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Abstract. This paper proposes the first practical pairing-free three-move blind signature schemes that
(1) are concurrently secure, (2) produce short signatures (i.e., three or four group elements/scalars),
and (3) are provably secure either in the generic group model (GGM) or the algebraic group model
(AGM) under the (plain or one-more) discrete logarithm assumption (beyond additionally assuming
random oracles). We also propose a partially blind version of one of our schemes.

Our schemes do not rely on the hardness of the ROS problem (which can be broken in polynomial
time) or of the mROS problem (which admits sub-exponential attacks). The only prior work with these
properties is Abe’s signature scheme (EUROCRYPT ’02), which was recently proved to be secure in
the AGM by Kastner et al. (PKC ’22), but which also produces signatures twice as long as those from
our scheme.

The core of our proofs of security is a new problem, called weighted fractional ROS (WFROS), for
which we prove (unconditional) exponential lower bounds.

1 Introduction

Blind signatures [Cha81] allow a user to interact with a signer to produce a valid signature that cannot be
linked back by the signer to the interaction that produced it. Blind signatures are used in several applications,
such as e-cash systems [Cha81, CFN90], anonymous credentials (e.g., [CL04]), privacy-preserving ad-click
measurement [PCM], and various forms of anonymous tokens [HIP`21, Tru]. They are also covered by an
RFC draft [DJW21].

This paper develops the first practical pairing-free three-move blind signature schemes that (1) are
concurrently secure, (2) produce short signatures (i.e., three or four group elements/scalars), and (3) are
provably secure either in the generic group model (GGM) [Sho97, Mau05] or in the algebraic group model
(AGM) [FKL18] under the discrete logarithm (DL) or the one-more discrete logarithm (OMDL) assump-
tion (in addition to assuming random oracles [BR93]). Our DL-based scheme also admits a partially blind
version [AF96], roughly following a paradigm by Abe and Okamoto [AO00], that targets applications where
signatures need to depend on some public input (e.g., an issuing date) known to the signer. An overview of
our schemes is given in Table 1.

Unlike blind Schnorr [CP93], Okamoto-Schnorr [PS00], and other other generic constructions based
on identification schemes [HKL19], we do not rely on the hardness of the ROS problem, for which a
polynomial-time attack has recently been presented [BLL`21]. Also, unlike Clause Blind Schnorr (CBS)
signatures [FPS20], we do not rely on the assumed hardness of the mROS problem, which is subject to
(mildly) sub-exponential attacks and we can thus support smaller group sizes.1 In fact, our schemes all
admit tight bounds, and this suggests that they can achieve pλ{2q-bit of security on λ-bit elliptic curves,
supporting an instantiation with 256-bit curves. Our security proofs rely on a reduction to a new variant
of the ROS problem, called weighted fractional ROS (WFROS), for which we prove an exponential, uncon-
ditional lower bound. Therefore, another benefit over CBS, beyond concrete parameters, is that we do not
need to rely on an additional assumption.

1 The best known attack against mROS [FPS20] runs in time 2``logp``1q`λ{p1`logp``1qq, where λ is the security
parameter and ` corresponds to the number of concurrent sessions. The worst ` gives a 2Opλ{ log λq attack, and in
practice, this suggests a choice of λ “ 512 to achieve 128-bit security for all `’s.



Scheme PK size Sig. size Assumption Communication

BS1 (Section 4) 1 G 3 Zp GGM 2 G + 3 Zp
BS2 (Appendix C) 1 G 4 Zp OMDL 2 G + 4 Zp
BS3 (Section 5.1) 2 G 4 Zp DL 2 G + 4 Zp
PBS (Section 6) 1 G 4 Zp DL 2 G + 4 Zp

Blind Schnorr [FPS20] 1 G 2 Zp OMDL + ROS 1 G + 2 Zp
Clause Blind Schnorr [FPS20] 1 G 2 Zp OMDL + mROS 2 G + 4 Zp

Abe [Abe01, KLRX22] 3 G 2 G + 6 Zp DL λ bits + 3 G + 6 Zp

Table 1. Overview of our results. The four schemes proposed in this paper compared to pairing-free schemes
that admit GGM/AGM security proofs in the literature. All schemes are three-move and secure assuming the ROM;
All schemes except BS1 admit AGM security proofs; further p “ |G|. As in plain Schnorr signatures, most schemes
allow replacing one element in Zp with a group element in the signature. The ROS assumption can be broken in
polynomial time unless the scheme is restricted to tolerate only a very small number of sessions. Also, the mROS
assumption admits sub-exponential attacks, which require the choice of a larger order p over all schemes (roughly
512-bit for 128-bit security [FPS20]).

Perhaps as a testament of the unsatisfactory status of pairing-free schemes, the only other scheme known
to achieve exponential, concurrent, security is Abe’s scheme [Abe01]. Although its original (standard-model)
proof was found to be flawed, proofs were then given both in the GGM [OA03] and the AGM [KLRX22], along
with a proof for the restricted setting of sequential security [BL13]. Still, it produces longer signatures and
public keys, and is overall less efficient. Also, it only offers computational blindness (under DDH), whereas
our scheme provides perfect blindness.

Discrete-Logarithm based blind signatures. We stress that our focus here is making pairing-free
schemes as practical and as secure as possible. Indeed, very simple pairing-based blind signature schemes
in the ROM can be obtained from BLS signatures [BLS01, Bol03]. Blind BLS offers a different trade-off:
signatures are short (i.e., one group element) and signing requires only two moves, but signature verifica-
tion requires a more expensive (and more complex) pairing evaluation. Indeed, the current blind signature
RFC draft [DJW21] favors RSA over BLS, also due to lesser availability of pairings implementations. In
particular, several envisioned applications of blind signatures are inherently browser-based, and the available
cryptographic libraries (e.g., NSS for Firefox and BoringSSL for Chrome) do not yet offer pairing-friendly
curve implementations.

In contrast, (non-blind) Schnorr signatures [Sch90, Sch91] (such as EdDSA [BDL`12]) are short, can rely
on standard libraries, and outperform RSA. Though their blind evaluation requires three rounds, this may be
less concerning in applications where verification cost is the dominating factor and the signing application
can easily keep state. Indeed, [DJW21] identifies CBS as the only plausible alternative to RSA, and our
schemes improve upon CBS by avoiding the mROS assumption. Once the group order is adjusted to resist
sub-exponential attacks, we achieve comparable signature size, more efficient signing, and accommodate for
partial blindness. (No partially blind version of CBS is known to the best of our knowledge.)

Finally, note that it is easier to prove security of pairing-free schemes under sequential access to the
signer. For example, Kastner et al. [KLRX22] prove that plain blind Schnorr signatures are secure in this
case, in the AGM, assuming the hardness of OMDL. Also, Baldimtsi and Lysyanskaya [BL13] (implicitly)
prove sequential security of Abe’s scheme. However, many applications, like PCM, easily enable concurrent
attacks.

On ideal models. The use of the AGM or the GGM, along with the ROM, still appears necessary for the
most practical pairing-free schemes with concurrent security. As of now, solutions solely assuming the ROM
can only handle bounded concurrency [HKL19] or, alternatively, their communication and computation costs
grow with the number of signing sessions [KLR21, CAL22, WHL22].

A number of other schemes [GRS`11, BFPV13, GG14, FHS15, FHKS16, Gha17, KNYY21] partially or
completely avoid ideal models, some of which are fairly practical. However, they do not yet appear suitable
for at-scale deployment.

2



1.1 A Scheme in the GGM

Our simplest scheme only admits a proof in the generic-group model (GGM) but best illustrates our ideas, in
particular, how we bypass ROS-style attacks. It is slightly less efficient than Schnorr signatures, i.e., a signa-
ture that consists of three scalars mod p (or alternatively, two scalars and a group element). Nonetheless, it
has a very similar flavor (in particular, signature verification can be built on top of a suitable implementation
of Schnorr signatures in a black-box way).

Preface: Blind Schnorr Signatures and ROS. Recall that we seek an interactive scheme (1) that
is one-more unforgeable (i.e., no adversary should be able to generate ` ` 1 signatures by interacting only
` times with the signer), and (2) for which interaction can be blinded. It is helpful to illustrate the main
technical barrier behind proving (1) for interactive Schnorr signatures. Recall that the verification key is
X “ gx for a generator g of a cyclic group G of prime order p, and a signing key x. The signer starts the
session by sending A “ ga, for a random a P Zp. Then, the user sends a challenge c “ HpA,mq for a hash
function H and a message m to be signed. Finally, the signer responds with s “ a` c ¨ x, and the signature
is σ “ pc, sq.

Let us now consider an adversary that obtains ` initial messages A1, . . . , A` from the signer, where
Ai “ gai . By solving the so-called ROS problem [Sch01, HKL19, FPS20], the attacker can find `` 1 vectors
~α1, . . . , ~α``1 P Z`p and a vector pc1, . . . , c`q P Z`p such that

ÿ̀

j“1

α
pjq
i ¨ cj “ c˚i (1)

for all i P r` ` 1s, where c˚i “ Hp
ś`
j“1A

α
pjq
i
j ,m˚i q, for some message m˚i P t0, 1u

˚. (Here, α
pjq
i is the j-th

component of ~αi.) Then, the attacker can obtain sj “ aj ` cjx from the signer for all j P r`s by completing
the ` signing sessions. It is now easy to verify that pc˚i , s

˚
i q is a valid signature for m˚i for all i P r``1s, where

s˚i “
ř`
j“1 α

pjq
i ¨ sj . Benhamouda et al. [BLL`21] recently gave a simple polynomial-time algorithm to solve

the ROS problem for the case ` ą logppq, which thus breaks one-more unforgeability.2

Fuchsbauer et al. [FPS20] propose a different interactive signing process for Schnorr signatures that is
one-more unforgeable (in the AGM + ROM) assuming that a variant of the ROS problem, called mROS, is
hard. The mROS problem, however, admits sub-exponential attacks, and as it gives approximately only 70
bits of security from an implementation on a 256-bit curve, it effectively forces the use of 512-bit curves.3

Our first scheme. We take a different path which completely avoids the ROS and mROS problems to
obtain our first scheme, BS1. Again, we present a non-blind version – the scheme can be made blind via
fairly standard tricks, as we explain in the body of the paper below. Again, the public key is X “ gx for a
secret key x. Then, the signer and the user engage in the following protocol to sign m P t0, 1u˚:

1. The signer sends A “ ga and Y “ Xy for random a, y P Zp.
2. The user responds with c “ HpA, Y,mq
3. The signer returns a pair ps, yq, where s “ a` cxy.
4. The user accepts the signature σ “ pc, s, yq iff gs “ A ¨ Y c and Y “ Xy.

Verification simply checks that HpgsX´yc, Xy,Mq “ c. In particular, note that pc, sq is a valid Schnorr
signature with respect to the public-key Xy – this can be leveraged to implement the verification algorithm
on top of an existing implementation of basic Schnorr signatures that also hash the public key (EdDSA does
exactly this).4 Further, as in Schnorr signatures, we could replace c with A in σ, and our results would be
unaffected.
2 Many envisioned implementations allow for ` ą logppq. Still, is worth noting that the scheme retains some security

for ` ă logppq even in the standard model [HKL19].
3 mROS depends on a parameter `, with a similar role as in ROS – sub-exponential attacks require ` ă logppq, but

a one-more unforgeability attack for a small ` implies one for any `1 ą ` simply by generating p`1 ´ `q additional
valid signatures.

4 Note that this only superficially resembles key-blinding for Schnorr signatures [Hop13]. Here, the “blinding” y is
actually public and part of the signature.
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Security intuition. To gather initial insights about the security of BS1, it is instructive to attempt an
ROS-style attack. The attacker opens ` sessions and obtains pairs pA1, Y1q, . . . , pA`, Y`q, where Ai “ gai and
Yi “ Xyi “ gxyi for all i P r`s. One natural extension of the ROS attack is to find `` 1 vectors ~αi P Z`p along
with messages m˚1 ,m

˚
2 , . . . P t0, 1u

˚ such that

c˚i “ H

˜

ź̀

j“1

A
α
pjq
i
j ,

ź̀

j“1

Y
α
pjq
i

j ,m˚i

¸

for all i P r`` 1s and then find pc1, . . . , c`q P Z`p such that

ÿ̀

j“1

α
pjq
i ¨ yj ¨ cj “ c˚i ¨

ÿ̀

j“1

α
pjq
i ¨ yj , (2)

for all i P r` ` 1s. Indeed, if this succeeded, the adversary could complete the ` sessions to learn psj , yjq by
inputting cj , where yj is random and sj “ aj ` cj ¨ x ¨ yj . One could generate `` 1 signatures pc˚i , s

˚
i , y

˚
i q for

i P r`` 1s by setting s˚i “
ř`
j“1 α

pjq
i sj and y˚i “

ř`
j“1 α

pjq
i ¨ yj . These would be valid because

gs
˚
i “ g

ř`
j“1 α

pjq
i paj`cjxyjq

“
ź̀

j“1

A
α
pjq
i
j ¨X

ř`
j“1 α

pjq
i cjyj (2)

“
ź̀

j“1

A
α
pjq
i
j ¨

˜

ź̀

j“1

Y
α
pjq
i

j

¸c˚i

.

However, finding pc1, . . . , c`q that satisfy (2) for ``1 i’s simultaneously is much harder than ROS. An initial
intuition here is that Xy completely hides y to the point where y is revealed later in the session, where it
appears like a random and fresh weight in the sum, independent of ci. This intuition is however not correct,
as an attacker can use the group element Xy and can try to gain information about y, but our proof will
show (among other things) that in the GGM no useful information is obtained about y, and y is (close to)
uniform when it is later revealed.

The WFROS problem. The above attack paradigm is in fact generalized in terms of a new ROS-like
problem that we call WFROS (this stands for Weighted Fractional ROS), for which we prove an unconditional
lower bound. WFROS considers a game with two oracles that can be invoked adaptively in an interleaved
way:

- The first oracle, H, accepts as input a pair of vectors ~α, ~β P Z2``1
p , which are then associated with a

random δ P Z˚p .
- The second oracle, S, allows to bind, for some i P r`s, chosen input ci P Zp with a random weight yi P Z˚p .

During the course of the game, this latter oracle must be called exactly once for each i P r`s.

The adversary finally commits to a subset of `` 1 prior H queries and wins if for each query in the subset,
which has defined a pair of vector ~α, ~β and returned δ, we have A{B “ δ, where

A “ αp0q `
ÿ

iPr`s

yipα
p2i´1q ` ci ¨ α

p2iqq , B “ βp0q `
ÿ

iPr`s

yipβ
p2i´1q ` ci ¨ β

p2iqq .

Here, vpiq denotes the i-th component of vector ~v. Our main result (Theorem 1) says that no adversary
making QH queries to H can win this game with probability better than pQ2

H ` 2`QHq{pp´ 1q, or, in other
words, QH ě mint

?
p, p{`u is needed to win with constant probability. Note that ` !

?
p is generally true,

as for our usage, ` is bounded by the number of signing sessions.
Our GGM proof for BS1 transforms any generic attacker into one breaking the WFROS problem. This

transformation is actually not immediate because a one-more unforgeability attacker can learn functions of
the secret key x when obtaining the second message from the signer. A similar challenge occurs in proving
hardness of the OMDL problem in the GGM, which was recently resolved by Bauer et al. [BFP21], and we
rely on their techniques.
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1.2 AGM Security and Partial Blindness

The Algebraic Group Model (AGM) [FKL18] can begin seen as a weaker idealization than the GGM. In
particular, AGM proofs deal with actual groups (as opposed to representing group elements with random
labels) and proceed via reductions that apply only to “algebraic adversaries”, which provide representation
of the group elements they output to the reduction. AGM has become a very popular model for validating
security of a number of practical group-based protocols.

The main barrier to proving one-more unforgeability of BS1 in the AGM is that the representation of
Xy could leak some information about y that would not be available in the GGM, and thus we would not
be able to apply our argument showing that y is still (close to) random looking when it is later revealed –
our reduction in the GGM security proof crucially relies on this. To overcome this issue, for the two schemes
BS2 and BS3, we replace Xy with a hiding commitment to y. In particular, we propose two different ways of
achieving this:

Scheme BS2. Here, Xy is replaced by gtXy. Later, the signer responds to challenge c with ps, y, tq, where
s “ a` c ¨ y ¨ x. A signature is σ “ pc, s, y, tq.

Scheme BS3. Here, gtXy is replaced by gtZy, where Z is an extra random group element included in the
verification key.

We consider BS2 mostly for pedagogical reasons. Indeed, we can prove security of BS3 in the AGM based
solely on the discrete logarithm problem (DL). In contrast, BS2 relies on the hardness of the (stronger)
one-more DL problem (OMDL) [BNPS03], which asks for the hardness of breaking `` 1 DL instances given
access to an oracle that can solve at most ` (adaptively chosen) DL instances. While we know that OMDL
is generally not easier than DL [BFP21], a prudent instantiation may prefer relying on the (non-interactive)
DL problem. While BS3 requires a longer key, one could mitigate this by obtaining Z as the output of a hash
function (assumed to be a random oracle) evaluated on some public input.

The proof of security for both schemes consists of showing that any adversary breaking one-more un-
forgeability can be transformed into one breaking either OMDL or DL (depending on the scheme) or into
one breaking the WFROS problem. For the latter, however, we can resort to our unconditional hardness
lower bound (Theorem 1).

Adding Partial Blindness.Finally, we note that it is not too hard to add partial blindness to BS3, which
is another reason to consider this scheme. In particular, to obtain the resulting PBS scheme, we can adopt
a framework by Abe and Okamoto [AO00]. The main idea is simply to use a hash function (modeled as a
random oracle) to generate the extra group element Z in a way that is dependent on a public input upon
which the signature depends. We target in particular a stronger notion of one-more unforgeability, which
shows that if the protocol is run ` times for a public input, then no ``1 signatures can be generated for that
public input regardless of how many signatures have been generated for different public inputs. We defer
more detail to Section 6.

Outline of the Paper

Section 2 will introduce some basic preliminaries. Section 3 will then introduce the WFROS problem, and
prove a lower bound for it. We will then discuss our GGM-based scheme in Section 4, whereas variants secure
in the AGM are presented in Section 5. Finally, we give a partially blind instantiation of our AGM scheme
in Section 6.

2 Preliminaries

Notation. For positive integer n, we write rns for t1, . . . , nu. We use λ to denote the security parameter.
We use G to denote an (asymptotic) family of cyclic groups G :“ tGλuλą0, where |Gλ| ą 2λ. We use gpGλq
to denote the generator of Gλ, and we will work over prime-order groups. We tacitly assume standard group
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Game OMUFA
BSpλq :

par Ð BS.Setupp1λq
psk, pkq Ð BS.KGpparq
sid Ð 0; `Ð 0; Ifin ÐH

tpm˚k , σ
˚
k qukPr``1sÐ$ AS1,S2ppkq

If D k1 ‰ k2 such that pm˚k1 , σk1q “ pm
˚
k2
, σk2q

then return 0
If D k P r`` 1s such that BS.Verppk, σk,m

˚
k q “ 0

then return 0
Return 1

Oracle S1 :
sid Ð sid` 1
pstssid,msg1q Ð BS.S1pskq
Return psid,msg1q

Oracle S2pi, ciq :
If i R rsidszIfin then return K
msg2 Ð BS.S2pst

s
i , ciq

Ifin Ð Ifin Y tiu
`Ð `` 1
Return msg2

Fig. 1. The OMUF security game for a blind signature scheme BS.

operations can be performed in time polynomial in λ in Gλ and adopt multiplicative notation. We will often
compute over the finite field Zp (for a prime p) – we usually do not write modular reduction explicitly when
it is clear from the context. We write Z˚p “ Zpzt0u. We often need to consider vectors ~α P Z`p and usually

refer to the i-th component of ~α as αpiq P Zp.
Blind signatures. This paper focuses on three-move blind signature schemes, and our notation is similar
to that of prior works (e.g., [HKL19, FPS20]). Formally, a (three-move) blind signature scheme BS is a tuple
of efficient (randomized) algorithms

BS “ pBS.Setup,BS.KG,BS.S1,BS.S2,BS.U1,BS.U2,BS.Verq ,

with the following behavior:

- The parameter generation algorithm BS.Setupp1λq outputs a string of parameters par, whereas the key
generation algorithm BS.KGpparq outputs a key-pair psk, pkq, where sk is the secret (or signing) key and
pk is the public (or verification) key.

- The interaction between the user and the signer to sign a message m P t0, 1u˚ with key-pair ppk, skq is
defined by the following experiment:

psts,msg1q Ð BS.S1pskq , pst
u, chlq Ð BS.U1ppk,msg1,mq ,

msg2 Ð BS.S2pst
s, chlq , σ Ð BS.U2pst

u,msg2q .
(3)

Here, σ is either the resulting signature or an error message K.
- The (deterministic) verification algorithm outputs a bit BS.Verppk, σ,mq.

We say that BS is (perfectly) correct if for every message m P t0, 1u˚, with probability one over the sampling
of parameters and the key pair ppk, skq, the experiment in (3) returns σ such that BS.Verppk, σ,mq “ 1. All
of our schemes are going to be perfectly correct.

One-more unforgeability.The standard notion of security for blind signatures is one-more unforgeability
(OMUF). OMUF ensures that no adversary playing the role of a user interacting with the signer ` times,
in an arbitrarily concurrent fashion, can issue ` ` 1 signatures (or more, of course). The OMUFA

BS game
for a blind signature scheme BS is defined in Figure 1. The corresponding advantage of A is defined as
Advomuf

BS pA, λq :“ PrrOMUFA
BSpλq “ 1s. All of our analyses will further assume one or more random oracles,

which are modeled as an additional oracle to which the adversary A is given access.

Blindness. We also consider the standard notion of blindness against a malicious server that can, in par-
ticular, attempt to publish a malformed public key. The corresponding game BlindA

BS is defined in Figure 2,

and for any adversary A, we define its advantage as Advblind
BS pA, λq :“

ˇ

ˇ

ˇ
PrrBlindA

BSpλq “ 1s ´ 1
2

ˇ

ˇ

ˇ
. We say the

scheme is perfectly blind if and only if Advblind
BS pA, λq “ 0 for any A and all λ.
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Game BlindA
BSpλq :

par Ð BS.Setupp1λq
bÐ$ t0, 1u; b0 Ð b; b1 Ð 1´ b
b1Ð$ AInit,U1,U2pparq
If b1 “ b then return 1
Return 0

Oracle Initpp̃k, m̃0, m̃1q :
sess0 Ð init

sess1 Ð init

pk Ð p̃k
m0 Ð m̃0; m1 Ð m̃1

Oracle U1pi,msgpiq1 q :
If i R t0, 1u or sessi ‰ init then return K
sessi Ð open

pstui , chl
piq
q Ð BS.U1ppk,msgpiq1 ,mbiq

Return chlpiq

Oracle U2pi,msgpiq2 q :
If i R t0, 1u or sessi ‰ open then return K
sessi Ð closed

σbi Ð BS.U2pst
u
i ,msgpiq2 q

If sess0 “ sess1 “ closed then
If σ0 “ K or σ1 “ K then return pK,Kq
Return pσ0, σ1q

Return pi, closedq

Fig. 2. The Blind security game for a blind signature scheme BS.

Game WFROSA
`,p :

hid Ð 0; Ifin ÐH

J Ð AH,S
ppq

If J Ę rhids or |J | ď ` or Ifin ‰ r`s then
Return 0

For each j P J ,
Aj Ð α

p0q
j `

ř

iPr`s yipα
p2i´1q
j ` ci ¨ α

p2iq
j q

Bj Ð β
p0q
j `

ř

iPr`s yipβ
p2i´1q
j ` ci ¨ β

p2iq
j q

If @j P J : pAj “ δjBj ^ Bj ‰ 0q then
Return 1

Return 0

Oracle Hp~α, ~βq :
hid Ð hid` 1
~αhid Ð ~α; ~βhid Ð ~β
δhid Ð$ Z˚p
Return δhid, hid

Oracle Spi, ciq :
If i R r`szIfin then return K
yiÐ$ Z˚p
Ifin Ð Ifin Y tiu
Return yi

Fig. 3. The WFROS problem. Here, ~α, ~β P Z2``1
p , which is indexed as ~α “ pαp0q, . . . , αp2`qq and ~β “ pβp0q, . . . , βp2`qq.

Game-playing proofs. Several of our proofs adopt a lightweight variant of the standard “Game-Playing
Framework” by Bellare and Rogaway [BR06].

3 The Weighted Fractional ROS Problem

This section introduces and analyzes an unconditionally hard problem underlying all of our proofs, which
we call the Weighted Fractional ROS problem (WFROS). It is a variant of the original ROS problem [Sch01,
HKL19, FPS20], which, in turn, stands for Random inhomogeneities in a Overdetermined Solvable system
of linear equations. While ROS can be solved in polynomial time [BLL`21] and its mROS variant can be
solved in sub-exponential time [FPS20], we are going to prove an exponential lower bound for WFROS.

