
Pseudorandom Bit Generation with Asymmetric Numeral
Systems

Josef Pieprzyk1,2, Marcin Pawłowski1, Paweł Morawiecki1, Arash Mahboubi3, Jarek Duda4,
and Seyit Camtepe2

1 Institute of Computer Science, Polish Academy of Sciences, Warsaw, Poland
2 Data61, CSIRO, Sydney, Australia

3 School of Computing and Mathematics, Charles Sturt University, Port Macquarie, Australia
4 Institute of Computer Science and Computer Mathematics, Jagiellonian University, Cracow, Poland

Abstract. The generation of pseudorandom binary sequences is of a great importance in numerous
applications stretching from simulation and gambling to cryptography. Pseudorandom bit generators
(PRBGs) can be split into two classes depending on their claimed security. The first includes PRBGs
that are provably secure (such as the Blum-Blum-Shub one). Security of the second class rests on
heuristic arguments. Sadly, PRBG from the first class are inherently inefficient and some PRBG
are insecure against quantum attacks. While, their siblings from the second class are very efficient,
but security relies on their resistance against known cryptographic attacks.
This work presents a construction of PRBG from the asymmetric numeral system (ANS) compres-
sion algorithm. We define a family of PRBGs for 2R ANS states and prove that it is indistinguish-
able from a truly random one for a big enough R. To make our construction efficient, we investigate
PRBG built for smaller R = 7, 8, 9 and show how to remove local correlations from output stream.
We permute output bits using rotation and Keccak transformations and show that permuted bits
pass all NIST tests. Our PRBG design is provably secure (for a large enough R) and heuristically
secure (for a smaller R). Besides, we claim that our PRBG is secure against quantum adversaries.

Keywords: Pseudorandomness, Entropy Encoding, Compression, Asymmetric Numeral Sys-
tems, Indistinguishability, ANS, PRBG, PRNG, Keccak

1 Introduction

Since ancient times, people have been engaged in gambling, where tossing a coin or rolling a dice
is a source of randomness. The study of physics has led to discovery of many processes, whose
behaviour is inherently probabilistic. Particle diffusion, thermal and shot noises or radioactive
decay are good examples of such processes. Random bit generators (RBGs) built using physical
probabilistic processes are able to produce sequences of bits with a very high rate. Their main
two drawbacks, however, are the need for a periodic calibration and the fact that randomness is
accessible locally only. If random bits need to be shared by two or more parties, this becomes
a nontrivial problem. An obvious solution is to apply a deterministic algorithm, which takes a
short random bit sequence (also called “seed”) and extends it to a much longer one.

A source of such binary sequences is called a pseudorandom bit generator (PRBG). Sharing
generated bits becomes much easier as it is enough for parties to agree on a common seed
and an algorithm. Unfortunately, generated bits are no longer truly random. However, for some
applications, it suffices if pseudorandom sequences “look” random or more precisely, they pass
some statistical tests (such as the ones recommended by NIST [17]). First PRBG solutions are
based on linear feedback registers and linear congruences [16]. They are very fast but once you
know enough bits, it is possible to calculate their seeds and consequently predict the next bits.
The current explosion of Internet services has changed the randomness landscape dramatically. To
guarantee an appropriate level of security, the services are built using a variety of cryptographic
tools. To function properly, such tools consume large volumes of (pseudo)random bits. In many

circumstances, generated randomness needs to be replicated in a few geographically distant
locations. This puts security considerations at the forefront.

There is an interesting question about how to verify randomness of PRBG or in other words,
which statistical tests need to be passed so a tested PRBG can be claimed to behave as a truly
random generator. Alternatively, one can ask if there is a universal test, which, when passed,
assures that all other statistical tests hold. This question has been answered in the affirmative
by Yao [23]. This is the so-called next-bit test. Given an adversary with polynomially-bounded
computing resources who can observe a polynomial-size output sequence generated by PRBG. It
is said that PRBG passes the next-bit test if the adversary is able to predict the next bit with
probability 1/2 + ε, where ε is negligible. A distinguisher is an algorithm that implements the
next-bit test. PRBG is called cryptographically strong (or CSPRBG) if it passes the next-bit test
or alternatively, there is no distinguisher that can tell apart it from a truly random source. There
are two classes of CSPRBG: one based on a heuristic argument and the other on an intractability
assumption. The first class includes numerous designs based on nonlinear feedback shift registers
(NFSR). Trivium, Snow and Sober (see eStream portfolio https://www.ecrypt.eu.org/stream/) are
good examples of such solutions. The second class includes a RSA-based PRBG that assumes
intractability of integer factorisation [1] and a Bum-Blum-Shub PRBG, whose security rests on
intractability of quadratic residuosity [4]. Despite a well-developed theoretical framework and
extensive range of designs, there are many examples of security failures due to the usage of a
weak or small-entropy source. An early version of Netscape secure socket layer (SSL) encryption
turns out to be completely insecure due to weak randomness of pseudorandom number generator
(PRNG), which is fed by a highly predictable seed [12]. Similarly, a PRBG based on elliptic
curves (intended to be a NIST standard) has been found to be compromised due to special
selection of seed constants [20].

Asymmetric numeral systems (ANS) is a relatively new family of compression algorithms
invented by Jarek Duda [11]. It has taken the IT industry by storm. ANS is being used by major
IT players (such as Apple, Facebook, Google, Linux) as a preferred compression algorithm. Duda
in his work [11] suggests that ANS can be a source of cryptographically strong pseudorandom
bits. An attractive feature of ANS is that it generates binary encodings with different lengths,
which complicates security analysis. Besides, for each fixed-length `, it can output any `-bit
sequence (the actual bit string depends on the ANS state and input symbol). In fact, an ANS
encoding table can be seen as a large and dynamic S-box, whose outputs (bit sequences of various
lengths) are controlled by input symbols and internal states.

Motivation. Let us point at possible applications of ANS for pseudorandom bit generation.

• Truly random bit generators based on physical processes (such as thermal noise or radioactive
decay) need to be calibrated from time to time [2]. An expensive calibration can be avoided
by using ANS, which removes redundancy/bias. In other words, calibration can be replaced
by an “intelligent” ANS that senses the probability fluctuations and automatically adjusts
compression parameters.
• Similarly, software-generated randomness from a local entropy of operating system events

can be compressed giving a very close to uniformly random probability distribution [10]. As
a choice of such events and their statistics can vary from time to time, ANS parameters can
be adjusted accordingly.
• The above two points talk about local randomness that does not need to be shared. There

are circumstances when two or more parties wish to agree on common randomness by, for
example, observing the same fragment of the moon or collecting signals from a chosen pulsar.
ANS can remove redundancy from shared randomness and if ANS applies a common pre-
agreed secret, the parties can establish a common randomness (that is also secret).

• ANS compresses a sequence of symbols of an arbitrary probability distribution into a binary
sequence with a low (perhaps negligible) redundancy. Intuitively, such binary sequence should
behave as a truly random one.
• ANS can translate uniform probability distribution into an arbitrary probability distribution

by switching encoder and decoder. In fact, a concatenation of ANS compression and decom-
pression can translate an arbitrary probability distribution to another arbitrary one. This
application is very useful in simulations, where there is a need to model events that do not
follow a uniform probability distribution.
• As ANS is very fast and widely used, it is interesting to investigate how competitive it is

against other cryptographically strong PRBGs.

Contribution. The work investigates an application of ANS-based compression for pseudorandom-
bit generation. In particular, we

• examine inherent ANS properties that make it an excellent candidate for pseudorandom bit
generation. We show that if symbols fed into ANS follow probabilities that are natural powers
of 1/2, then ANS states happen with a uniform probability distribution,
• define a family of ANS-based PRBG and prove that no distinguisher can tell it apart from

truly random generators for a big enough parameter R,
• design a family of PRBGs that uses ANS whose symbol spread function is chosen at random.

An ANS input symbol frame is randomly shuffled. Both random selection of the symbol
spread function and symbol frame shuffling are controlled by a cryptographic key,
• analyse the security of our design and show that any algebraic analysis over a non-binary

field requires an adversary to make guesses about binary encodings produced by ANS,
• present a fast PRBG with two ANS instances, whose outputs are interleaved. The gain in

efficiency goes together with the increase of security (as an adversary needs to guess the
relation between binary encodings and ANS instances),
• implement our ANS-based PRBG to verify its efficiency and security (by running the NIST

statistical tests). Table 1 compares ANS-based PRBG with other constructions.

PRBG Efficiency Mb/s Security Proof PQ Secure NIST Tests
AES-based1 261.6 [21] 7 X X
SHA3-based2 1280 7 X X

ChaCha-based3 1336 [21] 7 X X
BBS [4] 0.134 [19] X 7 X

ANS-based 733 X X X

Table 1. Summary of results (PQ stands for post-quantum), (1) the textbook version of AES without hardware
optimisation, (2) based on Keccak-f[1600] with 24 rounds for initialization and 6 rounds per output, and (3) the
/dev/urandom implementation from Linux kernel version 4.10.0.

