
General Functional Bootstrapping using CKKS⋆

Andreea Alexandru1, Andrey Kim2 and Yuriy Polyakov1

1 Duality Technologies, USA
2 Altbridge, USA

Abstract. The Ducas–Micciancio (DM/FHEW) and Chilotti–Gama–
Georgieva–Izabachène (CGGI/TFHE) cryptosystems provide a general
privacy-preserving computation capability. These fully homomorphic en-
cryption (FHE) cryptosystems can evaluate an arbitrary function ex-
pressed as a general look-up table (LUT) via the method of functional
bootstrapping (also known as programmable bootstrapping). The main
limitation of DM/CGGI functional bootstrapping is its efficiency because
this procedure has to bootstrap every encrypted number separately. A
different bootstrapping approach, based on the Cheon–Kim–Kim–Song
(CKKS) FHE scheme, can achieve much smaller amortized time due to
its ability to bootstrap many thousands of numbers at once. However,
CKKS does not currently provide a functional bootstrapping capability
that can evaluate a general LUT. An open research question is whether
such capability can be efficiently constructed. We give a positive answer
to this question by proposing and implementing a general functional
bootstrapping method based on CKKS-style bootstrapping. We devise a
theoretical toolkit for evaluating an arbitrary function using the theory of
trigonometric Hermite interpolations, which provides control over noise
reduction during functional bootstrapping. Our experimental results for
8-bit LUT evaluation show that the proposed method achieves the amor-
tized time of 0.75 milliseconds, which is three orders of magnitude faster
than the DM/CGGI approach and 6.6x faster than (a more restrictive)
amortized functional bootstrapping method based on the Brakerski/Fan-
Vercauteren (BFV) FHE scheme.

⋆ Distribution Statement "A" (Approved for Public Release, Distribution Unlimited).
This work is supported in part by DARPA through HR0011-21-9-0003. The views,
opinions, and/or findings expressed are those of the author(s) and should not be
interpreted as representing the official views or policies of the Department of Defense
or the U.S. Government.

Table of Contents

1 Introduction . 4
1.1 Related Works . 9
1.2 Concurrent Works . 10
1.3 Organization . 10

2 Preliminaries . 11
2.1 LWE Encryption Scheme and Its Ring Variant 11
2.2 CKKS Scheme . 11
2.3 RNS Representation . 12
2.4 CKKS Bootstrapping . 12

3 Analytical Expressions for Arbitrary Function Evaluation 13
3.1 Trigonometric Hermite Interpolation for Arbitrary Function

Approximation . 13
3.2 FHE-Friendly Expression using Complex Exponential Function . . 15
3.3 Analytical Expressions for Floor and Step Functions 16
3.4 Higher-Order Trigonometric Hermite Interpolations 17
3.5 Hermite Polynomial Interpolation with Noise Cleaning 18

4 Amortized Functional Bootstrapping of RLWE Ciphertexts 19
5 Amortized Multi-Precision Function Evaluation for RLWE Ciphertexts 23

5.1 Homomorphic Evaluation of Floor Function 23
5.2 Homomorphic Evaluation of Multi-Precision Sign Function 23
5.3 Homomorphic Evaluation of Multi-Precision Arbitrary Function . 24

Tree-Based Evaluation of Large LUTs. 25
6 Functional Bootstrapping for CKKS Ciphertexts 25
7 Implementation and Performance Evaluation . 26

7.1 Parameter Selection . 26
7.2 Implementation . 27
7.3 Experimental Results . 27

8 Concluding Remarks . 29
References . 30
A Comparison with Other Methods . 34

A.1 Comparison with the Boolean CKKS method 34
A.2 Comparison with Other Methods for Functional Bootstrapping . . 34

Comparison with DM/CGGI functional bootstrapping. 35
Comparison with multi-precision method based on CGGI

circuit bootstrapping. 35
Comparison with BFV-based functional bootstrapping. 36

A.3 Discussion on Leveled Methods for LUT Evaluation 37
B More Preliminaries . 39

B.1 LWE Modulus Switching . 39
B.2 Functional Bootstrapping and Multi-Precision Sign Evaluation

using DM/CGGI Cryptosystems . 39

B.3 CKKS Scheme in RNS . 41
C Derivations and Proofs of Results in Section 3 . 43

C.1 Floor and Step Functions in terms of Complex Exponential
Function . 43

C.2 Second- and Third-Order Trigonometric Hermite Interpolation . . 44
D Homomorphic Digit Decomposition . 45
E Experimental Results . 46

3

1 Introduction

Homomorphic encryption is a powerful cryptographic primitive enabling compu-
tations over encrypted data without requiring intermediate decryption. Of par-
ticular interest are Somewhat Homomorphic Encryption (SHE) schemes, first
introduced in Gentry’s PhD study [Gen09a, Gen09b], which support homomor-
phic evaluation of addition and multiplication or their equivalents. In all prac-
tically used SHE schemes, some noise is added during encryption for security
reasons. This noise keeps growing as computations are performed, which even-
tually exhausts the computational ability of ciphertexts. To support arbitrarily
deep computations, Gentry proposed a bootstrapping procedure that refreshes
the noise in exhausted ciphertexts to a fixed level so that further computations
can be performed on them [Gen09a]. The main idea behind bootstrapping is to
homomorphically evaluate the decryption circuit for the underlying SHE scheme.
The use of bootstrapping allowed Gentry to introduce the concept of Fully Ho-
momorphic Encryption (FHE) for evaluating arbitrary circuits and formulate a
concrete FHE scheme based on ideal lattices. Although Gentry’s original FHE
scheme was inefficient, dramatically more efficient FHE schemes and bootstrap-
ping methods were subsequently devised [MSM+22, AP23].

A major milestone was the development of Brakerski-Gentry-Vaikuntanathan
(BGV) [BGV14] and Brakerski/Fan-Vercauteren (BFV) [Bra12, FV12] leveled
FHE schemes for finite field arithmetic. These schemes support efficient finite-
arithmetic operations over vectors of bounded integers and include an improved
bootstrapping procedure, which still follows Gentry’s bootstrapping blueprint.
However, the runtime of this bootstrapping procedure (even for its optimized
modern variants) is not yet practical for many applications, and takes on the or-
der of 1 minute (for roughly 1,000 encrypted integers) on a modern CPU [AP23].
Note that many practical applications of BGV and BFV typically do not use
bootstrapping, i.e., run these schemes in the leveled mode.

The next major milestone was the Ducas-Micciancio (DM) FHE cryptosys-
tem [DM15] (also called FHEW), which supports efficient bootstrapping for
Boolean gates (as low as 10 milliseconds per Boolean gate for optimized DM-
like schemes on modern CPUs [Zam22, AAB+22]). The DM cryptosystem de-
viates from Gentry’s blueprint in two ways. First, it switches between multi-
ple schemes, where the input scheme is additively homomorphic, i.e., it does
not support homomorphic multiplication, and the bootstrapping accumulator
scheme is somewhat homomorphic. Second, the DM cryptosystem supports a
special-purpose look-up table (LUT) evaluation (outputting an encrypted bit
using internal modulo 4 arithmetic) as part of bootstrapping [MP21]. For the
additive homomorphic encryption scheme, the DM cryptosystem uses Regev’s
Learning With Errors (LWE)-based scheme [Reg09]3. Chilotti et al. subsequently
proposed an FHE cryptosystem using the DM blueprint but with a different

3 Note that many LWE ciphertexts can be combined into one BFV-compatible Ring
LWE ciphertext; we will refer to input ciphertexts as (R)LWE ciphertexts in the rest
of the paper.

4

bootstrapping accumulator–and additional optimizations [MP21]—which is typ-
ically referred to as the Chilotti-Gama-Georgieva-Izabachène (CGGI) [CGGI16]
(also called TFHE).

The special-purpose LUT evaluation capability of DM/CGGI (later extended
to larger plaintext moduli [CJP21]), which is called functional bootstrapping
[KS22, LMP23] or programmable bootstrapping [CJP21, CLOT21, Zam22],4 was
used to devise procedures for evaluating arbitrary functions over relatively small
plaintext spaces, typically not higher than 3-8 bits. Recently, three different
methods for arbitrary function evaluation using DM-like schemes were pro-
posed [CLOT21, KS22, LMP23], with the method from [LMP23] having the
smallest complexity and noise growth. Note that all three methods require at
least two DM/CGGI functional bootstrapping operations for evaluating small-
precision arbitrary functions. The evaluation of arbitrary functions over small
plaintext spaces can be used for evaluating multi-precision (large-precision) func-
tions, though this extension is generally computationally expensive (except for
special cases such as sign/comparison) and often requires many functional boot-
strapping operations [GBA21, LMP23].

Another major advance was the introduction of approximate homomorphic
encryption for supporting efficient homomorphic polynomial computations over
real and complex numbers [CKKS17]. The authors also proposed a concrete
FHE scheme, referred to as the Cheon-Kim-Kim-Song (CKKS) scheme (also
called HEAAN). The CKKS scheme provides a practical solution for many
privacy-preserving machine learning applications, significantly outperforming
both BGV/BFV and DM/CGGI [MSM+22]. From the throughput perspective,
the CKKS scheme achieves the most efficient bootstrapping operation; its op-
timized variants require on the order of 10 seconds for bootstrapping 32,768
encrypted real numbers with precision of roughly 15 bits [BCKS24, AP23].
Although the CKKS scheme deviates from prior exact schemes, BGV/BFV
and DM/CGGI, in terms of correctness requirements, CKKS bootstrapping
still conceptually uses Gentry’s blueprint, i.e., it homomorphically evaluates
its own decryption circuit [CHK+18]. However, the CKKS scheme does not
provide a robust, efficient solution for evaluating discontinuous functions, e.g.,
sign/comparison, as polynomial approximations of these functions are compli-
cated by the requirements of knowing the approximation range and achieving de-
sired precision. For this reason, CKKS often uses other schemes, e.g., DM/CGGI,
via scheme switching to evaluate discontinuous functions [LHH+21, LMP23],
which is associated with high performance costs.

In summary, the DM/CGGI method provides the general functionality of
evaluating arbitrary functions, but its efficiency is significantly lower than for
both BGV/BFV and CKKS methods. The primary reason is that in DM/CGGI,
bootstrapping is performed for each number independently while in the case of
BGV/BFV and CKKS, one bootstrapping operation can refresh thousands of
numbers at once using the Single Instruction/Multiple Data (SIMD) packing

4 For consistency, we will use the functional bootstrapping term throughout the paper
(noting that it is equivalent in meaning to programmable bootstrapping).

5

of a vector into one ciphertext [AP23] (note that CKKS typically outperforms
BGV/BFV bootstrapping by more than one order of magnitude). As a result,
several studies with a focus on amortized functional bootstrapping or leveled
LUT evaluation in SIMD schemes recently appeared [LW23, LMS24, CKKL24,
BCKS24, LW24] (we discuss these works in Section 1.1).

An open research question is whether arbitrary functions can be evaluated us-
ing CKKS-style bootstrapping, i.e., whether CKKS bootstrapping can be used to
construct a general functional bootstrapping capability. The benefits of such an
approach are improved efficiency (as CKKS bootstrapping has the best through-
put among all FHE schemes) and more general functionality in CKKS (to enable
direct support of discontinuous function evaluation). We give a positive answer
to this question by proposing a general method of functional bootstrapping based
on CKKS and provide initial experimental results to showcase its performance.

Our Contributions. Our main contribution is a general functional bootstrapping
capability based on CKKS for input (R)LWE ciphertexts, which can evaluate
arbitrary functions in Zp for any integer p ≥ 2. The functional bootstrapping
capability uses a trigonometric Hermite interpolation that has the same values
as the interpolated function and first derivative set to zero at all domain points.
Setting the first derivative to zero provides a noise reduction/cleaning ability (to
accommodate the approximate nature of the CKKS scheme). Using trigonomet-
ric interpolation theory, we derive an analytical expression for the general case in
terms of Fourier series. We also devise an efficient “FHE-friendly” algorithm for
evaluating the trigonometric series in CKKS in terms of the complex exponential
function. Moreover, we derive analytical expressions for cases when higher-order
derivatives are also set to zero—if further noise reduction is needed for functional
bootstrapping at the expense of increased computational complexity.

Our second contribution is a homomorphic evaluation algorithm of the floor
or digit extraction function for an encrypted message in Zp built from a trigono-
metric interpolation for the step function. We devise analytical expressions for
both step and floor functions and show how the latter is built from the step func-
tion. These functions are used as subroutines in building multi-precision function
evaluation when it is more efficient to break down a large encrypted (R)LWE
message into digits and run functional bootstrapping for each digit.

Our third contribution is the development of a multi-precision sign evaluation
of (R)LWE ciphertexts (encrypting messages in ZP , where P > p) using both
floor and step functions for encrypted messages in Zp as subroutines. We also
discuss how a multi-precision arbitrary function evaluation capability can be
built using our algorithm from arbitrary function evaluation in Zp.

Our fourth contribution covers various extensions of the functional bootstrap-
ping capability, including supporting the evaluation of discontinuous functions
directly in CKKS (over CKKS input ciphertexts) and multi-value functional
bootstrapping.

Our fifth contribution is the formulation of a general method for noise re-
duction in CKKS using polynomial Hermite interpolation theory. We show that
prior limited noise cleaning capabilities are special cases of this general method.

6

We also implement our functional bootstrapping method and multi-precision
functional evaluation capabilities in OpenFHE, evaluate their performance, and
compare the complexity/runtime results with other state-of-the-art methods.
Our experimental results suggest that for 8-bit LUT evaluation the proposed
method achieves an amortized time of 0.75 milliseconds, which is three orders of
magnitude faster than for the DM/CGGI method and 6.6x faster than a more
limited functional bootstrapping functionality based on the BFV scheme.

Technical Overview. We develop a cryptosystem that supports general func-
tional bootstrapping using the DM blueprint. In the classical DM/CGGI setting,
the input ciphertexts are encrypted using the LWE scheme and bootstrapping
is performed with the Ring-Gentry-Sahai-Waters (RGSW) scheme [DM15]. In
other words, the secret key for the LWE scheme is encrypted using the RGSW
scheme. Such a cryptosystem can bootstrap only one number at a time because
all possible values in an LWE ciphertext get mapped to polynomial coefficients
in RGSW [MP21].

We devise a “vectorized” cryptosystem, where many numbers are encrypted
in an RLWE ciphertext and all these numbers are bootstrapped at once using
the CKKS scheme. The RLWE scheme here is equivalent to the BFV scheme
using the coefficient encoding, and the encryption can be written as RLWE(m) =(
[−a · s+ e+ (q/p) ·m]q ,a

)
, where m ∈ Zw

p and w is the number of encrypted
integers (up to the ring dimension N). For simplicity of exposition, we focus on
the symmetric-key encryption case and assume that both q and p are powers
of two. In this work, we specifically choose to work with RLWE because it is a
more compact and practical representation. Nevertheless, an RLWE ciphertext
can also be thought of as w LWE ciphertexts packed into one RLWE ciphertext
(the conversions between LWE and RLWE ciphertexts in both directions are
known procedures discussed and optimized elsewhere [BCK+23, BCKS24]).

The RLWE encryption of q
pm can be interpreted as a CKKS encryption

using the coefficient encoding of ∆m
p , where ∆ is the CKKS scaling factor (for

simplicity, we focus in the description here on CKKS instantiated for a power-
of-two ciphertext modulus). This CKKS ciphertext is “exhausted” and cannot
support any further multiplications.