The WFROS problem. The problem is defined via the game WFROSA
`,p, described in Figure 3, which

involves an adversary A and depends on two integer parameters ` and p, where p is a prime. The adversary
here interacts with two oracles, H and S. The first oracle allows the adversary to link a vector pair ~α, ~β P Z2``1

p

with a random inhomogeneous part δ P Z˚p – each such query defines implicitly an equation A{B “ δ in the
unknowns C1, . . . ,C` and Y1, . . . ,Y`. A call to Spi, ciq lets us set the value of Ci to ci and set Yi to a random
value yi. The second oracle Spi, ¨q must be called once for every i P r`s. It is noteworthy to stress that the
ci’s can be chosen arbitrarily, whereas the corresponding yi’s are random and independent.
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In the end, the adversary wins the game if a subset of ``1 equations defined by the H queries is satisfied
by the assignment defined by querying S. In particular, we define

Advwfros
`,p pAq “ Pr

“

WFROSA
`,p “ 1

‰

. (4)

Note that it would be possible to carry out some of the following security proofs using restricted versions of
the WFROS game, but the above formulation lets us handle all schemes via a single notion.

A Lower Bound for WFROS. The following theorem, our main result on WFROS, shows that any
adversary winning WFROS with constant probability requires QH “ Ωpmint

?
p, p{`uq queries. (Also, note

that all applications of interest assume ` !
?
p.)

Theorem 1 (Lower bound for WFROS). For any ` ą 0, any prime number p, and any adversary A
playing the WFROS`,p game that makes at most QH queries to H, we have

Advwfros
`,p pAq ď QHp2``QHq

p´ 1
.

The proof is given in the next section. To gain some very high-level intuition, we observe that a key
contributor to the hardness of WFROS are values yi, which are defined after the ci’s are fixed and hence
randomize the Aj and Bj ’s. Therefore, to satisfy Aj “ δj ¨ Bj , the adversary is restricted in the way it

plays. For example, to satisfy an equation defined by an H query p~αj , ~βjq, the adversary can pick ci’s such

that pα
p2i´1q
j ` ciα

p2jq
i q “ δj ¨ pβ

p2i´1q
j ` ciβ

p2iq
j q for all i P r`s. Then, the equation Aj “ δjBj is satisfied no

matter what the yi’s are. Our proof shows that the adversary has to pick ci’s this way – and in fact, it has
to follow even more restrictions. Finally, we show that under these restrictions, no set of `` 1 equations can
be satisfied simultaneously.

3.1 Proof of Theorem 1

Let A be an adversary for the WFROS game that makes at most QH queries to H. Without loss of generality,
we assume that A makes exactly one query pi, ciq to S for each i P r`s and that A always outputs J Ď rQHs.

In the WFROSA
`,p game, for each j P rQHs, denote the event Wj as

α
p0q
j `

ÿ

iPr`s

yipα
p2i´1q
j ` ci ¨ α

p2iq
j q “ δj

¨

˝β
p0q
j `

ÿ

iPr`s

yipβ
p2i´1q
j ` ci ¨ β

p2iq
j q

˛

‚ (W1)

^ β
p0q
j `

ÿ

iPr`s

yipβ
p2i´1q
j ` ci ¨ β

p2iq
j q ‰ 0 . (W2)

In other words, Wj is the event that the equation defined by the j-th H query is satisfied. Then, A wins

if and only if |J | ą ` and Wj occur for each j P J . Denote W :“ p|J | ą `q ^
´

Ź

jPJ Wj

¯

and we have

Advwfros
`,p pAq “ PrrW s.
To bound PrrW s, we need notation to refer to some values (formally, random variables) defined in the

execution of the WFROSA
`,p game. First, denote as Ipjqfin the contents of the set Ifin when the adversary makes

the j-th query to H, and let p~αj , ~βjq be the input of this query to H, which is answered with δj . Also, let

Ipjqunk :“ r`szIpjqfin , i.e., the set of indices i P r`s for which A has not yet made any query pi, ¨q to S when the
j-th query to H is made. Further, c1, . . . , c` and y1, . . . , y` are the values defined by querying S.

Now, for each j P rQHs, we define the following events:

Event E
p1q
j . First, let E

p1q
1,j be the event that β

p0q
j `

ř

iPIpjqfin

yi

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

‰ 0. For each i P Ipjqunk,

also let E
p1q
2,pj,iq be the event that α

p2i´1q
j ` ci ¨ α

p2iq
j ‰ δj

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

. Finally, let E
p1q
j :“

E
p1q
1,j _

´

Ž

iPrIpjqunks
E
p1q
2,pj,iq

¯

.
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Event E
p2q
j . We denote the event E

p2q
j as the event where

@ i P Ipjqunk : α
p2iq
j ¨ β

p2i´1q
j “ α

p2i´1q
j ¨ β

p2iq
j . (5)

Note that events E
p1q
j and E

p2q
j are, by themselves, not necessarily unlikely – the adversary can certainly

provoke them. However, we intend to show that this has implications on the ability to satisfy the j-th
equation. In particular, we prove the following two lemmas in Sections 3.2 and 3.3 below, respectively.

Lemma 1. PrrWj ^ E
p1q
j s ď ``1

p´1 .

Lemma 2. PrrWj ^ p E
p1q
j q ^ E

p2q
j s ď `

p´1 .

Now, if we denote Ep1q :“
Ž

jPrQHs
pWj ^ E

p1q
j q and Ep2q :“

Ž

jPrQHs
pWj ^ p E

p1q
j q ^ E

p2q
j q, the union

bound yields PrrEp1qs ď QHp``1q
p´1 and PrrEp2qs ď QH¨`

p´1 . Our final lemma (proved in Section 3.4) is then the
following:

Lemma 3. PrrW ^ p Ep1qq ^ p Ep2qqs ď QHpQH´1q
p´1 .

The three lemmas can be combined to obtain

PrrW s ď PrrEp1qs ` PrrEp2qs ` PrrW ^ p Ep1qq ^ p Ep2qqs ď
QHp2``QHq

p´ 1
.

which concludes the proof. In the next three sections, we prove the three perceding lemmas.

3.2 Proof of Lemma 1

Throughout this proof, let us fix j P rQHs. We first define a sequence of random variables pD0, D1, . . . ,

Dn, X1, . . . , Xnq, where n “ ` ` 1, such that E
p1q
j implies one of D0, . . . , Dn is not equal to 0 and

D0 `
ř

kPrnsDkXk “ 0. Further, we also ensure that Xk is uniformly distributed over Z˚p independent

of pD0, D1, . . . , Dk, X1, . . . , Xk´1q for each k P rns and use this to bound PrrE
p1q
j s. More concretely:

- Let
D0 :“ α

p0q
j `

ÿ

iPIpjqfin

yi

´

α
p2i´1q
j ` ci ¨ α

p2i´1q
j

¯

,

X1 “ ´δj , D1 :“ β
p0q
j `

ÿ

iPIpjqfin

yi

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

,

and note that E
p1q
1,j is equivalent to D1 ‰ 0.

- Further, for 1 ď k ď |Ipjqunk|, denote ik P Ipjqunk as the index such that pik, cikq is the k-th query made to S

among the indexes in Ipjqunk and let

Xk`1 “ yik , Dk`1 :“ α
p2ik´1q
j ` cik ¨ α

p2ikq
j ´ δj

´

β
p2ik´1q
j ` ci ¨ β

p2ikq
j

¯

,

we have E
p1q
2,pj,ikq

occurs is equivalent to Dk`1 ‰ 0.

- For |Ipjqunk|`1 ă k ď n, let Dk “ 0 and Xk be a random variable uniformly distributed in Z˚p independent
of pD0, D1, . . . , Dk, X1, . . . , Xk´1q.

5

5 For |Ipjqunk| ` 1 ă k ď n, Dk, Xk act as placeholders so that we can apply Lemma 4 for an a priori fixed value n

instead of a random variable |Ipjqunk| ` 1.
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Note that

D0 `

N
ÿ

k“1

DkXk “ α
p0q
j `

ÿ

iPIpjqfin

yi

´

α
p2i´1q
j ` ci ¨ α

p2iq
j

¯

´ δj

¨

˝β
p0q
j `

ÿ

iPIpjqfin

yi

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

˛

‚

`
ÿ

iPIpjqunk

yi

´

α
p2i´1q
j ` ci ¨ α

p2iq
j ´ δj

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯¯

“ α
p0q
j `

ÿ

iPr`s

yi

´

α
p2i´1q
j ` ci ¨ α

p2iq
j

¯

´ δj

¨

˝β
p0q
j `

ÿ

iPr`s

yi

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

˛

‚ .

Therefore, by (W1), we know Wj occurs implies D0 `
řn
i“1DiXi “ 0. Thus, the event Wj ^ E

p1q
j implies,

in addition, that one of D0, . . . , Dn is not equal to 0. Also, we prove the following claim.

Claim 1 For each k P rns, Xk is uniformly distributed over Z˚p independent of pD0,. . . ,Dk,X1,. . . ,Xk´1q.

Proof (of Claim 1). For k “ 1, we have X1 “ ´δj . Consider the step when δj is generated. Since A has

made the j-th query to H, we know Ipjqunk, ~βj , ~αj , and tyi, ciuiPIpjqfin

are already determined, which implies

D0 and D1 are also determined. Since δj is picked uniformly at random from Z˚p , we know X1 “ ´δj is
uniformly distributed over Z˚p independent of pD0, D1q.

For 2 ď k ď |Ipjqunk| ` 1, we have Xk “ yik´1
. Consider the step when yik´1

is generated. We know

A has made the query pik´1, cik´1
q to S and the values ik´1, cik´1

are determined. Since ik´1 P Ipjqunk, we

know A has made the j-th query to H, and thus the values ~βj , ~αj , δj , and pD0, D1q are determined. For
1 ď k1 ă k ´ 1, since the query pik1 , cik1 q to S has returned, we know the values ik1 , cik1 , yik1 are determined,
which implies Dk1`1 and Xk1`1 are determined. Also, since ik´1, cik´1

are determined, we know Dk is
determined. Therefore, since yik´1

is picked uniformly at random from Z˚p , we know Xk “ yik´1
is uniformly

distributed over Z˚p independent of pD0, . . . , Dk, X1, . . . , Xk´1q.

For |Ipjqunk|`1 ă k ď n, by the definition of Xk, we know Xk is uniformly distributed over Z˚p independent
of pD0, . . . , Dk, X1, . . . , Xk´1q. Therefore, the claim holds. [\

Now, we can show the upper bound PrrWj ^ E
p1q
j s ď ``1

p´1 by the following lemma,6 which we prove in
Appendix A.

Lemma 4. Let p be prime. Let D0, D1, . . . , Dn, X1, . . . , Xn P Zp be random variables such that for all
k P rns, Xk is uniform over Uk Ď Zp and independent of pD0, . . . , Dk, X1, . . . , Xk´1q. Then,

Pr

«

D i P t0, . . . , nu : Di ‰ 0 ^ D0 `

n
ÿ

j“1

DjXj “ 0

ff

ď

n
ÿ

i“1

1

|Ui|
.

6 Note that this lemma cannot be directly derived from the Schwartz-Zippel lemma by viewing D0`
řn
j“1 DjXj “ 0

as a polynomial of X1, . . . , Xn, since we cover for example the case where D0, D1, . . . , Dn are adaptively chosen,
i.e., each Di can depend on X1 . . . , Xi´1.
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3.3 Proof of Lemma 2

It is easier to introduce a new event Fj and show that Wj ^ p E
p1q
j q implies Fj . We will then bound

PrrFj ^ E
p2q
j s. In particular, define the event Fj as

@ i P Ipjqunk : α
p2i´1q
j ` ci ¨ α

p2iq
j ´ δj

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

“ 0 (F1)

^
ÿ

iPIpjqunk

yi

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

‰ 0 , (F2)

and we have the following lemma.

Lemma 5. If Wj ^ p E
p1q
j q occurs, then the event Fj occurs.

Proof (of Lemma 5). By the definition of Fj , we need only show that if Wj ^ p E
p1q
j q occurs, then (F1)

and (F2) hold for j.

Suppose Wj occurs but E
p1q
j does not occur. Since E

p1q
j “ E

p1q
1,j _

´

Ž

iPrIpjqunks
E
p1q
2,pj,iq

¯

, we know all of

E
p1q
1,j and tE

p1q
2,pj,iquiPrIpjqunks

do not occur. Since the event E
p1q
2,pj,iq does not occur implies

α
p2i´1q
j ` ci ¨ α

p2iq
j ´ δj

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

“ 0 ,

we know (F1) holds for j.

Also, since the event E
p1q
1,j does not occur, we have

β
p0q
j `

ÿ

iPIpjqfin

yi

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

“ 0.

Since Wj occurs, we know (W2) holds and, by the above equation, we have

ÿ

iPIpjqunk

yi

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

“ β
p0q
j `

ÿ

iPr`s

yipβ
p2i´1q
j ` ci ¨ β

p2iq
j q ‰ 0 .

Therefore, we know (F2) holds for j. [\

We also denote

Dj :“

"

α
p2iq
j

β
p2iq
j

| i P Ipjqunk, β
p2iq
j ‰ 0

*

Y

"

α
p2i´1q
j

β
p2i´1q
j

| i P Ipjqunk, β
p2iq
j “ 0, β

p2i´1q
j ‰ 0

*

.

We have |Dj | ď |ti P Ipjqunk | β
p2iq
j ‰ 0u Y ti P Ipjqunk | β

p2iq
j “ 0u| “ |Ipjqunk|.

Claim 2 The event Fj ^ E
p2q
j implies δj P Dj.

Proof (of Claim 2). Suppose Fj ^ E
p2q
j occurs but δj R Dj . We are going to show that β

p2i´1q
j `ci ¨β

p2iq
j “ 0

for each i P Ipjqunk. Then, since Fj occurs, we know (F2) holds, which yields a contradiction, and thus the
claim holds.
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For i P Ipjqunk, if β
p2iq
j ‰ 0, since δj R Dj , we have δj ‰

α
p2iq
j

β
p2iq
j

, which implies α
p2iq
j ´ δj ¨ β

p2iq
j ‰ 0. Since

Fj occurs, by (F1), we have ci “ ´
α
p2i´1q
j ´δj ¨β

p2i´1q
j

α
p2iq
j ´δj ¨β

p2iq
j

. Since E
p2q
j occurs, by (5), we have α

p2iq
j ¨ β

p2i´1q
j “

α
p2i´1q
j ¨ β

p2iq
j , and thus

β
p2i´1q
j ` ci ¨ β

p2iq
j “ β

p2i´1q
j ´

α
p2i´1q
j ¨ β

p2iq
j ´ δj ¨ β

p2i´1q
j ¨ β

p2iq
j

α
p2iq
j ´ δj ¨ β

p2iq
j

“ β
p2i´1q
j ´

α
p2iq
j ¨ β

p2i´1q
j ´ δj ¨ β

p2i´1q
j ¨ β

p2iq
j

α
p2iq
j ´ δj ¨ β

p2iq
j

“ β
p2i´1q
j ´ β

p2i´1q
j “ 0 .

Otherwise, suppose β
p2iq
j “ 0. Then, if β

p2i´1q
j “ 0, we also have β

p2i´1q
j ` ci ¨ β

p2iq
j “ 0. If β

p2i´1q
j ‰ 0,

since α
p2iq
j ¨ β

p2i´1q
j “ α

p2i´1q
j ¨ β

p2iq
j “ 0, we have α

p2iq
j “ 0. Since β

p2iq
j “ 0, β

p2i´1q
j ‰ 0, and δj R Dj , we have

δj ‰
α
p2i´1q
j

β
p2i´1q
j

and thus we have

α
p2i´1q
j ` ci ¨ α

p2iq
j ´ δj

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

“ α
p2i´1q
j ´ δj ¨ β

p2i´1q
j ‰ 0,

which contradicts (F1). Therefore, it is impossible that β
p2iq
j “ 0 and β

p2i´1q
j ‰ 0.

Therefore, from the above arguments, we have β
p2i´1q
j ` ci ¨ β

p2iq
j “ 0 for any i P Ipjqunk, and thus

ř

iPIpjqunk

yi

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

“ 0. However, since Fj occurs, we know (F2) holds, which yields a con-

tradiction, and thus the claim holds. [\

Note that δj is generated uniformly at random, independently of Dj , since the latter is defined by the j-th
H query. Therefore, Lemma 5 and Claim 2 yield

PrrWj ^ p E
p1q
j q ^ E

p2q
j s ď PrrFj ^ E

p2q
j s

ď Prrδj P Djs ď
|Ipjqunk|

p´ 1
ď

`

p´ 1
.

3.4 Proof of Lemma 3

To conclude the analysis, we introduce yet another event, Ep3q. We will show below that W ^ p Ep1qq ^
p Ep2qq implies Ep3q, and thus it is enough to upper bound the probability of Ep3q occurring. Concretely,
Ep3q is defined as follows (the definition of the following events Fj1 is given in Section 3.3).

Event Ep3q. For each j1, j2 P rQHs and j1 ă j2, denote the event E
p3q
pj1,j2q

as

D i P Ipj1qunk X Ipj2qunk : α
p2iq
j1

¨ β
p2i´1q
j1

‰ α
p2i´1q
j1

¨ β
p2iq
j1

^ α
p2iq
j2

¨ β
p2i´1q
j2

‰ α
p2i´1q
j2

¨ β
p2iq
j2

.

Denote E1
p3q
pj1,j2q

:“ E
p3q
pj1,j2q

^ Fj1 ^ Fj2 and Ep3q :“
Ž

j1,j2PrQHs,j1ăj2
E1
p3q
pj1,j2q

.

To see why the above implication is true, assume that W indeed occurs, but both Ep1q and Ep2q do not

occur. We now fix some j P J . We know Wj occurs, but both E
p1q
j and E

p2q
j do not occur. In particular, by

the definition of E
p2q
j , we know there exists i P Ipjqunk such that α

p2iq
j ¨ β

p2i´1q
j ‰ α

p2i´1q
j ¨ β

p2iq
j .
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Let i
pjq
min be the smallest index in Ipjqunk such that α

p2i
pjq
minq

j ¨β
p2i
pjq
min´1q

j ‰ α
p2i
pjq
min´1q

j ¨β
p2i
pjq
minq

j . Since W occurs,

we know |J | ą `. Then, since i
pjq
min P Ipjqunk Ď r`s for each j P J and |J | ą `, by the pigeonhole principle,

we know there exists j1, j2 P J such that j1 ă j2 and i
pj1q
min “ i

pj2q
min, which implies E

p3q
pj1,j2q

occurs. Also, since

we know both Wj1 ^ p E
p1q
j1
q and Wj2 ^ p E

p1q
j2
q occur, by Lemma 5, we have Fj1 and Fj2 both occur.

Therefore, we know E1
p3q
pj1,j2q

“ E
p3q
pj1,j2q

^ Fj1 ^ Fj2 occurs, which implies Ep3q occurs.

Therefore, we have

Pr
”

W ^ p Ep1qq ^ p Ep2qq
ı

ď PrrEp3qs ď
ÿ

j1,j2PrQHs,j1ăj2

PrrE1
p3q
pj1,j2q

s .

We now just need to bound PrrE1
p3q
pj1,j2q

s for any j1 ă j2.

To gain insight, suppose E1
p3q
pj1,j2q

occurs. We can show that there exists i P Ipj1qunk X Ipj2qunk such that

α
p2iq
j1

´ δj1β
p2iq
j1

‰ 0 and α
p2iq
j2

´ δj2β
p2iq
j2

‰ 0. Then, since Fj1 and Fj2 occur, by (F1), it holds that

α
p2i´1q
j1

´ δj1 ¨ β
p2i´1q
j1

α
p2iq
j1

´ δj1 ¨ β
p2iq
j1

“ ci “
α
p2i´1q
j2

´ δj2 ¨ β
p2i´1q
j2

α
p2iq
j2

´ δj2 ¨ β
p2iq
j2

.

However, this can occur with only small probability since δj1 and δj2 are sampled independently. The following
claim, proved in Section 3.5, makes this formal.

Claim 3 For any j1, j2 P rQHs such that j1 ă j2, suppose E1
p3q
pj1,j2q

occurs. Let idif be the smallest index in

Ipj1qunk XIpj2qunk such that α
p2idif q

j1
¨β
p2idif´1q
j1

‰ α
p2idif´1q
j1

¨β
p2idif q
j1

and α
p2idif q
j2

¨β
p2idif´1q
j2

‰ α
p2idif´1q
j2

¨β
p2idif q
j2

. Then,
we have

α
p2idif q
j1

´ δj1β
p2idif q
j1

‰ 0.

Moreover, let T “
α
p2idif´1q

j1
´δj1 ¨β

p2idif´1q

j1

α
p2idif q

j1
´δj1 ¨β

p2idif q

j1

, and we have

β
p2idif´1q
j2

´ T ¨ β
p2idif q
j2

‰ 0 and δj2 “
α
p2idif´1q
j2

´ T ¨ α
p2idif q
j2

β
p2idif´1q
j2

´ T ¨ β
p2idif q
j2

. (6)

Let T and idif be the values defined in the above claim. Consider the step when δj2 is generated. We know

the j2-th query to H has been made, and thus ~αj2 and ~βj2 are determined. Also, since j1 ă j2, the j1-th
query to H has returned, and thus ~αj1 , ~αj2 , and δj are determined. Therefore, we know idif and T are also

determined. Thus, we know δj2 is picked uniformly at random from Z˚p independent of idif , ~αj1 , ~αj2 , ~βj1 , ~βj2 ,
δj1 , and T . Then, by the above claim,

PrrE1
p3q
pj1,j2q

s ď Pr

«

α
p2idif q

j1
´ δj1β

p2idif q
j1

‰ 0

^ β
p2idif´1q
j2

´ T ¨ β
p2idif q
j2

‰ 0
^ δj2 “

α
p2idif´1q

j2
´T ¨α

p2idif q

j2

β
p2idif´1q

j2
´T ¨β

p2idif q

j2

ff

ď Pr

«

δj2 “
α
p2idif´1q

j2
´T ¨α

p2idif q

j2

β
p2idif´1q

j2
´T ¨β

p2idif q

j2

ˇ

ˇ

ˇ

ˇ

ˇ

α
p2idif q
j1

´ δj1β
p2idif q
j1

‰ 0

^ β
p2idif´1q
j2

´ T ¨ β
p2idif q
j2

‰ 0

ff

ď
1

p´ 1
.

3.5 Proof of Claim 3

This proof relies on the following simple lemma, which we first state and prove.
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Lemma 6. Let p be a prime number. Let a, b, c, d P Zp be arbitrary values such that a ¨ d ‰ c ¨ b. Then, for
any T P Zp such that a` T ¨ b “ 0, we have c` T ¨ d ‰ 0.

Proof. Since a` T ¨ b “ 0 and a ¨ d ‰ c ¨ b, we have

0 “ dpa` T ¨ bq “ a ¨ d` T ¨ b ¨ d ‰ b ¨ c` T ¨ b ¨ d “ bpc` T ¨ dq,

which implies c` T ¨ d ‰ 0. [\

Proof (of Claim 3). Consider j1, j2 P rQHs such that j1 ă j2. Suppose E1
p3q
j1,j2

occurs. We know the events

E
p3q
pj1,j2q

, Fj1 , and Fj2 occur. Since E
p3q
j1,j2

occurs, let idif be the smallest index in Ipj1qunk X Ipj2qunk such that

α
p2idif q

j1
¨ β
p2idif´1q
j1

‰ α
p2idif´1q
j1

¨ β
p2idif q

j1
and α

p2idif q
j2

¨ β
p2idif´1q
j2

‰ α
p2idif´1q
j2

¨ β
p2idif q
j2

.

We first show that α
p2idif q

j1
´ δj1β

p2idif q

j1
‰ 0. Suppose α

p2idif q
j1

´ δj1β
p2idif q
j1

“ 0. Since α
p2idif q
j1

¨ β
p2idif´1q
j1

‰

α
p2idif´1q
j1

¨ β
p2idif q

j1
, by Lemma 6, we know

α
p2idif´1q
j1

´ δj1β
p2idif´1q
j1

‰ 0 .

Therefore, we have

α
p2idif´1q
j1

` cidif
¨ α
p2idif q
j1

´ δj1

´

β
p2idif´1q
j1

` cidif ¨ β
p2idif q
j1

¯

“ α
p2idif´1q
j1

´ δj1 ¨ β
p2idif´1q
j1

` cidif

´

α
p2idif q
j1

´ δj1 ¨ β
p2idif q
j1

¯

“ α
p2idif´1q
j1

´ δj1β
p2idif´1q
j1

‰ 0 .

However, since Fj1 occurs, we know (F1) holds for j “ j1, which yields a contradiction. Thus, we have

α
p2idif q

j1
´ δj1β

p2idif q

j1
‰ 0.

