
IACR Communications in Cryptology
Vol. 0, No. 0, 26 pages.

FINALLY: A Multi-Key FHE Scheme Based on
NTRU and LWE

Jeongeun Park1 , Barry van Leeuwen2 and Oliver Zajonc2

1 Norwegian University of Science and Technology, Trondheim, Norway
2 KU Leuven, COSIC, ESAT, Leuven, Belgium

Abstract. Multi-key fully homomorphic encryption (MKFHE), a generalization of
fully homomorphic encryption (FHE), enables a computation over encrypted data
under multiple keys. The first MKFHE schemes were based on the NTRU primitive,
however these early NTRU based FHE schemes were found to be insecure due to the
problem of over-stretched parameters. Recently, in the case of standard (non-multi
key) FHE a secure version, called FINAL, of NTRU has been found. In this work
we extend FINAL to an MKFHE scheme, this allows us to benefit from some of
the performance advantages provided by NTRU based primitives. Thus, our scheme
provides competitive performance against current state-of-the-art multi-key TFHE,
in particular reducing the computational complexity from quadratic to linear in the
number of keys.

1 Introduction
Fully homomorphic encryption (FHE) allows for computation on encrypted data without
first decrypting. This has the advantage that a distrusting party can allow a computationally
stronger party to perform computations without revealing that party’s input or output.
Multi-key fully homomorphic encryption (MKFHE) schemes take this a step further and
allow for computations on encrypted data using multiple keys. As these keys can be
held by different parties, multiple distrusting parties can have another party perform a
computation on their combined inputs while preserving the privacy of the inputs.

Most FHE schemes prevent the security concerns of have deterministic encryption
protocols by introducing a small random noise term during their encryption steps. This
prevents the adversary from learning anything about the underlying message based solely
on the ciphertext. This also means that in general, FHE decryption involves a rounding
step to remove the noise if it’s small enough. However, as FHE schemes are designed to be
used in operations, the noise imparted during encryption is not the only noise we need to
worry about. During addition, the noise likewise grows linearly, but during multiplication,
the noise grows exponentially. To accommodate arbitrary sizes of computations, FHE
schemes implement a bootstrapping protocol, which takes some ciphertext with large, but
acceptable noise, and performs an operation that returns a ciphertext encrypting the same
message but with a guaranteed smaller noise bound. Thus, FHE schemes must be able to
support a single arbitrary operation followed by a run of the bootstrapping algorithm to
be considered valid.

Beyond the noise growth from performing computations, it is known from prior work,
[CCS19, KLSW21], that multi-key FHE schemes have significant error inflation compared
to their single key counterparts, often in terms of the number of participating parties. To

E-mail: jeongeun.park@ntnu.no (Jeongeun Park), barry.vanleeuwen@kuleuven.be (Barry van
Leeuwen), oliver.zajonc@esat.kuleuven.be (Oliver Zajonc)

This work is licensed under a “CC BY 4.0” license.

https://orcid.org/0000-0002-0557-3540
https://orcid.org/0000-0002-3792-4042
https://orcid.org/0000-0001-9714-928X
mailto:jeongeun.park@ntnu.no
mailto:barry.vanleeuwen@kuleuven.be
mailto:oliver.zajonc@esat.kuleuven.be
https://creativecommons.org/licenses/by/4.0/deed.en
https://creativecommons.org/licenses/by/4.0/deed.en

2 FINALLY: A Multi-Key FHE Scheme Based on NTRU and LWE

accommodate this, MKFHE schemes may require larger parameter sizes than single-key
FHE to support these extra players.

The first MKFHE scheme [LATV12] was based on the NTRU problem, which had
the advantage of allowing ciphertext sizes to be nearly independent of the number of
players. However, this construction was shown not to be secure due to algebraic attacks
on the NTRU problem [ABD16, CJL16, Dv21], specifically on instantiations with large
parameters. These large parameters were thought to be required to accommodate the noise
growth of an MKFHE scheme, and thus research on NTRU-based FHE stalled. Despite
NTRU-based MKFHE seeming infeasible, other approaches to MKFHE have been developed
[LP19, CCS19, KKL+23], based on standard or ring LWE.

In this paper, we reopen the case for NTRU-based MKFHE by expanding on FINAL
[BIP+22], a single key FHE scheme based on the NTRU problem introduced in 2022.
FINAL adapted the FHEW [DM15] framework to the NTRU problem, which allowed the
NTRU parameters to be kept small enough to ensure security against the aforementioned
algebraic attacks on NTRU. We use these advantages to improve on the state-of-the-art by
amortizing the key switching key generation phase and reducing the overall complexity of
the bootstrapping phase.

As explained above, due to the constraints of NTRU parameters, a multi-key extension
of FINAL might not be able to handle many parties. However, most practical applications
of MKFHE are often optimized for two or three parties as is the case in [CDKS19, AH19].
The construction in this case is often between a server and a client or between two clients
with an intermediary server, such as a machine learning scenario in which a (semi-honest)
server receives input from clients and a predefined model (see Figure 1.)

In more detail, this scenario for two keys work as follows. A client wants to evaluate a
machine learning algorithm of which parameters are owned by the model provider (server)
on its "different set of" data, without interaction. Therefore, the model (parameters) is
fixed, but multiple distinct evaluations are expected between the client and the server.
Independently, other clients may want to do the same thing with the server. In this case,
MKFHE for two keys perform better than other similar primitives such as mjulti party
FHE due to its non-interactability and small enough size of ciphertexts.

Figure 1: An example of a scenario with 2 keys: one for a client (left) and one for the
model provider (right), along with an intermediary server who does not hold any keys.

1.1 Our contributions
We provide an efficient multi-key extension of NTRU based FHE based on thorough
theoretical noise analysis and improving existing approaches like the following:

Preprocessable Lightweight Key Switching In section 4.4 we present a new key
switching protocol based on the HybridProduct construction defined in [CCS19] and refined
in [KMS24]. This new protocol avoids the use of the HybridProduct construction inline, as

Jeongeun Park, Barry van Leeuwen, Oliver Zajonc 3

Table 1: High level comparison of MK − TFHE protocols versus our protocol, where k is
the number of players, N is the maximal degree of polynomials used in the encryption,
and l is ⌈logB(Q)⌉, where B is some base and Q is the modulus.

Protocol Polynom. Mult. Key Material Req.(k = 2) Sec. Param.
Alg 2, [KMS24] O(Nlk + lk2) 215MB 2110

Alg 1, [CCS19] O(Nlk2) 84MB 2110

Ours O(Nlk) 212MB 2128

in [XTW+23], by only using it to compute the key-switching keys which are then used
as the input to the key-switching protocol. This allows the key switching keys to be
pre-processed ahead of time by the server. While this generation step does not become any
more efficient, the cost can now be amortized over the number of bootstraps that need to
be done without increasing the noise generated by the Key Switching protocol compared
to earlier works.

Multi-key FHE combining LWE and NTRU In section 3.2, we present a multi-key
variant of the GSW-like scheme based on the NTRU (also called NTRU-based GSW or
NGS) presented in [BIP+22]. This adaptation allows to evaluate a function over multi-key
LWE ciphertexts, under their multiple secret keys, and reduce the noise level from the
resulting ciphertext at the same time, by running a bootstrapping protocol (blind rotation)
which computes external products among NTRU ciphertexts (bootstrapping keys). Thanks
to the nature of the NTRU problem, the size of the external product output does not
increase. While a common reference string (CRS) is required in our construction, its use is
limited to a pre-processing phase in the key switching phase of the bootstrapping. Hence
future improvements may remove the protocol’s dependency on a CRS without the need
to re-establish a new protocol.

Faster Bootstrapping than MK − TFHE Compared to the current state-of-the-art
within MK − TFHE, [KMS24] and [CCS19], we bring improvements in both key size and
number of polynomial multiplications on small player sets for equivalent parameter sizes
as can be seen in Table 1. Furthermore, for any parameter sets and player numbers we
reduced the computational complexity from quadratic in the number of players, k, to
linear. As in [KMS24], it is possible to run the blind rotation for each party in parallel,
and merged afterwards.

1.2 Concurrent work
In [XTW+23], the authors propose another multi-key FHE construction based on NTRU
which provides a strong technical foundation which can be applied to FINAL. One of
the key elements of this scheme is the introduction of keys with fixed Hamming weight,
allowing for a significant reduction in the noise generated by this protocol. However,
the use of fixed Hamming weight keys in NTRU was shown to have a damning security
weakness in [KL23], rendering the aforementioned protocol unusable for multi-key FHE
constructions.

Another recent work [AKÖ23], shows a high performance approach to MK − TFHE,
however due to the joint calculation of evaluation keys it can not be compared to this
work, where no communication between the participating parties is required. A similar
approach is likely possible with this scheme, but is left for future work.

A related line of work is that studying another primitive known as threshold multi-key
FHE or multi-party FHE [AJL+12, Par21]. This primitive avoids the ciphertext expanding

4 FINALLY: A Multi-Key FHE Scheme Based on NTRU and LWE

in relation to the number of keys, but this setup requires at least one interaction among
a fixed number of participants to generate a common public key, thus abandoning the
dynamic property, i.e. the ability for players to join the computation arbitrarily.

2 Preliminaries

2.1 Notation
For a polynomial g(X) ∈ K[X] we denote by gi the coefficient corresponding to the i’th
power of X, where K is a ring or field. We denote vectors by lower-case bold letters, such
that a = (a1, . . . , an), and matrices by upper-case bold letters, M ∈Mr×c(K), such that
M (i) is the i’th row of M and M(j) is the j’th column of M. As both M (i) and M(j) are
vectors a single index can be given by M(i)

j = M(j),i = Mi,j .
Throughout the paper R := Z[X]/⟨XN + 1⟩ is the 2N -th cyclotomic ring, where

N = 2κ for some κ ∈ Z+. We define RQ := R/QR = ZQ[X]/⟨XN + 1⟩ in the same vain.
Note that any element f ∈ R, R ∈ {R,RQ}, can be given as the smallest polynomial of at
most degree N in the appropriate coset of R. This makes the vector representation of f
given by ϕ(f) = (f0, . . . , fn) well defined and so the infinity norm is likewise well defined:
∥f∥ = ∥ϕ(f)∥.