2 Pseudorandomness

Knuth in his work [16] summaries early methods for generation of pseudorandom numbers. A
typical solution applies the linear congruential method, which generates a sequence of integers xi
according to the congruence

xi+1 ≡ a · xi + c mod N, (1)

where N is an positive integer, 0 ≤ a, c ≤ N and i ∈ N. The congruence needs the so-called seed
x0, which provides a starting point. Note that the sequence of integers is periodic. The choice
of the modulus N and the multiplier a forces the length of the period. The maximum length of
the period is N . Assuming an adversary can observe integers xi (for i = 1, 2, . . .), then they are
able to recover a, c and the seed x0 after three observations and alternatively generate all further
integers.

A generalisation of this approach is a generation of pseudorandom bits using a linear feedback
shift register (LFSR) with a linear filter (see Figure 1).

LFSR (n stages)

Linear Filter
zt = a1x1(t)⊕ . . .⊕ anxn(t)

zt

LFSR (n stages)

Nonlinear Filter
zt = f(x1(t), . . . , xr(t))

zt

Fig. 1. LFSR-based PRBG with linear and nonlinear filters

Note that the binary coefficients ai are fixed and determine the filter. The register state is
(x1(t), . . . , xn(t)) at the clock t. A well designed LFSR with n binary stages (variables) can gen-
erate sequence of the length 2n−1, which is the maximum possible length. Mersenne Twister (see
https://en.wikipedia.org/wiki/Mersenne_Twister) is an example of a such PRBG. It generates
all integers except (all) zero and the sequence passes most of the simple statistical tests. If an
adversary has access to the output zt and knows its structure but does not know the seed, from
which it has started, then they can completely determine the seed after n observations of the
output. This is due to the fact that each observation provides a linear relation (in n variables).

A more secure version of pseudorandom bit generation is LFSR with a nonlinear filter as
presented in Figure 1. The nonlinear filter f() takes r inputs, which typically are selected stages
(bits) of LFSR and at each clock t, outputs a single bit zt. The analysis of the generator becomes
significantly more complex. However, an adversary can still determine initial state or seed after
observing enough output bits. To see how this is possible, it is enough to consider the nonlinear
filter and its algebraic degree. Assume that that deg f = m. This means that the filter can
produce outputs that depend on single state variables and all monomials of the state up to degree
m (m ≤ r). In other words, the filter is able to produce

∑m
i=1

(
n
i

)
different monomials/terms.

Now the adversary can treat them as independent variables, create a linear relation for each
observation and solve the system of relations using the Gaussian elimination (see [8]).

It turns out that the algebraic analysis becomes intractable when the states of the gener-
ators are modified using nonlinear functions. The resulting constructions also called nonlinear
shift registers (NLSRs) offer excellent statistical properties and are difficult to “break". The
eStream project completed in 2008 (see http://www.ecrypt.eu.org/stream/) recommends many
good quality stream ciphers based on NLFSRs. Trivium [9] is a good example of an elegant design
and a strong resistance against cryptanalysis.

An alternative approach to the above heuristics is to design pseudorandom generators using
intractable mathematical problems such as factorization or discrete logarithm. This leads us to
computationally secure pseudorandomness, which guarantees that an adversary with polynomial
computing resources cannot construct an efficient distinguisher (or a statistical test that the
generator fails). Alexi et al. [1] show how to use the RSA exponentiation to generate pseudo-
random sequences. Blum et al. [4] study pseudorandom sequences based on squaring assuming
that quadratic residueosity is intractable. In general, computationally secure pseudorandom gen-

erators allow users to increase the level of security by selecting more difficult instances of the
intractable problem. A price to pay, however, is the efficiency of sequence generation. In 1997
Shor [18] has proven that factorization and discrete logarithm are easy on a quantum computer.
This makes all cryptographic algorithms based on these (and other related) problems insecure
in the post-quantum world. It is worth noting that Grover’s algorithm [13] reduces security
level of all symmetric key cryptosystems by half. It means that to maintain the same security
level for symmetric encryption in the post-quantum world, it is enough to double the length of
cryptographic keys.

3 Asymmetric Numeral Systems

ANS uses an integer x ∈ N to encode a symbol s ∈ S into an integer x′ ∈ N, where s happens
with probability ps. This implies that lg2(x

′) ≈ lg2 x + lg2 1/ps. Alternatively, we can say that
we are looking for an encoding function C(x, s) such that x′ = C(x, s) ≈ x/ps. To illustrate
the idea, consider a binary case, when a symbol s ∈ {0, 1} happens with probability ps. An
encoding function C(x, s) = x′ = 2x + s and its decoding function D(x′) = (x, s) = (bx′/2c, x′
mod 2). Assuming uniform probability distribution ps = 1/2, a standard binary coding assigns
even integers to s = 0 or I0 = {x′|x′ = C(x, s = 0);x ∈ N}. Odd integers carry s = 1 or
I1 = {x′|x′ = C(x, s = 1);x ∈ N} – see Table 2. Consider an example. Let us encode a sequence

s \ x′ 0 1 2 3 4 5 6 7 8 9 10 11 · · ·
s = 0 0 1 2 3 4 5 · · ·
s = 1 0 1 2 3 4 5 · · ·

Table 2. Encoding table for binary symbols with probabilities ps = 1/2

of symbols 1011. We start from x = 0 and follow the process shown below

x = 0
1−→ 1

0−→ 2
1−→ 5

1−→ 11

Decoding process starts from D(11) = (b11/2c, 11 mod 2) = (5, 1); D(5) = (b5/2c, 5 mod 2) =
(2, 1); D(2) = (b2/2c, 2 mod 2) = (1, 0); and D(1) = (b1/2c, 1 mod 2) = (0, 1).

The binary case can be extended to the one with an arbitrary probability distribution ps 6=
1/2. We need to modify sets Is so the cardinality of the set Is ∩ [0, x〉 follows closely ps · x,
where [0, x〉 denotes a set of all integers between 0 and x (including 0). Let us consider an
example for two symbols s ∈ {0, 1} that occur with probabilities p0 = 1/4 and p1 = 3/4. Table
3 shows an encoding function x′ = C(x, s). Now we encode the same sequence 1011 as follows

s \ x′ 0 1 2 3 4 5 6 7 8 9 · · ·
s = 0 0 1 2 · · ·
s = 1 0 1 2 3 4 5 6 · · ·

Table 3. Encoding table for binary symbols with probabilities p0 = 1/4 and p1 = 3/4

x = 0
1−→ 1

0−→ 4
1−→ 6

1−→ 9. Clearly, this encoding is shorter from the previous one.
The idea can be generalised for an arbitrary set of symbols not necessarily binary. Natural

numbers N are divided into intervals, each containing 2R integers, where R is an integer parameter

big enough so probabilities of symbols can be well approximated. This means that for each
symbol, there are Ls ≈ 2Rps integers/states in an interval and

∑
s Ls = 2R. Given an interval of

2R integers, whose entries are labelled by consecutive integers from 0 to 2R − 1. Then integers
assigned to s are put in Ls consecutive locations from [cs, cs+1〉, where cs is the first location,
cs+1−1 is the last location and cs =

∑s−1
i=0 Li. For example consider blocks of 4 columns (intervals)

from Table 3. For s = 1, each block contains states at locations [1, 4〉, where L0 = 1 and L1 = 3.
We can construct an appropriate encoding table that has n = |S| rows and enough column so
you can process a long enough sequence of symbols. Note that encoding can be performed very
efficiently. Given an integer x ∈ N and a symbol s ∈ S, then an encoding function C(x, s) is
calculated according to the following steps:

• Identify a block/interval that contains x. The integer 2Rbx/Lsc points to first x′ of the block.
• Compute an offset (within Ls block locations), which is (xmod Ls).
• Find cs, which gives the location of the first state associated with s in the block.
• Determine C(x, s) = 2Rbx/Lsc+ (xmod Ls) + cs

The corresponding decoding function D(x′) = (x, s) recovers an integer x and a symbol s carried
by x′ and D(x′) =

(
Lsbx′/2Rc+ x′mod 2R − cs, s

)
, where s is identified by checking if cs ≤ x

mod 2R ≤ cs+1.
This means that compression operations can be defined for an appropriate interval/block

of the length 2R. Observe that while encoding, the final integer/state x′ increases very fast
as lg2(x

′) ≈ `H(S), where H(S) is a symbol entropy. Handling very large integers becomes a
major efficiency bottleneck. ANS deals with this problem using the so-called re-normalisation.
Re-normalisation keeps a state x within an interval of a fixed length, for instance x ∈ I =
[2ks , 2ks+1〉. If ANS is in a state x and gets a sequence of symbols so x′ ≥ 2ks+1, then it out-
puts bits x′ (mod 2ks) (as partially compressed bits) and reduces the state x ←− bx′/2ksc. The
re-normalisation operation is reversible, i.e. knowing a pair (x′ (mod 216), bx′/216c), it is easy to
reconstruct x′. In practice, ANS applies I = [2048, 4096〉 for 256 symbols. Using re-normalisation
allows ANS to achieve efficient compression and also it can be conveniently represented as an
encoding table. Description of ANS algorithms together with a simple example is given in Ap-
pendix.

