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Abstract. Key blinding produces pseudonymous digital identities by
rerandomizing public keys of a digital signature scheme. It is used in
anonymous networks to provide the seemingly contradictory goals of
anonymity and authentication. Current key blinding schemes are based
on the discrete log assumption. Eaton, Stebila and Stracovsky (LAT-
INCRYPT 2021) proposed the first key blinding schemes from lattice
assumptions. However, the large public keys and lack of QROM security
means they are not ready to replace existing solutions.

We present a new way to build key blinding schemes form any MPC-
in-the-Head signature scheme. These schemes rely on well-studied sym-
metric cryptographic primitives and admit short public keys. We prove a
general framework for constructing key blinding schemes and for proving
their security in the quantum random oracle model (QROM).

We instantiate our framework with the recent AES-based Helium signa-
ture scheme (Kales and Zaverucha, 2022). Blinding Helium only adds a
minor overhead to the signature and verification time. Both Helium and
the aforementioned lattice-based key blinding schemes were only proven
secure in the ROM. This makes our results the first QROM proof of
Helium and the first fully quantum-safe public key blinding scheme.

1 Introduction

Public key signatures are used to verify the authenticity of messages by estab-
lishing that a valid signature must originate from the holder of the secret key.
Message provenance and identities are thus closely tied to the signer’s public key.
This can be an issue in anonymized networks where the conflicting goals of au-
thenticity and anonymity are required. Public key rerandomization [CGH+23]
is one proposed solution to this conundrum. An example of rerandomization
technique is public key blinding3, originally proposed in the Tor network’s ren-
dezvous specification for ECDSA. In signatures with public key blinding, the
public key pk can be rerandomized using a seed τ into a blinded key bpk, such
that knowledge of τ and bpk does not allow one to compute pk; and such that
the secret key holder can produce valid signature for bpk with knowledge of τ .

3 Not to be confused with blind signatures, which allows signing a message while being
oblivious to its content.



Post-quantum signature schemes can also admit key blinding [ESS21], but
key blinding requires new security definitions and proofs of security that do not
directly follow from the EUF-CMA security of the underlying scheme. In the case
of post-quantum security, schemes that employ the random oracle methodology
should be proven secure in the quantum random oracle model (QROM). Another
challenge in constructing post-quantum signature schemes with key blinding
is that most post-quantum signatures have large public keys, on the order of
kilobytes for the Dilithium scheme selected for standardization by NIST. In the
context of Tor’s rendezvous spec, this is problematic since public keys represent
identities that have to be handled manually by users.

In this work, we address all of these issues and more. We provide the first
instantiation of post-quantum public key blinding with provable security in the
QROM. Our scheme is based on the MPCitH methodology where signing involves
proving knowledge of a preimage for a one-way function. Therefore our scheme
has short public keys: they consist of a single element of the image of the OWF.
We provide a generic construction for building key blinding schemes from any
MPCitH-based signature scheme and establish a framework for proving their se-
curity in the QROM. We instantiate our construction with the Helium signature
scheme, which is the latest in a long line of improvements to MPCitH schemes
that boasts efficient and short proofs for statements about the AES block cipher.
As a bonus contribution, we prove the security of the Helium signature scheme
in the QROM, a question that was left open in [KZ22].

1.1 Our Results

We describe a framework for adding the public key blinding functionality to
a broad family of signature schemes. We start from the idea of adding key
blinding to the Picnic signature scheme which was sketched in [ESS21] and
generalize it to any scheme where signatures consist of a message-dependent
non-interactive zero-knowledge proof of knowledge (NIZKPoK) of the preimage
of a one-way function constructed via Fiat-Shamir heuristic and the MPC-in-
the-Head (MPCitH) paradigm4. We describe which properties those schemes,
and the underlying pseudorandom function, must satisfy in order to yield an
unforgeable and unlinkable key blinding scheme. The advantage of our modular
approach is that signature with key blinding schemes can benefit from future
improvements for MPCitH schemes. Our proofs are in the quantum-accessible
random oracle model (QROM) where the adversary may evaluate the random
oracle on an arbitrary quantum superposition of inputs. Since previous works
only proved security against classical random oracle queries, this makes our con-
struction the first fully quantum-safe signature scheme with key blinding.

We use the Helium scheme of [KZ22] to demonstrate our techniques. Helium
offers several efficiency improvements over previous MPCitH-based schemes and

4 Although the MPCitH paradigm can be used to prove any NP statement, throughout
this paper, we use the term to refer to proofs of statements about symmetric key
primitives.
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it is an appealing candidate since it is solely based on well-studied symmetric
primitives such as the AES block cipher and the SHAKE extendable output
function. Helium is the natural choice for proving statements about the AES
circuit as it boasts the smallest proof sizes for the AES circuit, which has well-
understood security. We apply our framework to the Helium signature scheme
to get a signature scheme with key blinding called blHelium. To prove that our
scheme is secure in the QROM, we prove that the proof system underlying Helium
is a post-quantum proof of knowledge in the QROM. A direct corollary is that
Helium is secure in the QROM, a question that was left open in [KZ22].

The blinded public keys for our blHelium scheme are only 32 bytes, which
makes it an ideal candidate for a post-quantum transition from ECDSA for the
Tor network and for other anonymity networks that require small keys.

We provide an open-source implementation5 of our blHelium scheme as a fork
of the Helium code.

1.2 Related Work

Public key blinding was first introduced as an anonymity protection feature of
Tor’s Rendezvous protocol [Tor20]. Tor’s key blinding scheme is based on dis-
crete logarithm assumptions It also has applications to private airdrop and rate-
limited privacy pass [ELW23]. Key blinding is just one of many public key reran-
domization techniques. For an overview and comparison of signature schemes
with key rerandomization, we refer the reader to [CGH+23].

The first post-quantum key blinding schemes were proposed in [ESS21]. Their
constructions build on lattice-based post-quantum signature schemes and are
only proven secure in the (classical) random oracle model. Being lattice-based,
their schemes have fairly long public keys (on the order of kilobytes). The gen-
eral construction of key blinding for MPCitH schemes that we present was first
sketched in the appendix of [ESS21] for the Picnic signature scheme [CDG+17].
They briefly sketch a proof of unlinkability in the classical ROM, but provide no
argument towards unforgeability.

Efforts have been made towards standardizing key blinding in an IETF tech-
nical specification draft [DELW23]. The companion paper [ELW23] provides se-
curity proofs for the scheme from the draft.

Multiparty computation in the head (MPCitH) is a technique for proving
NP statements about arbitrary Boolean circuits introduced by [IKOS07]. This
efficiency gains were introduced in ZKBoo [GMO16] and further improved in the
paper that introduced Picnic [CDG+17], the first signature scheme built from
the MPCitH framework to prove knowledge of a preimage of a OWF – in this
case the LowMC block cipher which is optimized for low multiplicative com-
plexity. Katz, Kolesnikov, and Wang [KKW18] added a preprocessing phase to
the MPC computation used in [CDG+17]. BBQ [dSDOS20] is the first MPCitH
signature scheme that instantiates the one-way function with the well studied

5 An anonymized repository is available at https://anonymous.4open.science/r/

blinded-helium-aes-66E1/.
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AES block cipher. It mitigates the larger circuit size by avoiding private keys
that lead to circuits which have the 0 byte as input to an s-box, allowing for an
efficient computation of the nonlinear operation. Baum and Nof introduces sac-
rificial multiplication triples (or beaver triples) to replace cut-and-choose checks,
which leads to better soundness and less repetitions of the MPC protocol. The
Banquet [BSK+21] signature scheme achieves 50% smaller signatures by run-
ning an MPC protocol that verifies the correctness of the circuit computation,
instead of computing the result itself. Dobraunig, Kales, Rechberger, Schofneg-
ger, and Zaverucha offers additional improvements to AES-based MPCitH sig-
nature schemes and proposes a scheme based on the Rain cipher optimized for
MPCitH. Helium [KZ22] lifts multiple small fields F elements into a larger field
K, such that multiplying the F elements component-wise can be realised by a
single operation on K, a technique that was also used in Limbo [DOT21].

2 Preliminaries

For basic definitions on zero-knowledge proofs and proofs of knowledge, we refer
to [Gol07].

2.1 Signature with Public Key Blinding

We definitions of this section are reproduced from previous work on signature
schemes with key blinding [ESS21; ELW23].

