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Abstract. Historically, most cryptosystems chose their keys uniformly
at random. This is in contrast to modern (lattice-based) schemes, which
typically sample their keys from more complex distributions D, such as
the discrete Gaussian or centered binomial distribution.
It is well-known that any key drawn from the uniform distribution U
can be guessed using at most 2H(U) key guesses, where H(U) denotes
the entropy of the uniform distribution. However, for keys drawn from
general distributions D only a lower bound of Ω(2H(D)) key guesses is
known. In fact, Massey (1994) even ruled out that the number of key
guesses can be upper bounded by a function of the entropy alone.
When analyzing the complexity of so-called hybrid lattice-attacks (which
combine lattice reduction with key guessing) one therefore usually con-
servatively underestimates the complexity of key guessing by 2H(D). How-
ever, a tight complexity analysis is missing, and due to Massey’s result
considered impossible.
In this work, we bypass Massey’s impossibility result by focusing on the
typical cryptographic setting, where keys are drawn from n-fold product
distributions D = χn.
It is well known that the optimal key guessing algorithm enumerates keys
in χn in descending order of probability. In order to provide a refined
analysis, we allow to abort enumeration after a certain amount of key
guesses. As our main result, we prove that for any discrete probability
distribution χ the key guessing algorithm that we abort after 2H(χ)n

keys has asymptotically success probability 1
2
, taken over the random

key choice. The aborted algorithm allows for a quantum version with
success probability 1

2
within 2H(χ)n/2 key guesses. In other words, for

any distribution χ, we achieve a Grover-type square root speedup.
Furthermore, we show that for the distributions used in Kyber and
Falcon, the aborted algorithm outperforms the non-aborted algorithm
by an exponential factor in the runtime. Hence, for a typical multi-key
scenario, where a (large scale) adversary wants to attack as many keys
with as few as possible resources, our results show that it greatly pays
off to tackle only the likely keys.

1 Introduction

The security of any cryptosystem has to be based on a proper choice of its secret
key, which at the bare minimum protects against key guessing. As a counter
example for a proper choice, the widely used DES had to be replaced by AES
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not because of structural weaknesses, but primarily due to the fact that its keys
did no longer provide sufficient security against key guessing attacks [Fou98].
Thus, a crypto designer’s first check is to validate that a secret key is sufficiently
hard to guess.

Modern lattice-based cryptosystems like NTRU [HPS06,CDH+21], Kyber [BDK+18],
Dilithium [DKL+18], and Falcon [FHK+18] certainly have hard to guess secret
keys.

(Sub-)Key Guessing in Hybrid Attacks. In the special case of lattice-based
schemes there exist more sophisticated so-called hybrid attacks that combine
guessing of sub-keys with other techniques like lattice reduction. These more
sophisticated lattice attacks include e.g. the hybrid Meet-in-the-Middle attack
of Howgrave-Graham [How07] that combines guessing of sub-keys with lattice
reduction on the primal lattice. This hybrid attack was used to analyze NTRU’s
security [CDH+21], and Nguyen [Ngu21] showed how to boost the attack by
providing a more efficient sub-key guessing technique.

The more recent attack of Guo-Johannson [GJ21] considers LWE’s dual lat-
tice, and balances the complexity of sub-key guessing and lattice reduction, sim-
ilarly to Howgrave-Graham’s hybrid attack. The Guo-Johannson attack is ex-
tended and refined in MATZOV [IDF22]. MATZOV claims improved attack com-
plexities, presumably reducing the security of e.g. Kyber and Dilithium below the
required NIST security level. The recent work of Ducas and Pulles [DP23], how-
ever, heavily questions some of the heuristics used in the analysis of [GJ21,IDF22].

The Complexity of Key Guessing. Among the heuristics used in [IDF22] is the es-
timation of the complexity of key guessing, also critically mentioned1 in [Ber23].
Let a length-n sub-key be sampled coordinate-wise independently from some
probability distribution χ. The authors of [IDF22] estimate the key guessing
complexity as 2H(χ)n, whereas Ducas and Pulles [DP23] criticize2 that this esti-
mation lacks theoretical justification.

In this work, we provide the missing theoretical justification for the 2H(χ)n

estimate. 3 Before we dive into our results, let us first provide some intuition as
to why on the one hand 2H(χ)n appears to be a natural bound, and on the other
hand such an upper bound for key guessing has not yet been proven, despite its
fundamental nature and importance for cryptography as a whole.

In the past, most cryptographic schemes chose their secret keys from the
uniform distribution χn. Let χ take m values with probability 1

m each, then

1 ”One can easily argue that the analysis [of BLISS] is too optimistic for the attacker-
there are, e.g., silent assumptions that searching cost is as small as an entropy-based
lower bound.”

2 ”In the analysis [of MATZOV] it seems to be assumed that enumerating possibilities
in decreasing order of probability leads to guessing the correct [key] after an average
of 2H(X) attempts [...]. There is no justification for this claim, and it appears to be
false.”

3 This however neither contradicts the results of Ducas and Pulles [DP23], nor does
it heal other issues in the analysis of [GJ21,IDF22].
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H(χ) = logm and H(χn) = n logm. Enumerating all keys costs mn = 2H(χn)

trials. Thus, for the uniform distribution χn we can (trivially) upper bound key
guessing as a function of H(χn).

Massey [Mas94] showed that any key guessing algorithm has to make at least
1
42

H(χ)n+1 trials on average. However, Massey also showed that in general there
is no matching upper bound. More precisely, he constructed counter-example
distributions, for which key guessing cannot be upper bounded by a function
of their entropy alone. The latter observation of Massey is usually taken as an
impossibility result in the cryptographic community. However, Massey’s counter-
example does not rule out that in the most relevant crytographic setting of
distributions χn, where every component is independently sampled from χ, key
guessing might have an upper bound by a function of H(χn) .

The existence of an entropy-dependent upper bound is supported by the
following compression argument from information theory. We know that the
output of a source that samples n times from a probability distribution χ can
asymptotically be compressed lossless into (1 + δ)H(χ)n bits for any constant
δ > 0, see e.g. [MU17]. This already gives us a key guessing algorithm that
enumerates the compressed keys with 2(1+δ) H(χ)n trials. However, this argument
only reaches the desired bound of 2H(χ)n up to a term 2δn exponential in n.

In the light of our information theoretic argument, it does not come as a
surprise that recent upper bounds for key guessing from a discrete Gaussian
distribution [AS22] are exponentially in n away from the entropy bound. Sim-
ilarly, experiments for the centered binomial distribution [DP23] indicate that
key guessing requires an additional exponential factor in n as well.

On quantum computers, the famous Grover search [Gro96a] allows to achieve
(up to) square root speedups over classical key guessing. However, a generaliza-
tion of Grover search by Montanaro [Mon11] opened the door for even larger
speedups for key guessing. Namely, Montanaro explicitly constructed distribu-
tions (different from product distributions χn), for which his quantum algorithm
achieves exponential speedups over any classical key guessing algorithm. The al-
gorithm of Montanaro was used in [AS22] for quantum key guessing for the
discrete Gaussian distribution.

Our result, classically. We study the most common setting of cryptographic
keys from an n-fold product distribution χn, where our result holds for any
probability distribution χ.

Similar to previous work, we study the optimal key guessing algorithm that
enumerates keys in descending order of probability. In contrast to previous work,
we drop the limiting restriction that a key guessing algorithm has to succeed with
probability 1. Instead, we simply abort after 2H(χ)n trials.

Using the Central Limit Theorem, we show that the success probability ε
(taken over all keys) of aborted key guessing converges to 1

2 . Thus, with aborted
key guessing and our complexity analysis, we achieve for the first time a ratio
T
ε that is upper bounded by 2H(χ)n+1, whereas a previous result of Albrecht,
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Shen [AS22] achieved a ratio T
ε for discrete Gaussians that is inferior by a factor

exponential in n.

Multi-Key Scenario. In a nutshell, our result shows that for all n-fold key
distributions χn, it does not pay off to guess unlikely keys4. Namely, in order
to go significantly above success probability 1

2 , one has to pay an excessive,
disproportionally large exponential overhead.