Duda in his work [11] suggests using ANS as a source of cryptographically strong pseudoran-
dom bits. We develop the idea further. The main test that any CSPRBG has to pass is the test
of indistinguishability. PRBG passes the test if no adversary is able to distinguish PRBG from
a truly random source. Note that by its nature ANS achieves a close to optimal compression. A
residual redundancy can be used to launch a distinguishing attack against an ANS-based PRBG.
Let us take a closer look at a relation between entropy and probability for a binary case. Assume
that bits are slightly biased, i.e. P (0) = 1/2+ ε and P (1) = 1/2− ε. Strightforward calculations
show that

∆H ≈ 2

ln 2
ε2

where ∆H is the entropy difference between the uniform and biased distributions and we use the
Taylor series approximation of logarithm. Note, for instance, that if ∆H = 2−20, then ε ≈ 2−11.
The bad news is that entropy differences are translated into much bigger probability biases. The
good news, however, is that it is unlikely that the redundancy ∆H converts into a bit bias. More
likely, the output bits includes sort of “parity-check” bits. Nevertheless, to be on the safe side, it
is reasonable to assume that any redundancy creates the maximum bias ε ≈

√
∆H/1.7.

The well-known fact is that to identify a bias ε, an adversary needs to collect ≈ ε−2

bits/observations. For example, for any ε ≈ 2−30, it is necessary to observe around 260 bits
but this corresponds to a small ∆H ≈ 2−59. Assume that ANS uses a random process, which
serves as a symbol source and whose statistics is well defined. To design an ANS-based PRBG,
we can

1. choose a big enough number of states so the redundancy of binary output is smaller than
∆H = 2−64 as distinguishing attack does not work; or alternatively

2. optimise ANS so it is close to the optimal solution (or the entropy difference between the
optimal and design ones is smaller than ∆H = 2−64, for instance).

3.1 ANS with High Compression Rates

Ideally, our problem is solved if we are able to design ANS that is optimal, i.e. compression
rate equals to the entropy of a symbol source. Let us investigate this aspect. We start from the
following theorem.

Theorem 1. [7] Given a plain ANS as described in Appendix. Then, for a symbol s ∈ S (which
occurs with probability ps), ANS generates binary encodings whose length is

• ks bits if ps = 2−ks and ks is a positive integer. Binary encoding entries of encoding table
contain ks-bit sequences for all states x ∈ {2R, . . . , 2R+1 − 1},
• either ks or (ks + 1) bits if 2−ks > ps > 2−(ks+1). Encodings are ks-bit long for all states
x ∈ {2R, . . . , 2ks+1Ls − 1} while the remaining encodings are (ks + 1)-bit long for x ∈
{2ks+1Ls, . . . , 2

R+1 − 1}, where Ls = 2Rps and ks is a positive integer.

Corollary 1. Theorem 1 leads to the following conclusions.

• Given a source whose symbols occur with probabilities that are natural powers of 1/2 and ANS
with a big enough parameter R so Ls is an integer for any s ∈ S. Then the average length of
binary encodings is equal to the symbol source entropy H(S). In other words, ANS is optimal.
• ANS is optimal if and only if for each symbol s ∈ S, the average encoding length equals to
log2 ps, where 2−ks > ps > 2−(ks+1). In other words, the following relation is true

2R+1−1∑
i=2ks+1Ls

P (x = i) = log2 p
−1
s − blog2 p−1s c = log2 p

−1
s − ks. (2)

To make any statement about ANS optimality, we need to know a probability distribution of
ANS states or {P (x)|x ∈ I}.
• There is an interesting case when ks = 0 or 20 > ps > 2−1. Symbol encodings for x ∈
{2R, . . . , 2Ls − 1} are empty bits ∅. Encodings for x ∈ {2Ls, . . . , 2R+1 − 1} are single bits.

Below we reflect on the above fact and its relation to the well-known Huffman code (HC) [15].

Corollary 2. Both ANS and HC produce optimal entropy encoding for symbols whose probabil-
ities are natural powers of 1/2 but

• HC encoding produces a prefix code. For each symbol, it assigns a unique binary encoding.
Note that encodings for a prefix code are never a prefix of any other encoding. This guarantees
unique decoding.
• ANS assigns an encoding to a symbol that depends on its current state. So it produces different
encodings for the same symbol. The decoding recovers the correct symbol frame if the process
starts from the correct ANS state.

Example 1. Given a symbol source S = {s1, s2, s3}, where ps1 = 1/2 and ps2 = ps3 = 1/4. HC for
the source is as follows: s1 → 1, s2 → 01 and s3 → 00. For a parameter R = 2, ANS is described
by the following table.

psi\xi 4 5 6 7

ps1 = 1/2
(
4
0

) (
4
1

) (
6
0

) (
6
1

)
ps2 = 1/4

(
5
00

) (
5
01

) (
5
10

) (
5
11

)
ps3 = 1/4

(
7
00

) (
7
01

) (
7
10

) (
7
11

)
Table 4. ANS instance for R = 2 and three symbols, where

(
xi+1
bi

)
means that the next state is xi+1 and the

encoding is bi

3.2 Uniform Probability Distribution of ANS States

It turns out that for symbols with probability distribution that follows natural powers of 1/2,
probability distribution of ANS states is uniform. Let us start our discussion from few observa-
tions about ANS. Consider Algorithm 4. Given an ANS state x ∈ I and a symbol s ∈ S, then x
transits to a new state x′ = C(s, bx/2kc) with probability ps. The number of distinct transitions
equals to the number n of symbols in S or n = |S|. Take into account Example B. The encoding
table of the ANS shows all possible transitions. For a fixed state, there are 5 possibilities each
occurring with the symbol probability ps. For instance, the state 16 goes to either 17, 20, 16, 21
or 26, with probabilities 1/2, 1/4, 1/8, 1/16, 1/16, respectively.

Consider Algorithm 5 for ANS decoding. The ANS construction forces that each state is
assigned a unique symbol (via its symbols spread function). During decompression, a state x ∈ I
is first converted into a pair D(x) = (s, y) and then traverses to a new state x′ = 2ky+ b, where
b is an binary string of the length k. Consequently, there are 2k possibilities for x′. For instance,
the state 20 from Example B can transit to x′ = 16 + b, where b ∈ {0, 1, 2, 3} or to one of the
states from {16, 17, 18, 19} with probability 1/4. The above analysis brings us to the following
lemma.
Lemma 1. Given ANS as described by Algorithms 3, 4 and 5. Then an ANS state x ∈ S transits
to a state
• x′ ∈ {C(s, bx/2kc); s ∈ S} during compression, where probability P (x′|x) = ps,
• x′ ∈ {2ky + b; b = 0, 1, . . . , 2k − 1} during decompression, where b is an binary string of the
length k and all states x′ are equally probable or P (x′|x) = 1/2k.

A close look at the lemma leads us the following remarks.
• The evolution of states during a single compression/decompression step can be presented as

a graph, whose nodes are states and edges are labelled by probabilities of state transitions.
• A graph representation of ANS state transitions is generic, i.e. its probabilistic properties do

not depend on a particular symbol spread function deployed by ANS.
• The ANS probabilistic characteristics hold for any source whose symbols occur with proba-

bilities that are natural powers of 1/2.

To illustrate our arguments, consider the ANS from Table 4. Figure 2 depicts its state transition
probabilities. The left-hand side of the graph consists of input states whose transition probabilities
are equal to (1/2, 1/4, 1/4). Each node has three outbound edges. The output states accept 2k

incoming edges, where the parameter k = 1, 2 is determined by the ANS symbol spread function.
We explore Markov chains in order to investigate the asymptotic behaviour of ANS states

[14]. In general, ANS state probability distribution is not uniform and can be approximated by
P (x) ≈ 1/x, where x ∈ I. This is not the case when symbol probabilities are natural powers of
1/2. Let us consider ANS from Table 4. The ANS probability transition matrix is

P =

p4,4 p4,5 p4,6 p4,7
p5,4 p5,5 p5,6 p5,7
p6,4 p6,5 p6,6 p6,7
p7,4 p7,5 p7,6 p7,7

 =

1
2

1
4 0 1

4
1
2

1
4 0 1

4
0 1

4
1
2

1
4

0 1
4

1
2

1
4

4 4

5 5

6 6

7 7

p4

p5

p6

p7

p4

p5

p6

p7

1/2
1/41/4

1/2

1/4

1/4

1/4
1/2

1/4

1/
4

1/2

1/4

Fig. 2. Transition probabilities for ANS with R = 2

where pi,j is probability that a state i moves to a state j; i, j ∈ {4, 5, 6, 7} (see Figure 2).
It is easy to verify that a Markov chain created by concatenation of the matrix P converges
to limn→∞ P

n = [1/4], where [1/4] is a matrix with all entries equal to 1/4. As determined by
symbol probabilities, there are three possible output states for each input state. However, looking
at output states, one can quickly identify that states 4 and 6 can be reached from {4, 5} and
{6, 7}, respectively with probability 1/2. The output states 5 and 7 can be reached from all input
states with probability 1/4. In the equilibrium state, input and output states must occur with
the same probabilities – see Figure 2. This leads us to the following four relations

p4 =
1

2
(p4 + p5)

p5 =
1

4
(p4 + p5 + p6 + p7) =

1

4

p6 =
1

2
(p6 + p7)

p7 =
1

4
(p4 + p5 + p6 + p7) =

1

4

The solution is p4 = p5 = p6 = p7 = 1/4.
The following theorem summarises the above deliberations.