2.2 Distributions
For a random variable a we denote by a← D the action of sampling a from a distribution
D. Similarly, we denote by a

$← K, the sampling of an element of the set K uniformly
randomly. Denote by Gσ the discrete Gaussian distribution over a ring R with variance
σ2. Moreover, by Var(a) we denote the variance of a.

A random variable, V , is called α-subgaussian if the moment generating function fulfills
the following equation for some α and all t ∈ R:

E[exp(t · V)] ≤ 1
2 exp(α2 · t2).

We denote by χα the α-subgaussian distribution. We will use the fact that for V ← χα,
Var(V) ≤ α2 and the following for a vector of random variables a := (a1, a2, . . . , an) where
ai ← γαi

, i ∈ [n] for our noise analysis:

Var(a) = max
i∈[n]

(Var(ai)) = max
i∈[n]

αi.

Furthermore, we employ the benefit of subgaussian variables called the Pythagorean
Additivity property, which means that for any t, s ∈ Z and a← χα, b← χβ , it holds that
Var(t ·a + s · b) =

√
t2 · α2 + s2 · β2. Lastly, for subgaussian random variables, whose mean

is 0, a, b ∈ R[X], it holds that Var(a · b) ≤ N · Var(ϕ(a)) · Var(ϕ(b)).
A specific distribution which the NTRU-section of the protocol will use is the FINAL

distribution, which is a subgaussian distribution with variance ≤ 1
2 given as follows:

Pr(fi = x) =

1
4 , x = −1
1
2 , x = 0
1
4 , x = 1

.

We denote by DR the distribution over R where each of the coefficients is independently
drawn from the FINAL distribution.

Jeongeun Park, Barry van Leeuwen, Oliver Zajonc 5

2.3 NTRU Problems
Following standard definitions NTRU we define M = {0,±1} to be the set such that
∀m : m←M according to the FINAL distribution. Similarly to [BIP+22, Dv21], we define
the anti-circulant version of the NTRU problem.

Definition 1 (Anti-circulant NTRU). Let N > 0, Q > 1 be integers and let R =
Z[X]/⟨XN + 1⟩. Let σ > 0 be a real number and let g, f ∈ Gn

σ and f invertible in RQ.
The (computational) (N, Q, σ)− NTRU problem is to recover f and g given h := g · f−1

mod Q.
The decisional (N, Q, σ)− NTRU problem is to distinguish between h and r

$← RQ.

2.4 Gadget Decomposition
For fixed integers Q, B let l = ⌈logB(Q)⌉. The l-dimensional column vector defined by
gQ,B := (B0, . . . , Bl−1) is called the gadget vector. For any identity matrix Ik we can
then define the gadget matrix Gk,Q,B = Ik ⊗ gQ,B. To avoid confusion we will write
g = gQ,B = G1,Q,B dropping parameters if they are clear from context. For any integer
z ∈ ZQ represented in the symmetric interval, [−Q/2, Q/2), define its signed decomposition
as g−1(z) = (z0, . . . , zl−1) such that |zi| < B/2 for each i ∈ [0, . . . , l − 1]. It is easy to see
that g−1(z) · g = z.

This gadget decomposition extends to polynomials in the natural way. For any f ∈ RQ

we may define

G−1
n,Q,B(f) =

n−1∑
i=0

G−1
n,Q,B(fi) ·Xi.

From this definition it is clear that G−1
n,Q,B(f) ·Gn,Q,B = f , fulfilling the requirement of a

gadget matrix.

2.5 Single Key NGS
As introduced in FINAL, [BIP+22], we recall the definition of the single key NGS scheme,
as well as some important properties of the noise generation within the scheme. To analyze
the noise of the scheme FINAL assumes that for every r ∈ RQ : g−1(r) is γ-subgaussian for
some γ = O(B) as in [DM15, CGGI20, CDKS19], where g−1 is the gadget decomposition
as defined above.

Definition 2. Given a security parameter λ, the NGS scheme consists of four probabilistic
polynomial time algorithms: Setup, KeyGen, SEnc, and VEnc.

• NGS.Setup(λ): Upon input of a security parameter λ returns the public parameters
(N, Q, ζ, B, l), where B is the decomposition base and l = ⌈logB(Q)⌉

• NGS.KeyGen(ζ, N): Upon input of N and ζ, KeyGen samples f ′ ← χN
ζ until f−1 =

(4 · f ′ + 1)−1 exists in RQ. Then it outputs sk = f .

• NGS.SEncsk(m): Upon input of secret key f and a plaintext message m ∈ F3[X],
NGS.SEnc samples g ← χN

ζ and sets ∆ =
⌊

Q
4

⌉
. It then outputs

c = g

f
+ ∆ ·m.

This is called a scalar encryption of m.

6 FINALLY: A Multi-Key FHE Scheme Based on NTRU and LWE

• NGS.VEncsk(m): Upon input of secret key sk and a plaintext message m, NGS.VEnc
samples gi ← χN

ζ for i ∈ (0, l − 1) and sets g = (g1, . . . , gl−1). It then outputs

c = g
f

+ g ·m.

This is called a vector encryption of m.

The NGS scheme is equipped with one operation: an external product. This product
takes as input a vector encryption of m′ and a scalar encryption of m and outputs a scalar
encryption of m ·m′.

To see this let c and c be as defined in Definition 2 such that c = NGS.SEnc(m) and
c = NGS.VEnc(m′). Then the external product ⊡ : RQ ×RQ → RQ is defined as

c ⊡ c = g−1(c) · c.

To analyze the noise of this external product we first observe these two basic properties:

Definition 3 (Noise of a Scalar Ciphertext). Let c = g/f + ∆ ·m, then the noise of c is
denoted and defined as

err(c) := c · f −∆ ·m = g + (f − 1) ·∆ ·m.

This can be interpreted as a polynomial over Z[X] with coefficients in
[
−Q

2 , Q
2

]
.

Definition 4 (Noise of a Vector Ciphertext). Let c = g/f + g ·m, then the noise of c is
denoted and defined as

err(c) := c · f − g ·m · f = g.

This can be interpreted as a polynomial over Z[X] with coefficients in
[
−Q

2 , Q
2

]
.

These observations result in a rigorous analysis of a chain of external products between
a single scalar NGS ciphertext and k vector NGS ciphertexts.

Lemma 1 (Noise of a sequence of external products [BIP+22]). Let c0 = g0/f + ∆ ·m0
encrypting binary polynomial m0 ∈ RQ and let, for every i ∈ {1, . . . , k}, ci = gi/f +∆ ·mi

encrypting binary polynomial mi ∈ RQ. If ct = c0 ⊡k
i=1 ci, then

Var(err(ct)) ≤ N · l · γ2 ·
k∑

i=1
Var(gi) + Var(g0) + 4 · ζ2.

Moreover, if all ciphertexts, c0, c1, . . . , ck are fresh, then

Var(err(ct)) ≤
(
4 +

(
(k + 1) ·N · l · γ2)) · ζ2.

To see this let c and c be as defined in Definition 2 such that c encrypts ms and c
encrypts mv. Then the external product ⊡ : RQ ×RQ → RQ is defined as

c ⊡ c = g−1(c) · c.

3 Multi-key Homomorphic Encryption
To shift from the single key encryption scheme described in FINAL to a multi key version of
the same scheme there are two components that have to be ‘translated’: the NGS-scheme,
which is imperative for the bootstrapping mechanism, and the base LWE scheme.

Jeongeun Park, Barry van Leeuwen, Oliver Zajonc 7

3.1 Multi-key LWE
To instantiate a multi-key version of the LWE-scheme we must replicate the functionality
of the LWE scheme when used under multiple keys. Such a scheme is not novel, e.g.
[MW16, PS16], however introduces a few important concepts. Note that when k = 1, this
is just the well-known single-key variant of LWE.

Definition 5 (Multi-Key LWE). Given a security parameter λ, the Multi-Key LWE
scheme consists of 5 probabilistic polynomial time algorithms: Setup, KeyGen, Enc, Dec,
and NAND.

• MKLWE.Setup(λ): Upon input of a security parameter λ returns the public parame-
ters (q, p, σ). Denote by ∆ := q/4.

• MKLWE.KeyGen(σ): Upon input of q, p, and σ, MKLWE.KeyGen randomly samples
si ∈ F2, i ∈ {0, . . . , n− 1} such that s = (s0, . . . , sn−1) ∈ Fn

2 .

• MKLWE.Encs(m): Upon input of a key s and a message m ∈ F2, MKLWE.Enc
generates a ← Zn

q , and e ← Gσ. Then, it computes b = a · s + ∆m + e. This
algorithm then outputs a vector of length k + 1, ct = (b, 0, . . . , 0, a, 0, . . . , 0) where a
is in the position corresponding to the party generating the encryption, i.e. the i’th
position for Pi.

• MKLWE.NAND(ct1, ct2): Upon input of two ciphertexts of the form

cti = (bi, ai,1, . . . , ai,k),

MKLWE.NAND outputs

ct =
(

5q

8 − b1 − b2, a1,1 + a2,1, . . . , a1,k + a2,k

)
.

We denote a ciphertext encrypting m under multiple keys (such as sk1, . . . , skk) as
MKLWE.Encsk1,...,skk

(m), which is generated through a NAND gate with ciphertexts
encrypted under different keys.

• MKLWE.Dec(s1, . . . , sk, ct): Upon input of keys s1, . . . , sk and ciphertext ct of the
form (b, a1, . . . , ak) MKLWE.Dec computes

m∗ =
⌊

b−
∑k

i=1 (ai · si)
∆

⌉
.

The MKLWE scheme is correct if

MKLWE.Dec(sk1, . . . , skk, (MKLWE.Encsk1,...,skk
(m)) = m.

Note that every fresh ciphertext is encrypted under a single key and only combined
in the function evaluation. That this scheme is correct is clear, except that it remains to
show that the MKLWE.NAND decrypts correctly.

Lemma 2 (Correctness of LWE-NAND). For two ciphertexts c1, c2 of the form ci =
(bi, a1, . . . , ak), bi =

∑k
i=1 (ai · si) + ∆ · mi + e and secret keys, ski. Consider c =

MKLWE.NAND(c1, c2). If ∥e1 + e2∥ ≤ q
4 , then the protocol MKLWE.Decsk1,...,skk

(c) out-
puts NAND(m1, m2).