Of course, our result does not help an attacker that tries to enumerate a single
unlikely key. However, in a typical multi-key scenario a (large scale) adversary
acts in an economically optimal manner by enumerating in parallel as many keys
with as few as possible resources. In such a scenario, the result of our analysis
prevents to spend too much time on unlikely keys, and in turn still guarantees
large success probability per attacked key.

Our result, quantumly. We also provide a quantum Grover-type version of
the classical aborted key guessing algorithm that achieves a square root speedup,
i.e, we quantumly achieve key guessing within 2H(χ)n/2 trials and success proba-
bility 1

2 . Furthermore, we prove that also Montanaro’s algorithm makes at least
1

poly(n)2
H(χ)n/2 queries in the setting of product distributions χn – thereby rul-

ing out that with Montanaro’s algorithm one can achieve more than polynomial
speedups.

Our result, practically. We also study the impacts of our asymptotic results
for concrete cryptographic settings. To this end, we study the centered binomial
distributions used in Kyber, and the discrete Gaussian distributions used in
Falcon for reasonably sized n. Our experiments show that, for these crypto-
graphically relevant distributions,

(1) the convergence to success probability ε = 1
2 is from above, i.e., for almost

all n we achieve ε ≥ 1
2 ,

(2) the aborted key guessing outperforms the usual key guessing (without aborts)
by a run time factor exponential in n, i.e., we observe an exponential speedup
with our abort strategy,

(3) the number of trials in our Grover-type version of aborted key guessing
tightly matches the number of trials in Montanoro’s key guessing algorithm
(up to roughly a factor of

√
n), i.e., Montanaro’s algorithm does not provide

significant speedups for probability distributions χn.

Organization of our paper. After fixing some preliminaries in Section 2, we intro-
duce and analyze the aborted key guessing algorithm in Section 3. Its quantum
version is provided in Section 4. The experimental results for the centered bino-
mial distribution of Kyber and the centered Gaussian distribution of Falcon
are presented in Section 5.

4 For the uniform distribution, in our terminology all keys are likely.
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Source code. We provide the source code for our experimental results from Sec-
tion 5 via https://anonymous.4open.science/r/Entropy.

2 Preliminaries

Throughout the paper, all probability distributions are discrete. We writeX ← χ
to denote that a random variable X is drawn from some probability distribu-
tion χ and X ← χn to denote that the vector X has its n coordinates i.i.d.
sampled from χ. Expected value and variance of X are denoted by E[X] and
Var[X], respectively. For a probability distribution χ over some set A, the prob-
ablity mass function of χ is defined as

P : A→ [0, 1], a 7→ Pr
X←χn

[X = a].

For ease of notation, we write

P (a) := Pr
X←χn

[X = a] =

n∏
i=1

P (ai) for a = (a1, . . . , an).

The support of χ is defined as supp(χ) := {a ∈ A | P (a) > 0} . The base-2 loga-
rithm is denoted by log(·).
Definition 2.1 (Entropy). Let χ be a probability distribution with support A
and probability mass function P : A→ (0, 1]. The entropy of χ is defined as

H(χ) := −
∑
a∈A

P (a) logP (a) = E
X←χ

[− logP (X)].

We note that entropy is usually defined with respect to random variables. How-
ever, for our purposes, Definition 2.1 is more convenient.

We use the following variant of the Central Limit Theorem.

Lemma 2.2 (Berry-Esseen Theorem [Ber41,Ess45]). Let X1, X2, . . . be
a sequence of i.i.d random variables with E[Xi] < ∞, 0 < Var[Xi] < ∞ and
E[|Xi|3] < ∞. Define µ := E[Xi], σ

2 := Var[Xi] and Xn := 1
n

∑n
i=1 Xi. Then

the distribution of
√
n(Xn − µ) converges to a Gaussian distribution with mean

0 and variance σ2 at rate O(1/√n). That is, for every t ∈ R it holds that

Pr[
√
n(Xn − µ) ≤ t] =

∫ t

−∞

1

σ
√
2π

exp

(
− x2

2σ2

)
dx±O

(
1√
n

)
.

Lemma 2.3 (Grover’s Algorithm [Gro96b,Høy00,BHMT02]). Let |Ψ⟩
be a uniform superposition over some finite set A, and let τ : A → {0, 1} be a
function, such that τ(a) = 1 for at most one a ∈ A. Given |Ψ⟩ and oracle access
to τ , Grover’s algorithm outputs a ∈ A with τ(a) = 1, if it exists, and an error
symbol ⊥ otherwise. Grover’s algorithm achieves this, using ⌈π4

√
|A|⌉+1 queries

to τ .
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3 Classical Key Guessing

In this section, we introduce our two classical aborted key guessing algorithms,
which have worst case runtime O(2H(χ)n) and asymptotic success probability at
least 1

2 . We start by defining the key guessing problem in Section 3.1, and re-
visit the well-known key guessing algorithm, that enumerates keys in decreasing
order of probability. Our first aborted key guessing algorithm builds on top of
this algorithm, but aborts after trying the 2H(χ)n-th key. Our second algorithm
instead simply samples O(2H(χ)n) random keys.

To analyze our algorithms’ runtimes and success probabilities, we introduce
in Section 3.2 the notion of a core set. Using such a core set, we then analyze
our algorithms in Sections 3.3 and 3.4.

3.1 Key Guessing Problem and Algorithms

Let us start by defining the key guessing problem.

Definition 3.1 (Key Guessing Problem). Let χ be a probability distribution
with finite support A and probability mass function P : A→ (0, 1]. Let X← χn,
and let τ : An → {0, 1} be a predicate such that

τ(a) :=

{
1 , if a = X,
0 , else.

An instance of the key guessing problem is to find the key X on input n, a de-
scription of P and A, and oracle access to τ .

We note that for typical cryptographic distributions, the condition |A| < ∞
imposes essentially no constraint, e.g., even when χ is a discrete Gaussian, then
χ is close to a distribution χ′ with finite support, and we can simply switch to
the key guessing problem for χ′. In Appendix A, we demonstrate this for the
discrete Gaussians used in Falcon512 and Falcon1024.

Key Enumeration. Obviously, the optimal strategy for solving the key guess-
ing problem with success probability ε = 1 is to enumerate all possible keys in
decreasing order of probability, until the correct key is found. This strategy re-
quires access to an efficient algorithmGetKey, that on input (n, P,A, j) outputs
the j-th most likely key in An. Budroni and Mårtenson [BM23] give an efficient
instantiation of such an algorithm, that (after one initial pre-computation phase
running in time Õ(n|A|−1)) outputs the j-th key in time O(|A| · n).

For completeness, we give a description of their algorithm in Appendix B. We
also implemented their GetKey as the basis for our experimental validations
in Section 5.

For the remainder of this paper, we treat GetKey in a black-box fashion,
and simply measure the complexity of all key guess algorithms by the number
of oracle queries to τ .
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Algorithm 1: KeyGuess

Input: Key guessing instance (n, P,A, τ),
access to algorithm GetKey(n, P,A, ·)

Output: Key X ∈ An satisfying τ(X) = 1
1 j ← 1;
2 a← GetKey(n, P,A, j);
3 while τ(a) ̸= 1 do
4 j ← j + 1;
5 a← GetKey(n, P,A, j)

6 end
7 return a

Key Guess Algorithm. The ordinary key guess algorithm KeyGuess is pro-
vided in Algorithm 1.

Let us denote by pj the probability of the j-th most likely key in An. Then
KeyGuess has expected number of key trials

E[TKG] =

|An|∑
j=1

pj · j. (1)

Massey [Mas94] showed that for any distribution χ, Equation (1) is lower bounded
by

|An|∑
j=1

pj · j ≥
1

4
2H(χ)n + 1.

However, as we experimentally show in Section 5, for distributions of crypto-
graphic interest, Massey’s lower bound is rather loose: Our experiments indicate
that KeyGuess’s expected number of key trials grows exponentially faster than
2H(χ)n.

Aborted Key Guess Algorithm. Our novel algorithm AbortedKeyGuess
(Algorithm 2) is a slight modification of Algorithm 1. The algorithm still enumer-
ates keys in decreasing order of probability, but aborts after trying the 2H(χ)n-th
key. Somewhat surprisingly, aborting only slightly lowers the success probability
asymptotically to ε ≥ 1

2 . In turn, it allows us to trivially bound the number of

key guesses for any distribution χn by 2H(χ)n.
In comparison to Algorithm 1, we thereby save an exponential factor of key

guesses by sacrificing only a factor of at most 2 for success probability.