To perform functional bootstrapping, we first raise the ciphertext to a much
larger modulus Q′

L (supporting L computational levels). This changes the en-
crypted message from ∆m

p to ∆m
p + qI(X), or, equivalently, ∆m(X)

p + qI(X) as
the message m is encoded in polynomial coefficients. Our goal is to obtain an
encryption of fp(m) ∈ Zw

p , for an arbitrary function fp defined as a p-to-p LUT
(in general, the output modulus can be different from the input one). We evalu-
ate the LUT using a properly chosen interpolation. Prior to the LUT evaluation,
we perform homomorphic encoding to place both the message and q-overflows
into CKKS slots to enable CKKS-style polynomial evaluation.

The main challenge is how to choose the interpolation. This interpolation
has to remove the q-overflows, i.e., it has to be a trigonometric series. As CKKS
bootstrapping adds to the noise present in the RLWE message, we also want to

7

reduce this noise during the evaluation of the trigonometric series. We observe
that the approach satisfying both is the trigonometric Hermite interpolation. As
our main solution, we use the first-order trigonometric Hermite interpolation,
which matches the interpolated function at all p points of interest and sets first
derivatives to zero, to provide quadratic noise reduction.

We use results from trigonometric interpolation theory to derive an FHE-
friendly analytical expression for evaluating first-order Hermite interpolation for
arbitrary p. We start with a series of shifted cosines and then transform it into
a power series for the complex exponential function e2πimj/p for j ∈ [w]. The
power series, which is the bottleneck operation for larger p, has degree p−1 and
can be evaluated using the Paterson-Stockmeyer method, consuming roughly√
2p homomorphic multiplications. In other words, the complexity increases by√
2 every time p is increased by 2.

After evaluating the power series, we perform homomorphic decoding to go
back to our RLWE format. Note the result is still a BFV ciphertext and can be
decrypted exactly without any approximation error. Hence, from the perspec-
tive of IND-CPAD security [LM21, ABMP24], no flooding is needed to achieve
security for shared decryption results (in contrast to the single-scheme CKKS in-
stantiations). In other words, CKKS is used as a black box in our cryptosystem,
just like RGSW is used in DM/CGGI cryptosystems.

For applications requiring additional noise reduction during functional boot-
strapping, we also derive power series for second- and third-order trigonometric
Hermite interpolations where the first two and three derivatives, respectively,
are set to zero. Moreover, we show that polynomial Hermite interpolations (not
periodic in contrast to trigonometric interpolations) can also be used to evaluate
LUTs in a leveled setting and/or to reduce noise. These polynomial interpola-
tions generalize prior results from [CKK20, DMPS24, CKKL24]. We show that
trigonometric Hermite interpolations are more efficient for LUT evaluation than
polynomial Hermite interpolations in the settings where bootstrapping is needed.

Our method can efficiently support LUTs only for a limited range of p, e.g.,
we were able to run LUTs up to 12 bits using 64-bit words. If a higher precision
is required or some special functions are to be evaluated, such as sign evaluation,
one can use a multi-precision approach, where LUTs for smaller p’s are used to
support large plaintext moduli P . Using the blueprint of [LMP23], we develop
multi-precision digit extraction and sign evaluation procedures. Both are based
on the LUT evaluation of the floor function, for which we derive convenient
analytical expressions. The digit extraction procedure allows evaluating large-
precision LUTs by working with smaller-size LUTs for individual digits. It is
worth noting that evaluating the floor function using our cryptosystem requires
a single functional bootstrapping operation, as compared to two bootstrapping
operations in the classical DM/CGGI cryptosystems.

We also introduce a number of optimizations and extensions. For instance,
our functional bootstrapping method supports efficient multi-value LUT evalu-
ation, where multiple LUTs for the same ciphertext can be evaluated at the cost

8

slightly higher than a single LUT evaluation. We discuss how our method can
be used for evaluating discontinuous functions in native CKKS.

1.1 Related Works

For the classical DM/CGGI method, we compare our results with the procedures
for LUT evaluation and multi-precision sign evaluation described in [LMP23]
and LUT evaluation in [TCBS23]. The results of our comparison are presented
in Appendix A.2. In summary, our method achieves a better throughput than
DM/CGGI functional bootstrapping as soon as the number of evaluated en-
crypted numbers reaches the order of one thousand/one hundred, as our method
scales better with p, both asymptotically and practically. The amortized time
for larger values of p, e.g., 28, is three orders of magnitude smaller in our method
as compared to CGGI functional bootstrapping. We also compare our timing re-
sults for 8-bit LUTs with another multi-precision method based on CGGI circuit
bootstrapping in Appendix A.2.

Bae et al. propose a method for evaluating Boolean gates using a CKKS-like
bootstrapping [BCKS24]. The functionality of this method is the same as the
functionality available in the original DM cryptosystem [DM15]. If our func-
tional bootstrapping method is instantiated for the floor or step function at
p = 2, our trigonometric series reduces to the same function as for Boolean
CKKS bootstrapping in [BCKS24]. In other words, the Boolean bootstrapping
in [BCKS24] can be viewed as a special case of our method for the floor/step
function at p = 2. However, our approach supports arbitrary values of p and
arbitrary functions over Zp. We discuss how our implementation results for 1-bit
LUT compare with the implementation results of [BCKS24] in Appendix A.1.
We also compare our method with the multi-precision LUT evaluation based on
1-bit LUTs in Section 7.

Chung et al. develop a LUT evaluation method in both CKKS and BFV
using a special exponential encoding and multivariate polynomial interpola-
tions [CKKL24]. Their results demonstrate that the method efficiently supports
LUT evaluation up to p = 212. However, this exponential encoding does not
support multiplications between ciphertexts and additional (costly) procedures
need to be implemented to switch to and from the slot encoding. Moreover,
their method does not refresh the ciphertexts (i.e., it is not based on functional
bootstrapping) and, hence, regular CKKS or BFV bootstrapping would need to
be used for deep computations. We compare their method and implementation
results with ours in Appendix A.3.

Liu and Wang devise an amortized (somewhat limited) functional boot-
strapping method for DM/CGGI ciphertexts using BFV as the bootstrapping
scheme [LW23, LW24]. We compare our results with these works in Appendix A.2.
In summary, our method has a higher throughput (from 3.2x for 3-bit LUT to
8.8x for 12-bit LUT) and easily supports multi-precision extensions.

Lee et al. propose functional bootstrapping for BFV only and BFV-to-CKKS
scenarios [LMS24]. Their method works with the plaintext space Zr

p, i.e., builds
upon regular BFV/BGV bootstrapping [GV23]. The main limitation of their

9

method is inherited from regular BFV bootstrapping: only a small number of
slots can be efficiently supported, especially when only power-of-two cyclotomic
rings are available for instantiating BFV (the latter is true for all common open-
source software libraries implementing BFV). As a result, the amortized time
of this method is significantly (orders of magnitude) higher than both for our
method and [LW23, LW24], as illustrated in Appendix A.2.

There have been many studies on large-precision sign/comparison evaluation
algorithms, both using leveled computations in SIMD schemes and functional
bootstrapping in DM/CGGI schemes (see [LMP23] for a summary of main meth-
ods). A highlight is the CKKS method proposed in [CKK+19], which achieves
optimal complexity using leveled CKKS. The drawback of this method is that it
does not include bootstrapping (hence bootstrapping has to be done separately),
which may require larger lattice parameters than our method and several boot-
strapping operations. Given the large number of studies specifically on sign eval-
uation, complexity of fair comparison of our (bootstrapping-based) method with
leveled SIMD solutions, and the main focus of our work on arbitrary function
evaluation, we leave such comparison for future work.

1.2 Concurrent Works

We remark that a concurrent work by Bae et al. [BKSS24] seems to use the same
exponential encoding as [CKKL24] to allow functional bootstrapping for small
integers via CKKS. At the time of submission, only the abstract of this work
is available, and therefore we cannot compare our work with their results. For
evaluating 8-bit LUTs on DM/CGGI ciphertexts, our method yields an amor-
tized time of 0.81 milliseconds (with the LWE to RLWE conversion), which is 4.6
times faster than the 3.75 milliseconds mentioned in the abstract of [BKSS24].

1.3 Organization

We provide the necessary background on the DM/CGGI and CKKS schemes and
methods in Section 2. In Section 3, we derive the analytical expressions for ar-
bitrary function evaluation using CKKS-style bootstrapping and examine their
properties. These expressions are used in Section 4, which presents our algorithm
for general amortized functional bootstrapping of RLWE ciphertexts, and in Sec-
tion 5, which describes our algorithms for digit extraction and multi-precision
function evaluation. Section 6 summarizes the approach for the functional boot-
strapping of CKKS ciphertexts. In Section 7 we showcase our implementation
results and performance. We provide concluding remarks in Section 8. We also
present a detailed comparison of our results with the state-of-the-art methods
in Appendix A. The remaining appendices provide additional preliminaries and
detailed derivations.

10

2 Preliminaries

All logarithms are expressed in base 2 if not indicated otherwise. Vectors and
ring elements are indicated in bold. We choose the ring dimension N as a power
of two for efficiency reasons. Additional background is provided in Appendix B.

2.1 LWE Encryption Scheme and Its Ring Variant

We recall the definition of LWE ciphertexts [Reg09].
The LWE cryptosystem [Reg09] is parametrized by a plaintext modulus p,

ciphertext modulus q, and secret dimension n. The LWE encryption of a message
m ∈ Zp under (secret) key s ∈ Zn is a vector (a, b) ∈ Zn+1

q such that

b = −⟨a, s⟩+ (q/p) ·m+ e (mod q)

where e is a small error term, |e|< q/(2p). The message m is recovered by first
computing the approximate LWE decryption function

Decs(a, b) = b+ ⟨a, s⟩ (mod q) = (q/p) ·m+ e

and then rounding the result to the closest multiple of (q/p).
The ciphertext modulus of LWE ciphertexts can be changed (at the cost of a

small additional noise proportional to the secret key size) simply by scaling and
rounding its entries, which is called modulus switching.

The BFV-style RLWE encryption (LWE scheme extension to rings) [Bra12,
FV12] can be written as (b,a) ∈ R2

q such that a ← Rq and b = −a · s + e +

(q/p) ·m, where R = Z[X]/
〈
XN + 1

〉
, s ← χkey, e ← χerr, m ∈ Rp, and χkey

and χerr are small distributions over R. Note that m in our case is encoded in
polynomial coefficients, and, hence, we also refer to m as m(X) in the paper.
The decryption in this case is computed as

⌊
p · (b+ a · s) /q

⌉
p
.

The conversion of many LWE ciphertexts to a single RLWE ciphertext is
known as (base) ring packing and requires a (plaintext matrix)-(ciphertext vec-
tor) multiplication; see [BCK+23] for state-of-the-art algorithms. The conversion
from one RLWE to many LWE ciphertexts, known as sample extraction, is much
simpler and faster; it is performed by selecting and reordering polynomial coef-
ficients [CGGI16].

2.2 CKKS Scheme

The original CKKS scheme is formulated for cyclotomic polynomial rings R =
Z[X]/

〈
XN + 1

〉
, where N is a ring dimension that is a power of two. With

a scaling factor ∆ = 2ρ and a zero-level modulus q′0 = 2ρ0 (usually q′0 is
larger than ∆ for correct decryption), a modulus at the level ℓ is typically
defined as Q′

ℓ = 2ρ0+ℓ·ρ = q′0 · ∆ℓ, i.e., the scheme works with residue rings
RQ′

ℓ
= R/Q′

ℓR = ZQ′
ℓ
[X]/

〈
XN + 1

〉
. We denote M = 2N , and by Z∗

M =
{x ∈ ZM : gcd(x,M) = 1} the unit multiplication group in ZM . The canonical

11

embedding τ : S → CN is defined as τ (a) =
(
a(ζj)

)
j∈Z∗

M

for S = R[X]/
〈
XN + 1

〉
and ζ = exp (2πi/M). Its ℓ∞-norm is called the canonical embedding norm and
is denoted as ∥a∥can = ∥τ (a)∥∞. For a power-of-two n ≤ N/2, we also define
mappings τ ′n : S → Cn used to encode and decode a vector of length n in the
CKKS scheme [CKKS17, CHK+18]. The setup, key generation, encryption, de-
cryption, encoding and decoding algorithms [CKKS17, HK20] are given below,
and the evaluation-related algorithms are described in Appendix B.3:

– Setup(1λ). For an integer L ≥ 0 corresponding to the largest ciphertext
modulus level, given the security parameter λ, output the ring dimension N .
Set the small distributions χkey, χerr, and χenc over R for secret, error, and
encryption, respectively.

– KeyGen. Sample a secret s← χkey, a random a→ RQ′
L
, and error e← χerr.

Set the secret key sk ← (1, s) and public key pk ← (b,a) ∈ R2
Q′

L
, where

b← −a · s+ e (mod Q′
L).

– Encpk(m). For m ∈ R, sample v ← χenc and e0, e1 ← χerr. Output ct ←
v · pk+ (m+ e0, e1) (mod Q′

L).
– Decsk(ct). For ct = (c0, c1) ∈ R2

Q′
ℓ
, output m̃ = c0 + c1 · s (mod Q′

ℓ).

– Encode(x,∆). For x ∈ Cn, output the polynomial m←
⌈
τ

′−1
n (∆ · x)

⌋
∈ R.

– Decode(m, ∆). For plaintext m ∈ R, output the vector x← τ ′n(m/∆) ∈ Cn.

2.3 RNS Representation

Our CKKS implementation utilizes the Chinese Remainder Theorem (referred
to as integer CRT) representation to break multi-precision integers in ZQ′ into
vectors of smaller integers to perform operations efficiently using native (64-bit)
integer types. The integer CRT representation is also often referred to as the
Residue-Number-System (RNS) representation. We use a zero level modulus q′0
and a chain of same-size prime moduli q′1, q′2, . . . , q′L satisfying q′i ≡ 1 mod 2N

for i = 1, . . . , L. Here, the modulus Q′
ℓ is computed as

∏ℓ
i=0 q

′
i. All polynomial

multiplications are performed on ring elements in the polynomial CRT represen-
tation where all integer components are represented in the integer CRT basis.
Further details on the RNS implementation are given in Appendix B.3.

2.4 CKKS Bootstrapping

The CKKS bootstrapping procedure typically assumes that the input ciphertext
ct is at level L = 0, i.e., Q′ = q′0. In other words, no homomorphic multiplications
are allowed. The goal is to raise the ciphertext to a level L0 so that depth-L0

computations could be performed on it.
The high-level procedure includes the following steps [CHK+18]:

1. ct1 ← ModRaise(ct, Q′
L) : Raise the modulus from q′0 to Q′

L =
∏L

i=0 q
′
i,

where L > L0 as the bootstrapping procedure consumes some levels, namely

12

Lb = L − L0 levels. The effect of this operation is that the new ciphertext
corresponds to a decryption of t(X) = m(X)+ q′0 · I(X), where |I|< K. The
goal of the next steps is remove the term q′0 · I(X).

2. ct2 ← CtS(ct1) : Encode t(X) in the plaintext slots by homomorphically
running τ

′−1(t). As a result, we get an encryption of a plaintext vector
where each coefficient ti is now stored in a separate slot. This allows one to
apply integer-level modular reductions to all plaintext slots.