8 FINALLY: A Multi-Key FHE Scheme Based on NTRU and LWE

Proof. Let c be as above with the NAND-gate as described in Definition 5. Then

MKLWE.Decsk1,...,skk
(c)

= MKLWE.Decsk1,...,skk
((MKLWE.NAND(c1, c2))

= MKLWE.Decsk1,...,skk

(
5q

8 − b1 − b2, a1,1 + a2,1, . . . , a1,k + a2,k

)
=
(

5q

8 − b1 − b2, a1,1 + a2,1, . . . , a1,k + a2,k

)
· (1, sk1, . . . , skk)

= 5q

8 −∆(m1 −m2) + e1 + e2.

Recall that NAND(m1, m2) can be written symmetrically as (1−∆ ·m1m2) q
2 , which

means that the error produced by the above equation is given by

5q

8 − ∆(m1 − m2) + e1 + e2 − (1−∆ ·m1m2) q

2 = ±q

8 + e1 + e2.

Hence we can see that MKLWE.NAND is a regular encryption of NAND(m0, m1) = 1−m0m1,
producing an error of at most∣∣∣±q

8 + e1 + e2

∣∣∣ = q

8 + q

16 + q

16 = q

4 .

RLWE The ring-based variant of LWE, known as RLWE, is well-known and not all that
different from LWE. We note here the major differences and notational changes, and refer
you to [CCS19] for a more complete description. The main differences are as follows. We
have our public values ai, b ∈ RQ. We denote party Pi’s key by zi ∈ RQ instead of si. The
coefficients of zi and any error terms are sampled from χσ. We denote by z = (1, z1, . . . , zk)
and by ⟨·, ·⟩ : Rn

Q×Rn
Q → RQ the external product between vectors over RQ. A multi-key

RLWE ciphertext is then of the form c = (c0, . . . , ck) ∈ Rk+1 where decryption happens
by computing ⟨c, z⟩ followed by rounding.

3.2 Multi-key NGS-scheme
The multi-key variant of the NGS scheme as introduced in FINAL, [BIP+22], is going
to perform the same functionality as it does in the original paper. The NGS scheme
will function as a transitional scheme which allows our scheme to implement an efficient
bootstrapping procedure. It is clear to see in what follows that k = 1 produces (nearly
identically) the single key NGS scheme (definition 2).

Definition 6 (Multi-key NGS). Given a security parameter λ the multi-key NGS-scheme
consists of four probabilistic polynomial time (PPT) algorithms: Setup, KeyGen, SEnc, VEnc.

• MKNGS.Setup(λ): Upon input of the security parameter λ this outputs a tuple
(N, Q, µ, B, l), where B is a base used to decompose the ciphertexts and l :=
⌊logB(Q)⌉.

• MKNGS.KeyGen(N, Q, µ): Upon input of (N, Q, µ), samples f ′
i ← DR and computes

fi = 4 · f ′
i + 1 until f−1 exists in RQ. Output ski := fi.

• MKNGS.SEnc(f, m): Upon input of a secret key f and a message m ∈M[X], samples
random elements g ← DR and outputs c := g

f + ∆ ·m ∈ RQ where ∆ =
⌊

q
4
⌉
. c is

called a scalar encryption of m.

Jeongeun Park, Barry van Leeuwen, Oliver Zajonc 9

• MKNGS.VEnc(f, m): Upon input of a secret key f and a message m ∈M[X], samples
gi ← DR such that g = (g0, . . . , gl−1) and outputs c := g

f + g · m ∈ Rl
Q, where

g = G1,Q,B = (B0, . . . , Bl−1). c is called a vector encryption of m.

Due to the nature of the Multi Key FINAL scheme the MKNGS scheme does not
require multi-key encryption as the transitory encryption used during bootstrapping will
always be under a single key. It is easy to verify that this defines the same functionality as
the NGS-scheme, however the key interest of that scheme is that there exists an external
product.

Furthermore, while the message space is ostensibly M[X], the messages in our scheme
will always come from the message space of MKLWE. Thus, while we may handle ciphertexts
that contain a polynomial as a message, we will only ever read the 0’th coefficient and we
will expect this value to not be −1 at time of keyswitching to MKLWE.

A Note on Parameter Selection for NTRU-based Schemes As briefly mentioned in
the introduction, there exist attacks [ABD16, CJL16, Dv21] on NTRU schemes with large
parameters. Parameters susceptible to such attacks are called overstretched, and occur
when, for modulus Q and dimension N , Q > 0.004 ·N2.484 [Dv21]. In Section 5, we list a
number of sets of parameters which are valid for our scheme without being overstretched.

3.2.1 Multi-Key External Product

The external product, [BIP+22], is a key feature in the bootstrapping procedure of FINAL
and therefore needs to be replicated in the Multi-Key setting through adaptation of the
processes described in [BIP+22, CCS19].

Given a scalar encryption c =
∑k

i=1
gi

fi
+∆ ·ms and a vector encryption c :=

∑k
j=1

gj

fj
+

g ·mv, the external product is defined as

c ⊡ c = g−1(c) · c = g−1(c) ·
k∑

j=1

(
gj

fj

)
+

k∑
i=1

(
gi

fi

)
·mv + ∆ ·ms ·mv.

It is easy to see that this is a correct scalar NGS encryption of m = ms ·mv given the
noise term is small enough.

For a scalar NGS ciphertext c and a sequence of vector NGS encryptions cj for j ∈ [t],
we denote by

c ⊡t
j=1 cj

the sequence of external products

((((c ⊡ c1) ⊡ c2) ⊡ . . .) ⊡ ct).

3.2.2 Noise Analysis of (Multi-Key) External Products

As in FINAL, our analysis will be an average-case analysis, where the key assumption,
that g−1(a) is γ-subgaussian for all a ∈ RQ, is identical. This allows us to evaluate the
multi-key external product. First, we define the noise of a scalar and vector ciphertexts
before we proceed with the analysis of the external product.

Definition 7 (Noise in a Scalar Multi-Key Ciphertext). Let c = MKNGS.SEncf1,...,fn
(m) =∑k

i=1
gi

fi
+ ∆ ·m. Then the noise of c is defined as

err(c) = c ·
k∏

i=1
fi −∆ ·m =

k∑
i=1

gi

∏
j ̸=i

fj

+
k∏

i=1
(fi − 1) ·∆ ·m.

10 FINALLY: A Multi-Key FHE Scheme Based on NTRU and LWE

Similarly, we can define the noise of a vector ciphertext.

Definition 8 (Noise in a Vector Multi-Key Ciphertext). Let c = MKNGS.VEncf1,...,fk
(m) =∑k

j=1
gj

fj
+ g ·m. Then the noise of c is defined as

err(c) = c ·
k∏

i=1
fi −

k∏
i=1

fi · g ·m =
k∑

i=1

gi

∏
j ̸=i

fj

 .

In the case of our instantiation of MKNGS using the FINAL distribution, we note that
both gi and f ′

j are identically distributed, pairwise independent polynomials of at most
degree N . Hence,

Var

 k∑
i=1

gi

∏
j ̸=i

fj

 ≤ k ·Nk · Var(4 · f ′
i + 1)k ≤ k ·

(√
8N
)k

.

Lemma 3 (Noise Variance of a (Fresh) Multi-Key Scalar Ciphertext). Let

c = MKNGS.SEncf1,...,fk
(m) =

k∑
i=1

gi

fi
+ ∆ ·m ∈ RQ.

Then the variance of the error contained in c, err(c), is given by

Var(err(c)) ≤ Var

 k∑
i=1

∏
j ̸=i

fj · gi

+ (4 · d · Var(f ′))k−1

if m is a monomial in RQ of the form α ·Xk for some k ∈ Z and α ∈ F2, and

Var(err(c)) ≤ Var

 k∑
i=1

∏
j ̸=i

fj · gi

+ (4 · d · Var(f ′))k−1 ·N

if m is a binary or ternary polynomial with deg(m) ≤ N − 1.

Proof. Recall that ∆ = q
4 + ϵ for some |ϵ| < 1

2 . Since c ∈ RQ it holds that

c ·
k∏

i=1
fi −∆ ·m =

k∑
i=1

gi ·
∏
i ̸=j

fj

+
k∏

i=1
(4f ′

j + 1) · ϵ ·m.

Note that
∏k

i=1(4 · f ′
j + 1) = 4kf ′

1f ′
2 . . . f ′

k + . . . + 1 and so

=
k∑

i=1

gi ·
∏
i ̸=j

fj

+
(
4kf ′

1f ′
2 . . . f ′

k + . . . + 1
)
· ϵ ·m.

As |ϵ| < 1
2 variance of the noise is given by

Var(err(c)) ≤ Var

 k∑
i=1

gi ·
∏
i̸=j

fj

+ 4kVar(f ′
1 . . . f ′

k) · ∥m∥2
2

for a monomial m = α + Xt with t ∈ Z and α ∈ F2, ∥m∥2
2 < 1 and for a binary or ternary

polynomial for which deg(m) < N , ∥m∥2
2 ≤ N . Noting that each f ′

i is a polynomial such
that deg f ′

i ≤ d concludes the proof.

Jeongeun Park, Barry van Leeuwen, Oliver Zajonc 11

Given these we can bound the noise of a fresh scalar ciphertext in MKNGS quite
straightforwardly to k ·

(√
8N
)k + (2 · N)k in the case that m is a monomial and k ·(√

8N
)k + (2 ·N)k ·N otherwise.

Lemma 4 (Noise growth of a Multi-Key External Product). Let c :=
∑k

i=1
gi

fi
+∆ ·u ∈ RQ

be a scalar encryption of u and let c :=
∑k

j=1
gj

fj
+ g · v be a vector encryption of v ∈ F2

or v ∈ {±b ·Xk : b ∈ F2, k ∈ N} , such that each encryption uses at most k keys drawn
from the set of keys F = {f1, . . . , fk}, i.e. ∀i, j ∈ {1, . . . , k} : fi, fj ∈ F . Then

Var(c ⊡ c) = N · l · γ2 · Var(err(c)) + Var(err(c)).

Proof. From Section 3.2.1 we know that

c ⊡ c = g−1(c) ·
k∑

j=1

(
gj

fj

)
+

k∑
i=1

(
gi

fi

)
· v + ∆ · u · v.