Aborted Key Sampling Algorithm. A potential disadvantage of Aborted-
KeyGuess over KeyGuess is that AbortedKeyGuess succeeds to recover
only the first 2H(χ)n most likely keys. For all other key guess,AbortedKeyGuess
clearly has success probability 0.
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Algorithm 2: AbortedKeyGuess

Input: Key guessing instance (n, P,A, τ), entropy H(χ),
access to algorithm GetKey(n, P,A, ·)

Output: Key a ∈ An satisfying τ(a) = 1 or ⊥ (abort).
1 j ← 1;
2 a← GetKey(n, P,A, j);

3 while τ(a) ̸= 1 and j < 2H(χ)n do
4 j ← j + 1;
5 a← GetKey(n, P,A, j)

6 end
7 if τ(a) = 1 then return a;
8 else return ⊥;

As discussed in the introduction, this is not much of an issue in a typi-
cal multi-key scenario, since AbortedKeyGuess still recovers half of the keys
with high probability, while saving an exponential factor in the runtime over
KeyGuess.

Still, in certain scenarios, it might be preferable to have an algorithm that
has non-zero success probability for any given key. In that case, one may use
our second algorithm AbortedKeySampling (Algorithm 3). Instead of enu-
merating keys by their likeliness, AbortedKeySampling simply iterates over
roughly 2H(χ)n many random keys. (This has the additional advantage of not
requiring access to GetKey.)

Naturally, AbortedKeySampling has a slightly lower success probability
than AbortedKeyGuess (since there is a non-negligible chance of the algo-
rithm sampling too many unlikely keys). However, as we show in Section 3.4, by
increasing number of sampled keys 2H(χ)n by only a small constant factor δ > 1,
we can we can get arbitrarily close to a success probability of (at least) 1

2 .

Algorithm 3: AbortedKeySampling

Input: Key guessing instance (n, P,A, τ), entropy H(χ), parameter δ ≥ 1.
Output: Key X ∈ An satisfying τ(X) = 1 or ⊥ (abort).

1 j ← 1;

2 while j < δ · 2H(χ)n do
3 a← χn;
4 if τ(a) = 1 then return a ;
5 j ← j + 1;

6 end
7 return ⊥;
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3.2 The Core Set

Before we can prove our results for AbortedKeyGuess’s and
AbortedKeySampling’s runtime and success probability, we need to intro-
duce the following technical definition.

Definition 3.2 (Core Set). Let χ be a probability distribution with support A
and probability mass function P : A→ (0, 1]. The core set of χn is defined as

Cnχ :=

{
(a1, . . . , an) ∈ An |

n∏
i=1

P (ai) ≥ 2−H(χ)n

}
.

Notice that the product
∏n

i=1 P (ai) in Definition 3.2 is the probability

Pr
X←χn

[X = (a1, . . . , an)] =

n∏
i=1

P (ai).

The main novel observation that allows us to prove all our results is the
following theorem, which shows that the core set Cnχ contains at most 2H(χ)n of
the keys, but (asymptotically) makes up half of the probability mass of χn.

Theorem 3.3. Let χ be any (but the uniform) distribution with finite support.
Then it holds that

|Cnχ | ≤ 2H(χ)n.

Furthermore, for X← χn, we have

Pr[X ∈ Cnχ ] =
1

2
±O

(
1√
n

)
.

Proof. Let us first show that |Cnχ | ≤ 2H(χ)n. We denote by A the support of χ,
and by P : A→ (0, 1], Pn : An → (0, 1] the probability mass functions of χ and
χn, respectively. By definition of Cnχ , it holds that

1 =
∑
a∈An

Pn(a) ≥
∑
a∈Cnχ

Pn(a) ≥
∑
a∈Cnχ

2−H(χ)n = |Cnχ |2−H(χ)n.

Multiplying the above inequality by 2H(χ)n, we obtain |Cnχ | ≤ 2H(χ)n.
It remains to show that a random X = (X1, . . . , Xn) ← χn lies in the core

set Cnχ with probability Pr
[
X ∈ Cnχ

]
= 1

2 ±O(1/
√
n). Since P is the probability

mass function of χ, by definition of Cnχ it holds that

Pr
[
X ∈ Cnχ

]
= Pr

[
n∏

i=1

P (Xi) ≥ 2−H(χ)n

]
.

Let Yi := − logP (Xi). (Note that Yi is well-defined, since P > 0.) We set
Yn := 1

n

∑n
i=1 Yi, and rewrite the above probability as

Pr
[
X ∈ Cnχ

]
= Pr

[
−

n∑
i=1

Yi ≥ −H(χ)n

]
= Pr

[
Yn −H(χ) ≤ 0

]
.

We now make three important observations:
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(1) By definition of entropy, E[Yi] = H(χ) <∞.
(2) Since χ is not the uniform distribution, Yi is not constant and thus we have

Var[Yi] > 0.
(3) Since χ has finite support, both Var[Yi] and E[|Yi|3] are finite.

By the Berry-Esseen Theorem (Lemma 2.2), the distribution of
√
n(Yn −H(χ))

thus converges at rate O(1/√n) to a Gaussian distribution with mean 0 and
variance σ2 := Var[Yi]. Hence,

Pr
[
X ∈ Cnχ

]
= Pr

[
Yn −H(χ) ≤ 0

]
= Pr

[√
n(Yn −H(χ)) ≤ 0

]
=

∫ 0

−∞

1

σ
√
2π

exp

(
− x2

2σ2

)
dx±O

(
1√
n

)
=

1

2
±O

(
1√
n

)
,

which proves our theorem. ⊓⊔

Assumptions in Theorem 3.3. For ease of notation, we require in Theo-
rem 3.3 that the distribution χ has finite support. However, we like to point
out that the theorem applies more generally to all distributions, for which the
conditions (1) to (3) from the proof above hold. In particular, Theorem 3.3 also
applies to discrete Gaussian distributions.

The assumption that χ is not the uniform distribution, on the other hand,
is crucial. (If χ was the uniform distribution, then the Yi’s in the proof would
be constant and consequently Yn would not converge to a Gaussian distribu-
tion.) Nevertheless, for the uniform distribution, we can prove an even stronger
statement.

Theorem 3.4. Let χ be the uniform distribution on some finite set A. Then for
every n ∈ N it holds that

Cnχ = An, and |Cnχ | = |A|n = 2H(χ)n.

In particular, for X← χn, we have

Pr[X ∈ Cnχ ] = 1.

Proof. The theorem immediately follows from the fact that uniform distribution
has entropy H(χ) = log(|A|): We have |A|n = 2H(χ)n, and therefore every a ∈ An

has probability |A|−n = 2−H(χ)n (showing that a ∈ Cnχ). ⊓⊔

3.3 Analysis of AbortedKeyGuess

Using the results of Section 3.2, we now can analyse AbortedKeyGuess’s
runtime and success probability.

We first note that KeyGuess and AbortedKeyGuess behave identical on
the uniform distribution χ, and thus succeed to recover the key in the desired
amount of key trials.

10



Theorem 3.5. Let χ be the uniform distribution with probability mass function
P : A→ (0, 1]. Then KeyGuess and AbortedKeyGuess solve any key guess-
ing instance (n, P,A, τ) with success probability 1 making at most 2H(χ)n key
trials.

Proof. Theorem 3.5 follows immediately from Theorem 3.4. ⊓⊔

For all other distributions χ (different from the uniform distribution), we have
the following theorem.

Theorem 3.6 (Main Theorem). Let χ be any (but the uniform) distribution
with probability mass function P : A→ (0, 1]. Then AbortedKeyGuess solves
a random key guessing instance (n, P,A, τ), with success probability (taken over
the random key choice)

pAKG ≥
1

2
±O( 1√

n
),

making at most 2H(χ)n key trials.

Proof. By definition, AbortedKeyGuess’s number of key trials is at most
2H(χ)n.

Let X ← χn, and let S ⊆ An denote the set of the 2H(χ)n most likely keys
in An, i.e., the set of keys over which AbortedKeyGuess itereates.

