
Publicly verifiable anonymous tokens
with private metadata bit

Fabrice Benhamouda1, Tancrède Lepoint2, Michele Orrù3, and Mariana Raykova4

1 Algorand Foundation fabrice.benhamouda@gmail.com
2 Independent researcher, crypto@tancre.de
3 UC Berkeley, michele.orru@berkeley.edu

4 Google, marianar@google.com
5

Abstract. We present a new construction for publicly verifiable anonymous tokens with private meta-
data. This primitive enables an issuer to generate an anonymous authentication token for a user while
embedding a single private metadata bit. The token can be publicly verified, while the value of the
private metadata is only accessible to the party holding the secret issuing key and remains hidden to
any other party, even to the user. The security properties of this primitive also include unforgeability,
which guarantees that only the user can generate new valid tokens, and unlinkability that guarantees
that tokens issued with the same private metadata bit are indistinguishable. Our anonymous tokens
scheme builds on the top of blind Schnorr signatures. We analyze its security in the algebraic group
model and prove its security under the modified ROS assumption, one-more discrete logarithm, and
decisional Diffie-Hellman assumptions.

1 Introduction

The use of user identity on the Internet has two different connotations when viewed through the lenses
of privacy and security. On the one hand, users should have the right to remain anonymous and still be
able to access and use many sites and services on the Internet. On the other hand, authenticating user
identity is a major tool for fraud protection that relies on trust bestowed upon users based on their long-
term behavior in the ecosystem. This creates a seeming tension between scenarios where we want to both
protect the user privacy and at the same time maintain important trust signals used for fraud detection.
Anonymous credentials [Cha82, CL01] provide a mechanism to reconcile this tension enabling a trusted
issuer to generate a credential that carries only a limited amount of trust signals about a user but does
not reveal the user identity. Many settings facing the need of anonymous authentication need to support
large volumes of traffic and thus the agility and efficiency of the authentication solution become crucial.
That is why simple one-time use authentication tokens often become the tool of choice in such settings.
For example, Privacy Pass [DGS+18] is an anonymous token based on verifiable oblivious pseudorandom
function (VOPRF) that has been used by Cloudflare to gate access to content delivery networks (CDNs).
Chrome has recently released an API for origin trial [Chr19] which provides an extended functionality where
the anonymous token also carries an additional private metadata bit. This API aims to provide a tool that
can recover trust signals in a privacy-preserving manner in a world without third party cookies while still
preventing spam learning. In particular, trust tokens can be issued to users when they are in first party
context, i.e., users are logged in, and when the issuer has richer information about the users to make trust
determination. Consequently users can redeem these tokens when visiting different sites or services without
being logged in and can prove this way that they are trustworthy while preserving their anonymity.

Both of the above examples rely on tokens that have secret key verification. Such functionality suffices in
settings where the issuer and the verifier are the same party. Having one central verifier facilitates detection
of double spending where the same single-use token is presented multiple times for authentication. However,
restricting the verification to a single designated verifier comes with limitations for large heterogeneous
systems where many parties could benefit from the ability to verify user identity, but not every party can

afford to set up a token issuing authority or has sufficient first party context from which to derive trust
signal for users.

Anonymous tokens that provide public verifiability could open the doors for supporting such broader
systems, where multiple verifiers can rely on a single authority. The approaches to double spending fraud
detection in such systems still need to rely on centralized mechanisms provided by the issuing authority which
often will not be real time. To facilitate such functionality, it is beneficial to enable the issuing authority to
embed limited trust signals in the tokens that can be used in the fraud detection mechanisms. These trust
signals should not be available to the adversary, in order to prevent it from adapting its behavior based on
the change of this trust signal. This can be achieved by introducing the notion private metadata for the
publicly verifiable tokens, which is data that the issuer can embed at token issuance and later read it off
the anonymous token. But this metadata remains hidden from any other party including the user to which
the token was issued. The interest in constructions of anonymous tokens with the above properties has been
highlighted in an issue filed with the RFC draft of the IETF Privacy Pass Working Group [Gro20].

1.1 Contributions

In this paper, we present a public verifiability token scheme with private metadata bit. This functionality
enables an issuer to issue a trust token to a client while attaching one additional bit of metadata. The
public verifiability enables anyone to verify the validity of the token. The private metadata bit is accessible
only to the issuer. Our construction provides unforgeability, which guarantees that only the holder of the
secret key can generate valid tokens. It also has an unlinkability property which prevents linking tokens to
user identity. In the context of the private metadata, this property guarantees tokens issued to the same or
different users with the same private metadata bit are indistinguishable. Finally, the construction has privacy
for the metadata, which guarantees that the value of the private metadata bit remains hidden to any party
that does not have the issuing secret key including the client to whom the token was issued.

We present two constructions: a basic one and a “clause” version. For both constructions, security is
proven in the random oracle and the algebraic group model. The algebraic group model [BV98, PV05]
(AGM) restricts adversaries to be algebraic, that is: every time the adversary output a group element,
it must also output a representation of the element as a linear combination of the previously seen group
elements. The algebraic group model has been studied as an independent notion in [FKL18].

Both our constructions assume the hardness of the Decisional Diffie-Hellman assumption (DDH) and of
the One-More Discrete Logarithm assumption (OMDL). In addition, to prove unforgeability (that is, the
inability for a user to create tokens with invalid metadata bits or create more tokens than the number of
interactions with the issuer), our basic construction relies on the regular ROS (Random inhomogeneities in
a Overdetermined Solvable system of linear equations) assumption [Sch01a, FPS20], while our clause version
relies on the modified ROS assumption [FPS20].

Recent works by Wagner [Wag02] and Benhamouda et al. [BLL+21] show subexponential-time and
polynomial-time attacks against the regular ROS assumption. This makes our basic construction insecure in
most practical settings. As such, we see our basic construction as a stepping stone to better understand our
clause version that rely on the modified ROS assumption for which no such attacks are known.

1.2 Overview

In this section, we overview the main technical ideas of our construction and put them on context of other
related constructions.

A classical example of publicly verifiable unlinkable tokens are blind signatures [Cha82, CP93, Oka93,
PS00, Sch01b, Sch06, FPS20, FHS15, Bol03], which on their own provide unlinkability and unforgeability
but do not allow the signer to embed any private metadata. There are constructions such as partially blind
signatures [Fis06, SC12, BPV12] which enable the signer to contribute part of the signed message and this
can be considered as public metadata, but these constructions cannot provide privacy for the metadata. The
anonymous tokens construction of Kreuter et al. [KLOR20] provides the private metadata bit property and
unlinkability but works in the secret key setting for verification. This construction together with the Blind

2

Schnorr signatures in the algebraic group model of Fuchsbauer et al. [FPS20] will be the starting points for
our publicly verifiable tokens with private metadata bit.

Secret key anonymous tokens [KLOR20] extend the idea of using verifiable oblivious pseudorandom
functions (VOPRFs) as anonymous credentials of Privacy Pass [DGS+18]. Privacy Pass uses a cyclic group
G of prime order p. (We use the additive notation for cyclic groups in this paper.) The Privacy Pass tokens
are of the form (t, xH(t)) where t is sampled at random, H is a hash function outputting group elements
and modeled as a random oracle, and x is a secret key. The issuance of the anonymous token leverages the
oblivious evaluation of the PRF xH(t) where the client provides rH(t) and obtains back xrH(t) together with
a discrete log equality (DLEQ) proof that the key x used in the evaluation is the same as the one committed
in a public parameter X = xG. The idea of Kreuter et al. [KLOR20] for adding metadata bit is to use two
sets of parameters x0, x1 where tokens issued with xb carry private metadata bit b. The verifiability property
for the client is achieved by extending the DLEQ proof to an OR proof of discrete log equalities [CDS94]
which enables the issuer to prove that the token is issued with one of the two committed keys without
revealing which one. In order to achieve privacy of the metadata bit when the same value t is used twice,
this idea is further extended with additional rerandomization on the issuer side.

Blind Schnorr signatures provide a way for the client to blind the message that the issuer signs in a
discrete-log based signature in a way that the client can derive the correct signature only for the initially
blinded message. The starting point is a discrete-log signature scheme, where given a public parameter
X = xG the signature of a message m is of the form (K, r) where K = kG for a randomly chosen k and
r = k + He(K,m)x and the verification checks that rG = K + He(R,m)X where He : G × {0, 1}∗ → Zp
is a hash function modeled as a random oracle. The idea of the blind signature scheme is to have the
client compute a rerandomized version K ′ = K + αG + βX of K that is sent to the issuer together with a
rerandomized version of the challenge e = He(K

′,m) + β. At that point the signer can produce a signature
using the blinded values computing r = k + ex. Subsequently the client verifies the signature (K, r) (i.e.,
verifies that rG = K + eX). If the verification passes, the client computes an unblinded signature (K ′, r′)
setting r′ = r + α. The verification for the final signature holds since r′G = rG+ αG = (k + ex)G+ αG =
rG+H(K ′,m)xG+ βxG+ αG = K ′ +H(K ′,m)X.

The idea of our public key token construction with private metadata is to apply the idea from the
secret key construction above of having two sets of parameters to enable the private metadata bit, to the
blind Schnorr signature construction. However, since in the public verifiability setting anyone can verify
the correctness of the token we cannot use only one of the set of parameters for each token. Instead our
construction will effectively be issuing two publicly verifiable tokens that verify and we will be embedding
the private metadata bit in a way that only the issuer can recover it. To expand, for each token issuance,
we will be deriving a new pair of public key parameters for the Schnorr blind signatures, where one of them
will be “valid” and the other will be “invalid” depending on the private metadata bit. Only the valid one of
these two sets of public parameters will correspond to the secret key xb where b is the value of the private
metadata bit. The final token will consist of two verifiable tokens under the two sets of parameters. The
private metadata bit will be readable by identifying which public parameters are valid, which can be done
only by the issuer.

In the Schnorr blind signature scheme, the proof of correct issuance is achieved with a sigma protocol.
The issuer will be able to give such a proof only for the signature under the valid set of parameters. That
is why the issuer will use an OR-proof of sigma protocols for the two parallel executions to generate two
verifiable blind signatures under the two sets of parameters. Public keys or parameters of classical Schnorr
signatures just consist in a single group element X and hence are always valid. In order to allow for both valid
and invalid public parameters, we use ideas from the Diffie-Hellman signatures of Katz and Wang [KW03]
which have as a public key a vector pk := (X = xG, Y = xH) and effectively run two discrete-log signatures
in parallel using the two elements in the public key and the same challenge. In particular the signature is of
the form (K,C, s) where K = kG, C = kH for a random k, and r = k + H(pk,K,C,m)x. The verification
check that rG = K +H(pk,K,C,m)X and sH = C +H(PK,K,C,m)Y . Note that only a public key that
is a DDH tuple is a valid public key for this scheme. An invalid key will be a pair of random elements.

3

We can turn the above DH signature into a blind signature, following the same technique behind Blind
Schnorr signatures. However, this so far has not achieved our goal to restrict the issuer’s capability to be
able to embed only one hidden bit value, i.e., we want to guarantee that for each token execution the issuer
can create at most one set of valid public parameters for the DH signatures. We achieve this as follows:
our token scheme will have a public key X0 = x0G, X1 = x1G and a secret signing key (x0, x1). During
signing the issuer generates Y = xbHb where H0, H1 are generated by a random oracle, and b is the private
metadata bit for the signature. The issuer uses (X0, Y) and (X1, Y) as public parameters for the two parallel
signatures that it will be issuing. In the same way of a OR sigma protocol, the signer can honestly sign
only using (Xb, Y), and must simulate the proof under key (X1−b, Y). Thus, for its first message the issuer
will generate honestly [Kb;Cb] = [kbG; kbHb] with kb being sampled at random and will simulate the values
[K1−b;C1−b] as follows: K1−b

C1−b

 := r1−b

 G

H1−b

+ e1−b

X1−b

Y

,
where r1−b and e1−b are random.

Next, we need to adapt the ideas from the blind Schnorr signatures in order for the client to rerandomize
the commitments [K0, C0] and [K1, C1] and create the challenge for the issuer. The client does that by
computing K ′i

C ′i

 =

Ki

ρCi

+ αi ·

 G

ρHi

+ βi ·

Xi

ρY

 ,
for i = 0, 1 where ρ, α0, α1, β0, β1←$Zp. Consequently the client also computes the challenge as e :=
H(ρY, ρH0, ρH1,K

′
0,K

′
1, C

′
0, C

′
1,m)− β0 − β1.

The issuer provides two verifying DH signatures for m with public parameters (X0, Y) and (X1, Y) as
follows: it sets eb = e− e1−b and rb = kb − ebxb. The client verifiesKi

Ci

 = ri ·

G
Hi

+ ei ·

Xi

Y

 ,
for i = 0, 1 and e = e0 + e1, and if these hold outputs a signature (H ′0 = ρH0, H

′
1 = ρH1, Y

′ = ρY, (ei +
βi, ri + αi)i=0,1).

The public key verification of a signature (H ′0, H
′
1, Y

′, (ei + βi, ri +αi)i=0,1) of a message m in the above
scheme consists in computing: K̄i

C̄i

 := r′i ·

G
H ′i

+ e′i ·

Xi

Y ′

 ,
and checking that e0 + e1 = H(Y ′, K̄0, K̄1, C̄0, C̄1,m).

Finally, the issuer can read the private metadata bit associated with a signature (H ′0, H
′
1, Y

′, (ei+βi, ri+
αi)i=0,1) testing for the bit b such that Y ′ = xbH

′
b. If the equation does not hold for either value of b (or, it

holds for both), then it returns ⊥.

The clause version. Achieving unforgeability in the above construction similarly to the Blind Schnorr
signatures scheme can be proven assuming the hardness of the ROS (Random inhomogeneities in a Overde-
termined Solvable system of linear equations) problem [Sch01a, FPS20] in the algebraic group model (AGM).
Recent works of Wagner [Wag02] and Benhamouda et al. [BLL+21] showed subexponential-time algorithms
solving the ROS problem for any dimension and a polynomial-time algorithm when the dimension is logarith-
mic in the domain size of the elements. Thus we extend the above construction into a “clause” construction
using techniques introduced by Fuchsbauer et al. [FPS20], which achieves unforgeability under a potentially
harder assumption, the modified ROS assumption [FPS20]. Current attack techniques [Wag02, BLL+21] do

4

not apply to modified ROS and Fuchsbauer et al. [FPS20] provide evidence that the hardness of this problem
is different in some significant ways from the hardness of the regular ROS assumption.

The ROS problem, parameterized by an integer `, asks an adversary to find `+ 1 vectors ρρρi = (ρi,j)j∈[`]

such that the system of `+1 equations
∑`
j=1 ρi,jxj = HROS(ρρρi) over ` variables x1, . . . , x` in Zp has a solution,

where HROS : (Zp)` → Zp is a random oracle. The modified ROS assumption differs from the regular ROS
assumption as follows: the adversary needs to come up with a pair of vectors ρki = (ρki,j)j∈[`], k = 0, 1 and the

linear system of equations that needs to be satisfied is
∑`
j=1 ρ

bj
i,jxj,bj = HROS(ρρρ0

i , ρρρ
1
i) where bj is the output

of a random oracle Select(j, xj,0, xj,1). There is also an additional requirement for the adversary’s success

which is that ρ
1−bj
i = 0 for all i ∈ [`+ 1], j ∈ [`].