Theorem 2. Given ANS for the parameter R and the symbol probabilities that are natural powers
of 1/2. Then probabilities of ANS states converge asymptotically to the uniform distribution or
P (x) = (1/2)R for x ∈ I.

Proof. Denote asymptotic probabilities by px, where x ∈ I (as shown in Figure 2). In equilibrium,
the probabilities are the same for both input and output states. Consider an output state x′ ∈ I.
According to Lemma 1, the state x′ can be reached from 2k input states x ∈ {2ky + b; b =
0, 1, . . . , 2k−1}, where x′ is assigned (by a symbol spread function) to a symbol with probability
2−k. This immediately produces the following relation:

px′ =
1

2k

∑
x∈{2ky+b;b=0,1,...,2k−1}

px

In total, we get 2R such relations - one per output state. Each relation requires that probability
px′ has to be equal to the average of probabilities px, where x ∈ {2ky + b; b = 0, 1, . . . , 2k − 1}.
Moreover, by construction, each input state appears in precisely one relation for a given symbol.
This is a remarkable property of ANS states as they exhibit the same probabilistic behaviour.
This implies that in the equilibrium state, all probabilities have to be the same. This concludes
our proof.

Example 2. Consider ANS from Table 4 and its transition probabilities given in Figure 2. Assume
input state probabilities p4 = 1

4 + ε, p5 = 1
4 , p6 =

1
4 − ε and p7 =

1
4 . Then each compression step

reduces ε by half or

p4 =
1

4
+ ε −→ 1

4
+
ε

2

p5 =
1

4
−→ 1

4

p6 =
1

4
− ε −→ 1

4
− ε

2

p7 =
1

4
−→ 1

4

Clearly, all probabilities asymptotically converge to 1/4.

4 Design Methodology of PRBGs with ANS

Our PRBG design is guided by the following principles. It should

• be as fast as an original ANS;
• produce a non-repeating sequence of bits (i.e. a sequence cycle has to be long enough so it is

impossible to repeat it, say 2128);
• generate uncorrelated and balanced sequence of bits;
• be indistinguishable from a truly random bit source;
• resist against any adversary, whose computing resources are limited to Θ(2128). It means that

our target is 128-bit security, i.e. we apply a 128-bit cryptographic key. Note that to maintain
the 128-bit security level for a quantum adversary, we need 256-bit keys;
• be scalable, i.e. easily adjustable to a required level of security.

Our PRBG design uses the following basic blocks:

• ANS – we choose a generic ANS designed for a source with symbols occurring with probabil-
ities that are natural powers of 1/2. In fact, we deal with a family of ANSks . Each ANSks is
an instance designed for a source Sks = {s1, 2, . . . , sks , sks+1}, where a symbol si occurs with
probability psi = 2−i for all i ≤ ks and psks+1

= psks . Note the following important properties
of the family:
1. it is possible to define ANSks for arbitrarily large parameter ks that directly determines

the size of the encoding table (parameter R),
2. each ANSks is optimal, i.e. it squeezes out all redundancy and generates a sequence of

uncorrelated and unbiased bits,
3. it is easy to calculate the bit generation rate.

• SF – this is a file or array, where a symbol frame (that is going to be compressed by ANSks)
is stored. Symbols in the frame must follow the probability distribution determined by the
parameter ks. The size of the symbol frame should not be too large but at the same time,
we would like to generate an arbitrarily long sequence of PRBG bits. A simple solution is to
reuse the frame as many times as necessary. To avoid a cycle, we need to permute symbols
of the frame every time it is reused.
• Permutation π ∈ Sym(`) – it is necessary to reshuffle ` frame symbols, where Sym(`) is

a symmetric group defined for ` elements. It is easy to determine a set of generators gi of
Sym(`) with a help of Magma [6], for instance. Clearly, we need to choose π randomly using
a relatively short secret key K.

4.1 Generic PRBG Designs

Figure 3 illustrates our generic PRBG design. A symbol frame (SF) contains symbols that occur
with an assumed probability distribution. Symbols of SF are permuted according to π, which is
controlled by a secret key K. Symbols are processed by a keyed ANS, which produces a sequence
of pseudorandom bits. The ANS symbol spread function is indexed by the secret key K. The

SF π ANS

K

PRBG bits

K

Fig. 3. Generic PRBG with keyed ANS

function can be implemented by first permuting 2R states according to the secret key K and
then by splitting the permuted states into subsets Li whose cardinalities Li reflect probabilities of
symbols si. Clearly, for a given symbol si, the states from Li must be arranged in the increasing
order.

4.2 Provable Security

A concept of provable security relates to a family of PRBG indexed by a parameter that allows
a user to choose different instances with different security levels. RSA and BBS pseudorandom
generators (see [1, 4]) are good examples of such families. Their index is the length of the modulus
used for computations. To guarantee a required level of security λ, it is enough to choose a long
enough modulus N so the corresponding factorisation (for RSA) or quadratic residuosity (for
BBS) instance requires 2λ computation steps.

Definition 1. ANS-based PRBG is a family of ANS algorithms indexed by their parameter R
or FANS = {ANSR|R ∈ N}. Each ANSR instance is designed for 2R states, where its symbol
spread function is chosen at random. It is fed by a symbol source S, where each symbol is chosen
independently, randomly and whose probability is a natural power of 1/2.

Theorem 3. (Provable Security) Given

(A1) a symbol source S, where each symbol is chosen independently, randomly and whose prob-
abilities are natural powers of 1/2 and

(A2) an instance of ANSR designed for S and whose states occur uniformly at random.

Then ANS generates binary encodings

(P1) whose average length is equal to the symbol source entropy H(S),
(P2) whose bits are independent and uniformly random,
(P3) that pass all statistical tests or alternatively, no distinguisher is able to tell apart an ANS

bit stream from a random one.

Proof. P1 is a direct conclusion from Theorem 1 and also Corollary 1. This statement is equivalent
to the claim that ANS is optimal. P2 follows from the assumption that ANS chooses its states
with uniform distribution and the fact that every row of ANS encoding table contains 2R−ks

copies of all possible binary strings of the length ks - see Theorem 1. P3 is a conclusion from the
statements P1 and P2 .

The above theorem is true under the assumption that ANSR states occur uniformly at random.
Theorem 2 asserts that probabilities of ANSR states converge to a uniform distribution. This
leads us to the following conclusion.

Corollary 3. Sequences generated by the family FANS = {ANSR|R ∈ N} are indistinguishable
from truly random ones for all big enough R.

The above considerations tell us that the family FANS has a “sound structure”. The opti-
mistic conclusion needs to be confronted by the fact that in practice, we are interested in the
implementation of an instance ANSR (rather than the whole family FANS). For our ANSR,
we would like to choose a relatively small R so our PRBG is efficient. Most importantly, the
assumptions A1 and A2 of Theorem 3 have to hold. Consider the assumption A1. Instead of
symbols generated by the source S, we take a symbol frame of a fixed length whose statistics
follows the required one and whose content is shuffled (periodically) by a cryptographic key.
The assumption A2 requires a uniform state distribution. Theorem 2 assures us that ANS state
probability distribution asymptotically converges to a uniform Markov-chain equilibrium. It is
reasonable to expect that asymptotic uniform probability distribution does not guarantee “local”
uniformity especially for a small R. ANS state probability distribution fluctuations are quite
obvious due to a cyclic nature of ANS (see [7] for details). Needless to say, the state probability
fluctuations produce a correlation amongst local binary encodings. In other words, it is possible
to design a distinguisher that targets the correlation (see Section 4.3). There are a few options
to eliminate or reduce the output bit correlation.

• Construction of PRBG with a few parallel ANS (threads) whose outputs are merged by
interleaving their individual encodings.
• XOR-ing PRBG output bits with a pseudorandom sequence derived from a cryptographic

key K. For instance, the sequence can be a rotated K, where the rotation offset is calculated
from a current ANS state.
• ANS state probability distribution can be made locally uniform (and consequently force uni-

formity of binary encodings) by XOR-ing a pseudorandom sequence with the ANS full/partial
state.
• A well-through-out design of ANS with long cycles of states. Note that while the parameter
R grows, the probability of short cycles drops in a natural way. This means that for a big
R, local correlations occur with a negligible probability [5]. This inevitably leads us to the
theory of random graphs, which is beyond the scope of the paper. This interesting aspect of
ANS is left for a future research.