Definition 1 (Digital Signature with Key Blinding). A digital signature
scheme with key blinding scheme is a tuple of algorithms:

– KGen: returns a private key sk and an identity public key pk
– BlindPK(pk, τ): takes as input the identity public key pk and a blinding pa-

rameter τ and produces a blinded public key bpkτ .
– Sign(sk, τ,m): produces a signature σ for m that is valid for the blinded key

bpkτ .
– Verify(bpk,m, σ): returns 1 if σ is a valid signature of m for blinded key bpk

and 0 otherwise.

The scheme is (perfectly) correct if for (sk, pk)← KGen and (bk, bpk)← BlindPK(pk, τ),
then for all m and τ :

Verify(bpk,m,Sign(sk, τ,m)) = 1 .

The unforgeability of signature schemes with key blinding is similar to that
of regular unforgeability with the difference that we give the adversary control
over which blinded key it targets for its forgery. The adversary is also allowed
access to a signature oracle for an arbitrary (polynomial) number of blinded
keys.
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Definition 2 (Unforgeability – Chosen Message and Blinding Attack).
Let (KGen,BlindPK,Sign,Verify) be a key blinding signature scheme. The chosen
message and blinding attack experiment EUF-CMBA is defined as the following
game:

– The challenger samples (pk, sk)←$ KGen(1n) and sends pk to A.
– A can query the challenger on message m and blinding parameter τ to receive

σ = Sign(m, sk, τ).
– A sends its output (m∗, σ∗, τ∗) to the challenger who computes bpk∗ =

BlindPK(pk, τ∗) and outputs 1 if Verify(bpk∗,m∗, σ∗) = 1 and if (m∗, τ∗)
was not previously queried to the signing oracle. Otherwise it outputs 0.

The advantage of an adversary A for the EUF-CMBA game is defined as the
probability Adveuf-cmbaA that the challenger outputs 1.

We define the existential unforgeability under blinded key only attack (EUF-
BKO) as the same experiment, but where A does not have access to a signing
oracle (but can still compute blinded keys at will).

Note that a related work on key blinding [ELW23] allows signature queries and
forgeries for the original public key pk. In our case, this is not desirable, since
the signing algorithm will only produce signatures for blinded keys.

The notion of privacy provided by key blinding is that of unlinkability. A
scheme is unlinkable if an adversary cannot tell if two blinded keys originate
from the same identity public key or from different keys. In the unlinkability
experiment, we also allow the adversary to request new blinded keys at will and
to request signatures of arbitrary messages with respect to the blinded keys.

Definition 3 (Unlinkability – Chosen Message and Blinding Attack).
Let (KGen,BlindPK,Sign,Verify) be a key blinding signature scheme. The un-
linkability under chosen message and blinding attack (UL-CMBA) experiment
is defined as the following game:

– The challenger samples (pk0, sk0)←$ KGen(1n).
– A can query a blinding oracle, which on input τ returns bpk← BlindPK(pk0, τ).
– A can query a signing oracle, which on a message m and a blinding parameter

τ returns σ = Sign(m, sk0, τ).
– A sends a blinding parameter τ∗ to the challenger. The challenger aborts the

experiment if τ∗ was previously queried to the blinding oracle.
– The challenger picks a new key pair (pk1, sk1) ← KGen(1n), samples a bit

b←$ {0, 1} and sends bpk∗b ← BlindPK(pkb, τ
∗) to A.

– A again has access to the blinding and signing oracle, but now the oracles
use the key pair (skb, pkb) if τ = τ∗ and defaults to the pair (sk0, pk0) if
τ ̸= τ∗.

– A outputs a guess b′ and wins if b′ = b.

The advantage of an adversary A for the experiment is defined as the probability
Advul-cmbaA =

∣∣Pr[b = b′]− 1
2

∣∣.
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2.2 Quantum Random Oracle Model

In the quantum random oracle model (QROM), the adversary has quantum or-
acle access to a unitary OH : |c⟩|x⟩|y⟩ 7→ |c⟩|x⟩|y ⊕ c ·H(x)⟩ that computes a
random function H in superposition. While the QROM does not permit observ-
ing and reprogramming random oracle queries as easily as in the classical ROM,
there are now powerful tools for proving security in the QROM, which we present
below.

Theorem 1 (Measure-and-reprogram [DFM20; DFMS19]). Let X and
Y be finite non-empty sets. There exists a black-box two-stage quantum algorithm
S with the following property. Let A be an arbitrary oracle quantum algorithm
that makes q queries to a uniformly random H : X → Y and that outputs some
x ∈ X and a (possibly quantum) output z. Then, the two-stage algorithm SA
outputs some x ∈ X in the first stage and, upon a random Θ ∈ Y as input to
the second stage, a (possibly quantum) output z, so that for any x◦ ∈ X and any
(possibly quantum) predicate V :

Pr
Θ

[
x=x◦ ∧ V (x,Θ, z) : (x, z)← ⟨SA, Θ⟩

]
≥ 1

(2q + 1)2
Pr
H

[
x=x◦ ∧ V (x,H(x), z) : (x, z)← AH

]
.

Furthermore, S runs in time polynomial in q, log |X | and log |Y|.

Lemma 1 (One-Way to Hiding [Unr15]). Let H : X → Y be a quantumly
accessible random oracle and let AH be an adversary that makes at most q queries
to H. Let EH be an algorithm that picks i ∈ [q] and y ∈ Y at random, runs
AH(x, y) until it’s ith query, measures the input of the query in the computational
basis and outputs the measurement outcome.∣∣Pr[1← AH(x,H(x))]− Pr[1← AH(x, y)]

∣∣ ≤ 2q ·
√

Pr[x← EH(x)] . (1)

3 Key Blinding for MPC-in-the-Head Signature Schemes

3.1 Blinding MPCitH Public Keys

We refer to an MPCitH signature scheme as a signature schemes that respect
the following structure6. Let F = {fk : {0, 1}λ → {0, 1}λ}k∈{0,1}λ be a family of

pseudorandom functions. For x ∈ {0, 1}λ, we let Fx : k 7→ fk(x). It was shown in
the full version of [CDG+17] that Fx is a one-way function for any input x. For
Π = (P,V), a ZKPoK for the relation R = {(y, k)) | y = Fx(k)}, the MPCitH
signature scheme proceeds as follows.

6 There are schemes based on the MPCitH paradigm for proving more general NP
relations instead of statements about symmetric key primitives. We take the more
narrow definition in this paper.
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– Key generation: sample x ∈ {0, 1}λ and k ∈ {0, 1}λ. Output sk := k and
pk := (x, fk(x)).

– Signature: to sign a message m, use P on input (pk, sk) to produce a non-
interactive zero-knowledge proof of knowledge of k such that pk = (x, fk(x))
that depends7 on m.

– Verification: run the verification protocol V on input pk.

For such protocols, we consider a generic blinding procedure which was first
informally proposed in [ESS21] and proceeds as follows. To blind a public key
pk = (x, fk(x)) using a seed τ , one encrypts x a second time using a new key
derived from pk and τ , for example using a cryptographic hash function H mod-
elled as a random oracle. The new blinded public key is bpkτ = (x, fH(τ,pk)(pk)).

A few observations are in order. First, we want the same verification proce-
dure for every blinded key (i.e., verification depends only on the blinded public
key and does not require knowledge of τ), so the value x cannot be itself en-
crypted. Second, unlinkability requires that we use the same input x for every
public key, otherwise it becomes trivial to link blinded keys to the original key.
Based on these observations, we conclude that each public key must use the
same input x.

Construction 1. Let F = {fk}k∈{0,1}λ be a family of pseudorandom permu-
tations, let inp be a fixed input and let F 2(k, k′) := fk′(fk(inp)). Let Π = (P,V)
be a ZKPoK for the relation R = {(y, (k, k′)) | y = F 2(k, k′)}. We define
blSig = (KGen,BlindPK,Sign,Verify) as the signature scheme with key blinding
parameterized by F and inp where

– KGen(1λ) returns sk←$ {0, 1}λ and pk = fsk(inp)
– BlindPK(pk, τ) returns bpk = fH(τ,pk)(pk)
– Sign(sk, τ,m) use P on input (bpk, sk, H(τ, pk)) to produce a message-dependent

ZKPoK of a preimage of bpk for function F 2

– Verify(bpk,m, σ) returns 1 if σ is a valid message-dependent proof of knowl-
edge of a preimage of bpk for F 2.