From the definition of Cnχ (Definition 3.2) and Theorem 3.3 it follows that
S ⊇ Cnχ , and thus

pAKG = Pr[X ∈ S] ≥ Pr[X ∈ Cnχ ].

By Theorem 3.3, a random key X lies in the core set Cnχ with probability 1
2 ±

O( 1√
n
), proving our main theorem. ⊓⊔

3.4 Analysis of AbortedKeySampling

It remains to prove the bound on AbortedKeySampling’s success probability.

Theorem 3.7. Let χ be any distribution with finite support A and probability
mass function P : A→ (0, 1]. For every constant δ ≥ 1, AbortedKeySampling
solves any key guessing instance (n, P,A, τ), with success probability (taken over
the random key choice, and the internal randomness of AbortedKeySampling)

pAKS ≥
1

2
− 1

2δ
±O

(
1√
n

)
,

making at most δ · 2H(χ)n key trials.

Proof. By definition, AbortedKeySampling’s number of key trials is at most
δ · 2H(χ)n.

Let X ∈ An be the unique key with τ(X) = 1, and let Pn : An → (0, 1]
be the probability mass function of χn. Suppose we draw random variables
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Y1,Y2, . . . ← χn, until we obtain YN with YN = X. Then N is a geomet-
ric random random variable with expected value E[N ] = 1

Pn(X) , and it holds

that
pAKS = Pr

[
N < δ · 2H(χ)n

]
.

Conditioning on the event {X ∈ Cnχ} and using Theorem 3.3, we obtain the
following lower bound

pAKS ≥ Pr
[
N < δ · 2H(χ)n | X ∈ Cnχ

]
· Pr

[
X ∈ Cnχ

]
(2)

= Pr
[
N < δ · 2H(χ)n | X ∈ Cnχ

]
·
(
1

2
±O

(
1√
n

))
. (3)

By definition of Cnχ , we have for X ∈ Cnχ that 2H(χ)n ≥ 1
Pn(X) , and thus

Pr
[
N < δ · 2H(χ)n | X ∈ Cnχ

]
≥ Pr

[
N < δ · 1

P (a)
| X ∈ Cnχ

]
.

Together with 1
Pn(X) = E[N ] and Markov’s inequality, this yields

Pr
[
N < δ · 2H(χ)n | X ∈ Cnχ

]
≥ 1− 1

δ
. (4)

Plugging Equation (4) into Equation (3), we obtain

pAKS ≥
(
1− 1

δ

)
·
(
1

2
±O

(
1√
n

))
=

1

2
− 1

2δ
±O

(
1√
n

)
,

as required. ⊓⊔

The value of δ. Since we use rather crude lower bounds in the proof of The-
orem 3.7 (in particular in Equations (2) and (4)), we expect the actual success
probability of AbortedKeySampling to be significantly higher than 1

2 − 1
2δ .

Indeed, as we experimentally show in Section 5, even for δ = 1, we already have
a non-zero success probability.

However, the point of Theorem 3.7 is not to prove a tight lower bound on
pAKS. Instead, we show that enumerating only O(2H(χ)n) many keys already
yields a constant success probability.

4 Quantum Key Guessing

In this section, we study the quantum complexity of the key guessing problem.
In Section 4.1, we give a simple quantum key guessing algorithm, which achieves
a square root speedup over the runtime of our classical algorithm from Section 3,
while maintaining its asymptotic success probability of at least 1

2 .
After that we compare our quantum key guessing algorithm with Montanaro’s

optimal algorithm [Mon11], and show that Montanaro’s does not substantially
outperform ours: The improvement of Montanaro’s algorithm over ours is at
most a small polynomial factor.
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4.1 A Simple 2H(χ)n/2-Time Quantum Algorithm

Recall that our classical algorithm AbortedKeyGuess (Algorithm 2) from
Section 3 simply tries the 2H(χ)n most likely keys. A natural quantum version
of our algorithm is to run Grover’s algorithm on a superposition of the 2H(χ)n

most likely keys, as depicted in Algorithm 4.

Algorithm 4: QuantumKeyGuess

Input: Key guessing instance (n, P,A, τ), entropy H(χ),
access to quantum algorithm QuantumGetKey(n, P,A, ·)

Output: Key X ∈ An satisfying τ(X) = 1 or ⊥.
1 t← 2⌈H(χ)n⌉

2 |Ψ⟩ ← 1/
√
t ·∑t

i=1 |i⟩;
3 |Ψ⟩ ← QuantumGetKey(n, P,A, |Ψ⟩);
4 Run Grover’s algorithm on |Ψ⟩ with oracle access to τ and return the result.

Access to QuantumGetKey. As discussed in Section 3, our classical algo-
rithm AbortedKeyGuess requires access to an algorithm GetKey, that on
input (n, P,A, i), with 1 ≤ i ≤ |An|, outputs the i-th most likely key. Sim-
ilarly, QuantumKeyGuess requires access to a quantum algorithm Quan-
tumGetKey, that on input (n, P,A, |Ψ⟩), where |Ψ⟩ is a superposition over
some subset S ⊆ {1, 2, . . . , |An|}, outputs a superposition over the keys indexed
by S.

Such an algorithm can be instantiated efficiently by simply turning the orig-
inal GetKey into a quantum algorithm.

Analysis. Since the superposition in Step 2 of QuantumKeyGuess can effi-
ciently be instantiated using ⌈H(χ)n⌉ Hadamard gates, the complexity of Quan-
tumKeyGuess is dominated by Step 4 of the algorithm. By Lemma 2.3, Step
4 requires ⌈π

4
2⌈H(χ)n⌉/2

⌉
+ 1 = Θ(2H(χ)n/2)

oracle queries to τ . Together with Theorem 3.3, this shows thatQuantumKeyGuess
achieves a square root speedup over the runtime of AbortedKeyGuess, while
still having asymptotic success probability of 1

2 . In particular, we have the fol-
lowing quantum version of our main theorem (Theorem 3.6).

Theorem 4.1. Let χ be any (but the uniform) distribution with probability mass
function P : A→ (0, 1]. Then AbortedKeyGuess solves a random key guess-
ing instance (n, P,A, τ), with success probability (taken over the random key
choice)

pQKG ≥
1

2
±O( 1√

n
),

making Θ(2H(χ)n/2) key trials.

13



4.2 Comparison with Montanaro

Montanaro [Mon11] proved the following lower bound on the complexity of any
quantum algorithm that solves the key guessing problem with success probability
1.

Theorem 4.2 (Proposition 2.4 in [Mon11]). Let (n, P,A, τ) be a key guess-
ing instance where P is the probability mass function of some distribution χ with
support A. Let p1 ≥ p2 ≥ . . . ≥ p|An| denote the values that the probability mass
function of χn assumes. Every quantum algorithm that solves the key guessing
instance (n, P,A, τ) with success probability 1 makes at least

0.206 ·
|An|∑
i=1

pi
√
i− 1

oracle queries to τ on expectation.

In [Mon11], Montanaro gave a quantum algorithm with query complexity match-
ing the lower bound from Theorem 4.2 (up to a constant factor). Furthermore,
for the special case of n = 1, Montanaro showed [Mon11, Corollary 2.6] that
there exist distributions for which the best classical algorithm requires at least
Ω(|A|1/2−ε) queries to τ , whereas the best quantum algorithm requires only
Θ(1) – suggesting that the key guessing problem admits for a significantly bet-
ter speedup than the generic Grover square root bound. However, as the follow-
ing Theorem 4.3 shows, when n is not fixed to 1, then the lower bound from
Theorem 4.2 is at most a polynomial factor better than the Grover bound of
2H(χ)n/2. Hence, for the typical cryptographic setting of product distributions
χn, Montanaros algorithm does not substantially outperform our simple algo-
rithm QuantumKeyGuess from Section 4.1.

We point out that one may view our Theorem 4.3 as a quantum variant of
Massey’s [Mas94] lower bound for the classical complexity.

Theorem 4.3. Let (n, P,A, τ) be a key guessing instance, where P : A→ (0, 1]
is the probability mass function of some distribution χ with finite support A. Let
p1 ≥ p2 ≥ . . . ≥ p|An| denote the values, that the probability mass function of χn

assumes. Then it holds that

|An|∑
i=1

pi
√
i >

1

poly(n)
· 2H(χ)n/2.