The idea for our clause construction is a natural generalization similar to the modified ROS extension of
the base ROS problem: there will be two sets of parameters of the public verifiability construction with private
metadata described above. During token issuance the issuer and the client will be running two executions in
parallel of the blind signing using the two sets of parameters and in its last message the issuer will choose
and complete only one of the executions.

Security intuition. The unforgeability property of our construction is proven in the AGM model under
the modified ROS assumption. An unforgeability adversary can succeed in three main ways: generating a
valid token that allows reading both possible values of the private metadata bit or a token from which no
private metadata value can be read, or generating `+1 valid tokens that have a private metadata bit b while
the adversary has been issued less than ` tokens with this bit.

The first type of misbehavior is ruled out in the AGM model by showing that if the adversary manages to
generates non-zero group elements H0, H1, and Y = x0H0 = x1H1, then in the algebraic representation of Y ,
under the one-more discrete log (OMDL) assumption, there must be a multiple of x0x1, which is impossible.
An adversary producing a valid token with no private metadata bit can be used to generate a forgery OR
proof for knowledge of one of two discrete logs since the token verifies and yet Y 6= x0H0 and Y 6= x1H1.
The analysis of the remaining case when the adversary generates more valid signatures with the same private
metadata bit than what it queried for, uses the AGM model to derive a sequence of linear equations from
the verification equation for each valid signature, which induce a system of linear equations modulo p. If the
system has a solution, its solution allows to build an adversary for the modified ROS assumption. Otherwise,
if the linear system does not have a solution, we can reduce security to the OMDL assumption: the reduction
uses the discrete logarithm oracle from OMDL to simulate the responses to token queries and uses the system
of equations from the verification of the ` + 1 tokens to extract another discrete logarithm with respect to
the scheme secret key.

For the unlinkability property of the construction we provide a new definition that reflects the presence
of the private metadata which provides one bit of information to the issuer. The goal of this definition is to
capture the intuition that the issuer cannot distinguish any two tokens issued with same private metadata
bit (hence any other party cannot distinguish any two tokens). The definition uses a security game where
the adversary is given oracle access to the user algorithms and can run as many sessions as it wants. It
also can request the final unblinded tokens in any execution. Finally the adversary has access to a challenge
oracle where it provides two execution session indices that use the same private metadata bit and for which
it has not requested the issued tokens, and the challenger returns the tokens for those sessions in a random
order (but using the same order across all oracle calls). The goal of the adversary is to guess the order
bit used by the challenge oracle. The unlinkability argument observes that the only part of the client’s
computation that depends on the first messages received from the issuer is the hash for the challenge. Using
the programmability of the random oracle model used for the hash, we can eliminate this dependence and
thus make the outputs of tokens generated with the same private metadata bit indistinguishable.

To prove the private metadata property of our scheme we leverage the AGM model and the programmable
random oracle to construct tokens where both metadata bit values are set and the proofs of both sigma
protocols are simulated. We show that such tokens are computationally indistinguishable from honest tokens

5

where either of the private metadata bit values is set, which demonstrates the indistinguishability of tokens
with different metadata bit values.

Related work. The notion of single use anonymous tokens dates back to the work of Chaum [Cha82]
introducing the concept of blind signatures, which has been widely used as a tool for building anonymous
credentials. The security of that construction has been analyzed in different models by several follow-up
works [CP93, Oka93, PS00, Sch01b, Sch06, FPS20]. Constructions of partially blind signatures [Fis06, SC12,
BPV12] start to enable functionality that allows the issuer to embed some additional public information to the
signed message. The work of Baldimtsi et al. [BL13] presents a blind signature construction with attributes
where the user can provide a zero-knowledge proof for possession of certain attributes and the issuer can
include a re-randomized version of the committed attributes in the signature. Tsang et al. [TAKS07] present
a construction for blacklistable anonymous credentials using bilinear maps, where the issuer defines a list
of blocked users and during issuance the user obtains an authentication token only if she is not on the list;
hence she finds out whether she has been added to the list.

Anonymous tokens constructions exist also in the secret key setting. Abdalla et al. [ANN06] introduced
a secret key analog to blind signatures, which is called blind message authentication codes (MACs). They
showed that this notion can exist only assuming a commitment of the private key, and showed how to
instantiate that primitive with Chaum’s blind signatures [Cha82]. Davidson et al. [DGS+18] introduced the
notion of an anonymous token called Privacy Pass, which has a similar private key functionality that uses
verifiable oblivious pseudorandom functions (VOPRFs) [JKK14]. A recent paper of Kreuter et al. [KLOR20]
presents secret key anonymous tokens that additionally allow the issuer to embed a private metadata bit in
each token that remains hidden to the user and any other party that does not have the secret key.

1.3 Roadmap

After some preliminaries in Section 2, we define anonymous tokens with private metadata bit and public
verification in Section 3. We show our basic construction in Section 4 and prove its security. This construction
relies on the ROS assumption and hence is not secure. Finally, in Section 5, we describe its clause version
and proves its security in the AGM and random oracle model under the DDH, the OMDL, and the modified
ROS assumption.

2 Preliminaries

2.1 Notation

For an integer n, we denote with [n] the integer interval {0, . . . , n− 1}. We denote vectors in bold: for a
vector a, we denote with ai its i-th element. A function µ : N→ [0, 1] is negligible (denoted µ = negl) if for
all c ∈ N there exists λc ∈ N such that µ(λ) ≤ λ−c for all λ ≥ λc. When sampling the value x uniformly at
random from the set S, we write x←$S. When sampling the value x from the probabilistic algorithm M, we
write x← M. We use := to denote assignment.

We assume the existence of a group generator algorithm GrGen(1λ) that, given as input the security
parameter in unary form outputs the description Γ = (G, p,G) of a group G of prime order p. For simplicity,
we will assume that the prime p is of length λ. We employ additive notation for groups.

2.2 Assumptions

The ROS problem. Let p be a prime number and HROS a random oracle with range in Zp. The ROS
(Random inhomogeneities in a Overdetermined Solvable system of linear equations) problem [Sch01a, FPS20]
for ` dimensions, displayed in Figure 1, asks to find ` + 1 vectors ρρρi = (ρi,j)j∈[`] (for i ∈ [` + 1]), and ` + 1

6

Game ROSPgen,A,`(λ)

p← Pgen(1λ)

T := [](
(ρρρi, auxi)i∈[`+1], (cj)j∈[`]

)
← AHROS (p)

return
(
∀i 6= j ∈ [`+ 1], (ρρρi, auxi) 6= (ρρρj , auxj)

∧ ∀i ∈ [`+ 1],
∑
j∈[`] cjρi,j = HROS(ρρρi, auxi)

)

Oracle HROS(ρρρ, aux)

if T[ρρρ, aux] =⊥ then

T[ρρρ, aux]←$Zp
return T[ρρρ, aux]

Fig. 1. The ROSPgen,A,`(λ) game.

Game mROSPgen,A,`(λ)

p← Pgen(1λ)

T := []

(ρρρi,0, ρρρi,1, auxi)i∈[`+1] ← AHROS (p)

return
(
∀i 6= j ∈ [`+ 1], (ρρρi, auxi) 6= (ρρρj , auxj)

∧ ∀i ∈ [`+ 1],
∑
j∈[`] cjρi,bj ,j = HROS(ρρρi, auxi)

∧ ∀i ∈ [`+ 1], ∀j ∈ [`], ρi,1−bj ,j = 0
)

Oracle HROS(ρρρ0, ρρρ1, aux)

if T[ρρρ0, ρρρ1, aux] =⊥ then

T[ρρρ0, ρρρ1, aux]←$Zp
return T[ρρρ0, ρρρ1, aux]

Oracle Select(j, c′0, c
′
1)

// Must be queried once ∀j ∈ [`]

bj ←$ {0, 1}; cj := c′bj
return bj

Fig. 2. The mROSPgen,A,`(λ) game.

bit strings auxi ∈ {0, 1}∗ (for i ∈ [`+ 1]), as well as a vector c = (cj)j∈[`] such that:

HROS(ρρρi, auxi) =
∑
j∈[`]

cjρi,j for all i ∈ [`+ 1].

Formally, we define ROS using the game ROSPgen,A,`(λ) in Fig. 1.

Definition 1. Let Pgen be a prime-number generator. The ROS problem in dimension ` is hard for Pgen
if for all PPT adversaries:

Advros
Pgen,A,`(λ) := Pr

[
ROSPgen,A,`(λ) = 1

]
= negl(λ) .

The modified ROS problem. The modified ROS problem was introduced in [FPS20]. We refer to that
paper for intuition for its hardness compared to ROS problem. In short, the ROS problem requires the
adversary to query the hash oracle with two vectors ρρρi,0 and ρρρi,1 instead of just one ρρρi. The vector c is
selected by the adversary querying a second oracle Select(j, cj,0, cj,1) for each index j ∈ [`]. This oracle
picks a random bit bj ←$ {0, 1} and sets cj := cj,bj . Note that if there was no other constraint on the
solution, modified ROS would actually not be harder than ROS as an adversary could just query HROS with
ρρρi,0 = ρρρi,1 = ρρρi, and then make Select queries with cj,0 = cj,1 = cj . What makes modified ROS problem
potentially harder is that the solution is required to be such that ρi,1−bj ,j = 0 for all j ∈ [`]. In other words,
the non-selected components of ρρρi,b are required to be zero.

Formally, we define modified ROS using the game mROSPgen,A,`(λ) in Fig. 2.

Definition 2. Let Pgen be a prime-number generator. The modified ROS problem in dimension ` is hard
for GrGen if for all PPT adversaries:

Advmros
Pgen,A,`(λ) := Pr

[
mROSPgen,A,`(λ) = 1

]
= negl(λ) .

7

Game OMDLGrGen,A,`(λ)

(G, p,G)← GrGen(1λ)

x←$Z`+1
p ; i := 0; q := 0

y← ATarget,Help(p)

return y = x

Oracle Target()

i := i+ 1

if i > `+ 1 then return ⊥
return xi−1G

Oracle Help(X)

q := q + 1

if q > ` then return ⊥
return Dlog(X)

Fig. 3. The OMDLGrGen,A,`(λ) game.

OMDL. The one-more discrete logarithm assumption (OMDL) problem [BNPS03], displayed in Fig. 3,
asks a PPT adversary A to compute the DL of ` + 1 challenges, with the help of a Dlog oracle (denoted
Help) that returns the discrete log of up to ` challenges.

Definition 3. Let GrGen be a group generator. The one-more discrete logarithm problem with `+1 challenges
is hard for GrGen if for all PPT adversaries:

Advomdl
GrGen,A,`(λ) := Pr

[
OMDLGrGen,A,`(λ) = 1

]
= negl(λ) .

DDH. We recall the Decisional Diffie-Hellman problem [DH76], which given group parameters (G, p,G)←
GrGen(1λ) asks an adversary to distinguish a DDH tuple (xG, yG, xyG) ∈ G3 (game DDH0

GrGen,A(λ)) from a

uniformly random tuple in G3 (game DDH1
GrGen,A(λ)).

Definition 4. Let GrGen be a group generator. The DDH problem is hard for GrGen if for all PPT adver-
saries:

Advddh
GrGen,A(λ) :=

∣∣Pr
[
DDH0

GrGen,A(λ) = 1
]
− Pr

[
DDH1

GrGen,A(λ) = 1
]∣∣ ≤ negl(λ) .

Algebraic group model. Most of our proofs will be in the so-called algebraic group model [BV98, PV05,
FKL18]. In this model, we consider only algebraic adversaries Aalg that, for any output group element Z,
also output a vector χχχ that expresses Z as a linear combination of all previously received group elements.
If so far Aalg has received G,X1, . . . , X` from the challenger, and it outputs a group element Z ∈ G, then

we write Z[χχχ] to explicit also the coefficients χχχ of the linear combination, where χ0G+
∑`
i=1 χiXi = Z. We

abuse notation and often write χχχ as a polynomial χχχ = χ0 +
∑`
i=1 χix̄i ∈ Zp[x̄1, . . . , x̄`]. The bar over x̄i is to

differentiate the indeterminate x̄i of the polynomials from the actual discrete logarithms xi ∈ Zp of Xi ∈ G
(i.e., Xi = xiG).

3 Anonymous Tokens

Anonymous tokens are single-use anonymous credentials that can be used for privacy-preserving ad-metrics
and audience measurements. In this section, we describe the functionality that they provide, and describe
the security properties that they should guarantee.

3.1 Public-key anonymous tokens

An anonymous token AT with private metadata bit AT consists of the following algorithms:

– (crs, td) ← AT.Setup(1λ), the setup algorithm that takes as input the security parameter λ in unary
form, and returns a CRS crs and a trapdoor td.
All the remaining algorithms take crs as their first input, but for notational clarity, we usually omit it
from their lists of arguments.

– (pp, sk)← AT.KeyGen(crs), the key generation algorithm that generates a private key sk along with a set
of public parameters pp;

8

– σ ← 〈AT.Usr(pp, t),AT.Sign(sk, b)〉, the token issuance protocol (aka signing protocol), that involves
interactive algorithms AT.Usr (run by the user) with input a tag t ∈ {0, 1}∗, and AT.Sign (run by the
issuer) with input the private key sk and a private metadata bit b. At the end of the interaction, the
issuer outputs nothing, while the user outputs σ, or ⊥.

– bool ← AT.Ver(pp, t, σ), the verification algorithm that takes as input the public parameters pp and a
token (t, σ). It returns a boolean indicating if the token is valid or not.

– ind← AT.ReadBit(sk, t, σ), the metadata extraction algorithm that takes as input the private key sk, and
a token (t, σ). It returns an indicator ind ∈ {⊥, 0, 1}, which is either the private metadata bit, or ⊥.

Throughout the rest of this paper, we assume that AT has a two-round signing protocol initiated by
the server. Thus, for simplicity, we split the signing algorithms (AT.Sign and AT.Usr) into non-interactive
algorithms that take as input a message, and the partial state (if any). They will return the next message
together with the updated state sti. Concretely, the signing protocol will be composed of the following
(non-interactive) algorithms:

– (respS , stS)← AT.Sign0(sk, b);
– (respU , stU)← AT.Usr0(pp, t, respU);
– respS ← AT.Sign1(stS , respU);
– σ ← AT.Usr1(stU , respS)

Definition 5 (Correctness). An anonymous token scheme AT is correct if ∀t ∈ {0, 1}∗, b ∈ {0, 1}, (crs, td) ∈
[AT.Setup(1λ)], (pp, sk) ∈ [AT.KeyGen(crs)] :

Pr[AT.Ver(pp, t, 〈AT.Usr(pp, t),AT.Sign(sk, b)〉)] > 1− negl(λ) , (1)

Pr[AT.ReadBit(sk, t, 〈AT.Usr(pp, t),AT.Sign(sk, b)〉) = b] > 1− negl(λ) . (2)

In addition to correctness an anonymous token scheme satisfies the following security properties: unforge-
ability, unlinkability, and privacy of the metadata bit.