We now present which conditions must be satisfied for Construction 1 to be
a secure public key signature with key blinding scheme.

3.2 Unforgeability of Construction 1

We want to reduce the problem of forging valid signatures for blinded keys to
that of inverting the one-way function F 2 : (k, k′) 7→ fk′(fk(x)). Recall that for
breaking the unforgeability game, the adversary on input pk must produce τ∗,
m∗ and a valid proof of knowledge σ∗ of (k1, k2) such that BlindPK(pk, τ∗) =
fH(τ∗,pk)(pk) = fk2

(fk1
(x)). In particular the adversary could produce such a

proof for (k1, k2) ̸= (k,H(τ∗, pk)), such that the knowledge extractor for the PoK

7 For example, if the proof system uses the Fiat-Shamir heuristic, m can be included
in the random oracle queries that compute the verifier’s challenge.
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would not necessarily allow us recover the secret k. The following NP relation
more precisely captures the problem the adversary needs to solve for forging
signatures.

Definition 4. Let RH,f be the NP relation where the instances are of the form
y ∈ Imf and witnesses are tuples (k, k′, τ) such that

(y, (k, k′, τ)) ∈ RH,f ⇐⇒ fH(τ,y)(y) = fk′(fk(x)) . (2)

We observe that the adversary does not have full control over the choice of k2
in the unforgeability game: it is the output of the random oracle. We can use
this fact to show that this relation is hard in the quantum random oracle model
by reducing it to the hardness of inverting F 2. We sketch the proof idea in the
classical ROM and prove it below in the QROM.

Let AH be an adversary that on input y′ outputs a witness for RH,f with
some inverse polynomial probability. We can invert F 2 on a specific point y by
sampling a key s, setting y′ = f−1

s (y), running AH on input y′, and reprogram-
ming one of it’s oracle queries to output s. With noticeable probability, AH

outputs (τ, k, k′) such that fH(τ,y′)(y
′) = fk′(fk(x)) and again with noticeable

probability, H(τ, y′) = s so that y = fs(y
′) = fk′(fk(x)) and (k, k′) is a preimage

of y for F 2.

Lemma 2. Let {fk}k∈{0,1}λ be a family of pseudorandom permutations. If H is
a quantum random oracle, then the hardness of the relation RH,f reduces to the
problem of finding a preimage of F 2 : (k1, k2) 7→ fk1(fk2(x)).

Proof. We proceed as with the classical intuition, but use the measure-and-
reprogram technique (Theorem 1) to insert s into a random oracle query. Let
AH be an adversary against RH,f and let SA be the quantum algorithm from
Theorem 1. The reduction R proceeds as follows:

1. On input y, sample s uniformly at random and set y′ = f−1
s (y).

2. Run the first stage of SA on input y′ to get a point x.
3. Run the second stage of SA with input s.
4. When SA produces an output (τ, k, k′), output (k, k′).

We now show that this reduction inverts F 2 with probability polynomially re-
lated to the probability thatAH breaks relation RH,f . Let V (s, k, k′) be the pred-
icate that returns 1 if and only if fs(y

′) = fk′(fk(x)) such that (y′, (τ, k, k′)) ∈
RH,f ⇐⇒ V (H(τ, y′), k, k′) = 1. Let x0 = (τ, y′). Then by Theorem 1,

Pr[x = x0 ∧ y = fk′(fk(x)) | (k, k′)← R(y)]
= Pr[x = x0 ∧ fs(y

′) = fk′(fk(x)) | (k, k′)← R(y)]
= Pr[x = x0 ∧ V (s, k, k′) = 1 | (k, k′)← R(y)]
= Pr[x = x0 ∧ V (s, k, k′) = 1 | (τ, k, k′)← SA(y′)]

≥ 1

(2q + 1)2
Pr[x = x0 ∧ V (H(x), k, k′) = 1 | (τ, k, k′)← AH(y′)]
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where q is the number of queries to H made by AH . By summing over x, the first
term yields the advantage ofR for inverting F 2 and the last term is polynomially
related to the advantage of AH for finding a witness for relation RH,f . ⊓⊔

We have reduced the hardness of RH,f to the one-wayness of F 2. It is not hard
to see that F 2 is one-way if fk is pseudorandom. It follows from the observation
that {f(k,k′)}(k,k′) for f(k,k′) = fk′ ◦ fk is a pseudorandom function family.

A useful tool for generically proving security of construction 1 is to be able
to produce valid signature without the secret key by reprogramming the random
oracle.

Definition 5 (Signature Simulation with Oracle Reprogramming). Let
Π = (KGen,Sign,Verify) be a digital signature scheme (with or without key blind-
ing) that relies on the random oracle H. Let GH be an arbitrary cryptographic
game and let AH,Sig be a polynomial time adversary against game GH that makes
poly(λ) quantum queries to H and poly(λ) signature queries. We say that Π is
signature-simulatable in the QROM if there exists BH′

, which plays game G with
a different random oracle H ′, and if there is a negligible function ϵSig such that

AdvG
H′

BH′ ≥ AdvG
H

AH,Sig − ϵSig(λ) . (3)

Consider for example the unforgeability game. Adversary A plays the chosen
message unforgeability game and B plays the no-message (key only) game. If
A produces a forgery using H and chosen message signatures, B can produce
a forgery by simulating the signature queries of A through reprogramming its
random oracle H. Since B plays its game with a truly random oracle H ′, and
message verification relies on H ′, the forgery produced by A with the repro-
grammed H should also be a valid signature with respect to H ′.

Theorem 2. Let F = {fk}k be a family of pseudorandom permutations, let inp
be a fixed input and let F 2(k, k′) := fk′(fk(inp)). Let Π = (P,V) be a ZKPoK for
the relation R = {(y, (k, k′)) | y = F 2(k, k′)}. Let Sigf = (KGen,Sign,Verify) be
the MPCitH signature scheme with key blinding from Construction 1. If Sigf is
ϵSig-signature-simulatable in the QROM (Definition 5), then Sigf is EUF-CMBA
in the QROM with advantage at most

Adveuf-cmba ≤ AdvRH,f + ϵSig + ϵKS . (4)

Proof. Let AH,Sig be an adversary against the EUF-CMBA of blHelium with ac-
cess to a signature oracle Sign and a quantum random oracle H. By Definition 5,
for any game G in which AH,Sign has oracle access to the signature algorithm of
Π, the advantage of A is polynomially related to the advantage of an adversary
BH that does not have access to the Sign oracle. Therefore

Adveuf-cmbaA ≤ Adveuf-bkoB + ϵSig

Now, in the EUF-BKO game, BH must produce (m,σ, τ) where σ is a valid
signature of m for the blinded key bpk = BlindPK(pk, τ). The advantage of BH
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in this game is

Adveuf-bkoB = Pr[Verify(fH(τ,pk)(pk),m, σ) = 1 | (m,σ, τ)← BH(pk)]

By the construction of the signature scheme, σ is a proof of knowledge of (k, k′)
such that fH(τ,pk)(pk) = fk′(fk(inp)). Therefore, there exists an extractor E such
that

Pr[fH(τ,pk)(pk) = fk′(fk(inp)) | (τ, k, k′)← E(pk)]
≥ Pr[Verify(fH(τ,pk)(pk),m, σ) = 1 | (m,σ, τ)← BH(pk)]− ϵKS(λ)

where ϵKS is the knowledge soundness error of the interactive proof Π.
This extractor E , on input pk, finds a witness for pk for the relation RH,f . By

Lemma 2, we have that the relation RH,f is hard in the QROM if fk are pseu-
dorandom functions, so it must be that the advantage Adveuf-bkoB is negligible.
Concluding, we have that

Adveuf-cmbaA ≤ Adv
RH,f

E + ϵSig + ϵKS (5)

⊓⊔

3.3 Unlinkability of Construction 1

We show unlinkability of Construction 1 in the QROM using a similar strategy
as [ESS21]. That is, we first invoke signature simulation to remove the signa-
ture oracle. Next, we remove the dependence on the identity public key pk of
the blinding secret key, computed as H(τ, pk), blinding with a random nonce
instead. Then, we replace the blinding oracle to return encryptions of indepen-
dently generated public keys. This reduces the unlinkability game to the task of
distinguishing many encryptions of the same plaintext from many encryptions
of independent plaintexts. This corresponds to the notion of chosen plaintext
indistinguishability security in a multi-user setting.