Proof. Let A := {a1, . . . , am} and qi := P (ai). We construct an a ∈ An, such
that qin coordinates of a are equal to ai for every i = 1, . . . ,m. (We deliberately
ignore rounding issues here, since they contribute only to polynomial factors.)

It is easy to see that, for X← χn, it holds that

Pr[X = a] = 2−H(χ)n,

14



and that An contains

S(a) :=

(
n

q1n, q2n, . . . , qmn

)
>

1

poly(n)
· 2H(χ)n

permutations of a.

It follows that there are at least S(a)/2 terms pi
√
i in the sum

∑|An|
i=1 pi

√
i,

such that

pi
√
i ≥ 2−H(χ)n

√
S(a)/2 >

1

poly(n)
· 2−H(χ)n/2.

Hence, the sum is lower bounded by

|An|∑
i=1

pi
√
i >

S(a)

2
· 1

poly(n)
· 2−H(χ)n/2 >

1

poly(n)
· 2H(χ)n/2,

proving the theorem. ⊓⊔

5 AbortedKeyGuess and AbortedKeySampling Applied
to Kyber and Falcon

In this Section, we apply both algorithms from Section 3 to the distributions χ
chosen in Kyber and Falcon. Kyber [BDK+18] utilizes the following centered
binomial distribution.

Definition 5.1. Let η ∈ N. We denote as centered binomial distribution the
probability distribution over {−η, . . . , η} with probability distribution function

P (a) =

(
2η
η+a

)
22η

.

Sampling from this distribution is denoted by X← B(η).

Kyber512 samples its keys from B(3)512, whereasKyber768 andKyber1024
sample their keys from B(2)768 and B(2)1024, respectively.

Falcon [FHK+18] takes the following discrete Gaussian distribution.

Definition 5.2. Let σ ∈ R>0. We denote as discrete gaussian distribution (cen-
tered around 0) the probability distribution over Z with probability distribution
function

P (a) =
exp(−a

2

2σ2 )∑
j∈Z exp(

−j2
2σ2 )

.

Sampling from this distribution is denoted by X← D(σ).
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Falcon uses D(σ) with σ = 1.17
√

q
2n for modulus q and secret key di-

mension n. This leads to Falcon512 keys being sampled from D(4.05)512 and
Falcon1024 keys being sampled from D(2.87)1024.

For our algorithms to work, we require the underlying distribution to be of
finite support - a property that D(σ) clearly lacks. To circumvent this prob-
lem, we use a distribution D(σ) instead where we cut off the tails of D(σ),
i.e. we condition D(σ) on the integer interval {−z, . . . , z} for some z ∈ N. For
either choice of σ ∈ {4.05, 2.87} we use a value for z such that the probabil-
ity distribution function of D(σ), denoted with P (a), is approximately equal
to the distribution function P (a) of D(σ). Concretely, we choose z such that
Pr[X ∈ {−z, . . . , z}n] ≥ (1− 2−295)n for any X← D(σ)n and

P (a) ≤ P (a) ≤ P (a)

1− 2−295
for a ∈ {−z, . . . , z}.

For an in-depth analysis, we refer to Appendix A.

5.1 Success probabilities of AbortedKeyGuess and
AbortedKeySampling

We first study the success probabilities of our AbortedKeyGuess and
AbortedKeySampling for distributions B(2),B(3),D(2.87), and D(4.05). We
provide our numbers in Figure 1 and Figure 4 and their visualizations in the
graphs in Figure 2 and Figure 3.

For AbortedKeyGuess, with the binomial distributions and the more shal-
low D(2.87), we went up to key length n = 50, whereas we stopped at n = 35
for the computationally heavy D(4.05). We provide the numbers in Figure 2,
where it becomes easily apparent that the success probability is ≥ 1

2 for our
cryptographic distributions, while Theorem 3.6 only guarantees that the success
probability of AbortedKeyGuess converges towards ≥ 1

2 . Based on Figure 2,

B(2) B(3) D(4.05) D(2.87)
n ε ε ε ε
1 0.69 0.87 0.63 0.70
2 0.68 0.59 0.67 0.67
3 0.67 0.65 0.65 0.66
4 0.63 0.66 0.65 0.65
5 0.62 0.65 0.65 0.65
6 0.63 0.63 0.64 0.64
7 0.63 0.63 0.64
8 0.62 0.63 0.63
9 0.62 0.63

10 0.62 0.62
11 0.61 0.62
12 0.61 0.62
13 0.61
14 0.61

Fig. 1. Relative amount of successfully recovered keys with AbortedKeySampling
for Kyber and Falcon distributions. Key sample size is 100, 000 per n.
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Fig. 3. Relative amount of successfully re-
covered Kyber and Falcon-keys using
AbortedKeySampling.

we believe that the success probability is always larger than 1
2 for all values of

n.

The success probability of AbortedKeySampling is hard to determine as

it requires the repeated calculation of values of the form (1−P (a))2
H(χ)n

. Instead,
we estimate the actual success probability by running the algorithm for 100, 000
randomly sampled keys and returning the relative amount of keys recovered
with AbortedKeySampling. These estimated success probabilities for δ = 1

B(2) B(3) D(4.05) D(2.87)
n ε ε ε ε
1 0.88 0.78 0.73 0.62
2 0.77 0.61 0.62 0.61
3 0.67 0.53 0.60 0.59
4 0.59 0.65 0.59 0.58
5 0.53 0.60 0.59 0.59
6 0.49 0.59 0.58 0.58
7 0.48 0.54 0.57 0.57
8 0.60 0.58 0.57 0.56
9 0.59 0.54 0.56 0.56

10 0.57 0.56 0.56 0.56
11 0.56 0.53 0.56 0.56
12 0.54 0.55 0.56 0.55
13 0.52 0.53 0.55 0.55
14 0.51 0.55 0.55 0.55
15 0.50 0.53 0.55 0.55
16 0.56 0.54 0.55 0.55
17 0.55 0.55 0.55 0.54
18 0.55 0.54 0.54 0.54
19 0.54 0.55 0.54 0.55
20 0.53 0.53 0.54 0.54
21 0.52 0.55 0.54 0.54
22 0.51 0.53 0.54 0.54
23 0.51 0.54 0.54 0.54
24 0.54 0.52 0.54 0.54
25 0.54 0.54 0.54 0.54

B(2) B(3) D(4.05) D(2.87)
n ε ε ε ε
26 0.53 0.52 0.54 0.54
27 0.53 0.54 0.54 0.53
28 0.52 0.52 0.53 0.53
29 0.52 0.53 0.54 0.54
30 0.51 0.53 0.53 0.53
31 0.51 0.53 0.53 0.53
32 0.54 0.53 0.53 0.53
33 0.53 0.53 0.53 0.54
34 0.53 0.53 0.53 0.53
35 0.52 0.52 0.53 0.53
36 0.52 0.53 0.53 0.53
37 0.52 0.52 0.53 0.53
38 0.51 0.53 0.53 0.53
39 0.51 0.52 0.53 0.53
40 0.53 0.53 0.53 0.53
41 0.53 0.52 0.53 0.53
42 0.52 0.53 0.53 0.53
43 0.52 0.52 0.53 0.53
44 0.52 0.53 0.53 0.53
45 0.51 0.52 0.53 0.53
46 0.51 0.52 0.53 0.53
47 0.51 0.52 0.53 0.53
48 0.53 0.52 0.53 0.53
49 0.52 0.52 0.53
50 0.52 0.52 0.53

Fig. 4. Success probabilities ε of AbortedKeyGuess for Kyber and Falcon distri-
butions.
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in small dimensions n are provided in Figure 3. The graph clearly indicates that
the presented lower bound from Theorem 3.7 is not tight, but only provides a
constant lower bound for the success probability.