3.2 Unforgeability

The first security property that we want from an anonymous token is unforgeability, which guarantees that
a party that does not have the secret key cannot generate more valid anonymous tokens than issued. In
particular an adversary who obtains ` valid tokens for each private metadata bit should not be able to
generate `+ 1 valid tokens for the same private metadata bit. To rule out trivial attacks, all `+ 1 tags must
be different. Furthermore, an adversary should not be able to generate a token for which no private metadata
bit can be extracted. (This latter case is captured by the winning condition s0 + s1 6= m in Fig. 4). Note
that generating a token from which both possible metadata bits can be read is already captured as forgery
by the definition.

Definition 6 (One-more unforgeability). An anonymous token scheme AT is one-more unforgeable, if
for any PPT adversary A and any ` > 0:

Advomuf
AT,A,`(λ) := Pr

[
OMUFAT,A,`(λ) = 1

]
< negl(λ) ,

where OMUFAT,A,`(λ) is described in Figure 4.

3.3 Unlinkability

The next security property is concerned with the user’s anonymity and guarantees that an issuer cannot link
a token to a particular execution of the signing protocol. More precisely, if the user and the server executed
the signing protocol m times and later the issuer is given a valid token, we limit the probability that it can
guess for which execution this token was coming.

We allow the adversary to choose arbitrarily the public parameters pp and do not require they are
generated honestly, which makes the definition stronger.

9

Game OMUFAT,A,`(λ)

(crs, td)← AT.Setup(1λ)

(pp, sk)← AT.KeyGen(crs)

k, q0, q1, s0, s1 := 0

(ti, σi)i∈[m] ← ASign0,Sign1,Read(crs, pp)

for i ∈ [m] :

if (b := AT.ReadBit(sk, ti, σi)) 6=⊥ then

sb := sb + 1

return
(
∀b = 0, 1, qb ≤ ` and

∀i 6= j ∈ [m], ti 6= tj and

∀i ∈ [m], AT.Ver(pp, ti, σi) = true and

(s0 + s1 6= m or s0 > ` or s1 > `)
)

Oracle Read(t, σ)

return AT.ReadBit(sk, t, σ)

Oracle Sign0(bk)

(resp, stk)← AT.Sign0(sk, bk)

sessk := open

k := k + 1 // session id

return (k, resp)

Oracle Sign1(j,msg)

if sessj 6= open then

return ⊥
// (bj , stj) are priv. bit

// and state of the j-th session.

resp← AT.Sign1(stj ,msg)

if (resp =⊥) then return ⊥
qbj := qbj + 1; sessj := closed

return resp

Fig. 4. One-more unforgeability game for the anonymous token scheme AT.

Definition 7 (Unlinkability). An anonymous token scheme AT is unlinkable, if for any ` > 0 and any
PPT adversary A there exists an extractor Ext:

Advunlink
AT,A,`(λ) :=

∣∣Pr
[
UNLINK0

AT,A,`(λ) = 1
]
− Pr

[
UNLINK1

AT,A,`(λ) = 1
] ∣∣ = negl(λ) ,

where UNLINKβ
AT,A,`(λ) is defined in Figure 5.

Remark 1. We note that in the security experiment UNLINKAT,A,`(λ) selects the message for the user uni-
formly at random. This is inherited by previous formalizations for anonymous tokens [DGS+18, KLOR20]
and reported in the same way for uniformity. We note, however, that in the proof for Theorem 3 this is never
formally required.

3.4 Private metadata bit

The last security property that we define concerns guarantees that the user to whom a token was issued, or
any other party, cannot learn any information about the private metadata bit associated with that token.
Intuitively, our definition guarantees that an adversary who can obtain tokens for arbitrary tags and metadata
bits, and an arbitrary number of tokens for messages with the fixed challenge bit, cannot guess the challenge
bit with a probability non-negligibly better than 1/2.

Definition 8 (Private metadata bit). An anonymous token scheme AT provides private metadata bit
if for all adversary A ∈ PPT:

Advpmb
AT,A(λ) :=

∣∣Pr
[
PMB0

AT,A(λ) = 1
]
− Pr

[
PMB1

AT,A(λ) = 1
]∣∣ < negl(λ) ,

where PMBβAT,A(λ) is illustrated in Figure 6.

In the formalization of the game, the adversary interacts with the issuer in up to m sessions, in two
phases. In the first phase, the adversary also has access to a AT.ReadBit oracle. Then, in the second phase,
the adversary loses access to the AT.ReadBit oracle and instead gets access to a challenge oracle that simulates
the issuer with a random bit β. The goal of the adversary is to guess β.

10

Game UNLINKβ
AT,A,Ext,`(λ)

(crs, td)← AT.Setup(1λ)

for i ∈ [`] : sessi := init

(pp, st)← A(crs)

β′ ← AUser0,User1,Get,Chal(st)

return β′

Oracle Get(i)

if sessi 6= closed then return ⊥
sessi := used

return (ti, σi)

Oracle Chal(i0, i1)

if sessi0 6= closed or sessi1 6= closed then return ⊥
sessi0 , sessi1 := used

bi0 ← Ext(td, pp, ti0 , σi0); bi1 ← Ext(td, pp, ti1 , σi1)

if bi0 6= bi1 then return ⊥
return

(
(tiβ , σiβ), (ti1−β , σi1−β)

)

Oracle User0(i,msg)

if sessi 6= init then return ⊥
sessi := open

ti ←$ {0, 1}λ

(resp, sti)← AT.Usr0(pp, ti)

return resp

Oracle User1(i,msg)

if sessi 6= open then return ⊥
σi ← AT.Usr1(sti,msg)

sessi := closed

return 1

Fig. 5. Unlinkability game for the anonymous token scheme AT.

Note that it is not possible to give access to both the AT.ReadBit oracle and the challenge oracle at the
same time, otherwise the adversary could easily find out β by querying the token resulting from a challenge
interaction in AT.ReadBit. Due to unlinkability, it seems complex to restrict the AT.ReadBit oracle to not
answer tokens resulting from a challenge interaction (as done in more classical security notions such as
IND-CCA2).

4 Our construction

Our base construction Σ is described in Fig. 7. Ideas underlying this construction were presented in Sec-
tion 1.2. Below, we prove correctness of the construction, introduces an important lemma used to prove
security, and then prove security of the construction. Concretely, we prove privacy of the metadata bit,
unforgeability, and unlinkability.

4.1 Correctness

Lemma 1. The scheme Σ[GrGen] (described in Fig. 7) is a correct anonymous token scheme.

Proof. We start by proving that an honest user interacting with an honest issuer outputs a valid token that
passes the verification (AT.Ver). The protocol does not abort because, for i = 0, 1, if i = b:

kb = rb + ebxb, and

Kb

Cb

 = kb

G
Hb

 =⇒

Kb

Cb

 = rb ·

G
Hb

+ eb ·

Xb

Y

,
and if i = 1− b: K1−b

C1−b

 := r1−b

 G

H1−b

+ e1−b

X1−b

Y

.
11

Game PMBβΣ[GrGen],A(λ)

Γ ← GrGen(1λ)

(pp, sk)← AT.KeyGen(Γ)

i := 0;

st← ASign0,Sign1,Read(pp)

β′ ← ASign0,Sign1,Chal(st)

return β′

Oracle Read(t, σ)

return AT.ReadBit(Γ, sk, t, σ)

Oracle Chal(msg)

return Sign0(β,msg)

Oracle Sign0(b)

sessi := open

i := i+ 1

(resp, sti)← AT.Sign0(sk, b)

return (i, resp)

Oracle Sign1(i,msg)

if sessi 6= open : return ⊥
sessi := closed

resp← AT.Sign1(sti,msg)

return resp

Fig. 6. Private metadata bit game.

Furthermore, we remark that for i = 0, 1:K̄i

C̄i

 = r′i ·

G
H ′i

+ e′i ·

Xi

Y ′i


= ri ·

G
H ′i

+ αi ·

G
H ′i

+ ei ·

Xi

Y ′

+ βi ·

Xi

Y ′


=

Ki

ρCi

+ αi ·

G
H ′i

+ βi ·

Xi

Y ′

 =

K ′i
C ′i

 .

Hence, ē = e′ as the hash inputs are the same. We conclude by remarking that e′0 + e′1 = e0 + β0 + e1 + β1 =
e+ β0 + β1 = e′ = ē.

We now prove that such an honestly generated token is so that the read bit algorithm (AT.ReadBit)
output the correct metadata bit. This is because:

Y ′ = ρY = ρxbHb = xbH
′
b ,

and with overwhelming probability the private metadata bit b is unique. In fact:

Y = xbHb = x1−bH1−b =⇒ Hb = x1−bx
−1
b H1−b,

and since H0, H1 are uniformly distributed in G, this event happens with probability 1/p.

4.2 A useful lemma

The following lemma lays the ground for the proofs of unforgeability and privacy of the metadata bit.
Essentially, it states that it is difficult for an adversary A to distinguish a Diffie-Hellman oracle for X0 or
X1 that acts in the group from one that acts within the algebraic representation. This holds even if A has
at disposal a signing oracle.

12

Σ.Usr((X0, X1), t) Σ.Sign((x0, x1), b)

s←$ {0, 1}λ

(H0, H1) := Hs(s)

Y := xbHb

kb, e1−b, r1−b ←$ZpKb

Cb

 := kb ·

 G
Hb


K1−b

C1−b

 := r1−b ·

 G

H1−b

+ e1−b ·

X1−b

Y


s, Y, C0, C1,K0,K1

(H0, H1) := Hs(s)

ρ, α0, α1, β0, β1 ←$Zp
H ′0

H ′1

Y ′

 := ρ


H0

H1

Y


for i := 0, 1 :K′i

C′i

 =

 Ki

ρCi

+ αi ·

 G
H ′i

+ βi ·

Xi
Y ′


e′ := He(Y

′, H ′0, H
′
1,K

′
0,K

′
1, C

′
0, C

′
1, t)

e := e′ − β0 − β1

e

eb := e− e1−b
rb := kb − ebxb

e := (e0, e1), r := (r0, r1)

check

Ki

Ci

 = ri ·

 G
Hi

+ ei ·

Xi
Y

 for i = 0, 1

check e0 + e1 = e

π := (e′, r′) := (e + β, r + α)

σ := (H ′0, H
′
1, Y

′, π)

return σ

Procedure Σ.Ver((X0, X1), t, σ)

(H ′0, H
′
1, Y

′, (e′0, e
′
1), (r′0, r

′
1)) := σ

if H ′0 = 0G or H ′1 = 0G then return 0

for i := 0, 1 :K̄i

C̄i

 := r′i ·

 G
H ′i

+ e′i ·

Xi
Y ′


ē := He(Y

′, H ′0, H
′
1, K̄0, K̄1, C̄0, C̄1, t)

return (e′0 + e′1 = ē)

Procedure Σ.ReadBit((x0, x1), t, σ)

if not Σ.Ver((X0, X1), t, σ) then return ⊥
(H ′0, H

′
1, Y

′, π) := σ

if Y ′ = x0H
′
0 and Y ′ 6= x1H

′
1 then return 0

else if Y ′ 6= x0H
′
0 and Y ′ = x1H

′
1 then return 1

else return ⊥

Fig. 7. The anonymous token protocol Σ.

Lemma 2. Let the game AlgDHβ
Σ,A(λ) be as defined in Fig. 8, where Dh0

chal = Dh and Dh1
chal = Dhalg.

For any algebraic adversary Aalg making at most q queries to the oracles Dh,Dhalg,Dhβchal, the advantage

13

Game AlgDHβ
Σ,A(λ)

Γ := (G, p, G)← GrGen(1
λ

)

(x0, x1)←$Z2
p

(X0, X1) := (x0G, x1G)

β
′ ← ASign0,Sign1,Dh,Dhalg,Dh

β
chal (Γ, (X0, X1))

return β
′

Oracle Dh(X,H, Y)

if X 6= X0 or X 6= X1

return ⊥
if X = X0

return (x0H = Y)

if X = X1

return (x1H = Y)

Oracle Dhalg(X,H[ηηη], Y[ψψψ])

if X 6= X0 or X 6= X1

return ⊥
if X = X0

return (x̄0ηηη = ψψψ)

if X = X1

return (x̄1ηηη = ψψψ)

Fig. 8. The game AlgDHβ
Σ,A(λ) of Lemma 2. In the experiment, Dh0

chal = Dhalg and Dh1
chal = Dh. The signing oracles

Sign0,Sign1 are the same as in Figure 6.

in distinguishing the game AlgDHβ
Σ,Aalg

(λ) is:

Advalgdh
Σ,Aalg

(λ) ≤ q
(

3Advomdl
GrGen(λ) +

2

p

)
.

We note that, in the game AlgDHβ
Σ,Aalg

(λ), the oracle Dhalg could be computed directly by the adversary
itself. Its presence in the security experiment is merely didactic, and meant to illustrate the two possible
instantiations of Dhβchal.

The proof for this theorem can be found in Appendix A. This lemma will be used mostly to answer Read
queries relying solely on the algebraic representation, and without knowing X0, X1 as they will themselves
be used to embed a challenges in some security reductions. We are going to define the oracle SimRead as
the oracle that behaves exactly as Read for Σ, but instead of checking the Diffie-Hellman over the group
(i.e., using Dh0

chal) it does so over the algebraic representation (i.e., using Dh1
chal).

4.3 Privacy of the metadata bit

Theorem 1. In the algebraic group model and the random oracle model, if DDH and OMDL are hard for
GrGen, then the scheme Σ[GrGen] (described in Fig. 7) has private metadata bit.

Proof. The proof is done by means of a hybrid arguments, where via a sequence of intermediary steps we
show that show PMBβΣ[GrGen],A(λ) is indistinguishable from PMB1−β

Σ[GrGen],A(λ). To simplify the exposition,

we consider the concatenation of Chal with Sign2, assuming that the index i for the session is matched
accordingly. Formally, the sequence of hybrids should check if Sign2 is invoked with a challenge session, and
only if so run the code that is being modified.

Hyb0 This is the game PMBβΣ[GrGen],A(λ), where Chal is followed by Sign2. This is identified by the line

between “•”’s, where we implicitly match sessions with the same index i. Additionally, we unroll the
code of the subprocedures Σ.Sign1 and Σ.Sign2. Since the session i is added to S and later removed, we
just ignored the two operations.

Hyb1 We apply Lemma 2 and replace the oracle Read, which internally uses x0, x1, with the oracle SimRead,
which instead recovers the private metadata bit solely relying on the algebraic representation of the
tokens.

