
LedgerHedger: Gas Reservation for Smart

Contract Security

Itay Tsabary1, Alex Manuskin2, Roi Bar-Zur1, and Ittay Eyal1

1 Technion, Israel
itaytsabary@gmail.com

roi.bar-zur@campus.technion.ac.il

ittay@technion.ac.il
2 alex@manuskin.org

Abstract. In smart contract blockchain platforms such as Ethereum,
users interact with the system by issuing transactions. System operators
called miners or validators add those transactions to the blockchain.
Users attach to each transaction a fee, which is collected by the miner
who placed it in the blockchain. Miners naturally prioritize better-paying
transactions. This process creates a volatile fee market due to limited
throughput and �uctuating demand. The fee required to place a trans-
action in the future is unknown; yet, ensuring timely transaction con�r-
mation is critical for securing smart contracts that represent billions of
dollars and underpin prominent blockchain scaling solutions.
We present LedgerHedger, a novel mechanism that guarantees the
con�rmation of a transaction within a speci�ed time frame. Due to
the absence of external enforcement in decentralized systems, Ledger-
Hedger uses incentives. Its core is a hedging agreement between a trans-
action issuer and a second party, possibly a miner. The issuing party pays
for the transaction upfront while the second party commits to paying any
necessary fees when the transaction is issued in the future, even if they
exceed the original payment.
LedgerHedger gives rise to a strategic game, where the issuing party
deposits the transaction payment and the committing party deposits a
collateral. During the target time frame, the latter is required to con�rm
the transaction if it exists, or they have the option to withdraw the
payment and the collateral if the transaction is not presented.
We demonstrate that for a broad range of parameters, a subgame perfect
equilibrium exists where both parties are incentivized to act as desired,
thereby guaranteeing transaction con�rmation. We implement Ledger-
Hedger and deploy it on an Ethereum test network, showcasing its
e�cacy and minor overhead.

Keywords: Blockchains, Cryptocurrency, Smart Contracts, Hedging,
Gas Price

1 Introduction

Decentralized smart contract platforms like Ethereum [1, 2], Solana [3],
Avalanche [4,5], and Binance Smart Chain [6] have reached market caps of hun-
dreds of billions of dollars [7]. These platforms facilitate transactions of virtual

2 I. Tsabary et al.

cryptocurrency tokens and allow users to interact via stateful programs called
smart contracts. They support a diverse range of interactions, from token trans-
fers to executing complex business logic. For these transactions to be �nalized,
they require con�rmation by system operators known as miners or validators.
Con�rmed transactions are recorded on a decentralized ledger, the blockchain.

The blockchain is constrained in terms of its transaction capacity [2, 8, 9].
Transaction issuers, therefore, assign fees to their transactions, paid to the con-
�rming miner. Naturally, miners prioritize transactions that o�er higher fees,
leaving behind those with lower bids. Due to demand �uctuation [10�16], the
required con�rmation fee at a future time frame is unknown and volatile [17,18].

This unpredictability is not just an inconvenience; it's a critical security vul-
nerability. A growing range of smart contract applications, collectively worth
billions of dollars [19,20], critically rely on timely transaction con�rmations.

Among these applications are �nancial instruments such as vaults [21�24],
atomic swaps [25�30] and contingent payments [31�35], and a prominent
blockchain scaling solution, o�-chain channels [36�43]. These are based on Hash
Time Locked Contracts (HTLCs) for their operation [44,45]. Conducted between
two parties, an HTLC pays the �rst party for providing a suitable hash preim-
age (hash lock), or the other party after a timeout elapses (time lock). A delay
in con�rmation can lead to an elapsed timeout, resulting in irreversible unjust
token transfers.

Other blockchain scaling solutions, optimistic and zero-knowledge roll-
ups [46�55] also heavily depend on timely con�rmations [56, 57]. For example,
optimistic roll-ups work under the presumption that on-chain summaries are
correct, but any delay during their limited dispute period risks token theft.
Zero-knowledge roll-ups, on the other hand, demand swift on-chain validations
of correctness proofs, with delays potentially halting system progress.