Definition 6. Let (Enc,Dec) be a private-key encryption scheme. The multi-
user indistinguishability experiment of parameter n is defined as follows:

– The challenger samples n keys r1, . . . , rn ←$ {0, 1}λ and a bit b←$ {0, 1}.
– The adversary may send queries of the form (i,m0,m1) ∈ [n]×M×M to

which the challenger responds to with Encri(mb).
– The adversary outputs a bit b′.

The advantage of an adversary A in the MU-IND game is Advmu-indA (λ) =∣∣Pr[b = b′]− 1
2

∣∣.
Multi-user security was studied in the context of public-key encryption in [BBM00]
where the authors found that it is implied by IND-CPA up to some loss in secu-
rity. Their results also apply to the private-key setting, thus if we assume that
aes, our chosen cipher for blHelium, satisfies chosen plaintext indistinguishabil-
ity, then it is secure according to Definition 6.
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Theorem 3. Let {fk}k be a MU-IND secure pseudorandom permutation family.
If the blinded signature scheme Sig of Construction 1 is ϵSig-signature-simulatable
in the QROM, then Sig is unlinkable under chosen message and blinding attack
(Definition 3) in the QROM with advantage

Advul-cmba ≤ 1

2
+ Advmu-ind + 2QH

√
Advowf + 2ϵSig . (6)

Proof. We proceed by a game-hopping argument to reduce the unlinkability
game to the multi-user indistinguishability of fk. Game 0 is the UL-CMBA
experiment. In each new game, we remove some part of the game that depends
on the identity public key pk.
Game 1. Game 1 is as game 0, but where we remove oracle access to the sig-
nature oracle before and after the challenge. By assumption, the scheme admits
signature simulation (Definition 5), therefore the success probability of ASig,H

against game 0 is about the same of an adversary BH against game 1.∣∣Pr[BH wins | Game 1]− Pr[ASig,H wins | Game 0]
∣∣ ≤ 2ϵSig

where we doubled the simulation error ϵSig since in game 0, the adversary effec-
tively has access to two signing oracles (one for τ = τ∗ using key pkb and one
for τ ̸= τ∗ using key pk0) each of which needs to be simulated by BH .
Game 2. Next, we show how to remove dependence on pk from the symmetric
key used to blind the public key. In game 2, whenever the adversary makes
a query to the blinding oracle blind, the challenger uses a random value k′ ∈
{0, 1}λ and returns fk′(pk) instead of fH(τ,pk)(pk). We may assume without loss
of generality that the adversary queries the blind oracle at most once per input
τ since the blind function is deterministic.

The only way the adversary can detect a change in the behavior of the blind-
ing oracle is if it has queriedH on an input containing pk. However, the adversary
has quantum access to H so “having queried H on input pk” is ambiguous in this
setting. We use the one-way to hiding Lemma [Unr15] to make this formal and
to upper-bound the difference in both games with the probability of extracting
pk from the blinding queries.

The one-way to hiding lemma allows us to relate the difference in winning
probability between games 1 and 2 to the probability of extracting pk from the
adversary’s oracle queries. Let BH be the adversary against game 1 and let EH
be an algorithm that runs BH , but that picks one of the quantum queries of B
to H at random, measures this query and outputs the result. Then the OW2H
lemma states that

|Pr[b = b′ | Game 2]− Pr[b = b′ | Game 1]| ≤ 2QH

√
Pr[pk← EH ] (7)

Since E essentially runs B and B only sees encryptions of pk under different
keys, the probability that E outputs pk is at most the probability to recover
the plaintext pk from many encryptions using different keys. We let Advowf

E =
Pr[pk← EH ] denote this negligible probability.
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Game 3. We now change the blinding oracle again by replacing the real public
key pk with a freshly sampled independent public key pk′. In game 3, when the
adversary requests the blinding of the key with a seed τ , the challenger samples
k′ ←$ {0, 1}λ and pk′ ← KGen(1λ) and returns fk′(pk′).

We can relate the probability of success in this game with the multi-user
indistinguishability of fk. In game 3, the blinded keys that the adversary receives
are encryptions of pk′ under a secret key k′ where both pk′ and k′ are unrelated to
pk (and sk). If the adversary’s behaviour changes in an observable way between
games 4 and 3, then we can turn this into a distinguisher for the MU-IND
property of fk in the following way.

Let Cblind be an adversary against game 2 with blinding oracle blind. Let D
be the following adversary against the MU-IND game:

– Let q be the number of blinding queries made by Cblind. Sample q+ 1 public
keys pk0, . . . , pkn and query the MU-IND challenger on (i, pk0, pki)i∈[q] to
get the resulting ciphertexts c1, . . . , cq (which are either an encryption of
pk0 or pki with a key ki).

– D now runs Cblind by acting as the challenger in the UL-CMBA game and
by simulating its blinding oracle as follows: on Cblind’s ith query to BlindPK,
reply with ci.

– Output whatever Cblind outputs.

If b = 0 in the MU-IND game, then every ci is an encryption of pk0 and thus
Cblind is playing game 2. If b = 1, then each ci is the encryption of a new public
key pki, so Cblind is playing game 3. By the MU-IND property of fk, we have that

|Pr[b = b′ | Game 3]− Pr[b = b′ | Game 2]| ≤ Advmu-indD

In game 3, the adversary has no signing nor blinding oracle and receives a
public key pk∗b from the challenger. Since pk∗b has equal probability of being pk0
or pk1, the advantage of C in this game is exactly 1

2 . So we have

Advul-cmbaA ≤ 1

2
+ Advmu-indD + 2QH

√
AdvOWF

E + 2ϵSig (8)

Assuming the multi-user indistinguishability of fk, the above quantity is negli-
gible. ⊓⊔

4 The blHelium Signature Scheme with Key Blinding

We now present our blHelium protocol, which follows Construction 1 instantiated
with the AES block cipher and the Helium proof system [KZ22]. We begin by
giving a brief overview of the Helium signature scheme before describing the
changes we make to equip it with key blinding, along with parameter choices.
The detailed proof system can be found in Appendix A where we also prove the
security of Helium in the QROM.
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4.1 Overview of Helium

The scheme takes place over seven phases, representing the different message
flows in the identification scheme prior to being converted to a signature scheme
via the Fiat-Shamir transform (i.e., Phase 1 represents the first prover message,
Phase 2 the first challenge, etc.). A high-level description of the proof system is
as follows:

– Committing to MPC Party Seeds. Each MPC party’s randomness is
derived from a single seed which is committed to. The protocol runs through
a distributed computation of AES, with each party holding a share of the
secret key.

– Checking of the MPC Computation. Proving that the AES circuit was
evaluated correctly means verifying correctness of the shares at each step
of the MPC protocol. Every linear operation in the AES circuit can be
evaluated locally. The non-linear S-box (a field inverse operation) is done
efficiently by injecting shares of s and t such that s · t = 1.

– Challenging the Checking Protocol. The injected shares of (si, ti) must
be checked for consistency. This is done efficiently by using polynomials S
and T interpolated such that S(i) = si and T (i) = ti. The prover distributes
shares of P = S · T to the parties. To verify correctness of the polynomials,
a test P (R) = S(R) · T (R) is performed for a random R.

Verification consists of reconstructing the view of each MPC party whose seed
was opened, testing for consistency, and checking that the challenges were com-
puted correctly.

4.2 The blHelium Signature Scheme

At a high level, the blHelium signature scheme with key blinding follows Con-
struction 1. We modify the signature and verification protocols of Helium to
accommodate signing and verification according to blinded keys. The most sig-
nificant distinction with Helium is that our public and blinded keys consists of
two ciphertexts instead of one. That is, we consider the family of one-way func-
tions (k1, k2) 7→ (aesk1(x1),aesk2(x2)) for fixed inputs x1, x2 which we set as the
all-0 and the all-1 strings. We explain the rationale for this design choice in the
next section. When blinding the public key, we again encrypt component-wise.
In slightly more details, blHelium consists of the following algorithms:

– KGen: The secret key sk is selected at random from the set of keys such that
the circuits for aessk(⃗0) and aessk(⃗1) have no s-Boxes which receives the 0
byte input. The public key consists of pk = (aessk(⃗0),aessk(⃗1)).

– BlindPK(pk, τ): computes bk← H(τ, pk, t) and increments t until the circuits
for aesbk(pk0) and aesbk(pk1) have no s-Boxes which receives the 0 byte
input. The blinded public key is bpk = (aesbk(pk0),aesbk(pk1)).