B(2) B(3)
n bKG bAKG ∆ bKG bAKG ∆
1 1.1 1.1 0.0 1.3 1.3 0.0
2 2.8 2.7 0.1 3.3 3.3 0.1
3 4.7 4.6 0.1 5.6 5.5 0.1
4 6.8 6.6 0.1 8.0 7.7 0.2
5 8.8 8.6 0.2 10.4 10.1 0.3
6 10.9 10.6 0.3 12.8 12.4 0.4
7 13.0 12.6 0.3 15.2 14.7 0.5
8 15.1 14.7 0.4 17.7 17.0 0.6
9 17.2 16.7 0.5 20.1 19.4 0.7

10 19.3 18.7 0.6 22.6 21.7 0.9
11 21.4 20.8 0.6 25.0 24.0 1.0
12 23.5 22.8 0.7 27.5 26.4 1.1
13 25.6 24.8 0.8 30.0 28.7 1.3
14 27.8 26.9 0.9 32.4 31.1 1.4
15 29.9 28.9 1.0 34.9 33.4 1.5
16 32.0 30.9 1.1 37.4 35.7 1.7
17 34.1 32.9 1.2 39.9 38.1 1.8
18 36.3 35.0 1.3 42.3 40.4 1.9
19 38.4 37.0 1.4 44.8 42.7 2.1
20 40.5 39.0 1.5 47.3 45.1 2.2
21 42.6 41.1 1.6 49.8 47.4 2.4
22 44.8 43.1 1.7 52.3 49.8 2.5
23 46.9 45.1 1.8 54.8 52.1 2.7
24 49.0 47.2 1.9 57.3 54.4 2.8
25 51.2 49.2 2.0 59.7 56.8 3.0

B(2) B(3)
n bKG bAKG ∆ bKG bAKG ∆
26 53.3 51.2 2.1 62.2 59.1 3.1
27 55.4 53.3 2.2 64.7 61.4 3.3
28 57.6 55.3 2.3 67.2 63.8 3.4
29 59.7 57.3 2.4 69.7 66.1 3.6
30 61.9 59.4 2.5 72.2 68.4 3.7
31 64.0 61.4 2.6 74.7 70.8 3.9
32 66.1 63.4 2.7 77.2 73.1 4.1
33 68.3 65.5 2.8 79.7 75.5 4.2
34 70.4 67.5 2.9 82.2 77.8 4.4
35 72.6 69.5 3.0 84.7 80.1 4.5
36 74.7 71.6 3.1 87.2 82.5 4.7
37 76.8 73.6 3.2 89.7 84.8 4.9
38 79.0 75.6 3.3 92.1 87.1 5.0
39 81.1 77.7 3.4 94.6 89.5 5.2
40 83.3 79.7 3.5 97.1 91.8 5.3
41 85.4 81.7 3.7 99.6 94.1 5.5
42 87.5 83.8 3.8 102.1 96.5 5.7
43 89.7 85.8 3.9 104.6 98.8 5.8
44 91.8 87.8 4.0 107.1 101.2 6.0
45 94.0 89.9 4.1 109.6 103.5 6.1
46 96.1 91.9 4.2 112.1 105.8 6.3
47 98.3 93.9 4.3 114.6 108.2 6.5
48 100.4 96.0 4.4 117.1 110.5 6.6
49 102.6 98.0 4.5 119.6 112.8 6.8
50 104.7 100.0 4.7 122.1 115.2 7.0

Fig. 5. Bit complexities bKG := log(E[TKG]) and bAKG := log(E[TAKG]) of expected
amount of key trials of KeyGuess and AbortedKeyGuess, respectively. ∆ denotes
the difference in bit complexities.
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5.2 The Benefit of AbortedKeyGuess over KeyGuess

Let ai be the i-th most likely key with sampling probability pi := P (ai). The
expected number of trials in KeyGuess then is

E[TKG] =

|An|∑
i=1

pi · i.

In AbortedKeyGuess, we only enumerate the first 2H(χ)n most likely keys. If
the key that we are looking for is not among the first 2H(χ)n most likely keys,
AbortedKeyGuess aborts after 2H(χ)n key trials. Consequently, the expected
number of trials of AbortedKeyGuess is

E[TAKG] =

2H(χ)n∑
i=1

pi · i+
(
1−

2H(χ)n∑
i=1

pi

)
· 2H(χ)n.

In this section, we study the gain E[TKG]/E[TAKG] achieved by our aborted guess-
ing algorithm that comes at the mild cost of losing a factor of ≤ 2 in the success
probability ε.

Since the computation of E[TAKG] requires us to calculate P (a) for every
a ∈ An (up to permutation), we are unable to perform this computation for
distributions with a large support like D(2.87) and D(4.05). Therefore, in this
section we solely consider B(2) and B(3). The computations of their bit com-
plexities for E[TKG] and E[TAKG] are depicted in Fig 5.

In Fig. 6, we plot the logarithm of our gain E[TKG]/E[TAKG]. For B(2) this
logarithmic gain is ≈ 0.11n, whereas for B(3) the logarithmic gain is ≈ 0.16n.
The logarithmic gain in turn implies that we save exponential factors of 20.11n,
respectively 20.16n, for the expected amount of key trials when using Aborted-
KeyGuess rather than KeyGuess.

Our experiments are in line with Ducas and Pulles [DP23], who observed
an exponential factor between E[TKG] and 2H(χ)n. Furthermore, Albrecht and
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Shen [AS22] provided an upper bound for E[TKG] for the discrete Gaussian dis-
tribution of the form 2Θ(n) · 2H(χ)n.

B(2) B(3) D(4.05) D(2.87)
n bQKG bMon ∆ bQKG bMon ∆ bQKG bMon ∆ bQKG bMon ∆
1 1.6 0.5 1.1 1.6 0.6 1.0 2.3 1.2 1.1 2.0 1.0 1.0
2 2.3 1.1 1.3 2.3 1.4 1.0 3.9 3.0 0.9 3.5 2.5 1.0
3 3.0 1.9 1.1 3.3 2.3 1.0 5.8 4.8 0.9 5.0 4.1 1.0
4 3.9 2.8 1.1 4.4 3.4 1.0 7.8 6.8 1.0 6.8 5.8 1.1
5 4.8 3.8 1.1 5.5 4.4 1.1 9.8 8.7 1.1 8.6 7.4 1.1
6 5.8 4.7 1.1 6.7 5.5 1.2 11.9 10.6 1.2 10.4 9.1 1.2
7 6.8 5.6 1.2 7.8 6.6 1.2 13.9 12.6 1.3 12.1 10.8 1.3
8 7.8 6.6 1.2 9.0 7.7 1.3 15.9 14.6 1.4 13.9 12.6 1.4
9 8.8 7.6 1.2 10.2 8.8 1.3 17.9 16.5 1.4 15.7 14.3 1.4