By considering u · v = m this is a valid scalar NGS ciphertext. Thus by Lemma 3, we
obtain that

err(c ⊡ c) = Var

g−1(c)

 k∑
i=1

gi

∏
i ̸=j

fj

+

 k∑
i=1

gi

∏
i ̸=j

fj

 · ∥v∥2
2

+ (4 · d · Var(f ′))k

where m is a polynomial. Given the assumption that g−1(a) is γ-subgaussian l component
decomposition into polynomials for any a and the fact that ∥v∥2

2 < 1 we obtain that

err(c ⊡ c) ≤ N · l · γ2 · Var(err(c)) + Var(err(c))

which is exactly as claimed.

Remark 1. Note that in Lemma 4, there is no limitation set on the noise terms given in c
and c despite drawing the keys from the same key set. Thus it is possible to apply the
lemma to ciphertexts which share no keys at all by letting F be the union of the associated
sets of keys.

This lemma and the following observation immediately lead to the following corollary.

Corollary 1. Let c0 = MKNGS.SEncsk1,0,...,skk,0
(m0), such that m0 ∈ F2, and let cj =

MKNGS.VEncsk1,j ,...,skk,j
(mj) such that for i, j ∈ {1, . . . , t}, Var(err(cj)) = Var(err(ci)).

Then
Var

(
err(c ⊡t

j=1 cj)
)
≤ t ·N · l · γ2 · Var (err(cj)) + Var (err(c)) .

Proof. This follows immediately from Lemma 4 and Lemma 1.

As a result of Corollary 1 and Remark 1 we observe that, given k players, each with t
fresh single key Vector NGS-ciphertexts, ci,j , i ∈ [{1, . . . , k}], j ∈ {1, . . . t} such that ci,j =
NGS.VEncski

(mj) and a single key Scalar NGS ciphertext c0 = NGS.SEncsk0
(m0), the total

noise of ct = c0⊡
k,t
i,j=1ci,j is given by Var (err(ct)) = t·k ·N ·l·γ2 ·Var(err(ci,j))+Var(err(c0)).

12 FINALLY: A Multi-Key FHE Scheme Based on NTRU and LWE

3.3 Key Switching
The penultimate step of the bootstrapping algorithm, see Section 4, will be a key switching
from NGS to LWE. The protocol to perform this keyswitching, ΠKS defined in Figure 6,
requires 3 pieces to get running. First, we require the key switching key defined originally
in [BIP+22] which will be computed using ΠkskGen in Figure 5. Second, to compute this
key switching key, we’ll need a keyswitching protocol between different MKLWE keys.
Third, and finally, we use the single key variant of the keyswitching protocol from NGS to
LWE within our multi-key keyswitching protocol. In this section, we introduce all three of
these preliminary parts required for ΠKS.

3.3.1 FINAL’s key switching key

First, we recall key switching key used in [BIP+22] which proves to be useful in the
multi-key space.

Definition 9 (Key switching key). Let c = g
f + ∆m be an NGS scalar ciphertext such that

ϕ(c) = (c0, . . . , cN−1) is the coefficient vector of c. Then the key switching key is given by

ksk = (A, b := A · s + e + G · ϕ(f)),

where A ∈ Z(N ·l)×n
q and e← χN ·l

σe
.

3.3.2 Single-key keyswitching from NGS to LWE

Within our algorithm to keyswitch from multi-key NGS to multi-key LWE, we’ll use the
following function from [BIP+22].

Definition 10. Let ksk = (A, b) and c be defined as above in definition 9. Let y = g−1(ϕ(c))
and compute KSNGS→LWE(c, ksk) := (y ·A, y · b).

This function takes as input an NGS ciphertext encrypting some message m ∈M[X]
(where the 0’th coefficient is in F2) under the key f and returns an LWE ciphertext
encrypting m0 ∈ F2 under key s, where m0 is m evaluated at 0. This is explicitly treated
in [BIP+22] which shows the validity of the output.

3.3.3 Key switching within MKLWE

During our bootstrapping, we will use a slightly modified version of FINAL’s key switching
algorithm to convert a multi-key NGS ciphertext to a multi-key LWE ciphertext. However,
we cannot directly compute key switching keys in the same way as FINAL due to the
existence of multiple parties. Therefore, we introduce an MKLWE key switching algorithm
in Figure 2 for use in our new key switching key generation algorithm in Section 4.4.

3.4 Hybrid Product
The hybrid product was introduced in [CCS19] and improved in [KMS24]. It allows, at
the cost of significant noise growth, to securely compute a multiplication of an underlying
message, x, with the secret key fi of one of the parties. By repeated application of the
hybrid product, this allows us to obtain an encryption of x ·

∏n
i=1 fi. This product will be

used in Section 4.4.1 to correctly compute the required key switching keys.

Definition 11 (Hybrid Product Key Generation). HPKGen(zi, fi): on input (zi, fi) by
the i-th player, where zi ← χn

σ is their RLWE key and fi ← DR is their NGS key, sample

Jeongeun Park, Barry van Leeuwen, Oliver Zajonc 13

MKLWE Key Switching protocol, ΠKSLWE

Input: An MKLWE ciphertext c, k Key switching keys (kskLWE)i = (bi,j , Ai,j).
Output: MKLWE ciphertext c′ = (b′, a′

1, . . . , a′
k).

1. Parse c as (b, a1, . . . , ak) and ai = (ai,1, . . . , ai,N).
2. For i ∈ [k], j ∈ [N]

(a) b′
i =
∑N

j=1 g
−1(ai,j)T · bi,j

(b) a′
i =
∑N

j=1 g
−1(ai,j)T ·Ai,j

Figure 2: The MKLWE Key switching protocol as introduced in [CCS19].

noise vectors ei,0, ei,1, ei,2 ← χn
µ. Generate random vector di,1 ← χn

µ and random RLWE
key ri and compute

bi = −zi · a + ei,0; di,0 = −zi · di,1 + ri · g + ei,1; di,2 = ri · a + fi · g + ei,2,

where a is a common reference string (CRS). Output bi and hpki = (di,0, di,1, di,2).

To get an intuitive idea of what the hybrid product keys achieve it is easy to see that
they behave like LWE ciphertexts, such that bi encrypts 0 under the key zi, di,0 encrypts
ri · g under the key zi, and di,2 encrypts fi · g under the key ri.

Definition 12 (Hybrid Product). HybridProduct(c, hpki, {bj}j∈{1,...,k}): on input of the
hybrid product keys and RLWE ciphertext c = (c0, . . . , ck) ∈ Rk+1, for j ∈ {0, . . . , k}, let
b0 = −a and compute:

ui,j = ⟨g−1(cj), di,2⟩; vi = ⟨Σk
j=0g

−1(cj), bi⟩.

Let c′
j = ui,j for j ∈ [k]. Now let c′

0 = c′
0 + ⟨g−1(vi), di,0⟩ and c′

i = c′
i + ⟨g−1(vi), di,1⟩.

Then, return the MK-RLWE ciphertext c′ = (c′
0, . . . , c′

k) ∈ R(k+1).

The following lemma proves that on input of an MKLWE ciphertext encrypting x, the
hybrid product outputs an MKLWE ciphertext encrypting x · fi and bounds the noise
growth.

Lemma 5. Let c = (c0, . . . , ci−1, 0, . . . , 0) ∈ Rk+1 such that ⟨c, z⟩ = x + e where
z = (1, z1, . . . , zk) ∈ Rk+1. Let hpki and {bj}j∈{1,...,k} be computed by HPKGen. Then
c′ := HybridProduct(c, hpki, {bj}j∈{1,...,k}) has the form c′ = (c′

0, c′
1, . . . , c′

i, 0, . . . , 0). Fur-
thermore, the following holds

⟨c′, z⟩ =: x · fi + fi · e + e′, (1)

where z = (1, z1, . . . , zk) ∈ Rk+1. The new error is bounded by

Var(e′) = (2 + 2 · (i− 1) ·N · l · Var(f)) · γ2 · µ2

≤ 2i ·N · l · Var(f) · γ2 · µ2 ≤ 16i ·N · l · γ2 · µ2.

Proof. We first prove that c′
j = 0 when j > i. Next, we prove equation 1. Finally, we show

the value of e′.
Let k ≥ j > i. Then,

c′
j = ui,j = ⟨g−1(cj), di,2⟩ = ⟨0, di,2⟩ = 0.

14 FINALLY: A Multi-Key FHE Scheme Based on NTRU and LWE

Next, we compute

⟨c′, z⟩ =ui,0 + Σk
j=1zj · ui,j + ⟨g−1(vi), di,0⟩+ zi · ⟨g−1(vi), di,1⟩

=fi · ⟨c, z⟩+ ⟨g−1(c0), ei,2⟩+ Σi−1
j=1zi⟨g−1(cj), ei,2⟩+ ⟨g−1(vi), ei,1⟩

+ Σi−1
j=1⟨g

−1(cj), ei,0 · ri⟩.

Thus, equation 1 trivially holds. Furthermore, for all i ∈ {1, . . . , k}, it holds that

Var(e′) = Var(g−1(c0)ei,2 + g−1(vi)ei,1 + Σi−1
j=1rig

−1(cj)ei,0 + Σi−1
j=1zj · g−1(cj)ei,2)

As ei,j is a vector and g−1(a) is a vector of length at most l for any a, the simplification

Var(e′) = 2 · γ2 · µ2 + (i− 1) · γ2 · µ2 · Var(ri) · ζ1 + (i− 1) · γ2 · µ2 · Var(zj) · ζ2

can immediately be made, where ζ1 and ζ2 are correction factors depending on ri and zj .
Specifically, as ri and zj are both keys drawn according to the FINAL distribution they
are both polynomials, therefore ζ1 = ζ2 = N · l and so

Var(e′) = (2 + 2 · (i− 1) ·N · l · Var(f)) · γ2 · µ2

≤ 2i ·N · l · Var(f) · γ2 · µ2 ≤ 16i ·N · l · γ2 · µ2

where the final inequality holds as Var(f) = Var(4 · f ′ + 1) = 8.