3. ct3 ← EvalMod(ct2): Approximate [ti]q′0 ≈
q′0
2π sin

(
2πti
q′0

)
, where q′0 ≫ mi to

achieve an adequate accuracy. The sine wave is then interpolated using a
polynomial, which can be efficiently evaluated using homomorphic encryp-
tion. As a result, we get [ti]q′0 ≈ mi. Denote the result as m̂i.

4. ct4 ← StC(ct3) : Decode m̂i back to the coefficient representation to yield
m̂(X) by running τ ′ homomorphically. The goal is to minimize the difference
between m(X) and m̂(X).

The total depth Lb needed for bootstrapping is Lenc + Lmod + Ldec, where
Lenc and Ldec are the levels needed for encoding and decoding, respectively, and
Lmod is the depth needed for approximate modular reduction.

3 Analytical Expressions for Arbitrary Function
Evaluation

In this section we derive all intermediate and final analytical expressions for
single- and multi-precision function evaluation using CKKS.

3.1 Trigonometric Hermite Interpolation for Arbitrary Function
Approximation

To evaluate an arbitrary function f : Zp → Zp, we aim to construct a mapping
that approximates f at p equidistant points of interest. Specifically, we seek a
polynomial approximation for the mapping m

p + I 7→ f(m), where m ∈ Zp and
I is an integer value.

As our goal is to approximate a periodic function (with period 1), it is natural
to use a trigonometric interpolation in the form of a (truncated) Fourier series
for fractional x = j

p , where j ∈ [p],

R (x) = a0 +

p−1∑
k=1

(ak cos(2πkx) + bk sin(2πkx)) , (1)

where the coefficients {ak}p−1
k=0 and {bk}p−1

k=1 are to be determined.
The messages encrypted in RLWE ciphertexts are not exact and contain

small noise, which gets removed via rounding in normal RLWE decryption. When
we use CKKS to perform homomorphic decryption of the messages, the noise
is not automatically removed and actually increases due to the homomorphic

13

computations performed as part of CKKS bootstrapping. To reduce the noise,
we require that first derivatives of the trigonometric interpolation be set to zero
at all points of interest, which results in quadratic reduction of the noise. In this
case, the first-order error terms in the Taylor series expansions at all points of
interest vanish. In [BCKS24], for binary bootstrapping, quadratic reduction of
noise was also chosen.

Hence, our interpolation problem reduces to finding a trigonometric polyno-
mial R(x) that satisfies the conditions

R

(
k

p

)
= f(k), R′

(
k

p

)
= 0, (2)

for k ∈ [p]. The problem (1) with conditions (2) represents a linear systems of
equations that can be numerically solved for coefficients {ak}p−1

k=0 and {bk}p−1
k=1

using a standard linear solver.
However, it is more convenient both for analysis and practical use to find

general analytic expressions for the coefficients. A trigonometric polynomial R(x)
satisfying conditions (2) is known in trigonometric interpolation theory as a
special case of the first-order trigonometric Hermite interpolation [SV65].

We summarize the result here.

Theorem 1. The first-order trigonometric Hermite interpolation polynomial
satisfying the constraints (2) exists, is unique and has the following expression:

R (x) = a0 +

p−1∑
k=1

(ak cos(2πkx) + bk sin(2πkx)) ,

a0 =
1

p

p−1∑
l=0

f(l), ak =
2(p− k)

p2

p−1∑
l=0

f(l) · cos
(
2πlk

p

)
,

bk =
2(p− k)

p2

p−1∑
l=0

f(l) · sin
(
2πlk

p

)
.

(3)

Proof. For the general case of a trigonometric Hermite interpolation (0, M),
i.e., where the conditions for the function itself and M -th derivative are given,
Sharma and Varma derived an explicit form of R(x) and established its unique-
ness (see Theorem 1 [SV65] for the details and proof).

Our case corresponds to M = 1, where all values of first derivative are zero,
and the expression for R is written as

R(x) =

p−1∑
l=0

f(l) ·U
(
2π

(
x− l

p

))
with U(x) =

1

p

(
1 +

2

p

p−1∑
k=1

(p− k) cos(kx)

)
.

(4)
Substituting U(x) into R(x) in (4), the expression for R can be rewritten as

R(x) =
1

p

p−1∑
l=0

f(l) +
2

p2

p−1∑
l=0

p−1∑
k=1

f(l)(p− k) cos

(
2πk

(
x− l

p

))
.

14

By applying the cosine angle subtraction identity and rearranging the order of
summation, the second term can be rewritten as

p−1∑
k=1

2(p− k)

p2

p−1∑
l=0

f(l)

(
cos(2πkx) cos

(
2πlk

p

)
+ sin(2πkx) sin

(
2πlk

p

))
.

Matching the transformed expression for R(x) with equation (1) yields the sought
expressions for the coefficients written in the theorem statement. ⊓⊔

3.2 FHE-Friendly Expression using Complex Exponential Function

The Fourier series given by the expression (3) is not convenient for FHE evalu-
ation as it contains series of both sines and cosines, which have to be separately
evaluated (typically through polynomial approximations). A more FHE-friendly
expression can be derived using the complex exponential function leading to the
polynomial evaluation over vectors of complex numbers.

The high-level idea is to extend the expression (4) from cosines to the corre-
sponding complex exponential functions, perform the evaluation in the complex
domain, and then extract the real part of the result.

Corollary 1. The first-order trigonometric Hermite interpolation polynomial
R(x) satisfying the constraints (2) can be expressed as the real part of complex
polynomial T (x) given by

T (x) = α0 +

p−1∑
k=1

αk · e2πikx, (5)

α0 =
1

p

p−1∑
l=0

f(l), αk =
2(p− k)

p2

p−1∑
l=0

f(l) · e−2πkli/p.

Proof. The complex generalization of (4) can be written as

T (x) =

p−1∑
l=0

f(l) ·W
(
2π

(
x− l

p

))
with W (x) =

1

p
+

2

p2

p−1∑
k=1

(p− k)eikx. (6)

Substituting W (x) into T (x) in (6) yields

T (x) =
1

p

p−1∑
l=0

f(l) +
2

p2

p−1∑
k=1

p−1∑
l=0

f(l)(p− k) · e−2πkli/p · e2πikx.

By writing T (x) = α0+
∑p−1

k=1 αk ·e2πikx and identifying the coefficients {αk}p−1
k=0,

we obtain the expressions in the theorem statement.
The sought expression R(x) is the real part of T (x):

R(x) = Re(T (x)), (7)

which is equivalent to (1), (3). ⊓⊔
Hence, we obtain a power series of degree p− 1 for E(x) := e2πix, which can

be efficiently evaluated using the Paterson-Stockmeyer algorithm [PS73].

15

3.3 Analytical Expressions for Floor and Step Functions

The floor and step functions are used as subroutines in the multi-precision sign
and LUT evaluation. Here, we provide an interesting relation between these
functions and analytical expressions. For simplicity, we focus on the case of
p being a power of two, which is the main practical scenario for using these
subroutines in multi-precision evaluation.

First, we introduce a scaled step (Heaviside) function stepp as the function
with period p such that for k ∈ [p]:

stepp(k) =

{
0, if 0 ≤ k < p/2

p/2 if p/2 ≤ k < p.
(8)

The modp function can be recursively defined in terms of the stepp function:

modp(k) = mod p
2
(k) + stepp(k), p > 2 (9)

mod2(k) = step2(k). (10)

The R-interpolations for the modp and stepp functions can be expressed as

Rmodp (x) = Rmod p
2
(2x) + Rstepp (x) , p > 2 (11)

Rstepp (x) =
p

4
− 1

p

∑
k∈S

(p− k)

(
cos(2kπx) + cot

(
πk

p

)
sin(2kπx)

)
, (12)

for x ∈ {0, 1
p , . . . ,

p−1
p } and S =

{
2i+ 1 : i ∈ [p2]

}
. The expression (12) was

derived from (1) and (3) via a number of simplifications (similar to those in
Appendix C.1 for the complex exponential expression).

Note that for p = 2, we have

Rmod2 (x) = Rstep2 (x) =
1

2
− 1

2
cos (2πx), (13)

which is the same as the trigonometric interpolation in [BCKS24] for binary
CKKS bootstrapping. This is not surprising as the first derivative was also set
to zero in [BCKS24] to achieve noise reduction during binary bootstrapping.

For evaluation with FHE, we derived analytical expressions in terms of the
complex exponential function (see Appendix C.1 for the derivation details):

Rmodp (x) =
p− 1

2
+

1

p

p−1∑
k=1

(p− k)

(
−1 + i cot

(
πk

p

))
e2πikx, (14)

Rstepp (x) =
p

4
+

1

p

∑
k∈S

(p− k)

(
1− i cot

(
πk

p

))
e2πikx, (15)

where S =
{
2i+ 1 : i ∈ [p2]

}
.

16

3.4 Higher-Order Trigonometric Hermite Interpolations

So far, we have focused on the first-order trigonometric Hermite interpolation
R(x) with constraints (2), which achieves quadratic noise reduction. If additional
noise reduction is needed, a second-order or even third-order trigonometric Her-
mite interpolation can be used. Here, we derive expressions for both second-
and third-order trigonometric Hermite interpolations. The proofs are deferred
to Appendix C.2.

For the second-order interpolation R2(x), the constraints are written as

R2

(
k

p

)
= f(k), R′

2

(
k

p

)
= 0, R′′

2

(
k

p

)
= 0, (16)

where k ∈ [p]. In [Var69], Varma derives analytical expressions for a more general
Hermite trigonometric interpolation, which we use here for the second-order
interpolation R2(x).

Theorem 2. The second-order trigonometric Hermite interpolation polynomial
R2(x) satisfying the constraints (16) exists, is unique, and can be expressed as
the real part of complex polynomial T2(x), for E(x) := e2πix:

T2(x) = α0 +

p−1∑
v=1

αv · E(x)v +

⌊p/2⌋∑
k=1

βkE(x)k − δk
2
E(x)p+k − θk

2
E(x)p−k,

(17)

βk =
(2− γp,k)k(p− k)

p3

p−1∑
l=0

f(l) · e−2πkli/p,

δk =
(2− γp,k)k(p− k)

p3

p−1∑
l=0

f(l) · e−2π(p+k)li/p,

θk =
(2− γp,k)k(p− k)

p3

p−1∑
l=0

f(l) · e−2π(p−k)li/p,

where αv are the same as in the first-order expression (5) in Theorem 1; γp,k = 1
if p is even and k = p/2, while γp,k = 0 otherwise.

It is easy to see that for the second-order trigonometric Hermite interpolation,
one needs to evaluate a power series of degree 3p

2 for E(x). In other words,
the computational cost of going from quadratic to cubic noise reduction is to
increase the degree of the polynomial evaluated using the Patterson-Stockmeyer
algorithm from p− 1 to 3p

2 .
For the third-order interpolation R3(x), the constraints are written as

R3

(
k

p

)
= f(k), R′

3

(
k

p

)
= 0, R′′

3

(
k

p

)
= 0, R′′′

3

(
k

p

)
= 0, (18)

where k ∈ [p].

17

Theorem 3. The third-order trigonometric Hermite interpolation polynomial
R3(x) satisfying the constraints (18) exists, is unique, and can be expressed as
the real part of complex polynomial T3(x), for E(x) := e2πix:

T3(x) = α0 +

p−1∑
k=1

(αk + βk) · E(x)k − δk
2
E(x)p+k − θk

2
E(x)p−k, (19)

βk =
2k(p− k)(2p− k)

3p4

p−1∑
l=0

f(l) · e−2πkli/p,

δk =
2k(p− k)(2p− k)

3p4

p−1∑
l=0

f(l) · e−2π(p+k)li/p,

θk =
2k(p− k)(2p− k)

3p4

p−1∑
l=0

f(l) · e−2π(p−k)li/p,

where αk are the same as in the first-order expression (5) in Theorem 1.

It is easy to check that T3(x) is a power series of degree 2p− 1.

3.5 Hermite Polynomial Interpolation with Noise Cleaning

When evaluating the function f separately from the bootstrapping process, we
can use polynomial Hermite interpolation to approximate f at points {xk}pk=0.
In this method, we encode the message in CKKS in its value representation
(not in coefficient format and not scaled by p) and apply polynomial Hermite
interpolation to evaluate f homomorphically.

Polynomial Hermite interpolation constructs a polynomial that satisfies func-
tion values at a set of interpolation points. To reduce the noise, we also require
that the first derivatives be set to zero at the set of interpolation points. Specif-
ically, for first-order interpolation, given the conditions:

R̄ (xk) = f (xk) , R̄′ (xk) = 0, k = 0, 1, . . . , p− 1, (20)

Hermite polynomial interpolation generates a polynomial R̄(x) of degree 2p− 1
that passes through the points x = xk with zero-valued first derivatives at these
points. The interpolation polynomial R̄(x) can be expressed as:

R̄(x) =

p−1∑
k=0

[
(1− 2(x− xk)ℓ

′
k (xk)) ℓk(x)

2
]
f(xk), (21)

where ℓk(x) is the Lagrange basis polynomial defined as:

ℓk(x) =

p−1∏
j=0
j ̸=k

x− xj

xk − xj
. (22)

18

Similar to Section 3.4, we can achieve better noise cleaning, by extend-
ing polynomial Hermite interpolation to higher-order derivatives. For instance,
second-order Hermite polynomial interpolation includes constraints on the func-
tion values, first derivatives, and second derivatives:

R̄ (xk) = f (xk) , R̄′ (xk) = 0, R̄′′ (xk) = 0, (23)

where k ∈ [p]. This leads to a polynomial R̄(x) of degree 3p − 1. By choosing
the order of the polynomial Hermite interpolation appropriately, we can balance
between noise reduction and computational efficiency.

Although not explicitly stated, several studies implicitly employ polynomial
Hermite interpolation techniques for noise cleaning. For instance, papers such
as [CKK20, DMPS24] utilize Hermite interpolation R̄ with p = 2 and f(x) = x
at the points −1 and 1 or 0 and 1. These works apply different orders of in-
terpolation to construct their respective polynomials fi (and hi in [DMPS24]),
which are subsequently used to reduce noise in ciphertexts. Similarly, [CKKL24]
adopts Hermite interpolation R̄ of order one for power-of-two values of p, specif-
ically using f(x) = x at the roots of unity e2πik/p for k = 0, 1, . . . , p− 1. These
applications demonstrate that Hermite interpolation serves as the underlying
mechanism for noise reduction, even when not explicitly mentioned by the au-
thors, and is a valuable mechanism in approximate homomorphic computations.

We include a comparison between evaluating an LUT using functional CKKS
bootstrapping via trigonometric Hermite interpolation and evaluating an LUT
using CKKS bootstrapping and leveled computation using polynomial Hermite
interpolation in Appendix A.3.

4 Amortized Functional Bootstrapping of RLWE
Ciphertexts

We recall some notation here. We use m ∈ Zw to express a vector of input integer
messages, m(X) ∈ R for the polynomial with vector of coefficients m (we will
use m and m(X) interchangeably), and τ(m) for the slot encoding (canonical
embedding) of m.