Similarly, we have α
p2idif q

j2
´ δj2β

p2idif q

j2
‰ 0. Then, since Fj1 and Fj2 both occur, we know (F1) holds for

j “ j1 and j “ j2, and thus

α
p2idif´1q
j1

´ δj1 ¨ β
p2idif´1q
j1

α
p2idif q

j1
´ δj1 ¨ β

p2idif q
j1

“ cidif “
α
p2idif´1q
j2

´ δj2 ¨ β
p2idif´1q
j2

α
p2idif q
j2

´ δj2 ¨ β
p2idif q
j2

.

Denote T “
α
p2idif´1q

j1
´δj1 ¨β

p2idif´1q

j1

α
p2idif q

j1
´δj1 ¨β

p2idif q

j1

and we have

α
p2idif´1q
j2

´ T ¨ α
p2idif q
j2

´ δj2pβ
p2idif´1q
j2

´ T ¨ β
p2idif q
j2

q “ 0 . (7)

We now show that β
p2idif´1q
j2

´ T ¨ β
p2idif q

j2
‰ 0. Suppose β

p2idif´1q
j2

´ T ¨ β
p2idif q
j2

“ 0. Since α
p2idif q
j2

¨ β
p2idif´1q
j2

‰

α
p2idif´1q
j2

¨ β
p2idif q

j2
, by Lemma 6, we know α

p2idif´1q
j2

´ T ¨ α
p2idif q
j2

‰ 0 and

α
p2idif´1q
j2

´ T ¨ α
p2idif q

j2
´ δj2pβ

p2idif´1q
j2

´ T ¨ β
p2idif q
j2

q “ α
p2idif´1q
j2

´ T ¨ α
p2idif q
j2

‰ 0,

which contradicts (7). Therefore, we have

β
p2idif´1q
j2

´ T ¨ β
p2idif q
j2

‰ 0 ,

and from (7), it holds that

δj2 “
α
p2idif´1q
j2

´ T ¨ α
p2idif q
j2

β
p2idif´1q
j2

´ T ¨ β
p2idif q
j2

.

[\
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Algorithm BS1.Setupp1
λ
q :

pÐ |Gλ|
Let g be the generator of Gλ
Select H : t0, 1u˚ Ñ Zp
Return par Ð pp, g,Hq

Algorithm BS1.KGpparq :
pp, g,Hq Ð par
xÐ$ Z˚p ; X Ð gx

sk Ð x; pk Ð X
Return psk, pkq

Algorithm BS1.S1pskq :
xÐ sk; X Ð gx

aÐ$ Zp; yÐ$ Z˚p
AÐ ga; Y Ð Xy

sts Ð pa, y, xq; msg1 Ð pA, Y q
Return psts,msg1q

Algorithm BS1.S2pst
s, cq :

pa, y, xq Ð sts

sÐ a` c ¨ y ¨ x
Return msg2 Ð ps, yq

Algorithm BS1.U1ppk,msg1,mq :
X Ð pk; pA, Y q Ð msg1

r1, r2 Ð$ Zp; γÐ$ Z˚p
Y 1 Ð Y γ

A1 Ð gr1 ¨Aγ ¨ Y 1
r2

c1 Ð HpA1 }Y 1 }mq
cÐ c1 ` r2

stu Ð pc, c1, r1, γ,X, Y,Aq
Return pstu, cq

Algorithm BS1.U2pst
u,msg2q :

pc, c1, r1, γ,X, Y,Aq Ð stu

ps, yq Ð msg2

If y “ 0 or Y ‰ Xy or gs ‰ A ¨ Y c

then return K
s1 Ð γ ¨ s` r1

y1 Ð γ ¨ y
Return σ Ð pc1, s1, y1q

Algorithm BS1.Verppk, σ,mq :
pc, s, yq Ð σ
If y “ 0 then return 0
Y Ð Xy; AÐ gs ¨ Y ´c

If c ‰ HpA }Y }mq then return 0
Return 1

Fig. 4. The blind signature scheme BS1 “ BS1rGs.

4 Efficient Blind Signatures in the GGM

This section introduces our first scheme, BS1, which relies on a prime-order cyclic group and a hash function
H. We describe this scheme formally in Figure 4. Roughly, it extends (blind) Schnorr Signatures by sending
an additional group element Y “ Xy in the first round. Then, the signer’s final response to challenge c
reveals y along with s “ a ` cxy. We also note that we could consider a variant of the scheme where the
signature consists of σ “ pA1, s1, y1q, where A1 replaces c1.

Security analysis. First off, we observe that the protocol is blind.

Theorem 2. Let G be an (asymptotic) family of prime-order cyclic groups. Then, the blind signature scheme
BS1rGs is perfectly blind.

Proof (of Theorem 2). Let A be an adversary playing the BlindA
BS1rGs game. Without loss of generality,

we can assume the randomness of A is fixed and A always finishes both signing sessions and receives valid
signatures pσ0, σ1q.

7

Define the view of A after its execution as π “ pX,m0,m1, T0, T1, σ0, σ1q, where Ti :“ pAi, Yi, ci, si, yiq,
denoting the transcripts learned from interactions with the i-th signing session and σi “ pc

1
i, s

1
i, y

1
iq. Since

the randomness of A is fixed, the only randomness left is the randomness in U1 and U2. Denote η :“

pr
p0q
1 , r

p0q
2 , γp0q, r

p1q
1 , r

p1q
2 , γp1qq as the total randomness. To prove the theorem, we need only show that the

distribution of π is identical in both the case b “ 0 and b “ 1. We prove this by showing that for any fixed

7 Since the output of each query to U1 that does not return K is uniformly random over Zp, we know the behavior
of A is identical in both the case b “ 0 and b “ 1 before A receives the valid signature pσ0, σ1q. Therefore, we know
the probability that A returns before receiving pσ0, σ1q or receives pK,Kq after finishing both signing sessions is
equal in both the case b “ 0 and b “ 1, which means we consider only the case where A receives valid signatures.
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view ∆ such that Prrπ “ ∆|b “ 1s ą 0, there exists a unique value of the randomness η that makes π “ ∆
for the cases b “ 0 and b “ 1.

For both the cases b “ 0 and b “ 1, we now show that π “ ∆ if and only if for each i P t0, 1u, it holds
that

γpiq “ y1bi
∆
{y∆i ,

r
piq
1 “ s1bi

∆
´ γpiq ¨ s∆i ,

r
piq
2 “ c∆i ´ c

1
bi

∆
,

(8)

where the superscript p¨q∆ represents the corresponding value in ∆. From the algorithms BS1.U1 and BS1.U2,
it is clear that the “only if” part holds. For the “if” part, suppose (8) holds. Since the randomness of A is
fixed, the view of A can differ only on the outputs c0, c1 from the oracle U1 or the output pσ0, σ1q from the
oracle U2. Since both signatures in ∆ are valid, we have

A∆i “ gs
∆
i X∆´c

∆
i ¨y

∆
i , Y ∆i “ X∆y

∆
i , (9)

c1bi
∆
“ Hpgs

1
bi

∆

X∆´y
1
bi

∆
¨c1bi

∆

}X∆y
1
bi

∆

}m∆
biq . (10)

For ci where i P t0, 1u, suppose the values in the view of A that have already determined when ci is generated,
which must include pX,mi, Ai, Yiq, are consistent with ∆. By p8q, we have

ci “ r
piq
2 `Hpgr

piq
1 Aγ

piq

i Y
γpiq¨r

piq
2

i }Y γ
piq

i }mbiq

“ r
piq
2 `Hpgr

piq
1 A∆i

γpiq

Y ∆i
γpiq¨r

piq
2
}Y ∆i

γpiq

}m∆
biq

“ r
piq
2 `Hpgγ

piq
¨s∆i `r

piq
1 X∆´y

∆
i ¨γ

piq
¨pc∆i ´r

piq
2 q
}X∆y

∆
i ¨γ

piq

}m∆
biq

“ r
piq
2 `Hpgs

1
bi

∆

X∆´y
1
bi

∆
¨c1bi

∆

}X∆y
1
bi

∆

}m∆
biq

“ r
piq
2 ` c1bi

∆
“ c∆i ,

where the third equality is due to (9), the fourth equality is due to (8), and the final equality is due to (10).
Then, consider the step when pσ0, σ1q is output. Suppose the current view, which contains Ti, is consistent
with ∆. By (8), we have

y1bi “ γpiq ¨ yi “ γpiq ¨ y∆i “ y1bi
∆
,

s1bi “ r
piq
1 ` γpiq ¨ si “ r

piq
1 ` γpiq ¨ s∆i “ s1bi

∆
,

c1bi “ ci ´ r
piq
2 “ c∆i ´ r

piq
2 “ c1bi

∆
.

which implies pσ0, σ1q “ pσ
∆
0 , σ

∆
1 q. Therefore, by induction, if (8) holds, we know π “ ∆. [\

Our main result shows OMUF security of BS1 in the generic-group model (GGM) following Shoup’s
original formalization [Sho97], which encodes every group element with a random label. To this end, we
present in Figure 5 a game describing a GGM-version of OMUF security for BS1, adapting the one from
Section 2. We also define a corresponding advantage Advomuf-ggm

BS1rGs pA, λq to measure the probability that A
wins the game. Note that to keep notation homogenous, it is convenient to allow the game to depend on G,
although the game itself only makes use of the order of the group. The game also models the hash function
H as a random oracle, to which the adversary is given oracle access.

The following theorem states our main result in the form of a reduction to WFROS and is proved in
Section 4.1.
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Game OMUF-GGMA
BS1rGspλq :

pÐ |Gλ|; xÐ$ Z˚p
sid Ð 0; `Ð 0; Ifin ÐH; CurÐH; Ξ Ð pq; T Ð pq

tpmk, σkqukPr``1sÐ$ AΠ,S1,S2,Hpp, Φp1q, Φpxqq
If D k1 ‰ k2 such that pmk1 , σk1q “ pmk2 , σk2q then

Return 0
If D k P r`` 1s such that y˚k “ 0

or ck ‰ HpΦpsk ´ ck ¨ yk ¨ xq }Φpyk ¨ xq }miq

where pck, sk, ykq “ σk then return 0
Return 1

Oracle Φpvq :
If v P Cur then return Ξpvq
Ξpvq Ð$ t0, 1ulogppq

zΞpCurq
CurÐ Cur X tvu
Return Ξpvq

Oracle Πpξ, ξ1, bq :

If Dv, v1 P Cur such that ξ “ Ξpvq and ξ1 “ Ξpv1q then
Return Φpv ` p´1qbv1q

Else return K

Oracle S1 :
sid Ð sid` 1
asid Ð$ Zp; ysid Ð$ Z˚p
stssid Ð pasid, ysidq

msg1 Ð pΦpasidq, Φpysid ¨ xqq
Return psid,msg1q

Oracle S2pi, ciq :
If i R rsidszIfin then return K
pai, yiq Ð stsi
si Ð ai ` ci ¨ yi ¨ x
msg2 Ð psi, yiq
Ifin Ð Ifin Y tiu
`Ð `` 1
Return msg2

Oracle Hpstrq :
If T pstrq “ K then
T pstrq Ð$ Zp

Return T pstrq

Fig. 5. The OMUF security game in GGM for the blind signature scheme BS1rGs.

Theorem 3 (OMUF Security of BS1). Let G be an (asymptotic) family of prime-order cyclic groups.

For any adversary A playing game OMUF-GGMBS1rGspλq making at most QΠ queries to Π, QS1 queries
to S1, and QH queries to the random oracle H, there exists an adversary B for the WFROSQS1

,p problem,
where p “ |Gλ|, making at most QH `QS1

` 1 queries to the random oracle H such that

Advomuf-ggm
BS1rGs pA, λq ď Advwfros

QS1
,ppBq `

QΦpQΦ ` 2QH ` 2QS1
` 2q

p´ p1`QS1 `Q
2
Φq

,

where QΦ is the maximum number of queries to Φ during the game OMUF-GGM, and we have QΦ “

QΠ ` 4QS1
` 4.

By Theorem 1, we have the following corollary.

Corollary 1. Let G be an (asymptotic) family of prime-order cyclic groups. For any adversary A playing

game OMUF-GGMBS1rGspλq making at most QΠ queries to Π, QS1
queries to S1, and QH queries to the

random oracle H, we have

Advomuf-ggm
BS1rGs pA, λq ď 2QΦpQΦ ` 2QH ` 2QS1

` 2q

p´ p1`QS1
`Q2

Φq
,

where QΦ “ QΠ ` 4QS1
` 4.

We note in particular that the concrete security of BS1 in the GGM is comparable to that of the discrete
logarithm problem, in that QΦ “ Ωpmint

?
p, p{QH, p{QS1

uq is necessary to break security with constant
probability.

4.1 Proof of Theorem 3

Let us fix an adversary A that makes (without loss of generality) exactly QΠ queries to Π, QS1
queries to S1,

and QH queries to the random oracle H. Without loss of generality, assume it also makes exactly one query
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Game Game4:
pÐ |Gλ|
sid Ð 0; `Ð 0; S ÐH; CurÐH; Ξ Ð pq; T Ð pq

tpmk, σkqukPr``1sÐ$ AΠ,S1,S2,Hpp, Φp1q, ΦpXqq
If D k1 ‰ k2 such that pmk1 , σk1q “ pmk2 , σk2q then

Return 0
If D k P r`` 1s such that y˚k “ 0

or ck ‰ HpΦpsk ´ ck ¨ yk ¨ Xq }Φpyk ¨ Xq }miq

where pck, sk, ykq “ σk then return 0
Return 1

Oracle ΦpP q :

If DP 1 P Cur such that P “L P
1 then

Return ΞpP 1q
ΞpP q Ð$ t0, 1urlogppqs

zΞpCurq
CurÐ Cur X tP u
Return ΞpP q

Oracle Πpξ, ξ1, bq :

If DP, P 1 P Cur such that ξ “ ΞpP q
and ξ1 “ ΞpP 1q then
Return ΦpP ` p´1qbP 1q

Else return K

Oracle S1 :
sid Ð sid` 1
msg1 Ð pΦpA sidq, ΦpYsidqq

Return psid,msg1q

Oracle S2pi, ciq :
If i R rsidszIfin then return K
siÐ$ Zp; yiÐ$ Z˚p
R1 Ð Ai ` ciYi ´ si
R2 Ð Yi ´ yiX
LÐ LY tR1, R2u

msg2 Ð psi, yiq
If D P1, P2 P Cur such that
P1 ‰ P2 and P1 “L P2

then abort game
Ifin Ð Ifin Y tiu
`Ð `` 1
Return msg2

Oracle Hpstrq :
If T pstrq “ K then
T pstrq Ð$ Zp

Return T pstrq

Fig. 6. The definition of Game4. The symbols P and P 1 denote polynomials over variables X, tAi,YiuiPrsids. Also,
a new equality notation, ““L”, is used. We say P1 “L P2 if and only if P1 ´ P2 can be represented as a linear
combination of polynomials in L.

pi, ciq to S2 for each i P rQS1
s. Also, it is clear that the overall number of queries to Φ in OMUF-GGMA

BS1
is

at most QΦ :“ QΠ ` 4QS1
` 4. Then, after A returns, we know ` “ QS1

and Ifin “ rQS1
s.

We prove the theorem by going through a series of games, from Game0 to Game4, where Game0 is the
OMUF-GGMA

BS1
game and Game4 is an intermediate game that enables an easier reduction to WFROS.

Here, however, we first introduce Game4 and Lemma 7 and then discuss the reduction to WFROS, which
is the core of the proof. We leave the definition of the intermediate games between Game0 to Game4 to the
proof of Lemma 7. The game-hopping argument is non-trivial, but it follows the same blueprint as in [BFP21]
and is hence deferred to Appendix B.1.

Definition of Game4.The pseudocode description of Game4 is given in Figure 6. The main difference from
OMUF-GGMA

BS1
is that the encoding oracle Φ takes as input a polynomial instead of an integer in Zp. (Note

that the adversary cannot query Φ directly, and thus this difference is not directly surfaced.) This essentially
captures the algebraic core of our proof.

Also, for a valid query pi, ciq to S2, the output values psi, yiq are directly sampled uniformly from ZpˆZ˚p .
Furthermore, when this happens, two polynomials, R1 “ Ai ` ci ¨ Yi ´ si and R2 “ Yi ´ yi ¨ X, are recorded
in the set L. Then, in the encoding oracle Φ, two polynomials, P1 and P2, are considered to differ if and only
if P1 ‰L P2, where P1 “L P2 means that P1 ´ P2 can be generated as a linear combination of polynomials
in L. Still, P1 ‰L P2 could occur when queries P1 and P2 are made to Φ, but they becomes equal (in the
sense of ““L”) after L is updated. The game aborts when this happens.

Overall, we prove the following lemma in Appendix B.1.

Lemma 7. Advomuf-ggm
BS1rGs pA, λq ď PrrGameA4 “ 1s `

Q2
Φ

p´p1`QS1
`Q2

Φq
.

Reduction to WFROS. The core of the proof is to relate the probability of the adversary A winning
Game4 with the advantage of an adversary B winning the WFROS problem, as stated in the following
lemma. The proof is given in Section 4.2.
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Lemma 8. For every λ, there exists an adversary B for the WFROSQS1
,p problem, where p “ |Gλ|, making

at most QH `QS1 ` 1 queries to H such that

PrrGameA4 “ 1s ď Advwfros
QS1

,ppBq `
p2QΦ ` 1qpQH `QS1

` 1q

p´QΦ
. (11)

The statement of Theorem 3 follows by combining Lemmas 7 and 8.

4.2 Proof of Lemma 8

We construct B that interacts with A by simulating the oracles from Game4 using the two oracles S and H
in WFROS. In particular, we extract suitable vectors ~α and ~β to query to H in WFROS, i.e., each RO query
str is decomposed as str “ ξA } ξY }m, where ξA and ξY are encodings of group elements. If both encodings
are valid, there must exist PA, PY such that ΞpPAq “ ξA and ΞpPY q “ ξY ; then, B defines two vectors ~α

and ~β to make a corresponding query to H in WFROS. The oracle S is also used to simulate the signer’s
second stage. Finally, when A outputs QS1

` 1 different valid message-signature pairs in Game4, B tries to
map each valid message-signature pair to a query to H in WFROS. We show that this strategy succeeds
with probability close to that of A succeeding.

The adversary B. Specifically, B initializes the variables sid, Cur, Ifin, Ξ, and T as in Game4. In addition,
B initializes an empty table Hid, used later in the simulation of Ĥ.

Then, B runs A on input pp, Φ̂p1q, Φ̂pXqq and with access to the oracles Π̂, Ŝ1, Ŝ2, and Ĥ. These oracles,
along with Φ̂, operate as follows:

Oracles Φ̂, Π̂: Same as in Game4. In particular, L is updated by calls to Ŝ2.
Oracle Ŝ1: Same as in Game4.
Oracle Ŝ2: Same as Game4 except that instead of sampling yi randomly, if i P rsidszIfin, B makes a query

pi, ciq to S and uses its output as the value yi.
Oracle Ĥ: After receiving a query str, if T pstrq ‰ K, the value T pstrq is returned. Otherwise, str is decom-

posed as str “ ξA } ξY }m such that the length of ξA and ξY is rlogppqs.
– If there exist PA, PY P Cur such that ΞpPAq “ ξA and ΞpPY q “ ξY , denote the coefficients of
PA, PY as

PA “ α̂g ` α̂XX`
ÿ

iPrsids

α̂AiAi `
ÿ

iPrsids

α̂YiYi , (12)

PY “ β̂g ` β̂XX`
ÿ

iPrsids

β̂AiAi `
ÿ

iPrsids

β̂YiYi . (13)

Then, B issues the query p~α, ~βq to H, where ~α, ~β P Z2QS1
`1

p are such that

αpi
1
q “

$

’

’

’

&

’

’

’

%

α̂X , i1 “ 0

α̂Yi , i1 “ 2i´ 1 , i P rsids

´α̂Ai , i1 “ 2i , i P rsids

0 , o.w.

,

βpi
1
q “

$

’

’

’

&

’

’

’

%

´β̂X , i1 “ 0

´β̂Yi , i1 “ 2i´ 1 , i P rsids

β̂Ai , i1 “ 2i , i P rsids

0 , o.w.

.

(14)

After receiving the output pδhid,hidq, B sets T pstrq Ð δhid and Hidpstrq Ð hid.
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– Otherwise, if ξA R T pCurq or ξY R T pCurq (or if the decomposition of str is not possible), B samples
T pstrq uniformly from Zp and sets Hidpstrq “ K.

Finally, B returns T pstrq.

After A outputs tpm˚k , σ
˚
k qukPrQS1

`1s, B aborts if the signatures are not valid, i.e., one of the following
conditions is not satisfied:

@ k1, k2 P rQS1 ` 1s and k1 ‰ k2 : pm˚k1 , σ
˚
k1
q ‰ pm˚k2 , σ

˚
k2
q , (15)

@ k P rQS1 ` 1s : y˚k ‰ 0 ^ c˚k “ Ĥpstr˚kq , (16)

where pc˚k , s
˚
k , y

˚
k q “ σ˚k and str˚k “ Φ̂ps˚k´c

˚
k ¨y

˚
k ¨Xq } Φ̂py

˚
k ¨Xq }m

˚
k . (Here, Ĥ and Φ̂ are the oracles described

previously.) Further, B aborts if the following condition does not hold:

@ k P rQS1 ` 1s : Hidpstr˚kq ‰ K . (17)

Otherwise, B outputs J :“ tHidpstr˚kqukPrQS1
`1s.

Analysis of B. Note that B queries to H at most once when it receives a query to Ĥ and makes QS1
` 1

more queries to Ĥ when checking the validity of the output. Therefore, B makes at most QH ` QS1
` 1

queries to H. Also, it is clear that B simulates oracles S1, S2 in Game4 perfectly. For the simulation of Ĥ,
the only difference is that the distribution of δhid outputting from H in WFROS is uniformly over Z˚p , where
in Game4 it is always uniformly from Zp. However, the statistical distance between the two distributions is
1{p. Since B makes at most QH ` QS1

` 1 queries to H, the statistical difference between the view of A in
Game4 and that in the one simulated by B is bounded by pQH `QS1

` 1q{p.
Denote the event E1 such that when B checks the output from A, both (15) and (16) hold. As these are

exactly the winning conditions of Game4, which is simulated statistically closed to perfect, we have

PrrE1s `
QH `QS1

` 1

p
ě PrrGameA4 “ 1s . (18)

Also, let E2 be the event for which the condition (17) holds immediately afterward. If E2 does not happen,
but E1 does, then we know A outputs a valid message-signature pair pm˚k , σ

˚
k q such that Hidpstr˚kq “ K,

which is unlikely to happen. The following formalizes this, and the proof is in Appendix B.3.

Claim 4 PrrE1 ^ p E2qs ď
2QΦpQH`QS1

`1q

p´QΦ
.

Then, we can conclude the proof with the following claim.

Claim 5 If both E1 and E2 happen, then B outputs a valid WFROS solution J , which in turn implies that
PrrE1 ^ E2s ď Advwfros

QS1
,ppBq.

Before we proceed with a proof, we state a simple lemma for Game4 that is used in the proof of Claim 5.
The proof is immediate and follows from the uniqueness of values returned by the oracle.

Lemma 9. At any step of Game4, for any two polynomials P and P 1, suppose we make queries P and P 1

to Φ. If ΦpP q “ ΦpP 1q, then P “L P
1. Equivalently, if P ‰L P

1, then we have ΦpP q ‰ ΦpP 1q.

Proof (of Claim 5). Suppose both E1 and E2 happen. We first show that for any k1, k2 P rQS1
` 1s and

k1 ‰ k2, it holds that str˚k1 ‰ str˚k2 , which implies |J | “ QS1
` 1. We then show that J is valid for the

WFROS game.
For k1, k2 P rQS1

` 1s and k1 ‰ k2, suppose str˚k1 “ str˚k2 . Then, we have

c˚k1 “ Ĥpstr˚k1q “ Ĥpstr˚k2q “ c˚k2 , m
˚
k1
“ m˚k2 ,
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Φ̂ps˚k1 ´ c
˚
k1
¨ y˚k1 ¨ Xq “ Φ̂ps˚k2 ´ c

˚
k2
¨ y˚k2 ¨ Xq , Φ̂py

˚
k1
¨ Xq “ Φ̂py˚k2 ¨ Xq .

