LatticeFold: A Lattice-based Folding Scheme and its Applications to Succinct Proof Systems

Dan Boneh and Binyi Chen
Stanford University

July 29, 2024

Abstract

Folding is a recent technique for building efficient recursive SNARKs. Several elegant folding protocols have been proposed, such as Nova, Supernova, Hypernova, Protostar, and others. However, all of them rely on an additively homomorphic commitment scheme based on discrete log, and are therefore not post-quantum secure and require a large (256-bit) field. In this work we present LatticeFold, the first lattice-based folding protocol based on the Module SIS problem. This folding protocol naturally leads to an efficient recursive lattice-based SNARK and an efficient PCD scheme. LatticeFold supports folding low-degree relations, such as R1CS, as well as high-degree relations, such as CCS. The key challenge is to construct a secure folding protocol that works with the Ajtai commitment scheme. The difficulty is ensuring that extracted witnesses are low norm through many rounds of folding. We present a novel technique using the sumcheck protocol to ensure that extracted witnesses are always low norm no matter how many rounds of folding are used. Since LatticeFold can operate over a small (64-bit) field, our evaluation of the final proof system suggests that it is as performant as Hypernova, while providing plausible post-quantum security. Moreover, LatticeFold operates over the same module structure used by fully homomorphic encryption (FHE) and lattice signatures schemes, and can therefore benefit from software optimizations and custom hardware designed to accelerate these lattice schemes.
Contents

1 Introduction 3
1.1 Additional related work 7

2 Preliminaries 8
2.1 Sampling Sets 11
2.2 Module SIS 12
2.3 The Ajtai Compact Commitment 12
2.4 Sum-Checks and Multilinear Extensions over Rings 13
2.5 Reduction of Knowledge 14

3 A Folding Scheme for Ajtai Commitment Openings 16
3.1 The Relation for Commitment Openings 16
3.2 A Generic Framework for Folding 18
3.2.1 Expansion: the reduction from $\mathcal{R}_B^{\text{eval}} \times \mathcal{R}_B^{\text{cm}}$ to $\mathcal{R}_B^{\text{eval}} \times \mathcal{R}_B^{\text{eval}}$ 19
3.2.2 Decomposition: The reduction from $(\mathcal{R}_B^{\text{eval}})^2$ to $(\mathcal{R}_B^{\text{eval}})^{2k}$ 20
3.2.3 Folding: The reduction from $(\mathcal{R}_B^{\text{eval}})^{2k}$ to $\mathcal{R}_B^{\text{eval}}$ 24
3.3 Supporting Small Prime Modulus 37

4 A Lattice-based Folding Scheme for CCS 39
4.1 Lattice-based Committed CCS 39
4.2 A Generic Folding Scheme for CCS 41
4.2.1 Linearization: The reduction from $\mathcal{R}_B^{\text{cmccs}}$ to $\mathcal{R}_B^{\text{evalccs}}$ 42
4.2.2 Decomposition: The reduction from $(\mathcal{R}_B^{\text{evalccs}})^2$ to $(\mathcal{R}_B^{\text{evalccs}})^{2k}$ 42
4.2.3 Folding: The reduction from $(\mathcal{R}_B^{\text{evalccs}})^{2k}$ to $\mathcal{R}_B^{\text{evalccs}}$ 45
4.3 An Optimized Folding Scheme for CCS 45
4.3.1 Batch Folding: The reduction from $\mathcal{R}_B^{\text{splitccs}} \times (\mathcal{R}_B^{\text{evalccs}})^k$ to $\mathcal{R}_B^{\text{evalccs}}$ 47

5 Performance Estimates 51

6 Discussion of an Alternative Approach 53

7 Conclusion, open problems, and future work 55

A Deferred Proofs 63
A.1 Multilinear Evaluation Mapping Lemma 63
A.2 Proof of Lemma 4.1 64
A.3 Proof of Lemma 4.2 65
A.4 Proof of Theorem 4.2 67
A.5 Proof of Lemma 4.3 70
1 Introduction

In recent years we have seen tremendous progress in the design of succinct non-interactive arguments of knowledge (SNARKs). They have become an important enabling technology for scaling blockchains, bridging between chains [Xie+22], authenticating media [NT16; DB22; KHSS22], verifiable delay functions [BBBF18], and much more. Some SNARKs are monolithic and generate the entire proof at once, while others break the task of constructing a proof into small steps and prove each step separately. The latter approach is called incrementally verifiable computation (IVC) [Val08] or proof carrying data (PCD) [CT10]. This approach eliminates the high memory needs of a monolithic SNARK. It can also provide more opportunities for parallelizing the prover.

Historically, IVC and PCD were built from a recursive SNARK [Val08; BCTV14]. However, this requires embedding the SNARK verifier inside the statement being proved at every step, and this introduces a considerable overhead. A new approach called accumulation or folding was recently introduced in Halo [BGH19] and further developed in [BCMS20; Bin+21; BDFG21] and Nova [KST22]. The idea is to “fold” the SNARK verification work at every step into the SNARK verification of all previous steps. The final folded statement is verified at the end of the computation. The benefit is that now the recursive statement being proved at every step only needs to ensure that folding was performed correctly, which is far simpler than running a full SNARK verifier. Since folding was introduced, many elegant ideas appeared to further optimize this technique [KS22; KS23b; BC23; RZ22; KS23a; KP23; Moh23; NBS23].

To explain folding in more detail we find it convenient to use the language of reductions of knowledge introduced by Kothapalli and Parno [KP23] (see Section 2.5 for details). Let R_1 and R_2 be two instance-witness relations. A reduction of knowledge from R_1 to R_2 is a protocol Π between a prover and verifier. The verifier takes as input an instance x_1 for R_1, interacts with the prover, and outputs an instance x_2 for R_2 at the end of the protocol. The key requirement is that if the prover can present a witness w_2 for x_2, then it is possible to extract from the prover a witnesses w_1 for x_1. Hence, knowledge of a valid witness for x_2 proves knowledge of a valid witness for x_1.

A folding scheme is a reduction of knowledge from a product relation $R_{acc} \times R_{comp}$ to R_{acc}. That is, two instances (x_{acc}, x_{comp}) are folded to a single instance x'_{acc} of R_{acc}. By repeatedly folding in this way, the prover can accumulate many steps of a computation into a single instance of an accumulation relation R_{acc}. Eventually, the prover proves knowledge of a witness for the final R_{acc} instance, and this proves knowledge of a valid witness for every step of the computation. When R_{acc} and R_{comp} are different, this type of folding is sometimes called multi-folding [KS23b]. The relation R_{acc} is typically a simple extension of R_{comp}.

The Hypernova system [KS23b], for example, is a folding scheme for proving validity of a multi-step computation where the computation step relation R_{comp} is expressed as a customizable constraint system (CCS) [STW23a]. CCS supports high-degree gates and
generalizes the Plonkish, R1CS, and AIR formats for a computation trace. By repeatedly folding, Hypernova enables the prover to accumulate many CCS steps into a single instance of a closely related relation R_{acc}.

The folding schemes discussed above make use of an additively homomorphic commitment scheme based on discrete log to commit to the various witnesses. The commitments are part of the instances x_{acc} and x_{comp}. Due to the reliance on discrete log, the derived SNARKs are unsound in the presence of a large fault-tolerant quantum computer. Moreover, committing to a long vector with a discrete log commitment scheme, such as Pedersen, leads to significant work for the prover.

Our contributions. We construct LatticeFold, the first lattice-based folding scheme, whose security depends on the Module Short Integer Solution (MSIS) problem [LS15; PR06; LM06]. This problem is believed to be post-quantum secure. An important component of LatticeFold is a new batched proof-of-knowledge protocol for short pre-images of linear maps (See Section 3), which may be of independent interest.

A natural starting point for a lattice-based folding scheme is to try a replace the discrete-log commitment in existing folding schemes with the Ajtai commitment scheme [Ajt96], which is additively homomorphic. We describe the scheme as it operates in a module R^m defined over a suitable number ring R. As usual, for a prime q we let $R_q := R/qR$. The Ajtai commitment scheme works as follows (see Section 2.3):

- The public parameters contain a random matrix $A \in R^{\kappa \times m}$ where $\kappa < m$,
- The commitment to a vector $x \in R^m$ is $cm := A x \in R^\kappa_q$.

If the Module SIS (MSIS) problem is hard, then the commitment is binding for the set of vectors $x \in R^m$ whose norm $\|x\|_\infty$ is at most some bound B. Throughout the paper we always use the L_∞ norm on R^m, as defined in Section 2.

But one immediately runs into trouble. Folding two witnesses into one is done by taking a random linear combination of the two witnesses, using verifier randomness. Consequently, the norm of the committed vector in the folded instance increases the more times we fold. Eventually the norm exceeds the norm bound B, at which point the commitment scheme is no longer binding. One can try to avoid norm growth by using a folding tree [RZ22], so that the folding depth is logarithmic in the size of the computation. However, long folding chains are required in applications, such as PCD, and Ajtai commitments are simply not compatible with that. The challenge is to use Ajtai commitments while controlling the norm growth as folding takes place.

Our approach to keeping the witness norm below B is to break the folding protocol into three steps: expansion, decomposition, and folding. The first step has to do with the mechanics of folding; it expands the given instance x_{comp} of R_{comp} to an instance of R_{acc}. The second, and more important step, decomposes a committed witness $\bar{f} \in R^m$ of bounded norm B into a tuple of vectors $\bar{f_0}, \ldots, \bar{f_{k-1}} \in R^m$ of lower norm $b := \lfloor B^{1/k} \rfloor$. This decomposition works by writing every entry of \bar{f} in base b, so that the original \bar{f} satisfies
\(\vec{f} = \vec{f}_0 + b \cdot \vec{f}_1 + \ldots + b^{k-1} \cdot \vec{f}_{k-1} \), and each of the \(k \) vectors has norm less than \(b \). When folding two committed witnesses of bounded norm \(B \), this decomposition leaves us with \(2k \) vectors of lower bounded norm \(b \). Our third step, called folding, now folds all \(2k \) vectors into a single witness for the accumulator relation \(R_{\text{acc}} \). The folding is done by computing a random linear combination of the \(2k \) vectors using a random vector of weights \(\vec{\rho} \) sampled as \(\vec{\rho} \leftarrow c_{\text{small}}^{2k} \). Here \(c_{\text{small}} \subseteq R_q \) contains only ring elements of low norm so that the final folded witness \(\vec{F} := \sum_{i=1}^{2k} \rho_i \vec{f}_i \) has norm at most \(B \). This gives a reduction of knowledge from \(R_{\text{acc}} \times R_{\text{comp}} \) to \(R_{\text{acc}} \) where the final committed witness satisfies the same norm bound as the original committed witnesses. There is no norm growth.

Unfortunately, this decomposition approach is insufficient: given a witness for the folded instance \(x'_{\text{acc}} \) of \(R_{\text{acc}} \) we cannot extract low-norm witnesses for the two instances \((g_{\text{acc}}, x_{\text{comp}}) \) that we started with. The problem is that the extractor uses the inverses of elements \(c_1 - c_2 \in R_q \) where \(c_1, c_2 \in C_{\text{small}} \). This forces us to ensure that \(C_{\text{small}} \) is a strong sampling set, meaning that for all \(c_1, c_2 \in C_{\text{small}} \), the difference \(c_1 - c_2 \) is invertible in \(R_q \). The ring \(R_q \) contains an exponential size strong sampling set \(\text{(Lemma 2.3)} \), and therefore the challenge space is sufficiently large. However, the norm of \(1/(c_1 - c_2) \) in \(R_q \) can be large, and consequently the extractor might end up extracting a high norm witness, which is invalid. One way to solve this problem (e.g., as in \([\text{ACK21}] \)) is to ensure that these inverses always have small norm. However, as noted in \([\text{AL21}] \), that severely limits the size of the challenge set \(C_{\text{small}} \) and harms the soundness of the folding protocol. In comparison, we highlight that our protocol incurs no slack in witness extraction and avoids using subtractive sets \([\text{AL21}] \).

Our core idea is to enhance the folding protocol, and have the prover convince the verifier that it has \(2k \) valid witnesses whose norm is less than \(b \). This is sufficient to extract low norm witnesses from the prover. Roughly speaking, the prover can convince the verifier that a vector \(\vec{f} \in R^m \) has norm less than \(b \), by proving that every component \(u \) of \(\vec{f} \) is in the set \([-b, b] \). This is done by proving that \(g(u) = 0 \), where \(g(X) \) is the polynomial \(g(X) := X \prod_{i\in[-b,b]} (X - i)(X + i) \). The set of zeroes of this polynomial \(g \) is exactly the set \([-b, b] \), and therefore \(g(u) = 0 \) if and only if \(u \) is in \([-b, b] \). By encoding the components of \(\vec{f} \) as the evaluations of a function \(h \) on the Boolean hypercube \(\{0, 1\}^\ell \), the prover can use the sumcheck protocol \([\text{LFKN92}] \) on the \(\ell \)-variate polynomial \(g(h(\cdot)) \) to convince the verifier that \(\vec{f} \) has norm less than \(b \). In other words, the sumcheck protocol is the key tool that enables to prove that \(\vec{f} \) has bounded norm. The complete details are provided in Section 3.

We note that choosing the norm bound \(b \) is an interesting optimization problem. On the one hand, a small value of \(b \) results in a decomposition of \(\vec{f} \) into many fragments, and this will slow down the folding process because more witnesses need to be folded. On the other hand, choosing a small \(b \) reduces the degree of the polynomial \(g(X) \) in the norm bound test, making that test faster. The optimal \(b \) needs to balance these two effects to minimize the overall running time. We calculate optimal values in our evaluation section.

Finally, we point out that our techniques are generic, and can be used to build folding schemes from any binding commitment that requires norm bounds on the committed vector.
Here we use Ajtai commitments, but other schemes can also be used.

Paper organization. We begin in Section 3 by using the techniques outlined above to construct a folding scheme for the relation R^B_m that captures the fact that the prover has an opening $\vec{x} \in R^m$ to an Ajtai commitment $cm \in R^s_q$, where $\|\vec{x}\|_\infty < B$. This folding scheme leads to a batched proof-of-knowledge protocol for short pre-images of linear maps. It also demonstrates all the essential tools needed to build a folding-based IVC and PCD from the MSIS assumption. However, a relation such as R^B_m that proves knowledge of a committed value is not enough to implement an IVC or PCD. One would also need to incorporate into R^B_m a computation checking relation, such as verifying a witness for an R1CS relation. We do so in Section 4 by extending R^B_m to include such a check.

As an optimization of our folding schemes, we show in Section 3.3 how to adapt the folding scheme for R^B_m to support relations defined over a small modulus q, say on the order of 2^{64}. This makes arithmetic faster since \mathbb{Z}_q now fits into the native 64-bit registers of a CPU or GPU. Moreover, a small modulus is advantageous for encoding computations that operate on binary values, since a small q reduces the encoding overhead. The problem is that a small q limits the size of the challenge space and harms soundness. We show that with a suitable use of extensions fields we can enlarge the challenge space while supporting relations over a small modulus.

Next, in Section 4 we generalize our basic folding technique to support circuits with high degree gates. In particular we show how to fold a customizable constraint system (CCS) relation [STW23a]. This generalization adds an additional sumcheck step before decomposition to linearize the high degree relation. This is needed to avoid cross terms that would arise if decomposition were applied to a relation involving high degree gates. Hypernova [KS23b] uses a similar approach to avoid cross terms. We note that Protostar [BC23] does not use such a linearization step, and instead handles cross terms by collapsing them using a random linear combination. Their approach, however, does not readily apply in our settings because it requires committing to a random high norm Vandermonde vector of weights, which we cannot do efficiently using Ajtai commitments. We leave integrating LatticeFold’s techniques with Protostar as an intriguing open problem.

Evaluation. In Section 5 we provide a concrete evaluation of the resulting system. We show that for a CCS relation that uses high degree gates, LatticeFold performs better than Hypernova. For relations that only use degree-2 gates the two systems are comparable. In addition, LatticeFold is plausibly post-quantum secure.

One reason LatticeFold performs so well is that all the vectors that it uses lie in a single ring: the domain and range of the Ajtai commitment is the same ring \mathcal{R}_q. The same does not hold for Pedersen commitments: the domain is \mathbb{Z}_q while the range is some other cyclic group. This forces Hypernova to implement elliptic curve scalar multiplications and non-native field arithmetic in the relation, which greatly increases the complexity of folding.
Furthermore, LatticeFold uses a small 64-bit field, whereas Hypernova uses a 256-bit field, due to the use of Pedersen commitments.

Finally, we note that LatticeFold is especially well suited for computations that make use of operations in the ring \mathcal{R}_q. For example, suppose that the RELU function in a deep neural net (DNN) can be replaced by a similar function that can be expressed as a simple circuit using \mathcal{R}_q operations. Then LatticeFold would be especially well suited for proving correct inference using the resulting DNN. The point is that a ring operation is a richer building block than simple arithmetic, and that can simplify some SNARK circuits.

1.1 Additional related work

Hypernova [KS23b] and Protostar [BC23] are two folding schemes that supports CCS relations. In Section 5 we compare the performance of LatticeFold to both schemes. ProtoGalaxy [EG23] is a further optimization of Protostar. The linearization step (from Section 4.2.1) that reduces a high-degree relation to a linear relation is inspired by Hypernova. However, fully adapting the folding techniques from Hypernova to the lattice setting incurs challenges. First, we need to guarantee that witness norms never go out of range after folding and prove that all intermediate witnesses have small norms. This is why we introduce the decomposition and the range proof techniques. Second, we need to adapt everything from a field to a ring in which not all elements are invertible. Finally, with decomposition, the random combination step must fold more than two witnesses into one using independent and small-norm challenges. This makes the security analysis significantly harder.

Several post-quantum SNARKs were constructed from hash-based Merkle commitments. Some examples include Stark [BBHR18b], Ligero [AHIV17], Aurora [Ben+19], and Brakedown [Gol+23]. Their proof sizes scale sublinearly with the witness size, but in practice they produce relatively large proofs, and require a significant amount of memory when proving a large statement. In recent years, several elegant lattice-based proof systems with sublinear proof size were constructed [Bau+18a; BLNS20; Alb+22; BCS23]. However, these systems are not competitive with the hash based systems listed above. Other post-quantum proof systems, such as [ENS20; LNP22; Bau+23], perform well for small statements, but their proof size is linear in the size of the witness.

More recently, LaBRADOR [BS23] is an elegant succinct lattice-based proof system, with a linear time verifier. LaBRADOR is a recursive proof system based on the MSIS assumption. Thanks to the use of recursion, the resulting proofs are shorter than those obtained from the hash-based systems. LaBRADOR faces many of the same challenges as in this paper, but the proposed solutions are quite different. For example, LaBRADOR uses the method of random projection to prove a norm bound on a committed vector. We explain in Section 6 why this approach would not lead to an efficient folding scheme in our settings. Instead, our approach to proving a norm bound on a committed vector is based on the sumcheck protocol.

Cini et al. [CMNW24] recently introduced a new lattice-based polynomial commit-
ment scheme (PCS) from Bulletproof/FRI-like techniques [BBHR18a; B"un+18]. Their approach achieves better control over witness norm/slack blowup than previous works. However, their scheme incurs norm blowup/slack at each step, limiting it to supporting only a logarithmic number of folding steps. In contrast, our construction (i) provides folding for general NP statements, and (ii) supports polynomially many folding steps for NP statements, as needed for PCD/IVC. It is unclear how to extend the PCS techniques from [CMNW24] to construct PCD/IVC.

Concurrent work. The concurrent work from B"unz et al. [BMNW24] introduced an alternative approach to constructing folding schemes purely from hashing. Additionally, they introduced a new compiling technique to build efficient PCD/SNARKs from any folding schemes, which can be applied to LatticeFold as well. Compared to our work, their folding scheme only supports fixed constant-depth folding, and concrete attacks exist after folding more than the fixed constant steps. Moreover, the recursive folding verifier complexity is higher in their scheme for performing significantly more hash operations. Finally, in LatticeFold, the time and memory to compute the commitments scales with the number of non-zero entries in the committed witness, whereas in the hash-based scheme, it is always proportional to the witness length. This makes LatticeFold more advantageous for sparse witnesses.

2 Preliminaries

Notation. Let λ denote the security parameter. For $n \in \mathbb{N}$ let $[n]$ be the set $\{1, 2, \ldots, n\}$; for $l, r \in \mathbb{N}$ let $[l, r)$ denote the set $\{l, l+1, \ldots r-1\}$. A function $f(\lambda)$ is $\text{poly}(\lambda)$ if there exists a $c \in \mathbb{N}$ such that $f(\lambda) = O(\lambda^c)$. If $f(\lambda) = o(\lambda^{-c})$ for all $c \in \mathbb{N}$, we say $f(\lambda)$ is in $\text{negl}(\lambda)$ and is negligible. A probability that is $1 - \text{negl}(\lambda)$ is overwhelming. For vectors \vec{u}, \vec{v} of the same dimension we let $\langle \vec{u}, \vec{v} \rangle$ denote the inner product of \vec{u} and \vec{v}. Throughout the paper when we refer to a ring we will always mean a commutative ring. For a ring \mathcal{R}, we use $\mathcal{R}[X_1, \ldots, X_\mu]$ to denote the set of μ-variate polynomials over \mathcal{R}, and use $\mathcal{R}^{\leq d}[X_1, \ldots, X_\mu]$ to denote the set of polynomials where the degree of each variable is at most d.

Modules and module homomorphisms. Let \mathcal{R} be an arbitrary ring. An \mathcal{R}-module M can be understood as a “vector space” over ring \mathcal{R}, that is, it allows to be scaled by elements in \mathcal{R}. More precisely, M has an identity element 1 and for all $r, s \in \mathcal{R}$ and $x, y \in M$, we have (i) $r \cdot (x + y) = r \cdot x + r \cdot y$ (ii) $(r + s) \cdot x = r \cdot x + s \cdot x$, (iii) $(rs) \cdot x = r \cdot (s \cdot x)$, and (iv) $1 \cdot x = x$. Moreover, M is commutative, i.e., $r \cdot x = x \cdot r$. An \mathcal{R}-module homomorphism $\phi : M \rightarrow N$ between \mathcal{R}-modules M and N is a function that preserves additions and scalar multiplications. More precisely, for every $x, y \in M$ and $r \in \mathcal{R}$ we have (i) $\phi(x + y) = \phi(x) + \phi(y)$, and (ii) $\phi(r \cdot x) = r \cdot \phi(x)$.
Cyclotomic rings. Let \(\mathcal{R} := \mathbb{Z}[X]/(X^d + 1) \) where \(d \) is a power of two. Let \(t \in \mathbb{N} \) be a divisor of \(d \) and let \(q \) be a prime such that \(q \equiv 1 + 2t \pmod{4t} \). Therefore \(\mathbb{Z}_q \) has \(t \) primitive \(2t \)-th root of unity \(\{ \zeta_j \}_{j \in [t]} \) such that \(X^d + 1 \equiv \prod_{j=1}^{t}(X^{d/t} - \zeta_j) \pmod{q} \), where \(X^d - \zeta_j \) is irreducible for all \(j \in [t] \). By the Chinese Remainder Theorem, \(\mathcal{R}_q := \mathcal{R}/q\mathcal{R} = \mathbb{Z}_q[X]/(X^d + 1) \) can be split to the product of \(t \) quotient rings, that is,

\[
\mathcal{R}_q \cong \prod_{j=1}^{t} \mathbb{Z}_q[X]/(X^{d/t} - \zeta_j) \cong \mathbb{F}_q^{d/t}.
\]

For a polynomial \(f \in \mathcal{R}_q \), the **Number Theoretic Transform** (NTT) of \(f \) is defined as

\[
\text{NTT}(f) := \left[\hat{f}_1, \ldots, \hat{f}_t \right] \in \mathbb{F}_q^{d/t}
\]

where \(\hat{f}_j := f \bmod (X^{d/t} - \zeta_j) \). In the special case where \(t = d \), the prime \(q \) splits completely in \(\mathcal{R} \) and

\[
\mathcal{R}_q \cong \prod_{j=1}^{d} \mathbb{Z}_q[X]/(X - \zeta_j) \cong \mathbb{Z}_q^d. \tag{1}
\]

Coefficient embedding. For an element \(\mathbf{a} = \sum_{i=1}^{d} a_i X^{i-1} \in \mathcal{R}_q \), we use \(\text{Coef}(\mathbf{a}) := (a_1, \ldots, a_d)^\top \in \mathbb{Z}_q^d \) to denote the coefficient vector of \(\mathbf{a} \) and denote \(\text{Coef}_i(\mathbf{a}) := a_i \) for every \(i \in [d] \). For a vector \(\tilde{\mathbf{a}} := (a_1, \ldots, a_m)^\top \in \mathbb{R}_q^m \), we use \(\text{Coef}(\mathbf{a}) \) to denote the matrix

\[
\text{Coef}(\tilde{\mathbf{a}}) := \begin{bmatrix}
\text{Coef}_1(\mathbf{a}_1) & \cdots & \text{Coef}_d(\mathbf{a}_1) \\
\vdots & \ddots & \vdots \\
\text{Coef}_1(\mathbf{a}_m) & \cdots & \text{Coef}_d(\mathbf{a}_m)
\end{bmatrix} \in \mathbb{Z}_q^{m \times d} \tag{2}
\]

and \(\text{FCoef}(\mathbf{a}) \in \mathbb{Z}_q^{dm} \) denotes the concatenation of \(\text{Coef}(\tilde{\mathbf{a}}) \)'s row vectors. For every \(i \in [d] \), we define \(\text{Coef}_i(\tilde{\mathbf{a}}) := (\text{Coef}_i(\mathbf{a}_1), \ldots, \text{Coef}_i(\mathbf{a}_m))^\top \in \mathbb{Z}_q^m \) as the \(i \)-th column of \(\text{Coef}(\tilde{\mathbf{a}}) \). Define \(\text{Rot}(\mathbf{a}) := (\text{Coef}(\mathbf{a}), \text{Coef}(X \cdot \mathbf{a}), \ldots, \text{Coef}(X^{d-1} \cdot \mathbf{a})) \in \mathbb{Z}_q^{d^2} \). We observe that

\[
\text{Coef}(\mathbf{a} \cdot \mathbf{b}) = \text{Rot}(\mathbf{a}) \times \text{Coef}(\mathbf{b}) \tag{3}
\]

for every \(\mathbf{a}, \mathbf{b} \in \mathcal{R}_q \). More generally, for a matrix \(\mathbf{A} \in \mathcal{R}_q^{k \times m} \), we define the rotation matrix \(\text{Rot}(\mathbf{A}) \) as

\[
\text{Rot}(\mathbf{A}) := \begin{bmatrix}
\text{Rot}(\mathbf{A}_{1,1}) & \cdots & \text{Rot}(\mathbf{A}_{1,m}) \\
\vdots & \ddots & \vdots \\
\text{Rot}(\mathbf{A}_{k,1}) & \cdots & \text{Rot}(\mathbf{A}_{k,m})
\end{bmatrix} \in \mathbb{Z}_q^{kd \times md} \tag{4}
\]

and we have that \(\text{FCoef}(\mathbf{A} \tilde{\mathbf{f}}) = \text{Rot}(\mathbf{A}) \times \text{FCoef}(\tilde{\mathbf{f}}) \) for any \(\mathbf{A} \in \mathcal{R}_q^{k \times m} \) and \(\tilde{\mathbf{f}} \in \mathbb{R}_q^m \).

For a ring \(\mathcal{R}_q \cong \mathbb{F}_q^{d/\tau} \), given a ring element \(\mathbf{a} \in \mathcal{R}_q \) and the coefficient embeddings of ring elements \(\mathbf{b}_1, \ldots, \mathbf{b}_r \), the following lemma shows that the coefficient embeddings of \(\mathbf{a} \cdot \mathbf{b}_1, \ldots, \mathbf{a} \cdot \mathbf{b}_r \) can be obtained through straightforward linear operations.
Lemma 2.1. Let $R_q \cong \mathbb{F}_q^{d/\tau}$ for some $\tau \in \mathbb{N}$ where $\tau \mid d$. Given $a \in R_q$ and vector $\vec{B} := (B_1, \ldots, B_d) \in \mathbb{F}_q^d$, we define function $\text{RotSum} : R_q \times \mathbb{F}_q^d \rightarrow \mathbb{F}_q^d$ as

$$\text{RotSum}(a, \vec{B}) := \sum_{i=1}^d B_i \cdot \text{Coef}(X^{i-1}a),$$

where $\cdot : \mathbb{F}_q^d \times \mathbb{Z}_q^d \rightarrow \mathbb{F}_q^d$ denotes scalar multiplication between \mathbb{F}_q and \mathbb{Z}_q^d. Then:

1. For every $a \in \mathbb{Z}_q$ and $b \in R_q$, we have that $\text{Coef}(a \cdot b) = a \cdot \text{Coef}(b)$.

2. For every $a, b \in R_q$ (where $\text{Coef}(b) \in \mathbb{Z}_q^d \subseteq \mathbb{F}_q^d$), we have that

$$\text{RotSum}(a, \text{Coef}(b)) = \text{Coef}(a \cdot b).$$

3. For $a, b_1, \ldots, b_\tau \in R_q$, define

$$\vec{B} := \sum_{j=1}^\tau \text{Coef}(b_j) \cdot Y^{j-1} = (\vec{B}_1, \ldots, \vec{B}_d) \in \mathbb{F}_q^d,$$

where $\vec{B}_i := \sum_{j=1}^\tau \text{Coef}(b_j) \cdot Y^{j-1} \in \mathbb{F}_q^d$ for every $i \in [d]$. Then

$$\text{RotSum}(a, \vec{B}) = \sum_{j=1}^\tau \text{Coef}(a \cdot b_j) \cdot Y^{j-1} \in \mathbb{F}_q^d.$$

Proof. The 1st claim is clear as R_q is a \mathbb{Z}_q-module. The 2nd claim holds because

$$\text{RotSum}(a, \text{Coef}(b)) = \text{Rot}(a) \times \text{Coef}(b) = \text{Coef}(a \cdot b)$$

by definition of $\text{Rot}(a)$ and by Eq. (3).