It is worth noting that security of ANS-based PRBGs does not rely on any intractability
assumption (such as integer factoring). In contrast, it depends on randomness used to construct
the symbol spread function of ANS. We claim that a quantum adversary can obviously apply
the Grover algorithm [13] and reduce the randomness length by half. This means that instead
of the exhaustive search of the whole space 2λ, the adversary is able to reduce search to 2λ/2,
where λ is the security level.

4.3 Security Analysis

We analyse an ANS-based generator, whose symbol spread function is chosen at random (con-
trolled by a secret key K, see Figure 3). Additionally, we make the following assumptions:

• The source generates symbols whose probabilities are natural powers of 1/2, i.e. psi = (1/2)i

for i = 1, 2, . . . and
∑

i psi = 1.
• ANS is designed for a parameter R, i.e. the number of states is 2R.

• SF contains symbols that follow the assumed probability distribution. The symbols are shuf-
fled well enough so we consider the permutation πK to be truly random.

Without loss of generality, we describe the encoding table by the following two functions (see
Appendix):

Cs(x) = C(s, bx/2ksc) = cs,0 + cs,1x+ . . .+ cs,αsx
αs ;

Bs(x) = x mod 2ks = ds,0 + ds,1x+ . . .+ ds,βsx
βs ;

where the functions are presented over GF (2R). Our goal is to design a distinguisher, which is
able to tell apart our PRBG from a truly random one. As we are not able to observe symbols,
the second best we can do is to guess a long enough sequence of the most probable symbol s1
that occurs with probability 1/2. For this case, we know that

C(x) = c0 + c1x+ . . .+ cksx
α;

B(x) = x mod 2 =
R−1∑
i=0

dix
2i

where ks = 2R−1−1 and asB(x) is linear, it can be represented by a combination of linear function
over GF (2R). For instance, B(x) = x (mod 2) = x+ x2 + x4 in GF (23). Now, suppose that we
observe n output bits and know the initial state x0. So we can write a system of (nonlinear)
equations as follows:

xi = C(xi−1)

bi = B(xi−1) for i = 1, . . . , n

As we have 2R−1+n unknowns, we are not able to solve the system (even if it were linear). Note
that the output bits bi give a single bit of information about the states. Moreover, the system of
equation is true with the probability (1/2)n. This approach is doomed to fail for a large enough
n.

Note that for a sequence of the symbol s1, C(x) has to be cyclic. The longest possible length
is the number of all states 2R. In general, there can be few disjoint cycles/paths. Clearly, for
loops, x = C(x) and b = B(x). This means that ANS produces a sequence of the same bits. Let
us explore an impact of a state loop on the output bit statistics. We use the following simple
test.

Loop Test

Input: A stream of bits b = (b1, . . . , bn).
Output: An integer LT that indicates existence of loops.
Steps: Initialize LT = 0;

for i = 1 to n− 1
{
if bi = bi+1 then LT ++;
}
return(LT);

Behaviour of the test for a truly random sequence b is described by the following lemma.

Lemma 2. Given a truly random binary sequence b = (b1, . . . , bn). Then the loop test returns a
random variable LTn with the probability distribution described by the following recursion:

P (LTn = i) =

(12)

n−1 if i ∈ {0, n− 1};
1
2 (P (LTn−1 = i− 1) + P (LTn−1 = i)) if i ∈ {1, . . . , n− 2},

P (LT2 = 0) = P (LT2 = 1) = 1
2 Stopping Case

where LTn is a random variable for n-bit strings.

Proof. It is easy to check that for 2-bit random sequences, the test returns LT2 = 0 for sequences
01 and 10. LT2 = 1 for sequences 00 and 11. The two events are equally probable. The recursive
relation can be proven by observing that LTn = i when either

• LTn−1 = i− 1 and the n-th bit matches the (n− 1)-th bit (so the test executes LT ++) or
• LTn−1 = i and the n-th bit does not match the (n−1)-th bit (the count LT stays the same).

The two above events are exclusive and this concludes the proof.

As the number n of bits grows, the average of LTn hovers around (n− 1)/2 as illustrated by the
table given below.

i→ 0 1 2 3 4 5

P (LT2 = i) 1
2 · 1

1
2 · 1

P (LT3 = i) 1
4 · 1

1
4 · 2

1
4 · 1

P (LT4 = i) 1
8 · 1

1
8 · 3

1
8 · 3

1
8 · 1

P (LT5 = i) 1
16 · 1

1
16 · 4

1
16 · 6

1
16 · 4

1
16 · 1

P (LT6 = i) 1
32 · 1

1
32 · 5

1
32 · 10

1
32 · 10

1
32 · 5

1
32 · 1

As the integers in the above table are binomial coefficients (part of Pascal’s triangle), the prob-
ability distribution of LTn can be represented in the following compact form

P (LTn = i) =
1

2n−1

(
n− 1

i

)
, i = 0, 1, . . . , n− 1.

Let us investigate the impact of loops on the result of the test. Assume that one state x loops when
ANS is fed by s1, where ps1 = 1/2. The state loops i times with probability P (#loop = i) = (1/2)i

(i = 1, 2, . . .). On the average, the state adds ≈ 2 to the loop count LT . If ANS contains many
loops, then the loop test is likely to produce a much higher value for LT than the expected
(n− 1)/2. This is to say that our loop test may produce an effective distinguisher.

If we treat ANS as a finite state machine (FSM) and draw a graph to illustrate state transi-
tions, then we could see the full complexity of the cyclic structure of ANS. Apart from loops, one
can see cycles of order 2 and higher. The cycles are produced by the same patterns of symbols
and output binary sequences of a characteristic pattern. Note that for any given cycle, one can
design a test that targets it. The good news is that longer cycles (that involve symbols that oc-
cur with small probabilities) have negligible impact on output statistics. Tests that target such
cycles are likely to fail. The bad news, however, is that an adversary has a large collection of
possibilities/tests to explore the cyclic nature of ANS.

The above considerations lead us to the following conclusion. To obscure the cyclic nature of
ANS, we need to apply a keyed permutation for the output bits. Its primary goal is to spread
bits that may be part of a loop/cycle around a larger block of bits. For instance, bits produced
by a loop will be separated by other output bits making the loop count similar to a truly random
one.

4.4 Building Blocks

At the initialisation stage, we need to construct one or more ANS instances. Below we give an
algorithm that permutes 2R = 128 integers (ANS states) from the set {0, . . . , 127} according to
the key K. The permutation is a variant of the key scheduling algorithm of RC4 [22]. As we
permute 7-bit elements, we need to split K into 7-bit slices. We get K[i]; i = 0, . . . , 18, where

Algorithm 1: Permutes 128 states and produces ANS symbol spread function
Input: An array X[i] (i = 0, . . . , 127) and K[i] (i = 0, . . . , 18) .
Output: ANS symbol spread function for eight symbols si occurring with probabilities

{1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/128}, where i = 0, . . . , 7.
Steps:
for i := 0 to 127 do initialisation

X[i] := i

j := 0;
for i := 0 to 127 do mixing entries of X

j := (j +X[i] +K[i mod 19]) mod 128;
swap X[i] and X[j];

L0 = {X[0], . . . , X[63]}; L1 = {X[64], . . . , X[95]}; symbol spread function
L2 = {X[96], . . . , X[111]}; L3 = {X[112], . . . , X[119]};
L4 = {X[120], . . . , X[123]}; L5 = {X[124], X[125]}, L6 = {X[126]}; L7 = {X[127]};

the last 7-bit K[18] consists of the two last and five first bits of K. Note that states in Li
(i = 1, . . . , 7), are used by ANS in increasing order. If we need more ANS instances, we use
Algorithm 1 many times, where the initial permutation for the current run of the algorithm is
taken from the previous one.

We also need to pre-compute one or more symbol frames. Algorithm 2 gives details.

Algorithm 2: Produces a symbol frame permutation SF
Input: An array S[i] (i = 0, . . . , 214 − 1) and 128-bit cryptographic key K[i] (i = 0, . . . , 18) .
Output: Permutation S[i], where i = 0, . . . , 214 − 1.
Steps:
for i := 0 to 214 − 1 do initialisation

S[i] := i

j := 0;
for i := 0 to 214 − 1 do mixing entries of S

j := (j + S[i] +K[i mod 19]) mod 214 − 1;
swap S[i] and S[j];

Return SF := S; frame permutation

A symbol frame SF is constructed in two steps. Given an array S[i] of 7-bit strings, where
i = 0, . . . , 214 − 1. In the first step, the entries of S[i] are permuted using the key K in a similar
way as in Algorithm 1. The second step converts 7-bit entries of S[i] into symbols si that follow
the required probability distribution {1/2, 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, 1/128}. The frame
permutation is now converted to symbol frames or S → SF . Each entry of S is a 7-bit string
while each entry of SF needs to be a symbol si; i = 0, . . . 7. We use the following coding.