By Lemma 9, it holds that pm˚k1 , pc
˚
k1
, s˚k1 , y

˚
k1
qq “ pm˚k2 , pc

˚
k2
, s˚k2 , y

˚
k2
qq. However, since E1 happens, by (15),

we have pm˚k1 , σ
˚
k1
q ‰ pm˚k2 , σ

˚
k2
q, which yields a contradiction. Therefore, we know str˚k1 ‰ str˚k2 . From the

simulation of Ĥ, we have Hidpstr˚k1q ‰ Hidpstr˚k2q, and thus we have |J | “ `` 1.
We now show that for each j P J , it holds that

α
p0q
j `

ÿ

iPIfin

yi

´

α
p2i´1q
j ` ci ¨ α

p2iq
j

¯

“ δj

˜

β
p0q
j `

ÿ

iPIfin

yi

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

¸

, (C1)

β
p0q
j `

ÿ

iPIfin

yi

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

‰ 0 , (C2)

which implies J is valid for the WFROS game.
Let us fix a j P J . Since j P J , there exists k P rQS1

` 1s such that Hidpstr˚kq “ j, and there exists

PAj , P
Y
j P Cur and mj such that str˚k “ ΞpPAj q }ΞpP

Y
j q }mj . Let α̂j and β̂j denote the coefficients of PAj

and PYj . Since E1 happens, by (16) and Lemma 9, we have PAj “L s
˚
k ´ δj ¨ y

˚
k ¨ X , PYj “L y

˚
k ¨ X, which

implies there exists tr
PAj
1,i , r

PAj
2,i , r

PYj
1,i , r

PYj
2,i uiPIfin

such that

PAj “ s˚k ´ δj ¨ y
˚
k ¨ X`

ÿ

iPrQS1
s

r
PAj
1,i pAi ` ciYi ´ siq `

ÿ

iPrQS1
s

r
PAj
2,i pYi ´ yiXq ,

PYj “ y˚k ¨ X`
ÿ

iPrQS1
s

r
PYj
1,i pAi ` ciYi ´ siq `

ÿ

iPrQS1
s

r
PYj
2,i pYi ´ yiXq . (19)

By looking into the coefficients of X, tAi,YiuiPrQS1
s on both sides of (19), we have α̂Ai

j “ r
PAj
1,i , α̂Yi

j “

r
PAj
1,i ¨ ci ` r

PAj
2,i , β̂Ai

j “ r
PYj
1,i , β̂Yi

j “ r
PYj
1,i and ci ` r

PYj
2,i for each i P rQS1s, β̂

X
j “ y˚k ´

ř

iPrQS1
s r
PYj
2,i ¨ yi, and

α̂X
j “ ´δj ¨ y

˚
k ´

ř

iPrQS1
s r
PAj
2,i ¨ yi. By sorting out the equations, we have

y˚k “ βX
j `

ÿ

iPIfin

yi

´

β̂Yi
j ´ ci ¨ β̂

Ai
j

¯

,

α̂X
j `

ÿ

iPrQS1
s

yi

´

α̂Yi
j ´ ci ¨ α̂

Ai
j

¯

“ ´δj ¨

¨

˝β̂X
j `

ÿ

iPrQS1
s

yi

´

β̂Yi
j ´ ci ¨ β̂

Ai
j

¯

˛

‚ .

By the definition of ~α and ~β in (14), we know (C1) holds and

y˚k “ β
p0q
j `

ÿ

iPIfin

yi

´

β
p2i´1q
j ` ci ¨ β

p2iq
j

¯

.

Since E1 happens, by (16), we know y˚k ‰ 0, which implies (C2) happens. [\

5 Efficient Blind Signatures in the AGM

We now present schemes that are secure in the algebraic group model (AGM) [FKL18]. This model considers
security for algebraic adversaries - these are adversaries that, when used within a reduction, provide a
representation of any group element they output in terms of all prior group elements input to the adversary.
(We dispense with a more formal definition since the use of the AGM is self-evident in our proofs.)

21



Algorithm BS3.Setupp1
λ
q :

pÐ |Gλ|; g Ð gpGλq
Select H : t0, 1u˚ Ñ Z˚p
Return par Ð pp,Gλ, g,Hq
Algorithm BS3.KGpparq :
pp,Gλ, g,Hq Ð par
xÐ$ Zp; X Ð gx; ZÐ$ Gλ
sk Ð x; pk Ð pX,Zq
Return psk, pkq

Algorithm BS3.S1pskq :
xÐ sk; X Ð gx

a, tÐ$ Zp; yÐ$ Z˚p
AÐ ga; C Ð gtZy

sts Ð pa, y, t, xq; msg1 Ð pA,Cq
Return psts,msg1q

Algorithm BS3.S2pst
s, cq :

If c “ 0 then return K
pa, y, t, xq Ð sts

sÐ a` c ¨ y ¨ x
Return msg2 Ð ps, y, tq

Algorithm BS3.U1ppk,msg1,mq :
X Ð pk; pA,Cq Ð msg1

r1, r2 Ð$ Zp; γ1, γ2 Ð$ Z˚p
A1 Ð gr1 ¨Aγ1{γ2

C 1 Ð Cγ1gr2

c1 Ð HpA1 }C 1 }mq
cÐ c1 ¨ γ2

stu Ð pc, c1, r1, r2, γ1, γ2, X, Z,A,Cq
Return pstu, cq

Algorithm BS3.U2pst
u,msg2q :

pc, c1, r1, r2, γ1, γ2, X, Z,A,Cq Ð stu

ps, y, tq Ð msg2

If y “ 0 or C ‰ gtZy or gs ‰ A ¨Xc¨y

then return K
s1 Ð pγ1{γ2q ¨ s` r1

y1 Ð γ1 ¨ y
t1 Ð γ1 ¨ t` r2

Return σ Ð pc1, s1, y1, t1q

Algorithm BS3.Verppk, σ,mq :
pc, s, y, tq Ð σ
If y “ 0 then return 0
C Ð gtZy; AÐ gs ¨X´c¨y

If c ‰ HpA }C }mq then return 0
Return 1

Fig. 7. The blind signature scheme BS3 “ BS3rGs.

5.1 A Protocol Secure under the DL Assumption

In this section, we introduce a scheme, which we refer to as BS3, that relies on the hardness of the (plain)
discrete logarithm (DL) problem, which is formalized in Figure 8. In contrast to BS1, our new scheme
(described in Figure 7) requires an extra group element Z in the public key, and the commitment Xy in is
replaced by gtZy. (This will necessary result in an additional scalar in the signature.) However, one could
generate Z as an output of a hash function (assuming the hash function is a random oracle, which we
assume anyways), although, interestingly, our proof for BS3 will show that blindness holds even when Z is
chosen maliciously by the signer (who may consequently also know its discrete logarithm). In Appendix C,
we present a slightly simpler alternative protocol, called BS2, that avoids the need of such an extra group
element, at the cost of relying on the hardness of a stronger assumption, the one-more discrete logarithm
(OMDL) problem. (Needless to say, a scheme based on DL only is seen as more desirable than a scheme
based on the OMDL assumption [KM08].)

The additional group element Z will in fact allow us to develop a partially blind version of BS3, which
we refer to as PBS, which we discuss in Section 6 below. We note that in fact all results about BS3 can be
obtained as a corollary of our analysis of PBS, because a blind signature scheme is of course a special case
of a partially blind one. However, we are opting for a separate presentation, as the main ideas behind the
reduction are much simpler to understand in (plain) BS3, and the proof of PBS adds some extra complexity
(in particular, in order to obtain a tighter bound), which obfuscates the main ideas.

Security analysis.The following theorem establishes the blindness of BS3. (Its proof is very similar to the
blindness proof of BS1rGs, so we defer it to Appendix D.2.)

Theorem 4. Let G be an (asymptotic) family of prime-order cyclic groups. Then, the blind signature scheme
BS3rGs is perfectly blind.
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Game DLogA
G pλq :

pÐ |Gλ|; g Ð gpGλq
XÐ$ Gλ
y Ð App, g,Gλ, Xq
If gy “ X then return 1
Return 0

Fig. 8. The DLog game.

Game OMUF
Aalg

BS3rGspλq:

pÐ |Gλ|; g Ð gpGλq; xÐ$ Zp; X Ð gx; Z Ð Gλ
sid Ð 0; `Ð 0; Ifin ÐH; T Ð pq; hid Ð 0; Hid Ð pq

tpm˚k , σ
˚
k qukPr``1sÐ$ AS1,S2,H

alg pp, g,Gλ, X, Zq
If D k1 ‰ k2 such that pm˚k1 , σ

˚
k1
q “ pm˚k2 , σ

˚
k2
q then

Return 0
If D k P r`` 1s such that y˚k “ 0

or c˚k ‰ Hpgs
˚
kX´c

˚
k
¨y˚
k } gt

˚
k Zy

˚
k }m˚k q

where pc˚k , s
˚
k , y

˚
k , t

˚
k q “ σ˚k then return 0

Return 1

Oracle HpA }C }mq :
If T pA }C }mq “ K then
T pA }C }mq Ð$ Zp
hid Ð hid` 1
HidpA }C }mq Ð hid

� A “ gα̂
g

Xα̂X

Zα̂
Z ś

iPrsidsA
α̂Ai

i Cα̂
Ci

i

� C “ gβ̂
g

X β̂X

Z β̂
Z ś

iPrsidsA
β̂Ai

i C β̂
Ci

i

δhid Ð T pA }C }mq; ~̂αhid Ð ~̂α;
~̂
βhid Ð

~̂
β

Return T pA }C }mq

Oracle S1 :
sid Ð sid` 1
asid, tsid Ð$ Zp; ysid Ð$ Z˚p
stssid Ð pasid, ysid, tsidq
Asid Ð gasid

Csid Ð gtsidZysid

msg1 Ð pAsid, Csidq

Return psid,msg1q

Oracle S2pi, ciq :
If i R rsidszIfin

or ci “ 0 then
Return K

pai, yi, tiq Ð stsi
si Ð ai ` ci ¨ yi ¨ x
msg2 Ð psi, yi, tiq
Ifin Ð Ifin Y tiu
`Ð `` 1
Return msg2

Fig. 9. The OMUF security game for the blind signature scheme BS3rGs.

The core of the analysis is once again a proof that the scheme is one-more unforgeable in the AGM, i.e.,
we only prove security against algebraic adversaries. In particular, we model the selected hash function as a
random oracle H, to which the adversary is given explicit access.

Theorem 5. Let G be an (asymptotic) family of prime-order cyclic groups. For any algebraic adversary

Aalg for the game OMUFBS3rGspλq making at most QS1
queries to S1 and QH queries to the random oracle

H, there exists an adversary Bdlog for the DLog problem running in a similar running time as Aalg such that

Advomuf
BS3rGspAalg, λq ď 2Advdlog

G pBdlog, λq `
pQH `QS1

` 1qpQH ` 3QS1
` 1q

p´ 1
.

Proof (of Theorem 5). Let us fix an adversary Aalg that makes at most QS1 queries to S1 and QH queries to
the random oracle H. Without loss of generality, assume Aalg makes exactly QS1

queries to S1 and exactly
one query pi, ciq to S2 for each i P rQS1

s. Then, after Aalg returns, we know ` “ QS1
and Ifin “ rQS1

s.

The OMUF
Aalg

BS3rGs game is formally defined in Figure 9. In addition to the original OMUF game (defined

in Figure 1), for each query pA }C }mq to H, its corresponding hid is recorded in HidpA }Y }mq, and the
output of the query is recorded as δhid. Also, since Aalg is algebraic, it also provides the representations of

A and C, and the corresponding coefficient ~̂α and
~̂
β are recorded as ~̂αhid and

~̂
βhid.
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Denote the event WIN as Aalg wins the OMUF
Aalg

BS3rGs game, i.e., all output message-signature pairs

tm˚k , σ
˚
k ukPrQS1

`1s are distinct and valid. Furthermore, let us denote str˚k :“ gs
˚
kX´c

˚
k ¨y

˚
k } gt

˚
k Zy

˚
k }m˚k . We

let E be the event in the OMUF
Aalg

BS3rGs game for which, after the validity of the output is checked, for each

k P rQS1
` 1s and j “ Hidpstr˚kq,

8 the following conditions hold:

α̂X
j ´

ÿ

iPrQS1
s

yi ¨ ci ¨ α̂
Ai
j “ ´δj ¨ y

˚
k , (20)

β̂Z
j `

ÿ

iPrQS1
s

yi ¨ β̂
Ci
j “ y˚k . (21)

Since Advomuf
BS3rGspAalg, λq “ PrrWINs “ PrrWIN ^ Es ` PrrWIN ^ p Eqs, the theorem follows by

combining the following two lemmas with Theorem 1.

Lemma 10. There exists an adversary Bwfros for the WFROSQS1
,p problem making at most QH `QS1 ` 1

queries to the random oracle H such that

Advwfros
QS1

,ppBwfrosq ě PrrWIN ^ Es . (22)

Lemma 11. There exists an adversary Bdlog for the DLog problem running in a similar running time as
Aalg such that

Advdlog
G pBdlog, λq ě

1

2
PrrWIN ^ p Eqs . (23)

[\

5.2 Proof of Lemma 10

Proof. We first give a detailed description of Bwfros playing the game WFROSQS1
,p. To start with, Bwfros

initializes sid, Ifin, `, T , hid, and Hid as described in the OMUF
Aalg

BS3rGs game. In addition, Bwfros samples x, z

uniformly from Zp, sets X to gx and Z to gz.

Then, Bwfros runs Aalg on input pp, g,Gλ, X, Zq, and with access to the oracles Ŝ1, Ŝ2, and Ĥ. These
oracles operate as follows:

Oracle Ŝ1: Same as the OMUF
Aalg

BS3rGs game except that instead of sampling ysid, tsid randomly and setting

Csid Ð gtsidXysid , Bwfros samples a new variable t1sid uniformly from Zp and sets Csid “ gt
1
sid .

Oracle Ŝ2: After receiving a query pi, ciq to Ŝ2 from Aalg, if i R rsidszIfin or ci “ 0, Bwfros returns K.
Otherwise, Bwfros makes a query pi, ciq to S and uses its output as the value yi. Also, Bwfros sets ti “

t1i ´ yi ¨ z. With the value pai, yi, tiq, the rest of Ŝ2 is the same as S2 in the OMUF
Aalg

BS3rGs game.

Oracle Ĥ: After receiving a query pA }C }mq to Ĥ from Aalg, if T pA }C }mq ‰ K, the value T pA }C }mq

is returned. Otherwise, since Aalg is algebraic, Bwfros also knows the coefficient ~̂α and
~̂
β such that

A “ gα̂
g

X α̂X ź

iPrsids

Aα̂
Ai

i Cα̂
Ci

i , C “ gβ̂
g

X β̂X ź

iPrsids

Aβ̂
Ai

i C β̂
Ci

i .

Then, Bwfros issues the query p~α, ~βq to H, where ~α, ~β P Z2QS1
`1

p are such that

αpi
1
q “

$

’

&

’

%

α̂X , i1 “ 0

´α̂Ai , i1 “ 2i , i P rsids

0 , o.w.

,

βpi
1
q “

$

’

&

’

%

´β̂Z , i1 “ 0

´β̂Ci , i1 “ 2i´ 1 , i P rsids

0 , o.w.

.

(24)

8 Here, Hidpstr˚k q must be defined since a query str˚k is made to H when checking the validity of the output pm˚k , σ
˚
k q.
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After receiving the output pδhid,hidq, Bwfros sets T pA }C }mq Ð δhid and HidpA }C }mq Ð hid. Finally,
Bwfros returns T pA }C }mq.

After Aalg outputs tpm˚k , σ
˚
k qukPrQS1

`1s, Bwfros aborts if the conditions from the event WIN ^ E do not

occur. Otherwise, Bwfros outputs J :“ tHidpstr˚kq | k P rQS1
` 1su. Since Bwfros simulates the OMUF

Aalg

BS3rGs

game perfectly, the probability that WIN ^ E occurs when running Bwfros is the same as in the OMUF
Aalg

BS3rGs
game with Aalg.

Following the similar analysis of B in the GGM proof (Section 4.2), we know Bwfros makes at most
QH `QS1 ` 1 queries to H.

It is left to show that if WIN ^ E occurs within the simulation, then Bwfros wins the WFROS game.

We first show that |J | “ QS1
` 1. Suppose |J | ď QS1

. Since Aalg wins the OMUF
Aalg

BS3rGs game, we know

there exists k1, k2 P rQS1
` 1s such that k1 ‰ k2 and Hidpstr˚k1q “ Hidpstr˚k2q, which implies str˚k1 “ str˚k2 .

Therefore, we have

gs
˚
k1X´c

˚
k1
¨y˚k1 “ gs

˚
k2X´c

˚
k2
¨y˚k2 , gt

˚
k1Zy

˚
k1 “ gt

˚
k2Zy

˚
k2 , m˚k1 “ m˚k2 . (25)

Also, let j “ Hidpstr˚k1q “ Hidpstr˚k2q. Since E occurs in the OMUF
Aalg

BS3rGs game simulated by Bwfros, by (20),

we have
y˚k1 “ β̂X

j `
ÿ

iPrQS1
s

yipβ̂
Ci
j ´ ci ¨ β̂

Ai
j q “ y˚k2 .

Since y˚k1 “ y˚k2 and c˚k1 “ c˚k2 , by (25), we have

t˚k1 “ t˚k2 , s
˚
k1
“ s˚k2 .

However, since pm˚k1 , σ
˚
k1
q and pm˚k2 , σ

˚
k2
q are different message-signature pairs, we have

pm˚k1 , c
˚
k1
, s˚k1 , y

˚
k1
, t˚k1q ‰ pm

˚
k2
, c˚k2 , s

˚
k2
, y˚k2 , t

˚
k2
q,

which yields a contradiction. Therefore, we have |J | “ QS1
` 1.

Then, since in particular E occurs, by (20) and (21), it holds that for any j P J

αX
j ´

ÿ

iPrQS1
s

yi ¨ ci ¨ α
Ai
j “ ´δj

¨

˝β̂Z
j `

ÿ

iPrQS1
s

yi ¨ β̂
Ci
j

˛

‚ .

From the simulation of Ĥ, by (24), we have for any j P J

α
p0q
j `

ÿ

iPrQS1
s

yipα
p2i´1q
j ` ci ¨ α

p2iq
j q “ δj

¨

˝β
p0q
j `

ÿ

iPrQS1
s

yipβ
p2i´1q
j ` ci ¨ β

p2iq
j q

˛

‚ .

Therefore, Bwfros wins the WFROSQS1
,p game, which concludes the proof. [\

5.3 Proof of Lemma 11

Proof. We first partition the event WIN ^ p Eq into two cases. Denote F1 as the event in the OMUF
Aalg

BS3rGs
game that there exists k P rQS1 ` 1s such that (20) does not hold, and denote F2 as the event that there
exists k P rQS1 ` 1s such that (21) does not hold. Then, if E does not occur, we know either F1 or F2 occurs.
Therefore, we have WIN ^ p Eq “ pWIN ^ F1q _ pWIN ^ F2q. We then prove the following two claims.

Claim 6 There exists Bp0qdlog for the DLog problem running in a similar running time as Aalg such that

PrrWIN ^ F1s ď Advdlog
G pBp0qdlog, λq . (26)
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Claim 7 There exists Bp1qdlog for the DLog problem running in a similar running time as Aalg such that

PrrWIN ^ F2s ď Advdlog
G pBp1qdlog, λq . (27)

By the above two claims, we can construct an adversary Bdlog for the DLog problem that runs either Bp0qdlog

or Bp1qdlog with 1/2 probability, and we can conclude the lemma since

PrrWIN ^ p Eqs ď PrrWIN ^ F1s ` PrrWIN ^ F2s

ď Advdlog
G pBp0qdlog, λq ` Advdlog

G pBp1qdlog, λq “ 2Advdlog
G pBdlog, λq.

[\

Proof (of Claim 6). We first give a detailed description of Bp0qdlog playing the DLogG game.

The adversary Bp0qdlog. Initially, Bp0qdlog initializes sid, Ifin, `, T , hid, and Hid as described in the OMUF
Aalg

BS3rGs

game. After Bp0qdlog receives pp, g,Gλ,W q from the DLogG game, Bp0qdlog samples z uniformly from Zp and sets

X ÐW,Z Ð gz. Then, Bp0qdlog runs Aalg on input pp, g,Gλ, Xq and with access to the oracles Ŝ1, Ŝ2, and Ĥ.
These oracles operate as follows:

Oracle Ŝ1: Bp0qdlog samples ssid, t
1
sid uniformly from Zp and y1sid unifomly from Z˚p and sets Asid “ gssidX´y

1
sid

and Csid “ gt
1
sid . Then, Bp0qdlog returns psid, Asid, Csidq.

Oracle Ŝ2: Same as in the OMUF
Aalg

BS3rGs game if i R rsidszIfin or ci “ 0. Otherwise, after receving a query

pi, ciq to Ŝ2 from Aalg, Bp0qdlog sets yi Ð y1i{ci and ti Ð t1i ´ yi ¨ z. Then, Bp0qdlog returns psi, yi, tiq to Aalg.

Oracle Ĥ: Same as in the OMUF
Aalg

BS3rGs game.

After receiving the output tpm˚k , σ
˚
k qukPrQS1

`1s, B
p0q
dlog aborts if the event WIN ^ F1 does not occur.

It is clear that Bp0qdlog simulates the OMUF
Aalg

BS3rGs game perfectly. Therefore, it is left to show that if the

event WIN ^ F1 occurs within the simulation, Bp0qdlog can compute the discrete log of X, which equals to W .
Suppose WIN ^ F1 occurs. There exists k P rQS1

` 1s and j “ Hidpstr˚kq such that (20) does not hold.
Since Hidpstr˚kq “ j and δj “ c˚k , we have

gs
˚
kX´δj ¨y

˚
k “ gs

˚
kX´c

˚
k ¨y

˚
k “ gα̂

g
jX α̂X

jZα̂
Z
j

ź

iPrsids

A
α̂

Ai
j

i C
α̂

Ci
j

i . (28)

Similar to the preceding case, since Bp0qdlog knows the discrete log of Z as z, by substituting Ai “ gsiX´ci¨yi ,

Ci “ gtiZyi , and Z “ gz into (28), we have

gs
˚
kX´δj ¨y

˚
k “ g

α̂gj`α̂
Z
j ¨z`

ř

iPrQS1
spα̂

Ai
j ¨si`α̂

Ci
j ¨pti`yi¨zqqX

α̂X
j´

ř

iPrQS1
s yi¨ci¨α̂

Ai
j .

Since (20) does not hold, Bp0qdlog can compute the discrete log of X as

x :“
s˚k ´ α̂

g
j ´ α̂

Z
j ¨ z ´

ř

iPrQS1
spα̂

Ai
j ¨ si ` α̂

Ci
j ¨ pti ` yi ¨ zqq

α̂X
j ´

ř

iPrQS1
s yi ¨ ci ¨ α̂

Ai
j ` δj ¨ y

˚
k

.

[\

Proof (of Claim 7). We first give a detailed description of Bp1qdlog playing the DLogG game.
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The adversary Bp1qdlog. Initially, Bp1qdlog initializes sid, Ifin, `, T , hid, and Hid as described in the OMUF
Aalg

BS3rGs

game. After Bp1qdlog receives pp, g,Gλ,W q from the DLogG game, Bp1qdlog samples x uniformly from Zp and sets

X Ð gx, Z ÐW . Then, Bp1qdlog runs Aalg on input pp, g,Gλ, Xq and with access to the oracles Ŝ1, Ŝ2, and Ĥ.

Since Bp1qdlog knows X “ gx, Bp1qdlog can simulate all the oracles Ŝ1, Ŝ2, and Ĥ the same as in the OMUF
Aalg

BS3rGs

game. After receiving the output tpm˚k , σ
˚
k qukPrQS1

`1s, B
p1q
dlog aborts if the event WIN ^ F2 does not occur.

It is clear that Bp1qdlog simulates the OMUF
Aalg

BS3rGs game perfectly. Therefore, it is left to show that if the

event WIN ^ F2 occurs within the simulation, Bp1qdlog can compute the discrete log of Z, which equals to W .
Suppose WIN ^ F2 occurs. There exists k P rQS1 ` 1s and j “ Hidpstr˚kq such that (21) does not hold.

Since Hidpstr˚kq “ j, we have

gt
˚
k Zy

˚
k “ gβ̂

g
jX β̂X

jZ β̂
Z
j

ź

iPrsids

A
β̂
Ai
j

i C
β̂
Ci
j

i . (29)

From the simulation of Ŝ2, for each i P rQS1s, we have

gsi “ AiX
ci¨yi , gti “ CiZ

´yi .

Also, Bp1qdlog knows the discrete log of X as x. By substituting Ai “ gsiX´ci¨yi , Ci “ gtiZyi , and X “ gx into
(29), we have

gt
˚
k Zy

˚
k “ g

β̂gj`β̂
X
j ¨x`

ř

iPrQS1
spβ̂

Ai
j ¨psi´ci¨yi¨xq`β̂

Ci
j ¨tiqZ

β̂Z
j`

ř

iPrQS1
s yi¨β̂

Ci

.

Since (21) does not hold, Bp1qdlog can compute the discrete log of Z as

z :“
t˚k ´ β̂

g
j ´ β̂

X
j ¨ x´

ř

iPrQS1
spβ̂

Ai
j ¨ psi ´ ci ¨ yi ¨ xq ` β̂

Ci
j ¨ tiq

β̂Z
j `

ř

iPrQS1
s yi ¨ β̂

Ci ´ y˚k
.