Next, we prove the last claim. For every $i \in [d]$, note that $\vec{B}_i = \sum_{j=1}^\tau \text{Coef}(b_j) \cdot Y^{j-1} \in \mathbb{F}_q^d$ and the i-th column of $\text{Rot}(a)$ is $[\text{Rot}(a)]_i = \text{Coef}(X^{i-1}a) \in \mathbb{Z}_q^d$. Thus

$$\text{RotSum}(a, \vec{B}) := \sum_{i=1}^d \left(\sum_{j=1}^\tau \text{Coef}(b_j) \cdot Y^{j-1} \right) \cdot [\text{Rot}(a)]_i = \sum_{j=1}^\tau \left(\sum_{i=1}^d \text{Coef}(b_j) \cdot [\text{Rot}(a)]_i \right) \cdot Y^{j-1}$$

$$= \sum_{j=1}^\tau \text{RotSum}(a, \text{Coef}(b_j)) \cdot Y^{j-1} = \sum_{j=1}^\tau \text{Coef}(a \cdot b_j) \cdot Y^{j-1}.$$

The 1st and the 3rd equality is by definition of RotSum; the last equality follows by the 2nd claim of the lemma. \qed
Norms. Let $\mathcal{R} := \mathbb{Z}[X]/(X^d + 1)$. For a polynomial $f := \sum_{i=0}^{d-1} f_i X^i \in \mathcal{R}$, the ℓ_2-norm and ℓ_∞-norm of f are
\[
\|f\|_2 := \left(\sum_{i=0}^{d-1} f_i^2 \right)^{\frac{1}{2}}, \quad \|f\|_\infty := \max_{i=0}^{d-1} |f_i| .
\]
For a vector of polynomials $\vec{f} := (f_1, \ldots, f_k) \in \mathcal{R}^k$, its ℓ_2-norm and ℓ_∞-norm are
\[
\|\vec{f}\|_2 := \left(\sum_{i=1}^k \|f_i\|_2^2 \right)^{\frac{1}{2}}, \quad \|\vec{f}\|_\infty := \max_{i=1}^k \|f_i\|_\infty .
\]
We note that $\|\vec{f}\|_2 \leq \sqrt{dk} \|\vec{f}\|_\infty$ for all $\vec{f} \in \mathcal{R}^k$.

Remark 2.1 (Norms of \mathcal{R}_q-elements). Let $\mathcal{R}_q := \mathcal{R}/q\mathcal{R}$. For a vector $\vec{f} := (f_1, \ldots, f_k) \in \mathcal{R}_q^k$, we abuse the notation a bit and denote $\|\vec{f}\|_\infty$ as the norm after lifting \vec{f} to \mathcal{R}^k. The lifting works by mapping the \mathbb{Z}_q-coefficients of \vec{f} to the interval $[-q/2, q/2] \subseteq \mathbb{Z}$.

2.1 Sampling Sets

We review the definition of sampling sets from [CCKP19].

Definition 2.1. For an arbitrary ring $\bar{\mathcal{R}}$, a subset \mathcal{C} of $\bar{\mathcal{R}}$ is a sampling set if the difference of any two distinct elements in \mathcal{C} is not a zero divisor. \mathcal{C} is further a strong sampling set if the difference is also invertible.

Example: Set $\bar{\mathcal{R}} := \mathcal{R}_q$ where q is a prime. Then $\mathbb{Z}_q \subseteq \mathcal{R}_q$ is a strong sampling set as the difference of any two distinct elements in this set is invertible in \mathcal{R}_q.

Sometimes we need a strong sampling set $\mathcal{C}_{\text{small}} \subseteq \mathcal{R}_q$ such that for every $\rho \in \mathcal{C}_{\text{small}}$ and any $\hat{\nu} \in \bar{\mathcal{R}}$, the norm of $\rho \hat{\nu}$ will not increase much compared to $\|\hat{\nu}\|_\infty$. To quantify this property, we define the expansion factor of $\mathcal{C}_{\text{small}} \subseteq \mathcal{R}_q$ as
\[
\|\mathcal{C}_{\text{small}}\|_{\text{op}} := \sup_{\rho \in \mathcal{C}_{\text{small}}, \hat{\nu} \in \bar{\mathcal{R}}} \frac{\|\rho \times \hat{\nu}\|_\infty}{\|\hat{\nu}\|_\infty} .
\]

Here, the multiplication $\rho \times \hat{\nu}$ is performed over the ring \mathcal{R} where we lift $\rho \in \mathcal{R}_q$ to \mathcal{R} as in Remark 2.1. The lemma below shows that a set with small norm elements has small expansion factors.

Lemma 2.2 (Prop. 2 of [AL21]). In $\mathcal{R} := \mathbb{Z}[X]/(X^d + 1)$, for all $u, \hat{v} \in \mathcal{R}$, we have that
\[
\frac{\|u \hat{v}\|_\infty}{\|\hat{v}\|_\infty} \leq d \cdot \|u\|_\infty .
\]
The following lemma shows that an element in \mathcal{R}_q is invertible if its norm (after lifting to \mathcal{R}) is small. Combining with Lemma 2.2, it implies that we can find large strong sampling sets in \mathcal{R}_q with small expansion factors. This is because the difference between any two distinct small elements (with norm less than $q/4$) remains small (as there is no modulus overflow) and is therefore invertible.

Lemma 2.3 (Corollary 1.2 of [LS18]). Let $d \geq t > 1$ be a power-of-two and $q \equiv 1 + 2t \pmod{4t}$ be a prime. Then every $y \in \mathcal{R}_q := \mathbb{Z}_q[X]/(X^d + 1)$ where $0 < \|y\|_\infty < \frac{q^{1/t}}{\sqrt{t}}$ is invertible. Here $\|y\|_\infty$ denotes y’s norm after lifting to \mathcal{R}.

2.2 Module SIS

We first recall the Module Short Integer Solution (MSIS) problem [LS15; PR06; LM06].

Definition 2.2 (Module SIS). Let $\mathcal{R} := \mathbb{Z}[X]/(X^d + 1)$ and $\mathcal{R}_q := \mathcal{R}/q\mathcal{R}$. Given a random matrix $A \leftarrow \mathcal{R}_q^{\kappa \times m}$, the goal of the MSIS$_{\kappa,m,B}$ problem is to find a non-zero $\vec{x} \in \mathcal{R}^m$ such that $\|\vec{x}\|_2 < B_{\text{SIS}}$ and $A\vec{x} = \vec{0}$ over \mathcal{R}_q.

The MSIS-algorithm from Micciancio and Regev [MR09] can output an MSIS solution with ℓ_2-norm $B_{\text{SIS}} \approx \min(q, 2^{2\sqrt{\delta \kappa \log q}})$ where δ is the root Hermite factor of the lattice reduction algorithm. In practice, setting $\delta \approx 1.0045$ and letting $q/2 > 2^{2\sqrt{\delta \kappa \log q}}$ is believed to lead to an MSIS problem that has 128 bits of security [Esg19; APS15]. For ease of exposition, we will focus on the ℓ_∞-norm. Thus we also review a variant of the MSIS problem that replaces the ℓ_2-norm with ℓ_∞-norm. It is clear that MSIS$_{\kappa,m,B}$ is at least as hard as MSIS$^q_{\kappa,m,\sqrt{dm}B}$.

Definition 2.3 (Module SIS with ℓ_∞-norms [ACK21]). Let $\mathcal{R} := \mathbb{Z}[X]/(X^d + 1)$ and $\mathcal{R}_q := \mathcal{R}/q\mathcal{R}$. Given a random matrix $A \leftarrow \mathcal{R}_q^{\kappa \times m}$, the goal of the MSIS$^\infty_{\kappa,m,B}$ problem is to find a non-zero $\vec{x} \in \mathcal{R}^m$ such that $\|\vec{x}\|_\infty < B$ and $A\vec{x} = \vec{0}$ over \mathcal{R}_q.

2.3 The Ajtai Compact Commitment

A commitment scheme CM consists of a setup algorithm Setup that generates a public parameter pp; and a deterministic commit algorithm Commit that takes as input pp, a message \vec{x} and randomness r, and outputs a commitment cm. We say that CM is **compact** if the commitment cm is shorter than the committed message \vec{x}. We say CM is **binding** if it is hard to find a commitment cm and two different openings (\vec{x}_1, r_1), (\vec{x}_2, r_2) such that $\text{cm} = \text{Commit}(\text{pp}, \vec{x}_1, r_1) = \text{Commit}(\text{pp}, \vec{x}_2, r_2)$. We say that CM is **hiding** if cm is statistically independent of \vec{x} over the choice of randomness r.

We review a variant of the Ajtai commitment scheme [Ajt96; PR06; LM06] whereas the messages are ring elements with small norms. For brevity, we present the construction (i.e., the Ajtai collision resistant hash function) that achieves only the binding property. It can be extended to support hiding by appending a small random vector to the message.
Construction 2.1 (Ajtai Compact Commitments). Let $\mathcal{R} := \mathbb{Z}[X]/(X^d + 1)$ and $\mathcal{R}_q := \mathcal{R}/q\mathcal{R}$ where $q \in \mathbb{N}$ is a prime. The commitment $CM_{k,m,B}$ works as follows:

- **Setup(k,m) $\rightarrow A$:** sample a random matrix $A \leftarrow \mathcal{R}_q^{k \times m}$.
- **Commit(A, \bar{x}) $\rightarrow cm$:** given $\bar{x} \in \mathcal{R}^m$ as input, where $\|\bar{x}\|_{\infty} < B$, and no randomness, output $cm := A\bar{x} \mod q \in \mathcal{R}_q^k$.

It is clear that $CM_{k,m,B}$ satisfies the binding property for inputs $\|\bar{x}\|_{\infty} < B$ assuming that the MSIS problem $MSIS^{\infty,q}_{k,m,2B}$ is hard. Suppose not, that is, an adversary can open a commitment cm to two different openings \bar{x}_1, \bar{x}_2 (with ℓ_∞-norm less than B), then $\bar{x}_1 - \bar{x}_2 \neq 0$ is a solution to the $MSIS^{\infty,q}_{k,m,2B}$ problem where $\|\bar{x}_1 - \bar{x}_2\|_{\infty} < 2B$.

The analysis of our protocol also needs a relaxed notion of the binding property [ALS20; ACK21]. Let $C \subseteq \mathcal{R}_q$ be a strong sampling set with expansion factor T. We say that the pair $(\Delta, \bar{x}) \in (C - C) \times \mathcal{R}^m$ is a B-weak opening of cm if $\Delta \cdot cm = A\bar{x} \mod q$ and $\|\bar{x}\|_{\infty} < B$. We say that the commitment scheme is B-relaxed binding if it is infeasible to find two B-weak openings $(\Delta_1, \bar{x}_1), (\Delta_2, \bar{x}_2)$ for the same commitment cm such that $\Delta_1\bar{x}_2 \neq \Delta_2\bar{x}_1$. It is clear that the Ajtai commitment is B-relaxed binding if $MSIS^{\infty,q}_{k,m,4TB}$ is hard. Suppose not, i.e., for cm, we can find two weak openings $(\Delta_1 := (\rho_1 - \rho'_1), \bar{x}_1), (\Delta_2 := (\rho_2 - \rho'_2), \bar{x}_2)$ where $\rho_1, \rho'_1, \rho_2, \rho'_2 \in C$, $\Delta_1\bar{x}_2 \neq \Delta_2\bar{x}_1$ and $\|\bar{x}_1\|_{\infty}, \|\bar{x}_2\|_{\infty} < B$. Then $(\rho_2 - \rho'_2) \cdot \bar{x}_1 - (\rho_1 - \rho'_1) \cdot \bar{x}_2 \neq 0$ is a solution to $MSIS^{\infty,q}_{k,m,4TB}$ with norm at most $4TB$.

2.4 Sum-Checks and Multilinear Extensions over Rings

Generalized Schwartz-Zippel Lemma. We recall a generalization of the Schwartz-Zippel lemma to the commutative ring setting, where each challenge is picked from a sampling set.

Lemma 2.4 (Generalized Schwartz-Zippel [BCPS18]). Let $f \in \bar{\mathcal{R}}^d[X_1, \ldots, X_\mu]$ be a μ-variate nonzero polynomial over a ring \mathcal{R} with per-variable degree at most d. Let $C \subseteq \bar{\mathcal{R}}$ be a sampling set. Then we have $\Pr_{\bar{\mathcal{R}}^\times C}[f(\bar{r}) = 0] \leq \frac{d\mu}{|C|}$.

Sum-check over rings. Given Lemma 2.4, the famous sum-check protocol [LFKN92] can be naturally extended to work over a ring \mathcal{R} with the modification that the challenges are sampled from a strong sampling set.

Lemma 2.5 (Generalized Sum-Check [CCKP19]). Let $f \in \bar{\mathcal{R}}^d[X_1, \ldots, X_\mu]$ be a μ-variate polynomial over a ring \mathcal{R} with per-variable degree at most d. Let $C \subseteq \bar{\mathcal{R}}$ be a strong sampling set. The protocol below for checking $s = \sum_{\bar{b} \in \{0,1\}^\mu} f(\bar{b})$ has soundness error $\frac{md}{|C|}$.

1. In the i-th $(1 \leq i \leq \mu)$ round,
• Upon receiving the challenges \(r_1, \ldots, r_{i-1}\) from the previous rounds, the prover sends the univariate polynomial

\[h_i(X) := \sum_{\vec{b} \in \{0,1\}^{\mu-i}} f(r_1, \ldots, r_{i-1}, X, \vec{b}) \in \bar{\mathcal{R}}[X]. \]

More specifically, it sends \(d+1\) evaluations of \(h_i\) at \(d+1\) points in \(C\).

• Denote \(h_0(r_0) := s\) for notational convenience. The verifier checks that

\[h_i(0) + h_i(1) \overset{?}{=} h_{i-1}(r_{i-1}) \]

and sends a random challenge \(r_i \leftarrow C\). (The verifier can do Lagrange interpolation to evaluate \(h_{i-1}(\vec{r}_{i-1})\) given the \(d+1\) evaluations sent by the prover, as the differences of distinct evaluation points are invertible.)

2. The verifier checks that \(h_\mu(r_i) \overset{?}{=} f(r_1, \ldots, r_\mu)\).

Proof. See the proof of Theorem 2 in [CCKP19]. \(\square\)

Multilinear extensions over rings

We define the multilinear extensions over rings.

Definition 2.4 (Multilinear Extensions over Rings). Let \(\mathcal{R}\) be an arbitrary ring with zero \(0\) and identity \(1\). Given a function \(f : \{0,1\}^\mu \rightarrow \mathcal{R}\), we define the multilinear extension \(\text{mle}[f] \in \mathcal{R}_{\leq 1}[X_1, \ldots, X_\mu]\) of \(f\) as

\[\text{mle}[f](\vec{X}) := \sum_{\vec{b} \in \{0,1\}^\mu} f(\vec{b}) \cdot \text{eq}(\vec{b}, \vec{X}) \]

where \(\text{eq}(\vec{b}, \vec{X})\) is defined as \(\text{eq}(\vec{b}, \vec{X}) := \prod_{i=1}^{\mu} [(1 - b_i)(1 - X_i) + b_i X_i]\).

2.5 Reduction of Knowledge

Intuitively, a reduction-of-knowledge protocol \(\Pi\) (from \(\mathcal{R}_1\) to \(\mathcal{R}_2\)) allows a prover to convince a verifier on input \(x_1\) to obtain an output \(x_2\), such that from anyone who knows a witness \(w_2\) where \((x_2, w_2) \in \mathcal{R}_2\), one can extract a witness \(w_1\) where \((x_1, w_1) \in \mathcal{R}_1\). We adapt the definition from [KP23].

Definition 2.5 (Reduction of knowledge [KP23]). Consider ternary relations \(\mathcal{R}_1\) and \(\mathcal{R}_2\) consisting of public parameters, statement and witness tuples. Let \((P, V)\) denote an interactive protocol between a prover \(P\) and a verifier \(V\). A reduction of knowledge protocol \(\Pi\) from relation \(\mathcal{R}_1\) to \(\mathcal{R}_2\) consists of the following PPT algorithms/protocols:

- **Setup**(1\(^{\lambda}\)) \(\rightarrow\) pp: on input security parameter \(\lambda\) outputs public parameters pp.
• \((P(pp,x_1,ω_1),V(pp,x_1)) \rightarrow (x_2,ω_2)\): on input public parameters \(pp\) and a shared
instance \(x_1\) for \(R_1\), the prover \(P\) (which also has a witness \(ω_1\) for \(R_1\)) and the verifier \(V\)
run an interactive protocol. At the end of the protocol, the verifier outputs an instance
\(x_2\) for \(R_2\) or \(x_2 := ⊥\); and the prover additionally outputs a witness \(ω_2\) for \(R_2\). We
let \((x_2,ω_2)\) denote the output of the interaction.

The protocol satisfies the following properties:

Completeness. For every PPT adversary \(A\) that adaptively chooses an instance-witness
pair \((x_1,ω_1) ← A(pp)\) for \(R_1\) after observing the public parameter \(pp ← \text{Setup}(1^λ)\). If
\((pp,x_1,ω_1)\) is in \(R_1\), then the output \((x_2,ω_2)\) of the execution \((P(pp,x_1,ω_1),V(pp,x_1))\)
is also in \(R_2\).

Knowledge soundness. We say that the protocol is knowledge sound with knowledge
error \(κ(λ)\), if there exists an expected polynomial time extractor \(\text{Ext}\) such that for any
expected polynomial time adversary \((A,P^*)\), if

\[
\Pr \left[(pp,x_2,ω_2) ∈ R_2 \left| \begin{array}{c} pp ← \text{Setup}(1^λ) \\
(x_1,\text{st}) ← A(pp) \\
(x_2,ω_2) ← \langle P^*(pp,x_1,\text{st}),V(pp,x_1) \rangle \end{array} \right) \right] = \epsilon(λ) ≥ \frac{1}{\text{poly}(λ)} > κ(λ),
\]

then with probability at least \(\epsilon(λ) − κ(λ)\), the extractor \(\text{Ext}^A,P^*\) outputs a witness \(ω_1\)
such that \((pp,x_1,ω_1)\) ∈ \(R_1\).

Public reducibility. There is a deterministic poly-time algorithm \(f\) such that for any
PPT adversary \(A\) and expected poly-time adversary \(P^*\), given

\[
pp ← \text{Setup}(1^λ), \quad (x_1,\text{st}) ← A(pp), \quad \text{and} \quad (x_2,ω_2) ← \langle P^*(pp,x_1,\text{st}),V(pp,x_1) \rangle
\]

with transcript \(tr\), we have that \(f(pp,x_1,tr) = x_2\).

\(Π\) is public-coin if the verifier only sends uniformly random challenges in each round. Note
that a public-coin protocol can be made non-interactive via the Fiat-Shamir transformation.

As noted by [KP23], the reduction of knowledge protocols can be composed.

Theorem 2.1 (Sequential Composition, Theorem 5 of [KP23]). Let \(R_1, R_2, R_3\) be three
ternary relations. Given a reduction of knowledge \(Π_1\) from \(R_1\) to \(R_2\) and a reduction of
knowledge \(Π_2\) from \(R_2\) to \(R_3\), the composed protocol \(Π_2 ∘ Π_1\) is a reduction of knowledge
from \(R_1\) to \(R_3\).

Theorem 2.2 (Parallel Composition, Theorem 6 of [KP23]). Let \(R_1, R_2, R_3, R_4\) be ternary
relations. Given a reduction of knowledge \(Π_1\) from \(R_1\) to \(R_2\) and a reduction of knowledge
\(Π_2\) from \(R_3\) to \(R_4\), the protocol \(Π_1 × Π_2\) is a reduction of knowledge from \(R_1 × R_3\) to
\(R_2 × R_4\), where \(Π_1 × Π_2\) denotes the protocol that runs \(Π_1\) and \(Π_2\) in parallel.
Remark 2.2. The knowledge soundness defined in Definition 2.5 should hold for expected polynomial-time adversaries and extractors. This requirement is necessary for proof of composition theorems. Looking ahead, this implies that the MSIS hardness assumption in Definition 2.3 must also hold for an expected poly-time adversary. This is without loss of generality because the MSIS assumption is falsifiable. As shown in [LPS24] (Appendix A), if a falsifiable assumption holds for strict PPT adversaries (i.e., probabilistic adversaries that always run in polynomial time), it also holds for an expected poly-time adversary.

Remark 2.3 (Folding schemes as reductions of knowledge). We note that the folding schemes introduced in Hypernova [KS23b] is a special case of reduction of knowledge, where for a computation relation R_{comp} and its expanded accumulation relation R_{acc}, the goal is to reduce the relation $R_{\text{acc}} \times R_{\text{comp}}$ to the relation R_{acc}.

3 A Folding Scheme for Ajtai Commitment Openings

In this section, we develop a folding scheme for the Ajtai commitment opening relation. In Section 3.1, we define an algebraic relation R_{cm}^B that captures the commitment opening relation, and then extend it to a relation R_{eval}^B suitable for folding. In Section 3.2, we construct a reduction of knowledge from $R_{\text{eval}}^B \times R_{\text{cm}}^B$ to R_{eval}^B, leading to a folding scheme for the Ajtai commitment opening relation. In Section 3.3, we describe an optimization that allows the selection of a small prime modulus q for improved efficiency.

Designing a folding scheme for the relation R_{cm}^B is the core challenge in constructing an IVC/PCD scheme based on Ajtai commitments. This folding scheme also leads to a batch proof-of-knowledge for short pre-images of linear maps: it allows us to fold k statements (each of size n) into a single statement using a binary folding tree. This reduces the verifier complexity to $O(k + n)$ instead of complexity $\Theta(kn)$ if knowledge of each pre-image was proved on its own.

This folding scheme for R_{cm}^B, by itself, is insufficient for an IVC/PCD. The relation R_{cm}^B needs to be augmented to facilitate the verification of a local computation step, either expressed as a R1CS statement or, more generally, a CCS statement. We come back to this in Section 4 where we build an extended relation R_{cmccs}^B in Eq. (31) that is adequate for use in IVC/PCD.

3.1 The Relation for Commitment Openings

In this section, we describe how to represent the Ajtai commitment opening relation to enable efficient folding. The core idea, inspired and adapted from [BLS19], is to interpret the norm bound constraint as a Hadamard product over rings. Let R_q denote the ring $R_q := R/qR$ where $R := \mathbb{Z}[X]/(X^d + 1)$ and q is a prime. Let $pp := (\kappa, m, B, A)$ be the public parameters where $A \in R_{q}^{\kappa \times m}$ is the sampled MSIS matrix and the norm bound $B < q/2$. We define the instance-witness relation R_{MSIS}^B for Ajtai commitment openings.
that between the NTT slots of two ring elements can map to the Hadamard product embeddings of some \(\vec{x}\). Let \(q = 1 \mod 2d\) imply that \(\mathcal{R}_q \cong \mathbb{Z}_q^d\). There are two ways to interpret \(\vec{x} \in \mathbb{Z}_q^{md}\). First, \(\vec{x}\) can be the coefficient embeddings of some \(\vec{f} \in \mathcal{R}_q^m\), so that \(\text{Coeff}(\vec{f}) = \vec{x}\). Alternatively, it can be understood as the NTT representations of some \(\vec{f} \in \mathcal{R}_q^m\), that is, \(\text{NTT}(\vec{f}) = \text{Coeff}(\vec{f}) = \vec{x}\). Moreover, the Hadamard product between the NTT slots of two ring elements can map to the multiplication of the two ring elements. In other words, \(\vec{x} \circ \vec{x} = \text{NTT}(\vec{f}) \circ \text{NTT}(\vec{f}) = \text{NTT}(\vec{f} \circ \vec{f})\), which maps to \(\vec{f} \circ \vec{f}\) via the NTT isomorphism. Here \(\vec{x} \circ \vec{x}\) is a Hadamard product over \(\mathbb{Z}_q\), while \(\vec{f} \circ \vec{f}\) is over \(\mathcal{R}_q\). Thus, we can rewrite \(\mathcal{R}^{\text{SISProd}}_q\) from (7) as the following instance-witness relation \(\mathcal{R}^{\text{cm}}_q\) over \(\mathcal{R}_q\):

\[
\mathcal{R}^{\text{cm}}_q := \left\{ (pp, \ cm \in \mathcal{R}_q^n; \ \vec{f} \in \mathcal{R}_q^m) : \right\}
\]

Here \(\vec{i} \in \mathcal{R}_q^m\) is the ring vector such that \(\vec{i} = \text{NTT}(\vec{i})\) where \(\vec{i} \in \mathbb{Z}_q^{dm}\) is the element \(i \in \mathbb{Z}_q\) copied \(dm\) times. Note that each element in \(\vec{i}\) is the constant polynomial \(i \in \mathbb{Z}_q\), so that \(\vec{i}\) is in \(\mathbb{Z}_q^m\).

Proving knowledge of a witness \(\vec{f} \in \mathcal{R}_q^m\) for the \(\mathcal{R}^{\text{cm}}_q\) statement \((pp, cm)\) proves knowledge of a low-norm opening of the Ajtai commitment \(cm \in \mathcal{R}_q^n\).
The expanded relation. To construct a folding scheme for R_{cm}^B, we augment R_{cm}^B to a new relation R_{eval}^B with an evaluation statement. Looking ahead, in our folding scheme, the verifier runs a sum-check to reduce the norm bound constraint in R_{cm}^B to an evaluation statement. Thus, it is necessary to incorporate such an evaluation statement into the accumulated relation. For simplicity, we assume that m is a power of two. The relation R_{eval}^B is defined as follows:

$$R_{eval}^B := \left\{ (pp, x := (\vec{r}, \hat{v}, cm) \in R_q^{logm} \times R_q \times R_q^B; \vec{f} \in R_q^m) : (pp, cm; \vec{f}) \in R_{cm}^B \wedge \text{mle}\left[\hat{f}\right](\vec{r}) = \hat{v} \right\},$$

where $\text{mle}\left[\hat{f}\right] \in R_q^{\leq 1}[X_1, \ldots, X_{logm}]$ is the multilinear extension (Definition 2.4) of $\hat{f} \in R_q^m$.

Recall that

$$\text{NTT}(\hat{f}) = \begin{bmatrix} \text{NTT}(\hat{f}_1) \\ \vdots \\ \text{NTT}(\hat{f}_m) \end{bmatrix} = \begin{bmatrix} \text{Coef}(\hat{f}_1) \\ \vdots \\ \text{Coef}(\hat{f}_m) \end{bmatrix} = \text{Coef}(\hat{f}) \in \mathbb{Z}_m^d \times d.$$

3.2 A Generic Framework for Folding

In this section, we describe a folding scheme for $R_{acc} := R_{eval}^B$ and $R_{comp} := R_{cm}^B$, or equivalently, a reduction of knowledge (Definition 2.5) from $R_{eval}^B \times R_{cm}^B$ to R_{eval}^B. This gives us a folding scheme for the Ajtai commitment opening relation. Our construction is highly modular and generic, which consists of three steps below.

Step 1: Expansion. First, we reduce the relation $R_{eval}^B \times R_{cm}^B$ to the relation $R_{eval}^B \times R_{eval}^B$ via a reduction of knowledge Π_{cm} from R_{cm}^B to R_{eval}^B shown in Figure 1.

Step 2: Decomposition. Next, using a decomposition protocol Π_{dec} shown in Figure 2, we reduce the relation $R_{eval}^B \times R_{eval}^B$ to

$$(R_{eval}^b)^{2k} := R_{eval}^b \times \cdots \times R_{eval}^b$$

where $b < B$ is a norm bound smaller than B such that exists an integer $k > 1$ for which $b^k = B$. Here b and k are parameters that can be chosen dynamically depending on the relation being proved. We describe an optimization for choosing b and k in Remark 5.1.

Step 3: Folding. Finally, we reduce the relation $(R_{eval}^b)^{2k}$ back to R_{eval}^B using a folding protocol Π_{fold} shown in Figure 3.

By the composition theorems for reductions of knowledge (Theorem 2.1, Theorem 2.2), the composed protocol $\Pi_{mfold} := \Pi_{fold} \circ \Pi_{dec} \circ \Pi_{cm}$ is a reduction of knowledge from $R_{eval}^B \times R_{cm}^B$ to R_{eval}^B as desired. We formally state the result in Theorem 3.1.
Theorem 3.1. Given a ring $R_q \cong \mathbb{Z}_q^d$, let $c \in \mathbb{N}$, and let $C, C_{\text{small}} \subseteq R_q$ be strong sampling sets, for which $1/|C| \text{ and } 1/|C_{\text{small}}|$ are in $\text{negl}(\lambda)$, and the expansion factor $T := \|C_{\text{small}}\|_{\text{op}} \leq c$ (Definition 6). Let $\mathsf{pp} := (\kappa, m, A, B < q/2)$ be public parameters such that $\text{MSIS}_{\kappa, m, \text{STB}}$ is hard. Set b, k such that $2kc(b - 1) < B$ and $b^k = B$. Let $\Pi_{\text{cm}}, \Pi_{\text{dec}}, \Pi_{\text{fold}}$ be the protocols specified in Figure 1, Figure 2 and Figure 3, respectively. Then the composed protocol $\Pi_{\text{infold}} := \Pi_{\text{fold}} \circ \Pi_{\text{dec}} \circ \Pi_{\text{cm}}$ is a public-coin reduction of knowledge from $R_{\text{eval}}^B \times R_{\text{cm}}^B$ to R_{eval}^B.

Proof. The protocol is public-coin as Π_{cm} and Π_{dec} are non-interactive and Π_{fold} is public-coin. The Theorem follows from Lemma 3.1, Lemma 3.3, Theorem 3.2 below and the knowledge composition theorems (Theorem 2.1 and Theorem 2.2). \hfill \square

Setup and notation. Before describing the three protocols $\Pi_{\text{cm}}, \Pi_{\text{dec}}, \Pi_{\text{fold}}$, let us define the common setup. Let R_q be the ring $R_q := R/qR$ where $R := \mathbb{Z}[X]/(X^d + 1)$ and q is a prime. Note that $R_q \cong \mathbb{F}_q^{d/\tau}$ for some $\tau \in \mathbb{N}$ where $\tau \mid d$. The public parameter is $\mathsf{pp} := (\kappa, m, B, A)$ where $B < q/2$, m is a power-of-two, and $A \in R_q^{\kappa \times m}$ is the sampled MSIS matrix. For a vector $\mathbf{f} \in R_q^m$, we use $\hat{f} := (\hat{f}_1, \ldots, \hat{f}_\tau) \in R_q^{m \times \tau}$ to denote the ring vector such that $\text{NTT}(\hat{f}) := (\text{NTT}(\hat{f}_1), \ldots, \text{NTT}(\hat{f}_\tau)) \in \mathbb{F}_q^{m \times d}$ equals the coefficient embedding matrix of \mathbf{f}, that is, $\text{Coef}(\hat{f}) \in \mathbb{Z}_q^{m \times d}$ as in Eq. (2).