Assume ct is an RLWE ciphertext encrypting m. (Note that ct could also
be obtained by packing multiple LWE ciphertexts, each encrypting an element
of m.) Let f(x) be a function we want to homomorphically evaluate on ciphertext
encrypting x ∈ Zp, for an arbitrary p. Our goal is to build an amortized version
of the DM/CGGI functional bootstrapping introduced in Appendix B.2, for
ciphertexts ct satisfying ⟨ct, sk⟩ = ∆m

p + e, where m ∈ Zw
p , with w being the

number of integers bootstrapped at once.
We use the CKKS bootstrapping method as the foundation because it is

currently the most efficient amortized bootstrapping method across all FHE
schemes. The core idea is to remove the overflows by evaluating a polynomial ap-
proximating modular reduction over the encoded raised ciphertext, which keeps
the scaled message as is but removes the scaled overflows. Since in CKKS we

19

can scale a message m ∈ Z to satisfy m ≈ sin(m), the modular reduction ap-
proximation for modulus q′0 is [m+ q′0I]q′0 = [m]q′0 =

q′0
2π sin(2πmq′0

).
Applying modulus raising creates overflows in the coefficient domain. Mov-

ing to the slots domain allows us to evaluate the polynomial approximating the
trigonometric function (corresponding to mod 1) and remove the overflows. In
the “standard” CKKS bootstrapping case discussed above, the evaluation of the
approximation polynomial leaves the message in place, regardless of its encod-
ing, since the message is scaled down (much smaller than 1). However, in the
functional CKKS bootstrapping case, we also want to evaluate an interpolation
polynomial that applies to the message. Therefore, when we apply the polyno-
mial evaluation, the message needs to also be encoded in slots, the same way as
the overflows.

Since in our case the input ciphertext is in RLWE form, the message is
encoded in coefficients. Therefore, the first step in the functional bootstrapping
is to apply ModRaise, with both the message and overflows coefficient-encoded.
Then, we apply the homomorphic encoding CtS, which brings both the message
and the overflows in the slots domain, ready for the polynomial evaluation as the
next step. Note that for full packing, i.e., to bootstrap N values in the coefficients,
we have to use two CKKS ciphertexts (one representing the real part and one
the imaginary part, obtained from conjugating the result of the CtS transform)
and run the polynomial evaluation on both, then combine them back into one
ciphertext. Finally, to return to the RLWE coefficient encoding, we run the
homomorphic decoding StC. In other words, the same bootstrapping blueprint as
described in Section 2.4 can be used, except for a different polynomial evaluation,
which also does function evaluation in this case.

We outline the algorithm for evaluating the functional bootstrapping over ct
for an LUT in Algorithm 1. We provide more technical details in the following.

Note that we do not require that the input and output RLWE ciphertexts
have the same ciphertext and plaintext moduli. If they do have the same param-
eters, then some adjustment operations can be avoided.

Adjusting the scaling factor in line 3 of Algorithm 1 requires another level.
The homomorphic encoding and decoding CtS and StC can be implemented ei-
ther as linear transforms consuming a single level each, or using a collapsed
FFT-like approach [CCS19], consuming multiple levels each. The latter has the
advantage of a substantial decrease in both computational complexity and mem-
ory requirement (number of evaluation keys and stored plaintexts).

We evaluate EvalLUT using the polynomial (5) for the first-order trigono-
metric Hermite interpolation. For the second-order and third-order trigonomet-
ric Hermite interpolations, one can use the polynomials (17) and (19), respec-
tively. To evaluate EvalLUT, we first evaluate E′(x) = e2πxi/2

r

on a subinterval
of [−1/2r, 1/2r] using the Chebyshev series interpolation, then use the double-
angle formula to increase the interval up to [-1,1]. After that we evaluate the
power series in terms of powers of E′(x). Both the Chebyshev and power series
are evaluated using the Paterson-Stockmeyer algorithm [PS73, CCS19]. Note
that these polynomials (in their general form) have complex coefficients. The

20

Algorithm 1 Amortized functional bootstrapping for an RLWE ciphertext
Public parameters:
– q: input RLWE ciphertext modulus;
– q′0: CKKS ciphertext modulus, prime, close to q; ▷ q′i>0 can also be used
– Q′

L: raised CKKS ciphertext modulus (used during bootstrapping);
– ∆: CKKS scaling factor;
– Q: output ciphertext modulus;
– P : output plaintext modulus;
– p: input RLWE plaintext modulus;
– Q′: CKKS ciphertext modulus after bootstrapping;
– LUT: coefficients of R(x) for the look-up table evaluation.

1: procedure FuncBTq′0,Q
′
L
,∆(ct ∈ R2

q, LUT)
2: ct1 ← ModSwitch(ct, q′0) ▷ Switch ct from q to q′0. The scaling of the message

becomes q′0
p

.
3: ct2 ← ∆

q′0
ct1 ▷ Adjust the scaling factor such that we obtain a CKKS

ciphertext encoding ∆m(X)
p

mod q′0.
4: ct3 ← ModRaise(ct2, Q

′
L) ▷ Encoded vector becomes ∆m(X)

p
+ q′0I(X) mod Q′

L

5: ct4 ← CtS(ct3) ▷ Homomorphic encoding operation, the encoded vector
becomes ∆ τ(m)

p
+ q′0τ(I)

6: ct5 ← EvalLUT(ct4, LUT). ▷ Homomorphically evaluate the trigonometric
interpolation polynomial LUT. The result will encode ∆τ(m′) mod Q′, where m′

are the coefficients corresponding to f(m).
7: ct6 ← StC(ct5) ▷ Homomorphic decoding operation with an adjusting factor of

Q′/(∆QP), the encoded vector becomes Q′

Q
m′(X)

P
mod Q′

8: ct′ ← ModSwitch(ct6, Q
′) ▷ Switch ct6 from Q to Q′. The RLWE ciphertext

encodes Q
P
m′(X).

9: return ct′

last step of EvalLUT, which consists of taking the real part of the expression (5)
is done via a complex conjugation, which is a cheap homomorphic operation.

Remark 1. For p = 2, the first-order Hermite trigonometric interpolation can
be written as R(x) = 1

2 (f(0) + f(1)) + 1
2 (f(0)− f(1)) cos(2πx). This allows a

cheaper evaluation of cos(2πx) instead of E(x). Furthermore, using the double-
angle formula, we obtain R(x) = f(1)+(f(0)− f(1)) cos2(πx), i.e., the coefficient
of cos2(πx) is integral, thus saving a level of computation.

Correctness. The correctness of the procedure depicted in Algorithm 1 follows
from the correctness of the regular CKKS bootstrapping (described in Sec-
tion 2.4) and the correctness of trigonometric interpolations because we use
EvalLUT instead of EvalMod in our functional bootstrapping algorithm. We fo-
cus here only on EvalLUT as the correctness of other steps has already been
studied elsewhere [CHK+18, CCS19].

21

Theorem 4. For an M -th order trigonometric Hermite interpolation of f(x)
that satisfies the constraints

R

(
k

p

)
= f(k), R′

(
k

p

)
= 0, . . . , R(M)

(
k

p

)
= 0, (24)

where k ∈ [p], and a unique trigonometric Hermite interpolation of order M
exists, the output error ∥εout∥∞ after the polynomial evaluation is bounded by

∥εout∥∞ =

∣∣∣∣R(k

p
+ ε

)
− f (k)

∣∣∣∣ ≤ CεM+1, (25)

where C is a constant and ε < 1
2p .

Proof. If a unique interpolation R(x) satisfying the constraints (24) exists, then
the Taylor series expansion of R(x) at point k

p + ε will show that the inequal-
ity (25) holds. ⊓⊔

Theorem 4 implies that the noise present in the encrypted message will get
reduced by the interpolation to the degree determined by M . However, the homo-
morphic computations in functional bootstrapping contribute to the practically
observed noise, too. For example, the Chebyshev series interpolation is used to
approximate E′(x) instead of evaluating it directly. Operations that require eval-
uation keys, such as homomorphic multiplications used in polynomial evaluation,
also introduce some noise due to the approximate nature of CKKS. The effect of
the CKKS noise depends on the chosen value of the CKKS scaling factor ∆ = 2ρ

(the scaling factor can be increased to make this noise negligible). Hence, the
practical noise reduction will depend on the tradeoff between the interpolation
noise reduction capability and noise cost of homomorphic computations.

Complexity. Similar to the case of regular CKKS bootstrapping, the total depth
Lfb needed for functional bootstrapping is Lenc + LLUT + Ldec + 1 (for extra
scaling), where Lenc and Ldec are the levels needed for encoding and decoding,
respectively, and LLUT is the depth needed for evaluating the trigonometric
Hermite interpolation. For the first-order interpolation, the number of levels
consumed by EvalLUT is levels for evaluating E(x) + log(p) + 1. An extra level
is added for the second- and third-order interpolations.

The bottleneck operation in most cases is EvalLUT as it requires a large num-
ber of homomorphic multiplications. Its complexity depends on the Paterson-
Stockmeyer algorithm evaluation which is used both for Chebyshev and power
series. The Paterson-Stockmeyer algorithm requires

⌈√
2d+ log d

⌉
+O(1) homo-

morphic multiplications to evaluate a degree-d polynomial [PS73, CCS19]. The
power series evaluation for the first-order trigonometric Hermite interpolation
deals with a degree-(p− 1) polynomial implying that adding another bit of pre-
cision to plaintext modulus p is expected to increase the power series evaluation
roughly by a

√
2 factor. In a practical setting, the effect will probably be smaller

22

as other operations in EvalLUT and other operations in Algorithm 1 will have a
much smaller increase in complexity because they do not directly depend on p.

Note that for second- and third-order interpolations, the degree increases to
3p
2 and 2p−1, respectively, which implies that the complexity increase from first-
order to third-order interpolation should not typically be more than a factor of√
2. This also means that the computational cost of reducing the noise via the

use of the third-order interpolation (instead of the first-order one) is comparable
in complexity cost to adding an extra bit to the plaintext space.

5 Amortized Multi-Precision Function Evaluation for
RLWE Ciphertexts

The polynomial degree needed for amortized functional bootstrapping using
trigonometric Hermite interpolation is proportional to plaintext modulus p. This
implies that higher values of p increase the complexity both due to the increased
cost of Paterson-Stockmeyer polynomial evaluation (proportional to √p) and
raised parameters (every doubling of p adds one more CKKS level and slightly
increases the scaling factor). Hence, for larger values of p a multi-precision ap-
proach based on the blueprint of [GBA21, LMP23] can be more efficient, at least
for some classes of functions. An important building block for multi-precision
function evaluation is the digit extraction procedure, which can be written in
terms of the floor function. In this section, we first describe a procedure for evalu-
ating the floor function, then, show how it can be applied for the multi-precision
sign evaluation of messages in Zw

P , and, finally, we discuss the multi-precision
evaluation of an arbitrary function for messages in Zw

P . Here, we focus on the case
of first-order trigonometric Hermite interpolation, noting that all these results
easily extend to the higher-order interpolations.

5.1 Homomorphic Evaluation of Floor Function

The floor function evaluation is based on Algorithm 1 for arbitrary function
evaluation. Instead of the general power series (5), we use a simpler analytic
expression (14). The algorithm for the floor function is outlined in Algorithm 2
(the public parameters are the same as in Algorithm 1). The correctness of
evaluating HomFloor follows from the correctness of FuncBT. The complexity of
evaluating HomFloor is the same as for FuncBT because the power series (14)
for Rmodp (x) has the same polynomial degree as the general expression (5) for
R(x), and the cost of homomorphic subtraction is negligible.

5.2 Homomorphic Evaluation of Multi-Precision Sign Function

We will use the blueprint from [LMP23] that is depicted for DM/CGGI func-
tional bootstrapping in Appendix B.2, Algorithm 5. The outline of the multi-
precision sign evaluation algorithm for an input RLWE ciphertext is presented in

23

Algorithm 2 Homomorphic floor evaluation for an RLWE ciphertext
1: procedure HomFloorp(ct ∈ R2

Q)
2: ct1 ← ct mod q ▷ Extract the RLWE digit encrypting a digit in Zw

p .
3: ct2 ← FuncBTq′,Q′

L
,∆(ct1, LUT (Rmodp (x))) ▷

Perform the functional bootstrapping corresponding to the modulo p function. The
returned ciphertext ct2 encodes Q

P
(m mod p).

4: return ct− ct2

Algorithm 3 (the public parameters are the same as in Algorithm 1). The algo-
rithm uses our functional bootstrapping method for the floor function and step
function evaluation. Note that in the last iteration of the sign algorithm, where
we want to extract the sign of the most significant digit, we use the unscaled
step function 2

pRstepp (x), where Rstepp (x) is given by (15).

Correctness. The correctness of sign evaluation follows from the correctness of
HomFloor and FuncBT.

Complexity. The multi-precision sign evaluation for encrypted messages in Zw
P

requires ⌈ logP
log p ⌉ functional bootstrapping operations. The complexity of evaluat-

ing 2
pRstepp (x), the last functional bootstrapping invocation, is slightly smaller

as it requires the evaluation of a degree-p2 polynomial, as compared to p− 1 for
all other functional bootstrapping invocations.

Algorithm 3 Multi-precision sign evaluation for an RLWE ciphertext
1: procedure HomSign(ct ∈ R2

Q)
2: while Q > q do
3: ct1 ← HomFloorp(ct)
4: ct← ModSwitch(ct1, Q/p)
5: Q← Q/p, P ← P/p

return FuncBTq′,Q′
L
,∆(ct, LUT

(
2
p
Rstepp (x)

)
)

5.3 Homomorphic Evaluation of Multi-Precision Arbitrary Function

When the cost of directly computing EvalLUT for a large plaintext modulus
is high, one can use the multi-precision LUT evaluation approach proposed
in [GBA21]. The high-level idea is to decompose the RLWE ciphertexts into
digits and then perform (typically different) small-size LUTs against the en-
crypted digits. Two methods for evaluating multi-precision LUT evaluation are
available: tree-based and chain-based [GBA21]. The tree-based approach pro-
vides a general functionality, e.g., it can evaluate a random-looking LUT such as
S-box [TCBS23], but has an exponential complexity. The chaining-based method

24

provides a smaller complexity but for special (more structured) LUTs, e.g., an
LUT for a parity function.

To support the multi-precision LUT evaluation using our CKKS-based method,
we need to devise a digit decomposition procedure. The main idea of homomor-
phic digit decomposition is to decompose an RLWE ciphertext with a large
plaintext (ciphertext) modulus into a vector of RLWE ciphertexts with small
plaintext (ciphertext) moduli, corresponding to the digit size(s). The procedure
is similar to sign evaluation in Algorithm 3, except that all intermediate en-
crypted digits are kept and the last iteration (step function evaluation) is not
performed. The digit decomposition procedure is given in Algorithm 6 in Ap-
pendix D.

Tree-Based Evaluation of Large LUTs. We will focus here on the tree-
based functionality as it can support the evaluation of an arbitrary large LUT.
In the most general case, one needs d− 1+ d′

∑d−1
k=0 p

k functional bootstrapping
invocations to evaluate a message m in ZP represented as

∑d−1
k=0 mkp

k [TCBS23],
where d′ is the number of output digits in Zp. Here, the term d− 1 refers to the
digit decomposition and the rest accounts for small-size LUTs.

In the case of DM/CGGI bootstrapping, the complexity can be decreased
to d − 1 + d′ + d′

∑d−2
k=0 p

k bootstrapping invocations via the use of multi-value
bootstrapping where multiple small-size LUTs for the same ciphertext can be
evaluated at the cost of one bootstrapping operation [TCBS23]. Our LUT evalu-
ation algorithm can also take advantage of multi-value bootstrapping. The most
costly part, finding all e2πjxi for j ∈ [p] in expression (5), can be done once for
many LUTs operating on the same ciphertext, hence significanly reducing the
amortized cost over many LUTs. While the cost of remaining operations, scalar
computations in the Paterson-Stockmeyer algorithm and evaluation of StC, is not
neglible (on the order of 10% as compared to full bootstrapping), a significant
reduction in runtime complexity can be achieved via this optimization.