Hyb2 In this hybrid, instead of honestly generating the commitment for b = β as [Kb;Cb] := kb · [G;H],
we sample r∗b , e

∗
b from Zp uniformly at random and set [Kb;Cb] := r∗b · [G;Hb] + e∗b · [Xb;Y]. Once we

receive the challenge e (that, in turn, defines the challenge eb), we equivocate [Kb;Cb] by setting rb to

14

r∗b + (e∗b − eb)xb. In fact, since xb[G;Hb] = [Xb;Y], we have that:Kb

Cb

 = r∗b

G
Hb

+ e∗b

Xb

Y


= rb

G
Hb

− e∗bxb
G
Hb

+ ebxb

G
Hb

+ e∗b

Xb

Y


= rb

G
Hb

+ eb

Xb

Y

.
(3)

(Nota bene: this is only for the case b = β.) The two distributions are perfectly indistinguishable: the
commitment, as well as the response, are in fact distributed uniformly at random.

Hyb3 In this hybrid, instead of defining H0, H1 as Hs(s), we sample H0, H1 uniformly at random from G. We
program the random oracle to answer with (H0, H1) when s is queried. We compute the rest just as
before.
The only way for A to distinguishing the two games is to query Hs on s before it is programmed by
Chal. If the total number of oracle queries of A ∈ PPT is upper-bounded by q ∈ poly(λ), then,

q2

2λ
≥
∣∣∣AdvHyb3

Σ[GrGen],A(λ)− AdvHyb2

Σ[GrGen],A(λ)
∣∣∣ ,

because s is sampled uniformly at random from {0, 1}λ.
Hyb4 We now compute H1−β as x−1

1−βxβHβ instead of sampling it uniformly at random. That is, H1−β :=

x−1
1−βY . (We stress that, for privacy of the metadata bit, the challenger selects the secret key, and in

particular chooses both xβ and x1−β .) We claim that the two hybrids are indistinguishable by DDH. We
construct an adversary B against the DDH game. Let (P,A,B,C) be the challenge, which B randomizes
as {(P,A,B′i, C ′i)}i using the random self-reducibility of DDH. B samples xβ ← Zp and sets G := P ,
X1−β := A, Xβ := xβG. For each query to Chal, B uses a fresh (P,A,B′i, C

′
i) and sets Hβ := C ′i,

Y := xβC
′
i and H1−β := xβB

′
i. If (P,A,B′i, C

′
i) is a valid DDH sample, the distribution is the one of of

Hyb4. Otherwise, the distribution is that of Hyb3. Therefore,

Advddh
GrGen,B(λ) ≥

∣∣∣AdvHyb4

Σ[GrGen],A(λ)− AdvHyb3

Σ[GrGen],A(λ)
∣∣∣ .

Hyb5 At this point, we remark that Y = x0H0 = x1H1. In particular, now x−1
1−β [X1−β ;Y] = [G;H1−β]. We

exploit this fact to equivocate [K1−β ;C1−β], similarly to what we already did in Hyb2. This time, for
b = 1−β, after sampling e∗b and r∗b uniformly at random, we set rb = r∗b +(e∗b−eb)xb and we remark that
the verification equation is still satisfied. In fact, Equation (3) still holds (except that, here, b = 1− β).
The two hybrids are perfectly indistinguishable.

With Hyb5, the security experiment is entirely independent of b. It follows that PMBbΣ[GrGen],A(λ) and

PMB1−b
Σ[GrGen],A(λ) are indistinguishable with advantage:

Advpmb
Σ[GrGen],A(λ) ≤ 2q2

2λ
+ 2Advddh

GrGen,B(λ) + 2Advsimread
Σ,Aalg

(λ) ,

for any PPT adversary A that makes at most q oracle queries.

4.4 Unforgeability

Theorem 2. In the algebraic group model and the random oracle model, if OMDL is hard for GrGen and if
ROS is hard in dimension ` (where ` is the number of signing queries the adversary can do for each metadata
bit), then the scheme Σ[GrGen] (described in Fig. 7) is unforgeable.

15

Oracle Chal in Hyb0

increment i

s←$ {0, 1}λ

H0, H1 := Hs(s)

Y := xb ·Hb
kb, r1−b, e1−b ←$Zp[
Kb

Cb

]
:= kb

[
G

Hb

]
[
K1−b

C1−b

]
:= r1−b

[
G

H1−b

]
+ e1−b

[
X1−b

Y

]
• send (s, Y, C0, C1, K0, K1); obtain e •
eb := e− e1−b
rb := kb − ebxb
return (e0, e1, r0, r1)

Oracle Chal in Hyb1

s←$ {0, 1}λ

H0, H1 := Hs(s)

Y := xb ·Hb
r∗b , e

∗
b , r1−b, e1−b ←$Zp[

Kb

Cb

]
:= r∗b ·

[
G

Hb

]
+ e∗b ·

[
Xb

Y

]
[
K1−b

C1−b

]
:= r1−b ·

[
G

H1−b

]
+ e1−b ·

[
X1−b

Y

]
• send (s, Y, C0, C1, K0, K1); obtain e •
eb := e− e1−b

// Equivocate rb because (G;Hb)
xb7−−→ (Xb;Y)

rb := r∗b + (e∗b − eb)xb
return (e0, e1, r0, r1)

Oracle Chal in Hyb2

s←$ {0, 1}λ

H0, H1 ←$G; Y := xb ·Hb
Program Hs(s) := (H0, H1)

r
∗
b , e
∗
b , r1−b, e1−b ←$Zp[

Kb

Cb

]
:= r

∗
b ·

[
G

Hb

]
+ e
∗
b ·

[
Xb

Y

]
[
K1−b

C1−b

]
:= r1−b ·

[
G

H1−b

]
+ e1−b ·

[
X1−b

Y

]
• send (s, Y, C0, C1, K0, K1); obtain e •
eb := e− e1−b

// Equivocate sb because (G;Hb)
xb7−−→ (Xb;Y)

rb := r
∗
b + (e

∗
b − eb)xb

return (e0, e1, r0, r1)

Oracle Chal in Hyb3

s←$ {0, 1}λ

Hb ←$G; Y := xb ·Hb; H1−b := x−1
1−bY

Program Hs(s) := (H0, H1)

r
∗
b , e
∗
b , r1−b, e1−b ←$Zp[

Kb

Cb

]
:= r

∗
b ·

[
G

Hb

]
+ e
∗
b ·

[
Xb

Y

]
[
K1−b

C1−b

]
:= r1−b ·

[
G

H1−b

]
+ e1−b ·

[
X1−b

Y

]
• send (s, Y, C0, C1, K0, K1); obtain e •
eb := e− e1−b

// Equivocate sb because (G;Hb)
xb7−−→ (Xb;Y)

rb := r
∗
b + (e

∗
b − eb)xb

return (e0, e1, r0, r1)

Oracle Chal in Hyb4

s←$ {0, 1}λ

Hb ←$G; Y := xb ·Hb; H1−b := x
−1
1−bY

Program Hs(s) := (H0, H1)

rb, eb, r
∗
1−b, e

∗
1−b ←$Zp[

Kb

Cb

]
:= rb ·

[
G

Hb

]
+ eb ·

[
Xb

Y

]
[
K1−b

C1−b

]
:= r

∗
1−b ·

[
G

H1−b

]
+ e
∗
1−b ·

[
X1−b

Y

]
• send (s, Y, C0, C1, K0, K1); obtain e •
e1−b := e− eb

// Equivocate r1−b because (G;H1−b)
x1−b7−−−−→ (X1−b;Y)

r1−b := r∗1−b + (e∗1−b − e1−b)x1−b

return (e0, e1, r0, r1)

Oracle Chal in Hyb5

s←$ {0, 1}λ

Hb ←$G; Y := xb ·Hb; H1−b := x
−1
1−bY

Program Hs(s) := (H0, H1)

rb, eb, k1−b ←$Zp[
Kb

Cb

]
:= rb ·

[
G

Hb

]
+ eb ·

[
Xb

Y

]
[
K1−b

C1−b

]
:= k1−b ·

[
G

H1−b

]
• send (s, Y, C0, C1, K0, K1); obtain e •
e1−b := e− eb
r1−b := k1−b − e1−bx1−b

return (e0, e1, r0, r1)

Fig. 9. Hybrids 1 to 5 for the proof private metadata security of Σ for Theorem 1.

16

We recall that ROS can be solved in polynomial time when the number of open sessions ` > log p
(see [BLL+21]). For smaller `, there are subexponential attacks [Wag02, BLL+21], and although they can be
compensated by choosing a larger prime, this would be resulting in a quite inefficient scheme except when
restricting ` to be a very small constant.

The scheme Σ and this unforgeability proofs are however useful as a stepping stone to construct the
clause version in Section 5 that rely on a currently non-broken assumption, the modified ROS assumption.

A formal proof is provided in Appendix B. We now highlight the main proof ideas. There are essentially
three ways the adversary A can win:

(a) A outputs `+ 1 tokens that are valid and extract all to the same bit b ∈ {0, 1};
(b) A outputs a token (ti, σi) that is valid but for which the bit cannot be read successfully, which can

happen in two ways:

(b1) σi = (H0, H1, Y, π) with Y = x0H0 and Y = x1H1.

(b2) σi = (H0, H1, Y, π) with Y 6= x0H0 and Y 6= x1H1.

Using Lemma 2, we can switch between checking relations such as Y = xbHb using the discrete logarithm
xb of Xb (oracle Dh(Xb, Hb, Y)) and checking it using the algebraic representation without having to know
xb (oracle Dhalg(Xb, Hb, Y)).

We rule out (b1) by remarking that if Dhalg(Xb, Hb, Y) is true for both b = 0 and b = 1, then the
representation of Y needs to contain the degree-2 monomial x̄0x̄1 which is impossible as this monomial is
never given to the adversary.6

We then note that π can be seen as the Fiat-Shamir of a Sigma protocol for the statement “Dh(X0, H0, Y)
OR Dh(X1, H1, Y) is true.”7 Thus, we can rule out (b2) by remarking that if Dh(Xb, Hb, Y) is false for
both b = 0 and b = 1, then π is not sound, which is not possible by adaptive soundness of Fiat-Shamir.

Finally, we rule out (a) using an argument similar to the one for unforgeability of blind Schnorr signatures
in [FPS20]. Let us assume without loss of generality that the adversary outputs `+ 1 valid tokens for b = 0.
We embed OMDL challenges in X0 and the commitments Kb for any Sign0(b) query. Then we use the `+ 1
valid tokens of the adversary to either solve ROS or OMDL. The reduction to ROS is much more subtle than
in [FPS20] because of the OR proof. Concretly, it requires some careful simulation of the oracle He from the
ROS oracle HROS. This simulation basically uses the fact that a query He(Y,H0, H1,K0,K1, C0, C1, t) can
correspond to a single split of e as e = e0 + e1. All other options would yield invalid tokens. Furthermore,
this split can be computed efficiently given the correct algebraic representation.

4.5 Unlinkability

Theorem 3. In the algebraic group model and the random oracle model, if DDH is hard for GrGen, then
the scheme Σ[GrGen] (described in Fig. 7) is unlinkable.

Roughly speaking, the extractor Ext for this proof is the PPT machine that, upon receiving as input a
token together with the algebraic representation of the public parameters (X0 [x0], X1 [x1]) (which, we recall,
will depend on the sole group element sent to the adversary, i.e. G ∈ G), checks if two tokens share the same
private metadata by testing for Y = x0H0 and Y = x1H1. In addition, using the recovered private keys, it
is possible for the challenger to compute a token (H0, H1, Y, (e, r)) independently from any of the messages
sent by the adversary. We direct the curious reader to Appendix C for a formal proof.

6 At first glance it may look like such argument only works in the generic group model and should not work in the
algebraic group model because of the appearance of being purely algebraic test (as opposed to directly using a
computational assumption). But this is not the case: Lemma 2 allows to switch testing to algebraic representation.
It does so using computational assumptions.

7 For a formal definition of Sigma protocols and the soundness of their transform, we direct the reader to
Cramer [Cra97] and Unruh [Unr17]. We omit a formal introduction here as they are only required for the se-
curity proof and they are a standard, widely used primitive in cryptography.

17

Remark 2. It is possible to prove unlinkability of Σ outside of the algebraic group model, with a small
variation to the scheme proposed in Fig. 7. To achieve the above, the public parameters (X0, X1) of key
generation algorithm Σ.KeyGen are followed by a non-interactive zero-knowledge argument of knowledge8 for
the following relation parametrized by the group description (G, p,G):

RDL :=
{(

(x0, x1), (X0, X1)
)
∈ Z2

p ×G2 : x0G = X0 ∧ x1G = X1

}
.

Roughly speaking the extractor Ext is the knowledge extractor of the underlying proof system that uses the
trapdoor td in order to extract the proof. The rest of the proof remains unchanged.

5 Clause protocol

In this section we describe the clause version of the construction in Section 4. This protocol, illustrated Fig. 7
has the advantage of relying on the modified ROS assumption rather than the regular ROS assumption for
unforgeability. The modified ROS assumption was introduced by Fuchsbauer et al. [FPS20] and is not
susceptible to the attacks of Schnorr [Sch01a] and Benhamouda et al. [BLL+21].

Informally, this variant consists in computing twice the same commitment phase. (The elements H0, H1,
Y ∈ G will be actually computed only once as an optimization.) The user, upon receiving two commitments,
runs the user algorithm, once for each of them. The two resulting challenges are then sent to the server,
who in turn samples uniformly at random one bit d←$ {0, 1} and computes the response only for the d-th
transcript. Finally, it sends the d-th response along with the bit d itself, and the user proceeds with the
unblinding algorithm for the d-th blinded commitment and challenge. The verification procedure is exactly
as in Σ.

5.1 Privacy of the metadata bit

Theorem 4. The scheme Σ[GrGen] has private metadata bit with advantage:

Advpmb
Λ,GrGen(λ) ≤ Advpmb

Σ,GrGen(λ) .

Proof. The proof proceeds by means of a hybrid argument.

Hyb0 This is the initial PMB game, defined in Figure 6.
Hyb1 Instead of sampling d′ in Sign1, we sample it within Sign1 and store it within the session state for later.