[\

6 Partially Blind Signatures

This section presents our partially blind signature scheme, PBS, which is detailed in Figure 10. The scheme
builds on top of the BS3 scheme by replacing the extra generator Z contained in the public key with the
output of a hash function F (also modeled as a random oracle in the OMUF proof) applied to the public
input info. We do not formally redefine the syntax of partially blind signatures, but we note that it simply
extends that of blind signatures by adding the extra input info P t0, 1u˚ to the signer, the user, and the
verification algorithm.

Blindness. We first study the blindness of PBS. The PBlindA
PBS game is defined in Figure 11. The only

difference between PBlind and Blind is that initially, the adversary A also picks a public information info
and interacts with PBS.U1 and PBS.U2 for signing pinfo,m0q and pinfo,m1q. Denote the advantage of the
adversary A as

Advpblind
PBS pA, λq :“

ˇ

ˇ

ˇ

ˇ

PrrPBlindA
PBSpλq “ 1s ´

1

2

ˇ

ˇ

ˇ

ˇ

.

We say a partially blind signature scheme PBS is perfectly blind if and only if Advpblind
PBS pAq “ 0 for any A.

Theorem 6. Let G be an (asymptotic) family of prime-order cyclic groups. The partially blind signature
scheme PBSrGs is perfectly blind.

Since the algorithm PBS.U1 and PBS.U2 are almost the same as BS3.U1 and BS3.U2, we can use a proof
similar to the one for BS3 (Section 5.1) to show PBSrGs is perfectly blind. The only difference is that in BS3,
Z is given in the public key, while in PBSrGs, Z is given by Fpinfoq.
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Algorithm PBS.Setupp1λq :
pÐ |Gλ|; g Ð gpGλq
Select H : t0, 1u˚ Ñ Z˚p
Select F : t0, 1u˚ Ñ Gλ
Return par Ð pp,Gλ, g,H,Fq
Algorithm PBS.KGpparq :
pp,Gλ, g,H,Fq Ð par
xÐ$ Zp; X Ð gx

sk Ð x; pk Ð X
Return psk, pkq

Algorithm PBS.S1psk, infoq :
xÐ sk; X Ð gx; Z Ð Fpinfoq
a, tÐ$ Zp; yÐ$ Z˚p
AÐ ga; C Ð gtZy

sts Ð pa, y, t, xq; msg1 Ð pA,Cq
Return psts,msg1q

Algorithm PBS.S2pst
s, cq :

If c “ 0 then return K
pa, y, t, xq Ð sts

sÐ a` c ¨ y ¨ x
Return msg2 Ð ps, y, tq

Algorithm PBS.U1ppk,msg1, info,mq :
X Ð pk; pA,Cq Ð msg1; Z Ð Fpinfoq
r1, r2 Ð$ Zp; γ1, γ2 Ð$ Z˚p
A1 Ð gr1 ¨Aγ1{γ2

C 1 Ð Cγ1gr2

c1 Ð Hpinfo }A1 }C 1 }mq
cÐ c1 ¨ γ2

stu Ð pc, c1, r1, r2, γ1, γ2, X, Z,A,Cq
Return pstu, cq

Algorithm PBS.U2pst
u,msg2q :

pc, c1, r1, r2, γ1, γ2, X, Z,A,Cq Ð stu

ps, y, tq Ð msg2

If y “ 0 or C ‰ gtZy or gs ‰ A ¨Xc¨y

then return K
s1 Ð pγ1{γ2q ¨ s` r1

y1 Ð γ1 ¨ y
t1 Ð γ1 ¨ t` r2

Return σ Ð pc1, s1, y1, t1q

Algorithm PBS.Verppk, info, σ,mq :
X Ð pk; Z Ð Fpinfoq; pc, s, y, tq Ð σ
If y “ 0 then return 0
C Ð gtZy; AÐ gs ¨X´c¨y

If c ‰ Hpinfo }A }C }mq then return 0
Return 1

Fig. 10. The partially blind signature scheme PBS “ PBSrGs.

OMUF security.We next study the OMUF security of PBS. Note that the definition must also be adjusted:
The main difference is that the adversary wins as long as it can produce `` 1 valid message-signature pairs
for some info for which it has run only ` signing sessions, regardless of how many signing sessions are run
with info1 ‰ info (i.e., their number could be higher than `). The corresponding game is defined in Figure 12,
for the specific case of the scheme PBS. We prove the following theorem.

Theorem 7. Let G be an (asymptotic) family of prime-order cyclic groups. Let Aalg be an algebraic adver-

sary for the game OMUFPBSrGs
pλq such that for each public information info, makes at most QS1

queries to
S1 and QH queries to the random oracle H that start with info. Also, let the total number of distinct public
information info’s queried by Aalg to S1 be bounded by Qinfo. Then, there exists an adversary Bdlog for the
DLog problem running in similar running time as Aalg such that

Advomuf
PBSrGspAalg, λq ď 2Advdlog

G pBdlog, λq `
QinfopQH `QS1

` 1qpQH ` 3QS1
` 1q ` 2

p´ 1
.

The proof is very similar to that for BS3 except we need to additionally perform a hybrid argument over
queries to F, guessing which info will be the one leading to a one-more forgery. However, we need to work
harder here to ensure the discrete logarithm avantage does not scale with Qinfo.

We also note that we have no argument supporting the fact that the information-theoretic term in
Theorem 7 is tight and the inclusion of info in H is necessary. However, a tighter analysis appears to require
studying a more general version of WFROS. We leave this to future work.

6.1 Proof of Theorem 7

Proof. Let Aalg be an algebraic adversary described in the theorem. The OMUF
Aalg

PBSrGs game is formally

defined in Figure 12. Without loss of generality, we assume that if Aalg outputs the public information info˚,
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Game PBlindA
PBSpλq :

par Ð BS.Setupp1λq
bÐ$ t0, 1u; b0 Ð b; b1 Ð 1´ b
b1Ð$ AInit,U1,U2pparq
If b1 “ b then return 1
Return 0

Oracle Initpp̃k, ˜info, m̃0, m̃1q :
sess0 Ð init

sess1 Ð init

pk Ð p̃k
infoÐ ˜info m0 Ð m̃0; m1 Ð m̃1

Oracle U1pi,msgpiq1 q :
If i R t0, 1u or sessi ‰ init then return K
sessi Ð open

pstui , chl
piq
q Ð PBS.U1ppk,msgpiq1 , info,mbiq

Return chlpiq

Oracle U2pi,msgpiq2 q :
If i R t0, 1u or sessi ‰ open then return K
sessi Ð closed

σbi Ð PBS.U2pst
u
i ,msgpiq2 q

If sess0 “ sess1 “ closed then
If σ0 “ K or σ1 “ K then return pK,Kq
Return pσ0, σ1q

Return pi, closedq

Fig. 11. The PBlind security game for a partially blind signature scheme PBS.

Game OMUF
Aalg

PBSrGspλq:

pÐ |Gλ|; g Ð gpGλq; xÐ$ Zp; X Ð gx

sid Ð 0; Ifin ÐH; T1 Ð pq; T2 Ð pq

`Ð a table where all entry are initially set to 0
fid Ð 0; Fid Ð pq; Hid Ð pq

pinfo˚, tpm˚k , σ
˚
k qukPr`pinfo˚q`1sq Ð$ AS1,S2,H,F

alg pp, g,Gλ, Xq
If D k1 ‰ k2 such that pm˚k1 , σ

˚
k1
q “ pm˚k2 , σ

˚
k2
q then

Return 0
If D k P r`pinfo˚q ` 1s such that y˚k “ 0

or c˚k ‰ Hpinfo˚ } gs
˚
kX´c

˚
k
¨y˚
k } gt

˚
k Zy

˚
k }m˚k q

where pc˚k , s
˚
k , y

˚
k , t

˚
k q “ σ˚k and Z “ Fpinfo˚q

then return 0
Return 1

Oracle Hpinfo }A }C }mq :
If T1pinfo }A }C }mq “ K then
T1pinfo }A }C }mq Ð$ Zp
hid Ð hid` 1
Hidpinfo }A }C }mq Ð hid

� A “ gα̂
g

Xα̂X ś

iPrfids Z
α̂Zi

i

ś

iPrsidsA
α̂Ai

i Cα̂
Ci

i

� C “ gβ̂
g

X β̂X ś

iPrfids Z
β̂Zi

i

ś

iPrsidsA
β̂Ai

i C β̂
Ci

i

δhid Ð T1pinfo }A }C }mq

~̂αhid Ð ~̂α;
~̂
βhid Ð

~̂
β

Return T1pinfo }A }C }mq

Oracle S1pinfoq :
Z Ð Fpinfoq
sid Ð sid` 1; infosid Ð info
asid, tsid Ð$ Zp; ysid Ð$ Z˚p
stssid Ð pasid, ysid, tsidq
Asid Ð gasid ; Csid Ð gtsidZysid

msg1 Ð pAsid, Csidq

Return psid,msg1q

Oracle S2pi, ciq :
If i R rsidszIfin or ci “ 0 then

Return K
pai, yi, tiq Ð stsi
si Ð ai ` ci ¨ yi ¨ x
msg2 Ð psi, yi, tiq
Ifin Ð Ifin Y tiu

Ipinfoiqfin Ð Ipinfoiqfin Y tiu
`pinfoq Ð `pinfoq ` 1
Return msg2

Oracle Fpinfoq :
If T2pinfoq “ K then
T2pinfoq Ð$ Gλ
fid Ð fid` 1; Fidpinfoq Ð fid
Zfid “ T2pinfoq

Ipinfoqfin ÐH

Return T2pinfoq

Fig. 12. The OMUF security game for the partially blind signature scheme PBSrGs.

then Aalg makes exactly QS1
queries to S1 and QS1

queries to S2 that do not return K for info˚. Then, when
Aalg returns, we know `pinfo˚q “ QS1

.

In the OMUF
Aalg

PBSrGs game, the corresponding hid for each query pinfo }A }C }mq to H is recorded in

Hidpinfo }A }C }mq, and the output of the query is recorded as δhid. Also, since Aalg is algebraic, Aalg also

provides the representation of A and C and the corresponding coefficients ~α and ~β are recorded as ~αhid and
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~βhid. The corresponding fid for each new query info to S1 is recorded in Fidpinfoq. Also, Ipinfoqfin records the
subset of Ifin corresponding to signing sessions with public information info.

Denote the event WIN as Aalg wins the OMUF
Aalg

PBSrGs game, i.e., all the output message-signature pairs

tm˚k , σ
˚
k ukPrQS1

`1s are distinct and valid for info˚. Furthermore, we denote str˚k :“ info˚ } gs
˚
kX´c

˚
k ¨y

˚
k } gt

˚
k Z

y˚k
Fidpinfo˚q

}m˚k .

We let E be the event in the OMUF
Aalg

PBSrGs game that after the validity of the output is checked, for each

k P rQS1
` 1s, j “ Hidpstr˚kq, and i˚ “ Fidpinfo˚q 9, the following conditions hold:

β̂Zi˚ `
ÿ

iPIpinfo
˚q

fin

yi ¨ β̂
Ci
j “ y˚k , (30)

α̂X
j ´

ÿ

iPIfin

yi ¨ ci ¨ α̂
Ai
j “ ´δj ¨ y

˚
k , (31)

@i P rsidszIfin : α̂Ai
j “ 0 . (32)

Since Advomuf
PBSrGspAalg, λq “ PrrWINs “ PrrWIN ^ Es ` PrrWIN ^ p Eqs, the theorem follows by

combining the following two lemmas with Theorem 1.

Lemma 12. There exists an adversary Bwfros for the WFROSQS1
,p problem making at most QH `QS1

` 1
queries to the random oracle H such that

Advwfros
QS1

,ppBwfrosq ě
1

Qinfo
PrrWIN ^ Es . (33)

Lemma 13. There exists an adversary Bdlog for the DLog problem running in a similar running time as
Aalg such that

PrrWIN ^ p Eqs ď 2Advdlog
G pBdlog, λq `

2

p´ 1
. (34)

[\

6.2 Proof of Lemma 12

Proof. We first give a detailed description of Bwfros playing the WFROS game.

The adversary Bwfros. To start with, Bwfros first samples a label î˚ uniformly from rQinfos. Also, Bwfros

samples x uniformly from Zp, sets X to gx, and initializes sid, hid, fid, Hid, Fid, Ifin, T1, and T2 as described

in the OMUF
Aalg

PBSrGs game. In addition, Bwfros initializes tfid to 0 and tFid to an empty table, which are used

to record the labels of info queries to S1, and initializes tsid to 0 and tSid to an empty table, which are used
to record the labels of session IDs for info such that tFidpinfoq “ î˚.

Then, Bwfros runs Aalg on input pp, g,Gλ, Xq and with access to the oracles F̂, Ŝ1, Ŝ2, and Ĥ. These
oracles, operate as follows:

Oracles F̂: Same as in the OMUF
Aalg

PBSrGs game except instead of sampling T2pinfoq uniformly from G, if

T2pinfoq “ K, Bwfros samples zfid uniformly from Zp and sets T2pinfoq Ð gzfid .

Oracles Ŝ1: After receiving a query info to Ŝ1 from Aalg, if tFidpinfoq “ K, Bwfros increases tfid by 1 and
sets tFidpinfoq “ tfid. Then, there are two cases:

– If tFidpinfoq ‰ î˚, Bwfros samples ssid, t
1
sid uniformly from Zp and samples y1sid uniformly from Z˚p .

Then, Bwfros sets Asid “ gssidX´y
1
sid and Csid “ gt

1
sid .

– If tFidpinfoq “ î˚, Bwfros samples asid, t
1
sid uniformly from Zp and sets Asid “ gasid and Csid “ gt

1
sid .

Also, Bwfros increases tsid by 1 and sets tSidptsidq Ð sid.
Finally, Bwfros returns psid, Asid, Csidq.

9 Here, Hidpstr˚k q must be defined since a query str˚k is made to H when checking the validity of the output pm˚k , σ
˚
k q.
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Oracles Ŝ2: After receiving a query pi, ciq to Ŝ2 from Aalg, if i R rsidszIfin or ci “ 0, Bwfros returns K.
Otherwise, there are two cases:

– If tFidpinfoiq ‰ î˚, Bwfros computes yi Ð y1i{ci and ti Ð t1i ´ yi ¨ zFidpinfoiq.

– If tFidpinfoiq “ î˚, let i1 be the index in rsids such that tSidpi1q “ i and Bwfros sets c̃i1 Ð ci.
Then, Bwfros makes a query pi1, c̃i1q to S. After Bwfros receives ỹi1 from S, B sets yi Ð ỹi1 and
ti Ð t1i ´ yi ¨ zFidpinfoiq.

Finally, Bwfros returns psi, yi, tiq.

Oracles Ĥ: After receiving a query pinfo }A }C }mq to Ĥ from Aalg, if tFidpinfoq ‰ î˚ or T1pinfo }A }C }mq ‰

K, then Ĥ is the same as H in the OMUF
Aalg

PBSrGs game. Otherwise, since Aalg is algebraic, Bwfros also

knows ~̂α and
~̂
β such that

A “ gα̂
g

X α̂X ź

iPrfids

Zα̂
Zi

i

ź

iPrsids

Aα̂
Ai

i Cα̂
Ci

i , C “ gβ̂
g

X β̂X ź

iPrfids

Z β̂
Zi

i

ź

iPrsids

Aβ̂
Ai

i C β̂
Ci

i .

Then, Bwfros issues the query p~α, ~βq to H, where ~α, ~β P Z2QS1
`1

p such that

αpi
1
q “

$

’

&

’

%

α̂X ´
ř

iPrsids,tFidpinfoiq‰î˚
α̂Ai ¨ y1i , i1 “ 0

´α̂AtSidpiq , i1 “ 2i , i P rtsids

0 , o.w.

, (35)

βpi
1
q “

$

’

&

’

%

´β̂Zî˚ , i1 “ 0

´β̂CtSidpiq , i1 “ 2i´ 1 , i P rtsids

0 , o.w.

. (36)

After receiving the output pδhid,hidq, Bwfros sets T1pinfo }A }C }mq Ð δhid and Hidpinfo }A }C }mq Ð
hid. Finally, Bwfros returns T1pinfo }A }C }mq.

After receiving the output tinfo˚, pm˚k , σ
˚
k qukPrQS1

`1s from Aalg, Bwfros aborts if the conditions from the event
WIN ^ E do not occur. Otherwise, Bwfros outputs J :“ tHidpstr˚kq | k P rQS1 ` 1su.

Analysis of Bwfros. Note that Bwfros makes a query to H at most once when it receives a query to Ĥ for
infotfid and at most QS1 ` 1 more queries to Ĥ when checking the validity of the output. Therefore, B makes

at most QH`QS1
`1 queries to H. Also, it is clear that B simulates oracles F, S1, S2, H in the OMUF

Aalg

PBSrGs
game perfectly no matter what label is assigned to tfid. Therefore, the probability that tFidpinfo˚q “ î˚ and
WIN ^ E occurs when running Bwfros is equal to 1

Qinfo
PrrWIN ^ Es.

It is left to show that if tFidpinfo˚q “ î˚ and WIN ^ E occurs within the simulation, then Bwfros wins
the WFROS game. Suppose WIN ^ E occurs and tFidpinfo˚q “ î˚. Following the similar analysis of Bwfros

in the proof of Lemma 10, we have |J | “ QS1 ` 1.

Denote Itot
fin and sidtot as the values of Ifin and sid when Aalg returns. Then, since E occurs, by (30) and

(31), for any j P J it holds that

α̂X
j ´

ÿ

iPItot
fin

yi ¨ ci ¨ α̂
Ai
j “ ´δj

¨

˚

˝

β̂
Zî˚
j `

ÿ

iPIpinfo
˚q

fin

yi ¨ β̂
Ci
j

˛

‹

‚

. (37)
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Game rel-DLogA
G,npλq :

pÐ |Gλ|; g Ð gpGλq
tXiuiPrnsÐ$ Gλ
y0, y1, . . . , yn Ð App, g,Gλ, tXiuiPrnsq
If @ i P t1, . . . , nu : yi “ 0 then return 0
If gy0

ś

iPrnsX
yi
i “ 1Gλ then return 1

Return 0

Fig. 13. The rel-DLog game.

Then, by (32), we have

´ δj

¨

˚

˝

β̂
Zî˚
j `

ÿ

iPIpinfo
˚q

fin

yi ¨ β̂
Ci
j

˛

‹

‚

x “ α̂X
j ´

ÿ

iPItot
fin

yi ¨ ci ¨ α̂
Ai
j

“ α̂X
j ´

ÿ

iPItot
fin

yi ¨ ci ¨ α̂
Ai
j ´

ÿ

iPrsidtotszItot
fin

y1i ¨ α̂
Ai
j

“ α̂X
j ´

ÿ

iPrsidtots,tFidpinfoiq‰î˚

y1i ¨ α̂
Ai
j ´

ÿ

iPIpinfo
˚q

fin

yi ¨ ci ¨ α̂
Ai
j .

Then, from the simulation, by (35), we have for any j P J

α
p0q
j `

ÿ

iPrQS1
s

ỹipα
p2i´1q
j ` c̃i ¨ α

p2iq
j q “ δj

¨

˝β
p0q
j `

ÿ

iPrQS1
s

ỹipβ
p2i´1q
j ` c̃i ¨ β

p2iq
j q

˛

‚ .

Therefore, Bwfros wins the WFROSQS1
,p game. [\

6.3 Proof of Lemma 13

Proof. We first partition the event WIN ^ p Eq into two cases. Denote F1 as the event in the OMUF
Aalg

PBSrGs
game that there exists k P rQS1

` 1s such that either (31) or (32) does not hold, and denote F2 as the event
that there exists k P rQS1

` 1s such that (30) does not hold. Then, if E does not occur, we know either F1 or
F2 occurs. Therefore, we have WIN ^ p Eq “ pWIN ^ F1q _ pWIN ^ F2q. For the case that WIN ^ F1

occurs, we show the following claim.

Claim 8 There exists Bp0qdlog for the DLog problem running in a similar running time as Aalg such that

PrrWIN ^ F1s ď Advdlog
G pBp0qdlog, λq `

1

p´ 1
. (38)

For the case that WIN ^ F2 occurs, we construct an adversary Brel-dlog for the rel-DLogG,QF
game (defined

in 13) with advantage equals to the probability that WIN ^ F2 occurs, where QF denotes the maximum

number of queries to F issued in the OMUF
Aalg

PBSrGs game, and we summarize it into the following claim.

Claim 9 There exists Brel-dlog for the rel-DLog problem running in a similar running time as Aalg such
that

PrrWIN ^ F2s ď Advrel-dlog
G,QF

pBrel-dlog, λq . (39)

The rel-DLog problem is equivalent to the DLog problem, as shown in the following lemma from [JT20].
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Lemma 14 (Lemma 3 in [JT20]10). For any n ą 0 and any adversary Brel-dlog for the rel-DLogG,n
game, there exists an adversary Bdlog for the DLogG game such that

Advrel-dlog
G,n pBrel-dlog, λq ď Advdlog

G pBdlog, λq ` 1{p .

By the lemma and Claim 9, there exists an adversary Bp1qdlog for the DLogG problem such that PrrWIN ^ F1s ď

Advdlog
G pBp1qdlog, λq `

1
p . Therefore, together with Claim 8, we can construct an adversary Bdlog for the DLogG

problem that runs either Bp0qdlog or Bp1qdlog with 1{2 probability, and we can conclude the lemma since

PrrWIN ^ p Eqs ď PrrWIN ^ F1s ` PrrWIN ^ F2s

ď Advdlog
G pBp0qdlog, λq ` Advdlog

G pBp1qdlog, λq `
2

p´ 1
“ 2Advdlog

G pBdlog, λq `
2

p´ 1
.

Proof (of Claim 8). We first give a detailed description of Bp0qdlog playing the DLogG game.

The adversary Bp0qdlog.To start with, Bp0qdlog initializes sid, hid, fid, Hid, Fid, Ifin, T1, and T2 as described in

the OMUF
Aalg

PBSrGs game. After Bp0qdlog receives pp, g,Gλ,W q from the DLogG game, sets X Ð W . Then, Bp0qdlog

runs Aalg on input pp, g,Gλ, Xq, and with access to the oracles F̂, Ŝ1, Ŝ2, and Ĥ. These oracles operate as
follows:

Oracle F̂: Same as in the OMUF
Aalg

PBSrGs game except instead of sampling T2pinfoq uniformly from G, if

T2pinfoq “ K, Bp0qdlog samples z uniformly from Zp and sets T2pinfoq Ð gzfid .

Oracle Ŝ1: After receiving a query info from Aalg, Bwfros samples ssid, t
1
sid uniformly from Zp and samples

y1sid uniformly from Z˚p . Then, Bwfros sets Asid Ð gssidX´y
1
sid and Csid Ð gt

1
sid and returns psid, Asid, Csidq.

Oracle Ŝ2: After receiving a query pi, ciq to Ŝ2 from Aalg, if i R rsidszIfin or ci “ 0, Bp0qdlog returns K.

Otherwise, let î :“ Fidpinfoiq, and Bp0qdlog computes yi Ð y1i{ci and ti Ð t1i ´ yi ¨ zî. Then, Bp0qdlog returns
psi, yi, tiq.

Oracle Ĥ: Same as in the OMUF
Aalg

PBSrGs game.

After receiving the output pinfo˚, tpm˚k , σ
˚
k qukPrQS1

`1sq, B
p0q
dlog aborts if the event WIN ^ F1 does not occur.

It is clear that Bp0qdlog simulates the OMUF
Aalg

PBSrGs game perfectly, and thus it is left to show that if WIN ^ F1

occurs, Bp0qdlog can compute the discrete log of W except for probability 1{p.

Suppose WIN ^ F1 occurs in the OMUF
Aalg

PBSrGs game simulated by Bp0qdlog. There exists k P rQS1
` 1s and

j “ Hidpstr˚kq such that either (31) or (32) does not hold. Since j “ Hidpstr˚kq and δj “ c˚k , we have

gs
˚
kX´δj ¨y

˚
k “ gs

˚
kX´c

˚
k ¨y

˚
k “ gα̂

g
jX α̂X

j

ź

iPrfids

Z
α̂

Zi
j

i

ź

iPrsids

A
α̂

Ai
j

i C
α̂

Ci
j

i . (40)

From the simulation of Ŝ1, for each i P rsids, we have

Ai “ gsiX´y
1
i , Ci “ gt

1
i .

Also, Bp0qdlog knows the discrete log of Zi as zi for each i P rfids. By substituting Ai “ gsiX´y
1
i , Ci “ gt

1
i , and

Zi “ gzi into (40), we have

gs
˚
kX´δj ¨y

˚
k “ gη

g
jXηZj ,

10 The DLog and rel-DLog games defined in [JT20] differ slightly from our descriptions, but the lemma follows by a
similar proof.

33



where

ηgj :“ α̂gj `
ÿ

iPrfids

α̂Zi
j ¨ zi `

ÿ

iPrsids

pα̂Ai
j ¨ si ` α̂

Ci
j ¨ t

1
iq ,

ηXj :“ α̂X
j ´

ÿ

iPrsids

y1i ¨ α̂
Ai
j .