6 Functional Bootstrapping for CKKS Ciphertexts

In this section, we consider the input to the functional bootstrapping to be a
CKKS ciphertext, meaning the message is encoded via the inverse canonical
embedding and resides in the slots domain. We assume the input is a vector of
integers m ∈ ZN/2

p that is encrypted in a CKKS ciphertext. Note that one can
modify the expressions of R(x) obtained from (5), (17) and (19) to address the
lack of p-scaling.

Recall the discussion in Section 4 about requiring both the message and
overflows to be in the slots domain in order to apply the polynomial evaluation
corresponding to the desired function/LUT. Therefore, we need to first apply
the homomorphic decoding StC to bring the message to the coefficients domain.
Only then we raise the modulus, creating the overflows. Afterwards, we run
the homomorphic encoding CtS, to prepare the ciphertext for the polynomial
evaluation, which is the next step.

25

An important optimization in this case is that the costly polynomial eval-
uation is only performed on a single ciphertext, even in the case of full (real)
CKKS packing. For p = 2, one can do full complex packing, i.e., m ∈ CN/2,
applying an LUT separately over the real and imaginary parts of the input, but
this does not extend to larger p. For larger values of p, we deal with complex
evaluations which would require evaluating the polynomials on two ciphertexts.

Algorithm 4 Amortized functional bootstrapping for a CKKS ciphertext
Public parameters:
– q′: CKKS ciphertext modulus, prime; ▷ q′ > q′i≥1 can also be used
– Q′

L: raised CKKS ciphertext modulus (used during bootstrapping);
– ∆: CKKS scaling factor;
– Q′: output CKKS ciphertext modulus after bootstrapping;
– LUT: coefficients of R(x) for the look-up table evaluation.

1: procedure FuncBT’q′,Q′
L
,∆(ct ∈ R2

q′1
, LUT)

2: ct1 ← StC(ct) ▷ Homomorphic decoding operation and potential modulus
reduction, the encoded vector becomes ∆m(X) mod q′0

3: ct2 ← ModRaise(ct1, Q
′
L) ▷ Encoded vector becomes ∆m(X)+ q′0I(X) mod Q′

L

4: ct3 ← CtS(ct2) ▷ Homomorphic encoding operation, the encoded vector
becomes ∆τ(m) + q′0τ(I)

5: ct′ ← EvalLUT(ct3, LUT). ▷ Homomorphically evaluate the trigonometric
interpolation polynomial LUT. The result will encode ∆τ(m′) mod Q′, where m′

are the coefficients corresponding to f(m).
6: return ct′

Nevertheless, given that the output of the functional bootstrapping remains
in the CKKS “approximate” form and can be subjected to further computa-
tions, additional noise cleaning procedures may be employed. These can either
take the form of a higher-order trigonometric Hermite interpolation in the func-
tional bootstrapping or of a polynomial Hermite interpolation for the modulo p
functionality, as discussed in Section 3.5.

7 Implementation and Performance Evaluation

This section describes our experimental setup and provides performance results
both for single- and multi-precision function evaluation.

7.1 Parameter Selection

For our experiments, we use the ring dimensions N of 215 and 216 to evaluate
LUTs for up to 9 bits. The smaller ring dimension provides a lower latency while
the larger ring dimension often results in better throughput. For larger LUTs, we
use the ring dimension of 217. We use full packing, in the sense that the input
RLWE ciphertext packs N integer inputs, and we make use of both real and
imaginary slots in the CKKS ciphertext.

26

We use the sparse secret key distribution with the Hamming weight of 192,
making sure the maximum CKKS modulus Q′

LP
′ does not exceed the threshold

for the 128-bit work factor. For N = 215, we use the threshold of 767 bits
(using Table 4 of [CP19] or Table 3 of [BMTPH21]); for N = 216, we set the
threshold to 1,553 (using Table 3 of [BMTPH21]). For N = 217, we used a linear
interpolation fitting all values from Table 4 of [CP19] and 1,153 for N = 216 to
estimate the threshold as 3,104. It is also possible to use smaller sparse secrets
before ModRaise (as in [BCKS24]) or, on the opposite, uniform ternary secrets (as
in [BMTPH21]). Note that the difference in throughput would not be significant:
the number of levels could either be reduced (by 1 or 2 in the case of small sparse
secrets) or increased (by up to 4 levels in the case of uniform ternary secrets). The
intermediate extra levels are typically computed using the double-angle formula
(just requiring a squaring for each level) and only the computation before the
expensive evaluation of the power series for e2πxi becomes slower due to a higher
number of RNS limbs. Our ballpark estimates suggest that the use of uniform
ternary secrets (instead of the Hamming weight of 192) should not decrease the
throughput of the FHE evaluation by more than 25% in all practical scenarios
(with this number becoming progressively smaller as p increases).

Another important remark is related to the scaling of the messages when
working with the CKKS scheme, which was observed previously [CHK+18]. In
our implementation, we evaluate the second part of the trigonometric Hermite in-
terpolation (after computing e2πxi) using the Paterson-Stockmeyer method [PS73]
in the power basis. Although the magnitudes of the coefficients of the Hermite
interpolation polynomial (and the ratio between the largest and smallest mag-
nitudes of the coefficients) are not too large even for larger plaintext moduli p,
passing them through the large recursions in the Paterson-Stockmeyer algorithm
exacerbates the magnitudes and ratios of magnitudes, causing overflows in dou-
bles. We observed that the problem can be fully resolved by scaling down the
initial coefficients and scaling back up the resulting ciphertext after the power
series evaluation. This intermediate scaling also helps reduce the CKKS scaling
factor, resulting in improved overall efficiency.

7.2 Implementation

All reported times are obtained via single-threaded execution on a machine
with Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz and 64 GB of RAM, run-
ning Ubuntu 20.04 LTS, using OpenFHE v1.2.0 compiled with clang++ 12. For
the CKKS implementation in OpenFHE, we use the FIXEDMANUAL scaling
method and the hybrid key switching method (described in Appendix B.3).

7.3 Experimental Results

Table 1 shows the latency and amortized time for 1-bit to 4-bit, 8-bit, 9-bit, and
12-bit LUT evaluations, which are common LUT sizes in the related literature.
Note there is an almost 2x (1.67x) increase in amortized runtime when going
from 1 to 2 bits. The reason is that 1-bit evaluation requires only the evaluation

27

of cos 2πx while in the 2-bit case, we need to evaluate e2πxi, which is equivalent
to computing both cos 2πx and sin 2πx. However, as soon as we go from 2-bit to
3-bit evaluation, the amortized time increase becomes more modest (1.11x) as
the only difference is the degree in the Hermite interpolation polynomial, which
increases the complexity by

√
2 with doubling p. For smaller p, this increase

is smaller than
√
2 because other (p-independent) parts of bootstrapping still

play a significant role. But for larger p, the power series evaluation becomes
dominant and the runtime increase with doubling p progressively gets closer to√
2, as predicted by the complexity analysis of Section 4. Note that the increase

from 9 to 12 bits is even higher than 2
√
2 because of secondary factors, such as

increased N and extra RNS limbs.
If one would use the Boolean method (as in [BCKS24]) to evaluate larger

LUTs, they would need to use a multi-precison approach, such as the tree-based
method discussed in Section 5.3, which incurs exponential complexity in gen-
eral cases. For example, evaluating an 8-bit S-box (with multi-value functional
bootstrapping) using the tree-based approach would require 1,031 1-bit LUT
evaluations (see Section 5.3 for the complexity estimation expression). In our
case, the cost of evaluating an 8-bit LUT for AES S-box is only 4x higher than
evaluating a 1-bit LUT, implying a speed-up of about 250x over the tree-based
bit-level approach.

log p logQ N log(Q′
LP

′) # limbs (enc, dec) # limbs HKS Time (s) Amtz. time (ms)
1 33 215 768 16 (3,3) 4 6.151 0.187
2 35 216 1105 23 (5,5) 6 20.422 0.312
3 36 216 1092 22 (4,4) 5 22.661 0.345
4 40 216 1280 23 (4,4) 6 25.874 0.395
8 47 216 1535 25 (3,3) 6 49.025 0.748
9 49 216 1514 26 (3,3) 4 69.330 1.058
12 58 217 2458 31 (4,4) 11 569.54 4.345

Table 1. Experiments for the evaluation of an LUT (floor) for an RLWE ciphertext
with plaintext modulus p and ciphertext modulus Q. Here, log(Q) = log(∆) = log(q′0)
and p = P . By log(Q′

LP
′) we refer to the number of bits in the largest CKKS modulus,

which includes all RNS limbs for the leveled computation (multiplicative depth + 1)
and all RNS limbs used in hybrid key switching. A single RNS limb is left after the
functional bootstrapping. More detailed information is provided in Table A3.

Table 2 presents the timing results for multi-precision sign evaluation for
12-bit, 21-bit, and 32-bit encrypted messages. Note that the amortized runtime
improves as we increase the digit size from 1 to 6 bits for 12-bit messages and
from 1 to 7 bits for 21-bit bit messages, which follows from the analysis for
Table 1. This implies that our method with p > 2 for digits always outperforms
the Boolean approach developed in [BCKS24] in both single- and multi-precision
scenarios (even for special-purpose functions such as sign evaluation). We also
show the timing results for evaluating the sign of 32-bit messages with 8-bit digits

28

logP logQ log p log q log2(Q
′
LP

′) Time (s) Amtz. time (ms)
12 46 1 35 870 146.38 2.233
12 45 2 35 1105 124.13 1.894
12 45 3 36 1164 92.34 1.409
12 48 4 40 1140 77.91 1.119
12 48 6 42 1368 62.17 0.949
21 55 1 35 870 267.21 4.077
21 55 3 37 1114 159.54 2.434
21 57 7 43 1495 111.55 1.704
32 71 8 47 1535 197.93 3.022

Table 2. Experiments for the multi-precision evaluation of the sign function on an
RLWE ciphertext with plaintext modulus P and ciphertext modulus Q. The digit
plaintext modulus is p and the digit ciphertext modulus size is q. The ring dimension,
equal to the number of RLWE slots, is N = 216. log(q) = log(∆) = log(q′0).

as this scenario is useful for practical applications dealing with 32-bit arithmetic.
Note that the amortized runtime for sign evaluation is roughly the product of
the number of digits encrypting messages in Zw

p by the runtime of the log p-bit
LUT in Table 1, as expected from our complexity analysis.

For simplicity, we only implemented the case when there is a single digit of
size p whose bit-size log p divides the plaintext modulus bit-size logP , but we
remark that this is not necessary, and multi-precision evaluations with different
digit sizes (that do not divide logP) can be implemented.

To port our results from RLWE inputs to DM/CGGI inputs, we need to add
the time for the ring packing procedure, which yields an amortized time of 0.056
ms; see Appendix A.2.

8 Concluding Remarks

Our performance evaluation suggests that the general functional bootstrapping
method developed in this work starts outperforming the conventional DM/CGGI
method when the number of slots reaches the order of thousands or even hun-
dreds for LUTs of size larger than 8 bits. For many practical scenarios that
require the simultaneous evaluation of hundreds/thousands of slots, our pro-
posed RLWE-based method can replace the DM/CGGI solution. Moreover, our
method based on CKKS-style bootstrapping achieves significantly better com-
plexity and concrete amortized time than all prior methods based on BFV-style
bootstrapping.

Although we focus here on a vectorized instantiation of a DM/CGGI-style
cryptosystem, where the input scheme is RLWE and CKKS is only used for
functional bootstrapping, we envision that this method can also be used to de-
velop an end-to-end CKKS capability for fixed-precision arithmetic, which can
evaluate both polynomial and discontinuous functions, providing exact (rather
than approximate) results. The Hermite interpolations (both trigonometric and

29

polynomial) can be used to evaluate functions and control noise (keeping it be-
low a certain threshold). This exact CKKS could benefit from the ideas proposed
in [DMPS24] and [BCM+24], and use our functional bootstrapping method and
Hermite interpolations as essential building blocks. Finally, a BFV-style decryp-
tion can be employed in this exact CKKS formulation to achieve IND-CPAD

security without expensive noise flooding. We see the design and efficient in-
stantiation of such exact CKKS FHE scheme as an interesting research problem.

An interesting generalization was presented by Chung et al. [CKKL24], which
allows for the slotwise evaluation of multiple independent LUTs, including mul-
tivariable LUTs, within the same ciphertext. One can adapt their method to our
case for evaluating different multivariable LUTs in a slotwise manner, via matrix
multiplication, which is another topic for future research.

The main limitation of our method is the high computational complexity
of functional bootstrapping for large p (though this complexity is lower than
in all prior methods). For instance, our single-precision experimental results
are limited to 12-bit LUTs as the scaling factor approaches the limit for 64-bit
modular operations and the complexity of polynomial evaluation becomes high.
We view our implementation as a proof of concept, with potential for further
improvement to efficiently support the evaluation of larger LUTs. We leave the
development of such optimizations as a research problem for future studies.

Acknowledgements. The authors would like to thank Zeyu Liu and Yunhao
Wang for helpful discussions on multi-precision sign evaluation.

References

AAB+22. Ahmad Al Badawi, Andreea Alexandru, Jack Bates, Flavio Bergam-
aschi, David Bruce Cousins, Saroja Erabelli, Nicholas Genise, Shai Halevi,
Hamish Hunt, Andrey Kim, Yongwoo Lee, Zeyu Liu, Daniele Micciancio,
Carlo Pascoe, Yuriy Polyakov, Ian Quah, Saraswathy R.V., Kurt Rohloff,
Jonathan Saylor, Dmitriy Suponitsky, Matthew Triplett, Vinod Vaikun-
tanathan, and Vincent Zucca. OpenFHE: Open-source fully homomorphic
encryption library. Cryptology ePrint Archive, Paper 2022/915, 2022.
https://eprint.iacr.org/2022/915.

ABMP24. Andreea Alexandru, Ahmad Al Badawi, Daniele Micciancio, and Yuriy
Polyakov. Application-aware approximate homomorphic encryption: Con-
figuring FHE for practical use. Cryptology ePrint Archive, Paper
2024/203, 2024.

AP23. Ahmad Al Badawi and Yuriy Polyakov. Demystifying bootstrapping
in fully homomorphic encryption. Cryptology ePrint Archive, Paper
2023/149, 2023.

BBB+23. Loris Bergerat, Anas Boudi, Quentin Bourgerie, Ilaria Chillotti, Damien
Ligier, Jean-Baptiste Orfila, and Samuel Tap. Parameter optimization
and larger precision for (T)FHE. J. Cryptol., 36(3):28, 2023.

BCK+23. Youngjin Bae, Jung Hee Cheon, Jaehyung Kim, Jai Hyun Park, and
Damien Stehlé. Hermes: Efficient ring packing using mlwe ciphertexts
and application to transciphering. In Advances in Cryptology – CRYPTO

30

https://eprint.iacr.org/2022/915

2023: 43rd Annual International Cryptology Conference, CRYPTO 2023,
Santa Barbara, CA, USA, August 20–24, 2023, Proceedings, Part IV, page
37–69, Berlin, Heidelberg, 2023. Springer-Verlag.

BCKS24. Youngjin Bae, Jung Hee Cheon, Jaehyung Kim, and Damien Stehlé. Boot-
strapping bits with CKKS. In Marc Joye and Gregor Leander, editors,
Advances in Cryptology – EUROCRYPT 2024, pages 94–123, Cham, 2024.
Springer Nature Switzerland.