This hybrid is perfectly indistinguishable from the previous one.
Hyb2 We now change the way the commitments are produced. For d′-side of the clause, compute the commit-

ment as before: K(d′)
b

C
(d′)
b

 := kb

G
Hb


K(d′)

1−b

C
(d′)
1−b

 := r1−b

 G

H1−b

− e1−b

X1−b

Y

 .
On the other hand, for the (1− d′)-side, sample γb, δb, ηb←$Zp for b = 0, 1 and compute:K(1−d′)

0

C
(1−d′)
0

 := γ0

K(d′)
0

C
(d′)
0

+ δ0

X0

Y

+ η0

 G
H0


K(1−d′)

1

C
(1−d′)
1

 := γ1

K(d′)
1

C
(d′)
1

+ δ1

X1

Y

+ η1

 G
H1

 (4)

8 For a formal definition of a NIZK and arguments of knowledge, we direct the curious reader towards [KLOR20,
Sec. 2.2]

18

This hybrid is perfectly indistinguishable from the previous one: the distribution ofK
(d′)
0 , C

(d′)
0 ,K

(d′)
1 C

(d′)
1

are identical as nothing changed from the previous hybrid. and K
(1−d′)
0 , C

(1−d′)
0 , K

(1−d′)
1 C

(1−d′)
1 still

follows the uniform distribution over Span([G,H0], [X0, Y]), respectively Span([G,H1], [X1, Y])
Hyb3 It is now possible to produce a signature using Σ.Sign0 as an external oracle: for any query in the game

PMBΛ,A(λ) of the form Sign0(b), the challenger queries the external oracle Σ.Sign0(b) and stores the
returned value as the d′-side, then computes the 1−d′-side of the clause as per Eq. (4). For any query of
the form Sign1(i, (e0, e1)), the challenger forwards the query to the oracle Σ.Sign1(ed′) and returns the
result together with the clause bit d′. This oracle is perfectly indistinguishable from the previous one.

Hyb4 We now change Chal, and instead of forwarding a query to Σ.Sign0(β), it forwards the query to

Σ.Sign0(1− β). From Theorem 1, the security loss of this hybrid is Advpmb
Σ,A (λ).

Hyb5-Hyb8 essentially perform the reverse changes of Hyb3-Hyb0. The final hybrid Hyb8 is PMB1−β
A,Λ (λ). It

follows that:
Advpmb

Λ,GrGen(λ) ≤ Advpmb
Σ,GrGen(λ).

5.2 Unlinkability

Theorem 5. The scheme Λ is unlinkable with advantage:

Advunlink
Λ,` (λ) ≤ Advunlink

Σ,2` (λ) .

Proof. Let Ext be the extractor of Theorem 3, that is, the machine that used the algebraic representation
of the public parameters (X0, X1) to extract the secret keys (x0, x1) ∈ Z2

p and checks, for every token of
the form (t, (H0, H1, Y, (e, r))), if (G,Xb, Hb, Y) is a CDH tuple. This can always be done as the algebraic
representation is always correct and is solely expressed in base G.

Let A be an adversary for the game UNLINKβ
Λ,A,Ext,`(λ), that upon receiving as input the public param-

eters crs, interacts with the oracles User0,User1,Get,Chal and finally returns a guess β′.
We construct a PPT adversary B for the game UNLINKβ

Σ,B,Ext,2`(λ). The adversary B internally runs A,

with the public parameters received as input. Upon receiving a query of the form User0(i, (s, Y,C(0),K(0),
C(1),K(1)))), it defines msg0 := (s, Y,C(0),K(0)) and msg1 := (s, Y,C(1),K(1)), and invokes the user oracle
twice, once with inputs (2i,msg0) and once with input (2i + 1,msg1). Upon receiving a query of the form
User1(i, (e, r, d′)), B forwards the query to the user oracle with input (2i+d′, (e, r)) and internally stores in
a table Td the pair (i, d′), to mark the clause associated to the i-th session. Queries to the oracle Get(i) are
responded fetching the element d ∈ {0, 1} such that element (i, d) is in Td. If no such element exists, then
return ⊥ (note that there cannot be more than one possible match). Similarly we handle queries to Chal.
B returns whatever guess A makes upon returning. It follows that:

Advunlink
Λ,A,Ext,`(λ) ≤ Advunlink

Σ,B,Ext,2`(λ).

5.3 Unforgeability

Theorem 6. In the algebraic group model and the random oracle model, if OMDL is hard for GrGen and if
modified ROS is hard in dimension `, then the scheme Λ[GrGen] is unforgeable.

Proof (Sketch). We start by noting that the same indistinguishability argument of Lemma 2 can be applied
also for this scheme. However, in Λ, the Sign0,Sign1 oracles will produce different commitment, and as
a consequence the partial evaluation provided by reduce will be different too (cf. Hyb1 in Page 25). More

formally, consider the coefficients associated to the commitments K
(0)
b , C

(0)
b ,K

(1)
b , and C

(1)
b , for each private

metadata bit b ∈ {0, 1}. The commitments C
(0)
b and C

(1)
b can be expressed in base K

(0)
b , resp. K

(1)
b by

computing C(0) = h0K
(0) and C(1) = h1K

(1), where the random oracle is programmed such that h0G = H0

and h1G = H1 for the respective session. The commitments K
(0)
b ,K

(1)
b can be replaced by their respective

verification equation (whenever a session is complete), or expressed as two different unknowns in the algebraic

19

representation (whenever a session is not yet complete). Later in the proof, whenever Lemma 2 proceeds with
a reduction to OMDL, one considers the game OMDLGrGen,B,2`(λ), where on each round the commitments

K
(0)
b ,K

(1)
b produced by Sign0 are generated both (for each clause) through Target(). Later, the clause

selected by the signer is dealt as before, using the Help() oracle so that the verification equation is satisfied.
In the non-clause part, B obtains its discrete log base G through Help.

As in Section 4.4, there are three different attack strategies that satisfy the winning condition:

– A produces a token for which the bit cannot be read successfully, i.e. either σi = (H0, H1, Y, π) is such
that Y = x0H0 and Y = x1H1, or such that Y 6= x0H0 and Y 6= x1H1.

– A outputs `+ 1 tokens (ti, σi)i∈S for some set S ⊂ [m] such that the tokens are valid and all read for the
same bit b ∈ {0, 1}.

The first case can be ruled out using a hybrid argument that follows exactly the same argument of Items Hyb0

to Hyb4 of Theorem 2. If the adversary produces a token such that Y 6= x0H0 and Y 6= x1H1, then it is
possible to construct an adversary for adaptive soundness for the non-interactive argument defined in Eq. (8).
Secondly, the case Y = x0H0 and Y = x1H1 can be ruled out as impossible, as it leads to an incorrect degree
in the algebraic representation (would imply a nonzero coefficient for the term x̄0x̄1 but this is not possible
as the algebraic representation is linear in x̄0 and x̄1).

In the second case, A outputs `+ 1 valid tokens that read for the same bit. We construct an intermediate
hybrid (similarly to Hyb8 in Page 29) where the experiment aborts if two equations (displayed below, Eqs. (5)
to (6)) are satisfied. Given the tokens (ti, σi) indexed in i ∈ S (S is the subset of `+ 1 valid forgeries made
by the adversary, for which the private metadata bit is the same), the challenger considers their algebraic
representation, which depends on the public parameters and the commitments sent. Denote with djb ∈ {0, 1}
the clause selected at the jb-th issuance session, where b = 0, 1 and jb ∈ [`]. In the i-th forgery (ti, σi),

given the associated commitments K
(i)
b (for b = 0, 1), we denote with ι

(i) (djb)

jb,0
, ι

(i) (djb)

jb,1
, κ

(i) (djb)

jb,0
, κ

(i) (djb)

jb,0
the

coefficients of K
(jb) (djb)

0 , K
(jb) (djb)

1 , C
(jb) (djb)

0 , C
(jb) (dj)
1 , and with ε(i), ρ(i) the coefficients of (respectively)

X0 and G. (Note that the algebraic representation for the commitments can always be obtained storing within
the random oracle H̃e the algebraic representation of the elements given. For a more explicit description, we
direct the reader towards Page 29.) At the end of its execution, the adversary interacts ` times with the
signing oracle. Denote with djb the clause selected by the challenger during the session sessjb for the private
metadata bit b ∈ {0, 1} and jb ∈ [`]. If, for each forgery indexed in i ∈ S:

e
(i)
0 − ε(i)−

∑
j0∈[`] ι

(i) (dj0)
j0,0

e
(j0) (dj0)
0 + κ

(i) (dj0)
j0,0

e
(j0) (dj0)
0 h

(j0)
0 + κ

(i) (dj0)
j0,0

e
(j0) (dj0)
1 h

(j0)
1

+
∑
j1∈[`] ι

(i) (dj1)
j1,0

e
(j1) (dj1)
0 = 0 ,

(5)

and for all j0 ∈ [`− 1] : ι
(i) (1−dj0)
j0,0

= 0, (6)

then the game aborts. Equation (5) is the analogues of Eq. (10) for the clause version, and it involves a
linear combination of all the coefficients of X0 when substituting the verification equations for the issued
signatures with the algebraic representation of the forgeries (similarly to the argument of Page 30). We note
that, differently from the proof of Theorem 2, here we have an additional superscript “djb” that is referring
to the binary clause selected by the signer at the j-th issuance session for the private metadata bit b. We also

note that, as the clause 1 − djb is never completed, the terms ι
(i) (1−dj0)
j0,0

do not contribute in Equation (5)
as they are assumed to be zero.

Equation (6), instead, asks that the adversary guesses correctly the clause used at the dj-th session.
If there exists a PPT adversary A that is able to distinguish the above hybrid, it is possible to construct
a PPT adversary B for the game mROSGrGen,B,`(λ) defined in Fig. 2. The adversary B takes as input the
group description Γ = (G, G, p), and generates the public parameters X0 = x0G,X1 = x1G sampling at
random (x0, x1)←$Zp. Then, it internally runs the adversary A(Γ, (X0, X1)). For any query to the signing
oracles, it computes the responses honestly, following the protocol Λ. For any query to the random oracle
Hs, it returns two random group elements, storing aside their discrete logarithm. Queries to the random
oracle He are responded as described in Page 31. At the end of the game, the adversary A outputs, with

20

non-negligible probability, ` + 1 forgeries such that Equation (5) is satisfied. B outputs the mROS solution

(((ι
(i) (0)
j0,0

)
j0∈[`]

, (ι
(i) (1)
j0,0

)
j0∈[`]

, χ(i))
i∈[`+1]

, (e(j0))j0∈[`]). (For a detailed argument on why Eq. (5) leads to the

correct solution, we direct the reader to Page 29: the reasoning is exactly the same, and considers only those
commitments that belongs to the dj0-clause and for which a verification equation is provided at the end of
signing query.)

At this point, it is possible to construct a reduction to OMDLGrGen,`(λ). Consider B the adversary that
internally runs the adversary A(Γ, (X0, X1)) where X0 ← Target() and X1 := x1G for some x1←$Zp.
Signature queries are handled using the Target and Help oracle (cf. Item Hyb9 in Page 32) and read
oracles are handled algebraically. At the end, B obtains a set `+ 1 valid forgeries, indexed by i ∈ S. For each

i, the algebraic representation of the commitment K
(i)
0 is of the following form:

K
(i)
0 := ρ(i)G+ ε(i)X0+ ∑

b∈{0,1},d∈{0,1}
jb∈[`]

ι
(i) (d)
jb,0

K
(jb) (d)
0 + ι

(i) (d)
jb,1

K
(jb) (d)
1 +

κ
(i) (d)
jb,0

C
(jb) (d)
0 + κ

(i) (d)
jb,1

C
(jb) (d)
1 .

(7)

Note that, in the above equation, we are indexing for each jb ∈ [`] (for b = 0, 1), and for each clause
d ∈ {0, 1}, independently of whether it was selected in the response phase (that is, if d = djb), or not (that
is, if d = 1 − djb). Expanding the algebraic representation with the verification equations (which holds by
winning condition) we end up with two possible cases:

(i) Equation (5) does not hold, and thus there exists one i for which the algebraic representation leads to
a non-trivial equation in X0, G, thus allowing for the recovery of the discrete logarithm of X0. In other
words, it is possible to build an adversary for one-more discrete log.

(ii) Equation (5) holds but Equation (6) doesn’t. Hence, by the additional condition introduced in the pre-

vious hybrid, there exists a i∗, j∗ for which ι
(i∗) (1−dj∗)
j∗0 ,0

is nonzero. the adversary B for OMDLGrGen,B,`(λ)

runs x0 := Help(X0), thus obtaining the discrete log of X0, and then Help(K
(1−dj)
j0,0

) for all i, j 6= i∗, j∗.

Using the above, B can recover the discrete log of K
(1−dj∗)
j∗0 ,0

via Eq. (5), thus still breaking one-more

discrete log.

Both cases can be simultaneously handled by the reduction. Hence, the adversary B wins the experiment
OMDLGrGen,B,`(λ) every time A wins.

21

Λ.Usr((X0, X1), t) Λ.Sign((x0, x1), b)

s←$ {0, 1}λ

(H0, H1) := Hs(s)

Y := xbHb

for d := 0, 1 :

k
(d)
b , e

(d)
1−b, r

(d)
1−b ←$ZpK(d)

b

C
(d)
b

 := k
(d)
b ·

 G
Hb


K(d)

1−b

C
(d)
1−b

 := r
(d)
1−b ·

 G

H1−b

+ e
(d)
1−b ·

X1−b

Y


{s, Y, C(d)

0 , C
(d)
1 ,K

(d)
0 ,K

(d)
1 }d=0,1

(H0, H1) := Hs(s)

for d := 0, 1 :

ρ(d), α
(d)
0 , α

(d)
1 , β

(d)
0 , β

(d)
1 ←$Zp

H
′(d)
0

H
′(d)
1

Y ′(d)

 := ρ(d)


H0

H1

Y


for i := 0, 1 :K′(d)i

C
′(d)
i

 =

 K
(d)
i

ρ(d)C
(d)
i

+ α
(d)
i ·

 G

H
′(d)
i

+ β
(d)
i ·

 Xi

Y ′(d)


e′(d) := He(Y

′(d), H
′(d)
0 , H

′(d)
1 ,K

′(d)
0 ,K

′(d)
1 , C

′(d)
0 , C

′(d)
1 , t)

e(d) := e′(d) − β0 − β1

e(0), e(1)

d′ ←$ {0, 1}

e
(d′)
b := e(d

′) − e(d
′)

1−b

r
(d′)
b := k

(d′)
b − e(d

′)
b xb

e := (e
(d′)
0 , e

(d′)
1), r := (r

(d′)
0 , r

(d′)
1), d′

check

K(d′)
i

C
(d′)
i

 = r
(d′)
i ·

 G
Hi

+ e
(d′)
i ·

Xi
Y

 for i = 0, 1

check e
(d′)
0 + e

(d′)
1 = e(d

′)

π := (e′, r′) := (e + β, r + α)

σ := (H ′0, H
′
1, Y

′, π)

return σ

Fig. 10. The anonymous token protocol Λ (clause version).