If ηXj ‰ ´δj ¨ y
˚
k , Bp0qdlog can compute the discrete log of X, which is also W , as

x :“
s˚k ´ η

g
j

ηXj ` δj ¨ y
˚
k

.

Therefore, it is left to bound the probability that ηXj “ ´δj ¨ y
˚
k , and there are the following two cases.

(32) does not hold for k, j. Consider the transcript πtot that the adversary sees before it returns. Given the

transcript πtot, since for each i P rsidszIfin, the adversary sees only Ai but does not know either si or y1i, the
value y1i is uniformly distributed over Z˚p independent of all other y1i1 for i1 ‰ i. Therefore, the probability

that ηXj “ ´δj ¨ y
˚
k is 1

p´1 .

(32) holds but (31) does not hold for k, j. Since (32) holds and for each i P Ifin it holds that y1i “ yi ¨ ci, we
have

ηX
ĵ
“ α̂X

ĵ
´

ÿ

iPIfin

yi ¨ ci ¨ α̂
Ai
ĵ
.

Then, since (31) does not hold, we have

ηX
ĵ
‰ ´δĵ ¨ y

˚

k̂
,

which means the probability that ηXj “ ´δj ¨ y
˚
k is 0. Therefore, for both cases, the probability that ηXj “

´δj ¨ y
˚
k is bounded by 1

p´1 . [\

Proof (of Claim 9). We first give a detailed description of Brel-dlog playing the rel-DLogG,QF
game.

The adversary Brel-dlog. To start with, Brel-dlog initializes sid, hid, fid, Hid, Fid, Ifin, T1, and T2 as

described in the OMUF
Aalg

PBSrGs game. Also, Brel-dlog samples x uniformly from Zp and sets X Ð gx. After

Brel-dlog receives pp, g,Gλ, Z1, . . . , ZQF
q from the rel-DLogG,QF

game, Brel-dlog runs Aalg on input pp, g,Gλ, Xq
and with access to the oracles F̂, Ŝ1, Ŝ2, and Ĥ. These oracles operate as follows:

Oracle F̂: Same as in the OMUF
Aalg

PBSrGs game except instead of sampling T2pinfoq uniformly from G, if

T2pinfoq “ K, Brel-dlog sets T2pinfoq Ð Zfid.

Oracle Ŝ1, Ŝ2, Ĥ: The same as in the OMUF
Aalg

PBSrGs game.

After receiving the output pinfo˚, tpm˚k , σ
˚
k qukPrQS1

`1sq, Brel-dlog aborts if WIN ^ F2 does not occur.

It is clear that Brel-dlog simulates the OMUF
Aalg

PBSrGs game perfectly, and thus it is left to show that if

WIN ^ F2 occurs, Brel-dlog can win the rel-DLogG,QF
game.

Suppose WIN ^ F2 occurs in the OMUF
Aalg

PBSrGs game simulated by Brel-dlog. There exists k P rQS1 ` 1s

and j “ Hidpstr˚kq such that (30) does not hold. Since j “ Hidpstr˚kq, we have

gt
˚
k Z

y˚k
i˚ “ gβ̂

g
jX β̂X

j

ź

iPrfids

Z
β̂
Zi
j

i

ź

iPrsids

A
β̂
Ai
j

i C
β̂
Ci
j

i . (41)

From the simulation of Ŝ1, for each i P rsids, we have

Ai “ gai , gti “ CiZ
´yi
i .
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Also, Brel-dlog knows the discrete log of X as x. By substituting Ai “ gai , Ci “ gtiZyii , and X “ gx into
(41), we have

gt
˚
k Z

y˚k
i˚ “ gβ̂

g
j`β̂

X
j ¨x`

ř

iPrsidspβ̂
Ai
j ¨ai`β̂

Ci
j ¨tiq

ź

iPrfids

Z
β̂
Zi
j `

ř

i1Prsids,tSidpi1q“i yi1 ¨β̂
C
i1

i .

Therefore, Brel-dlog can compute pw0, . . . , wQF
q such that gw0

ś

iPrQFs
Wwi
i “ gw0

ś

iPrfids Z
wi
i “ 1Gλ as

wi :“

$

’

’

’

&

’

’

’

%

β̂gj ` β̂
X
j ¨ x`

ř

iPrsidspβ̂
Ai
j ¨ ai ` β̂

Ci
j ¨ tiq ´ t

˚
k , i “ 0

β̂Zi
j `

ř

i1Prsids,tSidpi1q“i yi1 ¨ β̂
Ci1 , i P rfids, i ‰ i˚

´y˚k ` β̂
Zi
j `

ř

i1Prsids,tSidpi1q“i yi1 ¨ β̂
Ci1
j , i “ i˚

0 , o.w.

Since (30) does not hold, we have

wi˚ “ ´y
˚
k ` β̂

Zi˚
j `

ÿ

iPIpinfo
˚q

fin

yi1 ¨ β̂
Ci1 ‰ 0 .

Therefore, Brel-dlog wins the rel-DLogG,QF
game by outputting pw0, . . . , wQF

q defined above. [\

Acknowledgments

The authors wish to thank Christopher A. Wood for extensive discussions. Both authors were partially sup-
ported by NSF grants CNS-1930117 (CAREER), CNS-1926324, CNS-2026774, a Sloan Research Fellowship,
and a JP Morgan Faculty Award.

References

Abe01. Masayuki Abe. A secure three-move blind signature scheme for polynomially many signatures. In Birgit
Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 136–151. Springer, Heidelberg, May
2001.

AF96. Masayuki Abe and Eiichiro Fujisaki. How to date blind signatures. In Kwangjo Kim and Tsutomu Mat-
sumoto, editors, ASIACRYPT’96, volume 1163 of LNCS, pages 244–251. Springer, Heidelberg, November
1996.

AO00. Masayuki Abe and Tatsuaki Okamoto. Provably secure partially blind signatures. In Mihir Bellare, editor,
CRYPTO 2000, volume 1880 of LNCS, pages 271–286. Springer, Heidelberg, August 2000.

BDL`12. Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang. High-speed high-security
signatures. Journal of Cryptographic Engineering, 2(2):77–89, September 2012.

BFP21. Balthazar Bauer, Georg Fuchsbauer, and Antoine Plouviez. The one-more discrete logarithm assumption
in the generic group model. Cryptology ePrint Archive, Report 2021/866, 2021. https://ia.cr/2021/866.

BFPV13. Olivier Blazy, Georg Fuchsbauer, David Pointcheval, and Damien Vergnaud. Short blind signatures. J.
Comput. Secur., 21(5):627–661, 2013.

BL13. Foteini Baldimtsi and Anna Lysyanskaya. Anonymous credentials light. In Ahmad-Reza Sadeghi, Virgil D.
Gligor, and Moti Yung, editors, ACM CCS 2013, pages 1087–1098. ACM Press, November 2013.
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A Proof of Lemma 4

Proof. For k P t0, . . . , nu, define Ek as

D i P t0, . . . , ku such that Di ‰ 0 ^ D0 `

k
ÿ

j“1

DjXj “ 0 .

We will prove the theorem using induction. It is clear that PrrE0s “ 0. For k ě 1, assume PrrEk´1s ď
řk´1
i“1

1
|Ui|

. It holds that

PrrEks “ PrrEk|Ek´1sPrrEk´1s ` PrrEk| Ek´1sPrr Ek´1s

ď PrrEk´1s ` PrrEk| Ek´1s

“ PrrEk´1s ` Pr
“

Ek
ˇ

ˇ p Ek´1q ^ Dk ‰ 0
‰

PrrDk ‰ 0| Ek´1s

` Pr
“

Ek
ˇ

ˇ p Ek´1q ^ Dk “ 0
‰

PrrDk “ 0| Ek´1s

ď PrrEk´1s ` Pr
“

Ek
ˇ

ˇ p Ek´1q ^ Dk ‰ 0
‰

` Pr
“

Ek
ˇ

ˇ p Ek´1q ^ Dk “ 0
‰

.

(42)

It is left to bound Pr
“

Ek
ˇ

ˇ p Ek´1q ^ Dk ‰ 0
‰

and Pr
“

Ek
ˇ

ˇ p Ek´1q ^ Dk “ 0
‰

.

Suppose Ek´1 does not occur and then we have either Di “ 0 for all 0 ď i ă k or D0 `
řk´1
j“1 DjXj “ 0.

If Dk “ 0, we have either Di “ 0 for all 0 ď i ď k, or D0 `
řk
j“1DjXj “ D0 `

řk´1
j“1 DjXj ‰ 0, which

means Ek does not occur. Therefore, we have

Pr
“

Ek
ˇ

ˇ p Ek´1q ^ Dk “ 0
‰

“ 0. (43)
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Otherwise, if Dk ‰ 0, we know Ek occurs if and only if D0 `
řk
j“1DjXj ‰ 0. Since Xk is uniformly

distributed over Uk independent of pD0, . . . , Dk, X1, . . . , Xk´1q given Dk ‰ 0 and Ek´1 does not occur, it
holds that

Pr
“

Ek
ˇ

ˇ p Ek´1q ^ Dk ‰ 0
‰

“ Pr

«

D0 `

k
ÿ

j“1

DjXj “ 0
ˇ

ˇ p Ek´1q ^ Dk ‰ 0

ff

“ Pr

«

Xk “
D0 `

řk´1
j“1 DjXj

Dk

ˇ

ˇ p Ek´1q ^ Dk ‰ 0

ff

ď
1

|Ui|
.

(44)

Therefore, from (42), (43), and (44), we have

PrrEks ď PrrEk´1s `
1

|Ui|
ď

k
ÿ

i“1

1

|Ui|
.

Therefore, by induction, we have

Pr

«

D i P t0, . . . , nu : Di ‰ 0 ^ D0 `

n
ÿ

j“1

DjXj “ 0

ff

“ PrrEns ď
n
ÿ

i“1

1

|Ui|
.

[\

B Postponed Proofs from Section 4

B.1 Proof of Lemma 7

We prove the lemma by going through a serious of games.

GameA0 : This is OMUF-GGMA
BS1

(Figure 5).

GameA1 : This is defined in Figure 14 that only contains the dashed box. We introduce variables X, A1, Y1,

. . . , AQS1
, YQS1

in GameA1 . Each variable is assigned a value, that is, X is assigned x, Ai is assigned ai, and
Yi is assigned yi ¨x. The input to Φ is a polynomial P of variables X, tAi,YiuiPrQS1

s over Zp instead of a single
value v P Zp and the set Cur is a set of polynomials. Also, in Φ we check the equality of two polynomials by
its evaluation on the assigned values, which is denoted by “eval (see Definition 1).

Definition 1. For two ploynomial P and P 1 of the variables X1, . . . ,Xn over a field F , suppose each Xi
is assigned with a value xi P F . We say P “eval P

1 if and only if P pX1 “ x1, . . . ,Xn “ xnq “ P 1pX1 “

x1, . . . ,Xn “ xnq.
For convenience, we also have P “eval P pX1 “ x1, . . . ,Xn “ xnq.
It is easy to check that “eval is an equivalence relation over the polynomials of the variables X1, . . . ,Xn.

We first show that the oracle Φ in GameA1 is well-defined, that is, for each query P to Φ, there exists at most
one P 1 P Cur such that P “eval P

1. Suppose there exists P 1, P 2 P Cur such that P 1 ‰ P 2, P 1 “eval P “eval P
2.

Suppose P 2 is added to Cur after P 1. Consider the query to Φ during which P 2 is added to Cur. Since P 1

is already in Cur when P 2 is added, we have P 1 ‰eval P
2, which yields a contradiction. Therefore, for each

query to Φ, if there exists P 1 P Cur such that P “eval P
1, then P 1 is the unique polynomial in Cur such that

P “eval P
1.

We now show that the views of the adversary in Game0 and Game1 are identical. Define an intermediate

game Game11
A

such that it is identical to GameA1 except each the polynomial P appear in the game is
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Game GameA1 , GameA2 , Game12
A

:

pÐ |Gλ|; xÐ$ Z˚p ; assign x to variable X
sid Ð 0; `Ð 0; Ifin ÐH; Ξ Ð pq; T Ð pq

CurÐH; LÐH

tpmk, σkqukPr``1sÐ$ AΠ,S1,S2,Hpp, Φp1q, ΦpXqq
If D k1 ‰ k2 such that pmk1 , σk1q “ pmk2 , σk2q then

Return 0
If D k P r`` 1s such that y˚k “ 0

or ck ‰ HpΦpsk ´ ck ¨ yk ¨ Xq }Φpyk ¨ Xq }miq

where pck, sk, ykq “ σk then return 0
Return 1

Oracle ΦpP q :

If DP 1 P Cur such that P “eval P
1

and P ‰L P
1 then abort game

If DP 1 P Cur such that P “eval P
1 then

Return ΞpP 1q

If DP 1 P Cur such that P “L P
1 then

Return ΞpP 1q

ΞpP q Ð$ t0, 1ulogppq
zΞpCurq

CurÐ Cur X tP u
Return ΞpP q

Oracle Πpξ, ξ1, bq :

If DP, P 1 P Cur such that ξ “ ΞpP q
and ξ1 “ ΞpP 1q then
Return ΦpP ` p´1qbP 1q

Else return K

Oracle S1 :
sid Ð sid` 1
asid Ð$ Zp; ysid Ð$ Z˚p
stssid Ð pasid, ysidq

Assign asid to variable Asid

Assign ysid ¨ x to varaible Ysid

msg1 Ð pΦpAsidq, ΦpYsidqq

Return psid,msg1q

Oracle S2pi, ciq :
If i R rsidszIfin then return K
pai, yiq Ð stsi
si Ð ai ` ci ¨ yi ¨ x

R1 Ð Ai ` ciYi ´ si
R2 Ð Yi ´ yiX

LÐ LY tR1, R2u

msg2 Ð psi, yiq
Ifin Ð Ifin Y tiu
`Ð `` 1
Return msg2

Oracle Hpstrq :
If T pstrq “ K then
T pstrq Ð$ Zp

Return T pstrq

Fig. 14. The definition for GameA1 , GameA2 , and Game12
A

, where GameA1 only contains the dashed box, GameA2
contains all but the gray box, and Game12

A
contains all but the dashed box.

replaced by its evaluation value P pX “ x,A1 “ a1,Y1 “ y1 ¨x, . . . ,Asid “ asid,Ysid “ ysid ¨xq. It is clear that

Game11
A

is identical to GameA0 . Also, since in the oracle Φ in GameA1 , a polynomial P is considered equal
or not equal to another polynomials by its evaluation value, the view of the adversary in Game1 and Game11
are identical. Thus, we know the views of the adversary in Game0 and Game1 are identical, which implies

PrrGameA0 “ 1s “ PrrGameA1 “ 1s . (45)

GameA2 : This is defined in Figure 14 by ignoring the graybox. A set L is introduced to record the information
leaked to the adversary by S2. For the query pi, ciq to S2, polynomials R1 “ Ai` ciYi´si and R2 “ Yi´yiX
are added to L. Suppose L is also recorded in GameA1 . In GameA1 , define the event E1 as after an query P
to Φ is made,

DP 1 P Cur such that P “eval P
1 and P ‰L P

1 .

Then, GameA2 is identical to GameA1 except it aborts when E1 occurs and we have

PrrGameA1 “ 1s ď PrrGameA2 “ 1s ` PrrE1s , (46)

To bound PrrE1s, for each j P rQΦs, we denote the event E1,j in GameA1 as during the j-th query to Φ

DP 1 P Cur such that Pj “eval P
1 and Pj ‰L P

1 .
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Then, we have E1 “
Ž

jPrQΦs
E1,j . Denote E11,j :“ E1,j

Ź

iPrjsp E1,iq. We now bound PrrE11,js for each

j P rQΦs.
We now fix a certain j P rQΦs. Consider the step when the j-th query to Φ is made during GameA1 .

Denote the transcripts between the oracles and adversarys when the j-th query to Φ is made as πj , which
contains Φp1q, ΦpXq, and all the inputs and outputs of the queries to S1, S2, Π, and H made before the j-th
query to Φ. For a certain transcript πj “ ∆, for 1 ď k ď j, denote the k-th query to Φ in ∆ as P∆k . From the
transcript ∆, one can compute the set Ifin, Cur, and L at the step when the j-th query to Φ is been made.
Denote them by I∆fin, Cur∆, and L∆. For each i P I∆fin, denote the input and output of the query to the S2

for the session i in the transcript ∆ as c∆i and ps∆i , y
∆
i q. Also, from the transcript πj , one can tell whether

E1,k occurs or not for k P rj ´ 1s, since the event E1,k occurs if and only if Pk ‰L P
1 for all P 1 P Cur but Pk

is not added to Cur. Denote the value of sid when the j-th query to Φ is made as sid∆.
Denote Tj as the set of all transcripts ∆ such that Prrπj “ ∆s ą 0 and none of tE1,kukPrjs occurs given

πj “ ∆. We just need to bound PrrE11,j |πj “ ∆s for each ∆ P Tj .
We now fix a certain ∆ P Tj . For any polynomial P , denote the event FP as P “eval Pj and P ‰L Pj .

Then we know E11,j implies one of tFP uPPCur∆ occurs and we have

PrrE11,j |πj “ ∆s ď Pr

«

ł

PPCur∆

FP |πj “ ∆

ff

.

Therefore, it is left to bound PrrFP s for each P P Cur∆.
We now fix a certain P̂ P Cur∆. Since P∆j and L∆ are fixed in ∆, we can directly check whether P̂ “L∆ P∆j

or not. If P̂ “L∆ P∆j , then we have PrrFP̂ s “ 0. Therefore, we can assume P̂ ‰L∆ P∆j . Then, we only need to

bound the probability of P̂ “eval P
∆
j . Since we fix πj “ ∆, the only randomness here is the values assigned to

the random variables X, tAi,YiuiPrsid∆s. Denote the values as ~η :“ px, a1, y1 ¨x, . . . , asid∆ , ysid∆ ¨xq P Z1`2sid∆

p ,
where x, tai, yiuiPrsid∆s are random variables sampled in the game, and we have P “eval P pX “ η1, tAi “
η2i,Yi “ η2i`1uiPrsid∆sq.

To bound PrrP̂ “eval P
∆
j |πj “ ∆s, we first introduce Lemma 15 below. Then the proof structure can be

described as follows. We first define a sequence of polynomials D0, D1, . . . , Dm, B1, . . . , Bq`1 over variables

X, tAi,YiuiPrsid∆s such that Bq`1 :“ P̂ ´ P∆j . Then, we try to apply Lemma 15 to bound the probability
by showing η is uniformly distributed over C, ZeropBq`1q X C ‰ H, and Bq`1 R Spanpt1, B1, . . . , Bquq given
πj “ ∆, where C is defined in Lemma 15.

Lemma 15 (Lemma 1 in [BFP21]). Let D1, . . . , Dm, B1, . . . , Bq`1 be polynomials in ZprX1, . . . ,Xns of
degree 1. Let

C :“

¨

˝

č

iPrqs

ZeropBiq

˛

‚z

¨

˝

ď

iPrms

ZeropDiq

˛

‚ ,

where ZeropP q means the zero set of P . Assume ZeropBq`1q X C ‰ H and Bq`1 R Spanpt1, B1, . . . , Bquq. If
~x is picked uniformly at random from C then

p´m

p2
ď PrrBq`1p~xq “ 0s ď

1

p´m
.

Let m :“ sid∆ ` 1` |Cur∆|p|Cur∆ ´ 1|q. Denote D1 :“ X and Di`1 :“ Yi for i P rsid∆s. For each P, P 1 P
Cur∆ such that P ‰ P 1, denote DP,P 1 :“ P ´P 1. We can relable tDP,P 1uP,P 1PCur∆,P‰P 1 to Dsid∆`2, . . . , Dm.

Let q :“ 2|I∆fin|. For each i P I∆fin, denote

Bpi,1q :“ Ai ` c
∆
i Yi ´ s

∆
i , Bi,2 :“ Yi ´ y

∆
i X .

We can relabel tBpi,1q, Bpi,2quiPI∆fin to B1, . . . , Bq and denote Bq`1 :“ P̂ ´ P∆j . Here one thing to notice is

that we have L∆ “ tB1, . . . , Bqu.
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Denote C :“
´

Ş

iPrqs ZeropBiq
¯

z

´

Ť

iPrms ZeropDiq

¯

and we have the following claim. The proof of the

claim is deferred to Appendix B.2.

Claim 10 In GameA1 , for any ∆ P Tj, given πj “ ∆, we have ~η is uniformly distributed over C.

We now continue to show that ZeropBq`1q X C ‰ H. If ZeropBq`1q X C “ H, since by the above claim

η must be in C given πj “ ∆, we know Bq`1 “eval Bq`1pηq ‰ 0, which implies PrrP̂ “eval Pj |πj “ ∆s “ 0.
Therefore, we only need to consider the case when ZeropBq`1q X C ‰ H.

We then show that Bq`1 R Spanpt1, B1, . . . , Bquq. Since P̂ ‰LCur P∆j and L∆ “ tB1, . . . , Bqu, we know
Bq`1 R SpanptB1, . . . , Bquq. If Bq`1 P Spanpt1, B1, . . . , Bquq, we know there exists a constant δ P Zp such
that δ ‰ 0 and Bq`1 ` δ P SpanptB1, . . . , Bquq. Let B1 “ Bq`1 ` δ. Then, we have for any ~η0 P C, B1p~ηq “ 0
and thus Bq`1p~ηq “ B1p~ηq´ δ “ ´δ ‰ 0, which means ZeropBq`1qXC “ H. This contradicts with the above
argument that ZeropBq`1q X C ‰ H. Therefore, we have Bq`1 R Spanpt1, B1, . . . , Bquq.

Then, by the above claim, we can apply Lemma 15 here and we have

PrrP̂ “eval P
∆
j |πj “ ∆s “ PrrBq`1p~ηq “ 0 | πj “ ∆s ď

1

p´m
.

Since m “ sid∆ ` 1` |Cur∆|p|Cur∆ ´ 1|q ď 1`QS1 `Q
2
Φ, we have

PrrE11,js “
ÿ

∆PTj

PrrE11,j ^ πj “ ∆s

“
ÿ

∆PTj

Prrπj “ ∆s
ÿ

P̂PCur∆

PrrFP̂ | πj “ ∆s ď
QΦ

p´ p1`QS1
`Q2

Φq
.

Therefore, we have PrrE1s “
ř

jPrQΦs
PrrE11,js ď

Q2
Φ

p´p1`QS1
`Q2

Φq
and by (46)

PrrGameA1 “ 1s ď PrrGameA2 “ 1s `
Q2
Φ

p´ p1`QS1
`Q2

Φq
. (47)

Game12
A

: This is defined in Figure 14 by ignoring the dashed box. The only difference between GameA2 and

Game12
A

is that in the oracle Φ the condition “DP 1 P Cur such that P “eval P
1” is changed to “DP 1 P Cur

such that P “L P 1”. We will show that P “eval P
1 is equivalent to P “L P 1 here in Game2, and thus we

know the view of adversary are identical in these two games.
In GameA2 , consider an query P to the oracle Φ. Let P 1 be an arbitrary polynomial in Cur. Consider the

step when the condition “DP 1 P Cur such that P “eval P
1” is checked. We now show that P “eval P

1 is if and
only if P “L P

1. Suppose P “eval P
1. Since the game does not abort, it must hold that P “L P

1. Therefore,
we know P “eval P

1 implies P “L P
1.

On the other hand, we show the following lemma.

Lemma 16. In GameA2 , at any step of the execution, we have

@ P P SpanpLq : P “eval 0 , (48)

which implies for any two polynomials P, P 1 of variables X and tAi,YiuiPrsids

P “L P
1 implies P “eval P

1 . (49)

Proof. We just need show that for each R P L, we have R “eval 0. From the description of S2, we know

L “ tAi ` ciYi ´ si,Yi ´ yiXuiPIfin
.