– Sign(sk, τ,m): computes the blinding keys (bk, bpk) as in BlindPK and runs
the Helium protocol to construct a message-dependent non-interactive ZKPoK
of sk and bk such that bpk = (aesbk(aessk(⃗0)),aesbk(aessk(⃗1))).

– Verify(bpk,m, σ): runs the verification protocol for the proof of knowledge.

13



4.3 blHelium Parameters & Performance

In our configuration, we encrypt two different plaintexts (more on this below) in
ECB mode, first with sk, and then with bk. The choice of plaintext is arbitrary
but must be fixed for all users – for simplicity we have chosen the all 0 and
all 1 plaintext. This requires a total of two AES128 key schedules (which takes
2 × 40 = 80 s-boxes) and four AES128 encryptions (which takes 4 × 160 =
640 s-boxes) for a total of 720 s-boxes. Recall that s-box computation in the
MPC protocol are checked using polynomial interpolation. Since the degree of
each polynomial is limited by the size of the field, we split these into 6 sets of
polynomials (Si, Ti, Pi)i∈[6], each being used to prove correctness of 720/6 = 120
s-box computations. In contrast, Helium requires two sets of polynomials.

The reason we encrypt two plaintexts (rather than Helium’s one) is to account
for the increased degree of flexibility induced by the blinding process. Recall
that we reduce unforgeability under chosen message and blinding attack (EUF-
CMBA) to the task of finding k, k′ such that bpk = fk′(fk(inp)). We now look
at the complexity of brute-force attacks for this task.

We first observe that Helium and blHelium only use a subset of possible keys,
since we restrict to AES circuits which have no substitution box that receives
the 0 byte as input. Using the methodology of [dSDOS20], we can estimate
the fraction of keys for which the AES circuit has no 0-input s-box as 0.457 ≈
(1− 1

256 )
200. Therefore, the number of admissible keys is approximately 2127 (i.e.

the key space is reduced roughly by half).
Second, note that the brute force complexity of finding a preimage of bpk is

at most 2 · 2127 using a meet-in-the-middle attack, which was already remarked
in [ESS21]. However, the adversary has even more flexibility at its disposal.
That is because it is not restricted to mount an attack against a single plaintext
and ciphertext pair. It choice of τ rerandomizes the public key. If we model
a random τ as mapping the public key pk to a random blinded key bpkτ and
also assume that aesbk′(aessk′(x)) is uniformly random when bk′ and sk′ are,
then the adversary can pick triples (τ, bk′, sk′) at random until relation RH,f

(eq. (2)) is satisfied. Since the ciphertext space is of size 2128, the birthday bound
implies that the adversary will find a good triple with constant probability after
approximately

√
2128 = 264 attempts.

To retain 128 bits of security, we therefore increase the (blinded) public key
space to 256 bits by encrypting two different plaintexts. Computing the public
key now consists of one key schedule and two encryption circuits, both of which
must have no 0-input s-Boxes. This requires 40 + 160 + 160 = 360 s-boxes, so
we estimate that a fraction of around (1− 1

256 )
360 ≈ 1/4 of AES keys are valid

(for a security loss of two bits in the secret key space). The same is true of the
bk value when blinding keys: only around a quarter will be valid.

We provide an implementation of our protocol as a fork of the Helium imple-
mentation and report on the performance in Figure 1. Our focus in benchmark-
ing is on signing and verification: key generation and blinding consist of only
a handful AES operations and thus do not represent a significant burden. The
sizes of public keys and signatures and the CPU time for signing and verification
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are reported in Fig. 1 are compared to Helium. We can see that signature and
verification are 2× to 3× slower than Helium and signature size are 2× to 3×
larger. This is to be expected from the fact that the circuit form our blHelium
scheme evaluates 720 s-boxes instead of 200 for Helium.

Helium blHelium

(N,M) Sign Verify Size Sign Verify Size

(17, 31) 8.169 7.605 17 580 16.816 14.086 52 424
(19, 30) 8.088 7.507 17 016 17.704 15.690 50 736
(31, 26) 8.342 7.810 14 760 20.095 17.569 43 984
(57, 22) 9.918 9.370 12 856 26.391 24.118 37 584
(107, 19) 12.513 12.448 11 420 38.459 35.607 32 776
(139, 18) 14.267 14.196 11 112 44.906 43.037 31 344
(185, 17) 17.881 17.900 10 500 55.109 52.827 29 608
(255, 16) 21.636 21.593 9 888 67.647 67.490 27 872
(371, 15) 28.132 28.698 9 516 90.303 88.953 26 376

Fig. 1. Benchmarking (signature sizes in bytes and signing and verification times in
milliseconds) information for our implementation of blinded Helium and comparison
with Helium for different parametersN andM representing the number of MPC parties
and the number of repetitions, respectively. Timing is averaged over 100 iterations.

4.4 Security of blHelium

The security of blHelium follows the general framework presented in Sections 3.2
and 3.3. Our security proofs for both unforgeability and unlinkability rely on
the ability to simulate signatures using random oracle reprogramming, which
we provide below for our blHelium scheme. Note that because of the similarities
between blHelium and Helium, the same techniques apply to the Helium scheme
through a minor modification to the scheme, namely the inclusion of the public
key in the input to the oracles H1, H2 and H3.

To simulate the signing oracle of blHelium, we can use techniques inspired
by [KLS18] for their reduction of EUF-CMA to EUF-KO for Dilithium (a sig-
nature scheme also based on the Fiat-Shamir transform) where the random or-
acle is reprogrammed offline (prior to any query) using the HVZK simulator of
the interactive proof, such that no recording of quantum queries is necessary.
In [KLS18], they derandomize the simulator by making its random tape depend
on the public key and the message to be signed. This allows the reprogrammed
oracle to reply to queries on reprogrammed points consistently without the need
to record those points.

In short, the proof of [KLS18] proceeds as follows. A signature for a message
m consists of a transcript (wm, cm, zm) of the non-interactive proof where cm =
H(m,wm). To simulate the signing oracle, the transcripts is instead produced
by the HVZK simulator in a way that depends on m. The random oracle H
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is programmed such that on input (m,w), it computes (wm, cm, zm) using the
simulator, checks if w = wm in which case it outputs cm such that the transcript
will be accepted by the verifier. To ensure that the transcript computed by the
random oracle is the same as the one returned by the signing oracle, the simulator
is derandomized and instead uses RF(m) as a random tape for a random function
RF. To handle multiple signature queries, an additional input ctr is given to RF
and incremented. The random oracle can then run through a list of transcripts
to check if its input (m,w) is consistent with a simulated signature.

In our setting, the multi-round Fiat-Shamir means that we have to pro-
gram multiple random oracles. We use a similar strategy where each oracle com-
putes the simulator transcripts and is programmed to a specific challenge h′

i if
one of the transcripts matches its input. To make this possible, we add m and
the blinded public key bpk as input8 to every random oracle used to compute
challenges (the Helium scheme only included them in the first oracle H1). As
in [KLS18], this programming is done ahead of any oracle query by the adver-
sary and the programmed oracles can be evaluated in superposition. For this
section, we assume that the oracle Hi are actually a single random oracle H
with proper domain separation Hi(x) = H(i, x). The reprogrammed oracles are
described in Fig. 2.

Lemma 3 (Simulation of the Signature Oracle). For any cryptographic
game G, if an adversary ASig,H against blHelium with access to the signature
oracle Sigsk(m, τ) and to the quantum random oracle H has advantage AdvGASig,H

in game G, then there exists an adversary BH which has advantage

AdvGBH ≥ AdvGASig,H −Qs · ϵzk −
(
Qs

2

)
· 2−2κ

where Qs is an upper bound on the number of signature queries of A and 2κ is
the bit-length of salt in the Sig protocol.