22

References

ANN06. Michel Abdalla, Chanathip Namprempre, and Gregory Neven. On the (im)possibility of blind message
authentication codes. In CT-RSA 2006, 2006. 6

BL13. Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 2013, pages 1087–1098. ACM Press, November 2013. 6

BLL+21. Fabrice Benhamouda, Tancrède Lepoint, Julian Loss, Michele Orrù, and Mariana Raykova. On the
(in)security of ROS. In Anne Canteaut and François-Xavier Standaert, editors, EUROCRYPT 2021,
Part I, volume 12696 of LNCS, pages 33–53. Springer, Heidelberg, October 2021. 2, 4, 17, 18

BNPS03. Mihir Bellare, Chanathip Namprempre, David Pointcheval, and Michael Semanko. The one-more-RSA-
inversion problems and the security of Chaum’s blind signature scheme. Journal of Cryptology, 16(3):185–
215, June 2003. 8

Bol03. Alexandra Boldyreva. Threshold signatures, multisignatures and blind signatures based on the gap-Diffie-
Hellman-group signature scheme. In Yvo Desmedt, editor, PKC 2003, volume 2567 of LNCS, pages 31–46.
Springer, Heidelberg, January 2003. 2

BPV12. Olivier Blazy, David Pointcheval, and Damien Vergnaud. Compact round-optimal partially-blind signa-
tures. In Ivan Visconti and Roberto De Prisco, editors, SCN 12, volume 7485 of LNCS, pages 95–112.
Springer, Heidelberg, September 2012. 2, 6

BV98. Dan Boneh and Ramarathnam Venkatesan. Breaking RSA may not be equivalent to factoring. In Kaisa
Nyberg, editor, EUROCRYPT’98, volume 1403 of LNCS, pages 59–71. Springer, Heidelberg, May / June
1998. 2, 8

CDS94. Ronald Cramer, Ivan Damg̊ard, and Berry Schoenmakers. Proofs of partial knowledge and simplified
design of witness hiding protocols. In Yvo Desmedt, editor, CRYPTO’94, volume 839 of LNCS, pages
174–187. Springer, Heidelberg, August 1994. 3

Cha82. David Chaum. Blind signatures for untraceable payments. In David Chaum, Ronald L. Rivest, and Alan T.
Sherman, editors, CRYPTO’82, pages 199–203. Plenum Press, New York, USA, 1982. 1, 2, 6

Chr19. Google Chrome. Getting started with trust tokens. https://web.dev/trust-tokens/, 2019. 1
CL01. Jan Camenisch and Anna Lysyanskaya. An efficient system for non-transferable anonymous credentials

with optional anonymity revocation. In Birgit Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of
LNCS, pages 93–118. Springer, Heidelberg, May 2001. 1

CP93. David Chaum and Torben P. Pedersen. Wallet databases with observers. In Ernest F. Brickell, editor,
CRYPTO’92, volume 740 of LNCS, pages 89–105. Springer, Heidelberg, August 1993. 2, 6

Cra97. Ronald Cramer. Modular Design of Secure yet Practical Cryptographic Protocols. PhD thesis, CWI Ams-
terdam, The Netherlands, 1997. 17, 29

DGS+18. Alex Davidson, Ian Goldberg, Nick Sullivan, George Tankersley, and Filippo Valsorda. Privacy pass:
Bypassing internet challenges anonymously. PoPETs, 2018(3):164–180, July 2018. 1, 3, 6, 10

DH76. Whitfield Diffie and Martin E. Hellman. New directions in cryptography. IEEE Transactions on Informa-
tion Theory, 22(6):644–654, 1976. 8

FHS15. Georg Fuchsbauer, Christian Hanser, and Daniel Slamanig. Practical round-optimal blind signatures in
the standard model. In Rosario Gennaro and Matthew J. B. Robshaw, editors, CRYPTO 2015, Part II,
volume 9216 of LNCS, pages 233–253. Springer, Heidelberg, August 2015. 2

Fis06. Marc Fischlin. Round-optimal composable blind signatures in the common reference string model. In
Cynthia Dwork, editor, CRYPTO 2006, volume 4117 of LNCS, pages 60–77. Springer, Heidelberg, August
2006. 2, 6

FKL18. Georg Fuchsbauer, Eike Kiltz, and Julian Loss. The algebraic group model and its applications. In Hovav
Shacham and Alexandra Boldyreva, editors, CRYPTO 2018, Part II, volume 10992 of LNCS, pages 33–62.
Springer, Heidelberg, August 2018. 2, 8

FPS20. Georg Fuchsbauer, Antoine Plouviez, and Yannick Seurin. Blind schnorr signatures and signed ElGamal
encryption in the algebraic group model. In Anne Canteaut and Yuval Ishai, editors, EUROCRYPT 2020,
Part II, volume 12106 of LNCS, pages 63–95. Springer, Heidelberg, May 2020. 2, 3, 4, 5, 6, 7, 17, 18, 25

Gro20. IETF Privacy Pass Working Group. Rfc base draft, issue 40. https://github.com/ietf-wg-privacypass/
base-drafts/issues/40, 2020. 2

JKK14. Stanislaw Jarecki, Aggelos Kiayias, and Hugo Krawczyk. Round-optimal password-protected secret sharing
and T-PAKE in the password-only model. In Palash Sarkar and Tetsu Iwata, editors, ASIACRYPT 2014,
Part II, volume 8874 of LNCS, pages 233–253. Springer, Heidelberg, December 2014. 6

KLOR20. Ben Kreuter, Tancrède Lepoint, Michele Orrù, and Mariana Raykova. Anonymous tokens with private
metadata bit. In Daniele Micciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part I, volume
12170 of LNCS, pages 308–336. Springer, Heidelberg, August 2020. 2, 3, 6, 10, 18

23

https://web.dev/trust-tokens/
https://github.com/ietf-wg-privacypass/base-drafts/issues/40
https://github.com/ietf-wg-privacypass/base-drafts/issues/40

KW03. Jonathan Katz and Nan Wang. Efficiency improvements for signature schemes with tight security reduc-
tions. In Proceedings of the 10th ACM Conference on Computer and Communications Security, CCS ’03,
2003. 3

Oka93. Tatsuaki Okamoto. Provably secure and practical identification schemes and corresponding signature
schemes. In Ernest F. Brickell, editor, CRYPTO’92, volume 740 of LNCS, pages 31–53. Springer, Heidel-
berg, August 1993. 2, 6

PS00. David Pointcheval and Jacques Stern. Security arguments for digital signatures and blind signatures.
Journal of Cryptology, 13:361–396, 2000. 2, 6

PV05. Pascal Paillier and Damien Vergnaud. Discrete-log-based signatures may not be equivalent to discrete
log. In Bimal K. Roy, editor, ASIACRYPT 2005, volume 3788 of LNCS, pages 1–20. Springer, Heidelberg,
December 2005. 2, 8

SC12. Jae Hong Seo and Jung Hee Cheon. Beyond the limitation of prime-order bilinear groups, and round
optimal blind signatures. In Ronald Cramer, editor, TCC 2012, volume 7194 of LNCS, pages 133–150.
Springer, Heidelberg, March 2012. 2, 6

Sch01a. Claus-Peter Schnorr. Security of blind discrete log signatures against interactive attacks. In Sihan Qing,
Tatsuaki Okamoto, and Jianying Zhou, editors, ICICS 01, volume 2229 of LNCS, pages 1–12. Springer,
Heidelberg, November 2001. 2, 4, 6, 18

Sch01b. Claus Peter Schnorr. Security of blind discrete log signatures against interactive attacks. In Sihan Qing,
Tatsuaki Okamoto, and Jianying Zhou, editors, Information and Communications Security, 2001. 2, 6

Sch06. Claus Peter Schnorr. Enhancing the security of perfect blind dl-signatures. Information Sciences,
176(10):1305 – 1320, 2006. 2, 6

TAKS07. Patrick P. Tsang, Man Ho Au, Apu Kapadia, and Sean W. Smith. Blacklistable anonymous credentials:
blocking misbehaving users without ttps. In ACM Conference on Computer and Communications Security,
pages 72–81. ACM, 2007. 6

Unr17. Dominique Unruh. Post-quantum security of Fiat-Shamir. In Tsuyoshi Takagi and Thomas Peyrin, editors,
ASIACRYPT 2017, Part I, volume 10624 of LNCS, pages 65–95. Springer, Heidelberg, December 2017.
17, 29

Wag02. David Wagner. A generalized birthday problem. In Moti Yung, editor, CRYPTO 2002, volume 2442 of
LNCS, pages 288–303. Springer, Heidelberg, August 2002. 2, 4, 17

24

A Proof of Lemma 2

Lemma 2. Let the game AlgDHβ
Σ,A(λ) be as defined in Fig. 8, where Dh0

chal = Dh and Dh1
chal = Dhalg.

For any algebraic adversary Aalg making at most q queries to the oracles Dh,Dhalg,Dhβchal, the advantage

in distinguishing the game AlgDHβ
Σ,Aalg

(λ) is:

Advalgdh
Σ,Aalg

(λ) ≤ q
(

3Advomdl
GrGen(λ) +

2

p

)
.

Proof. We provide a sequence of hybrid games that prove indistinguishability.
As we will be considering algebraic adversaries, with a random oracle He which takes as input group

elements selected by the adversary Aalg (that therefore must be explained as a linear combination of the

elements given as input), we will assume that there exists another random oracle H̃e that forwards the
requests of the adversary to He omitting the linear combination (cf. Fuchsbauer et al. [FPS20, Theorem 1]
for a formal argument).

Hyb0 This is the game AlgDH0
Σ,A(λ).

Hyb1 In this hybrid, we process queries Hs storing the discrete log for the elements given, and change the
computation of Cb: instead of computing it as Cb := kbHb, we use the discrete log of Hb. More precisely:
– In the random oracle Hs, sample h0, h1←$Zp and compute H0 := h0G, and H1 := h1G. Return

(H0, H1) ∈ G2.
– Cb is computed as Cb := hbKb instead of Cb := kbHb.

This hybrid is perfectly indistinguishable from the previous one.

With this hybrid, it is possible to express the discrete logarithm of any element sent by the challenger
throughout the game as a linear combination of G, X0, X1 and the commitments Kb’s (one per query) ob-
tained during the signing query Sign0(b). In fact, all outputs of the random oracle Hs are computed sampling
h0, h1 uniformly at random and returning (h0G, h1G). The commitments for the bit 1 − b are simulated:
K1−b is computed as K1−b = r1−bG+ e1−bX1−b and C1−b = r1−bh1−bG+ e1−bhbXb. The commitment Cb is
defined to be Cb = hbKb.

9

More exactly, in any query Dhalg(Xb, H[ηηη], Y[ψψψ]) query we can consider ηηη,ψψψ as multilinear polynomials
in G,X0, X1, and the commitments of the signing sessions not yet closed (that we denote for simplicity
as K(0), . . . ,K(m), omitting the private metadata bit used for notational clarity). In other words ηηη,ψψψ ∈
F[x̄0, x̄1, k̄0, . . . , k̄m]. To do so, we consider the partial evaluation, where we substitute all unknowns associated
to the oracle replies of Hs with their respective discrete logarithms base G, and the commitments of currently
closed sessions with their respective verification equations, e.g. a commitmentKb at the i-th completed session
can be written as rbG+ ebXb, for the rb, eb associated to the i-th session. We denote this partial evaluation
as a helper function reduce, that will be used by the challenger, and let η̂ηη0 := reduce(ηηη0); ψ̂ψψ := reduce(ψψψ).

Let q be an upper-bound on the number of queries that Aalg makes to the Diffie-Hellman oracles (more

exactly, the Dh,Dhalg,Dhβchal oracles). We consider a sequence of 2q hybrids, where we incrementally switch
(one by one) all Diffie-Hellman tests from testing on the group representation to the algebraic representation.

[Hyb3i+2]
q−1
i=0 We add one additional condition in the (2i + 1)-th query to the Diffie-Hellman oracles (more exactly,

one among Dh,Dhalg, or Dhβchal): if it ever happens that a query is of the form (X0, H[ηηη], Y[ψψψ]) such that

ψ̂ψψ = ψ0x̄0 (for some ψ0 ∈ Zp), and η̂ηη = η1x̄1 +η0 (for some η1 ∈ F∗, and η0 ∈ F), and ψ0G = η1X1 +η0G,
then the game immediately aborts and the adversary wins. Informally, with the above we are ruling out
the particular case where ηηη depends solely on x̄1.

9 Looking ahead, when we will deal with the clause version the commitments will be doubled, and we will still have
to study their algebraic representation as we do here. In that case, we are going to handle polynomials over X0, X1,
and the commitments K

(0)
b ,K

(1)
b , where b is the private metadata, for each Sign0 query. Despite this minor change,

the same argument applies.

25

If an adversary Aalg can distinguish the above change from the previous hybrid, then it is possible to
construct an adversary B for OMDLGrGen,B,`(λ). The adversary B receives as input the group description Γ
and queries Target for two challenges: X0 := x0G (x0←$Zp), X1 ← Target(). Then, it internally runs
the adversary Aalg(Γ, (X0, X1)). If X0 = 0G, then it aborts. (This happens with negligible probability
1/p.) All queries of the form Sign0(1) are handled in the following way: B sets K1 ← Target(), which
is distributed uniformly at random (exactly as in Λ). The other commitments are computed as in the
precious hybrid: C1 = h1K1 and K0, C0 are simulated as before. Queries of the form Sign0(0) are handled
as before, using the secret key x0. For any query of the form Sign1(j, e) where e ∈ Zp is a challenge and
j identifies the j-th session that is not yet closed. B defines e1 := e− e0 and lets r1 := Help(K1− e1X1).
Then, it returns (e, r). (Note that e is computed exactly as in the current hybrid and since Help always
output the correct discrete log, rb follows the same distribution of the hybrid.)
During the execution of the (2i + 1)-th Read query, B stops the execution of Aalg and attempts to
compute a solution for the game OMDLGrGen,B(λ). (If the adversary returns an invalid query, or returns

before the (2i + 1)-th query, then B returns ⊥.). If ψ̂ψψ = ψ0x̄0, η̂ηη = η1x̄1 + η0, and ψ0G = η1X1 + η0G,
then η1x̄1 + η0 = ψ0 and thus it is possible to recover the discrete logarithm of X1 as x̄1 := (ψ0− η0)/η1.
Using x1, B can compute the discrete log of all commitments (using the verification equation) and return
the forgery (x̄1, k̄1, . . . , k̄`).

[Hyb3i+3]
q−1
i=0 We replace the (2i+2)-th equation of the Diffie-Hellman oracle (more exactly, of the Dh,Dhalg, or Dhβchal

oracles): instead to checking that the input (X0, H, Y) satisfies Y = x0H in the group, we perform the

(stronger) check that the equation also hold for the algebraic representations, i.e., that: η̂ηηx̄0 = ψ̂ψψ.
Let Aalg be an algebraic adversary for which this hybrid is noticeably different from the previous one.
In other words, during its execution, with non-negligible probability the adversary Aalg sends a query

of the form (H[ηηη], Y[ψψψ], π)) for which π is valid and H0x0 = Y but η̂ηηx̄0 6= ψ̂ψψ. We show that Aalg can be
used to construct a PPT adversary B for the game OMDLGrGen,B(λ). Let B be the adversary that, upon
receiving as input the group description Γ , sets X0 := Target() and X1 := x1G (for x1←$Zp). (Note

that the distribution of X0 and X1 is identical to the one of the hybrids [Hyb3i+3]
q−1
i=0 .) Then, B internally

runs the adversary Aalg(Γ,X0, X1). B replies to random oracle queries in the same way as the challenger
of the hybrid Hyb1: for any query to Hs, B stores in a table the discrete logarithm of the group elements
(H0, H1) and sends them to the adversary. Queries to the other oracles are replied in the following way
(until the i-th execution):

– any query of the form Sign0(0) is handled in the following way: B sets K0 := Target(), which is still
distributed uniformly at random. The other elements are computed in the same way of the hybrid
Hyb1: C0 is computed as C0 = h0K0, and K1, C1 are part of the simulated proof:K1

C1

 = r1

 G
H1

+ e1

X1

Y

 ,
for e1, r1←$Z2

p. (Kb is distributed identically).
– For a query of the form Sign1(j, e), where e ∈ Zp is a random challenge and j identifies the j-th

session sessj that is not yet closed, B checks if the bit b used in the first round and if b = 1 it proceeds
as prescribed by the game Hyb0. Otherwise, if b = 0, the query is handled with the help of the oracle
Help of the game OMDLGrGen,B(λ): B defines eb := e − e1−b and lets rb := Help(Kb − ebX1−b).
Then, it returns (e, r). (Note that e is computed exactly as in the current hybrid and since Help
always output the correct discrete log, rb follows the same distribution of the hybrid.)