10 9.8 8.5 1.3 11.3 10.0 1.4 20.0 18.5 1.5 17.5 16.0 1.5
11 10.8 9.5 1.3 12.5 11.1 1.4 22.0 20.5 1.5 19.3 17.7 1.5
12 11.8 10.5 1.3 13.7 12.2 1.5 24.0 22.5 1.6 21.0 19.5 1.6
13 12.9 11.5 1.4 14.8 13.3 1.5 26.1 24.5 1.6 22.8 21.2 1.6
14 13.9 12.4 1.4 16.0 14.5 1.5 28.1 26.5 1.6 24.6 23.0 1.6
15 14.9 13.4 1.5 17.2 15.6 1.6 30.1 28.5 1.7 26.4 24.7 1.7
16 15.9 14.4 1.5 18.3 16.7 1.6 32.2 30.5 1.7 28.2 26.5 1.7
17 16.9 15.4 1.5 19.5 17.9 1.6 34.2 32.5 1.8 30.0 28.2 1.8
18 17.9 16.4 1.5 20.7 19.0 1.7 36.2 34.5 1.8 31.7 30.0 1.8
19 18.9 17.4 1.6 21.8 20.1 1.7 38.3 36.5 1.8 33.5 31.7 1.8
20 20.0 18.4 1.6 23.0 21.3 1.7 40.3 38.5 1.8 35.3 33.5 1.8
21 21.0 19.4 1.6 24.2 22.4 1.7 42.3 40.5 1.9 37.1 35.2 1.9
22 22.0 20.3 1.6 25.3 23.5 1.8 44.4 38.9 37.0 1.9
23 23.0 21.3 1.7 26.5 24.7 1.8 46.4 40.7 38.7 1.9
24 24.0 22.3 1.7 27.7 25.8 1.8 48.4 42.4 40.5 2.0
25 25.0 23.3 1.7 28.8 27.0 1.8 50.5 44.2 42.2 2.0
26 26.1 24.3 1.7 30.0 28.1 1.9 52.5 46.0 44.0 2.0
27 27.1 25.3 1.8 31.2 29.3 1.9 54.5 47.8 45.8 2.0
28 28.1 26.3 1.8 32.3 30.4 1.9 56.6 49.6 47.5 2.0
29 29.1 27.3 1.8 33.5 31.6 1.9 58.6 51.4 49.3 2.1
30 30.1 28.3 1.8 34.7 32.7 1.9 60.6 53.1 51.1 2.1
31 31.1 29.3 1.8 35.8 33.9 2.0 62.7 54.9 52.8 2.1
32 32.1 30.3 1.8 37.0 35.0 2.0 64.7 56.7
33 33.2 31.3 1.9 38.2 36.2 2.0 66.7 58.5
34 34.2 32.3 1.9 39.3 37.3 2.0 68.8 60.3
35 35.2 33.3 1.9 40.5 38.5 2.0 70.8 62.1
36 36.2 34.3 1.9 41.7 39.6 2.1 72.8 63.8
37 37.2 35.3 1.9 42.8 40.8 2.1 74.9 65.6
38 38.2 36.3 1.9 44.0 41.9 2.1 76.9 67.4
39 39.2 37.3 2.0 45.2 43.1 2.1 78.9 69.2
40 40.3 38.3 2.0 46.3 44.2 2.1 81.0 71.0
41 41.3 39.3 2.0 47.5 45.4 2.1 83.0 72.8
42 42.3 40.3 2.0 48.7 46.5 2.1 85.0 74.5
43 43.3 41.3 2.0 49.8 47.7 2.2 87.1 76.3
44 44.3 42.3 2.0 51.0 48.8 2.2 89.1 78.1
45 45.3 43.3 2.0 52.2 50.0 2.2 91.1 79.9
46 46.4 44.3 2.1 53.3 51.1 2.2 93.2 81.7
47 47.4 45.3 2.1 54.5 52.3 2.2 95.2 83.5
48 48.4 46.3 2.1 55.7 53.4 2.2 97.2 85.2
49 49.4 47.3 2.1 56.8 54.6 2.2 99.3 87.0
50 50.4 48.3 2.1 58.0 55.7 2.3 101.3 88.8

Fig. 7. Bit complexities bQKG := log(E[TQKG]) and bMon := log(E[TMon]) of Quan-
tumKeyGuess and Montanaro’s algorithm, respectively.

5.3 QuantumKeyGuess compares well to Montanaro’s algorithm

Our QuantumKeyGuess from Section 4 requires ⌈π4 2⌈H(χ)n⌉/2⌉+ 1 many key
guesses. Although our algorithm is a comparatively simple Grover-type applica-
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ncE[TQKG].

tion, we already showed in Theorem 4.3 for Montanaro’s more involved algorithm
a lower bound that matches our number of key trials by a polynomial factor.

Since the calculation of E[TMon] is hard for distributions with large support,
we provide our results for n ≤ 50 for B(2),B(3), for n ≤ 21 for D(4.05) and for
n ≤ 31 for D(2.87).

This section is devoted to experimentally evaluate the limitations of the
speedup that can be achieved by using Montanaro’s algorithm. Our Quan-
tumKeyGuess does not only have worst case complexity 2H(χ)n/2, but we also
expect E[TQKG] = 2H(χ)n/2 many key trials. Montanaro’s algorithm —modified
such that it aborts once it tests more than 2H(χ)n many vectors X to enable fair
comparison— instead achieves an amount of key trials of

E[TMon] =

2H(χ)n∑
i=1

pi
√
i.

on expectation.

The bit complexities of E[TQKG] and E[TMon] are provided in Fig. 7. Their
differences are visualized in Fig. 8. Independent of the distribution, on this log-
arithmic scale all differences in Fig. 8 tend to ≤ 1

2 log n, implying that the ratio
E[TQKG]/E[TMon] is bounded by

√
n.

Fig. 9 demonstrates that for large n the ratio E[TQKG]/E[TMon] becomes even
a bit smaller than

√
n. As a conclusion, taking Montanaro’s more involved algo-

rithm instead of QuantumKeyGuess results only in a rather minor polynomial
speedup of approximately

√
n for our distributions of cryptographic interest.
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A Approximating the Falcon distribution

In this section, we have a detailed look at the proximity of the real Falcon
distribution D(σ) and our approximate distribution D(σ) as utilized in Section 5.

A.1 Approximating the Denominator in D(σ)

By Definition 5.2, the distribution function of D(σ) is denoted with

P (a) =
exp(−a

2

2σ2 )∑
j∈Z exp(

−j2
2σ2 )

.

As far as we are aware, there is no easy method to calculate the denominator
for arbitrary σ. In order to be able to work with pretty accurate values of P (a)
which do not overestimate the final success probability of AbortedKeyGuess,
we are required to find an approximation D ∈ R of the denominator that satisfies

D ≥
∑
j∈Z

exp

(−j2
2σ2

)
and

∑
j∈Z exp(

−j2
2σ2 )

D
≈ 1

which enables us to utilize

exp(−a
2

2σ2 )

D
⪅ P (a)
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instead.
Let z ≫ 0, λ ≥ 2 be such that 1

λ exp(−z
2

2σ2 ) > exp(−(z+1)2

2σ2 ). Due to exp(−a
2

2σ2 )
converging towards 0 exponentially fast, we know that this z exists for any λ ≥ 2
and that

1

2
exp

(−a2
2σ2

)
≥ 1

λ
exp

(−a2
2σ2

)
> exp

(−(a+ 1)2

2σ2

)
for every a ≥ z. By induction, it follows that

exp

(−z2
2σ2

)
=

∞∑
k=1

1

2k
exp

(−z2
2σ2

)
≥

∞∑
j=z+1

exp

(−j2
2σ2

)
,

and thus, due to the symmetry of exp(−j
2

2σ2 ) around 0, we conclude

D :=

z∑
j=−z

exp

(−j2
2σ2

)
+ 2 exp

(−z2
2σ2

)
≥
∑
j∈Z

exp

(−j2
2σ2

)
.

Choosing z ≫ 0 allows for
∑

j∈Z exp(−j2

2σ2 )

D to become arbitrarily close to 1.
In our experiments, we chose λ = 210 and set z as

z = min

{
a ∈ N

∣∣∣∣ 1

λ
exp

(−a2
2σ2

)
> exp

(−(a+ 1)2

2σ2

)}
.

For σ ∈ {4.05, 2.87}, this yields z = 115 and z = 58, respectively, giving us the
inequality

∑
j∈Z

exp

(−j2
2σ2

)
≥ D − 2 exp

(−z2
2σ2

)
≥ D

(
1− 2 exp

(−z2
2σ2

))
≥ D(1− 2−295).

(5)
In our examples from Section 5, we analyze cases where n ≤ 50. Let

Pn(a) =
N1∑

j∈Z exp(
−j2
2σ2 )

· . . . · Nn∑
j∈Z exp(

−j2
2σ2 )

=
N

(
∑

j∈Z exp(
−j2
2σ2 ))n

denote the probability of sampling a specific vector a = (a1, . . . , an) (where
Nℓ denotes the numerator in P (aℓ) and N := N1 · . . . ·Nn). According to Equa-
tion (5) and Bernoulli’s inequality, our approximation N

Dn of Pn(a) then lies in
the range

Pn(a) ≥
N

Dn
≥ N(1− 2−295)n

(
∑

j∈Z exp(
−j2
2σ2 ))n

= Pn(a)(1− 2−295)n ≥ Pn(a)(1− 50 · 2−295).

We consider this to be a sufficient enough approximation for our purposes.
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A.2 The truncated distribution closely resembles the real
distribution

The distribution we utilized in Section 5 to present our results for Falcon does
not describe the actual Falcon distribution. By definition of our algorithm, we
are required to build the compact dictionary Dn

χ first, which is impossible if our
distribution is defined over an infinite support.