3.5 Modulus Switching
As the last step of our bootstrapping, we will need to switch the modulus of an MKLWE
ciphertext. Let the randomized rounding function [DM15] be as follows.
Definition 13 (Randomized Rounding Function). Let Q, q ∈ Z, and 1 < q < Q. The
randomized rounding function [·]Q:q : ZQ → Zq is defined as [z]Q:q = ⌊q · z/Q⌋+ B where
B ∈ {0, 1} is a Bernoulli random variable with Pr[B = 1] = (q · z/Q)− ⌊q · z/Q⌋ ∈ {0, 1}

This definition naturally extends to vectors, matrices and polynomials by performing
rounding element-wise. Note also that the rounding error ϵ is 1−subgaussian.

Modulus switching from Q to q is done by applying the Randomized Rounding Function
to the LWE ciphertext. We denote ModSwitch(c, Q, q) = [c]Q:q. Furthermore, the following
lemma holds regarding the noise growth of this operation.
Lemma 6. For any MKLWE ciphertext c of message m under keys {si}1≤i≤k with noise
σ and modulus Q and q, ModSwitch(c, Q, q) is an MKLWE ciphertext of message m under
keys {si}1≤i≤k with modulus q and noise at most

q2

Q2 σ + (kn + 1)
√

2π.

Proof. Let c = (b, a) and ModSwitch(c) = (b′, a′). We have that for each i ∈ {1, . . . , k} and
each j ∈ {1, . . . , n}, a′

i,j = q
Q ai,j + ri,j and b′ = q

Q b + r0 for independent
√

2π-subgaussian
rounding errors r0, r1,1, r1,2, . . . , rk,n. It follows that c′ is a MKLWE encryption of m with
error

err(c′) =b′ − Σk
i=1a′

i · si − qm

= q

Q
err(c) + r0 − Σn

i=1Σk
j=1ri,j

= q

Q
err(c) + R

where R is (kn + 1)
√

2π-subgaussian. Thus Var(err(c′)) ≤ q2

Q2 Var(err(c)) + (kn + 1)
√

2π.

Jeongeun Park, Barry van Leeuwen, Oliver Zajonc 15

Bootstrapping key generator ΠBSK

Input: LWE Secret Key si belonging to a player Pi

Output: Bootstrapping key bski

1. si = (si,0, . . . , si,n−1)
2. for j ∈ {0, . . . , n} do

bski,j ← NGS.VEncfi
(si,j)

3. bski = (bski,0, . . . , bski,n−1)

Figure 3: The bootstrapping key generator, ΠBSK, using MKLWE-style binary keys.

4 Bootstrapping
After the MKLWE scheme has produced a ciphertext encrypting m = f(m1, . . . , mk)
using the MKLWE scheme’s NAND gates, the next step is reducing the noise through a
bootstrapping procedure. To this end, assume that ct := (b, a1, . . . , ak) is an MKLWE
ciphertext where b =

∑k
i=1 ai · si + ∆m + e where the ciphertext error, e, is E-subgaussian

for an appropriate E.
The bootstrapping procedure consists of three steps. First, we take this ct as input

and convert this to an MKNGS Scalar Ciphertext of the form c =
∑k

i=1
gi

fi
+ ∆ ·m. Second,

we keyswitch this MKNGS ciphertext and keyswitch back to an MKLWE ciphertext. Third,
as the ciphertext output by the keyswitching will still have the MKNGS modulus, we
ModSwitch back to the MKLWE modulus. The bootstrapping algorithm is defined in detail
in Figure 4.

4.1 Generating Bootstrapping Keys
Each party needs to provide the server with a bootstrapping key to allow for the conversion
from MKLWE to MKNGS. To achieve this we define a new bootstrapping key generation
algorithm, ΠBSK, in Figure 3.

Every party, Pi, has an LWE key, si, and an NGS key, fi. To obtain the bootstrapping
key for party Pi, bski, we simply encrypt each coefficient of si, si,j , under the appropriate
party’s NGS key to obtain

bski = (bski,j)j∈{0,...,n−1} =
(
NGS.VEncfi

(si,j)
)

j∈{0,...,n−1} .

Each party can pre-process the generation of these keys at the start of the protocol.
As the bootstrapping keys, bski,j , are fresh NGS vector encryptions we conclude that
Var(err(bski,j)) = Var(g) = maxj Var(gj).

4.2 Adopting the Binary CMux
The first step of our bootstrapping is converting our input, an MKLWE ciphertext, to an
MKNGS ciphertext. We do this using a series of binary CMux gates. The binary CMux
gate is well described, [CGGI20], and is given by

CMuxi,j(c) = g + (Xc − 1) · NGS.VEncfi
(si,j),

where g is a noiseless encryption of 1. Note that the encryption of si,j is a single key vector
NGS encryption under the key fi. Note also that

CMuxi,j(ci,j) = g(1 + Xci,j si,j − si,j) + g
fi

(Xci,j − 1) = NGS.VEncfi
(Xci,jsi,j).

16 FINALLY: A Multi-Key FHE Scheme Based on NTRU and LWE

The Bootstrapping Algorithm, ΠBS

Input: ct = (b, a1, . . . , ak), an MKLWE ciphertext encrypting m.
Output: ct′, an MKLWE ciphertext encrypting the same m.

1. Parse ct = (ct0, . . . , ctk)
2. (c0)←

⌊ 4·N·ct0
q

⌉
3. (c1, . . . , ck)←

(⌊ 4·N·cti
q

⌉)
i∈{1,...,k}

4. ACC←
⌊

Q
8

⌉
·XN/2 ·

∑N−1
i=0 Xi

5. ACC← ACC ⊡ g ·Xc0

6. for i← 1 to k do
(a) for j ← 0 to n− 1 do

i. cmux ← CMuxi,j(ci,j)
ii. ACC← ACC ⊡ cmux

7. ACC← ACC +
⌊

Q
8

⌉
·
∑N−1

i=0 Xi

8. ACC← ΠKS(ACC, (ksk0, . . . , kskk))
9. ct′ ← ModSwitch(ACC, Q, q)

Figure 4: Multi-Key NGS Bootstrapping algorithm in the style of FINAL.

Where the final encryption of Xci,jsi,j under fi has noise g(Xci,j − 1). As si,j ∈ F2 it can
easily be observed that the final equality holds:

• If si,j = 0 then Xci,jsi,j = X0 = 1 while 1 + Xci,j si,j + si,j = 1.

• If si,j = 1 then Xci,jsi,j = Xci,j , while 1 + Xci,j si,j − si,j = Xci,j .

Thus we have that the message encrypted by CMuxi,j(ci,j) lies in the message space M.
Now let Ebski be the error of the bootstrapping key used in the binary CMux gate, the

noise of the CMux gate can be easily computed.

Lemma 7. Let Ebski = Var(err(bski)) and let ECMuxi,j be the noise of the output of the
CMux gate. Then ECMuxi,j

≤ 2 · Ebski,j
.

Proof. First note that bski = (bski,j)j∈{0,...,n−1} and so Ebski
= maxj

(
Ebski,j

)
. Since

all bski,j = NGS.VEncfi
(si,j) are fresh ciphertexts, that means Var(err(bski,j)) = Var(g).

Hence, as the message contained in CMuxi,j(ci,j) is given by 1 + Xci,jsi,j − si,j we have

Var(err(CMuxi,j(ci,j))) = Var
(

g
fi

(Xci,j − 1)
)

= Var(g) · ∥Xci,j − 1∥2
2

≤ 2 · Var(g)

and as Var(g) is exactly the error of the bootstrapping key, we obtain the desired noise.

Jeongeun Park, Barry van Leeuwen, Oliver Zajonc 17

4.3 Applying the CMux Gate
In Figure 4 we describe the bootstrapping protocol in full. Given our input ct =
(ct0, ct1, . . . , ctk), we can pre-process this to obtain (c0, c1, . . . , ck) such that

c0 =
⌊

4 ·N · ct0

q

⌉
, ci =

⌊
4 ·N · (−cti)

q

⌉
, where i ∈ {1, . . . , k}.

Now set c̃0 = g ·Xc0 , which can be seen as a noiseless Vector NGS encryption of Xc0 . We
would like to apply the CMux gates to obtain the result of the following useful multiplication:

c̃ ·
∏

i∈[k]
j∈[n−1]

CMuxi,j(ci,j) = g ·Xc0 ·
∏

i∈[k]
j∈[n−1]

(
g(Xci,jsi,j) + g

fi
(Xci,j − 1)

)

= NGS.VEncf1,...,fn

(
X

∑
(i,j)

ci,jsi,j

)
= NGS.VEncf1,...,fn

(
X∆·m+e

)
.

Note that the ci defined in step 1 and 2 of ΠBS are polynomials of at most degree n.
Therefore, the total number of elements processed in the CMux gates is (k · n) + 1.

However, simply computing this multiplication is not directly possible as we have
no procedure to multiply two vector ciphertexts together. Instead, we use the external
products defined in Section 3.2 with an accumulator ACC :=

⌊
Q
8

⌉
· XN/2 ·

∑N−1
i=0 Xi

(mod XN + 1) on the left. This accumulator can be observed as a noiseless Scalar NGS
encryption and therefore allows for the use of the external products. Using this accumulator,
as is common in [GPV23, MS18, CGGI20], we obtain the following statement:

Theorem 1. Let ct = (b, a1, . . . , ak) and let c0, c1, . . . , ck, bski, and ACC be as defined
above. Then

c′ := (ACC ⊡ c̃0) ⊡i,j CMuxi,j(ci,j) +
⌊

Q

8

⌉
·

N−1∑
i=0

Xi = NGS.SEncf1,...,fk
(m),

with ∆ = Q
4 , such that Var(err(c′) ≤ (n · k + 1) ·N · l · γ2.

Proof. We first show correctness, then we will bound the noise of c′. Let ct = (b, a1, . . . , ak)
be a valid MKLWE ciphertext and let c0, . . . , ck be as given. Then let the accumulator,
ACC, be defined as

ACC =
⌊

Q

8

⌉
·XN/2 ·

N−1∑
i=0

Xi

such that we can use the external product in the first step to obtain

ACC ⊡ g ·Xc0 =
⌊

Q

8

⌉
·XN/2+c0 ·

N−1∑
i=0

Xi.

Then, applying the CMux in repetition over all pairs (i, j), i ∈ [k], j ∈ [n], in an identical
way we obtain

ACC =
⌊

Q

8

⌉
·XN/2 ·

N−1∑
i=0

Xi ·X⌊
4N

q c0⌉ ·
n∏

i=1
X⌊

4N
q cisi⌉.