BCM+24. Jean-Philippe Bossuat, Anamaria Costache, Christian Mouchet, Lea
Nürnberger, and Juan Ramón Troncoso-Pastoriza. Practical q-IND-
CPA-d-secure approximate homomorphic encryption. Cryptology ePrint
Archive, Paper 2024/853, 2024.

BGV14. Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan. (leveled) fully
homomorphic encryption without bootstrapping. ACM Transactions on
Computation Theory (TOCT), 6(3):1–36, 2014.

BKSS24. Youngjin Bae, Jaehyung Kim, Damien Stehlé, and Elias Suvanto. Boot-
strapping small integers with CKKS. In ASIACRYPT 2024. Springer-
Verlag, 2024.

BMTPH21. Jean-Philippe Bossuat, Christian Mouchet, Juan Troncoso-Pastoriza, and
Jean-Pierre Hubaux. Efficient bootstrapping for approximate homomor-
phic encryption with non-sparse keys. In Anne Canteaut and François-
Xavier Standaert, editors, Advances in Cryptology – EUROCRYPT 2021,
pages 587–617, Cham, 2021. Springer International Publishing.

Bra12. Zvika Brakerski. Fully homomorphic encryption without modulus switch-
ing from classical GapSVP. In Advances in Cryptology–CRYPTO 2012:
32nd Annual Cryptology Conference, Santa Barbara, CA, USA, August
19-23, 2012. Proceedings, pages 868–886. Springer, 2012.

CCS19. Hao Chen, Ilaria Chillotti, and Yongsoo Song. Improved bootstrapping
for approximate homomorphic encryption. In Yuval Ishai and Vincent
Rijmen, editors, Advances in Cryptology - EUROCRYPT 2019 - 38th An-
nual International Conference on the Theory and Applications of Crypto-
graphic Techniques, Darmstadt, Germany, May 19-23, 2019, Proceedings,
Part II, volume 11477 of Lecture Notes in Computer Science, pages 34–54.
Springer, 2019.

CGGI16. Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachéne.
Faster fully homomorphic encryption: Bootstrapping in less than 0.1 sec-
onds. In Advances in Cryptology–ASIACRYPT 2016: 22nd International
Conference on the Theory and Application of Cryptology and Information
Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I 22,
pages 3–33. Springer, 2016.

CHK+18. Jung Hee Cheon, Kyoohyung Han, Andrey Kim, Miran Kim, and Yongsoo
Song. Bootstrapping for approximate homomorphic encryption. In Jes-
per Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology –
EUROCRYPT 2018, pages 360–384, Cham, 2018. Springer International
Publishing.

CJP21. Ilaria Chillotti, Marc Joye, and Pascal Paillier. Programmable bootstrap-
ping enables efficient homomorphic inference of deep neural networks.
In Cyber Security Cryptography and Machine Learning: 5th International
Symposium, CSCML 2021, Be’er Sheva, Israel, July 8–9, 2021, Proceed-
ings 5, pages 1–19. Springer, 2021.

31

CKK+19. Jung Hee Cheon, Dongwoo Kim, Duhyeong Kim, Hun Hee Lee, and Kee-
woo Lee. Numerical method for comparison on homomorphically en-
crypted numbers. In Steven D. Galbraith and Shiho Moriai, editors, Ad-
vances in Cryptology – ASIACRYPT 2019, pages 415–445, Cham, 2019.
Springer International Publishing.

CKK20. Jung Hee Cheon, Dongwoo Kim, and Duhyeong Kim. Efficient homomor-
phic comparison methods with optimal complexity. In Shiho Moriai and
Huaxiong Wang, editors, Advances in Cryptology – ASIACRYPT 2020,
pages 221–256, Cham, 2020. Springer International Publishing.

CKKL24. Heewon Chung, Hyojun Kim, Young-Sik Kim, and Yongwoo Lee. Amor-
tized large look-up table evaluation with multivariate polynomials for ho-
momorphic encryption. Cryptology ePrint Archive, Paper 2024/274, 2024.

CKKS17. Jung Hee Cheon, Andrey Kim, Miran Kim, and Yongsoo Song. Homo-
morphic encryption for arithmetic of approximate numbers. In Advances
in Cryptology–ASIACRYPT 2017: 23rd International Conference on the
Theory and Applications of Cryptology and Information Security, Hong
Kong, China, December 3-7, 2017, Proceedings, Part I 23, pages 409–437.
Springer, 2017.

CLOT21. Ilaria Chillotti, Damien Ligier, Jean-Baptiste Orfila, and Samuel Tap. Im-
proved programmable bootstrapping with larger precision and efficient
arithmetic circuits for TFHE. In Mehdi Tibouchi and Huaxiong Wang, ed-
itors, Advances in Cryptology – ASIACRYPT 2021, pages 670–699, Cham,
2021. Springer International Publishing.

CP19. Benjamin R. Curtis and Rachel Player. On the feasibility and impact of
standardising sparse-secret LWE parameter sets for homomorphic encryp-
tion. In Proceedings of the 7th ACM Workshop on Encrypted Computing
& Applied Homomorphic Cryptography, WAHC’19, page 1–10, New York,
NY, USA, 2019. Association for Computing Machinery.

DM15. Léo Ducas and Daniele Micciancio. FHEW: bootstrapping homomorphic
encryption in less than a second. In Elisabeth Oswald and Marc Fischlin,
editors, Advances in Cryptology - EUROCRYPT 2015 - 34th Annual In-
ternational Conference on the Theory and Applications of Cryptographic
Techniques, Sofia, Bulgaria, April 26-30, 2015, Proceedings, Part I, vol-
ume 9056 of Lecture Notes in Computer Science, pages 617–640. Springer,
2015.

DMPS24. Nir Drucker, Guy Moshkowich, Tomer Pelleg, and Hayim Shaul.
BLEACH: cleaning errors in discrete computations over CKKS. J. Cryp-
tol., 37(1):3, 2024.

FV12. Junfeng Fan and Frederik Vercauteren. Somewhat practical fully homo-
morphic encryption. Cryptology ePrint Archive, Paper 2012/144, 2012.
https://eprint.iacr.org/2012/144.

GBA21. Antonio Guimarães, Edson Borin, and Diego F. Aranha. Revisiting the
functional bootstrap in TFHE. IACR Transactions on Cryptographic
Hardware and Embedded Systems, 2021, Issue 2:229–253, 2021.

Gen09a. Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stan-
ford University, 2009. crypto.stanford.edu/craig.

Gen09b. Craig Gentry. Fully homomorphic encryption using ideal lattices. In
Proceedings of the forty-first annual ACM symposium on Theory of com-
puting, pages 169–178, 2009.

GV23. Robin Geelen and Frederik Vercauteren. Bootstrapping for BGV and BFV
revisited. J. Cryptol., 36(2):12, 2023.

32

https://eprint.iacr.org/2012/144
crypto.stanford.edu/craig

HK20. Kyoohyung Han and Dohyeong Ki. Better bootstrapping for approximate
homomorphic encryption. In Cryptographers’ Track at the RSA Confer-
ence, pages 364–390. Springer, 2020.

HL24. Jincheol Ha and Jooyoung Lee. Patching and extending the WWL+ circuit
bootstrapping method to FFT domains. Cryptology ePrint Archive, Paper
2024/1318, 2024.

KPP22. Andrey Kim, Antonis Papadimitriou, and Yuriy Polyakov. Approximate
homomorphic encryption with reduced approximation error. In Topics
in Cryptology – CT-RSA 2022, page 120–144, Berlin, Heidelberg, 2022.
Springer-Verlag.

KS22. Kamil Kluczniak and Leonard Schild. FDFB: Full domain func-
tional bootstrapping towards practical fully homomorphic encryption.
IACR Transactions on Cryptographic Hardware and Embedded Systems,
2023(1):501–537, Nov. 2022.

LHH+21. Wen-jie Lu, Zhicong Huang, Cheng Hong, Yiping Ma, and Hunter Qu.
PEGASUS: bridging polynomial and non-polynomial evaluations in homo-
morphic encryption. In 42nd IEEE Symposium on Security and Privacy,
SP 2021, San Francisco, CA, USA, 24-27 May 2021, pages 1057–1073.
IEEE, 2021.

LM21. Baiyu Li and Daniele Micciancio. On the security of homomorphic en-
cryption on approximate numbers. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 648–
677. Springer, 2021.

LMP23. Zeyu Liu, Daniele Micciancio, and Yuriy Polyakov. Large-precision homo-
morphic sign evaluation using FHEW/TFHE bootstrapping. In Advances
in Cryptology – ASIACRYPT 2022: 28th International Conference on the
Theory and Application of Cryptology and Information Security, Taipei,
Taiwan, December 5–9, 2022, Proceedings, Part II, page 130–160, Berlin,
Heidelberg, 2023. Springer-Verlag.

LMS24. Dongwon Lee, Seonhong Min, and Yongsoo Song. Functional bootstrap-
ping for packed ciphertexts via homomorphic LUT evaluation. Cryptology
ePrint Archive, Paper 2024/181, 2024.

LW23. Zeyu Liu and Yunhao Wang. Amortized functional bootstrapping in less
than 7 ms, with õ(1) polynomial multiplications. In Jian Guo and Ron
Steinfeld, editors, Advances in Cryptology - ASIACRYPT 2023 - 29th In-
ternational Conference on the Theory and Application of Cryptology and
Information Security, Guangzhou, China, December 4-8, 2023, Proceed-
ings, Part VI, volume 14443 of Lecture Notes in Computer Science, pages
101–132. Springer, 2023.

LW24. Zeyu Liu and Yunhao Wang. Relaxed functional bootstrapping: A new
perspective on BGV/BFV bootstrapping. Cryptology ePrint Archive, Pa-
per 2024/172, 2024.

MP21. Daniele Micciancio and Yuriy Polyakov. Bootstrapping in FHEW-like
cryptosystems. In Proceedings of the 9th on Workshop on Encrypted Com-
puting & Applied Homomorphic Cryptography, WAHC ’21, page 17–28,
New York, NY, USA, 2021. Association for Computing Machinery.

MSM+22. Chiara Marcolla, Victor Sucasas, Marc Manzano, Riccardo Bassoli, Frank
H. P. Fitzek, and Najwa Aaraj. Survey on fully homomorphic encryption,
theory, and applications. Proceedings of the IEEE, 110(10):1572–1609,
2022.

33

PS73. Michael S Paterson and Larry J Stockmeyer. On the number of non-
scalar multiplications necessary to evaluate polynomials. SIAM Journal
on Computing, 2(1):60–66, 1973.

Reg09. Oded Regev. On lattices, learning with errors, random linear codes, and
cryptography. J. ACM, 56(6), sep 2009.

SV65. A. Sharma and A. K. Varma. Trigonometric interpolation. Duke Mathe-
matical Journal, 32(2):341 – 357, 1965.

TCBS23. Daphné Trama, Pierre-Emmanuel Clet, Aymen Boudguiga, and Renaud
Sirdey. A homomorphic aes evaluation in less than 30 seconds by means of
tfhe. In WAHC ’23, page 79–90, New York, NY, USA, 2023. Association
for Computing Machinery.

Var69. A.K. Varma. Trigonometric interpolation. Journal of Mathematical Anal-
ysis and Applications, 28(3):652–659, 1969.

Var73. A. K. Varma. Hermite-Birkhoff trigonometric interpolation in the (0, 1, 2,
m) case. Journal of the Australian Mathematical Society, 15(2):228–242,
1973.

Zam22. Zama. TFHE-rs: A Pure Rust Implementation of the TFHE Scheme for
Boolean and Integer Arithmetics Over Encrypted Data, 2022. https:
//github.com/zama-ai/tfhe-rs.

A Comparison with Other Methods

This section compares our results with prior work. There are two main directions
of obtaining the homomorphic evaluation of arbitrary LUTs. The first one is
performing functional bootstrapping, and the second one is performing leveled
computations and potentially bootstrapping.

A.1 Comparison with the Boolean CKKS method

Our 1-bit LUT evaluation parallels the bit-level CKKS bootstrapping developed
in [BCKS24] for bootstrapping DM/CGGI ciphertexts, although with a cou-
ple of differences. First, their implementation uses smaller sparse secrets when
adding overflows during ModRaise. Second, their implementation uses the base
ring packing in HERMES to transform from LWE to RLWE and the functional
bootstrapping without the initial CtS transform (which seems to be perform-
ing the costly polynomial evaluation on a single ciphertext even when using full
packing, instead of on two ciphertexts as in our case). Their reported time for
their full-slot complex functional bootstrapping (without the ring packing) is
1.54 seconds for 214 gates. The resulting amortized time is 0.094 ms (this only
includes a single linear transform) versus our amortized time of 0.187 ms, which
implies that both implementations have similar efficiency.

A.2 Comparison with Other Methods for Functional Bootstrapping

There are two main methods in the literature for performing functional boot-
strapping: DM/CGGI-based, which bootstraps one number at a time, and BFV-
based, which supports amortized functional bootstrapping.

34

https://github.com/zama-ai/tfhe-rs
https://github.com/zama-ai/tfhe-rs

For the scenarios where we compare our runtimes with the runtimes for the
functional bootstrapping of LWE ciphertexts, we add the amortized base ring
packing time to our amortized time to account for the conversion of N LWE
ciphertexts to an RLWE ciphertext, as the latter was used as an input in our
experiments. Note that the amortized ring packing time is estimated using the
runtimes from [BCK+23], which are more conservative than the ring packing
runtimes in the later work of the authors [BCKS24]. For N = 215, the ring
packing time is 1.85 s, which is computed as the runtime for the ring dimension
of 212 (0.231 s) multiplied by 23. For N = 216, the ring packing time is twice
larger, i.e., 3.7 s. The corresponding amortized time for both is 0.056 ms.

Comparison with DM/CGGI functional bootstrapping. Table A1 com-
pares our experimental results with the CGGI-based results in [LMP23] for
single- and multi-precision LUT evaluation (note that uniform ternary secret
key distribution was used in [LMP23]). For the fairness of comparison, we reran
the experiments from [LMP23] using OpenFHE v1.2.0 and clang++ 12. For
multi-precision sign evaluation, we observe a speed-up of three orders of mag-
nitude for our method due to the SIMD capability of CKKS, enabling it to
bootstrap 216 numbers at once.

We also include the results from [TCBS23] in Table A1, which evaluate LUTs
using CGGI functional bootstrapping (with uniform binary secret key distribu-
tion) augmented with multi-value bootstrapping. In particular, for LUTs such
as S-box or XOR (for the AES algorithm), they provide runtimes for both a
direct 8-to-8 bit LUT evaluation and tree-based multiprecision LUT evaluation.
For the 8-to-8 bit LUT, with the method of Trama et al. it is more efficient to
decompose the LUT into smaller LUTs, while our approach is still very efficient
for a direct evaluation of an 8-to-8 bit LUT. The amortization makes our results
400x times more efficient than the evaluation of S-box in [TCBS23]. Note that
our amortized runtime for 8-bit LUT evaluation is 1,900x smaller than the direct
evaluation of the 8-bit LUT using the CGGI approach. It is worth pointing out
that the runtime for our method increases by roughly a factor of

√
2 when dou-

bling p while the DM/CGGI method scales exponentially (the ring dimension
doubles every time p is doubled).