In what follows, for ease of exposition, we assume that the prime q satisfies $q \equiv 1 \mod 2d$ so that $R_q \cong \mathbb{Z}_q^d$ and $\tau = 1$. In Section 3.3, we generalize to arbitrary prime modulus.

3.2.1 Expansion: the reduction from $R_{\text{eval}}^B \times R_{\text{cm}}^B$ to $R_{\text{eval}}^B \times R_{\text{eval}}^B$

By the parallel composition theorem (Theorem 2.2), in order to reduce from $R_{\text{eval}}^B \times R_{\text{cm}}^B$ to $R_{\text{eval}}^B \times R_{\text{eval}}^B$, it suffices to construct a protocol that reduces R_{cm}^B (Eq. (8)) to R_{eval}^B (Eq. (9)). We describe the protocol Π_{cm} in Figure 1.

Input: $(x; \nu) := (cm \in R_q^\kappa; \mathbf{f} \in R_q^m)$.

Output: $(x_o; \nu_o) := ((0)^{\log m}; \mathbf{v} \in R_q, cm; \mathbf{f})$.

The protocol $\langle \mathsf{P}(\mathsf{pp}, x, \nu), \mathsf{V}(\mathsf{pp}, x) \rangle$:

1. $\mathsf{P} \rightarrow \mathsf{V}$: P sends V the evaluation $\mathbf{v} := \text{mle}[\mathbf{f}] (0)^{\log m}$.
2. V outputs $x_o := (0)^{\log m}, \mathbf{v}, cm)$. P outputs $\nu_o := \mathbf{f}$.

![Figure 1: The protocol Π_{cm} that reduces R_{cm}^B to R_{eval}^B.](image)

Lemma 3.1. Π_{cm} is a reduction of knowledge from R_{cm}^B to R_{eval}^B for any $B \in \mathbb{N}$.

Proof. Public reducibility: Given instance $x = cm$ and transcript \mathbf{v}, one can output $x_o = ((0)^{\log m}, \mathbf{v}, cm))$. 19
Given \((pp, cm; \vec{f}) \in \mathcal{R}_{cm}^B\), the honest prover can compute and send \(\hat{v} := \text{mle} \left[\vec{f} \right] \left(0^\log m \right) \) such that \(((0^\log m, \hat{v}, cm); \vec{f}) \in \mathcal{R}_{eval}^B\). The honest verifier will output instance \((0^\log m, \hat{v}, cm)\) and the honest prover will output \(\vec{f}\).

Knowledge soundness: By definition of \(\mathcal{R}_{eval}^B\) (Eq. (9)), given any \(((\vec{f}, \hat{v}, cm); \vec{f}) \in \mathcal{R}_{eval}^B\), we can extract witness \((cm; \vec{f})\) that is in the relation \(\mathcal{R}_{cm}^B\).

3.2.2 Decomposition: The reduction from \((\mathcal{R}_{eval}^B)^2\) to \((\mathcal{R}_{eval}^b)^{2k}\)

Intuitively, the decomposition step splits the two witness vectors, each with a norm less than \(B\), into \(2k\) witness vectors with a much smaller norm \(b\). This allows them to be folded back later (in the folding step) into a vector with a norm less than \(B\).

By Theorem 2.2, it suffices to construct a protocol \(\Pi_{dec}^*\) that reduces \(\mathcal{R}_{eval}^B\) to \((\mathcal{R}_{eval}^b)^k\), and the reduction of knowledge from \(\mathcal{R}_{eval}^B \times \mathcal{R}_{eval}^B\) to \((\mathcal{R}_{eval}^b)^{2k}\) is essentially \(\Pi_{dec} := \Pi_{dec}^* \times \Pi_{dec}^*\) that runs two instances of \(\Pi_{dec}\) in parallel.

More generally, we construct a reduction of knowledge from a relation \(\mathcal{R}_{hom}^B\) to \((\mathcal{R}_{hom}^b)^k\). Let \(\mathcal{L}\) be an \(\mathcal{R}_q\)-module homomorphism from \(\mathcal{R}^m_q\) to an \(\mathcal{R}_q\)-module \(\mathcal{Y}\). We treat \(\mathcal{L}\) as a part of the public parameter \(pp := (\mathcal{R}_q, m, B < q/2, \mathcal{L})\). Here \(\mathcal{R}_{hom}^B\) is a generalization of \(\mathcal{R}_{eval}^B\) from (9) defined as

\[
\mathcal{R}_{hom}^B := \left\{ (pp, x := (\vec{f} \in \mathcal{R}^\log m_q, \hat{v} \in \mathcal{R}_q, y \in \mathcal{Y}); \vec{f} \in \mathcal{R}^m_q) : \begin{array}{l}
y = \mathcal{L}(\vec{f}) \land \|\vec{f}\|_\infty < B \\
\land \text{mle} \left[\vec{f} \right] (\vec{f}) = \hat{v}
\end{array} \right\}.
\] (10)

Clearly, \(\mathcal{R}_{eval}^B\) from (9) is a special case of \(\mathcal{R}_{hom}^B\) where \(\mathcal{L}(\vec{f}) := A\vec{f}\) and \(\mathcal{Y} := \mathcal{R}_q^\epsilon\).

For a positive integer \(B < q/2\), choose \(b, k\) such that \(b^k = B\). For notational convenience, for an \(m\)-vector \(\vec{f} \in \mathcal{R}^m_q\) where \(\|\vec{f}\|_\infty < B\), we use \(\text{split}_{b,k}(\vec{f})\) to denote the algorithm that decomposes \(\vec{f}\) into an \(m \times k\) matrix \(\vec{F} := (\vec{f}_0, \ldots, \vec{f}_{k-1}) \in \mathcal{R}^{m \times k}_q\), such that the coefficients of each \(\mathcal{R}_q\)-element in \(\vec{F}\) has absolute value less than \(b\) and

\[
\vec{f} = \vec{F} \cdot \left[1, b, b^2, \ldots, b^{k-1} \right]^T = \sum_{i=0}^{k-1} b^i \cdot \vec{f}_i.
\] (11)

For example, for \(k = 2\) and \(m = 1\), assume that \(b := \sqrt{B}\) is an integer. Given a polynomial \(f = a_0 + a_1 X \in \mathcal{R}_q\) where \(|a_0|, |a_1| < B\), we decompose it to \(\text{split}_{b,k}(f) = (f_0, f_1) = (c_0 + c_1 X, d_0 + d_1 X)\), where \(c_i := a_i \text{ mod } b\) and \(d_i := [a_i/b]\) for \(i \in \{0, 1\}\). Then \(|c_i| < b\) and \(|d_i| < b\), and \(f = f_0 + b f_1\).

With this notation in place, we describe the protocol \(\Pi_{dec}^*\) in Figure 2. Before proving that \(\Pi_{dec}^*\) is a reduction of knowledge, we state a useful lemma. Informally, it states that a linear combination of instance-witness pairs will be in the relation if every individual instance-witness pair is in the relation. It’s important to note that the combiners \(|\rho_i|_{i=1}^k\)
Input: \(x := (\vec{r}, \hat{v}, y) \) and \(\omega := \vec{f} \in \mathcal{R}^m_q \)

Output: \[x_i = (\vec{r}, \hat{v}_i, y_i), \omega_i = \vec{f}_{i-1}^{k-1} \]

The protocol \((P(pp, x; \omega), V(pp, x)) \):

1. \(P \to V \): Let \(\vec{F} := (\vec{f}_0, \ldots, \vec{f}_{k-1}) := \text{split}_{b,k}(\vec{f}) \). \(P \) sends \(V \) the values \([y_i, \hat{v}_i]_{i=0}^{k-1} \) where \(y_i := L(\vec{f}_i), \quad \hat{v}_i := \text{mle}_h(\vec{f}_i)(\vec{r}) \)

2. \(V \) checks that \(\sum_{i=0}^{k-1} b^i \cdot y_i = y \) and \(\sum_{i=0}^{k-1} b^i \cdot \hat{v}_i = \hat{v} \).

3. \(V \) outputs \([x_i := (\vec{r}, \hat{v}_i, y_i)]_{i=0}^{k-1} \). \(P \) outputs \([\omega_i := \vec{f}_i]_{i=0}^{k-1} \).

Figure 2: The protocol \(\Pi^* \) that reduces \(\mathcal{R}_b^{B_h} \) to \((\mathcal{R}_b^{h})^k \).

can be arbitrary elements in \(\mathcal{R}_q \). This generalization extends beyond the decomposition case where the combiners \(b_i \) are \(\mathbb{Z}_q \)-elements. Looking ahead, this generalization is useful later in the folding protocol (Figure 3).

Lemma 3.2. Given any \(\ell \in \mathbb{N} \) and a power-of-two \(m \in \mathbb{N} \), let \(\vec{r} \in \mathbb{Z}_q^m \) be a vector and let \(L : \mathcal{R}^m_q \to \mathcal{Y} \) be any \(\mathcal{R}_q \)-module homomorphism. Given any \([\rho_i]_{i=1}^{\ell} \in \mathcal{R}_q^\ell \) and any \([\hat{v}_i, y_i; \vec{f}_i]_{i=1}^{\ell} \) such that \(y_i = L(\vec{f}_i) \) and \(\text{mle}_h(\vec{f}_i)(\vec{r}) = \hat{v}_i \) for all \(i \in [\ell] \). Set \(\hat{v}_o, y_o, \vec{f}_o \) such that

\[
\text{NTT}(\hat{v}_o) = \sum_{i=1}^{\ell} \text{RotSum}(\rho_i, \text{NTT}(\hat{v}_i)), \quad y_o := \sum_{i=1}^{\ell} \rho_i \cdot y_i, \quad \vec{f}_o := \sum_{i=1}^{\ell} \rho_i \cdot \vec{f}_i,
\]

where \(\text{RotSum} \) is defined in Lemma 2.1. Then \(y_o = L(\vec{f}_o) \) and \(\text{mle}_h(\vec{f}_o)(\vec{r}) = \hat{v}_o \).

Proof. First,

\[
L(\vec{f}_o) = L \left(\sum_{i=1}^{\ell} \rho_i \cdot \vec{f}_i \right) = \sum_{i=1}^{\ell} \rho_i \cdot L(\vec{f}_i) = \sum_{i=1}^{\ell} \rho_i \cdot y_i = y_o
\]

where the 2nd equality holds by the homomorphic property of \(L \).

For ease of exposition, we define \(\hat{v}_o, \hat{v}_1, \ldots, \hat{v}_\ell \in \mathcal{R}_q \) as the values such that \(\text{NTT}(\hat{v}_o) = \)}
Given instance \((\vec{v}_o, \vec{v}_i) \) and NTT(\(\vec{v}_i\)) = Coef(\(\vec{v}_i\)) for all \(i \in [\ell] \). We have that

\[
\text{Coef}(\vec{v}_o) = \text{NTT}(\vec{v}_o) = \sum_{i=1}^{\ell} \text{RotSum}(\rho_i, \text{NTT}(\vec{v}_i))
\]

\[
= \sum_{i=1}^{\ell} \text{RotSum}(\rho_i, \text{Coef}(\vec{v}_i)) = \sum_{i=1}^{\ell} \text{RotSum} \left(\rho_i, \left\langle \text{Coef}(\vec{f}_i), \text{tensor}(\vec{r}) \right\rangle \right)
\]

\[
= \sum_{i=1}^{\ell} \left\langle \text{RotSum}(\rho_i, \text{Coef}(\vec{f}_i)), \text{tensor}(\vec{r}) \right\rangle = \sum_{i=1}^{\ell} \left\langle \text{Coef}(\rho_i \cdot \vec{f}_i), \text{tensor}(\vec{r}) \right\rangle
\]

\[
= \left\langle \text{Coef} \left(\sum_{i=1}^{\ell} \rho_i \cdot \vec{f}_i \right), \text{tensor}(\vec{r}) \right\rangle = \left\langle \text{Coef}(\vec{f}_o), \text{tensor}(\vec{r}) \right\rangle,
\]

where the 4th equality holds because

\[
\text{Coef}(\vec{v}_i) = \text{NTT}(\vec{v}_i) = \text{mle} \left[\text{Coef}(\vec{f}_i) \right] [\vec{r}] = \left\langle \text{Coef}(\vec{f}_i), \text{tensor}(\vec{r}) \right\rangle
\]

by Lemma A.1 and the facts that \(\text{mle} \left[\vec{f}_i \right] (\vec{r}) = \hat{\vec{v}}_i \), \(\text{NTT}(\vec{f}_i) = \text{Coef}(\vec{f}_i) \) and \(\text{NTT}(\vec{r}) = (\vec{r}, \ldots, \vec{r}) \). The 5th equality holds by rearranging the terms and by the property of inner products; the 6th equality holds because \(\text{RotSum}(a, \text{Coef}(b)) = \text{Coef}(a \cdot b) \) for any \(a, b \in \mathcal{R}_q \) (2nd claim in Lemma 2.1); the 7th equality is by additivity of inner products and coefficient embedding. Therefore, by Lemma A.1, we have that

\[
\hat{\vec{v}}_o = \text{NTT}^{-1}(\text{Coef}(\hat{\vec{v}}_o)) = \text{NTT}^{-1} \left(\left\langle \text{Coef}(\vec{f}_o), \text{tensor}(\vec{r}) \right\rangle \right) = \text{mle} \left[\vec{f}_o \right] (\vec{r})
\]

as required. \(\square \)

Next we show that \(\Pi_{\text{dec}}^* \) is a reduction of knowledge.

Lemma 3.3. Fix \(\mathcal{R}_q \cong \mathbb{Z}_q^d \). For any \(B < q/2 \) and any \(b, k \) such that \(b^k = B \), \(\Pi_{\text{dec}}^* \) is a reduction of knowledge from \(\mathcal{R}_{\text{hom}}^B \) to \((\mathcal{R}_{\text{hom}}^B)^k \).

The proof follows from Lemma 3.4 and Lemma 3.5 below.

Lemma 3.4. \(\Pi_{\text{dec}}^* \) satisfies public reducibility and completeness.

Proof. Public reducibility: Given instance \(x = (\vec{r}, \vec{v}, y) \) and transcript \([y_t, \hat{\vec{v}}_i]_{i=0}^{k-1} \), output \([x_i := (\vec{r}, \hat{\vec{v}}_i, y_t)]_{i=0}^{k-1} \) if the verifier checks pass and \(\bot \) otherwise.

Completeness: Let \((x = (\vec{r}, \hat{\vec{v}}, y); \omega := \vec{f}) \leftarrow \mathcal{A}(\text{pp}) \) denote adversary \(\mathcal{A} \)'s chosen input for \(\mathcal{R}_1 := \mathcal{R}_{\text{hom}}^B \) where \(\text{pp} := (\mathcal{R}_q, m, B < q/2, \mathcal{L}) \leftarrow \text{Setup}(1^\lambda) \) is the public parameter. WLOG we assume that \((\text{pp}, x; \omega) \) is in \(\mathcal{R}_{\text{hom}}^B \). The protocol execution \(\langle \mathcal{P}(\text{pp}, x, \omega), \mathcal{V}(\text{pp}, x) \rangle \) proceeds as follows:
Let $\Pi \leftarrow A(\text{state})$ denote adversary A’s chosen input instance for $\mathcal{R}_1 \leftarrow \mathcal{R}_\text{hom}^B$, where $\mathcal{R}_\text{hom} : (\mathcal{R}_1, m, B < q/2, \lambda) \leftarrow \text{Setup}(1^\lambda)$ is the public parameter. The extractor Ext proceeds as follows:

1. Simulate the protocol $(P^*(\mathcal{R}, x, \text{state}), V(\mathcal{R}, x))$ where P^* is the malicious prover.
2. Output ⊥ if V rejects. Otherwise let \((x_o, \nu_o) := [\langle \bar{r}, \bar{\nu}_i, y_i \rangle; \bar{f}]_{i=0}^{k-1}\) be the protocol output. (Note that \(\bar{r}\) is the same with that in the input instance \(x\) to pass the verification check.) The extractor outputs witness

\[
\omega := \bar{f} := \sum_{i=0}^{k-1} b^i \cdot \bar{f}_i .
\] (12)

Next, we show that if \(V\) accepts and the output satisfies that \((pp, x_o, \omega_o)\) is in \(R_2 := (R^b_{\text{hom}})^k\), then the extracted witness \(\bar{f}\) satisfies that \(\langle \bar{r}, \bar{\nu}, y; \bar{f} \rangle \in R_1 := R^B_{\text{hom}}\). Since \(V\) accepts, we have that \(y = \sum_{i=0}^{2k-1} b^i \cdot y_i\) and \(\hat{\nu} = \sum_{i=0}^{2k-1} b^i \cdot \hat{\nu}_i\). Recall that \(y_i = L(\bar{f}_i)\) and \(\hat{\nu}_i = \text{me} \left[f_i \right] (\bar{r})\) for all \(i \in [0, k]\) by assumption, thus by Lemma 3.2, we have that \(y = L(\bar{f})\) and \(\hat{\nu} = \text{me} \left[\bar{f} \right] (\bar{r})\). Moreover, note that \(\|\bar{f}\|_{\infty} < b\) for all \(i \in [0, k]\) because \(\langle \bar{r}, \bar{\nu}, y; \bar{f}_i \rangle\) is in \(R^b_{\text{hom}}\) by assumption. Since \(b^k = B < q/2\) and \(\bar{f} = \sum_{i=0}^{k-1} b^i \cdot \bar{f}_i\), we have

\[
\|\bar{f}\|_{\infty} = \|\sum_{i=0}^{k-1} b^i \cdot \bar{f}_i\|_{\infty} \leq \sum_{i=0}^{k-1} b^i \cdot \|\bar{f}_i\|_{\infty} \leq \sum_{i=0}^{k-1} b^i \cdot (b - 1) < b^k = B .
\]

In summary, \(y = L(\bar{f}), \hat{\nu} = \text{me} \left[\bar{f} \right] (\bar{r})\) and \(\|\bar{f}\|_{\infty} < B\) and thus \(\langle \bar{r}, \hat{\nu}, y; \bar{f} \rangle \in R^B_{\text{hom}}\). □

3.2.3 Folding: The reduction from \((R^b_{\text{eval}})^{2k}\) to \(R^B_{\text{eval}}\)

We now describe the core protocol \(\Pi_{\text{fold}}\) that folds \(2k\) instance-witness pairs of \(R^b_{\text{eval}}\) from (9) into a single instance-witness pair in \(R^B_{\text{eval}}\). More generally, the protocol is a reduction of knowledge from \((R^b_{\text{hom}})^{2k}\) from (10) to \(R^B_{\text{hom}}\) with a further restriction that the public parameter, the sampled homomorphism \(L\), is a relaxed binding as in Section 2.3. Specifically, this relaxed binding property, defined for bound \(2B\) and the challenge space \(C_{\text{small}}\), ensures the hardness of finding two distinct weak openings for a commitment \(cm\). Recall that a \(2B\)-weak opening \((\rho \in C_{\text{small}} - C_{\text{small}}, \bar{x})\) of \(cm\) satisfies that \(\rho \cdot cm = A \bar{x} \mod q\) with the norm constraint \(\|\bar{x}\|_{\infty} < 2B\). Thus, \(R^B_{\text{eval}}\) from (9) is a special case of \(R^B_{\text{hom}}\) where the sampled homomorphism \(L\) is given by \(L(\bar{f}) := A \bar{f}\), and the \(2B\)-relaxed binding property follows from the hardness of \(\text{MSIS}^{\infty, q}_{k,m,STB}\) where \(T = \|C_{\text{small}}\|_{\text{op}}\) represents the expansion factor of \(C_{\text{small}}\).

Intuitively, our protocol folds the \(2k\) witness vectors (with norm less than \(b\)) into a witness vector of norm less than \(B\) (where \(b < B < q/2\)) using \emph{small} random scalars \(\{\rho_i\}_{i=1}^{2k}\) sampled from a strong sampling set \(C_{\text{small}} \subseteq \mathcal{R}_q\). Additionally and crucially, \(\Pi_{\text{fold}}\) runs a sum-check protocol to enable extractions of the \(2k\) witness vectors with small norms. The sum-check is for a polynomial \(g(\bar{x}) := \sum_{i=1}^{2k} (\alpha_i g_{1,i}(\bar{x}) + \mu_i g_{2,i}(\bar{x}))\) with random scalars \(\{\alpha_i, \mu_i\}_{i=1}^{2k}\). Informally, we can understand it as a random linear combination of \(4k\) separate sum-checks for polynomials \(\{g_{1,i}, g_{2,i}\}_{i=1}^{2k}\), respectively. The sum-check for \(g_{1,i}\) (defined in
Eq. (15)) is used to verify that the evaluation statement \(\text{mle} \left[\hat{f}_i \right] (\vec{r}_i) = \hat{v}_i\) holds true for all \(i \in [2k]\). The sum-check for \(g_{2,i}\) (defined in Eq. (16)) is used to verify that
\[
\prod_{j=-1}^{b-1} \left(\text{mle} \left[\hat{f}_i \right] (\vec{x}) - j \right) = 0 \quad \text{for all } \vec{x} \in \{0, 1\}^{\log m}
\]
for all \(i \in [2k]\). This is the same as the Hadamard product check (the norm bound check)
\[
\hat{f}_i \circ \left(\bigcirc_{j=1}^{b-1} (\hat{f}_i - j) \circ (\hat{f}_i + j) \right) = \hat{0},
\]
in the relation \(\mathcal{R}_{\text{cm}}^b\) from (8).

We describe the protocol \(\Pi_{\text{fold}}\) in Figure 3. We now see why the relation \(\mathcal{R}_{\text{cm}}^B\) from (8) had to be expanded to the related \(\mathcal{R}_{\text{eval}}^B\) from (9). Protocol \(\Pi_{\text{fold}}\) reduces the claimed properties about the \(2k\) input instances to verifying that \(\text{mle} \left[\hat{f}_o \right] (\vec{r}_o) = \hat{v}_o\), where \((\vec{r}_o, \hat{v}_o)\) is part of the output folded instance. Adding this evaluation check to the relation \(\mathcal{R}_{\text{eval}}^B\) forces the prover to output a folded statement that satisfies this equality. The verifier cannot check this relation itself as part of \(\Pi_{\text{fold}}\) because it does not have access to \(\vec{f}_o\).

The following lemma shows that the protocol \(\Pi_{\text{fold}}\) in Figure 3 is a reduction of knowledge from \((\mathcal{R}_{\text{hom}}^b)_{2k}\) to \(\mathcal{R}_{\text{hom}}^B\) assuming that \(\mathcal{L}\) is a relaxed binding.

Theorem 3.2. Fix a ring \(\mathcal{R}_q \cong \mathbb{Z}_q^d\) and let \(c \in \mathbb{N}\). Let \(\mathcal{C}, \mathcal{C}_{\text{small}} \subseteq \mathcal{R}_q\) be strong sampling sets where \(1/|\mathcal{C}|\) and \(1/|\mathcal{C}_{\text{small}}|\) are in \(\text{negl}(\lambda)\), and the expansion factor from (6) satisfies \(\|\mathcal{C}_{\text{small}}\|_{\text{op}} \leq c\). Let \(pp := (m, B < q/2, \mathcal{L})\) be the public parameters where the sampled \(\mathcal{R}_q\)-module homomorphism \(\mathcal{L} : \mathcal{R}_q^m \to Y\) is a \(2B\)-relaxed binding (Section 2.3) for challenge space \(\mathcal{C}_{\text{small}}\). For any \(b, k\) such that \(2kc(b - 1) < B\), the protocol \(\Pi_{\text{fold}}\) is a reduction of knowledge from \((\mathcal{R}_{\text{hom}}^b)_{2k}\) to \(\mathcal{R}_{\text{hom}}^B\).

Remark 3.1. Our construction (Figure 3) uses two different sampling sets \(\mathcal{C}, \mathcal{C}_{\text{small}}\) where \(\mathcal{C} := \mathbb{Z}_q\). We could set \(\mathcal{C} := \mathcal{C}_{\text{small}}\) everywhere without affecting correctness. But since there is no expansion factor requirement on \(\mathcal{C}\), we set \(\mathcal{C} := \mathbb{Z}_q\) for better sumcheck efficiency. Recall that \(\text{NTT}(i) = (i, i, \ldots, i)\) for every \(i \in \mathbb{Z}_q \subseteq \mathcal{R}_q\), so setting \(\mathcal{C} := \mathbb{Z}_q\) lets us treat the sumcheck over \(\mathcal{R}_q\) as \(d\) parallel sumchecks over \(\mathbb{Z}_q\) that share the same sumcheck challenge vector over \(\mathbb{Z}_q^{\log m}\), and no NTT transformation is needed when running the sumcheck. Note that the removal of the NTT transform also improves the circuit size of the sumcheck verifier.

The proof follows from Lemma 3.6 and Theorem 3.3 below.

Lemma 3.6. \(\Pi_{\text{fold}}\) satisfies public reducibility and completeness.
Parameters: \(c \in \mathbb{N} \), strong sampling sets \(\mathcal{C} := \mathbb{Z}_q \subseteq \mathcal{R}_q \) and \(\mathcal{C}_{\text{small}} \subseteq \mathcal{R}_q \) where \(\mathcal{C}_{\text{small}} \) has expansion factor \(\| \mathcal{C}_{\text{small}} \|_{\text{op}} \leq c \) as in (6).

Input: \([\mathbf{x}_i := (\mathbf{r}_i, \mathbf{v}_i, y_i)]_{i=1}^{2k} \) and \([\mathbf{w}_i := \mathbf{f}_i]_{i=1}^{2k} \)

Output: \(\mathbf{x}_o := (\mathbf{r}_o, \mathbf{v}_o, y_o), \mathbf{w}_o := \mathbf{f}_o \)

The protocol \(\langle \mathcal{P}(\mathbf{p}_p, x; w), \mathcal{V}(\mathbf{p}_p, x) \rangle \):
1. \(\mathcal{V} \rightarrow \mathcal{P} : \mathcal{V} \) sends \(\mathcal{P} \) values \([\alpha_i, \mu_i]_{i=1}^{2k} \leftarrow (\mathcal{C} \times \mathcal{C})^{2k} \) and \(\mathcal{V} \) sends \(\mathcal{P} \) a sum-check challenge sampled by \(\mathcal{V} \).
2. \(\mathcal{V} \leftrightarrow \mathcal{P} : \mathcal{P} \) and \(\mathcal{V} \) run a sum-check protocol for the claim
\[
\sum_{\mathbf{b} \in \{0,1\}^{\log m}} g(\mathbf{b}) = \sum_{i=1}^{2k} \alpha_i \mathbf{v}_i, \tag{13}
\]
where the polynomial \(g(\mathbf{x}) \in \mathcal{R}_q \subseteq 2^b[X_1, \ldots, X_{\log m}] \) is defined as
\[
g(\mathbf{x}) := g_{\text{eval}}(\mathbf{x}) + g_{\text{norm}}(\mathbf{x}), \tag{14}
\]
\[
g_{\text{eval}}(\mathbf{x}) := \sum_{i=1}^{2k} \alpha_i \cdot g_{1,i}(\mathbf{x}) \quad \text{where} \quad g_{1,i}(\mathbf{x}) := \text{eq}(\mathbf{r}_i, \mathbf{x}) \cdot \text{mle}\left[\mathbf{f}_i\right](\mathbf{x}), \tag{15}
\]
\[
g_{\text{norm}}(\mathbf{x}) := \sum_{i=1}^{2k} \mu_i \cdot g_{2,i}(\mathbf{x}) \quad \text{where} \quad g_{2,i}(\mathbf{x}) := \text{eq}(\mathbf{\beta}_i, \mathbf{x}) \cdot \prod_{j=-(b-1)}^{b-1} \text{mle}\left[\mathbf{f}_i\right](\mathbf{x}) - j \tag{16}
\]

The sumcheck protocol reduces checking (13) to checking the evaluation claim \(g(\mathbf{r}_o) \equiv s \), where \(s \in \mathcal{R}_q \) and \(\mathbf{r}_o \leftarrow \mathcal{C}^{\log m} \) is a sum-check challenge sampled by \(\mathcal{V} \).

3. \(\mathcal{P} \rightarrow \mathcal{V} : \mathcal{P} \) sends \(\mathcal{V} \) values \([\theta_i := \text{mle}\left[\mathbf{f}_i\right](\mathbf{r}_o)]_{i=1}^{2k} \).
4. \(\mathcal{V} \) computes \([\mathbf{e}_i := \text{eq}(\mathbf{r}_i, \mathbf{r}_o)]_{i=1}^{2k} \) and \(\mathbf{e}^* := \text{eq}(\mathbf{\beta}, \mathbf{r}_o) \) and checks that
\[
s \equiv \sum_{i=1}^{2k} \left[\alpha_i \mathbf{e}_i \theta_i + \mu_i \mathbf{e}^* \cdot \prod_{j=1-b}^{b-1} (\theta_i - j) \right].
\]

5. \(\mathcal{V} \rightarrow \mathcal{P} : \mathcal{V} \) sends \(\mathcal{P} \) random challenge \([\rho_i]_{i=1}^{2k} \leftarrow \mathcal{C}_{\text{small}}^{2k} \).
6. \(\mathcal{V} \) outputs \(\mathbf{x}_o := (\mathbf{r}_o, \mathbf{v}_o, y_o) \) where
\[
\text{NTT}(\mathbf{v}_o) = \sum_{i=1}^{2k} \text{RotSum}(\rho_i, \text{NTT}(\theta_i)), \quad y_o := \sum_{i=1}^{2k} \rho_i y_i.
\]

7. \(\mathcal{P} \) further outputs \(\mathbf{w}_o := \mathbf{f}_o = \sum_{i=1}^{2k} \rho_i \cdot \mathbf{f}_i \).