For R “ Ai ` ciYi ´ si, we have R “eval ai ` ci ¨ yi ¨ xi ´ si “ 0, since si “ ai ` ci ¨ yi ¨ xi. For R “ Yi ´ yiX,
we have R “eval yi ¨ x´ yi ¨ x “ 0. Therfore, we know the lemma holds. [\
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Game Game12
A

, GameA3 , Game13
A

:

pÐ |Gλ|
xÐ$ Z˚p ; assign x to variable X

sid Ð 0; `Ð 0; S ÐH; CurÐH; Ξ Ð pq; T Ð pq

tpmk, σkqukPr``1sÐ$ AΠ,S1,S2,Hpp, Φp1q, ΦpXqq
If D k1 ‰ k2 such that pmk1 , σk1q “ pmk2 , σk2q then

Return 0
If D k P r`` 1s such that y˚k “ 0

or ck ‰ HpΦpsk ´ ck ¨ yk ¨ Xq }Φpyk ¨ Xq }miq

where pck, sk, ykq “ σk then return 0
Return 1

Oracle ΦpP q :

If DP 1 P Cur such that P “eval P
1

and P ‰L P
1 then abort game

If DP 1 P Cur such that P “L P
1 then

Return ΞpP 1q
ΞpP q Ð$ t0, 1ulogppq

zΞpCurq
CurÐ Cur X tP u
Return ΞpP q

Oracle Πpξ, ξ1, bq :

If DP, P 1 P Cur such that ξ “ ΞpP q
and ξ1 “ ΞpP 1q then
Return ΦpP ` p´1qbP 1q

Else return K

Oracle S1 :
sid Ð sid` 1
asid Ð$ Zp; ysid Ð$ Z˚p
stssid Ð pasid, ysidq

Assign asid to variable Asid

Assign ysid ¨ x to varaible Ysid

msg1 Ð pΦpAsidq, ΦpYsidqq

Return psid,msg1q

Oracle S2pi, ciq :
If i R rsidszIfin then return K
pai, yiq Ð stsi
si Ð ai ` ci ¨ yi ¨ x
R1 Ð Ai ` ciYi ´ si
R2 Ð Yi ´ yiX
LÐ LY tR1, R2u

msg2 Ð psi, yiq

If D P1, P2 P Cur such that
P1 ‰ P2 and P1 “L P2

then abort game

Ifin Ð Ifin Y tiu
`Ð `` 1
Return msg2

Oracle Hpstrq :
If T pstrq “ K then
T pstrq Ð$ Zp

Return T pstrq

Fig. 15. The definition for GameA3 and its difference from GameA2 . GameA2 contains all but the solid boxes and
GameA3 contains all but the dashed boxes. We also define an intermediate game Game13

A
which contains both dashed

and solid boxes.

From the above lemma, we know P “L P
1 is equivalent to P “eval P

1 at the step in Φ when the condition
“DP 1 P Cur such that P “eval P

1”. Therefore, we know the view of adversary are identical in these two games,
which implies

PrrGameA2 “ 1s “ PrrGame1A2 “ 1s . (50)

GameA3 : GameA3 is defined in Figure 15 by ignoring the dashed box, where the only difference from Game12
A

is the orinal abort condition is removed from Φ and a new abort condition is added to S2. Also, in GameA3 ,
since the new abort condition only use the information L, we do not need to assign values to the variables
anymore.

We first show that the oracle Φ in GameA3 is well-defined, that is, for each query P to Φ, there exists
at most one P 1 P Cur such that P “L P 1. Suppose during a query P to Φ in GameA2 , the game does not
abort and there exists P 1, P 2The P Cur such that P 1 “L P “L P

2. Without loss of generality assume P 2 is
added to Cur after P 1. If L is not updated after P 2 is added to Cur, then by the description of Φ, we know
P 1 ‰L P

2, which yields a contradiction. Otherwise, if L is updated after P 2 is added to Cur. Consider the
last time L is updated in S2. Since P 1 “L P

2 and P 1, P 2 P Cur, we know GameA3 must abort in S2, which
yields a contradiction. Therefore, we know the oracle Φ in GameA3 is well-defined.

To show that the probability A wins Game12
A

is bounded by the probability A wins GameA3 , we introduce

an itermidiate game Game13
A

which is defined in Figure 15 containing everything. We first show that the
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probability A wins Game12
A

is bounded by the probability A wins Game13
A

. Denote the event E2 in Game12
A

as during a query to S2 after L is updated,

DP1, P2 P Cur such that P1 ‰ P2 and P1 “L P2 .

Then, we have Game13
A

is identical to Game12
A

except it aborts when E2 occurs, which implies

PrrGame12
A
“ 1s ď PrrGame13

A
“ 1s ` PrrE2s , (51)

We now show that PrrE2s “ 0. Suppose E2 occurs. Then, we know at some timestep in Game12
A

there
exists P1, P2 P Cur such that P1 ‰ P2 and P1 “L P2. We first show that P1 ‰eval P2. Suppose P1 “eval P2.
Without loss of generality assume P1 is added to Cur before P2. Consider the step when P2 is added to Cur.
Since P1 is already in Cur, we know P1 ‰L P2. However, since P2 ‰L P1 but P2 “eval P1, the game aborts,
which yields a contradiction. Thus, we know P1 ‰eval P2. Then, by Lemma 16, we know P1 ‰L P2 at any

timestep in Game12
A

, which yields a contradiction. Therefore, we know E2 never occurs in Game12
A

, which
implies

PrrGame1A2 “ 1s ď PrrGame1A3 “ 1s .

Also, since the only difference between Game1A3 and GameA3 is that Game1A3 might abort in Φ while
GameA3 never abort in Φ, we have PrrGame1A3 “ 1s ď PrrGameA3 “ 1s. Therefore, we have

PrrGame1A2 “ 1s ď PrrGame1A3 “ 1s ď PrrGameA3 “ 1s . (52)

GameA4 : This is defined in Figure 16 by ignoring the dashed box. GameA4 is identical to GameA3 , except the
generation of x, tai, yi, siuiPrsids are changed. More precisely, the sampling of x is removed from the main
procedure, the sampling of asid, ysid is removed from S1, and in S2, yi is sampled from Z˚p and si is sampled

from Zp instead of computing from ai and yi. The oracle Φ in GameA4 is well-defined, which can be showed

using the same way as in GameA3 .
We now show that the view of the adversary in Game3 and Game4 are identical. Since the value x and

ai are not used in GameA3 except the dashed box, we just need to show that the distribution of psi, yiq are
identical in GameA3 and GameA4 for each query pi, ciq to S2. Consider the step when the adversary makes a
query pi, ciq to S2 in GameA3 and assume i P rsidszIfin. The value yi and ai are not used anywhere in the
game yet. Therefore, given the current transcript, the distribution of psi, yiq is uniformly random in ZpˆZ˚p .
Since ai Ð si ` ci ¨ yi ¨ x and si is uniformly in Zp given yi, we know the distribution of ai is uniformly
random in Zp even given yi. Therefore, the distribution of pai, yiq is uniformly random in ZpˆZ˚p . Thus, we

know the view of the adversary in GameA3 and GameA4 are identical, which implies

PrrGameA3 “ 1s “ PrrGameA4 “ 1s . (53)

B.2 Proof of Claim 10

Proof. Without loss of generality, assume the randomness used in Φ and the randomness of A are fixed and
assume Prrπj “ ∆s ą 0 given those fixed randomness.

The claim is equivalent to show that

@ ~η0 P C : Prx,~a,~yr~η “ ~η0 | πj “ ∆s “
1

|C|
.

The probability here is taken over the randomness x,~a, ~y, where ~a “ pa1, . . . , asid∆q, ~y “ py1, . . . , ysid∆q. Also,
x, y1, . . . , ysid∆ are picked uniformly at random from Z˚p and a1, . . . , asid∆ are picked uniformly at random
from Zp.

We first show that
πj “ ∆ implies ~η P C .
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Game GameA3 , GameA4 :

pÐ |Gλ|
xÐ$ Z˚p

sid Ð 0; `Ð 0; S ÐH; CurÐH; Ξ Ð pq; T Ð pq

tpmk, σkqukPr``1sÐ$ AΠ,S1,S2,Hpp, Φp1q, ΦpXqq
If D k1 ‰ k2 such that pmk1 , σk1q “ pmk2 , σk2q then

Return 0
If D k P r`` 1s such that y˚k “ 0

or ck ‰ HpΦpsk ´ ck ¨ yk ¨ Xq }Φpyk ¨ Xq }miq

where pck, sk, ykq “ σk then return 0
Return 1

Oracle ΦpP q :

If DP 1 P Cur such that P “L P
1 then

Return ΞpP 1q
ΞpP q Ð$ t0, 1ulogppq

zΞpCurq
CurÐ Cur X tP u
Return ΞpP q

Oracle Πpξ, ξ1, bq :

If DP, P 1 P Cur such that ξ “ ΞpP q
and ξ1 “ ΞpP 1q then
Return ΦpP ` p´1qbP 1q

Else return K

Oracle S1 :
sid Ð sid` 1

asid Ð$ Zp; ysid Ð$ Z˚p
stssid Ð pasid, ysidq

msg1 Ð pΦpAsidq, ΦpYsidqq

Return psid,msg1q

Oracle S2pi, ciq :
If i R rsidszIfin then return K

pai, yiq Ð stsi
si Ð ai ` ci ¨ yi ¨ x

siÐ$ Zp; yiÐ$ Z˚p
R1 Ð Ai ` ciYi ´ si
R2 Ð Yi ´ yiX
LÐ LY tR1, R2u

msg2 Ð psi, yiq
If D P1, P2 P Cur such that
P1 ‰ P2 and P1 “L P2

then abort game
Ifin Ð Ifin Y tiu; `Ð `` 1
Return msg2

Oracle Hpstrq :
If T pstrq “ K then
T pstrq Ð$ Zp

Return T pstrq

Fig. 16. The definition for GameA4 and its difference from GameA3 . GameA3 contains all but the solid box and GameA4
contains all but the dashed box.

Suppose πj “ ∆ occurs. We just need to show Dipηq ‰ 0 for each i P rms and Bipηq “ 0 for each i P

rqs. For D1, . . . , Dsid∆`1, since x ‰ 0 and yi ‰ 0 for each i P rsid∆s, we know D1pηq “ x ‰ 0 and

Di`1pηq “ yi ¨ x ‰ 0 for each i P rsid∆s. For Dsid∆`1, . . . , Dm, we make the argument using the original

label tDP,P 1uP,P 1PCur∆,P‰P 1 . For each P, P 1 P Cur∆ such that P ‰ P 1, assume without loss of generality P
is added to Cur before P 1. When P 1 is added to Cur, since P is already in Cur, we know P 1 ‰eval P , which
implies DP,P 1p~ηq “ P 1p~ηq ´ P p~ηq ‰ 0.

For B1, . . . , Bq, we also make the argument using the original label tBpi,1q,Bpi,2quiPI∆fin . For each i P I∆fin,

consider the query pi, c∆i q made to S2. Since πj “ ∆, we have s∆i “ ai ` c∆i ¨ yi ¨ x and y∆i “ yi. Therefore,
we have Bpi,1qp~ηq “ ai ` c

∆
i ¨ yi ¨ x´ s

∆
i “ 0 and Bpi,2qp~ηq “ yi ¨ x´ y

∆
i ¨ x “ 0.11 Therefore, we have ~η P C.

We then show that

~η P C implies πj “ ∆ .

Since Prrπj “ ∆s ą 0, we know there exists px0,~a0, ~y0q P Z1`2sid∆

p such that πj “ ∆ when px,~a, ~yq “

px0,~a0, ~y0q. We now show that for any px1,~a1, ~y1q P Z1`2sid∆

p , given px,~a, ~yq “ px1,~a1, ~y1q and ~η P C, it must
have πj “ ∆.

Denote the case when px,~a, ~yq “ px0,~a0, ~y0q as case 0 and the case when px,~a, ~yq “ px1,~a1, ~y1q as case 1.
We will show that the transcripts between the adversary and the oracles are exactly the same in these two
cases, which implies πj “ ∆ in case 1. We show this by induction. It is clear that the transcripts are the

11 Note here the value yi ¨ x is assigned to Yi
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same at the begining. For a time step T , suppose the transcripts are the same prior to this step and we have
the following situations:

- Query to Φ,S1, Π: Suppose the adversary receives pΦp1q, ΦpXqq or makes query to S1 or Π at step T .
For the case that the adversary makes query to S1 or Φ, the transcripts can only differ on the invokation
of Φ in S1 or Π. Therefore, we only need to consider the queries and outputs of each Φ.

For the k-th query to Φ where k ă j, since the prior transcripts are the same in these two cases and
the adversary is deterministic, we know the query Pk and the set Cur are the same in the two cases.
If Pk ‰eval P

1 for any P 1 P Cur in case 0, then we know Pk is added to Cur in case 0. Since πj “ ∆

occurs in case 0, we know tPkuYCur Ď Cur∆. Since ~η1 P C, we know Pkp~η1q ‰ P 1p~η1q for any P 1 P Cur∆.
Therefore, we have Pk ‰eval P

1 for any P 1 P Cur in case 1 too. Then, the outputs of Φ are the same in
the two cases.

Otherwise, if Pk “eval P
1 for some P 1 P Cur, we know such P 1 must be unique. Since E1,k does not

occur in case 0, we have Pk “L P
1 in case 0. Since the current L is the same in the two cases, we know

Pk “L P
1 in case 1 too. Since Pk “L P

1 implies Pk “eval P
1, we have Pk “eval P

1 in case 1 too. Thus, the
output of Φ must be the same in the two cases. Therefore, we know the transcripts in these two cases
must be the same after the k-th query to Φ is finished.

- Query to S2: Suppose the adversary makes query pi, ciq to S2 at step T . Since πj “ ∆ occurs in case 0,

we know i P I∆fin, ci “ c∆i , yi “ y0,i “ y∆i , and si “ a0,i` ci ¨ y0,i ¨x0 “ s∆i in case 0. Since the transcripts
are the same in the two cases prior to T and the adversary is deterministic, we know ci is the same in
both cases. Therefore, we know ci “ c∆i in case 1. Since ~η1 P C, we have

Bpi,1qp~η1q “ a1,i ` c
∆
i ¨ y1,i ¨ x1 ´ s

∆
i “ 0 ,

Bpi,2qp~η1q “ y1,i ¨ x1 ´ y
∆
i ¨ x1 “ 0 .

Therefore, we have yi “ yi,1 “ y∆i and si “ a1,i ` ci ¨ y1,i ¨ x1 “ a1,i ` c
∆
i ¨ y1,i ¨ x1 “ s∆i in case 1. Since

the output pyi, siq is the same in the two cases, we know the transcripts must be the same in these two
cases after the query to S2 is finished.

- Query to H : Since H does not envolve the randomness x,~a, ~y, we know the transcripts are the same in
the two cases after the query.

By induction, we know the transcript is the same by the step when the j-the query is made to Φ in the two

cases. Therefore, we know πj “ ∆ in case 1. Since it holds for any px1,~a1, ~y1q P Zsid∆

p , we know ~η P C implies
πj “ ∆. Therefore, πj “ ∆ is equivalent to ~η P C, which implies for any ~η0 P C

Prx,~a,~yr~η “ ~η0|πj “ ∆s “ Prx,~a,~yr~η “ ~η0|~η P Cs .

It is left to show Prx,~a,~yr~η “ ~η0|~η P Cs “ 1
|C| for any ~η0 P C. Denote E :“ Z˚p ˆ pZpˆZ˚p qsid

∆

and we know

px, a1, y1, . . . , asid∆ , ysid∆q is uniformly distributed over E . Therefore, ~η “ px, a1, y1¨x, . . . , asid∆isalsodysid∆¨xq

is also uniformly distributed over E , which implies for any ~η0 P E ,

Prx,~a,~yr~η “ ~η0s “
1

|E |
.

Since C Ď E , we have for any ~η0 P C

Prx,~a,~yr~η “ ~η0|~η P Cs “
1{|E |
|C|{|E |

“
1

|C|
.

[\
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B.3 Proof of Claim 4

Proof (of Claim 4). Suppose E1 ^ p E2q occurs. Denote strj as the input of the j-th query to Ĥ. Denote

the total number of queries to Ĥ as numtot
Ĥ

. Denote the decompositin of strj as strj “ ξAj } ξ
Y
j }mj . Denote

Curj as the set Cur by the step when the j-th query to Ĥ is made and denote Curtot as the set Cur after B
finishes the check of the condition (15) and (16). Since B makes a query str˚k to Ĥ to check the condition
(16), there exists j P rnumtot

Ĥ
s such that strj “ str˚k . Let jmin be the smallest index such that strjmin

“ str˚k .

Since Hidpstr˚kq “ K, from the simulation of Ĥ, we know ξAjmin
R ΞpCurjmin

q or ξYjmin
R ΞpCurjmin

q. However,

since ξAjmin
“ Φ̂ps˚k ´ c

˚
k ¨ y

˚
k ¨Xq and ξYjmin

“ Φ̂py˚k ¨Xq, we know ξAjmin
, ξYjmin

P Curtot. Therefore, denote the set

of all ξYj and ξAj that do not correspond to any encoding of polynomials when the j-th query to Ĥ is made
as

Dtot :“ tξAj |j P rnumtot
Ĥ
s, ξAj R ΞpCurjqu Y tξ

Y
j |j P rnumtot

Ĥ
s, ξYj R ΞpCurjqu ,

and then we have at least one of ξAjmin
and ξYjmin

is in D X ΞpCurtot
q, which implies D X ΞpCurtot

q ‰ H.

Therefore, we have the event E occurs implies D XΞpCurtot
q ‰ H, which means

PrrE1 ^ p E2qs ď PrrDtot XΞpCurtot
q ‰ Hs . (54)

It is left to bound PrrD XΞpCurtot
q ‰ Hs.

Denote

Dj :“ tξAj1 |j
1 P rjs, ξAj1 R ΞpCurj1qu Y tξ

Y
j1 |j

1 P rjs, ξYj1 R ΞpCurj1qu .

Denote Curpiq as the set Cur after the i-th query to Φ̂ is finished and Curp0q “ H. Consider the step when the

i-th query to Φ̂ is made. Denote the number of queries to Ĥ before the i-th query to Φ̂ is made as num
piq

Ĥ
.

Denote the event E1i as D
num

piq

Ĥ

X ΞpCurpi´1q
q “ H and D

num
piq

Ĥ

X ΞpCurpiqq ‰ H. We first show that if

Dtot XΞpCurtot
q ‰ H, then there exists i such that E1i occurs, and then bound PrrE1is for each i.

Denote the total number of queries to Φ̂ as numtot
Φ̂

. Suppose none of tE1iuiPrnumtot
Φ̂
s occurs. We show that

at any time step, supposing the number of queries to Φ̂ made so far is i and the number of queries to Ĥ
made so far is j, we have Dj X T pCur

piq
q “ H, which implies Dtot XΞpCurtot

q “ H. We show the statement

by induction. At the begining, we know i “ 0, j “ 0, Curp0q “ H, and D0 “ H. Thus, the statement
holds trivially. For any time step with i ą 0 or j ą 0, suppose the latest query is made to Ĥ and we have
Dj´1 X T pCurpiqq “ H. Consider the step when the j-th query to Ĥ is made. If T pstrjq ‰ K, we have

Dj “ Dj´1 and Dj X T pCurpiqq “ H. Otherwise, if T pstrjq “ K, we have Dj “ Dj´1 Y ptξ
A
j , ξ

Y
j uzT pCurjqq.

Since Curj “ Curpiq, we have DjXT pCur
piq
q “ Dj´1YT pCur

piq
q “ H. Therefore, we have DjXT pCur

piq
q “ H.

Otherwise, suppose the latest query is made to Φ̂ and we haveDjXT pCur
pi´1q

q “ H. Since we have j “ num
piq

Ĥ

and E1i does not occur, we have Dj X T pCurpi´1q
q “ D

num
piq

Ĥ

X ΞpCurpiqq “ H. Therefore, by induction, the

statement holds. Then, considering the step when B finishes the check of the condition (15) and (16), we

have Dtot X ΞpCurtot
q “ Dnumtot

Ĥ
X ΞpCurpnumtot

Φ̂
q
q “ H. Therefore, if Dtot X ΞpCurtot

q ‰ H, then at least

one of tE1iuiPrnumtot
Φ̂
s occurs.

Finally, to bound PrrE1is, consider the i-th query to Φ̂. Denote the input of the i-th query to Φ̂ as Pi.

Denote j “ num
piq

Ĥ
for simplicity. Suppose E1i occurs. We know Curpiq ‰ Curpi´1q, which implies Curpiq “

Curpi´1q
YtPiu and ΞpCurpiqq “ ΞpCurpi´1q

qYtΞpPiqu. Since DjXΞpCur
pi´1q

q “ H and DjXΞpCur
piq
q ‰ H,

we know ΞpPiq P Dj . Therefore, we have

PrrE1is ď prCurpiq “ Curpi´1q
X tPiu ^ ΞpPiq P Djs .
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Game OMDLA
G pλq :

pÐ |Gλ|; g Ð gpGλq
cid Ð 0; `Ð 0
tyiuiPrcids Ð AChal,DLog

pp, g,Gλq
If ` ě cid then return 0
If @ i P rcids : yi “ xi then

Return 1
Return 0

Oracle Chal :
cid Ð cid` 1
xcid Ð$ Zp
Return gxcid

Oracle DLogpXq :
`Ð `` 1
Return loggpXq

Fig. 17. The OMDL game.

Consider the step when ΞpPiq is generated. We know Dj is already determined. Therefore, we know ΞpPiq

is sampled uniformly at random from t0, 1ulogppqzΞpCurpi´1q
q independent of Dj , which implies

PrrE1is ď PrrCurpiq “ Curpi´1q
Y tPiu ^ ΞpPiq P Djs

ď PrrΞpPiq P Dj |Cur
piq
“ Curpi´1q

Y tPius

ď
|Dj |

p´ |Curpi´1q
|
ď

|Dtot|

p´ |Curtot
|
.

Therefore, we have

PrrDtot XΞpCurtot
q ‰ Hs ď Pr

»

–

ł

iPrnumtot
Φ s

E1i

fi

fl ď
ÿ

iPrnumtot
Φ̂
s

PrrE1is ď
numtot

Φ̂
¨ |Dtot|

p´ |Curtot
|
.

Since |Dtot| ď 2numtot
Ĥ
ď 2pQH `QS1

` 1q and |Curtot
| ď numtot

Φ̂
ď QΦ, by (54), we have

PrrE1 ^ p E2qs ď
2numtot

Φ̂
¨ numtot

Ĥ

p´ numtot
Φ̂

“
2QΦpQH `QS1 ` 1q

p´QΦ
.

[\

C A Scheme Secure under OMDL

In this section, we present our second blind signature scheme, BS2, that is proved secure in AGM assuming the
hardness of the one-more discrete logarithm (OMDL) problem [BNPS03], which is formalized in Figure 17.
We also denote by Advomdl

G pA, λq the corresponding advantage that A wins the game. The adversary is now
given access to a powerful oracle that can compute discrete logarithms, but if the adversary queries this
oracle ` times, it is asked to solve `` 1 discrete-log instances. While the OMDL game gives more power to
an adversary compared to the classical DL problem, its generic concrete security is comparable, as recently
proved by Fuchsbauer et al. [BFP21].

The scheme BS2 is described in Figure 18. It very much resembles BS1, with the exception that the
commitment C is now gtXy instead of Xy. This also gives us a more involved blinding method. Still, the
resulting scheme is perfectly blind, as shown by the following theorem. (Its proof is very similar to the
blindness proof of BS1rGs, so we defer it to Appendix D.1.)

Theorem 8. Let G be an (asymptotic) family of prime-order cyclic groups. Then, the blind signature scheme
BS2rGs is perfectly blind.

The core of our analysis is the following theorem, which asserts the one-more unforgeability of BS2 in the
AGM, assuming random oracles.
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Algorithm BS2.Setupp1
λ
q :

pÐ |Gλ|; g Ð gpGλq
Select H : t0, 1u˚ Ñ Zp
Return par Ð pp,G, g,Hq
Algorithm BS2.KGpparq :
pp,G, g,Hq Ð par
xÐ$ Zp; X Ð gx

sk Ð x; pk Ð X
Return psk, pkq

Algorithm BS2.S1pskq :
xÐ sk; X Ð gx

a, tÐ$ Zp; yÐ$ Z˚p
AÐ ga; C Ð gtXy

sts Ð pa, y, t, xq; msg1 Ð pA,Cq
Return psts,msg1q

Algorithm BS2.S2pst
s, cq :

pa, y, t, xq Ð sts

sÐ a` c ¨ y ¨ x
Return msg2 Ð ps, y, tq

Algorithm BS2.U1ppk,msg1,mq :
X Ð pk; pA,Cq Ð msg1

r1, r2, r3 Ð$ Zp; γÐ$ Z˚p
A1 Ð gr1 ¨Aγ ¨ Cr3¨γ

C 1 Ð Cγgr2

c1 Ð HpA1 }C 1 }mq
cÐ c1 ` r3

stu Ð pc, c1, r1, r2, r3, γ,X,Z,A,Cq
Return pstu, cq

Algorithm BS2.U2pst
u,msg2q :

pc, c1, r1, r2, r3, γ,X,Z,A,Cq Ð stu

ps, y, tq Ð msg2

If y “ 0 or C ‰ gtXy or gs ‰ A ¨Xc¨y

then return K
s1 Ð γ ¨ s` r1 ` r3 ¨ γ ¨ t
y1 Ð γ ¨ y
t1 Ð γ ¨ t` r2

Return σ Ð pc1, s1, y1, t1q

Algorithm BS2.Verppk, σ,mq :
pc, s, y, tq Ð σ
If y “ 0 then return 0
C Ð gtXy; AÐ gs ¨X´c¨y

If c ‰ HpA }C }mq then return 0
Return 1

Fig. 18. The blind signature scheme BS2 “ BS2rGs.