Proof. The BH adversary will proceed by running ASig,H and whenever A makes
a signature query, it simulates the query by reprogramming the random oracle
H using the HVZK simulator for the MPCitH interactive proof system. All other
oracle queries to H are left unchanged. The reprogramming of the random or-
acle is done ahead of time, and so does not involve observing quantum queries
(when the adversary makes a superposition query, the reprogrammed oracles
are evaluated in superposition). Let Qs be an upper-bound on the number of
signature queries done by the adversary ASig,H . Let Sim(bpk, r) be the deter-
ministic poly(λ)–time machine that, on input bpk and random tape r produces
a transcript (σ1, h1, σ2, h2, σ3, h3, σ4) for the 7-message protocol ΠblHelium that
is indistinguishable from the real transcript. To make this change undetectable
from the adversary’s point of view, we need to reprogram the random oracles

8 Note that in [KLS18], the public key is not an input to the random oracles since
it is fixed by the game. In our case, the adversary may issue signature queries for
arbitrary blindings of the public key.
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H1(m, bpk, σ1)

1 : for ctr = 1 . . . Qs, do

2 : (σ′
1, h

′
1, σ

′
2, h

′
2, σ

′
3, h

′
3, σ

′
4)← Sim(bpk,RF(m, ctr))

3 : if σ′
1 = σ1, return h′

1

4 : return H(1,m, bpk, σ1)

H2(m, bpk, salt, h1, σ2)

1 : for ctr = 1 . . . Qs do

2 : (σ′
1, h

′
1, σ

′
2, h

′
2, σ

′
3, h

′
3, σ

′
4)← Sim(bpk,RF(m, ctr))

3 : if salt′ = salt ∧ σ′
2 = σ2 ∧ h′

1 = h1, return h′
2

4 : return H(2,m, bpk, salt, h1, σ2)

H3(m, bpk, salt, h2, σ3)

1 : for ctr = 1 . . . Qs, do

2 : (σ′
1, h

′
1, σ

′
2, h

′
2, σ

′
3, h

′
3, σ

′
4)← Sim(bpk,RF(m, ctr))

3 : if salt′ = salt ∧ σ′
3 = σ3 ∧ h′

2 = h2, return h′
3

4 : return H(3,m, bpk, salt, h2, σ3)

Fig. 2. Reprogrammed random oracles for simulating the signature oracle of the blHe-
lium signature scheme using oracle reprogramming. Sim is the HVZK simulator for the
proof system and RF is a random function.

so that when Hi is queried on input σi, it returns hi. Since the proof involves
three such oracles H1, H2 and H3, we must reprogram each of them. We want
to reprogram each oracle without having to record inputs, which might be in
quantum superposition. We do this by having each oracle reproduce every sim-
ulated transcript and checking whether its input matches one of the transcripts.
We derandomize the HVZK simulator so that each oracle can produce the same
transcripts.

Let RF be a random function to which the adversary has no access. The
machine B computes the simulator’s random tape as RF(m, ctr) where ctr is a
counter that is incremented each time A makes a signing queries. This ensures
that Sim returns a fresh simulated transcript on each signing query. We repro-
gram Hi (for i ∈ {1, 2, 3}) as follows: iterate over 1 ≤ ctr ≤ Qs and call the
simulator with input bpk and random tape set to RF(m, ctr). If the transcript
produced by Sim is consistent with the partial transcript in the oracle input, re-
turn the simulated challenge h′

i as output. If no consistent transcript was found,
return the output of an unprogrammed oracle Hi. The detailed reprogrammed
oracles are described in Figure 2.

Since B replaces a real transcript with a simulated transcript, there is a
probability ϵzk that ASig,H observes this change9. Since there are at most Qs

signature queries, the probability that ASig,H can distinguish from Qs real from

9 See [KZ22, Appendix A] for a precise formulation of ϵzk for the BN++ signature
scheme from which Helium is built.
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Qs simulated transcripts is at most Qs · ϵzk. The actual reprogramming of the
random oracles is undetectable since for each signature query, a single point from
each oracle Hi is reprogrammed to a uniformly and independently distributed
value hi.

Note that by reprogramming the random oracles in a correlated fashion as
we do, there is a small chance that the output of the reprogrammed points is
not consistent with the transcripts produced by the simulator. For example, if
two transcripts start with the same σ1 but differ afterwards, then oracle H1 will
return a value h1 which, when fed in to H2 will not return the right challenge.
But since each transcript contains a random value salt (in σ1) which is checked
in each oracle query, the probability that the oracles answer inconsistently is at
most the probability that two transcripts contain the same salt. It is at most(
Qs

2

)
· 2−2κ since salt ∈ {0, 1}2κ.

The advantage of B in game G is therefore at least

AdvGB ≥ AdvGASig,H −Qs · ϵzk −
(
Qs

2

)
· 2−2κ .

⊓⊔

In Appendix A, we prove the post-quantum security of the Helium proof
system, i.e. we show that Helium is a post-quantum NIZKPoK of a preimage
for a one-way function. Using this result, along with Lemma 3, we can apply
Theorem 2 to obtain the following result.

Corollary 1. The blHelium signature scheme with key blinding is unforgeable
under chosen message and blinding attack in the QROM with advantage

Adveuf-cmba ≤ AdvRH,f +Qs · ϵzk +

(
Qs

2

)
· 2−2κ + ϵKS (9)

where ϵKS is given by (13) and ϵzk is the zero-knowledge error, and where Qs is
a bound on the number of signature queries.

Further assuming the multi-user indistinguishability of 128-bit AES, we have
that the blHelium scheme is unlinkable.

Corollary 2. Assume that the AES block cipher is MU-IND (Definition 6), then
blHelium is unlinkable under chosen message and blinding attack in the QROM
with advantage

Advul-cmba ≤ 1

2
+ Advmu-ind + 2QH

√
Advowf + 2Qs · ϵzk + 2

(
Qs

2

)
· 2−2κ (10)

where ϵzk is the zero-knowledge error and where Qs and QH are bounds on the
number of signature and random oracle queries, respectively.
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5 Conclusion

We have shown that MPCitH signature schemes based on symmetric crypto-
graphic primitives are a prime candidate for key blinding. They only rely on
well-studied assumptions and produce short public and blinded keys, which can
be used as identifiers in anonymity networks. We have provided an implemen-
tation based on the Helium signature scheme that is ready to be experimented
with.

Future work in this space would include adding the ability to unblind keys,
which was presented in [ELW23] as bidirectional key blinding. For MPCitH-based
schemes, it would suffice to recompute the secret key used to encrypt the public
key and use it to decrypt the blinded key. Another question concerns strong
unforgeability. In the context of quantum adversaries, strong unforgeability often
relies on a concept known as computationally unique responses, which was used
for example in [KLS18] and in [DFM20].

References

[BBM00] Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. “Public-Key
Encryption in a Multi-user Setting: Security Proofs and Improve-
ments”. In: Advances in Cryptology — EUROCRYPT 2000. Ed. by
Bart Preneel. Lecture Notes in Computer Science. Berlin, Heidel-
berg: Springer, 2000, pp. 259–274. isbn: 978-3-540-45539-4. doi:
10.1007/3-540-45539-6_18.

[BN20] Carsten Baum and Ariel Nof. “Concretely-Efficient Zero-Knowledge
Arguments for Arithmetic Circuits and Their Application to Lattice-
Based Cryptography”. In: Public-Key Cryptography - PKC 2020 -
23rd IACR International Conference on Practice and Theory of
Public-Key Cryptography, Proceedings, Part I. Vol. 12110. Lecture
Notes in Computer Science. Springer, 2020, pp. 495–526.

[BSK+21] Carsten Baum, Cyprien Delpech de Saint Guilhem, Daniel Kales,
Emmanuela Orsini, Peter Scholl, and Greg Zaverucha. “Banquet:
Short and Fast Signatures from AES”. In: Public-Key Cryptogra-
phy - PKC 2021 - 24th IACR International Conference on Prac-
tice and Theory of Public Key Cryptography, Proceedings, Part I.
Vol. 12710. Lecture Notes in Computer Science. Springer, 2021,
pp. 266–297.

[CDG+17] Melissa Chase, David Derler, Steven Goldfeder, Claudio Orlandi,
Sebastian Ramacher, Christian Rechberger, Daniel Slamanig, and
Greg Zaverucha. “Post-Quantum Zero-Knowledge and Signatures
from Symmetric-Key Primitives”. In: Proceedings of the 2017 ACM
SIGSAC Conference on Computer and Communications Security.
CCS ’17. New York, NY, USA: Association for Computing Machin-
ery, Oct. 30, 2017, pp. 1825–1842. isbn: 978-1-4503-4946-8. doi:
10.1145/3133956.3133997. (Visited on 01/24/2023).