Figure 3: The protocol \(\Pi_{\text{fold}} \) that reduces \((\mathcal{R}_\text{hom}^b)^{2k} \) to \(\mathcal{R}_\text{hom}^Z \).
Proof. **Public reducibility:** Given input instances \([\vec{r}_i, \vec{v}_i, y_i]_{i=1}^{2k}\) and the transcript that includes the challenge \(\vec{r}_o\), evaluations \([\theta_i]_{i=1}^{2k}\) and folding challenges \([\rho_i]_{i=1}^{2k}\). The algorithm outputs \(x_o := (\vec{r}_o, \vec{v}_o, y_o)\) where \(\text{NTT}(\vec{v}_o) = \sum_{i=1}^{2k} \text{RotSum}(\rho_i, \text{NTT}(\theta_i))\) if the verification passes. Otherwise, it outputs \(\bot\). Completeness: Let \((x, \omega) := [x_i = (\vec{r}_i, \vec{v}_i, y_i), \omega_i = \vec{f}_i]_{i=1}^{2k} \leftarrow \mathcal{A}(\mathcal{P})\) denote adversary \(\mathcal{A}\)'s chosen input for \(\mathcal{R}_1 := (\mathcal{R}_{\text{hom}}^b)^{2k}\), where \(\mathcal{P} := (\mathcal{R}_q, m, B < q/2, \mathcal{L}) \leftarrow \text{Setup}(1^\lambda)\) is the public parameter. WLOG we assume that \((\mathcal{P}, x_i, \omega_i) \in \mathcal{R}_{\text{hom}}^b\) for all \(i \in [2k]\). The protocol \(\langle \mathcal{P}(\mathcal{P}, x, \omega), \mathcal{V}(\mathcal{P}, x) \rangle\) proceeds as follows:

1. \(\mathcal{P}\) and \(\mathcal{V}\) honestly run the sum-check and \(\mathcal{P}\) sends the correct evaluations \([\theta_i := \text{mle} \left[\vec{f}_i \right] (\vec{r}_o)]_{i=1}^{2k}\).
2. \(\mathcal{V}\) outputs \(\bot\) and halts if the check at Step 4 fails.
3. Otherwise, let \([\rho_i]_{i=1}^{2k}\) be verifier’s last folding challenges. \(\mathcal{P}\) outputs \(\omega_o := \vec{f}_o := \sum_{i=1}^{2k} \rho_i \cdot \vec{f}_i\) and \(\mathcal{V}\) outputs \(x_o := (\vec{r}_o, \vec{v}_o, y_o)\) where \(\vec{r}_o\) is \(\mathcal{V}\)'s sum-check challenges and \((\vec{v}_o, y_o)\) are defined such that

\[
\text{NTT}(\vec{v}_o) = \sum_{i=1}^{2k} \text{RotSum}(\rho_i, \text{NTT}(\theta_i)), \quad y_o := \sum_{i=1}^{2k} \rho_i \cdot y_i.
\]

We first show that \(\mathcal{V}\) accepts, i.e., the check at Step 4 passes. This follows by definition of the polynomial \(g\) (Eq. (14)) and by definition of \(\mathcal{P}\)'s sent evaluations.

It remains to argue that the protocol output \((x_o, \omega_o)\) satisfies that \((\mathcal{P}, x_o, \omega_o) \in \mathcal{R}_2 := \mathcal{R}_{\text{hom}}^b\) (Eq. (10)). First, because \((\mathcal{P}, x_i, \omega_i) \in \mathcal{R}_{\text{hom}}^b\) for all \(i \in [2k]\), by Lemma 3.2, it holds that \(L(\vec{f}_o) = y_o\) and \(\text{mle} \left[\vec{f}_i \right] (\vec{r}_o) = \vec{v}_o\). Moreover,

\[
\|\vec{f}_o\|_\infty = \|\sum_{i=1}^{2k} \rho_i \cdot \vec{f}_i\|_\infty \leq \sum_{i=1}^{2k} \|\rho_i \cdot \vec{f}_i\|_\infty \leq \sum_{i=1}^{2k} c \cdot \|\vec{f}_i\|_\infty \leq \sum_{i=1}^{2k} c \cdot (b - 1) < B.
\]

The first inequality holds because for any \(a, b \in \mathcal{R}_q^m\) where \(\|a\|_\infty + \|b\|_\infty < B < q/2\), we have that \(\|a + b\|_\infty \leq \|a\|_\infty + \|b\|_\infty\). (The norm \(\|a\|_\infty\) for an element \(a\) in \(\mathcal{R}_q\) is defined in Remark 2.1.) The 2nd inequality holds as \(\rho_i \in \mathcal{C}_{\text{small}}\) and \(\mathcal{C}_{\text{small}}\) has expansion factor at most \(c\); the 3rd inequality holds because \(\|\vec{f}_i\|_\infty < b\) for all \(i \in [2k]\) by the assumption that \((\mathcal{P}, x_i, \vec{f}_i) \in \mathcal{R}_{\text{hom}}^b\); the last inequality holds as \(2kc(b - 1) < B < q/2\) by the premise of Theorem 3.2. Thus \((\mathcal{P}, x_o, \omega_o)\) is in \(\mathcal{R}_{\text{hom}}^B\) from (10) as required.

Theorem 3.3. Let \(\mathcal{P} := (\mathcal{R}_q \cong \mathbb{F}_q^d, m, B < q/2, \mathcal{L}) \leftarrow \text{Setup}(1^\lambda)\) denote the public parameters and let \(\mathcal{C}, \mathcal{C}_{\text{small}} \subseteq \mathcal{R}_q\) be strong sampling sets with super-polynomial sizes. Assume that the \(\mathcal{R}_q\)-module homomorphism \(L : \mathcal{R}_q^m \to \mathcal{Y}\) is \(2B\)-relaxed binding for challenge space.
There exists an extractor Ext such that for any expected polynomial time adversary (A, P^*) with success probability $\epsilon_{\text{fold}}(A, P^*) = 1/\text{poly}(\lambda)$, the extractor Ext^{A, P^*} outputs valid witnesses (for input instances) in relation $(R^b_{\text{hom}})^{2k}$ with probability at least $\epsilon_{\text{fold}}(A, P^*) - \kappa(\lambda)$ where
\[
\kappa(\lambda) := \frac{2k}{|C_{\text{small}}|} + \epsilon_{\text{bind}} + \frac{(2b + 1) \log m + 4k}{|C|}.
\]

The expected running time of Ext^{A, P^*} is at most
\[
T_{\text{ext}} := \left(1 + \frac{1}{\epsilon_{\text{fold}}(A, P^*) - \frac{2k}{|C_{\text{small}}|}}\right) \cdot (1 + 2k) = \text{poly}(\lambda).
\]

Proof. As noted by Remark 1 of [AF22], it is without loss of generality to assume that (A, P^*) are deterministic algorithms. For ease of notation, we assume that P^* outputs \perp when it fails the verification or its output is not a valid witness for the output instance. We can always transform a prover to satisfy this requirement without affecting the success probability. To simplify the notation in the proof we introduce the following symbols:

- set $k^* := 2k$,
- the folding challenge space is denoted $S := C_{\text{small}}^{k^*}$,
- the remaining challenge space is denoted $\Psi := C^{2k^* + 2\log m}$.

Let us first give some intuition for the extraction strategy. Adversary A begins by generating some k^* instances $x_i = (\vec{r}_i, \vec{v}_i, y_i)$ for $i \in [k^*]$. The prover P^* then takes as input a sequence of random challenges from the verifier. These challenges define a folded statement $x_o = (\vec{r}_o, \vec{v}_o, y_o)$ and P^* outputs a valid witness \vec{f} for x_o with non-negligible probability. Our extractor needs to use such a P^* to output valid witnesses $\hat{\vec{f}}_i$ for $x_i = (\vec{r}_i, \vec{v}_i, y_i)$ for all $i \in [k^*]$. Let us see how to extract $\hat{\vec{f}}_1$; the other witnesses are extracted similarly. The high level approach to extract $\hat{\vec{f}}_1$ is to sample two related folding challenge vectors
\[
c_0 := (\rho_1, \rho_2, \ldots, \rho_{k^*}) \quad \text{and} \quad c_1 := (\rho'_1, \rho_2, \ldots, \rho_{k^*}) \quad \text{from} \quad S := C_{\text{small}}^{k^*}
\]
with $\rho_1 \neq \rho'_1$. Then run P^* once on c_0 and once on c_1. All other random challenges from the verifier are the same on both runs. We show that with non-negligible probability, the prover P^* will return two valid witness \vec{w}_0 and \vec{w}_1. If P^* were honest then
\[
\vec{w}_0 = \rho_1 \hat{\vec{f}}_1 + \sum_{i=2}^{k^*} \rho_i \hat{\vec{f}}_i \quad \text{and} \quad \vec{w}_1 = \rho'_1 \hat{\vec{f}}_1 + \sum_{i=2}^{k^*} \rho_i \hat{\vec{f}}_i
\]
from which it follows that $(\vec{w}_0 - \vec{w}_1) = (\rho_1 - \rho'_1) \hat{\vec{f}}_1$. We can now calculate $\hat{\vec{f}}_1$ because $\rho_1 - \rho'_1$ is invertible in R_q (since C_{small} is a strong sampling set). Our analysis will show that a slightly enhanced strategy will either extract a valid witness $\hat{\vec{f}}_1$ for x_1 with non-negligible
probability, or break the $2B$-relaxed binding property of L. In particular, in Claim 3 below we show that the sumcheck in protocol Π_{fold}, combined with the relaxed binding property of L, ensures that the extracted witnesses \vec{f} have norm at most b and that the evaluations of $\text{mle} \left[\vec{f}_i \right]$ at \vec{r}_i are correct.

The Extractor. We describe the complete extractor Ext^{A,P^*} in Figure 4. The extractor invokes two sub-procedures. The algorithm $\text{SubExt}^{P^*}(\text{inst}, \psi)$, given randomness $\psi := ([\alpha_i, \mu_i]_{i=1}^{k^*}, \vec{\beta}, \vec{r}_o)$, tries to recover weak openings to the input instances in inst by rewinding P^* multiple times. We emphasize that each run of $\text{SubExt}^{P^*}(\text{inst}, \psi)$ and $\text{SubExt}^{P^*}(\text{inst}, \psi')$ uses fresh internal randomness for challenges $(c_0, c_1, \ldots, c_{k^*})$.

Let $[x_i := (\vec{r}_i, \vec{v}_i, y_i)]_{i=1}^{k^*}$ denote the input instances and let $[\vec{f}_i]_{i=1}^{k^*} \in (R_m^\times)^{k^*}$ denote k^* length-m ring vectors. For every $i \in [k^*]$, we define the multilinear polynomial

$$p_i(\vec{x}) := \sum_{\vec{b} \in \{0,1\}^{\log m}} \text{eq}(\vec{x}, \vec{b}) \cdot \prod_{j=1-b}^{b-1} \left(\text{mle} \left[\vec{f}_i \right] (\vec{b}) - j \right).$$

We define the predicate $\Phi_{\text{valid}}([x_i, \vec{f}_i]_{i=1}^{k^*})$ to be true if and only if

$$\forall i \in [k^*] : \left(\text{mle} \left[\vec{f}_i \right] (\vec{r}_i) = \vec{v}_i \right) \land (\mathcal{L}(\vec{f}_i) = y_i) \land (p_i(\vec{x}) = 0).$$

Note that $p_i(\vec{x}) = 0$ implies that $\prod_{j=1-b}^{b-1} \left(\text{mle} \left[\vec{f}_i \right] (\vec{b}) - j \right) = 0$ for every $\vec{b} \in \{0,1\}^{\log m}$, which in turn implies $||\vec{f}_i||_{\infty} < b$ from the discussion in Section 3.1. Hence, $\Phi_{\text{valid}}([x_i, \vec{f}_i]_{i=1}^{k^*}) = 1$ if and only if $[\vec{f}_i]_{i=1}^{k^*}$ are the valid witnesses for $[x_i]_{i=1}^{k^*}$, that is, $[x_i, \vec{f}_i]_{i=1}^{k^*} \in (R_m^\text{hom})^{k^*}$. Thus, given the check at Step 6, the extractor always outputs a valid witness if it does not abort.

Running time. Next, we adapt the proof of Lemma 7.1 in [FMM23] to analyze the expected running time of each execution of SubExt^{P^*}. Fix any input (inst, ψ), we denote by $C_0 := (\Sigma_1, \ldots, \Sigma_{k^*})$ the random variable for the folding challenges $c_0 := (\rho_1, \ldots, \rho_{k^*})$. We define event $\Gamma := (P^*(\text{inst}, C_0, \psi) \neq \bot)$.

Let T be the number of calls to P^* in $\text{SubExt}^{P^*}(\text{inst}, \psi)$. For $i \in [k^*]$, let T_i be the number of calls to P^* made during the i-th iteration of the loop. We have $E[T] = 1 + \sum_{i=1}^{k^*} E[T_i]$ by linearity of expectation.

Define the random variable

$$X_i := \left| \{ x \in C_{\text{small}} : P^*(\text{inst}, C(x), \psi) \neq \bot \} \right|$$

where $C(x) := (\Sigma_1, \ldots, \Sigma_{i-1}, x, \Sigma_{i+1}, \ldots, \Sigma_{k^*})$. Let $N := |C_{\text{small}}|$, we have that

$$E[T_i] = \sum_{j=0}^{N} E[T_i \mid X_i = j] \cdot \Pr(X_i = j).$$
SubProcedure IG⁴(1λ):
// sample as instance
1. pp ← Setup(1λ)
2. Return inst := ([xᵢ]ᵢ⁻¹, state) ← A(pp)

SubProcedure SubExt⁴⁺(inst, ψ ∈ Ψ):
// attempt to extract a witness for inst
1. c₀ := (ρ₁, . . . , ρ_k⁺) ← S
2. w₀ ← P⁺(inst, c₀, ψ)
3. If w₀ = ⊥ return (open, out) := (⊥, ⊥)
4. For i = 1, . . . , k⁺:
 Do: // loop until a good folding randomness ρ′ᵢ is found
 (a) ρ′ᵢ ← Csmall \ {ρᵢ} without replacement
 (b) cᵢ := (ρ₁, . . . , ρᵢ₋₁, ρᵢ, ρᵢ₊₁, . . . , ρ_k⁺)
 (c) wᵢ ← P⁺(inst, cᵢ, ψ)
 Repeat until wᵢ̸= ⊥; return (⊥, ⊥) if all ρ′ᵢ have been tried
5. For i = 1, . . . , k⁺: set openᵢ := (ρᵢ − ρ′ᵢ, w₀ − wᵢ) and fᵢ := (ρᵢ − ρ′ᵢ)⁻¹(w₀ − wᵢ)
6. Return open := [openᵢ]ᵢ⁻¹ and out := [fᵢ]ᵢ⁻¹

The extractor Ext⁴⁺⁺(1λ):
1. inst ← IG⁴(1λ)
2. Do: // loop until a good tuple of challenges ψ is found
 (a) ψ := ([αᵢ, μᵢ]ᵢ⁻¹, ̃β, ̃r₀) ← Ψ // sample fresh challenges
 (b) (open₁, out₁) ← SubExt⁴⁺⁺(inst, ψ) // attempt to extract a witness using ψ
 Repeat until out₁̸≠ ⊥
3. ψ′ := ([α′ᵢ, μ′ᵢ]ᵢ⁻¹, ̃β′, ̃r₀) ← Ψ // sample fresh challenges
4. (open₂, out₂) ← SubExt⁴⁺⁺(inst, ψ′), abort if out₂ = ⊥ or out₁̸= out₂
5. Parse out₁ = [fᵢ]ᵢ⁻¹
6. Abort if Φvalid([xᵢ, fᵢ]ᵢ⁻¹) = 0, where [xᵢ]ᵢ⁻¹ are the input instances in inst
7. Return out₁

Figure 4: The extractor for Πfold using the validity predicate Φvalid from (18).
Also note that $T_i = 0$ when $\Gamma = 0$, thus for any $j \geq 0$, we have that

$$E[T_i | X_i = j] = \Pr[\Gamma = 1 | X_i = j] \cdot E[T_i | (\Gamma = 1) \land X_i = j]$$

where $\Pr[\Gamma = 1 | X_i = j] = j/N$ and $E[T_i | (\Gamma = 1) \land X_i = j]$ is the expectation of a negative hypergeometric distribution, that is, challenges ρ_i are drawn without replacement from a set of size $N - 1$ that contains $j - 1$ correct responses. Hence, $E[T_i | (\Gamma = 1) \land X_i = j] \leq j/N \cdot (N/j) = 1$. In sum, for all $i \in [k^*]$, we have that $E[T_i] \leq \sum_{j=0}^{N} 1 \cdot \Pr[X_i = j] = 1$, and therefore

$$E[T] = 1 + \sum_{i=1}^{k^*} E[T_i] \leq 1 + k^*.$$

Next, we analyze the success probability of each independent run of SubExt^P. Since \mathcal{A}, P^* are deterministic, we have that the event $\Gamma := \left(P^*(\text{inst}, C_0, \psi) \neq \bot \right)$ happens with probability $\epsilon_{\text{fold}}(\mathcal{A}, P^*)$ over the randomness of ψ and C_0. Define E as the event that a fresh call of $\text{SubExt}^P(\text{inst}, \psi)$ does not return \bot. We have that

$$\Pr[E] = \Pr[\Gamma = 1 \land (\land_{i=1}^{k^*} X_i \geq 2)]$$

$$= \Pr[\Gamma = 1] - \Pr[\Gamma = 1 \land (\lor_{i=1}^{k^*} X_i = 1)]$$

$$\geq \Pr[\Gamma = 1] - \sum_{i=1}^{k^*} \Pr[\Gamma = 1 \land X_i = 1]$$

$$\geq \Pr[\Gamma = 1] - \frac{k^*}{|C_{\text{small}}|}$$

$$\geq \epsilon_{\text{fold}}(\mathcal{A}, P^*) - \frac{k^*}{|C_{\text{small}}|}.$$

In sum, the expected number of calls to P^* in the extractor is at most $(E[T]/\Pr[E]) + E[T] = \left(1 + 1/ \left(\epsilon_{\text{fold}}(\mathcal{A}, P^*) - \frac{2k}{|C_{\text{small}}|} \right) \right) \cdot (1 + 2k) = \text{poly}(\lambda)$.

Success probability. Next, we analyze the extractor’s success probability. Towards this, we define the following events.

- E_{ext}: the extractor recovers the witnesses $\text{out}_1, \text{out}_2 \neq \bot$, moreover, $\text{out}_1 = \text{out}_2$.

- E_{valid}: E_{ext} occurs and $\Phi_{\text{valid}}([x_i, \bar{f}_i]_{i=1}^{k^*}) = 1$, where $[x_i]_{i=1}^{k^*}$ are the input instances and $[\bar{f}_i]_{i=1}^{k^*}$ are the interpolated witness vectors.

Note that $E_{\text{ext}} \land E_{\text{valid}}$ implies that the extractor successfully extracts a valid witness. Moreover,

$$\Pr[E_{\text{ext}} \land E_{\text{valid}}] = \Pr[E_{\text{ext}}] - \Pr[E_{\text{ext}} \land \overline{E_{\text{valid}}}],$$

thus it suffices to obtain a lower-bound for $\Pr[E_{\text{ext}}]$ and an upper-bound for $\Pr[E_{\text{ext}} \land \overline{E_{\text{valid}}}].$
Claim 1. \(\text{Pr}[E_{\text{ext}}] \geq \epsilon_{\text{fold}}(A, P^*) - \frac{k^*}{|C_{\text{small}}|} - \epsilon_{\text{bind}}. \)

Proof. We define \(E'_{\text{ext}} \) as the event that the last call of \(\text{SubExt}^{P^*} \), on input \((\text{inst}, \psi')\), does not return \(\perp \). By Eq. (20), we have that

\[
\text{Pr}[E'_{\text{ext}}] \geq \epsilon_{\text{fold}}(A, P^*) - \frac{k^*}{|C_{\text{small}}|}
\]

because (i) \(A \) is deterministic, and (ii) \(\psi' \) and the randomness in \(\text{SubExt}^{P^*}(\text{inst}, \psi') \) are freshly sampled.

Moreover, if \(E'_{\text{ext}} \) occurs, let \((\text{open}_1, \text{out}_1), (\text{open}_2, \text{out}_2)\) be the output of \(\text{SubExt}^{P^*}(\text{inst}, \psi') \) and \(\text{SubExt}^{P^*}(\text{inst}, \psi') \) respectively. For every \(i \in [k^*] \), let \(\text{open}_{1,i} := (\Delta, \mathbf{w}) \) and \(\text{open}_{2,i} := (\Delta', \mathbf{w}') \). Since \(P^* \) did not output \(\perp \), it must output a valid witness and therefore \(\mathcal{L}(\mathbf{w}) = \Delta y_i \) and \(\mathcal{L}(\mathbf{w}') = \Delta'y_i \). But if \(\text{out}_{1,i} = \Delta^{-1}\mathbf{w} \neq (\Delta')^{-1}\mathbf{w}' = \text{out}_{2,i} \), then \(\Delta'\mathbf{w} \neq \Delta\mathbf{w}' \), and then \((\text{open}_{1,i}, \text{open}_{2,i})\) is a pair of distinct \(2B\)-weak openings that breaks the \(2B\)-relaxed binding property of \(\mathcal{L} \). Specifically, \(\mathcal{L}(\mathbf{w}) = \Delta y_i \) and \(\mathcal{L}(\mathbf{w}') = \Delta'y_i \); \(||\mathbf{w}||_\infty, ||\mathbf{w}'||_\infty < 2B \) given that both \(\mathbf{w} \) and \(\mathbf{w}' \) are the subtractions of two vectors with norm less than \(B \); and \(\Delta, \Delta' \) are non-zero differences in the set \(C_{\text{small}} \). Moreover, the extractor is an expected polynomial time algorithm. Thus, by the relaxed binding property of \(\mathcal{L} \), we have that

\[
\text{Pr} \left[E_{\text{ext}}' \land (\text{out}_1 \neq \text{out}_2) \right] \leq \epsilon_{\text{bind}}.
\]

Therefore, we have that

\[
\text{Pr}[E_{\text{ext}}] = \text{Pr}[E'_{\text{ext}}] - \text{Pr} \left[E_{\text{ext}}' \land (\text{out}_1 \neq \text{out}_2) \right]
\geq \text{Pr}[E'_{\text{ext}}] - \epsilon_{\text{bind}}
\geq \epsilon_{\text{fold}}(A, P^*) - \frac{k^*}{|C_{\text{small}}|} - \epsilon_{\text{bind}},
\]

which completes the proof. \(\square \)

Next, we upper-bound the probability \(\text{Pr}[E_{\text{ext}} \land \overline{E_{\text{valid}}}]. \)

We first reduce \(\text{Pr}[E_{\text{ext}} \land \overline{E_{\text{valid}}}]. \) to the probability of a different event that is easier to analyze. Let \(A \) denote \(A \)’s output that includes the input instances \([x_i := (\mathbf{r}_i, \mathbf{v}_i, y_i)]_{i=1}^{k^*}. \) Let \(\psi' := ([\alpha'_i, \mu'_{j,i=1}^{k^*}], \beta'_i, \mathbf{r}'_\alpha) \) be the last sampled randomness. We consider the sub-extraction call \(\text{SubExt}^{P^*}(\text{inst}, \psi'). \) Let \(c_0 := (\rho_1, \ldots, \rho_{k^*}) \) denote the initial folding challenge, and let \([\theta'_j]_{j=1}^{k^*} \) denote the claimed evaluations in the transcript of \(P^*(\text{inst}, c_0, \psi'). \) Let \([\mathbf{f}'_j]_{j=1}^{k^*} \) denote the interpolated vectors when \(E_{\text{ext}} \) occurs, and let \([p_i(\mathbf{x})]_{ij=1}^{k^*} \) be the corresponding polynomials specified in Eq. (17). Define events \(E_{\text{hom}}, E_{\text{eval}}, E_{\text{bad}} \) as

\[
E_{\text{hom}} := E_{\text{ext}} \land (\forall i \in [k^*] : \mathcal{L}(\mathbf{f}') = y_i), \quad (21)
\]

\[
E_{\text{eval}} := E_{\text{ext}} \land (\forall i \in [k^*] : \text{mle} \left[\mathbf{f}' \right] (\mathbf{r}'_\alpha) = \theta'_i), \quad (22)
\]

\[
E_{\text{bad}} := E_{\text{ext}} \land (\exists i \in [k^*] : (\text{mle} \left[\mathbf{f}' \right] (\mathbf{r}_i) \neq \mathbf{v}_i) \lor (p_i(\mathbf{x}) \neq 0)). \quad (23)
\]

32
Claim 2. \(\Pr[E_{\text{ext}} \land \overline{E_{\text{valid}}}] = \Pr[E_{\text{eval}} \land E_{\text{bad}}] \).

Proof. Assume that \(E_{\text{ext}} \implies (E_{\text{hom}} \land E_{\text{eval}}) \) holds (which we will prove later), we argue that \(E_{\text{ext}} \land \overline{E_{\text{valid}}} \) occurs if and only if \(E_{\text{eval}} \land E_{\text{bad}} \) occurs. Suppose \(E_{\text{ext}} \land \overline{E_{\text{valid}}} \) occurs. By assumption, \(E_{\text{eval}} \) and \(E_{\text{hom}} \) must also occur. Moreover, if \(E_{\text{hom}} \) occurs while \(E_{\text{valid}} \) does not, it must be the case that \(E_{\text{bad}} \) occurs. Therefore, \(E_{\text{eval}} \land E_{\text{bad}} \) will occur.

Conversely, suppose \(E_{\text{eval}} \land E_{\text{bad}} \) occurs. Then \(E_{\text{ext}} \) certainly occurs. However, \(E_{\text{valid}} \) cannot occur because \(E_{\text{bad}} \) occurs, and thus \(E_{\text{ext}} \land \overline{E_{\text{valid}}} \) occurs.

Now it suffices to show that \(E_{\text{ext}} \implies (E_{\text{hom}} \land E_{\text{eval}}) \). Suppose \(E_{\text{ext}} \) occurs. Let \([c_i, \tilde{w}_i]_{i=0}^{k^*}\) denote the tuples collected in \(\text{SubExt}^{P^*}(\text{inst}, \psi') \) where \(c_0 := (\rho_1, \ldots, \rho_{k^*}) \) and

\[
c_i := (\rho_1, \ldots, \rho_{i-1}, \rho_i', \rho_{i+1}, \ldots, \rho_{k^*}) .
\]

For every \(i \in [k^*] \), since \(\tilde{w}_0, \tilde{w}_i \neq \perp \) are valid witnesses, we have that

\[
\mathcal{L}(\tilde{w}_0) = \rho_1 y_1 + \cdots + \rho_{i-1} y_{i-1} + \rho_i y_i + \rho_{i+1} y_{i+1} + \cdots + \rho_{k^*} y_{k^*} ,
\]

\[
\mathcal{L}(\tilde{w}_i) = \rho_1 y_1 + \cdots + \rho_{i-1} y_{i-1} + \rho_i' y_i + \rho_{i+1} y_{i+1} + \cdots + \rho_{k^*} y_{k^*} ,
\]

thus

\[
\mathcal{L}(\tilde{f}_i) = \mathcal{L}((\tilde{w}_0 - \tilde{w}_i) \cdot (\rho_i - \rho_i')^{-1})
\]

\[
= (\rho_i - \rho_i')^{-1} \cdot \mathcal{L}((\tilde{w}_0 - \tilde{w}_i))
\]

\[
= (\rho_i - \rho_i')^{-1} \cdot (\mathcal{L}(\tilde{w}_0) - \mathcal{L}(\tilde{w}_i))
\]

\[
= (\rho_i - \rho_i')^{-1} \cdot (\rho_i - \rho_i') \cdot y_i = y_i ,
\]

which implies that \(E_{\text{hom}} \) occurs.

Similarly, since the prover \(P^* \) needs to output \([\theta_j]_{j=1}^{k^*} \) before receiving the folding challenges, the claimed evaluations \(\{\theta_j\} \) in the executions of \(P^* (\text{inst}, c_0, \psi') \) and \(P^* (\text{inst}, c_i, \psi') \) are the same. Define

\[
\hat{\psi}_0^{(0)} := \text{mle}[\tilde{w}_0] (\tilde{r}_0) , \quad \hat{\psi}_0^{(i)} := \text{mle}[\tilde{w}_i] (\tilde{r}_0) .
\]

Note that

\[
\text{NTT}(\hat{\psi}_0^{(0)}) := \text{mle}[\text{Coef}(\tilde{w}_0)] (\tilde{r}_0) , \quad \text{NTT}(\hat{\psi}_0^{(i)}) := \text{mle}[\text{Coef}(\tilde{w}_i)] (\tilde{r}_0) .
\]

Since \(P^* \) outputs valid witnesses for the output instances, we have that

\[
\text{NTT}(\hat{\psi}_0^{(0)}) = \sum_{j=1}^{k^*} \text{RotSum}(\rho_j, \text{NTT}(\theta_j)) ,
\]

\[
\text{NTT}(\hat{\psi}_0^{(i)}) = \sum_{j \in [k^*], j \neq i} \text{RotSum}(\rho_j, \text{NTT}(\theta_j)) + \text{RotSum}(\rho_i', \text{NTT}(\theta_i)) .
\]
which implies that
\[
\text{NTT}(\hat{v}_o^0 - \hat{v}_o^{(i)}) = \text{RotSum}(\rho_i, \text{NTT}(\theta_i^o)) - \text{RotSum}(\rho_i', \text{NTT}(\theta_i')) .
\] (24)

Let \(\Delta_o, \bar{\theta}_i^o\) be the values such that \(\text{Coef}(\Delta_o) = \text{NTT}(\hat{v}_o^0 - \hat{v}_o^{(i)})\) and \(\text{Coef}(\bar{\theta}_i^o) = \text{NTT}(\theta_i')\).