Now consider c0 −
∑n

i=1 cisi = ∆ ·m + e. Since ∆ =
⌊

q
4
⌉

we obtain that

4 ·N
q

(∆ ·m + e) = N ·
(

m + e

∆

)
.

18 FINALLY: A Multi-Key FHE Scheme Based on NTRU and LWE

By assumption on the error bound
⌊

e
∆
⌉

= 0 and so we obtain the following:

ACC =
⌊

Q

8

⌉
·XN/2 ·

N−1∑
i=0

Xi · (−1)m.

Recall from Section 3.2 they we are only interested in the 0’th coefficient. We observe
that the 0’th coefficient occurs at i = N

2 , obtaining XN/2 ·XN/2 = XN = −1, resulting in

ACC =
⌊

Q

8

⌉
− 1 · (−1)m.

It is easily observed that this is a valid encryption, MKNGS.SEnc(2m− 1), therefore by
adding a noiseless MKNGS encryption of 1, MKNGS.SEnc(1) = Q

8 ·
∑N−1

i=1 Xi, we obtain

ACC = MKNGS.SEnc(2m)

with ∆ = Q
8 . Equivalently, this can be seen as ACC = MKNGS.SEnc(m) with ∆ = Q

4 ,
which is the format we desired.

We now bound the noise generated by c′. As there are (n · k) + 1 total CMux multipli-
cations, we obtain from Corollary 1 that the noise of this sequence is bounded by:

Var (err(c′)) ≤ (n · k + 1) ·N · l · γ2 · Var (err(CMuxi,j(ci,j))) + Var (err(T (x))) .

By Lemma 7 we note that Var (err(CMuxi,j(ci,j))) ≤ 2 · Var(g), hence

Var (err(c′)) ≤(n · k + 1) ·N · l · γ2 · 2 · Var(g) + Var (err(T (X)))
≤(n · k + 1) ·N · l · γ2

where the last inequality holds as Var(g) = 1
2 by the definition of the FINAL distribution

and T (X) being a noiseless encryption.

4.4 Switching back to LWE
Having obtained the result of the CMux, we must now switch the ciphertext and the keys
back from MKNGS to MKLWE. To do this, we adapt the single-key key switching algorithm
from FINAL [BIP+22], see also Section 3.3.

The main adaptation that we need to introduce is that we use MKLWE instead of single
key LWE, which means that the key switching key has to have noise entries for each of the
parties, hence ksk = (ksk0, . . . , kskk) where ksk0 :=

∑k
i=1 kski · si + e + g ·

∏
j fj . However,

first we must generate the key switching keys themselves.

4.4.1 Generating the key switching keys:

To instantiate this, assume the use of a CRS, denoted here by a, which is used as implicit
input in what follows. Each player, Pi, starts by locally generating the hybrid product
keys bi and hpki = (di,0, di,1, di,2) by computing HPKGen(zi, fi) as outlined in Section
3.4. Each player must also compute kskLWEi as in ΠKSLWE in Section 3.3.

These are then public values which can be sent to the server, allowing it to compute
ksk0. To do this, let

x1 := (d1,2 + ⟨g−1(−a), d1,0⟩, ⟨g−1(−a), d1,1⟩, 0, . . . , 0) ∈ Rk+1
Q

be an RLWE ciphertext encrypting g · f1 under the keys {zi}1≤i≤k. The server computes
xi := HybridProduct

(
xi−1, hpki, {bj}j∈[k]

)
. for each i ∈ {2, . . . , k} until it obtains xk.

Jeongeun Park, Barry van Leeuwen, Oliver Zajonc 19

Key switching key generation, ΠkskGen

Input: bi, hpki = (di,0, di,1, di,2), and kskLW E,i

Output: The key switching key: (ksk0, . . . , kskk).

1. x1 ← (d1,2 + ⟨g−1(−a), d1,0⟩, ⟨g−1(−a), d1,1⟩, 0, . . . , 0) ∈ Rk+1
Q

2. for i ∈ {2, . . . , k} do:
• xi ← HybridProduct(xi−1, hpki, {bj}1≤j≤k)

3. Parse xk := (b, a1, . . . , ak) ∈ ZN(k+1).
4. x′

k ← (b0, a1, . . . , ak) ∈ ZkN+1

5. ksk← ΠKSLWE(x′
k, {kskLW E,i}1≤i≤k)

6. Out: (ksk0, . . . , kskk) := ksk

Figure 5: Computing the Key switching Keys

By Lemma 5, at the end of the Hybrid Product chain we obtain a multi-key RLWE
ciphertext (c′

0, c′
1, . . . , c′

k) ∈ Rk+1
Q , where c′

0 contains a term g · Πk
i=1fi in the zero’th

coefficient. To obtain an MKLWE ciphertext encrypting g ·Πk
i=1fi we compute ϕ(c′

i) for
all i ∈ {1, . . . , k} and set

ĉ = ((ϕ (c′
0))0 , ϕ(c′

1), . . . , ϕ(c′
k)) .

However, we still need to use the multi-key LWE key-switching from Section 3.3 to
switch the keys from the RLWE keys to s1, . . . , sk. The full computation can be seen in
Figure 5.

Note that when decrypting x1 we get

⟨x1, z⟩ = g · f1 + g−1(a) · e0,1 + e1,2.

Let e′
1 = g−1(a) · e0,1 + e1,2. By repeatedly applying Lemma 5 while denoting e′ in the

formation of xi by e′
i, the following holds for i ∈ {2, . . . , k}:

⟨xi, z⟩ = g

i∏
j=1

fj + Σi−1
j=1

 i∏
l=j+1

(fl) · e′
j

+ e′
i. (2)

Lemma 8. Let |P| = k and let bi and hpki be as defined above. Computing the key
switching keys, ksk1, . . . , kskk, as in ΠkskGen, yields a noise given by

errksk ≤ Nk−1 · (γ2 + 1) · µ2 + 64 · (k − 2) · (3k − 1) ·Nk−1 · l · γ2 · µ2 + N · l · γ2 · µ2.

Hence, for k > 0, the error is bounded by O
(
k2 ·Nk−1 · l · γ2 · µ2).

Proof. From lemma 5, we know the values of e′
i for all i ∈ [k]. This evaluation can then be

inserted into the generalized formula 2, where it is trivial to see that the error is greatest
at i = k. Therefore, to compute the final error of the Hybrid Product stage we only need

20 FINALLY: A Multi-Key FHE Scheme Based on NTRU and LWE

Key switching protocol, ΠKS(c)

Input: An MKNGS ciphertext c = Σigi/fi + ∆m where ksk = (ksk0, . . . , kskk) is obtained
from ΠHP

Output: An LWE ciphertext (b, A1, . . . , An) encrypting m.

1. for i ∈ {1, . . . , k} do:
• ai ← KSNGS→LWE(c, kski)

2. a = (a1, . . . , ak)
3. b← KSNGS→LWE(c, ksk0)
4. Out: c′ := (b, a)

Figure 6: Key switching from NGS to LWE

to compute the error at i = k:

Var

⟨xi, z⟩ − g

k∏
j=1

fj

 = Var

k−1∑
j=1

 k∏
l=j+1

(fl) · e′
j

+ e′
k

≤ Var

(
k∏

l=2
fl · e′

1

)
+ Var

(((
(k − 2) ·

k∏
l=3

fl

)
+ 1
)
· e′

k

)
≤ Nk−1 · (γ2 + 1) · µ2 + (k − 2) · (Nk−2 · 8) ·

(
16k ·N · l · γ2 · µ2)

≤ Nk−1 · (γ2 + 1) · µ2 + 128 · (k − 2) · k ·Nk−1 · l · γ2 · µ2.

That the penultimate inequality holds follows from the fact that e′
i is largest at i = k and

the evaluation of the product of multiple fl. From [CCS19], we know that the MKLWE
Key Switching protocol described in Section 3.3 induces an additive error of at most
N · l · γ2 · µ2, realizing the stated error bound.

Observe that, up until now, the key-switching keys have had no dependency on the
encrypted ciphertexts. Hence, we may assume that the key-switching keys have been
pre-computed.

4.4.2 Key switching Protocol:

Having obtained the correct key-switching keys, the key switching protocol in Figure 6
can be executed. This uses the KSNGS→LWE sub-protocol defined in Section 3.3.2.

After the key switching steps we obtain an MKLWE ciphertext under the keys s1, . . . , sk

with public parameters ai = y · kski for each party Pi, such that

b = y ·

 k∑
i=1

kski · si + e + g ·
∏

j

fj

 ,

and err(b) = b−
∑k

i=1 ai · si −∆m by the definition of the error of an MKLWE ciphertext.
Therefore we can conclude that the error introduced by key switching is as follows:
Lemma 9. Let c be an MKNGS.SEnc ciphertext, such that c =

∑k
i=1

gi

fi
+ ∆m, with error

E and let c′ = (b, a1, . . . , ak) be the output of ΠKS on c. Then

Var (err(c′)) ≤ Nk · µ2 · l ·
(
γ4 + γ2 + 128 · (k − 2) · k · l · γ4)+ E + 8 ·Nk−1.

Moreover, for k > 0, the error is bounded by O(k2 ·Nk · l2 · γ4 · µ2 + E).

Jeongeun Park, Barry van Leeuwen, Oliver Zajonc 21

Proof. It is easy to observe that

err(b) = y · e +
k∏

j=1
fj · ϕ(c)

= y · e +
k∑

i=1
gi ·
∏
j ̸=i

fj +
k∏

j=1
fj · ϕ(m).

And by the decryption equation for an MKLWE ciphertext,

Var (err(b)) = Var (y · e) + Var

 k∑
i=1

gi ·
∏
j ̸=i

fj

+ Var

 k∏
j=1

fj · ϕ(m)

≤ Var(g−1(ϕ(c)) · e) + Var(c) + Var

 k∏
j=1

fj

where the final inequality holds as m ∈ F2, hence ∥m∥2

2 ≤ 1. Moreover, Var(y) = γ2, errksk
is the error introduced by the key switching key, as identified in 4.4.1. Since Πk

i=1fj is
k − 1 multiplications of a polynomial of at most degree N we obtain that

Var(err(b)) ≤ N · l · γ2 · errksk + E + ·Nk−1Var(fj)
≤ Nk · l · γ2 · (γ2 + 1) · µ2 + 128 · (k − 2) · k ·Nk · l2 · γ4 · µ2 + E + 8 ·Nk−1

which yields a complexity of O(k2 ·Nk · l2 · γ4 · µ2 + E) for any k > 0.