Comparison with multi-precision method based on CGGI circuit boot-
strapping. Another multi-precision approach for evaluating large LUTs using
the CGGI/TFHE method is via circuit bootstrapping [BBB+23]. This method is
implemented in the tfhe-rs library [Zam22]. The high-level idea is to (1) decom-
pose a large-precision LWE ciphertext into LWE ciphertexts for each encrypted
bit of the message using homomorphic digit extraction, (2) convert the LWE
ciphertexts into RGSW ciphertexts using circuit bootstrapping to enable leveled
multiplications, and (3) evaluate a CMUX tree involving (many) multiplications.
This approach performs better for the CGGI cryptosystem than the tree-based

5 Corresponds to using the multiprecision approach with 4-bit LUTs

35

Table A1. Comparison of our single- and multi-precision results with DM/CGGI
functional bootstrapping.

Function logP [TCBS23] [LMP23] Our amtz.
runtime (ms) runtime (ms) runtime (ms)

EvalLUT 2 7 92 0.368
EvalLUT 3 15 243 0.401
EvalLUT 4 29 – 0.451
EvalLUT 8 1,500/3005 – 0.804
HomSign 8 – 671 0.804
HomSign 12 – 1,367 1.175
HomSign 21 – 3,451 2.490

approach when the precision reaches 10-11 bits [BBB+23]. For the ranges of
logP considered in our paper, the circuit bootstrapping is often the bottleneck
operation. It is hard to compare this approach with our method directly because
the cost of the CGGI circuit bootstrapping method depends on the complexity of
the evaluated LUT, but we can at least compare the cost of circuit bootstrapping
with our LUT evaluation runtime to get a ballpark estimate. To the best of our
knowledge, the state-of-the-art results for circuit bootstrapping compatible with
8-bit LUTs are presented in [HL24]. In Table 5, the authors report the timing
results for WOPBS_4_4, which is the tfhe-rs parameter set supporting 8-bit
LUTs. The runtime they report for tfhe-rs is 625 ms while their improved circuit
bootstrapping takes 87 ms [HL24]. Note that 87 ms is still two orders of magni-
tude slower than the amortized 8-bit LUT evaluation using our method. We also
want to highlight that a circuit bootstrapping capability could potentially be
built based on our functional bootstrapping method and leveled computations
in CKKS, which in some settings may result in more efficient LUT evaluation
than using functional bootstrapping directly. But we leave the development of
such circuit bootstrapping capability as a topic for future research, as it is not
directly related to functional bootstrapping.

Comparison with BFV-based functional bootstrapping. Liu and Wang
[LW23] proposed a method of batch evaluating an LUT over a number of LWE
ciphertexts by switching to BFV and evaluating a polynomial of degree q, the
BFV plaintext modulus (or, equivalently, LWE ciphertext modulus). For LWE
plaintext moduli p of up to 9 bits, the corresponding q is 65,537. For p up to 12
bits, the corresponding q is 786,433. Note that the BFV scheme requires special
moduli for q, which complicates its use for multi-precision LUT and sign evalu-
ation (we are not aware of any multi-precision extensions of this method). Our
method via CKKS involves evaluating a polynomial of a much smaller degree:
for LWE plaintext modulus p, the trigonometric Hermite interpolation requires
evaluating a polynomial of degree p − 1 over the approximation of e2πxi, with
the latter achieved by evaluating a polynomial of degree 58 followed by 2 to 4
double-angle-formula iterations. Specifically, in our implementation, for p = 29,

36

we evaluate a polynomial of degree 58, two squarings, and a polynomial of degree
511, while for p = 212, we evaluate a polynomial of degree 58, two squarings,
and a polynomial of degree 4095.

Liu and Wang [LW24] propose an optimization of [LW23] by relaxing the
correctness notion for the values outside of the points of interest, which reduces
the degree of the polynomial for the values of p smaller than 29, i.e., the maximum
p for a given value of q. The degree in this case becomes roughly p·r, where r is the
error bound, which is equal to 128 for q = 65, 537 for the secret key distribution
choice in [LW24] (sparse secrets with the Hamming weight of 512). Effectively,
this replaces the degree q with p · r and allows one to choose optimal parameters
for a given value of p rather than special modulus q. In terms of complexity, our
method has the same advantage as w.r.t. [LW23], but the concrete benefit of our
method becomes less significant for smaller values of p, when the contribution
of power series evaluation is smaller.

We also mention the work of Lee et al [LMS24], which homomorphically
evaluates an arbitrary LUT over a BFV ciphertext by using a method based on
conventional BFV/BGV bootstrapping working with plaintext space Zs

p, where
p is prime. Their experiments focus on input BFV plaintext moduli of p < 700
(≈ 9.5 bits) and p < 17000 (≈ 14 bits) and output plaintext moduli of 174 (≈ 16
bits) and 175 (≈ 20.5 bits) for the delta or sign functions. Due to the plaintext
algebra restrictions for p = 17, their number of slots for the reported results is
only 16. However, the number of levels remaining for computation in BFV is
11, whereas we leave only 1 level (though we could also add CKKS levels to our
bootstrapping, paying only a modest price, i.e., below 2x, in complexity).

Table A2 compares the online amortized runtimes of our method for general
functional bootstrapping via CKKS with the methods of [LW23] and [LW24] via
BFV. The times reported for [LW23] are from Tables 3 and 4 in their paper. We
note that we implemented their method in OpenFHE to check any differences
in runtime due to the underlying library and we obtained similar results (for
the 9-bit LUT, 6.7 ms in SEAL compared to 5.8 ms in OpenFHE). The times
reported for [LW24] are taken from Figure 4 from [LW24]6. The times reported
for [LMS24] are taken from Table 3 in their paper.

The relevant comparison is with [LW23] and [LW24], as the amortization is
done over a number of slots of similar magnitude. Our method exhibits improve-
ments in throughput ranging from 3.2x to 8.8x, with the speed-up increasing
with p (for log p ≥ 3).

A.3 Discussion on Leveled Methods for LUT Evaluation

We presented the method of using trigonometric Hermite interpolation inte-
grated into the functional bootstrapping process, allowing efficient evaluation
of arbitrary functions with noise reduction. We also mentioned the polynomial
Hermite interpolation approach to evaluate the function f separately from the
6 At the moment of writing, Figure 4 from [LW24] contained some typos and we

included the timings communicated by the authors.

37

Table A2. Comparison of our functional bootstrapping runtimes with BFV-based
methods. For our implementation, we report the base runtimes for BFV-input-
ciphertext functional bootstrapping as well as the runtimes with the ring packing for
DM/CGGI input ciphertexts.

log p [LW23] [LW24] [LMS24] Our amtz.
runtime (ms) runtime (ms) runtime (ms) runtime (ms)

1 4.7 1.3 – 0.254/0.310
3 6.7 1.3 – 0.345/0.401
4 6.7 1.5 – 0.395/0.451
8 6.7 5.3 – 0.748/0.804
9 6.7 6.7 2,960 1.058/1.114
12 39.1 – 10,760 4.345/4.401

bootstrapping process. In this section, we compare these two methods in terms
of computational efficiency and precision, and discuss other leveled methods for
Look-Up Table (LUT) evaluation.

When the function f is evaluated separately from the bootstrapping pro-
cess, a polynomial R̄(x) of degree 2p − 1 (for first-order interpolation) is used
to approximate f . This method requires a higher-degree polynomial than R(x)
(with the basis E(x)), which increases computational complexity and noise ac-
cumulation. Moreover, it has to invoke regular CKKS bootstrapping for deep
computations, which requires a larger scaling factor than the functional boot-
strapping method (see the discussion in Section 3.4 of [BCKS24] for p = 2; the
gap gets higher as p is increased). However, this method is independent of the
bootstrapping process and can be suitable for shallow computations without
bootstrapping.

Another approach is presented in [CKKL24], where Chung et al. proposed
a technique for evaluating LUTs using the CKKS scheme with custom encod-
ing. This method uses polynomial Hermite approximations to evaluate functions
directly on encrypted data, leveraging the homomorphic properties of CKKS.
However, the custom encoding complicates the application of multiplications,
making it less straightforward when handling more complex computations. We
mention that the results reported in Table 2 in [CKKL24] are obtained using a
GPU, which is typically faster than a CPU by at least an order of magnitude,
and yet the speed-up they obtain for an 8-to-8 bit S-box evaluation is only five
times faster than our method (0.15 ms versus 0.75 ms). Another drawback is
that large parameters (ring dimension N and ciphertext modulus Q) need to
be used to support both leveled LUT computation and subsequent bootstrap-
ping. The advantage of our method is that potentially smaller parameters can
be used as our method provides simultaneous arbitrary function evaluation and
bootstrapping.

In contrast to both of these methods, integrating trigonometric Hermite in-
terpolation directly into the bootstrapping process allows for functional boot-
strapping, where both noise reduction and function evaluation are performed
simultaneously. In this method, we evaluate a polynomial of degree p− 1 on top

38

of evaluating e2πix (which can be thought of as part of the original bootstrapping
process). The polynomial degree is reduced from 2p − 1 to p − 1, resulting in
faster computation and less noise accumulation.

B More Preliminaries

B.1 LWE Modulus Switching

Lemma 1 (Modulus Switching). Let (a, b) ∈ Zn+1
q be an LWE encryption of

a message m ∈ Zp under secret key s ∈ Zn with ciphertext modulus q and noise
bound |Decs(a, b)−(q/p)m|< β. Then, for any modulus q′, the rounded ciphertext
(a′, b′) = ⌈(q′/q) · (a, b)⌋ is an encryption of the same message m under s with
ciphertext modulus q′ and noise bound |Decs(a′, b′) − (q′/p)m|< (q′/q)β + β′′,
where β′′ = 1

2 (∥s∥1+1).

In practice, when the input ciphertext is sufficiently random, or when modulus
switching is performed by randomized rounding, it is possible to replace the
additive term β′′ with a smaller probabilistic bound O(∥s∥2). For uniformly
random ternary keys s ∈ {0, 1,−1}n, this is β′′ ≈ O(

√
n). For sparse secret keys

with a hamming weight h, it is β′′ ≈ O(
√
h).

B.2 Functional Bootstrapping and Multi-Precision Sign Evaluation
using DM/CGGI Cryptosystems

A key feature of a DM/CGGI cryptosystem is that it allows to perform certain
homomorphic computations (described by an LUT) on ciphertexts during boot-
strapping at no additional cost. We will use the generalization of the DM/CGGI
bootstrapping procedure presented in [LMP23]. The functional bootstrapping
algorithm is parameterized by

– a dimension n and (input ciphertext) modulus q, where q is a power of 2,
– a secret key s ∈ Zn, which must be a short vector.
– a large ciphertext modulus Q′ used internally to the bootstrapping proce-

dure, and which is not required to be a power of 2,
– an output ciphertext modulus Q, which we set to a power of 2 possibly

different from q, and
– an LUT function f :Zq → Z which must satisfy the negacyclic constraint

f(x+ q/2) = −f(x). (A1)

The bootstrapping procedure also uses a bootstrapping key, which is computed
from s, but can be made public. Since this bootstrapping key is only used inter-
nally by the bootstrapping procedure, we omit it from the notation.

On input an LWE ciphertext (a, b) ∈ Zn+1
q , the DM/CGGI bootstrapping

procedure first computes an LWE ciphertext (c′, d′) ∈ Zn+1
Q′ such that

Decs(c
′, d′) = f ′(Decs(a, b)) + e′ (mod Q′),

39

where the noise bound |e′|≤ β′ depends only on the computation performed
during bootstrapping (and not the input ciphertext), and

f ′(x) =

⌈
Q′

Q
· f(x)

⌋
is a scaled version of f still satisfying the negacyclic condition (A1). Then, mod-
ulus switching is applied to (c′, d′) to obtain a ciphertext (c, d) =

⌈
Q
Q′ (c

′, d′)
⌋
∈

Zn+1
Q modulo Q such that

Decs(c, d) = f(Decs(a, b)) + e (mod Q)

where |e|< β = (Q/Q′)β + β′′ is the noise bound from Lemma 1.
Similarly to [LMP23], we express the bootstrapping invocation for a given

function f as Boot[f](a, b).
Liu et al. and similar works show how this functional programming capabil-

ity for negacyclic functions can be used to build arbitrary function evaluation
in Zp [CLOT21, KS22, LMP23]. The cost is at least two functional bootstrap-
ping operations (the first one is needed to handle the negacyclic requirement).
Further, a multi-precision approach based on digit extraction (floor function)
and arbitrary function evaluation in Zp was derived to evaluate large arbitrary
functions in ZP , where P is the large plaintext modulus P required for a given
application [GBA21, LMP23].

Of special practical interest is the multi-precision sign evaluation capability
due to its linear increase of complexity with logP [LMP23]. The high-level algo-
rithm for evaluating the multi-precision sign function is depicted in Algorithm 5.
Here, HomFloor is an LUT evaluation for the floor/digit decomposition function
(requires two functional bootstrapping operations) and Boot[fMSB] is the regu-
lar MSB function evaluation (only one DM/CGGI bootstrapping is needed).

Algorithm 5 Algorithm for Multi-precision Homomorphic Sign Computa-
tion [LMP23]
1: procedure HomSign(Q, (c, d))
2: while Q > q do
3: (c, d)← HomFloor(Q, (c, d))

4: (c, d)←
⌈

α
q
· (c, d)

⌋
▷ α = q/p, for p the plaintext modulus of the digit

5: Q← αQ/q

6: d← d+ β
7: (a, b)← (q/Q) · (c, d)
8: (c, d)← (−Boot[fMSB](a, b)) (mod Q)
9: return (c, d)

40

B.3 CKKS Scheme in RNS

We first provide the CKKS algorithms related to evaluation (we will introduce
the details specific to the RNS instantiation later in this section):

– KeySwitchGensk(s′). For a power-of-two P ′ that corresponds to the auxil-
iary modulus, sample a random a′

k ← RP ′Q′
L

and error e′k ← χerr. For a
predefined power-of-two base ω, output the switching key as

swk = (swk0, swk1) =
(
{b′k}

dnum−1
k=0 , {a′

k}
dnum−1
k=0

)
∈ R2×dnum

P ′Q′
L

,

where b′k ← −a′
k · s + e′k + P ′ · PWL (s′)k (mod P ′Q′

L) and dnum =

⌈logω(Q′
L)⌉. Set evk← KeySwitchGensk(s2). Set rk(κ) ← KeySwitchGensk(s(κ)).

– KeySwitchswk(ct). For ct = (c0, c1) ∈ R2
Q′

ℓ
, swk = (swk0, swk1) 7 output(

c0 +

⌈
⟨WDℓ (c1) , swk0⟩

P ′

⌋
,

⌈
⟨WDℓ (c1) , swk1⟩

P ′

⌋)
(mod Q′

ℓ).

To keep the noise from key switching small, we can take P ′ ≈ ω.
– CAdd(ct, x). For ct = (b,a) ∈ R2

Q′
ℓ
with scaling factor ∆ℓ′ and scalar x ∈ Cn,

first encode x with same scaling factor m = Encode(x,∆ℓ′), and output
ctcadd ← (b+m,a) (mod Q′

ℓ).
– Add(ct1, ct2). For ct1, ct2 ∈ R2

Q′
ℓ
, output ctadd ← ct1 + ct2 (mod Q′

ℓ).
– CMult(ct, x). For ct = (c0, c1) ∈ R2

Q′
ℓ

and scalar x ∈ Cn, first encode x,
m = Encode(x,∆) and output ctcmult ← (c0 ·m, c1 ·m) (mod Q′

ℓ).
– Multevk(ct1, ct2). For cti = (bi,ai) ∈ R2

Q′
ℓ
,

let (d0,d1,d2) = (b1 · b2,a1 · b2 + a2 · b1,a1 · a2) (mod Q′
ℓ). Output

ctmult ← (d0,d1) + KeySwitchevk(0,d2) (mod Q′
ℓ).