Theorem 9. Let G be an (asymptotic) family of prime-order cyclic groups. For any algebraic adversary

Aalg for the game OMUFBS2rGspλq making at most QS1 queries to S1 and QH queries to the random oracle
H, there exists an adversary Bomdl running in a similar running time as Aalg for the OMDL problem making
at most 2QS1

` 1 queries to Chal such that

Advomuf
BS2rGspAalg, λq ď Advomdl

G pBomdl, λq `
pQH `QS1

` 1qpQH ` 3QS1
` 2q

p´ 1
.

The proof of Theorem 9 resembles the proof of security for BS1 in Theorem 3, in particular, by relying
on the WFROS game.

Proof (Theorem 9). Let us fix an adversary Aalg making at most QS1
queries to S1, and QH queries to the

random oracle H. Without loss of generality, assume Aalg makes exactly QS1
queries to S1 and exactly one

query pi, ciq to S2 for each i P rQS1
s. Then, after Aalg returns, we know ` “ QS1

and Ifin “ rQS1
s.

The OMUF
Aalg

BS2rGs game is formally defined in Figure 19. In addition to the original OMUF game (defined

in Figure 1), for each query pA }C }mq to H, its corresponding hid is recorded in HidpA }C }mq and the
output of the query is recorded as δhid. Also, since Aalg is algebraic, Aalg also provides the representations

of A and C, and the corresponding coefficients ~̂α and
~̂
β are recorded as ~̂αhid and

~̂
βhid.

Denote the event WIN as Aalg wins the OMUF
Aalg

BS2rGs game, i.e., all output message-signature pairs

tm˚k , σ
˚
k ukPrQS1

`1s are distinct and valid. Furthermore, let us denote str˚k :“ gs
˚
kX´c

˚
k ¨y

˚
k } gt

˚
kXy˚k }m˚k . We

let E be the event in the OMUF
Aalg

BS2rGs game for which, after the validity of the output is checked, for each
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Game OMUF
Aalg

BS2rGspλq:

pÐ |Gλ|; g Ð gpGλq; xÐ$ Zp; X Ð gx

sid Ð 0; `Ð 0; Ifin ÐH; T Ð pq; hid Ð 0; Hid Ð pq

tpm˚k , σ
˚
k qukPr``1sÐ$ AS1,S2,H

alg pp, g,Gλ, Xq
If D k1 ‰ k2 such that pm˚k1 , σ

˚
k1
q “ pm˚k2 , σ

˚
k2
q then

Return 0
If D k P r`` 1s such that y˚k “ 0

or c˚k ‰ Hpgs
˚
kX´c

˚
k
¨y˚
k } gt

˚
kXy˚

k }m˚k q
where pc˚k , s

˚
k , y

˚
k , t

˚
k q “ σ˚k then return 0

Return 1

Oracle HpA }C }mq :
If T pA }C }mq “ K then
T pA }C }mq Ð$ Zp
hid Ð hid` 1
HidpA }C }mq Ð hid

� A “ gα̂
g

Xα̂X ś

iPrsidsA
α̂Ai

i Cα̂
Ci

i

� C “ gβ̂
g

X β̂X ś

iPrsidsA
β̂Ai

i C β̂
Ci

i

δhid Ð T pA }C }mq; ~̂αhid Ð ~̂α;
~̂
βhid Ð

~̂
β

Return T pA }C }mq

Oracle S1 :
sid Ð sid` 1
asid, tsid Ð$ Zp; ysid Ð$ Zp
stssid Ð pasid, ysid, tsidq
Asid Ð gasid

Csid Ð gtsidXysid

msg1 Ð pAsid, Csidq

Return psid,msg1q

Oracle S2pi, ciq :
If i R rsidszIfin then

Return K
pai, yi, tiq Ð stsi
si Ð ai ` ci ¨ yi ¨ x
msg2 Ð psi, yi, tiq
Ifin Ð Ifin Y tiu
`Ð `` 1
Return msg2

Fig. 19. The OMUF security game for the blind signature scheme BS2rGs and Game1 used in the proof of Theorem 9,

where OMUF
Aalg

BS2rGs contains all but the solid box and Game
Aalg

1 contains all.

k P rQS1
` 1s and j “ Hidpstr˚kq,

12 the following conditions hold:

α̂X
j `

ÿ

iPrQS1
s

yipα̂
Ci
j ´ ci ¨ α̂

Ai
j q “ ´δj ¨ y

˚
k , (55)

β̂X
j `

ÿ

iPrQS1
s

yipβ̂
Ci
j ´ ci ¨ β̂

Ai
j q “ y˚k . (56)

Since Advomuf
BS2rGspAalg, λq “ PrrWINs “ PrrWIN ^ Es ` PrrWIN ^ p Eqs, the theorem follows by

combining the following two lemmas with Theorem 1.

Lemma 17. There exists an adversary Bwfros for the WFROSQS1
,p problem making at most QH `QS1

` 1
queries to the random oracle H such that

Advwfros
QS1

,ppBwfrosq `
QH `QS1

` 1

p
ě PrrE1 ^ E2s . (57)

Lemma 18. There exists an adversary Bomdl running in similar running time as Aalg for the OMDL problem
making at most 2QS1

` 1 queries to Chal, such that

Advomdl
G pBomdl, λq ě PrrGame

Aalg

1 “ 1s . (58)
[\

C.1 Proof of Lemma 17

The proof is almost the same as the proof of Lemma 10.

Proof. We first give a detailed description of Bwfros playing the game WFROSQS1
,p.

12 Here, Hidpstr˚k q must be defined since a query str˚k is made to H when checking the validity of the output pm˚k , σ
˚
k q.
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The adversary Bwfros. To start with, Bwfros initializes sid, Ifin, `, T , hid, and Hid as described in the

OMUF
Aalg

BS2rGs game. In addition, Bwfros samples x uniformly from Zp and sets X to gx.

Then, Bwfros runs Aalg on input pp, g,Gλ, Xq and with access to the oracles Ŝ1, Ŝ2, and Ĥ. These oracles
operate as follows:

Oracle Ŝ1: Same as the OMUF
Aalg

BS2rGs game except that instead of sampling ysid, tsid randomly and setting

Csid Ð gtsidXysid , Bwfros samples a new variable t1sid uniformly from Zp and sets Csid “ gt
1
sid .

Oracle Ŝ2: After receiving a query pi, ciq to Ŝ2 from Aalg, if i R rsidszIfin, Bwfros returns K. Otherwise,
Bwfros makes a query pi, ciq to S and uses its output as the value yi. Also, Bwfros sets ti “ t1i´yi ¨x. With

the value pai, yi, tiq, the rest of Ŝ2 is the same as S2 in the OMUF
Aalg

BS2rGs game.

Oracle Ĥ: After receiving a query pA }C }mq to Ĥ from Aalg, if T pA }C }mq ‰ K, the value T pA }C }mq

is returned. Otherwise, since Aalg is algebraic, Bwfros also knows the coefficient ~̂α and
~̂
β such that

A “ gα̂
g

X α̂X ź

iPrsids

Aα̂
Ai

i Cα̂
Ci

i , C “ gβ̂
g

X β̂X ź

iPrsids

Aβ̂
Ai

i C β̂
Ci

i .

Then, Bwfros issues the query p~α, ~βq to H, where ~α, ~β P Z2QS1
`1

p are such that

αpi
1
q “

$

’

’

’

&

’

’

’

%

α̂X , i1 “ 0

α̂Ci , i1 “ 2i´ 1 , i P rsids

´α̂Ai , i1 “ 2i , i P rsids

0 , o.w.

βpi
1
q “

$

’

’

’

&

’

’

’

%

´β̂X , i1 “ 0

´β̂Ci , i1 “ 2i´ 1 , i P rsids

β̂Ai , i1 “ 2i , i P rsids

0 , o.w.

.

(59)

After receiving the output pδhid,hidq, Bwfros sets T pA }C }mq Ð δhid and HidpA }C }mq Ð hid. Finally,
Bwfros returns T pA }C }mq.

After Aalg outputs tpm˚k , σ
˚
k qukPrQS1

`1s, Bwfros aborts if the conditions from the event WIN ^ E do not
occur. Otherwise, Bwfros outputs J :“ tHidpstr˚kq | k P rQS1

` 1su.
Following an analysis similar to B in the GGM (Section 4.2), we know Bwfros makes at most QH`QS1

`1

queries to H and Bwfros simulates the OMUF
Aalg

BS2rGs game statistically close to perfect with distance bounded

by
QH`QS1

`1

p . Therefore, the probability that WIN ^ E occurs when running Bwfros is at least PrrWIN ^

Es ´
QH`QS1

`1

p .
It is left to show that if WIN ^ E occurs within the simulation, then Bwfros wins the WFROS game.

We first show that |J | “ QS1
` 1. Suppose |J | ď QS1

. Then, we know there exists k1, k2 P rQS1
` 1s such

that k1 ‰ k2 and Hidpstr˚k1q “ Hidpstr˚k2q, which implies str˚k1 “ str˚k2 . Therefore, we have

gs
˚
k1X´c

˚
k1
¨y˚k1 “ gs

˚
k2X´c

˚
k2
¨y˚k2 , gt

˚
k1Xy˚k1 “ gt

˚
k2Xy˚k2 , m˚k1 “ m˚k2 . (60)

Also, let j “ Hidpstr˚k1q “ Hidpstr˚k2q. Since E occurs, by (56), we have

y˚k1 “ β̂X
j `

ÿ

iPrQS1
s

yipβ̂
Ci
j ´ ci ¨ β̂

Ai
j q “ y˚k2 .

Since y˚k1 “ y˚k2 and c˚k1 “ c˚k2 , by (60), we have

t˚k1 “ t˚k2 , s
˚
k1
“ s˚k2 .
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However, since pm˚k1 , σ
˚
k1
q and pm˚k2 , σ

˚
k2
q are different message-signature pairs, we have

pm˚k1 , c
˚
k1
, s˚k1 , y

˚
k1
, t˚k1q ‰ pm

˚
k2
, c˚k2 , s

˚
k2
, y˚k2 , t

˚
k2
q,

which yields a contradiction. Therefore, we have |J | “ QS1 ` 1.

Then, since E occurs in the OMUF
Aalg

BS2rGs game simulated by Bwfros, by (55) and (56), it holds that for

any j P J

αX
j `

ÿ

iPrQS1
s

yipα
Ci
j ´ ci ¨ α

Ai
j q “ ´δj

¨

˝β̂X
j `

ÿ

iPrQS1
s

yipβ̂
Ci
j ´ ci ¨ β̂

Ai
j q

˛

‚ .

From the simulation of Ĥ, by (59), we have for any j P J

α
p0q
j `

ÿ

iPrQS1
s

yipα
p2i´1q
j ` ci ¨ α

p2iq
j q “ δj

¨

˝β
p0q
j `

ÿ

iPrQS1
s

yipβ
p2i´1q
j ` ci ¨ β

p2iq
j q

˛

‚ .

Therefore, Bwfros wins the WFROSQS1
,p game. [\

C.2 Proof of Lemma 18

Proof. We first give a detailed description of Bomdl playing the OMDLG game.

The adversary Bomdl. To start with, Bomdl initializes sid, Ifin, `, T , hid, and Hid as described in the

OMUF
Aalg

BS2rGs game.

After Bomdl receives pp, g,Gλq from the OMDLG game, Bwfros sets X Ð$ Chalpq and runs Aalg on input

pp, g,Gλ, Xq and with access to the oracles Ŝ1, Ŝ2, and Ĥ. These oracles operate as follows:

Oracle Ŝ1: After receving a query to Ŝ1 from Aalg, Bomdl increases sid by one and sets Asid Ð$ Chalpq and
Csid Ð$ Chalpq. Then, Bomdl returns psid, Asid, Csidq.

Oracle Ŝ2: After receving a query pi, ciq to Ŝ2 from Aalg, if i R rsidszIfin, Bomdl returns K. Otherwise, Bomdl

samples yi uniformly from Z˚p and sets si Ð DLogpAXci¨yiq and ti Ð DLogpCX´yiq. Then, Bomdl

returns psi, yi, tiq.

Oracle Ĥ: Same as in the OMUF
Aalg

BS2rGs game.

After receiving the output tpm˚k , σ
˚
k qukPrQS1

`1s, Bomdl aborts if the event WIN ^ p Eq does not occur.
Otherwise, we show in Claim 11 that Bomdl can compute the discrete log of X.

Denote x :“ loggpXq. Then, for each i P rQS1 ` 1s, Bomdl computes the discrete log of Ai and Ci as
ai Ð si ´ ci ¨ yi ¨ x and t1i Ð ti ` yi ¨ x. Finally, Bomdl returns px, a1, c1, . . . , aQS1

, cQS1
q.

Analysis of Bomdl. Note that Bomdl makes one queries to Chal to get X, two queries to Chal when it
receives a query to Ŝ1, and two queries to Chal when it receives a query to Ŝ2. Therefore, Bomdl makes
2QS1

` 1 queries to Chal and 2QS1
queries to DLog. Also, it is clear that Bomdl simulates oracles S1, S2,

H in the OMUF
Aalg

BS2rGs game perfectly, and Bomdl wins the OMDL game if it can compute the discrete log of

X correctly. Therefore, we can conclude the lemma with the following claim.

Claim 11 If WIN ^ E occurs when running Bomdl, then Bomdl can compute the discrete log of X.
[\

Proof (of Claim 11). Suppose WIN ^ E occurs within the simulation. We know WIN occurs, but one of
(55) and (56) does not hold.
Case 1: (55) does not hold. There exists k P rQS1

` 1s and j :“ Hidpstr˚kq such that α̂X
j `

ř

iPrQS1
s yipα̂

Ci
j ´

ci ¨ α̂
Ai
j q ‰ ´δj ¨ y

˚
k . Since WIN occurs, we know c˚k “ Ĥpstr˚kq “ δj . Then, since Hidpstr˚kq “ j, we have

gs
˚
kX´δj ¨y

˚
k “ gα̂

g
jX α̂X

j

ź

iPrsids

A
α̂

Ai
j

i C
α̂

Ci
j

i . (61)
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Similar to case 1, by substituting Ai “ gsiX´ci¨yi and Ci “ gtiXyi into the equation (61), we have

gs
˚
kX´δj ¨y

˚
k “ g

α̂gj`
ř

iPrQS1
spα̂

Ai
j ¨si`α̂

Ci
j ¨tiqX

α̂X
j`

ř

iPrQS1
s yipα̂

Ci
j ´ci¨α̂

Ai
j q .

Therefore, Bomdl can compute the discrete log of X as

x :“
s˚k ´ α̂

g
j ´

ř

iPrQS1
spα̂

Ai
j ¨ si ` α̂

Ci
j ¨ tiq

α̂X
j `

ř

iPrQS1
s yipα̂

Ci
j ´ ci ¨ α̂

Ai
j q ` δj ¨ y

˚
k

.

Case 2: (56) does not hold. There exists k P rQS1
` 1s and j :“ Hidpstr˚kq such that β̂X

j `
ř

iPrQS1
s yipβ̂

Ci
j ´

ci ¨ β̂
Ai
j q ‰ y˚k . Since Hidpstr˚kq “ j, we have

gt
˚
kXy˚k “ gβ̂

g
jX β̂X

j

ź

iPrQS1
s

A
β̂
Ai
j

i C
β̂
Ci
j

i . (62)

From the simulation of Ŝ2, for each i P rQS1
s, we have

gsi “ AiX
ci¨yi , gti “ CiX

´yi .

By substituting Ai “ gsiX´ci¨yi and Ci “ gtiXyi into (62), we have

gt
˚
kXy˚k “ g

β̂gj`
ř

iPrQS1
spβ̂

Ai
j ¨si`β̂

Ci
j ¨tiqX

β̂X
j`

ř

iPrQS1
s yipβ̂

Ci
j ´ci¨β̂

Ai
j q .

Therefore, Bomdl can compute the discrete log of X as

x :“
t˚k ´ β̂

g
j ´

ř

iPrQS1
spβ̂

Ai
j ¨ si ` β̂

Ci
j ¨ tiq

β̂X
j `

ř

iPrQS1
s yipβ̂

Ci
j ´ ci ¨ β̂

Ai
j q ´ y

˚
k

.

[\

D Blindness Proofs

D.1 Blindness of BS2

Proof. Let A be an adversary playing the BlindA
BS2rGs game. Similar to the blindness proof of BS1rGs, we can

assume the randomness of A is fixed and A always finishes both signing sessions and receives valid signatures
pσ0, σ1q without loss of generality.

Define the view of A after its execution as π “ pX,m0,m1, T0, T1, σ0, σ1q, where Ti :“ pAi, Ci, ci, si, yi,
tiq, denoting the transcripts learned from interactions with the i-th signing session and σi “ pc

1
i, s

1
i, y

1
i, t
1
iq.

Since the randomness of A is fixed, the only randomness left is the randomness in U1 and U2. Denote

η :“ pr
p0q
1 , r

p0q
2 , r

p0q
3 , γp0q, r

p1q
1 , r

p1q
2 , r

p1q
3 , γp1qq as the total randomness. To prove the theorem, we need only

show that the distribution of π is identical in both the case b “ 0 and b “ 1. We prove this by showing that
for any fixed view ∆ such that Prrπ “ ∆|b “ 1s ą 0, there exists a unique value of the randomness η that
makes π “ ∆ for the cases b “ 0 and b “ 1.

For both the cases b “ 0 and b “ 1, we now show that π “ ∆ if and only if for each i P t0, 1u, it holds
that

γpiq “ y1bi
∆
{y∆i ,

r
piq
1 “ s1bi

∆
´ γpiqps∆i ` r

piq
3 ¨ t∆i q ,

r
piq
2 “ t1bi

∆
´ γpiq ¨ t∆i ,

r
piq
3 “ c∆i ´ c

1
bi

∆
.

(63)
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where the superscript p¨q∆ represents the corresponding value in ∆. From the algorithms BS2.U1 and BS2.U2,
it is clear that the “only if” part holds. For the “if” part, suppose (63) holds. Since the randomness of A is
fixed, the view of A can differ only on the outputs c0, c1 from the oracle U1 or the output pσ0, σ1q from the
oracle U2. Since both signatures in ∆ are valid, we have

A∆i “ gs
∆
i X∆´c

∆
i ¨y

∆
i , C∆i “ gt

∆
i X∆y

∆
i , (64)

c1bi
∆
“ Hpgs

1
bi

∆

X∆´y
1
bi

∆
¨c1bi

∆

} gt
1
bi

∆

X∆y
1
bi

∆

}m∆
biq . (65)

For ci where i P t0, 1u, suppose the values in the view of A that have already determined when ci is generated,
which must include pX,mi, Ai, Ciq, is consistent with ∆. By p63q, we have

ci “ r
piq
3 `Hpgr

piq
1 Aγ

piq

i C
γpiq¨r

piq
3

i } gr
piq
2 Cγ

piq

i }mbiq

“ r
piq
3 `Hpgr

piq
1 A∆i

γpiq

C∆i
γpiq¨r

piq
3
} gr

piq
2 C∆i

γpiq

}m∆
biq

“ r
piq
3 `Hpgr

piq
1 `γpiqps∆i `r

piq
3 ¨t∆i qX∆´y

∆
i ¨γ

piq
¨pc∆i ´r

piq
3 q
} gr

piq
2 `γpiq¨t∆i X∆y

∆
i ¨γ

piq

}m∆
biq

“ r
piq
3 `Hpgs

1
bi

∆

X∆´y
1
bi

∆
¨c1bi

∆

} gt
1
bi

∆

X∆y
1
bi

∆

}m∆
biq

“ r
piq
3 ` c1bi

∆
“ c∆i .

where the third equality is due to (64), the fourth equality is due to (63), and the final equality is due to (65).
Then, consider the step when pσ0, σ1q is output. Suppose the current view, which contains Ti, are consistent
with ∆. By (63), we have

y1bi “ γpiq ¨ yi “ γpiq ¨ y∆i “ y1bi
∆
,

s1bi “ r
piq
1 ` γpiqpsi ` r

piq
3 ¨ tiq “ r

piq
1 ` γpiqps∆i ` r

piq¨t∆i
3 q “ s1bi

∆
,

t1bi “ r
piq
2 ` γpiq ¨ ti “ r

piq
2 ` γpiq ¨ t∆i “ t1bi

∆
,

c1bi “ ci ´ r
piq
3 “ c∆i ´ r

piq
3 “ c1bi

∆
,

which implies pσ0, σ1q “ pσ
∆
0 , σ

∆
1 q. Therefore, by induction, if (63) holds, we know π “ ∆. [\

D.2 Blindness of BS3

Proof. Let A be an adversary playing the BlindA
BS3rGs game. Similar to the blindness proof of BS1rGs and

BS2rGs, we can assume the randomness of A is fixed and A always finishes both signing sessions and receives
valid signatures pσ0, σ1q without loss of generality.

Define the view of A after its execution as π “ pX,Z,m0,m1, T0, T1, σ0, σ1q, where Ti :“ pAi, Ci, ci, si,
yi, tiq, denoting the transcripts learned from interactions with the i-th signing session and σi “ pc

1
i, s

1
i, y

1
i, t
1
iq.

Since the randomness of A is fixed, the only randomness left is the randomness in U1 and U2. Denote

η :“ pr
p0q
1 , r

p0q
2 , γ

p0q
1 , γ

p0q
2 , r

p1q
1 , r

p1q
2 , γ

p1q
1 , γ

p1q
2 q as the total randomness. To prove the theorem, we need only

show that the distribution of π is identical in both the case b “ 0 and b “ 1. We prove this by showing that
for any fixed view ∆ such that Prrπ “ ∆|b “ 1s ą 0, there exists a unique value of the randomness η that
makes π “ ∆ for the cases b “ 0 and b “ 1.

For both the cases b “ 0 and b “ 1, we now show that π “ ∆ if and only if for each i P t0, 1u, it holds
that

γ
piq
1 “ y1bi

∆
{y∆i ,

γ
piq
2 “ c∆i {c

1
bi

∆
,

r
piq
1 “ s1bi

∆
´ s∆i ¨ pγ

piq
1 {γ

piq
2 q ,

r
piq
2 “ t1bi

∆
´ γ

piq
1 ¨ t∆i ,

(66)
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where the superscript p¨q∆ represents the corresponding value in ∆. From the algorithms BS3.U1 and BS3.U2,
it is clear that the “only if” part holds. For the “if” part, suppose (66) holds. Since the randomness of A is
fixed, the view of A can differ only on the outputs c0, c1 from the oracle U1 or the output pσ0, σ1q from the
oracle U2. Since both signatures in ∆ are valid, we have

A∆i “ gs
∆
i X∆´c

∆
i ¨y

∆
i , C∆i “ gt

∆
i Z∆

y∆i . (67)

c1bi
∆
“ Hpgs

1
bi

∆

X∆´y
1
bi

∆
¨c1bi

∆

} gt
1
bi

∆

Z∆
y1bi

∆

}m∆
biq . (68)

For ci where i P t0, 1u, suppose the values in the view of A that have already determined when ci is generated,
which must include pX,mi, Ai, Ciq, are consistent with ∆. By p63q, we have

ci “ γ
piq
2 ¨Hpgr

piq
1 A

γ
piq
1 {γ2piq
i } gr

piq
2 C

γ
piq
1
i }mbiq

“ γ
piq
2 ¨Hpgr

piq
1 A∆i

γ
piq
1 {γ2piq

} gr
piq
2 C∆i

γ
piq
1
}m∆

biq

“ γ
piq
2 ¨Hpgr

piq
1 `s∆i ¨pγ

piq
1 {γ

piq
2 qX∆´y

∆
i ¨c

∆
i ¨pγ

piq
1 {γ

piq
2 q
} gr

piq
2 `γpiq¨t∆i Z∆

y∆i ¨γ
piq
1
}m∆

biq

“ γ
piq
2 ¨Hpgs

1
bi

∆

X∆´y
1
bi

∆
¨c1bi

∆

} gt
1
bi

∆

Z∆
y1bi

∆

}m∆
biq

“ γ
piq
2 ¨ c1bi

∆
“ c∆i .

where the third equality is due to (67), the fourth equality is due to (66), and the final equality is due to (68).
Then, consider the step when pσ0, σ1q are output. Suppose the current view, which contains Ti, is consistent
with ∆. By (63), we have

y1bi “ γ
piq
1 ¨ yi “ γ

piq
1 ¨ y∆i “ y1bi

∆
,

s1bi “ r
piq
1 ` sipγ

piq
1 {γ

piq
2 q “ r

piq
1 ` s∆i pγ

piq
1 {γ

piq
2 q “ s1bi

∆
,

t1bi “ r
piq
2 ` γ

piq
1 ¨ ti “ r

piq
2 ` γ

piq
1 ¨ t∆i “ t1bi

∆
,

c1bi “ ci{γ
piq
2 “ c∆i {γ

piq
2 “ c1bi

∆
,

which implies pσ0, σ1q “ pσ
∆
0 , σ

∆
1 q. Therefore, by induction, if (66) holds, we know π “ ∆. [\
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