By Lemma 2.1, we have that
\[
\text{RotSum}(\rho_i, \text{NTT}(\theta_i^o)) = \text{Coef}(\rho_i \cdot \bar{\theta}_i^o), \quad \text{RotSum}(\rho_i', \text{NTT}(\theta_i')) = \text{Coef}(\rho_i' \cdot \bar{\theta}_i^o).
\]

Then by Eq. (24), we have that \(\text{Coef}(\Delta_o) = \text{Coef}(\rho_i - \rho_i') \cdot \bar{\theta}_i^o\) and thus \(\text{Coef}(\rho_i - \rho_i')^{-1} \cdot \Delta_o = \text{Coef}(\bar{\theta}_i^o)\). By definition of \(\bar{\theta}_i^o\), we have that
\[
\text{mle} \left[\text{Coef}(\bar{\theta}_i^o) \right] (\bar{r}_o^i) = \text{mle} \left[\text{Coef}(\tilde{w}_o - \tilde{w}_i) \cdot (\rho_i - \rho_i')^{-1} \right] (\bar{r}_o^i) = (\rho_i - \rho_i')^{-1} \cdot \text{mle} \left[\text{Coef}(\tilde{w}_o - \tilde{w}_i) \right] (\bar{r}_o^i) = (\rho_i - \rho_i')^{-1} \cdot (\text{NTT}(\hat{v}_o^0) - \text{NTT}(\hat{v}_o^{(i)})) = (\rho_i - \rho_i')^{-1} \cdot \text{NTT}(\hat{v}_o^0 - \hat{v}_o^{(i)}) = (\rho_i - \rho_i')^{-1} \cdot \text{Coef}(\Delta_o) = \text{Coef}(\rho_i - \rho_i')^{-1} \cdot \Delta_o = \text{Coef}(\bar{\theta}_i^o) = \text{NTT}(\theta_i') .
\]

By Lemma A.1 and because \(\text{NTT}(\bar{\theta}_i^o) = \text{Coef}(\bar{\theta}_i^o)\), this implies that \(\text{mle} \left[\bar{\theta}_i^o \right] (\bar{r}_o^i) = \theta_i^o\). Therefore, \(E_{\text{eval}}\) occurs, which finishes the proof.

Therefore, to analyze \(\Pr[E_{\text{ext}} \land E_{\text{valid}}]\), it suffices to analyze the probability of \(E_{\text{eval}} \land E_{\text{bad}}\).

\textbf{Claim 3.} \(\Pr[E_{\text{eval}} \land E_{\text{bad}}] \leq \frac{(2b+1) \log m + 2k^*}{|C|}\).

\textbf{Proof.} Let \([x_i := (\bar{r}_i, \tilde{v}_i, y_i)]_{i = 1}^{k^*}\) and \([\bar{r}_i]_{i = 1}^{k^*}\) denote the input instances and the extracted witness vectors, respectively. For every \(i \in [k^*]\), let \(p_i(\bar{x})\) denote the multilinear polynomial specified in Eq. (17). Let \(\psi' := (\alpha_i', \mu_i'^{k^*})_{i = 1}^{k^*}, \tilde{\beta}', \tilde{\beta}^{(i)}\) be the input randomness used in the last call \(\text{SubExt}^{\mathcal{P}^*}(\text{inst}, \psi')\), namely on line 4 of the extractor. Define polynomial \(h\) as
\[
h([X_i, Y_i]_{i = 1}^{k^*}) := \sum_{i = 1}^{k^*} (\tilde{v}_i - \text{mle} \left[\bar{\theta}_i^o \right] (\bar{r}_i)) \cdot X_i + \sum_{i = 1}^{k^*} p_i(\tilde{\beta}') \cdot Y_i .
\] (25)

We define the following events:
\[
E_1 := E_{\text{ext}} \land (\exists i \in [k^*] : p_i(\bar{x}) \neq 0) \land \left(p_i(\tilde{\beta}') = 0 \forall i \in [k^*] \right)
\]
\[
E_2 := E_{\text{ext}} \land (h([\alpha_i', \mu_i'^{k^*}]_{i = 1}^{k^*}) = 0) \land \left(\exists i \in [k^*] : \left(\text{mle} \left[\bar{\theta}_i^o \right] (\bar{r}_i) \neq \tilde{v}_i \right) \lor \left(p_i(\tilde{\beta}') \neq 0 \right) \right)
\]
\[
E_3 := E_{\text{eval}} \land (h([\alpha_i', \mu_i'^{k^*}]_{i = 1}^{k^*}) \neq 0)
\]

34
Intuitively, we “split” the event $E_{\text{eval}} \land E_{\text{bad}}$ into three parts E_1, E_2, E_3, so that we can reduce $\Pr[E_{\text{eval}} \land E_{\text{bad}}]$ to the probability of breaking sumcheck soundness in E_3.

We first show that $(E_{\text{eval}} \land E_{\text{bad}}) \implies (E_1 \lor E_2 \lor E_3)$. Suppose E_{eval} occurs. By definition, E_{ext} occurs and $[\hat{\mathbf{f}}, p_i(\mathbf{x})]_{i=1}^{k^*}$ are well-defined. We consider two cases:

- **Case 1**: $p_i(\mathbf{x}) \neq 0$ for some $i \in [k^*]$, but $p_i(\beta') = 0$ for all $i \in [k^*]$. Then E_1 occurs.

- **Case 2**: $p_i(\mathbf{x}) = 0$ for all $i \in [k^*]$, or $p_i(\beta') \neq 0$ for some $i \in [k^*]$. Since $(E_{\text{eval}} \land E_{\text{bad}})$ implies that E_{bad} also occurs (Eq. (23)), by the definition of E_{bad}, we have:

$$\exists i \in [k^*] : \left(\text{mle} \left[\hat{\mathbf{f}}_i \right] (\mathbf{r}_i) \neq \mathbf{v}_i \right) \lor (p_i(\beta') \neq 0),$$

which implies that $E_2 \lor E_3$ occurs.

In summary, we have that $(E_{\text{eval}} \land E_{\text{bad}}) \implies (E_1 \lor E_2 \lor E_3)$ and

$$\Pr[E_{\text{eval}} \land E_{\text{bad}}] \leq \Pr[E_1 \lor E_2 \lor E_3] \leq \Pr[E_1] + \Pr[E_2] + \Pr[E_3].$$

Now, it suffices to bound the probabilities $\Pr[E_1], \Pr[E_2], \Pr[E_3]$.

We first argue that $\Pr[E_1] \leq \log m/|C|$. Consider a mental experiment Exp_1 that simulates the extractor Ext^{A, P^*} until finishing Step 3. Exp_1 outputs 1 if and only if

$$\left(\exists i \in [k^*] : p_i(\mathbf{x}) \neq 0 \right) \land (p_i(\beta') = 0 \forall i \in [k^*])$$

where $[p_i(\mathbf{x})]_{i=1}^{k^*}$ are defined given the witness $[\hat{\mathbf{f}}_i]_{i=1}^{k^*}$ computed from the output of $\text{SubExt}^{P^*}(\text{inst}, \psi)$. It is clear that $\Pr[\text{Exp}_1 = 1] \geq \Pr[E_1]$. Moreover, let $i^* \in [k^*]$ be the first index such that $p_{i^*}(\mathbf{x}) \neq 0$. Since $[\hat{\mathbf{f}}_i]_{i=1}^{k^*}$ in Exp_1 is independent of ψ', by the Generalized Schwartz Lemma (Lemma 2.4), the probability that $p_{i^*}(\beta') = 0$ is at most $\frac{\log m}{|C|}$ (over the randomness of β').

Thus we have that $\Pr[E_1] \leq \Pr[\text{Exp}_1 = 1] \leq \frac{\log m}{|C|}$.

Next, we argue that $\Pr[E_2] \leq 2k^*/|C|$. Consider a mental experiment Exp_2 that that simulates the extractor Ext^{A, P^*} until finishing Step 3. Exp_2 outputs 1 if and only if

$$(h(\alpha_i', \mu_i^{k^*}_{i=1}) = 0) \land \left(\exists i \in [k^*] : \left(\text{mle} \left[\hat{\mathbf{f}}_i \right] (\mathbf{r}_i) \neq \mathbf{v}_i \right) \lor (p_i(\beta') \neq 0) \right)$$

where h is specified in Eq. (25), and $[p_i(\mathbf{x})]_{i=1}^{k^*}$ are defined given the witness $[\hat{\mathbf{f}}_i]_{i=1}^{k^*}$ computed from the output of $\text{SubExt}^{P^*}(\text{inst}, \psi)$. It is clear that $\Pr[\text{Exp}_2 = 1] \geq \Pr[E_2]$. Moreover, since $[\hat{\mathbf{f}}_i]_{i=1}^{k^*}$ in Exp_2 is independent of ψ', by the Generalized Schwartz Lemma (Lemma 2.4), the probability that $h(\alpha_i', \mu_i^{k^*}_{i=1}) = 0$ is at most $\frac{2k^*}{|C|}$ (over the randomness of $[\alpha_i', \mu_i^{k^*}_{i=1}]$). Thus we have that $\Pr[E_2] \leq \Pr[\text{Exp}_2 = 1] \leq \frac{2k^*}{|C|}$.

Finally, we argue that $\Pr[E_3] \leq 2b \log m/|C|$. Consider a mental experiment Exp_3 that simulates the extractor Ext^{A, P^*} until finishing Step 3. Additionally, it simulates
Therefore, the sumcheck statement

\[(h([\alpha^*_{i}, \mu^*_{i}]_{i=1}^{k^*}) \neq 0) \land (\forall i \in [k^*] : \text{mle} \begin{pmatrix} \hat{f}_i \end{pmatrix} (\vec{r}_o) = \theta'_i) , \]

where \(h \) is specified in Eq. (25) and \(\vec{f}_i[k^*] \) are computed from the output of \(\text{SubExt}^{P^*} (\text{inst}, \psi') \). We argue that \(\Pr[\text{Exp}_3 = 1] \geq \Pr[E_3] \). Recall that \(E_3 \) implies that \(E_{\text{ext}} \) occurs, which implies that the vectors \(\vec{f}_i[k^*] \) computed from \(\text{SubExt}^{P^*} (\text{inst}, \psi') \) is identical to the \(\vec{f}_i[k^*] \) computed from \(\text{SubExt}^{P^*} (\text{inst}, \psi') \). Moreover, \(E_3 \) implies that \(E_{\text{eval}} \) occurs, which means that the evaluation check in the execution \(\text{SubExt}^{P^*} (\text{inst}, \psi') \) passes, since the witness \(\vec{f}_i[k^*] \) extracted from \(\text{SubExt}^{P^*} (\text{inst}, \psi') \) is the same as that from \(\text{SubExt}^{P^*} (\text{inst}, \psi') \), we have that \(\text{mle} \begin{pmatrix} \hat{f}_i \end{pmatrix} (\vec{r}_o) = \theta'_i \) for all \(i \in [k^*] \). Therefore, with the same randomness, if \(E_3 \) happens, then \(\text{Exp}_3 \) will output 1. Thus \(\Pr[\text{Exp}_3 = 1] \geq \Pr[E_3] \). Now, it suffices to bound \(\Pr[\text{Exp}_3 = 1] \).

For every \(i \in [k^*] \), we define \(p_i(x) \) from \(\vec{f}_i \) according to Eq. (17). We can rewrite \(p_i(\vec{b}') \) as

\[p_i(\vec{b}') = \sum_{\vec{b} \in \{0,1\}^{\log m}} \text{eq} (\vec{b}', \vec{b}) \cdot \prod_{j=1}^{b-1} \left(\text{mle} \begin{pmatrix} \hat{f}_i \end{pmatrix} (\vec{b}) - j \right) = \sum_{\vec{b} \in \{0,1\}^{\log m}} g_{2,i}(\vec{b}) , \tag{27} \]

where \(g_{2,i} \) is specified in Eq. (16). Similarly, we can rewrite \(\text{mle} \begin{pmatrix} \hat{f}_i \end{pmatrix} (\vec{r}_i) \) as

\[\text{mle} \begin{pmatrix} \hat{f}_i \end{pmatrix} (\vec{r}_i) = \sum_{\vec{b} \in \{0,1\}^{\log m}} \text{eq}(\vec{r}_i, \vec{b}) \cdot \text{mle} \begin{pmatrix} \hat{f}_i \end{pmatrix} (\vec{b}) = \sum_{\vec{b} \in \{0,1\}^{\log m}} g_{1,i}(\vec{b}) , \tag{28} \]

where \(g_{1,i} \) is specified in Eq. (15). Recall that \(g \) in Eq. (14) is defined as

\[g(\vec{b}) := \sum_{i=1}^{k^*} \left[\alpha_i^* g_{1,i}(\vec{b}) + \mu_i^* g_{2,i}(\vec{b}) \right] . \]

By plugging in Eq. (27) and Eq. (28), we have that

\[\sum_{\vec{b} \in \{0,1\}^{\log m}} g(\vec{b}) = \sum_{i=1}^{k^*} \alpha_i^* \cdot \text{mle} \begin{pmatrix} \hat{f}_i \end{pmatrix} (\vec{r}_i) + \sum_{i=1}^{k^*} \mu_i^* \cdot p_i(\vec{b}') . \tag{29} \]

Therefore, the sumcheck statement

\[\sum_{\vec{b} \in \{0,1\}^{\log m}} g(\vec{b}) = \sum_{i=1}^{k^*} \alpha_i \hat{v}_i \]
holds if and only if $h(\alpha_i', \mu_i'|_{i=1}^{|\alpha|}) = 0$. Recall that $\mathsf{Exp}_3 = 1$ implies that $h(\alpha_i', \mu_i'|_{i=1}^{|\alpha|}) \neq 0$, i.e., the sumcheck statement does not hold. Meanwhile, note that the random evaluation statement for g holds because

$$\forall i \in [k^*] : \text{mle} \left[\hat{f}_i \right] (\bar{r}_o') = \theta'_i$$

and the verification check at Step 4 passes. By the Generalized Sum-Check Theorem (Lemma 2.5), we have that $\Pr[E_3] \leq \Pr[\mathsf{Exp}_3] \leq 2^{b \log m / |C|}$ (over the randomness of \bar{r}_o').

In summary, we have that $\Pr[E_{\text{eval}} \land E_{\text{bad}}] \leq \Pr[E_1] + \Pr[E_2] + \Pr[E_3] \leq \log m / |C| + 2k^* / |C| + 2b \log m / |C|$, which finishes the proof.

In sum, we have that the success probability of the extractor is at least

$$\Pr[E_{\text{ext}} \land E_{\text{valid}}] \geq \epsilon_{\text{fold}}(A, P^*) - \frac{k^*}{|C_{\text{small}}|} - \epsilon_{\text{bind}} - \frac{(2b + 1) \log m + 2k^*}{|C|},$$

which finishes the proof of Theorem 3.3.

Remark 3.2. Theorem 3.3 is applicable only when Π_{fold} is instantiated as an interactive protocol. In practice, Π_{fold} can be converted into a non-interactive protocol using the Fiat-Shamir transform. The knowledge analysis of the Fiat-Shamir transformed version of Π_{fold} is left as future work.

3.3 Supporting Small Prime Modulus

In the protocol Π_{fold} (Figure 3), the size of the strong sampling set $C := \mathbb{Z}_q$ is only q. This is the best we can hope for: Assume for contradiction that exists C where $|C| > q$, by the pigeonhole principle, there exist two elements a, b in $C \subseteq \mathbb{R}_q \cong \mathbb{Z}_q^d$ that share the same value at the 1st slot of their NTT representation. Hence the 1st slot of $\text{NTT}(a - b)$ is zero, and $a - b$ is a zero-divisor as $c \cdot (a - b) = 0$ for the element $c \neq 0$ whose NTT representation is $(1, 0, \ldots, 0)$. This contradicts with the fact that C is a sampling set.

Thus to achieve 128-bit security, we need to use at least a 128-bit prime modulus in Π_{fold}. In practice, however, it would be significantly more efficient to use a smaller modulus, say a 32-bit prime, which is a good fit for GPUs that operate on 32-bit data types, or for CPUs that operate on 32 or 64-bit integer types.

In this section, we describe an optimization that extends Π_{fold} to support a small prime modulus q. The key idea is to use q where $\mathcal{R}_q \cong \mathbb{F}_q^\tau$ for some $\tau > 1$ such that $q^\tau \approx 2^{128}$. Here \mathbb{F}_q^τ is an extension field of \mathbb{F}_q. We note, however, that q cannot be too small since we must preserve the hardness of the MSIS problem.
Let \(t \in \mathbb{N} \) be a divisor of \(d \) and denote \(\tau := d/t \). Let \(q \) be a prime such that \(q \equiv 1 + 2t \) (mod \(4t \)) and \(q^\tau \approx 2^{128} \). Recall from Section 2 that we have \(\mathcal{R}_q \cong \mathbb{F}_q^t \) via the NTT isomorphism. Thus we can rewrite the commitment opening relation \(\mathcal{R}_{cm}^B \) (Eq. (8)) as

\[
\mathcal{R}_{cm}^B := \left\{ (pp, cm \in \mathcal{R}_q^c, \mathbf{f} \in \mathcal{R}_q^m) : \begin{array}{l}
\text{(cm} = \mathbf{A}\mathbf{f}) \wedge \\
\forall j \in [\tau] : \left(\mathbf{f}_j \circ \left[\bigcap_{i=1}^{B-1} (\mathbf{f}_j - i) \circ (\mathbf{f}_j + i) \right] = 0 \right)
\end{array},
\right\}
\]

where \(\mathbf{f} := (\hat{f}_1, \ldots, \hat{f}_\tau) \in \mathcal{R}_q^{m \times \tau} \) is the vector such that

\[
\text{NTT}(\hat{\mathbf{f}}) := (\text{NTT}(\hat{f}_1), \ldots, \text{NTT}(\hat{f}_\tau)) \in \mathbb{F}_q^{m \times d}
\]

equals the coefficient embedding matrix of \(\mathbf{f} \) (which is in \(\mathbb{Z}_q^{m \times d} \)), that is, \(\text{NTT}(\hat{\mathbf{f}}) = \text{Coef}(\mathbf{f}) \).

Given \(\mathcal{R}_{cm}^B \), we can similarly generalize the expanded commitment opening relation \(\mathcal{R}_{eval}^B \) (Eq. (9)) to \(\mathcal{R}_{eval}^{\tau,B} \) defined as

\[
\mathcal{R}_{eval}^{\tau,B} := \left\{ (pp, (\mathbf{f}, [\mathbf{v}_j])_{j=1}^\tau, cm) \in \mathcal{R}_q^{\log m} \times \mathcal{R}_q^\tau \times \mathcal{R}_q^c; \mathbf{f} \in \mathcal{R}_q^m) : \begin{array}{l}
\forall j \in [\tau] : \text{mle} \left[\mathbf{f}_j \right] (\mathbf{f}) = \mathbf{v}_j
\end{array},
\right\}
\]

The reduction of knowledge from \((\mathcal{R}_{eval}^{\tau,b})^{2k} \) to \(\mathcal{R}_{eval}^{\tau,B} \) is almost identical to \(\Pi_{fold} \) (Figure 3) except for 2 modifications below.

- We define the challenge space \(\mathcal{C} \subseteq \mathcal{R}_q \) as the set of elements whose NTT representation equals \(i \) multiplying the identity vector \(I_t := (1, \ldots, 1) \in \mathbb{F}_q^t \) (where \(i \) is enumerated over \(\mathbb{F}_q^t \)), that is,

\[
\mathcal{C} := \{ a_i \in \mathcal{R}_q : \text{NTT}(a_i) = i \cdot I_t \}_{i \in \mathbb{F}_q^t}.
\]

This ensures that \(\mathcal{C} \) is a strong sampling set with size \(q^\tau \approx 2^{128} \), because the difference of any two distinct elements in \(\mathcal{C} \) maps to \(a \cdot I_t \) for some \(a \) in \(\mathbb{F}_q^t \) through the NTT isomorphism, which has inverse \(a^{-1} \cdot I_t \). Thus we can achieve 128-bit security even if \(q \) is significantly smaller than \(2^{128} \) (given \(\tau \) is large enough so that \(q^\tau \approx 2^{128} \)).

- Let \([\rho_i]_{i=1}^{2k} \) be the last folding challenges (in Figure 3). For every \(i \in [2k] \), let \(\Theta_i := [\theta_{i,j}]_{j=1}^\tau \in \mathcal{R}_q^\tau \) where \(\{\theta_{i,j} \in \mathcal{R}_q\} \) are the claimed evaluations in the protocol execution. We denote by \(\text{NTT}(\Theta_i) := (\text{NTT}(\theta_{i,1}), \ldots, \text{NTT}(\theta_{i,\tau})) \in \mathbb{F}_q^{d\tau} \). The folding verifier computes \(\hat{V}_o := [\mathbf{v}_{o,j}]_{j=1}^\tau \in \mathcal{R}_q^\tau \) such that \(\text{NTT}(\hat{V}_o) \in \mathbb{F}_q^{d\tau} \) satisfies that

\[
\text{NTT}(\hat{V}_o) = \sum_{i=1}^{2k} \text{RotSum}(\rho_i, \text{NTT}(\Theta_i)),
\]

38
where RotSum is defined in Lemma 2.1. By the 3rd claim in Lemma 2.1, we can extend Eq. (24) to a more general setting where \(R_q \cong \mathbb{F}_q^{d/\tau} \). In this setting, the single linear equation (over \(R_q \)) in Eq. (24) is extended to \(\tau \) linear equations. Given this extension, all proofs in Section 3.2 will still be valid.

4 A Lattice-based Folding Scheme for CCS

In this section, we construct a folding scheme for customizable constraint systems (CCS) as introduced in [STW23a]. CCS is a generalization of Rank-1 Constraint Systems (R1CS) that supports high-degree custom gates, enabling better expressiveness and applicability. As discussed at the beginning of Section 3, this folding scheme enables us to build IVC/PCD from Ajtai commitments. Our approach is highly modular and generic. We begin by adapting the definition of customizable constraint systems [STW23a] to the ring setting.

Definition 4.1 (CCS over rings). Let \(pp := (n_r, n_c, t, n_s, \text{deg}, \ell \text{in}) \) be the integer public parameters\(^1\) and let \(\bar{R} \) be an arbitrary ring. Let \(i \) be an index that consists of (i) \(t \) matrices \(M_1, \ldots, M_t \in \bar{R}^{n_r \times n_c} \) with \(O(n_r + n_c) \) non-zero entries; (ii) \(n_s \) multisets \(S_1, \ldots, S_{n_s} \subseteq [t] \) such that \(|S_i| \leq \text{deg} \) for all \(i \in [n_s] \); and (iii) \(n_s \) scalars \(c_1, \ldots, c_{n_s} \in \bar{R} \).

We denote by \(pp_{ccs} := (pp, i) \) the index-specific parameters. Given a tuple \((pp_{ccs}, x \in \bar{R}^\ell \text{in}; w \in \bar{R}^{n_c - \ell \text{in}}) \) and let \(\vec{z} := (x, 1, w) \in \bar{R}^{n_c} \). We say \((pp_{ccs}, x; w)\) is in the relation \(\mathcal{R}_{ccs} \) (over ring \(\bar{R} \)) if and only if

\[
\sum_{i=1}^{n_s} c_i \cdot \bigcirc_{j \in S_i} (M_j \cdot \vec{z}) = 0^{n_r}.
\]

Here \(\bigcirc \) denotes the Hadamard product between vectors. And \(0 \) (and \(1 \)) is the additive (and multiplicative) identity in \(\bar{R} \) respectively.

Remark 4.1 (Packing multiple CCS field constraints). Suppose the ring \(\bar{R} \) is isomorphic to \(\mathbb{F}_k \) for a field \(\mathbb{F} \). We can pack \(k \) instance-witness pairs in the CCS relation over \(\mathbb{F} \) into a single instance-witness pair in the CCS relation over \(\bar{R} \). More precisely, given \(k \) tuples \(((pp, \vec{i}), x_i, w_i)_{i=1}^k \), the \(k \) tuples are all in the relation \(\mathcal{R}_{ccs} \) over \(\bar{R} \) if and only if the transformed tuple \(((pp, \vec{i}^*), x^*, w^*)\) is in the relation \(\mathcal{R}_{ccs} \) over \(\bar{R} \). Each entry \(e \in \bar{R} \) in \((\vec{i}^*, x^*, w^*)\) is set such that \(\text{NTT}(e) = (e_1, \ldots, e_k) \), where \(e_i \in \mathbb{F} \) is the corresponding entry in \((\vec{i}_i, x_i, w_i)\) for \(1 \leq i \leq k \).

4.1 Lattice-based Committed CCS

Next, we introduce the lattice-based committed CCS relation \(\mathcal{R}_{cmccs}^B \) that extends the commitment opening relation \(\mathcal{R}_{cm}^B \) in Eq. (8) to the CCS setting. A folding scheme for \(\mathcal{R}_{cmccs}^B \) would allow us to build an IVC/PCD scheme from Ajtai commitments.

\(^1\)Informally, \(n_r \) denotes the number of constraints, \(n_c \) denotes the extended witness size and \(\text{deg} \) is the custom gate degree.
Intuitively, a witness of the committed CCS relation consists of a pair \((\bar{f}, \bar{w})\), and the relation checks that (i) \(\bar{w}\) is a valid witness for the CCS instance \(x_{ccs}\), (ii) \(\bar{f}\) is a low-norm opening of the Ajtai commitment \(cm\), and (iii) \(\bar{f}\) is the gadget decomposition of the witness \(\bar{w}\), meaning \(\bar{w} = G \times \bar{f}\) for the gadget \(G\). We formally define the relation below.

Definition 4.2 (Lattice-based committed CCS relation). Let \(R_q := \mathbb{Z}_q[X]/(X^d+1)\) where \(q\) is a prime and \(d\) is a power of two. Let \(pp := (pp_{cm}, pp_{ccs})\) be the public parameters where \(pp_{cm} = (s, m, B < q/2, A)\) is the public parameter for \(R_{cm}^B\) (Eq. (8)) and \(pp_{ccs} = (n_r, n_c, ℓ, n_s, deg, ℓ_{in}, ñ)\) (defined in Definition 4.1) is for \(R_{ccs}\) (over \(R_q\)).

Set \(ℓ := m/n_c \in \mathbb{N}\). It further satisfies that \(B^ℓ \geq q/2\). Let \(G := I_{n_c} \otimes [1, B, \ldots, B^{ℓ−1}] \in \mathbb{Z}^{n_c \times m}\) be the gadget matrix. The indexed relation \(R_{ccms}^B\) is defined as

\[
R_{ccms}^B := \left\{ \left(pp, x := (cm \in R_q^n, x_{ccs} \in R_q^{ℓ_0}); w := (\bar{f} \in R_q^n, w_{ccs} \in R_q^{n−κ−1}) \right) \ s.t. \right. \\
\left. (pp_{cm}, cm; \bar{f}) \in R_{cm}^B \land (pp_{ccs}, x_{ccs}, w_{ccs}) \in R_{ccs} \land (z_{ccs} = G \times \bar{f}) \right\}
\]

where \(z_{ccs} := (z_{ccs}, 1, w_{ccs}) \in R_q^{n_r}\).

Remark 4.2. The constraint \(z_{ccs} = G \times \bar{f}\) is used to capture that \(\bar{f}\) is the “base-\(B\)” representation of the original witness \(x_{ccs}\) in CCS. Crucially, consider a witness \((\bar{f}, w_{ccs})\) for instance \((cm, x_{ccs})\). We know that \(\bar{f}\) is a low-norm opening for the Ajtai binding commitment \(cm\) given that \((cm, \bar{f})\) is in \(R_{cm}^B\). This implies that \(w_{ccs}\) is also bound to \(cm\) because the equation \(x_{ccs}, 1, w_{ccs}) = G \times \bar{f}\) holds.

Remark 4.3. We set \((x_{ccs}, 1, w_{ccs}) = G \times \bar{f}\) only for ease of exposition. Note that the integrity of \(x_{ccs}\) is already guaranteed by the verifier checks. Thus it suffices to decompose \(w_{ccs}\) to \(\bar{f}\) and check the statement \(w_{ccs} = G \times \bar{f}\).

The expanded relation. Similar to the approach in Section 3.1, to construct a folding scheme for \(R_{comp} := R_{ccms}^B\), we introduce a new relation \(R_{acc} := R_{evalccms}^B\) that augments \(R_{ccms}^B\) with a multilinear evaluation statement. Note that in \(R_{evalccms}^B\), we replace the high-degree custom gate relation \(R_{ccms}^B\) with a linearized relation \(R_{ccs}\). Like the linearization framework from Hypernova [KS23a], this adjustment is necessary because our folding scheme runs sum-checks to reduce the norm constraints and the high-degree custom gate constraints in \(R_{ccms}^B\) into linearized statements. Hence, we must modify the accumulated relation accordingly. Notably, \(R_{evalccms}^B\) extends \(R_{eval}^B\) from Eq. (9).

Definition 4.3 (Lattice-based linearized CCS relation). Let \(pp := (pp_{cm}, pp_{ccs})\) be the public parameters in Definition 4.2 where \(ℓ := m/n_c \in \mathbb{N}\) and \(B^ℓ \geq q/2\). Without loss of generality, we assume that the number of rows \(n_r\) in CCS matrices equals to the committed witness length \(m\). (We can always pad dummy constraints/witnesses to enforce \(n_r = m\).)

We define the linearized CCS relation \(R_{ccs}\) as the set of tuples

\[
(pp_{ccs}; (\bar{f} \in R_q^{log m}; \{u_j\}_{j=1}^t \in R_q^t; x_{ccs} \in R_q^{ℓ_0}; h \in R_q); w_{ccs} \in R_q^{n−ℓ_{in}−1})
\]
such that for all $j \in [t]$:

$$u_j = \sum_{\tilde{b} \in \{0,1\}^{\log n_c}} \text{mle}[M_j](\tilde{r}, \tilde{b}) \cdot \text{mle}[z_{\text{ccs}}](\tilde{b}).$$

(32)

Here $\text{mle}[M_j] \in \mathcal{R}_q^{\leq 1}[X_1, \ldots, X_{\log n_c} + \log n_c]$ and $\text{mle}[z_{\text{ccs}}] \in \mathcal{R}_q^{\leq 1}[X_1, \ldots, X_{\log n_c}]$ are the multilinear extensions of matrix $M_j \in \mathbb{R}^{n_r \times n_c}$ and $z_{\text{ccs}} := (w_{\text{ccs}}, h, x_{\text{ccs}}) \in \mathbb{R}^{n_c}$ respectively.

$\mathcal{R}_B^{\text{eval}}$ is defined as

$$\mathcal{R}_B^{\text{eval}} := \begin{cases}
(\text{pp}, x := (\tilde{r}, cm, \hat{v}, [u_j]_{j=1}^t, x_{\text{ccs}}, h), \omega := (\tilde{f} \in \mathbb{R}_q^{m, w_{\text{ccs}}}) \text{ s.t.} \\
(z_{\text{ccs}} = G\tilde{f} \land (pp_{cm}, (cm, \tilde{r}, \hat{v}); \tilde{f}) \in \mathcal{R}_B^{\text{eval}} \\
\land (pp_{\text{ccs}}, (\tilde{r}, [u_j]_{j=1}^t, x_{\text{ccs}}, h), w_{\text{ccs}}) \in \mathcal{R}_{\text{lccs}})
\end{cases},$$

(33)

where $G := I_{n_c} \otimes [1, B, \ldots, B^{\ell-1}] \in \mathbb{Z}_q^{n_c \times m}$ and $\mathcal{R}_B^{\text{eval}}$ is defined in Eq. (9).