Instead, we opted to use a truncated version ofD(σ) instead, where any vector
of length n ≤ 50, sampled from said distribution, would lie in the truncated
support with overwhelming probability. More formally, for some fixed z′ ∈ N we
denote with D(σ) the distribution with probability distribution function

P (a) = Pr
X←D(σ)

[X = a | |X| ≤ z′] =


exp(−a2

2σ2 )∑z′
j=−z′ exp(

−j2

2σ2 )
|a| ≤ z′

0 |a| > z′
.

Consider z ≫ 0 from our results in Appendix A.1. We have shown that, for
n ≤ 50 and σ ∈ {4.05, 2.87}, the probability of sampling some element from
{−z, . . . , z} is lower bounded by

Pr[|X| ≤ z] = 1− 2

∞∑
j=z+1

P (j) ≥ 1− 2 exp

(−z2
2σ2

)
≥ 1− 2−295.

Consequently, the probability to sample a vector of length n that contains
only elements in the range {−z, . . . , z} happens with probability

Pr[|Xi| ≤ z ∀ 1 ≤ i ≤ n] ≥ (1− 2−295)n ≥ 1− 50 · 2−295,
which we consider to be likely enough to justify using D(σ) with z′ = z instead
of D(σ).

Note that

P (a) ≤ P (a) ≤ P (a)

1− 2−295
for a ∈ {−z, . . . , z}.

Accordingly, we can assume that our estimated size of the core set of Aborted-
KeyGuess with Falcon using D(σ) are only slightly higher than their coun-
terparts for D(σ).

On a similar note, we have the chain of inequalities

(1− 2−295)P (a) ≤ exp(−−a2

2σ2 )

D
≤ P (a) for a ∈ {−z, . . . , z},

so by using
exp(−−a2

2σ2 )

D instead of P (a) for calculating the success probability, we
can ensure that the calculated success probability is only marginally less than
the actual success probability for AbortedKeyGuess for D(σ).
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We assume for either of these differences to be too small to make a notice-
able impact on our results. In particular, within our bounds of computational
accuracy, the fraction ∑z

j=−z exp(
−j2
2σ2 )

D

appears to be indistinguishable from 1.

B Implementing GetKey

In this section, we will give an overview on how to construct an efficient algorithm
GetKey that, on input (n, P,A, j), returns aj such that a1 has the highest
sampling probability, a2 has the second highest and so on (where vectors a,a′

with P (a) = P (a′) are ordered in some fixed way, i.e. lexicographically). This
procedure is required for both algorithms KeyGuess and AbortedKeyGuess.

Our main goal for this subsection is to prove the following Theorem

Theorem B.1. There exists an algorithm GetKey that calculates the j-th most
likely element with input (n, P,A, j) in time and space Θ(n|A|−1).

We build on an approach suggested by Budroni and Mårtenson [BM23]. An
implementation of GetKey can be found under https://anonymous.4open.

science/r/Entropy.

B.1 Constructing the Compact Dictionary

Let (n, P,A, τ) be a key guessing instance, where P is the probability mass
function of some distribution to χ. Recall that for X← χn and a = (a1, . . . , an),
it holds that

Pr[X = a] =

n∏
i=1

P (ai).

If a′ ∈ An is a permutation of a, then it immediately follows that

Pr[X = a] = Pr[X = a′].

Based on this simple, yet important observation, Budroni and Mårtenson suggest
to represent χn via the following set, which we call a compact dictionary of χn.

Definition B.2 (Compact Dictionary). Let χ be a probability distribution
with finite support A and probability mass function P : A → (0, 1], and let

n ∈ N. Let Ãn denote a largest subset of An, such that no distinct a,a′ ∈ Ãn

are permutations of each other. Then we call the following set

Dn
χ :=

{(
(a1, . . . , an),

n∏
i=1

P (ai)

)
| (a1, . . . , an) ∈ Ãn

}
a compact dictionary of χn.
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By construction, any compact dictionary Dn
χ contains all probabilities that the

probability mass function of χn assumes. A compact dictionary can be con-
structed in time polynomial in n, as the following theorem shows:

Theorem B.3 (Budroni, Mårtenson [BM23]). Let χ be a probability dis-
tribution with finite support A and probability mass function P : A→ [0, 1]. For
every compact dictionary Dn

χ, it holds that

|Dn
χ| =

(
n+ |A| − 1

n

)
= O(n|A|−1). (6)

Furthermore, there exists an algorithm with runtime Õ(n|A|−1) that returns Dn
χ

on input A and P .

Proof. Let Ãn be defined as in Definition B.2, and write A = {a1, . . . , am},
where m := |A|. For any a ∈ Ãn, let ωi(a) denote the number of coordinates of
a, that are equal to ai.

By definition of Ãn, the following map φ is a bijection

φ : Ãn → {(α1, . . . , αm) ∈ Nm
0 |

∑m
i=1 αi = n} ,

a 7→ (ω1(a), . . . , ωm(a)).
(7)

Recall that there are exactly
(
n+m−1

n

)
ways to write n as the sum of m non-

negative integers. Hence, |Ãn| =
(
n+m−1

n

)
.

Together with |Dn
χ| = |Ãn| and

(
n+m− 1

n

)
=

1

(m− 1)!

m−1∏
i=1

(n+ i) = O(nm−1),

this proves Equation (6).

To prove that there exists an O(n|A|−1)-time algorithm for constructing Dn
χ,

simply observe that the bijection φ from Equation (7) allows us to efficiently

construct Ãn, from which we then easily construct Dn
χ. ⊓⊔

B.2 From Dn
χ to GetKey

With access to Dn
χ, we are able to efficiently implement GetKey as follows:

Given A and P , we

– construct a compact dictionary Dn
χ,

– sort it by its second component in decreasing order and

– add a third component to every entry of the dictionary that represents the
amount of keys with higher probability.
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Let S(a) =
(

n
ω1(a),...,ωm(a)

)
be the amounts of distinct permutations of a. Then,

the k-th element of Dn
χ is of the form

( ãk , p̃k , Σk ) :=
(

ãk , P (ãk) ,

k−1∑
j=1

S(ãj)
)

and Dn
χ is sorted w.r.t. the second component.

It is easy to see that any a ∈ An can be the j-th most likely element if and
only if5 it is a permutation of ãkj

where kj := max{k ∈ N | Σk < j}. As the list
is ordered by the second component, it is also sorted by the third component,
and finding kj can be done in O(log |Dn

χ|) = O(|A| log n) via BinarySearch.
By definition, we have Σkj < j ≤ Σkj+1 = Σkj + S(ãj), so the inequality

1 ≤ j −Σkj
≤ S(ãj)

holds. Consequently, all we need to do got find the j-th element is to apply an
algorithm that returns the (j−Σkj

)-th permutation of ãkj
. This can be achieved

with O(|A|n) many comparisons, e.g. by implementing a multiset variant of the
Lehmer code [Leh60], denoted MultisetLehmer.

When combining these ideas, we end up with the following algorithm for
GetKey (Algorithm 5):

Algorithm 5: GetKey

Input: n, P,A, j
Output: Key aj with P (aj) ≥ P (aj+1) for all j < |An|

1 Construct a compact dictionary Dn
χ = {(a,∏n

i=1 P (ai) | a ∈ An} .
2 Sort Dn

χ by 2nd component in decreasing order of probabilities
∏n

i=1 P (ai).
3 Append Σk to each tuple (ãk, P (ãk)).
4 Find kj via BinarySearch in 3rd component.
5 Find j −Σkj -th permutation σ(ãkj ) via MultisetLehmer.

6 return σ(ãkj )

Note that steps 1− 3, i.e. the construction and sorting of Dn
χ, do not depend

on j, so it suffices to do these steps once. Consequently, after the initial call of
GetKey, every consecutive call can be done in time O(|A|n).

This proves Theorem B.1 and shows that the Budroni-Mårtenson approach
for representing χn compactly via Dn

χ significantly improves over the naive ap-
proach of storing

∏n
i=1 P (ai) for all (a1, . . . , an) ∈ An, since it reduces the

required runtime and amount of memory from exponential in n to polynomial
in n.

5 We ignore cases with two distinct ã, ã′ ∈ Ãn where P (ã) = P (ã′).
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