1, w1), . . . , (XT , wT ) to the challenger. The challenger responds with (crsN , π1, . . . , πN ). It
uses this to compute crs and π as before. Observe that if the challenger generated the CRS and the
proofs using the honest prover algorithm, then the output of the above reduction is identical to Hyb0.
Else, it is distributed identically to Hyb1. Therefore, this reduction breaks the zero-knowledge property
of the NIZK scheme and this is a contradiction.

• Hyb2 : This hybrid is identical to the previous one except that we simulate (crsN ′ , σ)← SimN ′(1λ, x′)
(instead of computing σ honestly).

Claim 15. Hybrids Hyb1 and Hyb2 are statistically indistinguishable given that the underlying NIZK
for language L′ is statistical zero-knowledge.

The proof of this claim is identical to the proof of Claim 14.

• Hyb3 : This hybrid is identical to the previous one except that we set com to be ComC(crsC , 0
m).

Claim 16. Hybrids Hyb2 and Hyb3 are statistically indistinguishable given that the underlying FLC is
statistically hiding.

If Hyb2 is distinguishable from Hyb3 with non-negligible advantage, we show that this contradicts the
statistical hiding of the commitment scheme. The reduction receives crsC and the challenge com (either
encrypting w or 0m). Then it behaves exactly as in the previous hybrid to create a proof π and crs.
If com is generated as a commitment to w, then the output of the reduction is identical to Hyb2.
Else, it is distributed identically to Hyb3. Therefore, the reduction breaks the hiding property of the
commitment scheme with non-negligible advantage and this is a contradiction.

• Hyb4 : This hybrid is identical to the previous one except that for each g ∈ [T ], we set initg to be same
as initg−1 except that the ℓ-th coordinate is set to a uniformly chosen random bit.

Claim 17. Hybrids Hyb3 and Hyb4 are statistically indistinguishable given that the underlying dual-
mode SEH is statistically hiding.

If Hyb3 is distinguishable from Hyb4 with non-negligible advantage, we show that this contradicts the
statistical hiding of the dual-mode SEH scheme. The reduction receives hk and the challenge v (either
hashing the honestly generated initg or a uniformly generated init′g). Then it behaves exactly as in the
previous hybrid to create a proof π and crs. If v is generated as a hashing of initg, then the output of
the reduction is identical to Hyb3. Else, it is distributed identically to Hyb4.

31



• Hyb5 : This hybrid is identical to the previous one except that we compute σ honestly. That is, we
compute crsN ′ ← SetupN ′(1λ) and σ as as in the real scheme.

Claim 18. Hybrids Hyb4 and Hyb5 are statistically indistinguishable given that the underlying NIZK
for language L′ has statistical zero-knowledge.

The proof of this claim is identical to the proof of Claim 14.

Note that the last hybrid corresponds to the simulation described above, and this concludes the proof of
the theorem.
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