4.2 A Generic Folding Scheme for CCS

In this section, we construct a folding scheme for $\mathcal{R}_{\text{acc}} := \mathcal{R}_B^{\text{eval}}$ and $\mathcal{R}_{\text{comp}} := \mathcal{R}_B^{\text{cmccs}}$. Or equivalently, it is a reduction of knowledge (Definition 2.5) from $\mathcal{R}_B^{\text{eval}} \times \mathcal{R}_B^{\text{cmccs}}$ to $\mathcal{R}_B^{\text{eval}}$. The scheme is presented for modularity and illustration purposes. In Section 4.3, we will introduce an optimized version with better efficiency.

Similar to the strategy in Section 3.2, the construction consists of three steps.

Step 1: Linearization. First, we reduce the relation $\mathcal{R}_B^{\text{eval}} \times \mathcal{R}_B^{\text{cmccs}}$ to $\mathcal{R}_B^{\text{eval}} \times \mathcal{R}_B^{\text{eval}}$ via a protocol Π_{ccs} (Figure 5) that reduces $\mathcal{R}_B^{\text{cmccs}}$ to $\mathcal{R}_B^{\text{eval}}$. Intuitively, it runs a sum-check protocol to reduce the high-degree custom gates check to a degree-1 check (e.g., a multilinear evaluation check).

Step 2: Decomposition. Next, using a protocol Π_{ccsdec} (Figure 6), we reduce the relation $\mathcal{R}_B^{\text{eval}} \times \mathcal{R}_B^{\text{eval}}$ to a relation

$$(\mathcal{R}_B^{\text{eval}})^{2k} := \mathcal{R}_B^{\text{eval}} \times \cdots \times \mathcal{R}_B^{\text{eval}}$$

where b, k are chosen such that $b^k = B$. We note that Π_{ccsdec} is an adaptation to Π_{dec} (Figure 2) with similar analysis.

Step 3: Folding. Finally, we reduce $(\mathcal{R}_B^{\text{eval}})^{2k}$ back to $\mathcal{R}_B^{\text{eval}}$ using a protocol Π_{ccsfold} (Figure 7). Note that Π_{ccsfold} is an adaptation to Π_{fold} (Figure 3) with similar analysis.

By the composition theorems for reductions of knowledge (Theorem 2.1, Theorem 2.2), the composed protocol $\Pi_{\text{mccsfold}} := \Pi_{\text{ccsfold}} \circ \Pi_{\text{ccsdec}} \circ \Pi_{\text{ccs}}$ is a reduction of knowledge from $\mathcal{R}_B^{\text{eval}} \times \mathcal{R}_B^{\text{cmccs}}$ to $\mathcal{R}_B^{\text{eval}}$ as desired. We formally state the result in Theorem 4.2.
Theorem 4.1. Let $\mathcal{R}_q \cong \mathbb{Z}_q^d$. Let $c \in \mathbb{N}$ and let \mathcal{C}, \mathcal{C}_{small} be strong sampling sets where $1/|\mathcal{C}|, 1/|\mathcal{C}_{small}| = \text{negl}(\lambda)$ and the expansion factor $T := ||\mathcal{C}_{small}||_{op} \leq c$ (Definition 6). Let $pp_{cm} := (\kappa, m, A, B < q/2)$ and $pp_{ccs} := (n_r := m, n_c, t, n_s, \deg, \ell_{in}, [M]_{j=1}^t, [S]_{i=1}^n)$ be the public parameters such that $B^{m/n_c} \geq q/2$ and $\text{MSIS}_{n,m,ST,B}^d$ is hard. Set b, k such that $2kc(b-1) < B$ and $b^k = B$. Let Π_{ccs}, Π_{ccsdec}, $\Pi_{ccsfold}$ be the protocols specified in Figure 5, Figure 6 and Figure 7, respectively. The composed protocol $\Pi_{mccsfold} := \Pi_{ccsfold} \circ \Pi_{ccsdec} \circ \Pi_{ccs}$ is a public-coin reduction of knowledge from relation $\mathcal{R}_{evalccs}^B \times \mathcal{R}_{cmccs}^B$ to $\mathcal{R}_{evalccs}^B$.

Proof. The protocol is public-coin as the three subprotocols are all public-coin. The Theorem follows from Lemma 4.1, Lemma 4.2, Theorem 4.2 and the knowledge composition theorems (Theorem 2.1 and Theorem 2.2).

Remark 4.4 (Supporting small prime modulus). The same optimization in Section 3.3 can be used to extend Theorem 4.2 to support small modulus q. Namely, Theorem 4.2 still holds when $\mathcal{R}_q \cong \mathbb{Z}_q^{d/\tau}$ for any $\tau \in \mathbb{N}$ that divides d.

4.2.1 Linearization: The reduction from \mathcal{R}_{cmccs}^B to $\mathcal{R}_{evalccs}^B$

By Theorem 2.2, to reduce from $\mathcal{R}_{evalccs}^B \times \mathcal{R}_{cmccs}^B$ to $\mathcal{R}_{evalccs}^B \times \mathcal{R}_{evalccs}^B$, it suffices to construct a protocol that reduces \mathcal{R}_{cmccs}^B (Eq. (31)) to $\mathcal{R}_{evalccs}^B$ (Eq. (33)). We describe the protocol Π_{ccs} in Figure 5. The protocol is inspired by the linearization technique from Hypernova [KS23b]. Intuitively, it runs a sum-check to reduce the high-degree CCS relation to a multilinear evaluation relation that has degree 1.

Lemma 4.1. Π_{ccs} is a reduction of knowledge from \mathcal{R}_{cmccs}^B to $\mathcal{R}_{evalccs}^B$ for any bound $B \in \mathbb{N}$.

Proof. We defer the proof to Appendix A.2.

4.2.2 Decomposition: The reduction from $(\mathcal{R}_{evalccs}^B)^2$ to $(\mathcal{R}_{evalccs}^B)^{2k}$

Next, we describe the decomposition step that splits the witnesses and reduces the norms. By Theorem 2.2, it suffices to construct a protocol Π_{ccsdec}^\ast that reduces $\mathcal{R}_{evalccs}^B \times \mathcal{R}_{evalccs}^B$ to $(\mathcal{R}_{evalccs}^B)^{2k}$, and the reduction of knowledge from $\mathcal{R}_{evalccs}^B \times \mathcal{R}_{evalccs}^B$ to $(\mathcal{R}_{evalccs}^B)^{2k}$ is $\Pi_{ccsdec} := \Pi_{ccsdec}^\ast \times \Pi_{ccsdec}^\ast$ that runs two instances of Π_{ccsdec} in parallel.

More generally, we construct a reduction of knowledge from a relation \mathcal{R}_{ccshom}^B to $(\mathcal{R}_{ccshom}^B)^k$. Here \mathcal{R}_{ccshom}^B is a generalization of $\mathcal{R}_{evalccs}^B$ (Definition 33) where we generalize Ajtai commitments and gadget matrix multiplications to arbitrary \mathcal{R}_q-module homomorphisms. Let $\mathcal{U} := \mathcal{R}_q^t$ for some $t \in \mathbb{N}$. Let $\mathcal{M} \in \mathcal{U}^{(n+n_m) \times m}$ denote a matrix over module \mathcal{U}. Let $\mathcal{L} : \mathcal{R}_q^m \rightarrow \mathcal{Y}$ and $\mathcal{L}_w : \mathcal{R}_q^m \rightarrow \mathcal{R}_q^{n+n_m}$ denote some \mathcal{R}_q-module homomorphisms. We
Parameters: A strong sampling set \(\mathcal{C} := \mathcal{Z} \subseteq \mathcal{R} \) (Definition 2.1)

Input: \(x := (cm, x_{\text{ccs}}) \in \mathcal{R}_q^c \times \mathcal{R}_q^{\ell_m} \) and \(w := (f, w_{\text{ccs}}) \in \mathcal{R}_q^m \times \mathcal{R}_q^{n_c-\ell_m-1} \)

Output: \(x_o := (\vec{r}_o \in \mathcal{R}_q^{\log m}, \hat{v} \in \mathcal{R}_q, cm, [u_j \in \mathcal{R}_q]_{j=1}^t, x_{\text{ccs}}, 1) \) and \(w_o := (f, w_{\text{ccs}}) \)

The protocol \(\langle P(pp,x;w), V(pp,x) \rangle \):

1. \(V \to P: V \) sends \(P \) a random vector \(\vec{\beta} \leftarrow \mathcal{C}_m^{\log m} \).
2. \(P \leftrightarrow V: \) Let \(z_{\text{ccs}} := (x_{\text{ccs}}, 1, w_{\text{ccs}}) \) and let \(\deg \) denote the CCS gate degree, define the polynomial \(g \in \mathcal{R}_q^{\leq \deg + 1}[X_1, \ldots, X_{\log m}] \)

\[g(\vec{x}) := eq(\vec{\beta}, \vec{x}) \cdot \left(\sum_{i=1}^{n_s} c_i \cdot \left[\prod_{j \in S_i} \left(\sum_{\vec{b} \in \{0,1\}^{\log n_c}} \text{mle}[M_j](\vec{x}, \vec{b}) \cdot \text{mle}[z_{\text{ccs}}](\vec{b}) \right) \right) \right). \]

\(P \) and \(V \) run a sum-check protocol for the claim \(\sum_{\vec{b} \in \{0,1\}^{\log m}} g(\vec{b}) = 0 \).

Let \(\vec{r}_o \leftarrow \mathcal{C}_m^{\log m} \) be the sum-check challenge vector. The protocol reduces to a random evaluation check \(g(\vec{r}_o) \equiv s \) for some \(s \in \mathcal{R}_q \).

3. \(P \to V: P \) sends \(V \) the values \((\hat{v}, [u_j]_{j=1}^t) \) where \(\hat{v} := \text{mle}[f](\vec{r}_o) \) and for every \(j \in [t] \), \(u_j \) is computed as

\[u_j := \sum_{\vec{b} \in \{0,1\}^{\log n_c}} \text{mle}[M_j](\vec{r}_o, \vec{b}) \cdot \text{mle}[z_{\text{ccs}}](\vec{b}). \]

4. \(V \) computes \(e := eq(\vec{\beta}, \vec{r}_o) \) and checks that

\[e \cdot \left(\sum_{i=1}^{n_s} c_i \cdot \prod_{j \in S_i} u_j \right) \equiv s. \]

5. \(V \) outputs \(x_o := (\vec{r}_o, \hat{v}, cm, [u_j]_{j=1}^t, x_{\text{ccs}}, 1) \). \(P \) outputs \(w_o := (f, w_{\text{ccs}}) \).

Figure 5: The protocol \(\Pi_{\text{ccs}} \) that reduces \(\mathcal{R}_{\text{cmccs}}^B \) to \(\mathcal{R}_{\text{evalccs}}^B \).
define the relation R^B_{ccshom} as

$$R^B_{\text{ccshom}} := \left\{ \begin{array}{l}
\text{x} := (\bar{r} \in R^m_q, \bar{v} \in R_q, \mathbf{u} \in \mathcal{U}, y \in \mathcal{Y}, x_w \in R^n_q); \\
\text{w} := (\bar{f} \in R^m_q, \bar{w} \in R^n_q) \text{ s.t.} \\
(\mathcal{L}(\bar{r}, \bar{v}, y); \bar{f}) \in R^B_{\text{hom}} \land \\
(z = \mathcal{L}_w(\bar{f})); (\mathbf{u} = \langle \bar{M} \times \text{tensor}(\bar{r}), z \rangle)
\end{array} \right\}, \quad (34)$$

where R^B_{hom} is defined in Eq. (10), $\text{z} := (x_w | \bar{w}) \in R^n_q$ and $\text{tensor}(\bar{r}) := \bigotimes_{i=1}^{\log m} (\bar{r}_i, 1 - \bar{r}_i) \in R^m_q$.

is the tensor product of $\{(\bar{r}_i, 1 - \bar{r}_i)\}_{i=1}^{\log m}$.

Remark 4.5. R^B_{evalccs} is a special case of R^B_{ccshom} where $R^B_{\text{eval}} := R^B_{\text{eval}}: \mathcal{L}_w(\bar{f}) := G\bar{f}$ (where G is the gadget matrix); $\mathcal{U} := R^t_q$, $\mathcal{x}_w := (x_{\text{ccs}}, \mathbf{h})$; and $\bar{M} := (M_1, \ldots, M_t)$, i.e., each entry $(e_1, \ldots, e_t) \in \mathcal{U}$ of \bar{M} maps to the entries $(e_i)'_{i=1}^t$ in matrices M_1, \ldots, M_t respectively.

We describe the protocol Π^*_ccsdec in Figure 6. The differences from Π^*_dec (Figure 2) are highlighted in red, which are for computing the u-values and the CCS instances.

Input: $\text{x} := (\bar{r}, \bar{v}, y, \mathbf{u}, x_w)$ and $\text{w} := (\bar{f}, \bar{w})$

Output: $[x_i = (\bar{r}_i, \bar{v}_i, y_i, \mathbf{u}_i, x_{w,i}), w_i = (\bar{f}_i, \bar{w}_i)]_{i=0}^{k-1}$

The protocol $(P(pp, x; w), V(pp, x))$:

1. P computes $(\bar{f}_0, \ldots, \bar{f}_{k-1}) \leftarrow \text{split}_{b,k}(\bar{f})$ (Eq. (11)).
2. $P \rightarrow V : P$ sends V the values $[y_i, \bar{v}_i, \mathbf{u}_i, x_{w,i}]_{i=0}^{k-1}$ where

$$y_i := \mathcal{L}(\bar{f}_i), \quad \bar{v}_i := \text{mle} \left[\bar{f}_i \right](\bar{r}), \quad \mathbf{u}_i := \langle \bar{M} \times \text{tensor}(\bar{r}), \mathcal{L}_w(\bar{f}_i) \rangle, \quad x_{w,i} := \mathcal{L}_w(\bar{f}_i)[1, n_{\text{in}}]$$

3. V checks that $\sum_{i=0}^{k-1} b^i \cdot [y_i, \bar{v}_i, \mathbf{u}_i, x_{w,i}] \neq [y, \bar{v}, \mathbf{u}, x_w]$.
4. V outputs $[x_i = (\bar{r}_i, \bar{v}_i, y_i, \mathbf{u}_i, x_{w,i})]_{i=0}^{k-1}$. P outputs $[w_i = (\bar{f}_i, \mathcal{L}_w(\bar{f}_i))]_{i=0}^{k-1}$.

Figure 6: The protocol Π^*_ccsdec that reduces R^B_{ccshom} to $(R^B_{\text{ccshom}})^k$.

Lemma 4.2. Fix $R_q \cong \mathbb{Z}_d^q$. For any $B < q/2$ and any b, k such that $b^k = B$, Π^*_ccsdec is a reduction of knowledge from R^B_{ccshom} to $(R^B_{\text{ccshom}})^k$.

Proof. The proof is similar to that for Lemma 3.3. We defer the proof to Appendix A.3. \[\square\]
4.2.3 Folding: The reduction from $(R_{\text{evalccs}}^b)^{2k}$ to R_{evalccs}^B

Finally, we describe the core protocol Π_{ccsfold} that folds $2k$ instance-witness pairs of R_{evalccs}^b into a single instance-witness pair in $R_{\text{acc}} := R_{\text{evalccs}}^B$.

Similar to the treatment in Section 3.2.3, in the following, we assume that the homomorphism L in the public parameter is $2B$-relaxed binding (Section 2.3) for challenge space $\mathcal{C}_{\text{small}}$. For example, R_{evalccs}^b is a special case of R_{ccshom}^b by Remark 4.5 and the homomorphism $L(\vec{f}) := A\vec{f}$ is $2B$-relaxed binding given the hardness of MSIS$^{\infty,q}_{\kappa,m,STB}$ where $T = \|\mathcal{C}_{\text{small}}\|_{\text{op}}$.

We describe the protocol Π_{ccsfold} in Figure 7, which reduces from $(R_{\text{ccshom}}^b)^{2k}$ to R_{ccshom}^B. The approach is similar to that in Section 3.2.3, where we fold the witnesses using small random scalars from a strong sampling set, and run sum-check to enable extractions of small-norm witnesses. For brevity, we assume that $U := \mathbb{R}_{\eta}$, hence $t = 1$ and the matrix $M = M_1 \in \mathbb{R}_{(n+n_{in}) \times m}$. The protocol naturally extends to the case when $U := \mathbb{R}_{\eta}^t$ for $t > 1$: we set $\{u_i, \eta_i\}$ to be elements over \mathbb{R}_{η}^t, sample challenges $\{\zeta_i\}$ over $\mathcal{C}_{\text{small}}^t$ and replace the multiplications between ζ_i and u_i (and η_i) with inner product operations.

Theorem 4.2. Let $\mathbb{R}_{\eta} \approx \mathbb{Z}_{\eta}^d$. Let $\mathcal{C}, \mathcal{C}_{\text{small}}$ be strong sampling sets where $1/|\mathcal{C}|, 1/|\mathcal{C}_{\text{small}}| = \text{negl}(\lambda)$ and $\mathcal{C}_{\text{small}}$ has expansion factor at most c (Definition 6). Let $\mathbb{P} := (m, n, n_{in}, B, L, L_w)$ be the public parameter where the homomorphism L is $2B$-relaxed binding (Section 2.3) for challenge space $\mathcal{C}_{\text{small}}$. For any b, k such that $2kc(b - 1) < B$, Π_{ccsfold} is a reduction of knowledge from $(R_{\text{ccshom}}^b)^{2k}$ to R_{ccshom}^B.

Proof. The proof is similar to that for Theorem 3.2. We defer the proof to Appendix A.4.

4.3 An Optimized Folding Scheme for CCS

Recall that the folding scheme in Section 4.2 requires two sequential sumcheck executions. The first sumcheck is in the linearization protocol Π_{ccs} (Figure 5) that reduces R_{cmccs}^B to R_{evalccs}^B; the second sumcheck is in the folding protocol Π_{ccsfold} (Figure 7) that reduces $(R_{\text{evalccs}}^b)^{2k}$ to R_{evalccs}^B. Note that a decomposition protocol (Figure 6) for witness norm deduction is executed in the middle, thus it is unclear how to batch the two sumchecks into one given that the witnesses of the two sumchecks are quite different.

Fortunately, with a simple trick, we build a folding scheme for CCS that executes sumcheck only once. If the CCS gate degree deg and the range parameter b are set such that $\text{deg} \approx 2b$, both the prover time and verifier complexity can be improved by a factor of two. Moreover, the prover saves the computation of an Ajtai commitment to the witness.

The core observation is that we can decompose the witness before running the linearization protocol. Recall that in the committed CCS relation R_{cmccs}^B in Definition 4.2, the instance consists of a CCS public input x_w and a commitment cm, and the witness is a pair of vectors (\vec{f}, \vec{w}) such that
Parameters: $c \in \mathbb{N}$, $C := \mathbb{Z}_q \subseteq \mathbb{R}_q$ and a strong sampling set C_{small} with $\|C_{\text{small}}\|_\infty \leq c$

Input: $x := [x_i := (\mathbf{r}_i, \mathbf{v}_i, y_i, u_i, x_{w,i})]_{i=1}^{2k}$ and $\mathbf{w} := [w_i := (\mathbf{r}_i, \mathbf{w}_i)]_{i=1}^{2k}$

Output: $x_o := (\mathbf{r}_o, \mathbf{v}_o, y_o, u_o, x_{w,o})$, $\mathbf{w}_o := (\mathbf{r}_o, \mathbf{w}_o)$

The protocol $(P, \mathbb{P}; V, \mathbb{V})$:

1. $V \rightarrow P : V$ sends $P [\alpha_i, \mu_i, \zeta_i]_{i=1}^{2k} \leftarrow (C \times C)^{2k}$ and $\tilde{\mathbf{b}} \leftarrow C^{\log m}$.

2. $V \leftrightarrow P : P$ and V run a sum-check protocol for the claim

\[\sum_{\mathbf{b} \in \{0,1\}^{\log m}} g(\mathbf{b}) = \sum_{i=1}^{2k} (\alpha_i \mathbf{v}_i + \zeta_i \mathbf{u}_i). \]

Here the polynomial $g(\mathbf{x}) \in \mathbb{R}_q^{2k}[X_1, \ldots, X_{\log m}]$ is defined as

\[g(\mathbf{x}) := \sum_{i=1}^{2k} [\alpha_i g_{1,i}(\mathbf{x}) + \mu_i g_{2,i}(\mathbf{x}) + \zeta_i g_{3,i}(\mathbf{x})], \]

where for all $i \in [2k]$,

\[g_{1,i}(\mathbf{x}) := eq(\mathbf{r}_i, \mathbf{x}) \cdot \text{mle} [\mathbf{f}_i](\mathbf{x}), \quad g_{2,i}(\mathbf{x}) := eq(\tilde{\mathbf{b}}, \mathbf{x}) \cdot \prod_{j=-(b-1)}^{b-1} (\text{mle} [\mathbf{f}_i](\mathbf{x}) - j), \]

\[g_{3,i}(\mathbf{x}) := eq(\mathbf{r}_i, \mathbf{x}) \cdot \left(\sum_{\mathbf{b} \in \{0,1\}^{\log(n+n_i)}} \text{mle} [M_1](\mathbf{x}, \mathbf{b}) \cdot \text{mle} [z_i](\mathbf{b}) \right). \]

Here $z_i := (x_{w,i}||\mathbf{w}_i)$ for all $i \in [2k]$. The protocol reduces to check the evaluation claim $g(\mathbf{r}_o) \equiv s$ where $\mathbf{r}_o \leftarrow C^{\log m}$ is the sum-check challenge sampled by V.

3. $P \rightarrow V : P$ sends V values $[\theta_i := \text{mle} [\mathbf{f}_i](\mathbf{r}_o), \eta_i]_{i=1}^{2k}$, where for all $i \in [2k]$,

\[\eta_i := \sum_{\mathbf{b} \in \{0,1\}^{\log(n+n_i)}} \text{mle} [M_1](\mathbf{r}_o, \mathbf{b}) \cdot \text{mle} [z_i](\mathbf{b}). \]

4. V computes $[\mathbf{e}_i := eq(\mathbf{r}_i, \mathbf{r}_o)]_{i=1}^{2k}$ and $\mathbf{e}^* := eq(\tilde{\mathbf{b}}, \mathbf{r}_o)$ and checks that

\[s = \sum_{i=1}^{2k} \left[\alpha_i \mathbf{e}_i \theta_i + \mu_i \mathbf{e}^* \cdot \prod_{j=1-b}^{b-1} (\theta_i - j) + \zeta_i \mathbf{e}_i \eta_i \right]. \]

5. $V \rightarrow P : V$ sends P random challenges $[\rho_i]_{i=1}^{2k} \leftarrow C_{\text{small}}^{2k}$.

6. V output $x_o := (\mathbf{r}_o, \mathbf{v}_o, y_o, u_o, x_{w,o})$ where $\text{NTT}(\mathbf{v}_o) = \sum_{i=1}^{2k} \text{RotSum}(\rho_i, \text{NTT}(\theta_i))$ and $[y_o, u_o, x_{w,o}] := \sum_{i=1}^{2k} \rho_i \cdot [y_i, \eta_i, x_{w,i}]$.

7. P outputs $\mathbf{f}_o = \sum_{i=1}^{2k} \rho_i \cdot \mathbf{f}_i$ and $\mathbf{w}_o := \mathcal{L}_{w}(\mathbf{f}_o)[n_{in} + 1, n_{in} + n]$.

Figure 7: The protocol Π_{ccsfold} that reduces $(\mathcal{R}_{\text{ccshom}}^b)^{2k}$ to $\mathcal{R}_{\text{ccshom}}^B$. The \mathcal{R}_q-module \mathcal{U} is set to $\mathcal{U} := \mathcal{R}_q$ for brevity.
• \((x_{\text{ccs}}, \vec{w})\) is in the CCS relation,
• \(\vec{f}\) is an opening of \(cm\) with norm less than \(B\), and
• \(\vec{w} = G \times \vec{f}\) where \(G\) is the gadget matrix.

Instead of transforming the CCS relation to \(R_{\text{cmccs}}^B\), we consider a variant of \(R_{\text{cmccs}}^B\) called \textit{split CCS relations}. Set parameter \(b, k \in \mathbb{N}\) such that \(b^k = B\). The instance now consists of \(k\) vectors \([x_{w,i}]_{i=1}^k\) and \(k\) commitments \([cm]_{i=1}^k\), the witness is \(([\vec{f}]_{i=1}^k, \vec{w})\) such that

• \(x_{\text{ccs}} := \sum_{i=1}^k b^{i-1} \cdot x_{w,i}, \vec{w}\) is in the CCS relation,
• For every \(i \in [k]\), \(\vec{f}_i\) is an opening of \(cm\) with norm less than \(b\), and
• \(\vec{w} = G \times \vec{f}\) where \(G\) is the gadget matrix and \(\vec{f} := \sum_{i=1}^k b^{i-1} \vec{f}_i\).

We provide the formal definition below.

Definition 4.4 (Split CCS relation). Let \(R_q := \mathbb{Z}_q[X]/(X^d + 1)\), \(pp := (pp_{\text{cm}}, pp_{\text{ccs}})\) be the parameters defined in Definition 4.2 where \(pp_{\text{cm}} = (\kappa, m, B < q/2, A)\) and \(pp_{\text{ccs}} = (n_r, n_c, t, n_s, \deg, \ell, n)\). Set \(\ell := m/n_c \in \mathbb{N}\) where \(B^\ell \geq q/2\). Let \(G := I_{n_c} \otimes [1, B, \ldots, B^{\ell - 1}] \in \mathbb{Z}_q^{\ell \times m}\) and set \(b, k \in \mathbb{N}\) such that \(b^k = B\). The indexed relation \(R_{\text{split cc}}^{b, k}\) is defined as

\[
R_{\text{split cc}}^{b, k} := \left\{ \begin{array}{l}
(x_{\text{ccs}} := \sum_{i=1}^k b^{i-1} \cdot x_{\text{ccs}, i}, \vec{f} \in \mathbb{R}_{\text{cm}}^{b, k} \\
\forall i \in [k] : (pp_{\text{cm}}, cm, \vec{f}_i) \in \mathbb{R}_{\text{cm}}^{b, k} \\
\mathbb{R}_{\text{ccs}} := (x_{\text{ccs}} := \sum_{i=1}^k b^{i-1} \cdot x_{\text{ccs}, i}, 1, \vec{w}_{\text{ccs}}) = G \times \left(\sum_{i=1}^k b^{i-1} \cdot \vec{f}_i\right) \end{array} \right\}.
\]

(37)

Set \(b, k \in \mathbb{N}\) such that \(b^k = B\). It is clear that if \(([x_{w,i}, cm]_{i=1}^k, ([\vec{f}]_{i=1}^k, \vec{w}))\) is in the CCS relation \(R_{\text{split cc}}^{b, k}\), then \(([x_{w,i}, cm], (\vec{f}, \vec{w}))\) is in relation \(R_{\text{cmccs}}^B\), where \([x_{\text{ccs}}, cm] := \sum_{i=1}^k b^{i-1} \cdot [x_{w,i}, cm]\) and \(\vec{f} := \sum_{i=1}^k b^{i-1} \vec{f}_i\). Hence, there is a straightforward reduction from \(R_{\text{cmccs}}^B\) to \(R_{\text{split cc}}^{b, k}\). Therefore, to build a folding scheme for CCS, it suffices to set \(R_{\text{comp}} := R_{\text{split cc}}^{b, k}\) and \(R_{\text{acc}} := R_{\text{eval cc}}^{b, k}\) and construct a reduction of knowledge from \(R_{\text{comp}} \times R_{\text{acc}}\) to \(R_{\text{acc}}\). The construction consists of two steps.

Step 1: Decomposition. Run protocol \(\Pi^*_\text{cdec}\) (Figure 6), to reduce \(R_{\text{acc}} := R_{\text{eval cc}}^{b, k}\) to

\[
(R_{\text{eval cc}}^{b, k})^k := \frac{R_{\text{eval cc}}^{b, k} \times \cdots \times R_{\text{eval cc}}^{b, k}}{k}.
\]

Step 2: Batch Folding. Reduce \(R_{\text{split cc}}^{b, k} \times (R_{\text{eval cc}}^{b, k})^k\) back to \(R_{\text{eval cc}}^{b, k}\) by running the protocol \(\Pi_{\text{batch}}\) below.

4.3.1 Batch Folding: The reduction from \(R_{\text{split cc}}^{b, k} \times (R_{\text{eval cc}}^{b, k})^k\) to \(R_{\text{eval cc}}^{b, k}\)

Using the techniques from previous sections, we can perceive all of the following statements (underlying \(R_{\text{split cc}}^{b, k}\) and \(R_{\text{eval cc}}^{b, k}\)) as sumcheck statements:
• The multilinear evaluation statements underlying \((R_{eval}^b)^k\);
• The linearized CCS statements (i.e. \(R_{lccs}\) from Definition 4.3) underlying \((R_{eval}^b)^k\);
• The range proof statements (with norm \(b\)) underlying \(R_{splitccs}^{h,k}\) and \((R_{eval}^b)^k\);
• The high-degree CCS gate-check (i.e. Definition 4.1) underlying \(R_{splitccs}^{h,k}\).

Intuitively, the protocol \(\Pi_{\text{batch}}\) runs a sumcheck protocol to reduce all statements above into a folded statement in \(R_{eval}^B\). We formally describe the protocol below. To make the notation consistent with the folding protocol \(\Pi_{\text{cct}}\) (Figure 7), we denote \(L\) and \(L_w\) as the module homomorphisms \(L(\tilde{f}) := A\tilde{f}\) and \(L_w(\tilde{f}) := G\tilde{f}\) (where \(G\) is the gadget matrix), and we set \(n_{in} := \ell_{in} + 1\) and \(n := n_c\).