19

https://doi.org/10.1007/3-540-45539-6_18
https://doi.org/10.1145/3133956.3133997


[CGH+23] Sof́ıa Celi, Scott Griffy, Lucjan Hanzlik, Octavio Perez Kempner,
and Daniel Slamanig. SoK: Signatures With Randomizable Keys.
2023. url: https://eprint.iacr.org/2023/1524 (visited on
04/16/2024). preprint.

[DELW23] Frank Denis, Edward Eaton, Tancrède Lepoint, and Christopher A.
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A QROM Security of Helium

In the following, we refer to the “Helium proof system” as the 7–message inter-
active proof from which the Helium signature scheme is obtained through the
Fiat-Shamir transform. We describe the prover’s actions in the interactive proof
in Figures 3 and 4. The verifier checks the validity of the commitments, recreates
the views of the MPC parties using the seeds, and verifies that they are consis-
tent with the MPC protocol. We refer to [KZ22] for the full details of the verifier.
We let C denote the Boolean circuit that computes the one-way function.

A.1 Proof of Security

In this section, we prove the security of blHelium– i.e. we prove that it is un-
linkable and unforgeable against an adversary that can request blinded keys
and signatures at will. Our proofs hold in the quantum random oracle model
(QROM). More specifically, we model the following hash functions as random
oracles: commit, H1, H2 and H3 (in Sign) and H (in BlindPK).

Our proof relies on online extractability in the QROM. The following Theo-
rem is the online extractability with early extraction result (Corollary 4 in [DFMS22]
with the simplified bound from Theorem 3).

Theorem 4 (Online Extractability with Early Extraction [DFMS22]).
Let H : X → Y be a random function. There exists an extractable RO-simulator
S, with interfaces S.RO and S.E, that satisfies the following properties. Let A
be a two-round polynomial-time oracle adversary that outputs t1, . . . , tℓ in the
first round and x1, . . . , xℓ ∈ X and W after the second round, resulting in a
transcript [⃗t, x⃗,H(x⃗),W ]AH . Let [⃗t, x⃗, h⃗,W ]GA

S
be the transcript where, when A

outputs ti, S.E is queried on ti to obtain x̂i ∈ X ∪{⊥} and when A halts, S.RO
is queried on A’s outputs xi to generate hi. There are negligible functions δ1 and
δ2 such that

Pr
GA

S

[∃i : xi ̸= x̂i ∧ hi = ti] ≤ δ1 (11)

and

∆([⃗t, x⃗,H(x⃗),W ]AH , [⃗t, x⃗, h⃗,W ]GA
S
) ≤ δ2 (12)

for δ1 + δ2 ≤ 34ℓq/
√
2n + 2365q3/2n where q is the number of oracle queries.

Theorem 5. Assuming commit is a random oracle, then the Helium proof sys-
tem instantiated with a one-way function F is a post-quantum proof of knowledge
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First prover message

1 : Sample salt←$ {0, 1}2κ

2 : for each parallel repetition e ∈ [M ] do

3 : Sample root seed: seede←$ {0, 1}κ

4 : Derive seed(1)e , . . . , seed(N)
e as leaves of a binary tree from seede

5 : for each party i ∈ [N ] do

6 : Commit to seed: com(i)
e ← Commit(salt, e, i, seed(i)e )

7 : Expand random tape: tape(i)e ← ExpandTape(salt, e, i, seed(i)e )

8 : Sample witness shares: sk(i)e ← Sample(tape(i)e ), bk(i)e ← Sample(tape(i)e )

9 : Compute witness offsets: ∆ske ← sk−
∑

i sk
(i)
e , ∆bke ← bk−

∑
i bk

(i)
e

10 : Adjust first shares: sk(0)e ← sk(0)e +∆ske, bk
(0)
e ← bk(0)e +∆bke

11 : for each gate g in C do

12 : if g is an addition with inputs x, y then

13 : Party i locally computes z(i) = x(i) + y(i)

14 : if g is a multiplication with inputs xe,ℓ, ye,ℓ

15 : Compute output share z
(i)
e,ℓ ← Sample(tape(i)e )

16 : Compute offset ∆ze,ℓ ← xe,ℓ · ye,ℓ −
∑N

i=1 z
(i)
e,ℓ

17 : Adjust first share z
(1)
e,ℓ ← z

(1)
e,ℓ + δze,ℓ

18 : Let ct(i)e denote each party’s output share.

19 : for each party i ∈ [N ] do

20 : Interpolate S(i)
e and T (i)

e such that S(i)
e (ℓ) = s

(i)
e,ℓ and T (i)

e (ℓ) = t
(i)
e,ℓ for ℓ ∈ [C]

21 : Compute product polynomial Pe ←
(∑

i S
(i)
e

)(∑
i T

(i)
e

)
22 : for ℓ ∈ [C] do

23 : Set p
(0)
e,ℓ ← 1 and p

(i)
e,ℓ ← 0 for i ∈ {1, . . . , N − 1}

24 : for ℓ ∈ {C, . . . , 2C − 2} do

25 : p
(i)
e,ℓ ← Sample(tape(i)e ) for i ∈ [N ]

26 : Compute offset ∆pe,ℓ = Pe(ℓ)−
∑

i p
(i)
e,ℓ

27 : Adjust first share p
(0)
e,ℓ ← p

(0)
e,ℓ +∆pe,ℓ

28 : for each party i ∈ [N ] do

29 : Interpolate polynomial P (i)
e (ℓ) = p

(i)
e,ℓ using the 2C − 2 defined points.

30 : σ1 ← (salt, ((com(i)
e , ct(i)e )i∈[N ],∆ske,∆bke, (∆te,ℓ)ℓ∈[C](∆pe,ℓ)ℓ∈{C,...,2C−2})e∈[M ]).

Fig. 3. First prover message.
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Second prover message on challenge h1

1 : Expand challenge: (Re)e∈[M ] ← Expand(h1), with Re ∈ K
for each repetition e ∈ [M ] do

2 : for each party i ∈ [N ] do

3 : Sample shares (a(i)
e , c(i)e )← Sample(tape(i)e )

4 : Compute ye = Te(Re) and ae =
∑

i a
(i)
e

5 : Compute ∆ce ← ae · ye −
∑

i c
(i)
e

6 : Adjust first share c(0)e ← c(0)e +∆ce

7 : Return σ2 ← (∆ce)e∈[M ]

Third prover message on challenge h2

1 : Expand challenge: (ϵe)e∈[M ] ← Expand(h2), with ϵe ∈ K
2 : for each repetition e ∈ [M ] :

3 : for each party i ∈ [N ] :

4 : Compute (x(i)
e , y(i)

e , z(i)e )← (S(i)
e (Re), T

(i)
e (Re), P

(i)
e (Re))

5 : Compute α(i)
e ← ϵe · x(i)

e + a(i)
e

6 : Compute αe ←
∑

i α
(i)
e

7 : for each party i ∈ [N ] :

8 : Compute v(i)e ← αe · y(i)
e − ϵe · z(i)e − c(i)e

9 : Return σ3 ← (α(i)
e , v(i)e )e∈[M ],i∈[N ]

Fourth prover message on challenge h3

1 : Expand challenge: (ie)e∈[M ] ← Expand(h3)

2 : for each repetition e ∈ [M ] do

3 : seedse ← {the log2(N) nodes needed to generate {seed(i)e } for i ∈ [N ] \ {ie}}

4 : Return (salt, h1, h3, (seedse, com
(ie)
e ,∆ske,∆bke, (∆te,ℓ)ℓ∈[C], (∆pe,ℓ)ℓ∈{C,...,2C−2}, αe,∆ce)e∈[M ]).

Fig. 4. Prover messages 2–4.
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for preimages of F with knowledge soundness error

ϵKS ≤ 34M ·N · q/
√
2n + 2365q3/2n (13)

+ max
M1,M2,M3

(
2L− 2

|K|

)M1

·
(

1

28

)M2

·
(

1

N

)M3

against quantum polynomial-time adversaries making q queries to commit where
n is the bit size of commitments and where M1 +M2 +M3 = M .

Proof. A quantum adversary A against Helium has quantum superposition ac-
cess to the commitment oracle Hc = commit. We need to construct a knowledge
extractor E whose success probability in producing a witness is related to A’s
probability of cheating the protocol. The extractor will simulate the random
oracle Hc with the online extractable oracle S of [DFMS22] specified in Theo-
rem 4. The extractor will run A by replacing Hc with the oracle interface S.RO.
After the prover’s first message σ1, E will use the extraction interface S.E on

every commitment com
(i)
e for e ∈ [M ] and i ∈ [N ] to get either an oracle input

(salt, e, i, seed(i)e ) or a symbol ⊥ which means that A did not query Hc on this
input. Then, E proceeds in a similar fashion as the extractor of [KZ22, Appendix
A] in their proof of unforgeability of BN++ to compute the inputs and shares
of the MPC parties.