• If S[i] = 0(mod 2), then SF [i] = 0 ≡ s0. A half of entries contains zeros so P (s0) = 1/2.
• If S[i] = 1(mod 4), then SF [i] = 1 ≡ s1. A quarter of entries contains one so P (s1) = 1/4.
• If S[i] = 2`−1 − 1(mod 2`), then SF [i] = ` ≡ s`−1, where ` = 3, 4, 5, 6. The symbol s`−1

occurs with probability 1
2`
.

• If S[i] = 63 or 127, then SF [i] = s7 and s8, respectively. The symbols happen with probability
1

128 .

5 Instantiations of PRBG

Our main construction is given in Figure 4. ANS is fed by symbol frames SFi that are produced
by permuting an initial frame SF with an assumed symbol statistics, i.e. SFi = πiK(SF), where

SF π ANS π∗

K KK

PRBG bits

Fig. 4. PRBG with plain ANS and bit stream permutation π∗K

i = 1, 2, . . . and K is a cryptographic key. ANS symbol spread function is controlled by the key
K. A permutation π∗K spreads around bits of possible loops and short cycles.

5.1 Threaded ANS-based PRBG

This version of PRBG is designed for speed. The generic construction from Figure 4 is modified
so the operations can be executed as fast as possible. Figure 5 illustrates our design. The design

SF π

SF π

ANS1 π∗

ANS2 π∗

K

K

K

K

K

K

K

> PRBG bits

Fig. 5. Two threaded ANS based PRBG

speeds up output bit generation by processing multiple frames in parallel. Thread outputs are
concatenated and they form a final PRBG bitstream. In principle, concatenation can be controlled
by the cryptographic key K. Consequently, the total PRBG throughput is determined by the
sum of single thread contributions. Clearly, a speedup multiplication factor is limited by the
number of physically available threads.

5.2 Multi-Frame Threaded ANS-based PRBG

The first version of a threaded ANS-based PRBG applies multiple frames that are fed to the ANS
algorithm. It is illustrated in Figure 6. Instead of permuting a symbol frame SF for each frame

SF1

SF2

ANS1

K K

SF3

SF4

ANS2

K K

K

> PRBG bits

Fig. 6. Dual-frame threaded ANS-based PRBG

iteration, we use four different permuted frames SFi; i = 1, 2, 3, 4, that are fixed for a generation
session. They can be pre-computed well before the session. Symbol frames are paired. The first
pair (SF1,SF2) feeds ANS1 and the second (SF3,SF4) – ANS2. For each symbol frame pair, there

is a switch that selects a currently active frame, from which symbols are drawn. The switches are
controlled by a cryptographic key K. Note that once a frame becomes active, all its symbols are
processed. After finishing with the current frame, the switch selects a new active one. The heart
of the design is two instances of ANS, whose symbol spread functions are controlled by K. The
permutation π∗ from Figure 4 is replaced by a block that interleaves binary encodings generated
by ANS algorithms. To make PRBG fast, we use ANS algorithms for a relatively small number
of states. We assume the parameter R = 7, which produces a 128-state ANS.
Initialisation follows the steps described below.

1. Construct an instance of 128-state ANS with its symbol spread function chosen at pseudo-
random by a 128-bit key K. Note that the symbol probabilities are {1/2, 1/4, 1/8, 1/16,
1/32, 1/64, 1/128, 1/128}. We can adapt the key-scheduling algorithm of the well-known
Rivest RC4 cipher to select the symbol spread functions of the two ANS algorithms.

2. Prepare two pairs of symbol frames SFi; i = 1, 2, 3, 4. Their lengths should be different but
they have to be multiples of 128. Each frame must contain the number of symbols that
conforms with the symbol statistics. The frames are loaded with symbols according to the
order of their probabilities, then their contents are shuffled using the key K. This can be
done in a similar way to the RC4 cipher, for instance. The shuffled frames SFi are stored and
their contents are fixed. This is done at the very beginning and once per session only.

3. Design a simple key scheduling, which takes a session key K and rotates it by κ positions (it
does not matter left or right as long as rotation is consistent). It is denoted by K := KRot κ.
Notation K[i] means the i-th bit of K; i = 0, . . . , 127.

PRBG generation proceeds as follows (see Figure 6). The two algorithms ANS1 and ANS2 are
run as parallel threads, whose binary outputs (encodings) are interleaved (merged) into a single
outputs binary stream. Below we describe the upper thread for ANS1. The lower thread works
in a similar fashion and its description is skipped.

1. Choose a frame SFi (i = 1, 2) using the 128-bit key K. If this is the first frame, we compute
K[0]⊕X[6], where X[6] is the second most significant bit of an initial ANS1 state X. Note
that X[7] = 1. If K[0] ⊕X[6] = 1, select SF1, otherwise take SF2. If this is the n-th frame,
we calculate K[n(mod 128)]⊕X[6], where X is a current ANS1 state. If the result is 1 then
we choose SF1, otherwise SF2.

2. Compress the chosen frames by running both upper and lower threads. Their encodings are
interleaved and merged into a single output stream.

5.3 ANS-based PRBG with Key Rotation

The second version of our threaded ANS-based PRBG uses a key rotation to mask ANS binary
encodings. They are then merged with the order of concatenation determined byK. The design is
presented in Figure 7. As before, a symbol frame SF is permuted ahead of a bitstream generation
session. The same frame SF is used throughout the whole PRBG session. Unlike in the previous
version, binary encodings coming out from ANS are XOR-ed with a binary sequence ROT (K,X),
where K is a cryptographic key and X is a rotation offset derived from the current ANS state
and the length ks of binary encoding. The output streams from the top and bottom threads
are merged (or interleaved) and they form a PRBG output stream. The merging operation is
controlled by a cryptographic key K.

We use two versions of key rotation. The first one is a simple scheme that takes only a single
64-bit word as a key. The rotation offset is determined by the 3 least significant bits of the current
ANS internal state X. The rotation happens only when we have accumulated 64 output bits of
ANS encodings. After rotation, the ANS encodings are XOR-ed with the rotated key. As our

SF π

SF π

ANS1

ANS2

ROT(K,X)

ROT(K,X)

X

X

K

K

K

K

K

>

⊕

⊕
PRBG bits

Fig. 7. Two-threaded ANS-based PRBG with key rotation

experiments have shown, this rotation version is weak as it fails to remove a local ANS encoding
correlation.

The second version of rotation applies two 64-bit words (K1, K2) and is described as follows:

K1 = ROT (K1, 1);

x = LSB(X, 3);

t =MSB(K2, x)⊕ LSB(K1, x);

K2 = (K2� x)|t;

where X is the current ANS state, LSB(K,n) and MSB(K,n) return the n least or most
significant bits of K, respectively, (K � n) stands for the left shift of K by n positions and
a|b means concatenation of two binary strings a and b. Note that that every application of key
rotation updates both keys K1 and K2.

6 Experiments

We focus our experiments on fast PRBG that are built using ANS with a relatively low number
of states (say 128, 256 or 512). Sadly, security of such PRBG is not guaranteed as Theorem 3
works for big enough parameters R, where a local correlation among output bits is not a problem.

6.1 Output Permutation π∗
K

We implement three versions of the basic PRBG illustrated in Figure 4. They are as follows:

• PRBGid – π∗K is the identity one and does not depend on K;
• PRBGrot – π∗K is an XOR of ANS encodings with the first version of rotation from Section 5.3;
• PRBGrot2 – π∗K as above except we use the second version of rotation from Section 5.3;
• PRBGkeccak – π∗K is a single round of Keccak permutation [3].

Symbol frames used in our experiments are constructed from a long pseudorandom bit string
(10Gb) that passes all NIST tests. We evaluate each PRBG using the NIST test suite [17]. We use
15 versions of ANS. Each version is labelled by a pair (S,R), where S ∈ {8, 16, 32, 64, 128, 256} is
the number of symbols handled by ANS and R ∈ {7, 8, 9} is the parameter that determines the
number of ANS states, which is 2R. Instead of 18 possibilities, we experiment with 15 versions
only. We experiment with symbol frames of three lengths: 6400, 12800 and 25600 symbols. As
expected, all 15 versions of PRBGid fed by the three symbol frames fail almost all NIST tests
after generating 109 of pseudorandom bits.