The protocol \(\Pi_{\text{batch}}\) that reduces \((R_{splitccs}^{h,k}) \times (R_{eval}^b)^k\) to \(R_{eval}^B\):

Parameters: \(c \in \mathbb{N}\), strong sampling sets\(^2\) \(C := \mathbb{Z}_q \subseteq R_q\) and \(C_{\text{small}}\) with \(\|C_{\text{small}}\|_{op} \leq c\)

Input: \(\cdot x := \{x_i := (\tilde{x}_1, \tilde{x}_2, [u_{i,j}]_{j=1}^t, \tilde{r}_{u,j})\}_{i=1}^k, x' := \{x_{ccs,i}, y'_i\}_{i=1}^k\) and

\(\cdot \omega := \{\omega_i := (\tilde{r}_{i1}, \tilde{w}_i)\}_{i=1}^k, \omega' := \{w_{ccs}, \tilde{y}_i\}_{i=1}^k\)

Output: \(x_o := (\tilde{r}_o, \tilde{v}_o, y_o, [u_{j,t}]_{j=1}^t, \tilde{r}_{v,j}, \omega_o := (\tilde{f}_o, \tilde{w}_o)\)

The protocol \((P(pp, x; \omega), V(pp, x))\):

1. \(V \rightarrow P : V\) sends \(P\)

\[
\tilde{\beta} \leftarrow C^{\log m}, \quad \gamma \leftarrow C, \quad [\alpha_i, \mu_i, \mu_{ij}']_{i=1}^k \leftarrow (C \times C \times C)^k, \quad [\delta_{ij}']_{i=1}^k \leftarrow C_i \in [k], j \in [t].
\]

2. \(V \leftrightarrow P : P\) and \(V\) run a sum-check protocol for the claim

\[
\sum_{\tilde{b} \in \{0,1\}^{\log m}} g(\tilde{b}) = \sum_{i=1}^k \alpha_i \tilde{v}_i + \sum_{i=1}^k \sum_{j=1}^t \delta_{ij}' u_{ij}.
\]

Let \(d := \max(2b, \deg + 1)\). The polynomial \(g(x) \in R_q^{\leq d}[X_1, \ldots, X_{\log m}]\) is defined as

\[
g(\tilde{x}) := \gamma g_{ccs}(\tilde{x}) + \sum_{i=1}^k \alpha_i g_{eval}(\tilde{x}) + \mu_i g_{rg}(\tilde{x}) + \sum_{i=1}^k \sum_{j=1}^t \delta_{ij}' g_{lccs}(\tilde{x}) + \sum_{i=1}^k \mu_{ij} g_{rg}(\tilde{x}).
\]

(38)

Set \(x_{ccs} := \sum_{i=1}^k b^{i-1} \tilde{x}_{ccs,i}\) and let \(z_{ccs} := (x_{ccs}, 1, w_{ccs})\). The polynomial \(g_{ccs}'\) is

\[
g_{ccs}'(\tilde{x}) := \text{eq}(\tilde{\beta}, \tilde{x}) \cdot \left(\sum_{i=1}^{n_u} c_i \cdot \prod_{j \in [t]} \left(\sum_{y \in \{0,1\}^m} \text{mle} [M_j](\tilde{x}, y) \cdot \text{mle} [z_{ccs}](y) \right) \right).
\]

(39)

\(^2C\) can be any strong sampling sets, we set \(C := Z_q\) for efficiency reasons.
For all $i \in [k],$

\[g_{\text{eval}}^i(\vec{x}) := eq(\vec{r}_i, \vec{x}) \cdot \text{mle} \left[\hat{f}_i \right] (\vec{x}), \]

\[g_{\text{tg}}^i(\vec{x}) := eq(\vec{r}, \vec{x}) \cdot \prod_{j=-(b-1)}^{b-1} \left(\text{mle} \left[\hat{f}_i \right] (\vec{x}) - j \right), \]

\[g_{\text{tg}}^i(\vec{x}) := eq(\vec{r}, \vec{x}) \cdot \prod_{j=-(b-1)}^{b-1} \left(\text{mle} \left[\hat{f}_i \right] (\vec{x}) - j \right). \]

For all $i \in [k], j \in [t],$ denote $\mathbf{z}_i := (x_{w,i} | \bar{w}_i) = \mathcal{L}_w(\bar{r}_i),$

\[g_{\text{lccs}}(\vec{x}) := eq(\vec{r}_i, \vec{x}) \cdot \left(\sum_{\vec{y} \in \{0,1\}^{\log(n+1n_p)}} \text{mle} [M_j] (\vec{x}, \vec{y}) \cdot \text{mle} [\mathbf{z}_i] (\vec{y}) \right). \]

The protocol reduces to check the evaluation claim $g(\vec{r}_o) \overset{?}{=} s$ where $\vec{r}_o \leftarrow \mathcal{C}^{\log n}$ is the sum-check challenge sampled by $V.$

3. $P \rightarrow V : P$ sends V values

\[\left[\theta_i := \text{mle} \left[\hat{f}_i \right] (\vec{r}_o); \theta'_i := \text{mle} \left[\hat{f}'_i \right] (\vec{r}_o) \right]_{i=1}^k; \]

For all $i \in [k], j \in [t],$ denote by $\mathbf{z}_i := \mathcal{L}_w(\bar{r}_i)$ and $\mathbf{z}'_i := \mathcal{L}_w(\bar{r}'_i).$ P send V

\[\eta^{i,j} := \sum_{\vec{y} \in \{0,1\}^{\log(n+1n_p)}} \text{mle} [M_j] (\vec{r}_o, \vec{y}) \cdot \text{mle} [\mathbf{z}_i] (\vec{y}), \]

and

\[\eta^{i,j} := \sum_{\vec{y} \in \{0,1\}^{\log(n+1n_p)}} \text{mle} [M_j] (\vec{r}_o, \vec{y}) \cdot \text{mle} [\mathbf{z}'_i] (\vec{y}). \]

4. V computes $[e_i := eq(\vec{r}_i, \vec{r}_o)]_{i=1}^k$ and $e^* := eq(\vec{r}, \vec{r}_o)$ and checks that

\[s \overset{?}{=} \sum_{i=1}^k \left[\alpha_i e_i \theta_i + \mu_i e^* \prod_{j=1-b}^{b-1} (\theta_i - j) \right] + \sum_{i=1}^k \sum_{j=1}^t \zeta^{i,j} e_i \eta^{i,j} \]

\[+ \sum_{i=1}^k \mu'_i e^* \prod_{j=1-b}^{b-1} (\theta'_i - j) + \gamma e^* \left(\sum_{i=1}^{n_x} c_i \cdot \prod_{j \in S_i} \left(\sum_{\ell=1}^k \eta^{i,j} \beta_{t-1} \right) \right) \]

5. $V \rightarrow P : V$ sends P random challenges $[\rho_i]_{i=1}^k \leftarrow \mathcal{C}^{n}$ and $[\rho'_i]_{i=1}^k \leftarrow \mathcal{C}^{n}.$
Lemma 4.3. Let \(p \in \text{Definition 4.2} \) where \(\negl \) such that \(B \) is defined as in Lemma 4.3.

Theorem 4.3. We obtain the theorem below.

Remark 4.6 (Supporting small prime modulus). The optimization in Section 3.3 can be used to extend Theorem 4.3 to support small modulus \(q \), i.e., Theorem 4.3 still holds when \(\mathcal{R}_q \cong \mathbb{F}_{q^r}^d \) for any \(r \in \mathbb{N} \) that divides \(d \).

IVC proof compression. In the final step of IVC/PCD, the final IVC verifier needs to check witnesses for two statements, one in \(\mathcal{R}_{\text{comp}} \) and one in \(\mathcal{R}_{\text{acc}} \). A naive approach is letting the prover send the statement witnesses, and the verifier checks the statements in the clear. We can further improve the verifier complexity by generating another SNARK (e.g., Stark or LaBRADOR) that proves the correctness of the two final statements. Then the verifier only needs to check the SNARK proof.
However, in the optimized folding scheme for CCS, the statement in \(\mathcal{R}_{\text{comp}} := \mathcal{R}_{\text{splitccs}}^{b,k} \) is more expensive to prove, as it involves checking the openings of \(k \) (rather than 1) commitments. Fortunately, we observe that in the last IVC step, there is no need to translate the online IVC statement into a committed CCS relation statement, because the committed CCS relation is only helpful when you need to fold the statement further. Instead, it is sufficient to translate the IVC statement as a CCS relation statement. The SNARK only needs to prove the IVC statement (plus the statement in the accumulated relation \(\mathcal{R}_{\text{acc}} \)) without checking additional commitment openings inside the SNARK circuit.

Alternatively, one can also fold the last two statements, one in \(\mathcal{R}_{\text{comp}} \) and one in \(\mathcal{R}_{\text{acc}} \), into a statement in \(\mathcal{R}_{\text{acc}} \), so the SNARK only needs to prove a single statement in \(\mathcal{R}_{\text{acc}} \) (plus the folding verification logic). There is no need to prove any logic related to \(\mathcal{R}_{\text{comp}} \). Additionally, we can make the final SNARK proof zero knowledge, thereby hiding secret information.

5 Performance Estimates

We specify the complexity of the folding schemes in Table 1. For CCS relations, we consider the optimized folding scheme in Section 4.3. Recall that \(\tau \) denote the extension field degree such that \(\mathcal{R}_q \cong \mathbb{F}_{q^\tau} \), \(\kappa \) is the rank of the MSIS matrix. \((n_r, n_c, t, n_s, \text{deg}, \ell_{in})\) is the parameter where \(n_r, n_c \) are the number of rows and columns of the CCS matrices, \(t \) is the number of matrices in the CCS relation, \(n_s \) is the number of sub-gates per CCS constraint, and \(\ell_{in} \) is the public input length.

The instance consists of \(\tau + \kappa + t + \ell_{in} + 1 \) elements in \(\mathcal{R}_q \) for storing the values \([\bar{v}_i]_{i=1}^\tau \), \([u_j]_{j=1}^t \), the commitment \(cm \in \mathcal{R}_q^\kappa \) and the public input \(x_w \); additionally it takes \(\log m \) field elements to store the challenge vector \(\vec{r} \) in the strong sampling set \(\mathcal{C} \cong \mathbb{F}_{q^\tau} \).

Recall that \(b, k \) are the parameters such that \(b^k \) equals the norm bound \(B \). The prover takes \(O(mk(\kappa + t))) \mathcal{R}_q \) multiplications to compute the commitments and \(\bar{u} \)-values for the decomposed witness (Figure 6); and it takes \(O(mD\log^2 D) \mathcal{R}_q \) multiplications to run the sum-check in protocol \(\Pi_{\text{batch}} \) (Section 4.3.1), where \(D := \max(2b, \text{deg}) \).

The verifier takes \(k \cdot (\kappa + \tau + t + \ell_{in} + 1) \mathcal{R}_q \) multiplications to check the correctness of decomposition in Figure 6, and \(2k \cdot (\kappa + \tau + t + \ell_{in} + 1) \mathcal{R}_q \) multiplications to fold the decomposed instances in \(\Pi_{\text{batch}} \) (Section 4.3.1). It takes \(n_s \cdot \text{deg} + k(\tau + t + 4b\tau) \mathcal{R}_q \) multiplications to check the high-degree random evaluation claims and takes \(2D\log m \mathcal{R}_q \) multiplications\(^3\) and \(D\log m \) hashes to run the sumcheck verifiers in \(\Pi_{\text{batch}} \). Additionally, it takes \(2(k+1)\log m \) field multiplications to compute the \(k + 1 \) of \(eq \) values. We note that our sum-check over \(\mathcal{R}_q \) can be understood as batching \(d/\tau \) sum-checks over field \(\mathbb{F}_{q^\tau} \); thus the verifier can simulate all sum-check operations over \(\mathbb{F}_{q^\tau} \) without any NTT inversions.

To highlight its practicality, we consider the following example instantiation.

\(^3\)Note that each univariate random evaluation takes \(\approx 2D \) multiplication in \(\mathcal{R}_q \) to compute, where \(D \) is the degree of the univariate polynomial.
We set \(B \) which holds if \(\log 3 \) sampling set, because the difference of any two distinct elements has infinite norm at most \(d \). Since \(1 \) or 2. Since \(d = 64 \), we have that \(\log 4, 2^{128} \). Moreover, \(C_{\text{small}} \) is a strong sampling set, because the difference of any two distinct elements has infinite norm at most \(3 < \frac{q^{1/16}}{2} = 4 \) and thus is invertible by Lemma 2.3. By Lemma 2.2, \(C_{\text{small}} \) has expansion factor at most \(2d = 128 \). By the MSIS hardness bound in Section 2.2, we can achieve 128-bit security if

\[
0.5 \cdot (\log m + \log d) + \log(8\|C_{\text{small}}\|_{op} \cdot B) \approx 2\sqrt{\log 1.0045d\kappa \log q},
\]

which holds if \(\log B \leq 29 - 0.5 \cdot \log m \).

For simplicity, we set the CCS parameters \((t, n_s, \ell_{in})\) where \(\ell_{in} = 0, t = n_s = 1 \). Assume that the number of CCS constraints (over \(\mathcal{R}_q \)) in the IVC/PCD recursive circuit is \(m \leq 2^{26} \). We set \(B := 2^{16} \) so that \(\log B \leq 29 - 0.5 \cdot \log m \leq 16 \). We emphasize that by Remark 4.1, \(m \) constraints over \(\mathcal{R}_q \) can be used to pack \(md/4 = 16m \) constraints over \(\mathbb{F}_{q^4} \), so an upper bound \(m \leq 2^{26} \) leads to an upper bound \(2^{30} \) on the number of constraints over \(\mathbb{F}_{q^4} \), which is usually more than enough.

Efficiency comparison with Hypernova and Protostar.

Let’s see the concrete instance size, prover cost and verifier circuit size. We set \(b := 2 \) and \(k := 16 \) so that \(b^k = 2^{16} = B \) and \(2kc(b-1) = 2 \cdot 16 \cdot 128 \cdot 1 < B = 2^{16} \) as required in Theorem 4.2.

The instance size is \(\tau + \kappa + t + \ell_{in} + 1 = 22 \) \(\mathcal{R}_q \)-elements and \(\log m \mathbb{F}_{q^4} \)-elements. E.g.,
for \(m := 2^{26} \), this is \(\approx 12 \)KB. The recursive folding verifier takes

\[
|V| \approx (1648 + (2D + 2) \cdot \log m) \cdot |\mathcal{R}_q| + D \log m \cdot |H|
\]

CCS constraints. Here \(|\mathcal{R}_q|\) denotes the number of constraints for a single \(\mathcal{R}_q \) multiplication, \(|H|\) denotes the number of constraints for simulating a two-to-one hash. Note that \(|\mathcal{R}_q| \leq 1\) as it takes at most one constraint to simulate an \(\mathcal{R}_q \) multiplication; by [Bou+23], we can set \(|H| \leq 100\). E.g., for \(m := 2^{16} \), this amounts to \(\approx 1680 + 1632 \cdot D \) constraints.

In comparison, Hypernova [KS23b] requires \(\approx 1 |G| + \deg \cdot \log m |H| + (2\deg \cdot \log m + O(1)) |F| \) constraints and Protostar [BC23] requires \(\approx 3 |G| + (\deg + O(1)) \cdot (|F| + |H|) \) constraints, where \(|G|\) denotes the circuit size for a group scalar multiplication; \(|F|\) denotes the number of constraints for a (non-native) field operation. The caveat of [KS23b; BC23] is that they need to use a cycle-curve pair, and the recursive verifier circuit needs to be represented in both curves, which involves many non-native field arithmetic simulations. We set \(|G| \approx 1500\) given the newest data from [KS23a], and set \(|F| \approx 64\) according to [KPS18]. Setting \(m := 2^{16} \), for Hypernova, it takes \(\approx 2500 + 4672 \deg \) constraints; for Protostar, it takes \(\approx 6500 + 164\deg \) constraints. Hence LatticeFold has fewer constraints than Hypernova for all \(\deg \geq 2 \); and it has comparable number of constraints with Protostar when the gate degree is not large. However, even when the gate degree is large, recall that LatticeFold is plausibly post-quantum secure, whereas Protostar is not.

Remark 5.1. After fixing the parameter \(b \), instead of setting \(k \) such that \(b^k = B \), we can set \(k^* \) as the minimal integer such that \(b^{k^*} \geq 2k^*(b - 1) \|C_{\text{small}}\|_{\text{op}} \) where \(\|C_{\text{small}}\|_{\text{op}} \) is the expansion factor of \(C_{\text{small}} \). In each folding step, we decompose the folded witness to \(k^* \leq k \) parts, leading to an efficiency improvement. This works because after each folding step, the norm of the folded witness is always less than \(2k^*(b - 1) \|C_{\text{small}}\|_{\text{op}} \leq b^{k^*} \). This also indicates that we can use different decomposition factors \(k^*, k \) for relations \(\mathcal{R}_{\text{acc}} \) and \(\mathcal{R}_{\text{comp}} \).

Remark 5.2 (Supporting non-power-of-two cyclotomic rings). Our current analysis requires \(\mathcal{R} := \mathbb{Z}[X]/(X^d + 1) \) to be a power-of-two cyclotomic ring. We conjecture that the scheme remains secure when using a non-power-of-two cyclotomic ring and leave the formal analysis for future work.

6 Discussion of an Alternative Approach

In this section we discuss another technique for proving a norm bound on a committed vector, called random projection. We explain why this approach, which may at first seem appealing, does not seem to work in the context of folding.

Suppose we aim to fold \(2k \) instance-witness pairs \([x_i, w_i]_{i=1}^{2k} \) of an Ajtai commitment-based relation (e.g., \(\mathcal{R}_{\text{eval}}^b \) from Eq. (9)) to a single instance-witness pair \((x_o, w_o) \) in a related relation (e.g., \(\mathcal{R}_{\text{eval}}^B \) where \(B > b \)). To extract knowledge of \([w_i]_{i=1}^{2k} \) (with \(\|w_i\|_\infty < b \)
for all $i \in [2k]$) from a folding prover P^* that outputs correct witness in $\mathcal{R}_{\text{val}}^B$, the most naive approach is to have the prover directly transmit $[w_i]_{i=1}^{2k}$ and let the verifier check that $[w_i]_{i=1}^{2k}$ have small norms and are consistent with the folded instance. This certainly does not work as the verifier has complexity linear to the witness size while constructing a IVC/PCD requires folding verifiers to be sublinear. Alternatively, the prover could generate a proof demonstrating that each element of $[w_i]_{i=1}^{2k}$ has a small norm, but this method is excessively costly due to the requirement for $\Theta(m)$ range-check circuits, where m is the witness length.

To circumvent these challenges, a natural idea is to leverage the random projection technique from LaBRADOR [BS23]: The verifier samples and sends a random matrix $\Pi \in \mathbb{Z}_q^{\lambda d \times md}$ with small norms, where λ is the security parameter and m is the size of $\vec{w} := [w_i]_{i=1}^{2k}$. Subsequently, the prover sends $\vec{v} := \Pi \vec{w} \in \mathbb{Z}_q^{\lambda d}$ and the verifier checks that $\|\vec{v}\|_{\infty}$ is small and \vec{v} is computed honestly. Notably, the size of \vec{v} is independent of the witness size. Additionally, if $\|\vec{v}\|_{\infty}$ has a small norm, by the Johnson-Lindenstrauss Lemma [WL84; GHL22; BS23], the original witnesses also have small norms with high probability (over the random choice of Π). Nonetheless, several challenges arise in the context of folding schemes.

First, the size of the matrix Π is large, making it impractical for the verifier to generate Π itself. A potential solution involves having the verifier generate a short random seed s, which the prover then uses to generate Π and subsequently proves the correctness of Π's generation. However, this approach introduces significant complexity in terms of circuit size, as simulating PRG computations in circuits for a large output is prohibitively expensive.

Second, how does the verifier check that \vec{v} was computed honestly? It’s impractical for the verifier to directly receive \vec{w} and verify its correctness, as this would result in a linear-sized verifier. An alternative approach could be to have the prover generate another instance-witness pair (\vec{x}', w') for proving $\vec{v} = \Pi \vec{w}$ and then fold it together with the original instances. However, this leads to a chicken-and-egg problem: how do we check that the committed witness in w' has a small norm? The most viable solution appears to involve the prover computing a post-quantum secure SNARK π for proving that $\vec{v} = \Pi \vec{w}$ and $\Pi = \text{PRG}(s)$ (where s is the short random seed), with the verifier subsequently verifying the correctness of π. Concretely, this solution is inefficient due to the high complexity of the SNARK verifier circuit. Furthermore, since we can already construct IVC/PCD directly from SNARKs [BCCT13; BCTV14], employing folding in conjunction with SNARKs serves little purpose.

Even if we manage to overcome the aforementioned challenges, we still encounter an inherent obstacle: the random projection idea cannot guarantee perfect completeness: Even if the prover is honest and provides input witnesses with genuinely small norms, there remains a small probability that the random projection $\vec{v} = \Pi \vec{w}$ would yield large norms, resulting in rejection by the verifier. We note that perfect completeness is essential for constructing an IVC/PCD [Bün+21], and it appears inherently difficult to construct a
folding scheme that achieves perfect completeness using the random projection approach.

7 Conclusion, open problems, and future work

We presented LatticeFold, the first lattice folding scheme based on the Module SIS problem. Our folding protocol ensures that the witnesses extracted from a folded statement always satisfy the required norm bounds. This is done by requiring the prover to prove that its starting witnesses are all low norm. This proof is done efficiently using the sumcheck protocol.

There are many directions for future work. First, it is not difficult to extend the scheme to support the Lasso [STW23b; ST23] lookup argument. This is because the sumcheck used by Lasso is compatible with the sumchecks in LatticeFold. Second, it remains to implement LatticeFold and experiment with its real-world performance. We estimate that LatticeFold is competitive with the best pre-quantum folding schemes. It is likely to be the most performant folding system for computations using high-degree CCS. LatticeFold could be an example where (plausible) post-quantum security leads to better performance.

Finally, it would be interesting to explore the performance of LatticeFold using other lattice-based additively homomorphic commitments schemes, for example, ones based on SIS rather MSIS. In addition, recall that much of the work in the design of LatticeFold is due to the fact that the Ajtai commitment scheme [Ajt96] is binding only when the committed vector is low norm. If we had a lattice-based linearly homomorphic commitment that was binding for arbitrary vectors, irrespective of their norm, then one could more directly use that commitment scheme in the Hypernova [KS23b] or Protostar [BC23] systems. Such commitment schemes exist (e.g., [Bau+18b]), however they are not succinct: the commitment string is quite long. Using them would result in a SNARK with poor prover performance and long proofs. Designing a succinct lattice-based linearly homomorphic commitment scheme for committing to vectors of arbitrary norm is an interesting area for further research.

Acknowledgments. We thank the anonymous CRYPTO reviewers and Wilson Nguyen for their valuable feedback, and Srinath Setty for bringing up the question of batching all Sumchecks. This work was funded by NSF, DARPA, the Simons Foundation, UBRI, and NTT Research. Opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of DARPA.
References

A Deferred Proofs

A.1 Multilinear Evaluation Mapping Lemma

We derive a lemma from the fact that every ring homomorphism $\phi : R \rightarrow S$ induces a natural homomorphism $\phi' : R[X] \rightarrow S[X]$ over the polynomial rings. In the special case where $R_q \cong \mathbb{Z}_q^d$, consider a vector $\vec{f} \in R_q^m$ and a vector $\hat{\vec{f}} \in R_q^m$ such that $\text{NTT}(\hat{\vec{f}}) = \text{Coef}(\vec{f})$. Let f_1, \ldots, f_d be the multilinear extensions of the columns of $\text{Coef}(\vec{f}) \in \mathbb{Z}_q^{m \times d}$. The lemma asserts that a multilinear evaluation of $\text{mle}[\hat{\vec{f}}]$ can be mapped to the evaluations of f_1, \ldots, f_d (over \mathbb{Z}_q) through the NTT isomorphism. This lemma helps maintain the invariant of the evaluation statement $\hat{\vec{v}} = \text{mle}[\hat{\vec{f}}](\vec{r})$ after folding the witness $\hat{\vec{f}}$, even if the evaluation point $\vec{r} \in R_{\log m}$ changes after the folding.

Lemma A.1. Let $R_q \cong \mathbb{F}_{q^d}$ for some $\tau \in \mathbb{N}$ where $\tau \mid d$. Let $m \in \mathbb{N}$ be a power of two. For any $\vec{f} \in R_q^m$, let $\hat{\vec{f}} := (\hat{f}_1, \ldots, \hat{f}_\tau) \in R_q^{m \times \tau}$ denote the vector such that $\text{NTT}(\hat{\vec{f}}) = \text{Coef}(\vec{f}) \in \mathbb{Z}_q^{m \times d}$. Let $\vec{r} \in R_q^{\log m}$ and denote $(\vec{r}_1^*, \ldots, \vec{r}_d^*) \in (\mathbb{F}_{q^\tau})^{d/\tau}$ the columns of $\text{NTT}(\vec{r})$. For every $i \in [\tau]$, we have that $\text{mle}[\hat{\vec{f}}](\vec{r}) \in R_q$ is mapped to

$$
\left(\text{mle} \left[\text{Coef}_{1+(i-1)\cdot d/\tau}(\hat{\vec{f}}) \right] (\vec{r}_i^*), \ldots, \text{mle} \left[\text{Coef}_{i\cdot d/\tau}(\hat{\vec{f}}) \right] (\vec{r}_{d/\tau}^*) \right) \in \mathbb{F}_{q^\tau}
$$

by the NTT isomorphism. Recall that $\text{mle}[\cdot]$ denotes multilinear extensions (Definition 2.4) and $\text{Coef}_j(\vec{f}) \in \mathbb{Z}_q^m$ is the jth $(1 \leq j \leq d)$ column of $\text{Coef}(\vec{f})$.

Proof. By definition of $\hat{\vec{f}}$, we have that

$$
\text{NTT}(\hat{\vec{f}}) = \left[\text{NTT}(\hat{f}_1), \ldots, \text{NTT}(\hat{f}_\tau) \right] = \left[\text{Coef}_1(\vec{f}), \ldots, \text{Coef}_d(\vec{f}) \right].
$$

Also observe that

$$
\left(\text{mle}[\hat{f}_1](\vec{r}), \ldots, \text{mle}[\hat{f}_\tau](\vec{r}) \right) = \left(\hat{f}_j, \bigotimes_{i=1}^{\log m} (\vec{r}_i, 1 - \vec{r}_i) \right)_{j=1}^\tau
$$

63
where \(\otimes \) denotes tensor product over \(\mathcal{R}_q \). By the Chinese Remainder Theorem, the NTT map is an isomorphism, and the lemma follows from the properties of an isomorphism.

\(\square \)

A.2 Proof of Lemma 4.1

Proof. Public reducibility: Given input instance \(x = (cm, x_{ccs}) \) and transcript that includes \((\vec{r}_o, \vec{v}, [u_j]_{j=1}^{l}) \), the algorithm \(f \) outputs \(x_o = (\vec{r}_o, \vec{v}, cm, [u_j]_{j=1}^{l}, x_{ccs}, 1) \) if the verifier check passes; and \(\bot \) otherwise.

Completeness: Let \((x; o) := (cm, x_{ccs}); (\vec{f}, o_{ccs}) \leftarrow A(pp) \) denotes adversary \(A \)'s output for \(\mathcal{R}_1 := \mathcal{R}^B_{ccs} \), where \(pp \leftarrow \text{Setup}(1^\lambda) \) is the public parameter. WLOG, we assume that \((pp, x; o) \in \mathcal{R}^B_{ccs} \) (where \(\mathcal{R}^B_{ccs} \) is specified in Definition 4.2). The protocol \(\langle P(pp, x, o), V(pp, x) \rangle \) proceeds as follows:

1. After running the sum-check and receiving the challenge vector \(\vec{r}_o \in \mathcal{C}^{\log m} \), \(P \) sends \(V \) the value \(\vec{v} := \text{mle} \left[\vec{f} \right] (\vec{r}_o) \). Moreover, let \(z_{ccs} := (x_{ccs}, 1, o_{ccs}) \), for every \(j \in [t] \), \(P \) sends \(u_j := \sum_{\vec{b} \in \{0, 1\}^{\log n_c}} \text{mle} [M_j] (\vec{r}_o, \vec{b}) \cdot \text{mle}[z_{ccs}] (\vec{b}) \).

2. \(V \) outputs \(\bot \) and halts if the check at Step 4 fails.

3. \(P \) outputs \(o_o := o = (\vec{r}_o, o_{ccs}) \). \(V \) outputs \(x_o := (\vec{r}_o, \vec{v}, cm, [u_j]_{j=1}^{l}, x_{ccs}, 1) \).

First, by definitions of \([u_j]_{j=1}^{l}\), we have that \(V \) passes the check at Step 4 and accepts.

Next we argue that the protocol’s output \((pp, x; o_o)\) is in the relation \(\mathcal{R}_2 := \mathcal{R}^B_{evalccs} \) (Eq. (33)) and completeness holds. It suffices to check that \(z_{ccs} = \mathcal{G} \vec{f} \) and certain statements are in \(\mathcal{R}^B_{eval} \) and \(\mathcal{R}_{ccs} \) respectively. We argue them one by one:

1. \(z_{ccs} = \mathcal{G} \vec{f} \) because \((pp, x; o) \in \mathcal{R}^B_{ccs} \) by assumption.
2. \((pp, (\vec{r}_o, \vec{v}, cm); \vec{f}) \) is in \(\mathcal{R}^B_{eval} \) because (i) \(\vec{v} = \text{mle} \left[\vec{f} \right] (\vec{r}_o) \) and (ii) \((pp, cm, \vec{f}) \) is in \(\mathcal{R}^B_{cm} \) by the assumption that \((pp, x; o) \) is in \(\mathcal{R}_1 := \mathcal{R}^B_{ccs} \).
3. \((pp_{ccs}, (\vec{r}_o, [u_j]_{j=1}^{l}, x_{ccs}; h); o_{ccs}) \) is in \(\mathcal{R}_{ccs} \) by the assignments of \([u_j]_{j=1}^{l}\).

Knowledge soundness: Let \((x := (cm, x_{ccs}), \text{state}) \leftarrow A(pp) \) denote adversary \(A \)'s chosen input for \(\mathcal{R}_1 := \mathcal{R}^B_{ccs} \), where \(pp \leftarrow \text{Setup}(1^\lambda) \) is the public parameter. The extractor \(\text{Ext} \) proceeds as follows:

1. Simulate the protocol \(\langle P^* (pp, x, \text{state}), V(pp, x) \rangle \) where \(P^* \) is the malicious prover.
2. Abort and output \(\bot \) if \(V \) rejects.

3. Otherwise, let \((x_o, o_o)\) be the protocol output where \(x_o := (\vec{r}_o, \vec{v}, cm, [u_j]_{j=1}^{l}, x_{ccs}, 1) \) and \(o_o := (\vec{r}_o, o_{ccs}) \). Abort and output \(\bot \) if \((pp, x_o, o_o) \notin \mathcal{R}^B_{evalccs} \) (Eq. (33)).