We conclude the bootstrapping by modswitching from the MKNGS modulus to the
MKLWE modulus using the modswitching protocol introduced in Section 3.5.

4.5 Bootstrapping Noise
With the construction of bootstrapping completed we can now consider the error before
and after bootstrapping.

Theorem 2. Let P = P1, . . . ,Pk such that k is the number of participating parties,
each equipped with keys (si, bski, fi). Moreover, let c = MKLWEs1, . . . , sk(m) such that
Var(err(c)) = ELWE. Then ΠBS(c) produces c′ = MKLWE(m) encrypted under the LWE
keys s1, . . . , sn such that

Var (err (ΠBS(c))) ≤ q2

Q2 (Var(err(ΠKS(c)))) + (kn + 1)
√

2π.

Moreover, the error while working in the MKNGS scheme does not exceed (n ·k+1) ·N · l ·γ2.

Proof. Let c be as defined above. Then by Theorem 1 we obtain that the error after step
6 is given by

Var (err(ACC)) = (n · k + 1) ·N · l · γ2.

As this is the final step in the MKNGS scheme we conclude that this is the total size of
the error within this scheme.

Then, by Lemma 9 we obtain that the key switching algorithm introduces extra noise
within the MKLWE encryption amounting to a total of

Var (err (ΠKS(c))) ≤Nk · l · γ2 · (γ2 + 1) · µ2 + 128 · (k − 2) · k ·Nk · l2 · γ4 · µ2

+ 2 · (n · k + 1) ·N · l · γ2 + 8 ·Nk−1.

22 FINALLY: A Multi-Key FHE Scheme Based on NTRU and LWE

Let c′ = ΠKS(c). Using ModSwitch we obtain from Lemma 6

Var (err(ModSwitch(c′))) ≤ q2

Q2 (Var(err(ΠKS(c)))) + (kn + 1)
√

2π.

A simple analysis yields the stated results.

4.6 Heuristics
Set Var (err(ΠBS(c)) = Efinal. It is clear from the previous section that given ct encrypting
f(m1, . . . , mn) the bootstrapping algorithm outputs a ciphertext ct′ encrypting the same
message.

The noise obtained after bootstrapping behaves as a Gaussian distribution, therefore
we can apply the Central Limit Theorem and its accompanying heuristic to conclude that
with overwhelming probability ∥err(ct′)∥ ≤ 6 ·

√
Efinal.

With the result from Theorem 2 we then conclude that with overwhelming probability

∥err(ctNGS)∥ ≤ 6 ·
√

(n · k + 1) ·N · l · γ2. (3)

Similarly for the MKNGS-scheme, we can prove that our NTRU-modulus Q is asymptotically
less than the fatigue point found in [Dv21], Q < O(N2.484).

Theorem 3. If the NGS ciphertexts of the protocol in Figure 4 satisfy equation 3 except
with negligible probability and Q = O(N 3

2), then these ciphertexts can be correctly decrypted
except with negligible probability.

Proof. As n = O(N), l = O(log Q) = O(log N) and γ2, k ∈ O(1), we have that the noise of
NGS ciphertexts in the protocol in Figure 4 are O(N 3

2) except with negligible probability,
by Eq 3. For correct decryption, we require that this noise is less than Q/4. Thus it is
sufficient to select Q = O(N 3

2).

5 Analysis on the maximum supported players with
concrete parameters

In this section we analyze this noise for concrete parameter sets and determine the maximum
number players each of these parameter sets can sustain.

Due to the construction of the scheme there are two natural possible noise overload
points: Within the MKNGS scheme or within the MKLWE scheme after bootstrapping.
Practically, we show in Theorem 2 that the MKLWE noise always dominates. Using
the analysis and code provided by Ducas and Van Woerden, [Dv21], given the available
parameters (Q, σ2, the distribution of the MKNGS keys, and a desired security level
λ = 128) an adaptation of the analysis in [BIP+22] provides a host of parameter sets
which would be suitable, albeit not necessarily practical. Specifically, we were able to
find the maximum values of log Q for each of our selected values for N with 128 bits
of security. LWE parameters are set using the LWE Estimator, [APS15], to ensure that
the (q, n)-pairs achieve 128 bits of security without being susceptible to the attacks in
[ABD16, CJL16, Dv21]. Furthermore, as between key switching and modulus switching
the server has access to a MKLWE ciphertext using parameters n and Q, these are also
tested using the LWE estimator to ensure the same level of security.

Table 2 contains the tested possibilities for the selection of parameters along with the
maximal number of players each set can support. Additionally, for each parameter set we
computed the probability of a decryption error in each of the encryption schemes. In the
table we include the greatest rate of error and denote which protocol is the cause for these

Jeongeun Park, Barry van Leeuwen, Oliver Zajonc 23

Table 2: Noise and possible number of players for various sets of parameters

N Q n q ε kmax error rate
211 230 660 235 222 2 EMKLWE < 2−200

212 245 1210 251 224 4 EMKLWE < 2−200

213 267 2060 273 228 7 EMKLWE < 2−200

214 2100 3310 2107 229 11 EMKLWE < 2−200

215 2149 5160 2157 231 17 EMKLWE < 2−30

error rates - i.e. has the burden of limitation. For clarity, by ε we denote the LWE error
bound on a single ciphertext.

We can see that for all parameter sets q > Q and that the number of supported
participating players is ≥ 2, which is sufficient for most practical situations as a server
with no inputs is not counted as a player.

The size of our bootstrapping keys is N ·n · l · log2(q) bits of which there are k. Similarly,
the size of the key switching key is N · n · l · log2(q) · (k + 1) bits. By using our parameters,
as in the first line of 2 and setting k = 2, we can compare with the smallest parameter sets
of [KMS24] and [CCS19]. We note that the total size of the keys used in our work (212MB)
is similar to that of [KMS24] (215MB) and about double that of [CCS19] (84MB), however
we do provide 128 bit security where the predecessors only provide 110 bit security.

Where a significant gain is made compared to the state-of-the-art in MKFHE based
on TFHE, [KMS22, CCS19], and even multi-party homomorphic encryption based on
TFHE, [AKÖ23], is in the complexity. To see this let n be the dimension of the base
scheme (MKLWE) and N be that of the bootstrapping scheme (MKNGS). Moreover, let
l = logB(Q) for a decomposition base B and bootstrapping scheme modulus Q.

Note that each gadget decomposition requires l polynomial multiplications, hence the
claimed complexity of O(Nk + k2) and O(Nk2) gadget decompositions in [KMS24] and
[CCS19] respectively needs to be extended by l for good comparison. Compared to our
bootstrapping phase, which requires, respectively, O(nlk) and O(Nlk) to compute ΠBS
and ΠKS. Since N > n this results in a total complexity of O(Nlk). Note that this is
the optimal complexity, as is achieved in the version of MKFHE as presented in [AKÖ23],
however their protocol requires smaller parameters and their key switching is significantly
less costly due to the exploitation of communication between parties.

A significant factor in this is the generation of the key-switching keys that are used in
the bootstrapping protocol. The new construction allows the protocol to reuse these keys
throughout a computation, which means the generation of the key-switching keys can be
extracted from the protocol. Amortizing the 2k2l + 4kl polynomial multiplications over
the number of bootstraps reduces the complexity of key-switching key generation to O(1)
in all practical cases.

6 Conclusion
In this work, we showed that it is possible to obtain Multi-Key Fully Homomorphic En-
cryption construction based on the FINAL scheme, [BIP+22], while keeping the parameters
under the fatigue point, [Dv21]. In doing so, we provided a thorough analysis of the noise
growth in both Single-Key and Multi-Key FINAL and showed that our scheme reduces the
computational complexity to the optimal O(Nkl) polynomial multiplications. We achieved
this, among other things, by redefining how the Hybrid Product construction, [CCS19],
is used, which allows the cost of key switching key generation to be amortized over the

24 FINALLY: A Multi-Key FHE Scheme Based on NTRU and LWE

number of bootstraps.
Due to the advantages of NTRU-based ciphertext, the size of intermediate value during

homomorphic gate operation does not grow in the number of keys, our scheme gives up to
40% less smaller key size and computation time than LWE based MKFHE. Note that our
parameter sets are merely proof of concept and a closer analysis may reveal more nuanced
parameters which could result in significant increases in efficiency.

7 Acknowledgments
This work was supported by Cyber Security Research Flanders with reference number
VR20192203 and by the FWO under an Odysseus project GOH9718N. Any opinions,
findings and conclusions or recommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of Cyber Security Research Flanders or
the FWO.

References
[ABD16] Martin R. Albrecht, Shi Bai, and Léo Ducas. A subfield lattice attack on over-

stretched NTRU assumptions - cryptanalysis of some FHE and graded encoding
schemes. In Matthew Robshaw and Jonathan Katz, editors, CRYPTO 2016,
Part I, volume 9814 of LNCS, pages 153–178. Springer, Berlin, Heidelberg,
August 2016. doi:10.1007/978-3-662-53018-4_6.

[AH19] Asma Aloufi and Peizhao Hu. Collaborative homomorphic computation on
data encrypted under multiple keys, 2019. arXiv:1911.04101.

[AJL+12] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod
Vaikuntanathan, and Daniel Wichs. Multiparty computation with low com-
munication, computation and interaction via threshold FHE. In David
Pointcheval and Thomas Johansson, editors, EUROCRYPT 2012, volume
7237 of LNCS, pages 483–501. Springer, Berlin, Heidelberg, April 2012.
doi:10.1007/978-3-642-29011-4_29.

[AKÖ23] Yavuz Akin, Jakub Klemsa, and Melek Önen. A practical TFHE-based multi-
key homomorphic encryption with linear complexity and low noise growth. In
Gene Tsudik, Mauro Conti, Kaitai Liang, and Georgios Smaragdakis, editors,
ESORICS 2023, Part I, volume 14344 of LNCS, pages 3–23. Springer, Cham,
September 2023. doi:10.1007/978-3-031-50594-2_1.