Tested Number of Failed Tests Total Number of
Algorithm 0 1 2 ≥ 3 PRBG Variants Tested
PRBGid − − − 45 45

PRBGrot 15 9 1 20 45

PRBGrot2 20 4 2 19 45

PRBGkeccak 10 34 1 − 45

Table 5. Comparison of different implementations of PRBG (output of 1Gb)

Table 5 illustrates our results. Both permutations π∗K based on rotations and a single round of
Keccak produce a subset of PRBGs that passes all NIST tests (20, 15 and 10, respectively). Note
that PRBGkeccak instances behave more consistently, as they never fail more than 3 tests. Looking
at the above results, we see that both key rotating algorithms flawlessly pass more tests than
the PRBGkeccak. It is interesting to notice that the majority of the failed tests for the PRBGrot2

are for PRBG variants that have more than 32 symbols chosen as their ANS parameter. There
are only two cases for with more than 2 failed test for PRBG variants with up to 32 symbols.

We take a closer look at PRBGkeccak in order to reduce the complexity of the Keccak permu-
tation and improve its efficiency. We try four versions of PRBGkeccak that apply the nonlinear
layer χ and rotation. Table 6 shows the results.

Tested Number of Failed Tests Total Number of
Algorithm 0 1 2 ≥ 3 PRBG Variants Tested

PRBGkeccak1 − − − 45 45

PRBGkeccak2 − 1 − 44 45

PRBGkeccak3 2 − 1 42 45

PRBGkeccak4 − 3 − 42 45

Table 6. Comparison of different implementations of PRBG with Keccak (output of 1Gb)

The χ layer of Keccak is based on operations on a state constructed from 25 64-bit words. We
can identify 5 batches of state operations in the χ layer. By reducing the number of batches,
we can increase the efficiency of our algorithms. At the same time, the quality of PRBG may
suffer. We have designed 4 flavours of the Keccak layer. Each of them has a different number of
χ layer operations. It means that PRBGkeccak1 has a single batch, PRBGkeccak2 has two batches
and so forth up to PRBGkeccak4 with 4 out of 5 batches of χ-layer operations. The results of
our experiments are presented in Table 6. We can see that weakening the χ layer of the Keccak
algorithms has a negative impact on the number of passed tests. We have hoped to see a more
gradual degradation. Hence, we conclude that these lightwieght versions are not suitable for
application.

6.2 Randomness Inflation

In this part, we fix the length of an input frame to 6400 symbols. The frame is then used n
times to generate a binary sequence (z1, . . . , zn). When the frame is used n times, a new frame
is taken and the process is repeated as many times as necessary to collect a required number
of output bits. We test the binary sequence against the NIST tests. We say that PRBG inflates
randomness n times with a threshold θ if (z1, . . . , zn) fails θ NIST tests. Table 7 gives the results.

PRBG ANS Parameters Output Number θ of Failed Tests
Variant (S,R) Length n = 2 n = 4 n = 8 n = 16 n = 32

PRBGrot (8, 9) 108 159 158 161 145 154

PRBGrot2 (8, 9) 108 154 1 185 160 2

PRBGkeccak (8, 9) 108 0 159 154 158 158

PRBGkeccak2 (8, 9) 108 159 6 154 160 160

PRBGkeccak3 (8, 9) 108 0 0 1 0 3

PRBGkeccak4 (8, 9) 108 154 0 3 3 1

Table 7. Randomness inflation

PRBGkeccak allows generating 108 output bits by repeating each symbol frame twice. Subse-
quently, we have analyzed the impact of adding more Keccak rounds of per single output frame.
We have denominated them as PRBGkeccakn , where n ∈ 2, 3, 4, represents the number of ad-
ditional rounds. We can see that running 3 or 4 additional rounds significantly improves the
statistical quality of the output random bits. All version allow doing the same if the number of
analyzed output bits is restricted to 107.

6.3 Efficiency

We analyse efficiency of our designs to see how fast they can produce pseudorandom bits. All
tests are done using an Intel Core i7-5600U CPU with 12 GB of RAM and a 64bit version of OS.
All algorithms are implemented in the Go language (Version 1.16.6). Tests are performed for a
single-threaded versions of our PRBG generators and are presented in Table 8.

S = 8, R = 7 S = 32, R = 7 S = 128, R = 8 S = 128, R = 9 S = 256, R = 9

Multi-Frame 184 Mbps 313 Mbps 593 Mbps 378 Mbps 641 Mbps
Key Rotating 282 Mbps 471 Mbps 683 Mbps 547 Mbps 733 Mbps

Table 8. Average throughputs of a single thread of a Multi-Frame and Key Rotating ANS-based PRBG achieved
for different ANS parameters. S means the number of symbols in the alphabet of a source frame, and R controls
the size of the encoding table.

It is easy to see that the speed depends on the number of symbols in the input frame. The
bigger number S the faster generation of output bits. If efficiency is the prime concern, then we
have at least two options for speeding up generation of pseudorandom bits.

• Instead of a distribution whose probabilities are natural powers of 1/2, we can use a distri-
bution whose probabilities are much smaller than 1/2 and close to each other. Consequently,
state equilibrium probabilities are no longer uniform and we need to deal with a persistent
bias of encodings.
• We design ANS for a distribution whose probabilities are natural powers of 1/2 and allow

symbols to occur with the same probabilities. As an illustration, consider ANS with 8 symbols
that occur with probabilities {1/2, . . . , 1/128, 1/128}. It generates ≈ 2 bits per symbol. Now
if ANS is designed for 128 symbols that happen with uniform probability, then it produces 7
bits per symbol.

Besides, PRBGs may use multiple ANS threads, where its final throughput equals the sum of
ANS encodings. An important fact is that security of such PRBGs increases with the number
of ANS threads as an adversary needs make guesses about encoding lengths. Our discussion
about efficient ANS-based PRBGs barely has scratched the surface. We are confident that we
can substantially improve our PRBGs so it can effectively compete with PRBGs based on block
ciphers such as Keccak or ChaCha. This challenge is left as a future research direction.

7 Conclusions and Future Research

We investigate generation of pseudorandom bits using the ANS compression algorithm. In prin-
ciple, any compression algorithm removes all redundancy and should produce randomly looking
bits. We show that ANS can produce binary encodings that achieve optimal entropy while com-
pressing symbols whose probabilities are natural powers of 1/2. We prove that by assuming
uniform distribution of ANS states, we can get PRBG that passes all statistical tests. Unfortu-
nately, we are able to prove that the uniform probability distribution of states is asymptotic.
This means that our construction is provably secure if the number of states is big “enough”. It is
an interesting research question to pinpoint the smallest ANS instance, whose output bits pass
all NIST tests. This question closely relates to a design of random graphs without short cycles.

As efficient pseudorandom bit generation is always in high demand, we consider ANS in-
stances that are very efficient. Clearly, their security becomes heuristic. We show that algebraic
cryptanalysis of ANS for R > 7 becomes difficult and breaking it involves guessing of partition
of binary encodings that are glued together into a single stream. To remove local correlations,
we permute output bits using rotation and keccak transformations. To verify the quality of our
PRBG variants, we use the NIST test suite. It turns out that the results are quite encouraging.
Some variants produce long sequences (say 108 or 107 bits) that pass all NIST tests.

Our research can be extended by investigating the interaction between two ANS instances
executed by two treads in parallel. An obvious advantage of a such PRBG is that merging
encodings from the two ANS forces an adversary to guess their lengths. This potentially increases
both efficiency and security.

References

[1] Werner Alexi, Benny Chor, Oded Goldreich, and Claus P. Schnorr. Rsa and rabin functions:
Certain parts are as hard as the whole. SIAM Journal on Computing, 17(2):194–209, 1988.

[2] Ammar Alkassar, Thomas Nicolay, and Markus Rohe. Obtaining true-random binary num-
bers from a weak radioactive source. In Osvaldo Gervasi, Marina L. Gavrilova, Vipin Kumar,
Antonio Laganà, Heow Pueh Lee, Youngsong Mun, David Taniar, and Chih Jeng Kenneth
Tan, editors, Computational Science and Its Applications – ICCSA 2005, pages 634–646,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg.

[3] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak. In Thomas
Johansson and Phong Q. Nguyen, editors, Advances in Cryptology – EUROCRYPT 2013,
pages 313–314, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[4] L. Blum, M. Blum, and M. Shub. A simple unpredictable pseudo-random number generator.
SIAM Journal on Computing, 15(2):364–383, 1986.

[5] Béla Bollobás. Random Graphs. Cambridge University Press, Cambridge, aug 2001.
[6] Wieb Bosma, John Cannon, and Catherine Playoust. The Magma algebra system. I. The

user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and
number theory (London, 1993).

[7] Seyit Camtepe, Jarek Duda, Arash Mahboubi, Paweł Morawiecki, Surya Nepal, Marcin
Pawłowski, and Josef Pieprzyk. Compcrypt–lightweight ANS-based compression and en-
cryption. IEEE Transactions on Information Forensics and Security, 16:3859–3873, 2021.

[8] Nicolas T. Courtois and Willi Meier. Algebraic attacks on stream ciphers with linear feed-
back. In Eli Biham, editor, Advances in Cryptology — EUROCRYPT 2003, pages 345–359,
Berlin, Heidelberg, 2003. Springer Berlin Heidelberg.