If the adversary Aalg halts before making the i-th query, then B fails returning ⊥. If, during the i-th
query, the verification equation is not valid, or if ηηηx̄0 = ψψψ, then B fails returning ⊥. Otherwise, during
the execution of the i-th Read query, B stops the execution of Aalg and attempts to compute a solution
for the game OMDLGrGen,B(λ). In other words, B has made a guess that Y = CDH(H0, X0) and η̂ηη 6= ψψψx̄0.
B completes all open sessions by sampling a random challenge ej ←$Zp and querying Sign1(j, ej), for

any open session sessj 6=⊥. At this point, it is possible to write η̂ηη, ψ̂ψψ as univariate polynomials η̃ηη, ψ̃ψψ ∈ F[x̄0]

26

(that is, as a linear combination in basis G,X0), performing another reduction step: B uses all verification
equations from the commitments of sessions left open by the adversary before its execution was stopped
and now closed, and the equation X1 = r1G. We claim that η̃ηηx̄0 − ψ̃ψψ is a nontrivial polynomial that has
at least one solution in the field Zp that is also the discrete logarithm of X0. To convince ourselves of
the above, consider the following cases:

(i) if ψ̂ψψ = ψ̃ψψ and η̂ηη = η̃ηη, then ψ̃ψψ 6= η̃ηηx̄0.10 Since H0 6= 0 then η̃ηη 6= 0 and thus η̃ηη0x − ψ̃ψψ is a polynomial of
degree at least one and at most two. Since the representation of Aalg is always valid, then whenever
Aalg wins the game then there must be a root of the above polynomial in the field that is the discrete
log of X0;

(ii) if ψ̂ψψ 6= ψ̃ψψ or η̂ηη 6= η̃ηη, it must be the case that ψ̃ψψ or η̃ηη has at least one non-zero coefficient of the

commitments of a session that was not yet closed. (The case in which ψ̃ψψ or η̃ηη has solely a non-zero

coefficient for X1 has been covered in the previous hybrid.) Thus, the representation of ψ̃ψψ, η̃ηη base
(G,X0) is given by coefficients selected uniformly at random after the execution of Aalg has stopped.
In fact, for all sessions sessj , the challenges ej are distributed uniformly at random and therefore the

partial evaluation substituting k̄j = rj − ej x̄0 leads to a trivial polynomial ψ̃ψψ − η̃ηη0x̄0 with negligible

probability 1/p. Otherwise, there must be exist a root in the field for ψ̃ψψ − η̃ηηx̄0.

Wrapping up, whenever Aalg wins at the i-th query, one of the roots η̃ηηx̄0 − ψ̃ψψ is (with overwhelming
probability) the discrete logarithm of X0. Thus B solves the polynomial in x̄0, checking that the solution

is valid by checking x0G = X0 and if it does, solves all equations k(i) = e
(i)
bi
xbi − r(i) and returns the

OMDL solution (x0, k
(0), . . . , k(`)).

[Hyb3i+4]
q−1
i=0 Similarly to the previous hybrid, we now replace the check Y = x1H1 with ψ̂ψψ = x̄1η̂ηη. Indistinguishability

w.r.t. the previous hybrid essentially follows the same argument as before.

This time, however, the adversary B for the game OMDLGrGen,B(λ) sets X0 := Target() and X1 :=
Target() and invokes the adversary Aalg(Γ, (X0, X1)). The queries to the Sign0(b), Sign1(j, e) and
Hs are handled all in the same way. At the end of the execution, B closes all open signing sessions,
samples r0←$Zp and defines r1 := Help(X1 − r0X0). Note that, differently from the previous hybrid,

now X1 is described base X0, G. This time, B works on a different polynomial η̃ηη(r0x̄0 + r1) − ψ̃ψψ, which
corresponds to the equation in the group Y = CDH(X1, H1). However, the underlying reasoning is the
same: if the probability of distinguishing this check on the i-th query is non-negligible, then B can solve
the polynomial and find a solution for the game OMDLGrGen,B(λ) with overwhelming probability.

The last hybrid is exactly the game SIMREAD1
Σ,A(λ). Therefore, the advantage of any algebraic adversary

in distinguishing the game is:

Advsimread
Σ,Aalg

(λ) ≤ q
(

3Advomdl
GrGen,B(λ) +

1

p

)
,

where q is an upper-bound on the number of queries to the read oracle.

B Proof of Theorem 2

Theorem 2. In the algebraic group model and the random oracle model, if OMDL is hard for GrGen and if
ROS is hard in dimension ` (where ` is the number of signing queries the adversary can do for each metadata
bit), then the scheme Σ[GrGen] (described in Fig. 7) is unforgeable.

Proof. We provide a proof in the algebraic group model by means of a hybrid argument:

10 We recall again that ψ̂ψψ accounts for the preliminary reduction: it is a multivariate polynomial where the unknowns
are X0, X1 and the commitments of the sessions not yet closed. On the other hand, ψ̃ψψ is a univariate with a single
unknown X0.

27

Hyb0 This is the initial unforgeability game OMUFΣ,A(λ) for the PPT adversary A. The adversary receives
as input the public paramters (X0, X1) ∈ G2 and can interact at most ` times with the signing oracle
(Sign0 and Sign1) for the same bit b ∈ {0, 1}. Additionally, it has access to a Read oracle that reads
the bit hidden from the user in a token. At the end of its execution, A outputs m signatures (ti, σi) at
least one of the following holds:
(a) A outputs ` + 1 tokens (ti, σi)i∈S (with S ⊂ [m]) that are valid and extract all to the same bit

b ∈ {0, 1};
(b) A outputs a token (ti, σi) (with i ∈ [m]) that is valid but for which the bit cannot be read successfully.

This can happen basically in two ways:
(b1) σi = (H0, H1, Y, π) with Y = x0H0 and Y = x1H1.
(b2) σi = (H0, H1, Y, π) with Y 6= x0H0 and Y 6= x1H1.

In the first hybrid, we re-state the winning condition by writing out explicitly the conditions illustrated
above.

Hyb1 In this hybrid, we replace queries to Read with their algebraic representation, using Lemma 2. More
specifically, we consider the multivariate polynomials η̂ηη0, η̂ηη1, ψ̂ψψ ∈ Zp[x̄0, x̄1, k̄1, . . . , k̄m] associated to
H0, H1 and Y , where the coefficients of x̄0, x̄1 are (respectively) the coefficients of X0 and X1 in the
algebraic representation, and k̄1, . . . , k̄m are the coefficients of the sessions not yet closed. In this hybrid,
instead of testing (in the group) xbHb = Y , for b = 0, 1, we test (in the algebraic representation) that

η̂ηηbx̄b = ψ̂ψψ. We assume also that the challenger calls SimRead on the returned tokens at the end of the
game, to have a consistent behavior during the game execution and when checking the winning condition.

Hyb2 We rule out (b1) as impossible: we replace the winning condition that enforces bits are successfully
read from valid signatures, and remove the condition (b1), that essentially checks the forged tokens read

simultaneously to both 0, and 1, that is, ψ̂ψψ = x̄0η̂ηη0 and ψ̂ψψ = x̄1η̂ηη1.
The Diffie-Hellman checks computed at the end of the game in order to read off the private metadata
can be re-written more explicitly as:
(i) if Y = Dhalg(X0, H0) and Y = Dhalg(X1, H1), then we abort. This condition is exactly the one that

in being covered in this current hybrid;
(ii) if Y = Dhalg(X0, H0) and Y 6= Dhalg(X1, H1) then we increase s0 and account the token as reading

off private metadata bit 0;
(iii) if Y = Dhalg(X1, H1) and Y = Dhalg(X0, H0) then we increase s1;
(iv) if Y 6= Dhalg(X0, H0) and Y 6= Dhalg(X1, H1) then we do nothing.
If it exists an algebraic adversary Aalg for which the winning probability in this hybrid is noticeably
larger, then it during the i-th execution of the procedure Σ.ReadBit, the challenger obtains a token such
that σi = (H0, H1, Y, π) and ψ̂ψψ = x̄1η̂ηη1 = x̄0η̂ηη0. Since the algebraic adversary Aalg always provides a

correct algebraic representation, if x̄0 | ψ̂ψψ and x̄1 | ψ̂ψψ, then x̄0x̄1 | ψ̂ψψ (recall that η̂ηη0 6= 0 and η̂ηη1 6= 0). This

is impossible, since the total degree of ψ̂ψψ is one.
Hyb3 We change Item (iv), and replace the check made using Dhalg with a check using Dh. This follows from

Lemma 2. Note that the lemma applies because we don’t need the discrete logarithm of X0 and X1 at
any point except in the calls of Sign0,Sign1, and Dh.

Hyb4 In this hybrid, we rule out (b2). If any of the tokens returned from A is such that Y 6= CDH(X0, H0),
Y 6= CDH(X1, H1), then A can distinguish this hybrid from the previous one.
Consider A is a PPT adversary that takes as input (X0, X1) ∈ G2 and outputs a token (t, (H0, H1, Y, π))
with Y 6= CDH(X0, H0), Y 6= CDH(X1, H1). We note that, in this case, π can also be seen as a forgery
for soundness of the sigma protocol for the following relation parametrized by the group description
(G, p,G):

Ror-dleq := {
(
(b, x), (X0, X1, H0, H1, Y)

)
∈ {0, 1} × Zp ×G5 :

x[G;Hb] = [Xb;Y]} .
(8)

In oder words, π can be seen as a proof for the language of all tuples (X0, X1, H1, H1, Y) ∈ G5 where
Y = CDH(X0, H0) or Y = CDH(X1, H1). Since (in this particular hybrid) we consider the case where
A outputs tokens not in the above language, then π constitutes a forgery of soundness, as Σ.Ver returns
true by winning condition. We omit here the formal definition of an interactive sigma protocol (available

28

in Cramer [Cra97]) and the soundness of its Fiat-Shamir transform (proven in Unruh [Unr17, Thm. 21]),
as they are standard tools required only for this step of the proof.
We construct the adversary B for the soundness game SNDΠor-dleq,Ror-dleq,B(λ) in the following way: upon

receiving as input a CRS, run ((X0, X1), (x0, x1))← Σ.KeyGen(crs). Then, invoke the adversary A with
the public parameters (X0, X1) and the CRS. Reply to the oracle queries Sign0, Sign1, Read exactly
as per Fig. 4, using the secret key honestly generated. At the end, the adversary A returns a token
(ti, (H0, H1, Y, π)) such that π verifies and Y 6= x0H0 and Y 6= x1H1 (by Hyb1, the probability that

ψ̂ψψ 6= x̄bη̂ηηb for b = 0, 1 and yet the corresponding equation in the group does not hold is negligible). B
outputs a statement (X0, X1, H0, H1, Y) and a proof π.11

Hyb5 We perform the reverse change of Hyb3, and replace the check in Item (iv), made using Dhalg with a
check using Dh. This follows from Lemma 2.

Hyb6 At this point, the only winning condition for the adversary is (a). We impose an additional restriction:
that the ` + 1 forgeries from the adversary A always read off the bit 0. This leads to a 1/2 loss in
advantage, and is equivalent to guessing the bit on which the forgeries are being given. To see this,
consider a challenger that samples b∗←$ {0, 1} and, if b∗ = 1, it swaps the public parameters X0, X1

and, in all oracle queries, instead of peforming them for the private metadata bit b it does so for the bit
1− b. Hence, from now on, we are going to assume that the forgeries of the adversary are on b = 0.

Hyb7 We assume that for each forgery (ti, σi), with i ∈ [`+ 1], there exists an associated random oracle query
of the form: He(K

(i),C(i),H(i), Y (i)) (where the commitments can be computed from the verification
equation). If such a query does not exist, then the challenger aborts the game and the adversary wins.
The advantage of A is at most (` + 1)/p, because it would imply that the adversary guessed correctly
the output of the random oracle for one of the forged tokens provided by the adversary.
We additionally remark that, in algebraic group model, the oracle query does not only contain the group
elements (K(i),C(i),H(i), Y (i)) but also their respective algebraic representation, i.e. a linear combination
of G, X0, X1, and the group elements sent during the ` issuance sessions.

Hyb8 Now, if some equation described below (Eq. (10)) holds, the game aborts and the adversary wins imme-

diately. For i ∈ [`+ 1], denote where σi = (H
(i)
0 , H

(i)
1 , Y (i), π(i)) the i-th (valid) signature returned from

the adversary, with π(i) = (e(i), r(i)). By the previous hybrid, remark that, for each i ∈ [` + 1] it holds

that Y (i) = CDH(H
(i)
0 , X0).

During the execution of the adversary, ` signatures are issued for each bit b = {0, 1}. We index the
transcript of the signing queries with private metadata bit b = 0 in j0, i.e.:

(K(j0),C(j0),H(j0), e(j0), r(j0)) (j0-th transcript Sign0(0))

denotes (respectively) the group elements ((K
(j0)
0 ,K

(j0)
1), (C

(j0)
0 , C

(j0)
1), (H

(j0)
0 , H

(j0)
1)) issued during the

j0-th query to Sign0(0); e(j0), r(j0) denotes the field elements provided during the respective query to

Sign1. Note that K
(j0)
0 and K

(i)
0 are different elements even when j0 = i. The former is generated by

the challenger as an answer to a Sign0(0) query while the later is generated by the adversary. We abuse
notation this way to reduce clutter of subscripts and superscripts.
Similarly, we index the transcript of the signing queries in j1 ∈ [`], i.e. the tuple:

(K(j1),C(j1),H(j1), e(j1), r(j1)) (j1-th transcript Sign0(1))

denotes the group elements issued during the j-th query to Sign0(1) and the associated responses
porovided during the relative query to Sign1. By correctness of the signing algorithm, we have that for
b ∈ {0, 1}, jb ∈ [`]: K(jb)

0

C
(jb)
0

 = r
(jb)
0

 G

H
(jb)
0

+ e
(jb)
0

 Xb

Y (jb)

 .
11 Note to the expert reader: formally, the reduction must also take into account the input token t ∈ {0, 1}λ that is

submitted by A for any query to He. However, it is trivial to construct an oracle that samples τ ∈ Zp uniformly
at random, stores the pair (t, τ) in a table for every request, and re-randomizes the challenge (and the forgery)
accordingly.