[APS15] Martin R. Albrecht, Rachel Player, and Sam Scott. On the concrete hardness
of learning with errors. Journal of Mathematical Cryptology, 9(3):169–203,
2015. URL: https://doi.org/10.1515/jmc-2015-0016, doi:doi:10.151
5/jmc-2015-0016.

[BIP+22] Charlotte Bonte, Ilia Iliashenko, Jeongeun Park, Hilder V. L. Pereira, and
Nigel P. Smart. FINAL: Faster FHE instantiated with NTRU and LWE.
In Shweta Agrawal and Dongdai Lin, editors, ASIACRYPT 2022, Part II,
volume 13792 of LNCS, pages 188–215. Springer, Cham, December 2022.
doi:10.1007/978-3-031-22966-4_7.

[CCS19] Hao Chen, Ilaria Chillotti, and Yongsoo Song. Multi-key homomorphic en-
cryption from TFHE. In Steven D. Galbraith and Shiho Moriai, editors,
ASIACRYPT 2019, Part II, volume 11922 of LNCS, pages 446–472. Springer,
Cham, December 2019. doi:10.1007/978-3-030-34621-8_16.

https://doi.org/10.1007/978-3-662-53018-4_6
https://arxiv.org/abs/1911.04101
https://doi.org/10.1007/978-3-642-29011-4_29
https://doi.org/10.1007/978-3-031-50594-2_1
https://doi.org/10.1515/jmc-2015-0016
https://doi.org/doi:10.1515/jmc-2015-0016
https://doi.org/doi:10.1515/jmc-2015-0016
https://doi.org/10.1007/978-3-031-22966-4_7
https://doi.org/10.1007/978-3-030-34621-8_16

Jeongeun Park, Barry van Leeuwen, Oliver Zajonc 25

[CDKS19] Hao Chen, Wei Dai, Miran Kim, and Yongsoo Song. Efficient multi-key
homomorphic encryption with packed ciphertexts with application to oblivious
neural network inference. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, ACM CCS 2019, pages 395–412. ACM
Press, November 2019. doi:10.1145/3319535.3363207.

[CGGI20] Ilaria Chillotti, Nicolas Gama, Mariya Georgieva, and Malika Izabachène.
TFHE: Fast fully homomorphic encryption over the torus. Journal of Cryptol-
ogy, 33(1):34–91, January 2020. doi:10.1007/s00145-019-09319-x.

[CJL16] Jung Hee Cheon, Jinhyuck Jeong, and Changmin Lee. An algorithm for ntru
problems and cryptanalysis of the ggh multilinear map without a low-level
encoding of zero. LMS Journal of Computation and Mathematics, 19(A):255–
266, 2016. doi:10.1112/S1461157016000371.

[DM15] Léo Ducas and Daniele Micciancio. FHEW: Bootstrapping homomorphic
encryption in less than a second. In Elisabeth Oswald and Marc Fischlin, editors,
EUROCRYPT 2015, Part I, volume 9056 of LNCS, pages 617–640. Springer,
Berlin, Heidelberg, April 2015. doi:10.1007/978-3-662-46800-5_24.

[Dv21] Léo Ducas and Wessel P. J. van Woerden. NTRU fatigue: How stretched
is overstretched? In Mehdi Tibouchi and Huaxiong Wang, editors, ASI-
ACRYPT 2021, Part IV, volume 13093 of LNCS, pages 3–32. Springer, Cham,
December 2021. doi:10.1007/978-3-030-92068-5_1.

[GPV23] Antonio Guimarães, Hilder V. L. Pereira, and Barry Van Leeuwen. Amortized
bootstrapping revisited: Simpler, asymptotically-faster, implemented. In Jian
Guo and Ron Steinfeld, editors, ASIACRYPT 2023, Part VI, volume 14443 of
LNCS, pages 3–35. Springer, Singapore, December 2023. doi:10.1007/978-9
81-99-8736-8_1.

[KKL+23] Taechan Kim, Hyesun Kwak, Dongwon Lee, Jinyeong Seo, and Yongsoo Song.
Asymptotically faster multi-key homomorphic encryption from homomorphic
gadget decomposition. In Proceedings of the 2023 ACM SIGSAC Conference
on Computer and Communications Security, CCS ’23, page 726–740, New
York, NY, USA, 2023. Association for Computing Machinery. doi:10.1145/
3576915.3623176.

[KL23] Jiseung Kim and Changmin Lee. A polynomial time algorithm for breaking
NTRU encryption with multiple keys. DCC, 91(8):2779–2789, 2023. doi:
10.1007/s10623-023-01233-5.

[KLSW21] Hyesun Kwak, Dongwon Lee, Yongsoo Song, and Sameer Wagh. A unified
framework of homomorphic encryption for multiple parties with non-interactive
setup. Cryptology ePrint Archive, Paper 2021/1412, 2021. https://eprint
.iacr.org/2021/1412. URL: https://eprint.iacr.org/2021/1412.

[KMS22] Hyesun Kwak, Seonhong Min, and Yongsoo Song. Towards practical multi-key
TFHE: Parallelizable, key-compatible, quasi-linear complexity. Cryptology
ePrint Archive, Report 2022/1460, 2022. URL: https://eprint.iacr.org/
2022/1460.

[KMS24] Hyesun Kwak, Seonhong Min, and Yongsoo Song. Towards practical multi-key
TFHE: Parallelizable, key-compatible, quasi-linear complexity. In Qiang Tang
and Vanessa Teague, editors, PKC 2024, Part II, volume 14604 of LNCS, pages
354–385. Springer, Cham, April 2024. doi:10.1007/978-3-031-57728-4_12.

https://doi.org/10.1145/3319535.3363207
https://doi.org/10.1007/s00145-019-09319-x
https://doi.org/10.1112/S1461157016000371
https://doi.org/10.1007/978-3-662-46800-5_24
https://doi.org/10.1007/978-3-030-92068-5_1
https://doi.org/10.1007/978-981-99-8736-8_1
https://doi.org/10.1007/978-981-99-8736-8_1
https://doi.org/10.1145/3576915.3623176
https://doi.org/10.1145/3576915.3623176
https://doi.org/10.1007/s10623-023-01233-5
https://doi.org/10.1007/s10623-023-01233-5
https://eprint.iacr.org/2021/1412
https://eprint.iacr.org/2021/1412
https://eprint.iacr.org/2021/1412
https://eprint.iacr.org/2022/1460
https://eprint.iacr.org/2022/1460
https://doi.org/10.1007/978-3-031-57728-4_12

26 FINALLY: A Multi-Key FHE Scheme Based on NTRU and LWE

[LATV12] Adriana López-Alt, Eran Tromer, and Vinod Vaikuntanathan. On-the-fly
multiparty computation on the cloud via multikey fully homomorphic en-
cryption. In Proceedings of the Forty-Fourth Annual ACM Symposium on
Theory of Computing, STOC ’12, page 1219–1234, New York, NY, USA, 2012.
Association for Computing Machinery. doi:10.1145/2213977.2214086.

[LP19] Hyang-Sook Lee and Jeongeun Park. On the security of multikey homomorphic
encryption. In Martin Albrecht, editor, 17th IMA International Conference
on Cryptography and Coding, volume 11929 of LNCS, pages 236–251. Springer,
Cham, December 2019. doi:10.1007/978-3-030-35199-1_12.

[MS18] Daniele Micciancio and Jessica Sorrell. Ring packing and amortized FHEW
bootstrapping. In Ioannis Chatzigiannakis, Christos Kaklamanis, Dániel Marx,
and Donald Sannella, editors, ICALP 2018, volume 107 of LIPIcs, pages 100:1–
100:14. Schloss Dagstuhl, July 2018. doi:10.4230/LIPIcs.ICALP.2018.100.

[MW16] Pratyay Mukherjee and Daniel Wichs. Two round multiparty computation
via multi-key FHE. In Marc Fischlin and Jean-Sébastien Coron, editors,
EUROCRYPT 2016, Part II, volume 9666 of LNCS, pages 735–763. Springer,
Berlin, Heidelberg, May 2016. doi:10.1007/978-3-662-49896-5_26.

[Par21] Jeongeun Park. Homomorphic encryption for multiple users with less commu-
nications. IEEE Access, 9:135915–135926, 2021. doi:10.1109/ACCESS.2021.
3117029.

[PS16] Chris Peikert and Sina Shiehian. Multi-key FHE from LWE, revisited. In
Martin Hirt and Adam D. Smith, editors, TCC 2016-B, Part II, volume 9986
of LNCS, pages 217–238. Springer, Berlin, Heidelberg, October / November
2016. doi:10.1007/978-3-662-53644-5_9.

[XTW+23] Kexin Xu, Benjamin Hong Meng Tan, Li-Ping Wang, Khin Mi Mi Aung, and
Huaxiong Wang. Multi-key fully homomorphic encryption from ntru and (r)lwe
with faster bootstrapping. Theoretical Computer Science, 968:114026, 2023.
URL: https://www.sciencedirect.com/science/article/pii/S0304397
523003390, doi:10.1016/j.tcs.2023.114026.

https://doi.org/10.1145/2213977.2214086
https://doi.org/10.1007/978-3-030-35199-1_12
https://doi.org/10.4230/LIPIcs.ICALP.2018.100
https://doi.org/10.1007/978-3-662-49896-5_26
https://doi.org/10.1109/ACCESS.2021.3117029
https://doi.org/10.1109/ACCESS.2021.3117029
https://doi.org/10.1007/978-3-662-53644-5_9
https://www.sciencedirect.com/science/article/pii/S0304397523003390
https://www.sciencedirect.com/science/article/pii/S0304397523003390
https://doi.org/10.1016/j.tcs.2023.114026

	Introduction
	Our contributions
	Concurrent work

	Preliminaries
	Notation
	Distributions
	NTRU Problems
	Gadget Decomposition
	Single Key NGS

	Multi-key Homomorphic Encryption
	Multi-key LWE
	Multi-key NGS-scheme
	Key Switching
	Hybrid Product
	Modulus Switching

	Bootstrapping
	Generating Bootstrapping Keys
	Adopting the Binary CMux
	Applying the CMux Gate
	Switching back to LWE
	Bootstrapping Noise
	Heuristics

	Analysis on the maximum supported players with concrete parameters
	Conclusion
	Acknowledgments
	References