– Rotrk(5κ)(ct, κ). For ct = (b,a) ∈ R2
Q′

ℓ
and rotation index κ, output

ctrot ← (b(5
κ), 0) + KeySwitchrk(5κ)(0,a(5κ)) (mod Q′

ℓ).

– Rescale(ct,∆ℓ′). For a ciphertext ct ∈ R2
Q′

ℓ
and a rescaling factor ∆ℓ′ , output

ct′ ←
⌈
∆−ℓ′ · ct

⌋
(mod Q′

ℓ−ℓ′).
Typically rescaling operation is done after multiplication and by one level.

RNS CKKS variants perform all operations in RNS. In other words, the
power-of-two modulus Q′

ℓ = 2ρ0+ℓ·ρ is replaced with
∏ℓ

i=0 q
′
i, where q′i’s are cho-

sen as described above to support efficient number theoretic transforms (NTT)
for converting native-integer polynomials w.r.t. each CRT modulus from coef-
ficient representation to the evaluation one, and vice versa. The primes q′i for
i = 1, . . . , ℓ are chosen to be as close to 2ρ as possible to minimize the error
introduced by rescaling.

The two major changes in the RNS instantiation compared to the CKKS
scheme deal with rescaling and key switching.
7 We can adapt swk to perform key switching for level ℓ < L.

41

Rescaling in RNS. To efficiently perform rescaling in RNS from Q′
ℓ to Q′

ℓ−1, the
scaling down by 2ρ is replaced with scaling down by q′ℓ. For i ∈ [L], q′i are chosen,
such that 2ρ/q′i is in the range (1 − 2−ϵ, 1 + 2−ϵ), where ϵ is kept as small as
possible. The new rescaling operation to scale down by one level is defined as

– Rescale(ct, q′ℓ). For a ciphertext ct ∈ R2
ℓ , output ct′ ←

⌈
q′

−1
ℓ · ct

⌋
(mod Q′

ℓ−1).

The maximum approximation error introduced by rescaling from ℓ to ℓ − 1
is ∣∣∣q′−1

ℓ ·m− 2−ρ ·m
∣∣∣ ≤ 2−ϵ ·

∣∣2−ρ ·m
∣∣ .

To minimize the cumulative approximation error growth in deeper computa-
tions, one can also alternate q′i w.r.t. 2ρ. For instance, if q′1 < 2ρ, then q′2 > 2ρ

and q′3 < 2ρ, etc. [KPP22].

Key Switching in RNS. To take advantage of RNS, we have to modify certain
operations, such as base ω decomposition, to make them RNS-friendly. We use
the hybrid key switching method described in [HK20]. Instead of the base ω
decomposition, RNS digit decomposition is used. First, we use the partial prod-
ucts {Q̃′

j}0≤j<dnum = {
∏(j+1)α−1

i=jα q′i}0≤j<dnum, where α = (L + 1)/dnum for a
pre-fixed parameter dnum. For level ℓ and dnum′ = ⌈(ℓ+ 1)/α⌉ we then have:

WD′
ℓ(a) =

[a Q̃′
0

Q′
ℓ

]
Q̃′

0

, . . . ,

[
a
Q̃′

dnum′−1

Q′
ℓ

]
Q̃′

dnum′−1

 ∈ Rdnum′
,

PW ′
ℓ(a) =

[a Q′
ℓ

Q̃′
0

]
Q′

ℓ

, . . . ,

[
a

Q′
ℓ

Q̃′
dnum′−1

]
Q′

ℓ

 ∈ Rdnum′

Q′
ℓ

.

For any (a, b) ∈ R2
ℓ ,WD

′
ℓ and PW ′

ℓ satisfy the following congruence relation:〈
WD′

ℓ (a) ,PW
′
ℓ (b)

〉
≡ a · b (mod Q′

ℓ).

This key switching procedure is similar to the one used in CKKS with the
only difference in the decomposition method.

– KeySwitchGensk(s′). For auxiliary modulus P ′ =
∏k

i=0 pi, sample a random
a′
k ← RP ′Q′

L
and error e′k ← χerr. For a pre-fixed parameter dnum, output

the switching key as

swk = (swk0, swk1) =
(
{b′k}

dnum−1
k=0 , {a′

k}
dnum−1
k=0

)
∈ R2×dnum

P ′Q′
L

,

where
b′k ← −a′

k · s+ e′k + P ′ · PW ′ (s′)k (mod P ′Q′
L).

42

– KeySwitchswk(ct). For ct = (c0, c1) ∈ R2
Q′

ℓ
, swk = (swk0, swk1) 8 output(

c0 +

⌈〈
WD′

ℓ (c1) , swk0
〉

P ′

⌋
,

⌈〈
WD′

ℓ (c1) , swk1
〉

P ′

⌋)
(mod Q′

ℓ).

To keep the noise from key switching small, we can take P ′ ≈ maxj(Q̃′
j).

C Derivations and Proofs of Results in Section 3

C.1 Floor and Step Functions in terms of Complex Exponential
Function

For the function Rstepx (p) approximating

stepp(k) =

{
0, if 0 ≤ k < p/2

p/2 if p/2 ≤ k < p.

we can evaluate the closed formulae for αi from (5):

α0 =
1

p

 p−1∑
l=p/2

p

2

 =
p

4
,

αk =
p− k

p

p−1∑
l=p/2

e−2πikl/p =
(p− k)

p
e−πik

(
1− e−πik

1− e−2πik/p

)
=

=
p− k

p
e−πik

 1− (−1)k

2i sin
(

πk
p

)
e−iπk/p

 .

For even k, αk = 0, and for odd k,

αk =
p− k

p

cos
(

πk
p

)
+ i sin

(
πk
p

)
i sin

(
πk
p

)
 =

p− k

p

(
1− i cot

(
πk

p

))
.

For Rmodp (x), the closed expressions can be written as

α0 =
1

p

p−1∑
l=0

l

p
=

p− 1

2
,

αk =
2(p− k)

p2

p−1∑
l=0

le−iπkl/p =
2(p− k)

p2
· (−p)
1− e−2iπk/p

=
p− k

p

(
−1 + i cot

(
πk

p

))
.

8 We can adapt swk to perform key switching for level ℓ < L.

43

C.2 Second- and Third-Order Trigonometric Hermite Interpolation

Proof of Theorem 2. As the starting point we use Theorem 2.1 of [Var69], which
proves uniqueness and provides a solution in terms of cosine series in explicit
form for the (0,1,M) trigonometric interpolation where M is even. For M = 2
and conditions (16), the expression for R2(x) can be written as9

R2(x) =

p−1∑
l=0

f(l) · U2

(
2π

(
x− l

p

))
, where

U2(x) = U(x) +
1− cos(px)

p3

⌊p/2⌋∑
k=1

(2− γp,k)k(p− k) cos(kx),

(A2)

γp,k = 1 if p is even and k = p/2, while γp,k = 0 otherwise. Here, U(x) is
borrowed from (4).

We now derive the complex exponential expression for (A2). We transform
the second summand of U2(x):

U ′
2(x) =

1− cos(px)

p3

⌊p/2⌋∑
k=1

(2− γp,k)k(p− k) cos(kx)

=
1

p3

⌊p/2⌋∑
k=1

(2− γp,k)k(p− k)

(
cos(kx)− 1

2
(cos((p+ k)x) + cos((p− k)x))

)
Next we switch to the complex exponential formulation:

T2(x) =

p−1∑
l=0

f(l) ·W
(
2π

(
x− l

p

))
,

W2(x) = W (x)+
1

p3

⌊p/2⌋∑
k=1

(2− γp,k)k(p− k)

(
eikx − 1

2

(
ei(p+k)x + ei(p−k)x

)) .

We transform the second summand (here, T2(x) = T (x) + T ′
2(x) and T (x) is

the same as for the first-order interpolation):

T ′
2(x) =

1

p3

p−1∑
l=0

⌊p/2⌋∑
k=1

f(l)(2− γp,k)k(p− k)×(
e−2πkli/pE(x)k − e−2π(p+k)li/p

2
E(x)p+k − e−2π(p−k)li/p

2
E(x)p−k

)

=

⌊p/2⌋∑
k=1

βkE(x)k − δk
2
E(x)p+k − θk

2
E(x)p−k,

9 We noticed a typo in the expression for U2(x) in [Var69], which is corrected in our
expression; the correction is to have a different term for even p at k = p/2.

44

where

βk =
(2− γp,k)k(p− k)

p3

p−1∑
l=0

f(l) · e−2πkli/p,

δk =
(2− γp,k)k(p− k)

p3

p−1∑
l=0

f(l) · e−2π(p+k)li/p,

θk =
(2− γp,k)k(p− k)

p3

p−1∑
l=0

f(l) · e−2π(p−k)li/p.

⊓⊔

Proof of Theorem 3. We use Theorem 7 of [Var73], which formulates in explicit
form the (0,1,2,M) trigonometric interpolation. For M = 3 and conditions (18),
the expression for R3(x) can be written as

R3(x) =

p−1∑
l=0

f(l) · U3

(
2π

(
x− l

p

))
, where

U3(x) = U(x) +
2 (1− cos(px))

3p4

p−1∑
k=1

k(p− k)(2p− k) cos(kx).

Here, U(x) is borrowed from (4).
The complex exponential expression T3(x) from the theorem’s statement can

be derived similarly to the derivation for T2(x). ⊓⊔

D Homomorphic Digit Decomposition

Algorithm 6 Homomorphic digit decomposition for an RLWE ciphertext
1: procedure HomDigitDecomp(ct ∈ R2

Q)
2: k ← 0
3: while Q > q do
4: ctk ← ct mod q ▷ Extract the RLWE digit encrypting a digit in Zw

p .
5: ctd ← FuncBTq′,Q′

L
,∆(ctk, LUT (Rmodp (x)))

6: ct← ct− ctd
7: ct← ModSwitch(ct, Q/p)
8: Q← Q/p, P ← P/p
9: k ← k + 1

return
(
{ctk}i∈[k], ct

)

Note that lines 4 through 6 directly correspond to the homomorphic floor
evaluation algorithm. The correctness of HomDigitDecomp directly follows from
the correctness of HomSign and HomFloor. The complexity is ⌈ logP

log p ⌉ − 1 func-
tional bootstrapping invocations. The digit decomposition algorithm can also be

45

extended to varying-size digits for different pi, qi via an approach analogous to
the DM/CGGI case [LMP23].

E Experimental Results

Table A3 provides more detailed results on the runtimes presented in Table 1.

log p logQ N log(Q′
LP

′) # limbs # limbs Online Amtz. on. Offline
(enc, dec) HKS time (s) time (ms) time (s)

1 33 215 768 16 (3,3) 4 6.151 0.187 17.734
1 35 216 800 16 (3,3) 4 14.04 0.214 24.567
1 35 216 870 18 (4,4) 4 13.262 0.202 30.026
1 35 216 1000 20 (5,5) 4 13.712 0.209 18.278
2 33 215 747 19 (3,3) 2 12.432 0.379 49.009
2 35 216 965 19 (3,3) 4 21.804 0.331 28.961
2 35 216 1035 21 (4,4) 5 20.541 0.313 35.299
2 35 216 1105 23 (5,5) 6 20.422 0.312 20.489
3 35 215 750 18 (2,2) 2 17.332 0.529 39.037
3 36 216 1020 20 (3,3) 5 23.756 0.362 29.653
3 36 216 1092 22 (4,4) 5 22.661 0.345 35.653
3 36 216 1164 24 (5,5) 5 23.055 0.351 20.846
4 37 215 763 19 (2,2) 1 65.733 0.784 91.427
4 40 216 1140 21 (3,3) 5 25.934 0.396 30.412
4 40 216 1280 23 (4,4) 6 25.874 0.395 37.758
4 40 216 1420 25 (5,5) 7 26.644 0.406 22.51
8 47 216 1535 25 (3,3) 6 42.026 0.748 91.051
8 47 216 1509 27 (4,4) 4 76.918 0.834 131.61
8 47 216 1543 29 (5,5) 3 60.894 0.929 55.936
9 49 216 1514 26 (3,3) 4 69.33 1.058 59.43
9 49 216 1552 28 (4,4) 3 77.144 1.177 103.66
12 58 217 2458 31 (4,4) 11 569.54 4.345 97.08
12 58 217 2274 33 (5,5) 6 613.52 4.682 148.78
12 58 217 2574 33 (5,5) 11 610.96 4.661 98.39
12 58 217 2934 33 (5,5) 17 621.96 4.745 86.96

Table A3. Experiments for the evaluation of an LUT (floor) for an RLWE ciphertext
with plaintext modulus p and ciphertext modulus Q. Here, log(Q) = log(∆) = log(q′0)
and p = P . By log(Q′

LP
′) we refer to the number of bits in the largest CKKS modulus,

which includes all RNS limbs for the leveled computation (depth + 1) and all RNS
limbs used in Hybrid Key Switching. A single RNS limb is left after the functional
bootstrapping. Online time refers to the time for the evaluation of the functional boot-
strapping. The offline time refers to the the setup time (evaluation keys generation),
encryption of the messages, and precomputations. Best amortized times are marked in
blue.

46

	Abstract
	Introduction
	Related Works
	Concurrent Works
	Organization

	Preliminaries
	LWE Encryption Scheme and Its Ring Variant
	CKKS Scheme
	RNS Representation
	CKKS Bootstrapping

	Analytical Expressions for Arbitrary Function Evaluation
	Trigonometric Hermite Interpolation for Arbitrary Function Approximation
	FHE-Friendly Expression using Complex Exponential Function
	Analytical Expressions for Floor and Step Functions
	Higher-Order Trigonometric Hermite Interpolations
	Hermite Polynomial Interpolation with Noise Cleaning

	Amortized Functional Bootstrapping of RLWE Ciphertexts
	Amortized Multi-Precision Function Evaluation for RLWE Ciphertexts
	Homomorphic Evaluation of Floor Function
	Homomorphic Evaluation of Multi-Precision Sign Function
	Homomorphic Evaluation of Multi-Precision Arbitrary Function
	Tree-Based Evaluation of Large LUTs.

	Functional Bootstrapping for CKKS Ciphertexts
	Implementation and Performance Evaluation
	Parameter Selection
	Implementation
	Experimental Results

	Concluding Remarks
	References
	Comparison with Other Methods
	Comparison with the Boolean CKKS method
	Comparison with Other Methods for Functional Bootstrapping
	Comparison with DM/CGGI functional bootstrapping.
	Comparison with multi-precision method based on CGGI circuit bootstrapping.
	Comparison with BFV-based functional bootstrapping.

	Discussion on Leveled Methods for LUT Evaluation

	More Preliminaries
	LWE Modulus Switching
	Functional Bootstrapping and Multi-Precision Sign Evaluation using DM/CGGI Cryptosystems
	CKKS Scheme in RNS

	Derivations and Proofs of Results in Section 3
	Floor and Step Functions in terms of Complex Exponential Function
	Second- and Third-Order Trigonometric Hermite Interpolation

	Homomorphic Digit Decomposition
	Experimental Results