29

Let h
(jb)
0 G = H

(jb)
0 and h

(jb)
1 G = H

(jb)
1 (which are selected by the challenger after Hyb1) and x1G = X1

(which is selected by the challenger at the beginning of the game). We note that the above equation can
be formulated only base G and X0, as:

K(jb)
0

C
(jb)
0

 =



[
r

(j0)
0 G+ e

(j0)
0 X0

r
(j0)
0 h

(j0)
0 G+ e

(j0)
0 h

(j0)
0 X

(j0)
0

]
if b = 0

[
r

(j1)
0 G+ e

(j1)
0 X0

(r
(j1)
0 h

(j1)
0 + e

(j1)
0 h

(j1)
1 x

(j1)
1)G

]
if b = 1

K(jb)
1

C
(jb)
1

 =



[
(r

(j0)
1 + e

(j0)
1 x1)G

r
(j0)
1 h

(j0)
1 G+ e

(j0)
1 h

(j0)
0 X

(j0)
0

]
if b = 0

[
(r

(j1)
1 + e

(j1)
1 x1)G

(r1h1 + e
(j1)
1 h

(j1)
1 x1)G

]
if b = 1

(9)

In the above, we deliberately expressed the equation solely in term of G,X0, and replaced all other
elements with their respective discrete logarithm, which is always known by the challenger as it is the
one issuing sessions. Despite this choice might seem arbitrary, it will be useful for determining the ROS
solution.
At the end of the execution, the adversary obtains the `+1 forgeries. The commitments of those forgeries
always admit one (valid) algebraic representation in terms of the group elements of the Sign0 queries,

indexed in jb ∈ [`]. We denote with ι
(i)
jb,0

, ι
(i)
jb,1

, κ
(i)
jb,0

, κ
(i)
jb,1

the coefficients in the algebraic representation

of respectively K
(jb)
0 , K

(jb)
1 , C

(jb)
0 , C

(jb)
1 , and with ε(i), ρ(i) the coefficients of (respectively) X0 and G. It

follows that:

K
(i)
0 := ρ(i)G+ ε(i)X0 +

∑
b∈{0,1}
jb∈[`]

ι
(i)
jb,0

K
(jb)
0 + ι

(i)
jb,1

K
(jb)
1 + κ

(i)
jb,0

C
(jb)
0 + κ

(i)
jb,1

C
(jb)
1 .

In particular, using Equation (9), the coefficient of X0 is:

ε+
∑
j0∈[`]

ι
(i)
j0,0

e0
(j0)︸ ︷︷ ︸

K
(j0)
0

+κ
(i)
j0,0

e0
(j0)h

(j0)
0︸ ︷︷ ︸

C
(j0)
0

+κ
(i)
j0,1

e1
(j0)h

(j0)
1︸ ︷︷ ︸

C
(j0)
1

+
∑
j1∈[`]

ι
(i)
j1,0

e
(j1)
0︸ ︷︷ ︸

K
(j1)
0

The above representation can be uniquely determined by the algebraic representation provided by A.
The game aborts if, for all i ∈ [`+ 1]:

e
(i)
0 − ε(i) −

∑
j0∈[`]

ι
(i)
j0,0

e0
(j0) + κ

(i)
j0,0

e0
(j0)h

(j0)
0 + κ

(i)
j0,1

e1
(j0)h

(j0)
1 +

∑
j1∈[`]

ι
(i)
j1,0

e
(j1)
0 = 0 . (10)

Intuitively, this equation involves a linear combination of all the coefficients of X0 in the algebraic
representation of the commitment.
If the adversary A is able to distinguish this hybrid from the previous one, then it is possible to construct
an adversary B that solves the game ROSGrGen,B(λ) for the modulus p = |G|. The adversary B takes as
input the entire group description Γ = (G, G, p), identifying a cyclic group G of prime order p, and a
generator G ∈ G.
The adversary B generates the public parameters X0 = x0G and X1 = x1G, storing aside their dis-
crete logarithm. Then, it internally runs the adversary A(Γ, (X0, X1)). For any query to the signing
oracles Sign0, Sign1, it computes the commitments and the responses honestly, as described in Σ.Sign0

30

and Σ.Sign1. For any query to the random oracle Hs, it returns two group elements, while storing
their respective discrete logarithm as done in Lemma 2. Queries to the random oracle He of the form
He(Y,H0, H1,K0,K1, C0, C1, t) are responded in the following way. B checks if Y 6= CDH(H1, X1). This
can be computed because B knows the discrete logarithm of X1, and intuitively this case will capture
all queries where [K1;C1] are being simulated. If Y = x1H1, the adversary returns a random element.
Otherwise, if Y 6= CDH(H1, X1), define:

M =

 G X1

H1 Y

 ,
and consider the verification equation that would be associate to this query as a system of linear equations,
i.e.  G X1

H1 Y

r∗1
e∗1

 =

K1

C1

 (11)

Clearly (r∗1 , e
∗
1) are not provided to the challenger, but they exist and are unique, since the matrix has

full rank (G is not the identity element, and the columns are linearly independent as Y 6= CDH(H1, X1)).
Since B has access to the group representation of each of the elements in the matrix (as we are in the
algebraic group model A will always provide valid algebraic representations in the group elements sent by
B, of which B knows the discrete logarithm). Therefore, it is possible for B to invert the matrix associated
to the discrete log of M , and compute the solution (r∗1 , e

∗
1). Then, it replies to the random oracle query

χ = (Y,H0, H1,K0,K1, C0, C1, t) with:

He(χ) = HROS((ιj0,0)j0∈[`], χ) + ε+ e∗1 +∆−Θ (12)

where:
Θ :=

∑
j0∈[`]

ιj0,0e
(j0)
1

∆ :=
∑
j0∈[`]

κ
(i)
j0,0

e
(j0)
0 h

(j0)
0 + κ

(i)
j0,1

e
(j0)
1 h

(j0)
1 +

∑
j1∈[`]

ι
(i)
j1,0

e
(j1)
0

If the query is performed before the completion of the ` signing sessions, the coefficients of the algebraic
representation are implicitly set to 0. Intuitively, Θ accounts for the simulated part in the i-th token,
and ∆ accounts for all terms which do not contribute into the ROS solution.
At the end of the game, the adversary outputs with non-negligible probability ` + 1 tuples, such that
Eq. (10) is satisfied. This implies that

0 = e
(i)
0 − ε−

(∑
j0∈[`]

ι
(i)
j0,0

e0
(j0) + κ

(i)
j0,0

e0
(j0)h

(j0)
0 + κ

(i)
j0,1

e1
(j0)h

(j0)
1 +

∑
j1∈[`]

ι
(i)
j1,0

e
(j1)
0

)

= (e(i) − e(i)
1)− ε−

∆+
∑
j0∈[`]

ι
(i)
j0,0

e
(j0)
0

 (capture known terms)

= e(i) − e(i)
1 − ε−

∆−Θ +
∑
j0∈[`]

ι
(i)
j0,0

e(j0)

 (add and remove Θ)

= HROS((ι
(i)
j0,0

)j0∈[`], χ
(i))−

∑
j0∈[`]

ι
(i)
j0,0

e(j0) (substitute Eq. (12))

where χ(i) is the input to the oracle He that matches the i-th token. Hence the tuple:(
((ι

(i)
j0,0

)
j0∈[`]

, χ(i))
i∈[`+1]

, (e(j0))j0∈[`]

)

31

constitutes a valid ROS solution, and B returns this tuple.
Hyb9 Finally, we rule out (a) with a reduction to the OMDL problem. In other words, for any algebraic

adversary A that outputs ` + 1 valid signatures, all reading private metadata bit b = 0 is possible to
construct an adversary B that wins OMDL every time A wins Hyb8.
B receives as input the group description, and invokes X ← Target(). Then, it constructs the public
parameters (X0 := X,X1 := x1G) and invokes A with the same arguments. For any query to Sign0(0),
B constructs Kb := Target() and C0 = h0K0, and K1, C1 are generated honestly as per Σ.Sign. For any
query to Sign1, the adversary B computes the response r0 := Help(K0− e0X), while e1, r1 are returned
as per Sign1. The rest of the protocol flows in the same way: H0, H1 are computed programming the
random oracles responses in Hs, and storing their respective discrete log. Once A returns `+ 1 forgeries,
B finds the first pair of indices i∗ for which Eq. (10) is not satisfied, and recovers the discrete logarithm

for X, x∗ ∈ Zp. B considers the algebraic representation of the forged commitments K
(i)
0 :

K
(i)
0 := ρ(i)G+ ε(i)X0 +

∑
b∈{0,1}
jb∈[`]

ι
(i)
jb,0

K
(jb)
0 + ι

(i)
jb,1

K
(jb)
1 + κ

(i)
jb,0

C
(jb)
0 + κ

(i)
jb,1

C
(jb)
1 .

(13)

Because the signatures verify, K
(i)
0 must also satisfy the following equation:

K
(i)
0 = r

(i)
0 G+ e

(i)
0 X . (14)

By substitution (plugging equations Eq. (9) and Eq. (14) into Eq. (13)), we obtain that the discrete log
x∗ of X. Finally, B recovers the discrete logarithm for all the commitments Kj0,0 obtained via Target

by setting k∗j0,0 := e
(j0)
0 x∗ + r

(j0)
0 for each j0 ∈ [`], corresponding to the verification equation for the key

X0 used to sign the tokens. B returns the OMDL solution (k∗b0 , . . . , k
∗
b`−1

, x∗). Since the algebraic group
representation provided by the adversary is always correct, then the solution is a valid OMDL solution.

At this point, we are left with a security experiment that always returns zero, independently from the
adversary. It follows that the advantage of A in winning the OMUFA,Σ(λ) is negligible.

C Proof of Theorem 3

Theorem 3. In the algebraic group model and the random oracle model, if DDH is hard for GrGen, then
the scheme Σ[GrGen] (described in Fig. 7) is unlinkable.

Proof. Instead of proving that for any PPT adversary A it exits an extractor Ext that can recover the private
metadata bit, we prove the stronger statement that there exists, in the algebraic group model, an extractor
Ext for any PPT adversary A.

Let Ext be the extractor that, given as input the public parameters (X0[x0], X1[x1]) together with their
algebraic representation (that is, the discrete log x0, x1), and the token (t, (H0[ηηη0], H1[ηηη1], Y[ψψψ], π)), it checks
if Y = x0H0 or Y = x1H1 and returns the only bit for which it is satisfied (otherwise ⊥). Since the algebraic
representation is always correct, the extractor always recovers the correct bit, independently from the PPT
adversary.

Additionally, the extractor Ext is independent from the adversary, which allows us to prove an even
stronger formulation of unlinkability. Our proof proceeds by means of a hybrid argument:

Hyb1 This is the original game UNLINK0
Σ,A,`(λ). The adversarial issuer takes as input the CRS and interacts

with the user multiple times. For any query to the oracle Chal(i0, i1) made by the adversary, the
challenger completes the session sessi0 and sessi1 and returns the respective tokens (in this order),
provided that they are both for the same private metadata bit. At the end of its execution, it returns a
guess β′ and wins if β′ = 0.

32

Hyb2 In this game, we replace the random oracle He in the oracle User0: we sample e←$Zp uniformly at
random and independently from t ∈ {0, 1}λ and we program the random oracle He accordingly for the
value e. We do so even if the value was already queried. The adversary has negligible advantage in
distinguishing this hybrid from Hyb1: for an adversary A that makes qe queries to the oracle He and q
queries to User0 the advantage in distinguishing is:∣∣∣AdvHyb1

Σ,A (λ)− AdvHyb2

Σ,A (λ)
∣∣∣ ≤ q∏

i

(
1− i

p

)
+
qqe
p

Hyb3 We now impose an additional condition on the game: if Y = x0H0 = x1H1, we immediately abort
the game and return 1. Since H0 and H1 are distributed uniformly at random, this happens only if
H1 = x0x

−1
1 H0, that is with probability 1/p. For an adversary making at most q queries to the random

oracle Hs, the advantage in distinguishing this hybrid from Hyb2 is:∣∣∣AdvHyb2

Σ,A (λ)− AdvHyb3

Σ,A (λ)
∣∣∣ ≤ q

p

Hyb4 We impose yet another additional condition: in the oracle User1, if Y 6= x0H0 and Y 6= x1H1, we
immediately abort the game and return 1. If there exists an algebraic adversary A for which the output
of this hybrid is noticeably different than the previous hybrid, then it is possible to construct an adversary
B for soundness of the following sigma protocol:

Πor-dleq := PoK{(b, x) : xb[G;Hb] = [Xb;Y]}

Let B be the adversary that internally invokes Aalg on the crs received as input, and provides the same
oracles of Hyb3, and invokes the adversary Aalg providing as input crs. During the (single) query to Init,
B stores the public parameters, and in particular (X0, X1) with their algebraic representation (i.e. their
discrete log x0, x1). If no query to Init is made during the execution of Aalg, B returns ⊥. If, during the
execution of A, there exists a query to the oracle User1 such that σ = (H0, H1, Y, π) and Y 6= x0H0,
Y 6= x1H1, then B returns the forged statement (X0, X1, H0, H1, Y) together with the forged proof π.12

Hyb5 In this hybrid, we now compute directly Y , setting Y := xbH
′
b, where b ∈ {0, 1} is the integer extracted by

Ext. Such integer exists and it is unique: in fact, in the let b ∈ {0, 1} be the integer such that Y = xbHb.
Such a b exists and is unique, because in Hyb4 we removed the possibility that x0H0 6= Y 6= x1H1

(hence it exists) and in Hyb3 that Y = x0H0 = x1H1 (hence it is unique). This hybrid is perfectly
indistinguishable from the previous one, since the extractor (and, in turn, the algebraic representation
of Aalg) is always correct.

Hyb6 We now sample H0 and H1 uniformly at random ourselves. This hybrid is indistinguishable by DDH.

Hyb6 is entirely independent from the messages of the adversary, hence the protocol Σ is unlinkable.

12 A similar argument was presented in Page 29.

33

	Publicly verifiable anonymous tokens with private metadata bit
	Introduction
	Contributions
	Overview
	Roadmap

	Preliminaries
	Notation
	Assumptions

	Anonymous Tokens
	Public-key anonymous tokens
	Unforgeability
	Unlinkability
	Private metadata bit

	Our construction
	Correctness
	A useful lemma
	Privacy of the metadata bit
	Unforgeability
	Unlinkability

	Clause protocol
	Privacy of the metadata bit
	Unlinkability
	Unforgeability

	Proof of lemma:simread
	Proof of thm:bsms-omuf
	Proof of thm:bsms-unlink