4. Otherwise, if \((pp, x_o, o_o) \in \mathcal{R}^B_{evalccs} \), the extractor outputs \(o := (\vec{f}, o_{ccs}) \).
Let E_{bad} denote the bad event that (i) V accepts and the protocol’s output (x_o, w_o) satisfies that $(pp, x_o, w_o) \in R_2 := R_{evalccs}^B$ but (ii) $(pp, x; w)$ is not in $R_1 := \tilde{R}^{B_{\text{cmccs}}}_{ccs}$ (Eq. (31)). To prove knowledge soundness, it suffices to argue that $\Pr[E_{\text{bad}}] \leq \frac{2b \log m}{|C|}$.

Note that if (pp, x_o, w_o) is in $R_2 := \tilde{R}^{B_{\text{evalccs}}}_{ccs}$ (Eq. (33)), the following hold: (i) $(z_{ccs} = \tilde{G})$, (ii) $(pp, cm; \tilde{f})$ is in R_{ccm}^B, and (iii) $(pp_{ccs}, (R_o, [u]_{i=1}^{|C|}, x_{ccs}, 1); w_{ccs})$ is in R_{ccs} (Eq. (32)). From (i) and (ii), the sum-check polynomial g is fixed before sampling R_o, as the witness z_{ccs} is bound to cm. Additionally, from (iii) and because the verifier check at Step 4 passes, the sum-check random evaluation $g(R_o) \equiv s$ passes. Therefore, if $\sum_{\tilde{b} \in \{0, 1\}^{\log m}} g(\tilde{b}) \neq 0$, by sumcheck soundness, the probability that $(pp, x_o, w_o) \in R_{evalccs}^B$ is at most $\frac{2b \log m}{|C|}$ (over the sum-check challenges).

Next we argue that if $(pp_{ccs}, x_{ccs}; w_{ccs}) \notin R_{ccs}$, then $\sum_{\tilde{b} \in \{0, 1\}^{\log m}} g(\tilde{b}) \neq 0$ with high probability. Define multilinear polynomial $p(\tilde{x})$ as

$$p(\tilde{x}) := \sum_{\tilde{b} \in \{0, 1\}^{\log m}} eq(\tilde{x}, \tilde{b}) \cdot \left(\prod_{i=1}^{\log m} c_i \prod_{j \in S_i} \left(\sum_{y \in \{0, 1\}^{\log n_c}} \text{mle} [M_j](\tilde{b}, y) \cdot \text{mle} [z_{ccs}](y) \right) \right).$$

By definition of g, it’s clear that $\sum_{\tilde{b} \in \{0, 1\}^{\log m}} g(\tilde{b}) = 0$ if and only if $p(\tilde{\beta}) = 0$. Moreover, $(pp_{ccs}, x_{ccs}; w_{ccs}) \notin R_{ccs}$ (Definition 4.1) implies that $p(\tilde{x}) \neq 0$ for some $\tilde{x} \in \{0, 1\}^{\log m}$ and $p(\tilde{x})$ is not a zero polynomial. Since $\tilde{\beta} \leftarrow C^{\log m}$ is uniformly chosen from the sampling set C (Defn 2.1), by the Generalized Schwartz-Zippel Lemma (Lemma 2.4), the probability that $p(\tilde{x}) \neq 0$ while $p(\tilde{\beta}) = 0$ is at most $\log m/|C|$.

In summary, the probability that E_{bad} occurs is at most $\frac{\log m}{|C|} + \frac{2b \log m}{|C|}$, which finishes the proof.

A.3 Proof of Lemma 4.2

Proof. Public reducibility: Given instance $x = (\vec{r}, \vec{v}, y, x_w)$ and transcript $[\hat{v}, y, u_i, x_w]_{i=0}^{k-1}$, one outputs $[x_i := (\vec{r}, \vec{v}, y, u_i, x_w)]_{i=0}^{k-1}$ if the verifier checks pass; otherwise it outputs ⊥.

Completeness: Let $(x, \nu) := (\vec{r}, \vec{v}, y, x_w, (\vec{f}, \vec{w})) \leftarrow A(pp)$ denote adversary A’s chosen instance-witness pair for $R_1 := \tilde{R}^{B_{ccshom}}_{ccs}$ (Eq. (34)), where $pp := (L, L_w, M) \leftarrow \text{Setup}(1^k)$ is the public parameter. WLOG we assume that $(pp, x; w)$ is in R_{ccshom}^B. The protocol $\langle P(pp, x, w), V(pp, x) \rangle$ proceeds as follows:

1. P computes $\vec{F} := (\vec{f}_0, \ldots, \vec{f}_{k-1}) := \text{split}_{b,k}(\vec{f})$ (Eq. (11)) and sends V values

$$y_i := L(\vec{f}_i), \quad \hat{v}_i := \text{mle} [\vec{f}_i] (\vec{r}), \quad u_i := \langle M \times \text{tensor}(\vec{r}), L_w(\vec{f}_i) \rangle, \quad (x_w, i || \vec{w}_i) := L_w(\vec{f}_i).$$

for every $i \in [0, k]$.

65
2. V outputs \(\perp \) and halts if the check \(\sum_{i=0}^{k-1} b^i \cdot [y_i, \hat{v}_i, u_i, x_{w,i}] = [y, \hat{v}, u, x_w] \) fails.

3. P outputs \([\tilde{f}_i, \tilde{w}_i]_{i=0}^{k-1}\). V outputs \([x_i := (\tilde{f}_i, \hat{v}_i, y_i, u_i, x_{w,i})]_{i=0}^{k-1}\).

We first show that if V accepts, then the protocol's output satisfies that for all \(i \in [0, k) \),

\[
(pp, (\tilde{f}_i, \hat{v}_i, y_i, u_i, x_{w,i}); (\tilde{f}_i, \tilde{w}_i)) \in R_{ccshom}^b.
\]

This follows given how \([y_i, \hat{v}_i, u_i, x_{w,i}]_{i=0}^{k-1}\) are computed, and because \(\|\tilde{f}_i\|_\infty < b \) for all \(i \in [0, k) \) by the property of the algorithm \(\text{split}_{b,k}(\tilde{f}) \).

It remains to argue that \(V \) will accept, that is, the check \(\sum_{i=0}^{k-1} b^i \cdot [y_i, \hat{v}_i, u_i, x_{w,i}] = [y, \hat{v}, u, x_w] \) passes. By Lemma 3.4, we have that

\[
\sum_{i=0}^{k-1} b^i \cdot y_i = y, \quad \sum_{i=0}^{k-1} b^i \cdot \hat{v}_i = \hat{v}.
\]

Since \(L_w \) is an \(R_q \)-module homomorphism, by the same argument for proving \(\sum_{i=0}^{k-1} b^i \cdot y_i = y \), it also holds that \(\sum_{i=0}^{k-1} b^i \cdot x_{w,i} = x_w \). Finally, we have that

\[
\sum_{i=0}^{k-1} b^i \cdot u_i = \sum_{i=0}^{k-1} b^i \cdot \left\langle \overline{M} \times \text{tensor}(\overline{\tilde{f}}), L_w(\tilde{f}_i) \right\rangle = \left\langle \overline{M} \times \text{tensor}(\overline{\tilde{f}}), \sum_{i=0}^{k-1} b^i \cdot L_w(\tilde{f}_i) \right\rangle = \left\langle \overline{M} \times \text{tensor}(\overline{\tilde{f}}), L_w(\overline{\tilde{f}}) \right\rangle = u.
\]

The 1st equality is by definition of \([u_i]_{i=0}^{k-1}\); the 2nd equality is by the property of inner products; the 3rd equality holds because \(L_w \) is an \(R_q \)-module homomorphism; the 4th equality is by definition of decomposition (Eq. (11)); the last equality holds because \((pp, x; w)\) is in \(R_1 := R_{ccshom}^B \) (Eq. (34)) by assumption, whereas \(R_{ccshom}^B \) checks that

\[
\langle \overline{M} \times \text{tensor}(\overline{\tilde{f}}), L_w(\overline{\tilde{f}}) \rangle = u.
\]

Therefore, \(V \) will accept and thus completeness holds.

Knowledge soundness: Let \((x := (\hat{v}, y, u, x_w), \text{state}) \leftarrow \mathcal{A}(pp)\) denote adversary \(\mathcal{A} \)'s chosen input instance for \(R_1 := R_{ccshom}^B \), where \(pp := (\mathcal{L}, L_w, \overline{M}) \leftarrow \text{Setup}(1^\lambda) \) is the public parameter. The extractor \(\text{Ext} \) proceeds as follows:

1. Simulate the protocol \(\langle P^*(pp, x, \text{state}), V(pp, x) \rangle \) where \(P^* \) is the malicious prover.

2. Output \(\perp \) if \(V \) rejects. Otherwise let \((x_o, w_o) := [(\tilde{f}_i, \hat{v}_i, y_i, u_i, x_{w,i}); (\tilde{f}_i, \tilde{w}_i)]_{i=0}^{k-1}\) be the protocol output (note that \(\tilde{f} \) is the same as that in the input instance \(x \) to pass the verification check). The extractor outputs witness \(w := (\tilde{f}, \tilde{w}) \) where

\[
\tilde{f} := \sum_{i=0}^{k-1} b^i \cdot \tilde{f}_i, \quad \tilde{w} := \sum_{i=0}^{k-1} b^i \cdot L_w(\tilde{f}_i)[n_{in} + 1, n_{in} + n].
\]
To prove knowledge soundness, it suffices to show that if V accepts and the output (x_o, w_o) satisfies that $(pp, x_o, w_o) \in \mathcal{R}_2 := (\mathcal{R}_{ccshom}^b)_k$, then the extracted witness w satisfies that $(pp, x, w) \in \mathcal{R}_1 := \mathcal{R}_{ccshom}^b$.

By Lemma 3.5, we have that $(\vec{f}, \vec{v}, y; \vec{f}) \in \mathcal{R}_2 \hom$ if $[(\vec{f}, \vec{v}; i); i]_{i=0}^{k-1}$ is in $(\mathcal{R}_\hom^b)^k$. By definition of \mathcal{R}_\hom^b (Eq. (34)), it remains to argue that

$$z_i := (x_w; \vec{w}) = \mathcal{L}_w(\vec{f}) \forall i \in [0, k) \implies z := (x_w|\vec{w}) = \mathcal{L}_w(\vec{f});$$

$$u_i = \langle \vec{M} \times \text{tensor}(\vec{f}), z_i \rangle \forall i \in [0, k) \implies u = \langle \vec{M} \times \text{tensor}(\vec{f}), z \rangle.$$ \hspace{1cm} (43)

We first prove Eq. (43). By the verifier check $\sum_{i=0}^{k-1} b^i \cdot x_w; i = x_w$ and by Eq. (42), we have that $z = \sum_{i=0}^{k-1} b^i \cdot z_i$. Since \mathcal{L}_w is an \mathcal{R}_q-module homomorphism, Eq. (43) holds by the same argument as in Lemma 3.2 for proving $y = \mathcal{L}(\vec{f})$ (where we replace y, \mathcal{L} with z, \mathcal{L}_w respectively).

Similarly, Eq. (44) holds because

$$u = \sum_{i=0}^{k-1} b^i \cdot u_i = \sum_{i=0}^{k-1} b^i \cdot \langle \vec{M} \times \text{tensor}(\vec{f}), z_i \rangle = \langle \vec{M} \times \text{tensor}(\vec{f}), \sum_{i=0}^{k-1} b^i \cdot z_i \rangle = \langle \vec{M} \times \text{tensor}(\vec{f}), z \rangle$$

where the 1st equality is by the verifier check; the 2nd equality follows from the premise in Eq. (44); the 3rd equality follows from the linearly homomorphic property of inner products; the last equality holds as we’ve proved previously that $z = \sum_{i=0}^{k-1} b^i \cdot z_i$.

In summary, $(\vec{f}, \vec{v}, y; \vec{f})$ is in \mathcal{R}_2^b and Eq. (43), Eq. (44) hold true. Therefore, conditioned on that $(pp, [(\vec{f}, \vec{v}; i, y, u, x_w; i); (\vec{f}, \vec{w}; i)]_{i=0}^{k})$ is in $\mathcal{R}_2 := (\mathcal{R}_{ccshom}^b)_k$, the extracted witness (\vec{f}, \vec{w}) will satisfy that $(pp, (\vec{f}, \vec{v}; y, u, x_w; (\vec{f}, \vec{w}))$ is in $\mathcal{R}_1 := \mathcal{R}_{ccshom}^b$, which completes the proof.

\section*{A.4 Proof of Theorem 4.2}

\textbf{Proof. Public reducibility:} Given input instances $[\vec{f}_i, \vec{v}_i, y_i, u_i, x_w; i]_{i=1}^{2k}$ and the transcript that includes challenges \vec{r}_o, evaluations $[\theta_i]_{i=1}^{2k}$, values $[\eta_i]_{i=1}^{2k}$, and folding challenges $[\rho_i]_{i=1}^{2k}$. The algorithm f outputs $x_o := (\vec{f}_o, \vec{v}_o, y_o, u_o, x_w, o)$ such that

$$\text{NTT}(\vec{v}_o) = \sum_{i=1}^{2k} \text{RotSum}(\rho_i, \text{NTT}(\theta_i)), \quad [y_o, u_o, x_w, o] := \sum_{i=1}^{2k} \rho_i \cdot [y_i, \eta_i, x_w, i]$$

if the verifier checks pass; and output \perp otherwise. (\text{RotSum} defined in Lemma 2.1.)

\textbf{Completeness:} Let

$$(x, w) := [x_i = (\vec{f}_i, \vec{v}_i, y_i, u_i, x_w; i), w_i = (\vec{f}_i, \vec{w}_i)]_{i=1}^{2k} \leftarrow \mathcal{A}(pp)$$

denote adversary \mathcal{A}’s chosen instance-witness pair for $\mathcal{R}_1 := (\mathcal{R}_\hom^b)^{2k}$, where $pp := (\mathcal{L}, \mathcal{L}_w, \vec{M} = M_1) \leftarrow \mathcal{Setup}(1^\lambda)$ is the public parameter. WLOG we assume that (pp, x, w) is in $\mathcal{R}_1 := (\mathcal{R}_{ccshom}^b)^{2k}$. The protocol $\langle \mathcal{P}(pp, x, w), V(pp, x) \rangle$ proceeds as follows:

67
1. P and V honestly run the sum-check and P sends values $[\theta_i, \eta_i]_{i=1}^{2k}$ honestly such that for every $i \in [2k],$

$$\eta_i := \langle \overline{M} \times \text{tensor}(\overline{r}_o), (x_{w,i}||\overline{w}_i) \rangle, \quad \theta_i := \text{mle}[\hat{f}_i]\overline{r}_o. \quad (45)$$

Here $\text{tensor}(\cdot)$ is defined in Eq. (35) and \overline{r}_o is the sum-check challenge vector.

2. V outputs \perp and halts if the check at Step 4 fails.

3. Otherwise, let $[\rho_i]_{i=1}^{2k}$ be verifier’s last folding challenges. Set $(\hat{v}_o, y_o, u_o, x_{w,o}, \overline{r}_o, \overline{w}_o)$ such that

$$\text{NTT}(\hat{v}_o) = \sum_{i=1}^{2k} \text{RotSum}(\rho_i, \text{NTT}(\theta_i))$$

and

$$[y_o, u_o, \overline{r}_o, (x_{w,o}||\overline{w}_o)] := \sum_{i=1}^{2k} \rho_i \cdot [y_i, \eta_i, \hat{f}_i, (x_{w,i}||\overline{w}_i)]. \quad (46)$$

4. P outputs $\omega_o := (\overline{r}_o, \overline{w}_o)$. V outputs $\rho_o := (\overline{r}_o, \hat{v}_o, y_o, u_o, x_{w,o}).$

First, we show that V accepts, meaning the verifier check at Step 4 will pass. This follows from the definition of polynomial g (Eq. (36)) and the definitions of $(\eta_i, \theta_i)_{i=1}^{2k}$.

It remains to argue that the protocol output (x_o, ω_o) satisfies that $(pp := (L, L_w, \overline{M}), x_o, \omega_o) \in \mathcal{R}_2 := \mathcal{R}_{\text{ccshom}}^B$ (Eq. (34)). First, by Lemma 3.6, we have that $(L, (\overline{r}_o, \hat{v}_o, y_o); f_o) \in \mathcal{R}_{\text{ccshom}}^B$. Let $z_o := (x_{w,o}||\overline{w}_o)$. It remains to prove that (i) $z_o = L_w(\overline{f}_o)$ and (ii) $u_o = \langle \overline{M} \times \text{tensor}(\overline{r}_o), z_o \rangle$. Note that (i) holds true because

$$z_o := (x_{w,o}||\overline{w}_o) = \sum_{i=1}^{2k} \rho_i \cdot (x_{w,i}||\overline{w}_i) = \sum_{i=1}^{2k} \rho_i \cdot L_w(\overline{f}_i) = L_w(\overline{f}_o).$$

The 1st equality follows from Eq. (46); the 2nd equality holds because $L_w(\overline{f}_i) = (x_{w,i}||\overline{w}_i)$ for all $i \in [2k]$, given the premise that $(pp, x, \omega) \in (\mathcal{R}_{\text{ccshom}}^B)^{2k}$; the last equality holds due to the fact that $\overline{f}_o = \sum_{i=1}^{2k} \rho_i \cdot \hat{f}_i$ and by the homomorphic property of L_w.

Similarly, (ii) holds true because

$$u_o = \sum_{i=1}^{2k} \rho_i \cdot \eta_i = \sum_{i=1}^{2k} \rho_i \cdot \langle \overline{M} \times \text{tensor}(\overline{r}_o), (x_{w,i}||\overline{w}_i) \rangle = \langle \overline{M} \times \text{tensor}(\overline{r}_o), z_o \rangle.$$

The 1st equality is by the definition of u_o; the 2nd equality follows from the definition of η_i in Eq. (45); the last equality holds given the assignment of $z_o := (x_{w,o}||\overline{w}_o)$ in Eq. (46) and the homomorphic property of inner products.

In sum, (pp, x_o, ω_o) is in $\mathcal{R}_2 := \mathcal{R}_{\text{ccshom}}^B$ (Eq. (34)) and the completeness holds.
Knowledge soundness: The extractor Ext^{A,P^*} and the running time analysis are almost identical to the proof of Theorem 3.3. The only difference is that the extractor Ext^{A,P^*}, besides outputting $[\vec{f}_i]_{i=1}^{2k}$, also outputs $[\vec{w}_i] := L_w(\vec{f}_i)[n_{in} + 1, n_{in} + n]]_{i=1}^{2k}$.

Let E_{ext} denote the event defined in the proof of Theorem 3.3, indicating that the extractor recovers two identical witnesses $\text{out}_1, \text{out}_2 \neq \perp$ using two good sets of randomness ψ and ψ'. To argue the success probability of extraction, we replace the events E_{hom} (Eq. (21)) and E_{eval} (Eq. (22)) with E_{hom} and E_{eval}^* defined as follows.

$$E_{\text{hom}}^* := E_{\text{ext}} \land \left(\forall i \in [2k] : (L(\vec{f}_i) = y_i) \land \left((x_{w,i}||\vec{w}_i) = L_w(\vec{f}_i) \right) \right),$$

$$E_{\text{eval}}^* := E_{\text{ext}} \land \left(\forall i \in [2k] : \left(\text{mle} \left[\vec{f}_i \right] (\vec{r}_i') = \theta_i' \right) \land (\eta_i' = \langle M \cdot \text{tensor}(\vec{r}_i'), (x_{w,i}||\vec{w}_i) \rangle) \right).$$

(47) (48)

Moreover, we redefine the event E_{bad} (Eq. (23)) as E_{bad}^* such that E_{bad}^* holds if and only $E_{\text{ext}} = 1$ and there exists $i \in [2k]$ such that

$$u_i \neq \langle M \cdot \text{tensor}(\vec{r}_i), (x_{w,i}||\vec{w}_i) \rangle \text{ or } \text{mle} \left[\vec{f}_i \right] (\vec{r}_i) \neq \hat{v}_i \text{ or } p_i(\vec{x}) \neq 0.$$

(49)

To reuse the proof of Theorem 3.3, it suffices to prove the following claims.

Claim 4. If E_{ext} occurs, then $E_{\text{hom}}^* \land E_{\text{eval}}^*$ occurs. That is, for all $i \in [2k]$, we have that (i) $L(\vec{f}_i) = y_i$, (ii) $\text{mle} \left[\vec{f}_i \right] (\vec{r}_i') = \theta_i'$, (iii) $(x_{w,i}||\vec{w}_i) = L_w(\vec{f}_i)$, and (iv) $\eta_i' = \langle M \cdot \text{tensor}(\vec{r}_i'), (x_{w,i}||\vec{w}_i) \rangle$.

Proof. The equations (i), (ii) holds given the proof of Claim 2. To prove (iii), since $\vec{w}_i = L_w(\vec{f}_i)[n_{in} + 1, n_{in} + n]$ by definition, it suffices to show that $x_{w,i} = L_w(\vec{f}_i)[1, n_{in}]$. Then (iii) follows by replacing L, y_i with $L_w(\cdot)[1, n_{in}], x_{w,i}$ everywhere respectively and reusing the argument for (i).

To argue (iv), we observe that the map $\phi(\cdot) := \langle M \cdot \text{tensor}(\vec{r}_i'), (\cdot) \rangle$, and the map L_w are both R_q-module homomorphisms; thus, the composition $\Phi := \phi \circ L_w$ is also an R_q-module homomorphism. Note that if (iii) holds, then (iv) also holds if $\eta_i' = \Phi(\vec{f}_i)$, which follows by replacing L, y_i with Φ, η_i' everywhere respectively and reusing the argument for (i).

Claim 5. $\Pr[E_{\text{eval}}^* \land E_{\text{bad}}^*] \leq \frac{(2b+1)\log m + 6k}{|\beta|}$.

Proof. The proof is similar to that of Claim 3. The difference is that we redefine the polynomial h in Eq. (25) to

$$h([X_i, Y_i, Z_i]_{i=1}^{2k}) := \sum_{i=1}^{2k} \left(\hat{v}_i \cdot \text{mle} \left[\vec{f}_i \right] (\vec{r}_i') \right) \cdot X_i + \sum_{i=1}^{2k} p_i(\vec{r}_i') \cdot Y_i + \sum_{i=1}^{2k} \langle M \cdot \text{tensor}(\vec{r}_i), z_i - u_i \rangle \cdot Z_i.$$
Note that the sumcheck statement holds if and only if \(h((\alpha_i, \mu_i, \zeta_i)_{i=1}^{2k}) = 0 \). This follows from the fact that for all \(i \in [2k] \), let \(z_i := (x_{w,i} || \tilde{w}_i) \), we have that

\[
\sum_{\tilde{b} \in \{0,1\}^{\log m}} g_{3,i}(\tilde{b}) = \sum_{\tilde{b} \in \{0,1\}^{\log m}} \text{eq}(\tilde{r}_i, \tilde{b}) \cdot \left(\sum_{\tilde{y} \in \{0,1\}^{\log(n_m+n)}} \text{mle} \left[\bar{M} \right] (\tilde{b}, \tilde{y}) \cdot \text{mle} [z_i] (\tilde{y}) \right) \\
= \sum_{\tilde{y} \in \{0,1\}^{\log(n_m+n)}} \text{mle} \left[\bar{M} \right] (\tilde{r}_i, \tilde{y}) \cdot \text{mle} [z_i] (\tilde{y}) \\
= \langle M \cdot \text{tensor}(\tilde{r}_i), z_i \rangle .
\]

Therefore, we can redefine the events \(E_2 \) and \(E_3 \) in the proof of Claim 3 as

\[
E_2 := E_{\text{ext}} \land (h((\alpha_i', \mu_i', \zeta_i')_{i=1}^{2k}) = 0) \land \\
(\exists i \in [2k] : (\text{mle} \left[\tilde{r}_i \right] (\tilde{r}_i) \neq \tilde{v}_i) \lor (p_i(\tilde{\beta}_i) \neq 0) \lor (u_i \neq \langle \bar{M} \cdot \text{tensor}(\tilde{r}_i), (x_{w,i} || \tilde{w}_i) \rangle)) \\
E_3 := E_{\text{eval}}^* \land (h((\alpha_i', \mu_i', \zeta_i')_{i=1}^{2k}) \neq 0)
\]

and the same argument used in the proof of Claim 3 can be applied here.

\[\square\]

A.5 Proof of Lemma 4.3

Proof. Public reducibility: Given instances \(([x_i]_{i=1}^{k}, x')\), transcripts that includes \([\theta_i, \theta_i', \rho_i, \rho_i']_{i=1}^{k}\), \([\eta_i^{i,j}, \eta_i^{i,j'}]_{i \in [k], j \in [l]}\) and sumcheck challenge \(\tilde{r}_o\), if the folding verifier accepts, the algorithm outputs the folded instance according to Step 6 of \(\Pi_{\text{batch}}\), and outputs \(\bot\) otherwise.

Completeness: Given adversarially chosen statements that are in the corresponding relations, we need to argue that the verifier will accept in an honest execution and the folded statement is in the output relation. The argument for latter is identical to that in the proof of Theorem 4.2. The argument for the verification check at Step 4 is also similar, but we need to further show that for all \(j \in [l] \),

\[
\sum_{\ell=1}^{k} b_{\ell}^{j-1} \eta_{i}^{i,j} = \sum_{\tilde{y} \in \{0,1\}^{\log(n_m+n)}} \text{mle} [M_j] (\tilde{r}_o, \tilde{y}) \cdot \text{mle} [z_{ccs}] (\tilde{y}) ,
\]

where \(z_{ccs} := (z_{ccs}, 1, v_{ccs}) \). This follows from the facts below. First, for all \(i \in [k] \), let \(\tilde{f}_i^{j} \) denote the \(i \)-th low-norm witness vector in \(x' \). For all \(j \in [l] \), by definition we have that

\[
\eta_i^{i,j} = \sum_{\tilde{y} \in \{0,1\}^{\log(n_m+n)}} \text{mle} [M_j] (\tilde{r}_o, \tilde{y}) \cdot \text{mle} [L_w(\tilde{f}_i^{j})] (\tilde{y}) .
\]
Moreover, for all $\bar{y} \in \{0,1\}^{\log(n+n_{\text{in}})}$, we have
\[
\sum_{\ell=1}^{k} b^{\ell-1} \text{mle} \left[\mathcal{L}_w(\vec{f}_i) \right] (\bar{y}) = \text{mle} \left[\sum_{\ell=1}^{k} b^{\ell-1} \mathcal{L}_w(\vec{f}_i) \right] (\bar{y}) = \text{mle} \left[\mathcal{L}_w \left(\sum_{\ell=1}^{k} b^{\ell-1} \vec{f}_i \right) \right] (\bar{y}) = \text{mle} [z_{\text{ccs}}] (\bar{y}).
\]

Therefore, Eq. (50) holds and completeness follows.

Knowledge soundness: The extractor $\text{Ext}_{\mathbb{F}}^{A,P^*}$ and the running time analysis are identical to the proof of Theorem 4.2. The main difference lies in the analysis of the success probability. Here we need to further argue that the extracted witness for relation $\mathcal{R}_{\text{splitccs}}^{b,k}$ satisfies the CCS relation (i.e., $(pp_{\text{ccs}}, x_{\text{ccs}}; \nu_{\text{ccs}}) \in \mathcal{R}_{\text{ccs}}$). To show this, let $z_{\text{ccs}} := (x_{\text{ccs}}, 1, \nu_{\text{ccs}})$, we define the multilinear polynomial $q(\bar{x})$ the same way as we did in the proof of Lemma 4.1,
\[
q(\bar{x}) := \sum_{\vec{b} \in \{0,1\}^{\log m}} eq(\bar{x}, \vec{b}) \cdot \left(\sum_{i=1}^{n_x} c_i \cdot \prod_{j \in S_i} \left(\sum_{\bar{y} \in \{0,1\}^{\log(n+n_{\text{in}})}} \text{mle} [M_j] (\vec{b}, \bar{y}) \cdot \text{mle} [z_{\text{ccs}}] (\bar{y}) \right) \right).
\]

Recall that $(pp_{\text{ccs}}, x_{\text{ccs}}; \nu_{\text{ccs}}) \in \mathcal{R}_{\text{ccs}}$ if and only if the multilinear polynomial $q(\bar{x})$ is a zero polynomial. Similar to the proof of Theorem 4.2, we need to define the bad event E_{bad}^* and prove that E_{bad}^* happens with small probability. Here the definition of E_{bad}^* is almost identical to that in Eq. (49) except that we add that E_{bad}^* also holds true if $q(\bar{x}) \neq 0$.

Next, similar to Claim 5, we have to provide an upper-bound on the probability that the evaluation check passes while the bad event happens, that is, $\Pr[E_{\text{eval}}^* \land E_{\text{bad}}^*]$. Here, E_{eval}^* is similarly defined as in Eq. (48) except that we add the following predicate: for all $i \in [k]$, let \vec{f}_i denote the i-th low-norm extracted witness for $\mathcal{R}_{\text{splitccs}}^{b,k}$, then for all $j \in [t]$, check
\[
\eta_{i,j} = \sum_{\bar{y} \in \{0,1\}^{\log(n+n_{\text{in}})}} \text{mle} [M_j] (\vec{r}_o, \bar{y}) \cdot \text{mle} \left[\mathcal{L}_w(\vec{f}_i) \right] (\bar{y}).
\]

Note that we can obtain an analogous claim as in Claim 4 with exactly the same proof.

Finally, we use the same technique in the proof of Claim 5 to bound the probability $\Pr[E_{\text{eval}}^* \land E_{\text{bad}}^*]$. A key observation is that $q(\vec{b})$ can be understood as a sumcheck statement, that is,
\[
q(\vec{b}) = \sum_{\vec{b} \in \{0,1\}^{\log m}} g_{\text{ccs}}(\vec{b})
\]
where $g_{\text{ccs}}(\vec{b})$ is defined in Eq. (39). Therefore, by analogously defining the polynomial h and adding the term $q(\vec{b}) \cdot W$ inside h (where W is a formal variable), we can go through exactly the same route as in the proof of Claim 5 to argue that $\Pr[E_{\text{eval}}^* \land E_{\text{bad}}^*]$ is small.

\[\square\]