In more details, when A produces its first message σ1, E does the following:

– parse σ1 as (salt, ((com
(i)
e , ct

(i)
e )i∈[N ], . . . ),

– for i ∈ [N ] and e ∈ [M ], use the S.E interface on input com
(i)
e to get either

ŝ
(i)
e or ⊥.

– For each i ∈ [N ] and e ∈ [M ] such that seed(i)e is successfully extracted,

compute the input shares sk(i)e of party i for repetition e using the seed

contained in ŝ
(i)
e .

– If there is an e ∈ [M ] for which ske =
∑

i sk
(i)
e is a preimage for pk, output

ske. Otherwise, output ⊥.

We now show that the probability that E outputs a preimage sk is non-negligible
if A produces a forgery with non-negligible probability.

We let V (σ⃗, h⃗) denote the probabilistic event that V accepts the transcript

(σ⃗, h⃗). We denote by s⃗h3 the set of seeds announced when the challenge is h3 =

(̄ie)e∈[M ], i.e. s⃗h3
= {(salt, e, i, seed(i)e ) | e ∈ [M ], i ̸= īe}. Similarly, let y⃗h3

denote
the commitments to the revealed seeds; i.e. y⃗h3 = Hc(s⃗h3).

We first bound the difference in probability between an execution with Hc

and an execution with S.RO.

Pr[V (σ⃗, h⃗)] = Pr[V (σ⃗, h⃗) ∧Hc(s⃗h3
) = y⃗h3

]

≤ Pr[V (σ⃗, h⃗) ∧ S.RO(s⃗h3
) = y⃗h3

]

+ Pr[Hc(s⃗h3
) = y⃗h3

∧Hc(s⃗h3
) ̸= S.RO(s⃗h3

)]

≤ Pr[V (σ⃗, h⃗) ∧ S.RO(s⃗h3) = y⃗h3 ] + δ1
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where δ1 is the negligible error term of (11).

Next, we bound the probability that the values ŝ
(i)
e obtained through the

S.E interface differ from the committed values.

Pr[V (σ⃗, h⃗) ∧ S.RO(s⃗h3
) = y⃗h3

]

≤ Pr[V (σ⃗, h⃗) ∧ S.RO(s⃗h3
) = y⃗h3

∧ S.E(y⃗h3
) = s⃗h3

]

+ Pr[S.RO(s⃗h3
) = y⃗h3

∧ S.E(y⃗h3
) ̸= s⃗h3

]

≤ Pr[V (σ⃗, h⃗) ∧ S.RO(s⃗h3
) = y⃗h3

∧ S.E(y⃗h3
) = s⃗h3

] + δ2

= Pr[V (σ⃗, h⃗) ∧ ŝh3
= s⃗h3

] + δ2

where ŝh3 = S.E(y⃗h3). We again take note of δ2 and add it at the end.

The expression Pr[V (σ⃗, h⃗) ∧ ŝh3
= s⃗h3

] corresponds to the probability that

V accepts when the committed seeds are the values ŝ
(i)
e extracted by E through

S.E. Note that the prover sends N ·M commitments y
(i)
e , so the values ŝ

(i)
e are

well defined for each (i, e) ∈ [N ] × [M ]. We let sk ← E denote the event that

the seeds ŝ
(i)
e allow E to compute the shares of the witness sk and ⊥ ← E its

complement (when E outputs ⊥). We have

Pr[V (σ⃗, h⃗) ∧ ŝh3
= s⃗h3

] ≤

Pr[sk← E ] + Pr[V (σ⃗, h⃗) ∧ ŝh3 = s⃗h3 | ⊥ ← E ] .

We now look at this last probability that the verifier accepts when the extractor
is unable to reconstruct a witness from the MPC shares.

Recall that the verifier recomputes the view of each party in the MPC proto-
col to the exception of the excluded party ī. Since ŝh3

= s⃗h3
, it computes those

views using the extracted seeds ŝ
(i)
e . If E outputs ⊥, then for every e it holds

that the key ŝke =
∑

i ŝk
(i)

e expanded from the seed ŝ
(i)
e is not a valid preimage.

This means that at least one of the views computed by the verifier is inconsistent
(i.e. that party cheated). In this case the verifier accepts if one of three things
happen:

1. the prover injects invalid polynomials S, T and P (such that S · T ̸= P ); or

2. the prover injects invalid multiplication triples; or

3. the view of the inconsistent party is not opened.

There areM parallel repetitions which must pass verification and the prover may
try to cheat in a different round in each repetition. We analyze the probability
of each event below. The probability that the prover cheats in all M repetitions
corresponds to the trivial cheating probability in the proof of [DFMS22]. At this
point, the rest of the analysis is entirely classical and is very similar to the proof
of [KZ22] and to other proofs of soundness for multi-round interactive proofs.
We bound the probability that the verifier accepts when the MPC shares are

computed using the extracted seeds ŝ
(i)
e , conditioned on the extraction failing.
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Cheating the first challenge. The first challenge h1 is used to test the check-
ing polynomials. In Helium, there are two checking polynomials P1 and P2 since
there are not enough field elements in F28 to interpolate a single polynomial
with the desired degree. For other one-way functions, there might be more poly-
nomials, for example in blHelium, we use a total of 6 checking polynomials since
we are effectively applying 4 AES circuits (see Section 4.3 for details). Let np

denote the number of checking polynomials and C the total count of field in-
verse in the circuit such that the degree of each polynomial is L = ⌈C/np⌉. By
the Schwartz–Zippel Lemma, the probability that a random point Re satisfies
Se(Re) · Te(Re) − Pe(Re) = 0 is at most 2L−2

|K| where K is the extension field

of F28 . The challenge h1 is parsed as (Re)e∈[M ] where for each e, Re is used to
check that S · T = P by checking that S(Re) · T (Re) = P (Re). If we let M1

denote the number of parallel repetitions e for which the prover cheats in round
1, the probability that the adversary isn’t caught is at most(

2L− 2

|K|

)M1

. (14)

Cheating the second challenge. The second challenge h2 is used to challenge
the multiplication triples used to check Se(Re) · Te(Re) = Pe(Re). The Helium
protocol uses a dot-product checking protocol, which has soundness 1/|F28 |. If
we let M2 denote the number of repetitions where the adversary cheats in the
second round, its probability of passing verification is at most(

1

28

)M2

.

Cheating the third challenge. The third challenge is used to challenge the views of
the MPC protocol. If the prover did not cheat in any of the previous two rounds,
then there is at least one party whose view is inconsistent with that of the others.
The prover can cheat in this round if the inconsistent view is not challenged by
the verifier. This occurs with probability 1

N . There are M3 = M −M1 −M2

repetitions where the adversary attempts to cheat in the last round. So the
probability of success in this round is(

1

N

)M3

(15)

To complete the proof, we add all the error terms and obtain the bound

Pr[V (σ⃗, h⃗) = 1] ≤ Pr[sk← E ] + δ1 + δ2

+ max
M1,M2,M3

(
2L− 2

|K|

)M1

·
(

1

|F28 |

)M2

·
(

1

N

)M3

where the bound δ1 + δ2 ≤ 34ℓq/
√
2n + 2365q3/2n is given by Theorem 4. Since

our extractor extracts ℓ = M ·N points, the Theorem statement follows. ⊓⊔
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After establishing the knowledge soundness of Helium against quantum provers,
the rest of the proof towards unforgeability follows the usual formula. Theo-
rem 5 together with the multi-round security of the Fiat-Shamir transform in
the QROM [DFM20] directly imply that the Helium signature scheme is a non-
interactive post-quantum zero-knowledge proof of knowledge. Therefore it is un-
forgeable under key-only attack. We have shown in Lemma 3 that the signature
oracle for the blHelium signature scheme (which is just the Helium scheme with a
different one-way function) can be simulated with random oracle reprogramming.
A direct consequence is that the EUF-CMA of Helium reduces to EUF-KOA in
the QROM.

Corollary 3. The Helium signature scheme is EUF-CMA in the QROM.
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