[9] Christophe De Cannière and Bart Preneel. Trivium, pages 244–266. Springer Berlin Hei-
delberg, Berlin, Heidelberg, 2008.

[10] Leo Dorrendorf, Leo Dorrendorf, Zvi Gutterman, and Benny Pinkas. Cryptanalysis of the
windows random number generator. in ACM Conference on Computer and Communications
Security, pages 476–485, 2007.

[11] Jarek Duda. Asymmetric numeral systems. Internet Archive, arxiv-0902.0271:1–47, 2009.

[12] Ian Goldberg and David Wagner. Randomness and the netscape browser. Dr. Dobb’s
Journal, 1(1):1–1, 1996.

[13] Lov K. Grover. A fast quantum mechanical algorithm for database search. In Proceedings
of the twenty-eighth annual ACM symposium on Theory of computing - STOC '96, pages
212–219, ACM, 1996. ACM Press.

[14] O Haggstrom. Finite Markov Chains and Algorithmic Applications. London Mathematical
Society, London, UK, 2002.

[15] D.A. Huffman. A method for the construction of minimum-redundancy codes. Proceedings
of the IRE, 40(9):1098–1101, 1952.

[16] Donald Knuth. The art of computer programming, Vol. 2 / Seminumerical Algorithms.
Addison-Wesley, Reading, Massachusetts, USA, 1973.

[17] Andrew Rukhin, Juan Soto, James Nechvatal, Miles Smid, and Elaine Barker. A statistical
test suite for random and pseudorandom number generators for cryptographic applications.
NIST Special Publication 800-22, Gaithersburg, MD, US,, 800:163, 05 2001.

[18] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer. SIAM Journal on Computing, 26(5):1484–1509, Oct 1997.

[19] Bijesh Shrestha. Multiprime Blum-Blum-Shub pseudorandom number generator. Thesis,
Naval Postgraduate School, Monterey, California, 2016.

[20] Dan Shumow and Niels Ferguson. On the possibility of a back door in the NIST SP800-90
dual Ec PRNG. Rump Session, Crypto 2007, 1(1), 2007.

[21] Johannes vom Dorp, Joachim von zur Gathen, Daniel Loebenberger, Jan Lühr, and Simon
Schneider. Comparative analysis of random generators. In Algorithmic Combinatorics: Enu-
merative Combinatorics, Special Functions and Computer Algebra, pages 181–196. Springer
International Publishing, Berlin, Heidelberg, 2020.

[22] Wikipedia. RC4. https://en.wikipedia.org/wiki/RC4, 2021. Accessed Nov 27, 2021.

[23] Andrew C Yao. Theory and application of trapdoor functions. In 23rd Annual Symposium
on Foundations of Computer Science (SFCS 1982), pages 80–91. IEEE, 1982.

A ANS Algorithms

ANS compression is defined by the following three algorithms: initialisation, symbol frame en-
coding and binary frame decoding. Algorithm 3 shows initialisation that constructs encoding and
decoding functions.

Algorithm 3: Initialises ANS
Input: A set of symbols S, their probability distribution p : S→ [0, 1] and a parameter R ∈ N+.
Output: Instantiation of coding and decoding functions:
• the encoding functions C(s, x) and ks(x);
• the decoding functions D(x) and k(x).

Steps: Initialisation proceeds as follows:

• calculate the number of states L = 2R;
• determine the set of states I = {L, . . . , 2L− 1};
• for each symbol s ∈ S, compute integer Ls ≈ Lps, where ps is probability of s;
• define the symbol spread function s : I→ S, such that |{x ∈ I : s(x) = s}| = Ls;
• establish the coding function C(s, y) = x for the integer y ∈ {Ls, . . . , 2Ls − 1}, which assigns states x ∈ Ls

according to the symbol spread function;
• compute ks(x) = blg(x/Ls)c for x ∈ I and s ∈ S. It gives the number of output bits per an encoding step;
• construct the decoding function D(x) = (s, y), which for a state x ∈ I assigns its unique symbol (given by

the symbol spread function) and the integer y, where Ls ≤ y ≤ 2Ls − 1. Note that D(x) = C−1(x).
• calculate k(x) = R− blg(x)c or the number of bits that needs to be read out from the bitstream.

Algorithm 4 takes a symbol frame and compresses it into a binary frame. The binary frame
together with the final ANS state is sent to a receiver.

Algorithm 4: Encodes Symbol Frames
Input: A symbol frame s = (s1, s2, . . . , s`) ∈ S∗ and an initial state x = x` ∈ I.
Output: An output bit stream b = (b1|b2| . . . |b`) ∈ B∗, where |bi| = ksi(xi) and xi is state in i-th step.
Steps: for i = `, `− 1, . . . , 2, 1 do

s := si;
k = ks(x) = blg(x/Ls)c;
bi = x mod 2k;
x := C(s, bx/2kc);

Store the final state x0 = x;

Given a binary frame and the final ANS state, the receiver applies Algorithm 5 and reconstructs
the corresponding symbol frame.

Algorithm 5: Decodes Binary Frames
Input: A binary frame b ∈ B∗ and the final state x = x0 ∈ I of the encoder.
Output: Symbol frame s ∈ S∗.
Steps: while b 6= ∅ do

(s, y) = D(x);
k = k(x) = R− blg(x)c;
b =MSB(b)k;
b := LSB(b)|b|−k;
x := 2ky + b;

Note that LSB(b)` and MSB(b)` stand for ` least and most significant bits of b, respectively.

B Example of ANS

We consider a symbol source S = {s1, s2, s3, s4, s5}, where p1 = 1
2 , p2 = 1

4 , p3 = 1
8 , p4 = 1

16 ,
p5 = 1

16 and free parameter R = 4. The number of states L = 2R = 16 and the state set
I = {16, 17, . . . , 31}. We follow the initialisation.

• Determine symbol spread function s : I→ S such that

s(x) =

s1 if x ∈ {17, 18, 22, 24, 25, 27, 28, 31} = L1

s2 if x ∈ {20, 23, 29, 30} = L2

s3 if x ∈ {16, 19} = L3

s4 if x ∈ {21} = L4

s5 if x ∈ {26} = L5

where L1 = |L1| = 8, L2 = |L2| = 4, L3 = |L3| = 2, L4 = |L4| = 1 and L5 = |L5| = 1.
• Write the coding function C(s, y), which can be represented as

s\y 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

s1 − − − − − − − 17 18 22 24 25 27 28 31

s2 − − − 20 23 29 30 − − − − − − − −
s3 − 16 19 − − − − − − − − − − − −
s4 21 − − − − − − − − − − − − − −
s5 26 − − − − − − − − − − − − − −

• Construct the frame encoding table E(xi, si) = (xi+1, bi)
def
≡
(xi+1

bi

)
as follows:

si\xi 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

s1
(17
0

) (17
1

) (18
0

) (18
1

) (22
0

) (22
1

) (24
0

) (24
1

) (25
0

) (25
1

) (27
0

) (27
1

) (28
0

) (28
1

) (31
0

) (31
1

)
s2

(20
00

) (20
01

) (20
10

) (20
11

) (23
00

) (23
01

) (23
10

) (23
11

) (29
00

) (29
01

) (29
10

) (29
11

) (30
00

) (30
01

) (30
10

) (30
11

)
s3

(16
000

) (16
001

) (16
010

) (16
011

) (16
100

) (16
101

) (16
110

) (16
111

) (19
000

) (19
001

) (19
010

) (19
011

) (19
100

) (19
101

) (19
110

) (19
111

)
s4

(21
0000

) (21
0001

) (21
0010

) (21
0011

) (21
0100

) (21
0101

) (21
0110

) (21
0111

) (21
1000

) (21
1001

) (21
1010

) (21
1011

) (21
1100

) (21
1101

) (21
1110

) (21
1111

)
s5

(26
0000

) (26
0001

) (26
0010

) (26
0011

) (26
0100

) (26
0101

) (26
0110

) (26
0111

) (26
1000

) (26
1001

) (26
1010

) (26
1011

) (26
1100

) (26
1101

) (26
1110

) (26
1111

)
• Build a decoding table. The decoding function D(x) = (s, y), where the integer y is given by

the following table

x 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

y 2 8 9 3 4 1 10 5 11 12 1 13 14 6 7 15

The decoding table D(xi, bi) can be represented as follows

xi 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

si s3 s1 s1 s3 s2 s4 s1 s2 s1 s1 s5 s1 s1 s2 s2 s1

k 3 1 1 3 2 4 1 2 1 1 4 1 1 2 2 1

xi+1 16+bi 16+bi 18+bi 24+bi 16+bi 16+bi 20+bi 20+bi 22+bi 24+bi 16+bi 26+bi 28+bi 24+bi 28+bi 30+bi

Note that xi+1 = 2ky + bi, where bi is an integer that corresponds to the binary string.

It is easy to check that our ANS is optimal as the source entropy H(S) equals to the average
length of binary encodings.