Given the critical nature of timely transaction con�rmations and the volatil-
ity of fees, there's a clear need for a reliable mechanism to ensure timely
transaction con�rmation without the risk of unpredictable costs. In response,
we present LedgerHedger, a novel mechanism for blockchain reservation.
LedgerHedger is a smart contract that facilitates an agreement between
a Buyer (transaction issuer) and a Seller (naturally, but not necessarily, a miner).
This agreement ensures that Seller will incorporate a transaction issued by Buyer
in a future block for a predetermined fee. This arrangement protects both parties
from unexpected �uctuations in fee rates.

To reason about LedgerHedger, we use a model (�2) with an append-only
log of transactions called the blockchain. Miners batch transactions in blocks
and append the blocks to the blockchain; this con�rms the added transactions.
Transactions consume system resources, measured in gas. Each block has a gas-
price, a tokens-per-gas-unit metric indicating the required transaction fee for
con�rmation based on a transaction's gas consumption. Seller has a future gas
allocation, and Buyer needs to have a transaction con�rmed during that period.
Our model employs a common price variation framework for predicting future
gas-price, backed by data from Ethereum's history. Buyer and Seller are risk-

LedgerHedger: Gas Reservation for Smart Contract Security 3

averse [58�64], that is, their utilities are concave [61, 65, 66, 66�70] functions of
their token holdings, leading them to prefer stable and predictable outcomes
over uncertain ones, even if they more pro�table in expectation.

The mechanics of LedgerHedger (�3) revolve around the concept of hedg-
ing [67,71,72]. In conventional markets, external authorities, such as courts, en-
sure the enforcement of hedging contracts. However, in the decentralized world
of cryptocurrencies, miners hold the exclusive power to decide on transaction
con�rmations. Faced with clear incentives as potential contract participants, the
inherent power asymmetry invalidates solutions that rely on parties' altruistic
behavior [73]. LedgerHedger is designed to incentivize both parties to act
as desired. For that, Seller deposits a collateral as part of the contract initia-
tion [44, 74, 75], which is later returned only if she abides by the contract, and
con�rms Buyer's transaction. LedgerHedger also protects Seller, ensuring she
is paid even if Buyer misbehaves, and does not supply Seller with a transaction
to con�rm. The contract operates in two distinct phases: an initiation phase and
an execution phase.

We prove LedgerHedger is incentive compatible (�4), meaning that both
parties are incentivized to act as desired. To that end, we model the incentives
of Buyer and Seller as a game with two phases. In the �rst phase, both parties
decide whether to commit to a LedgerHedger contract or to proceed without
any hedging. Upon reaching the target time frame, if a contract is in place, the
two parties can interact according to its terms. Otherwise, they operate at the
prevailing market gas-price. At the end of the game, strategies chosen by the
participants, coupled with the stochastic market gas-price, determine the �nal
token count for each party, and consequently their utilities.

We analyze the game using the subgame-perfect-equilibrium (SPE) solution
concept, suitable for its dynamic, turn-based nature. An SPE comprises a strat-
egy of Buyer and a strategy of Seller such that both cannot increase their utility
by deviating at any stage of the game. Through our analysis, we ascertain that
initiating and adhering to the contract is a mutually bene�cial strategy for both
parties in a variety of practical conditions.

We implement LedgerHedger as an Ethereum smart contract and deploy
it on a test network (Appendix A). LedgerHedger's overhead is low � three
orders of magnitude lower than the hedged gas for prevalent use cases. Moreover,
we demonstrate LedgerHedger's e�cacy (�5) through a sensitivity analysis
with respect to contract parameters, gas-price distribution, and utility functions.
We then identify concrete parameters under which LedgerHedger is viable.

Despite recent advances in addressing the issue of timely con�rmation, exist-
ing solutions are not without their limitations (�6). Some, such as those that seek
to estimate the required fee to allow swift con�rmation [76�82], or to redesign
the fee market for better predictability [83�85], do not address the inherent un-
certainty of future fee �uctuations. Another approach, congestion detection [86],
introduces dynamic timeouts that adjust once the blockchain is congested. This
approach, however, only replaces safety violations with liveness violations.

4 I. Tsabary et al.

An alternative method to hedge gas prices, involves buying and later sell-
ing gas tokens. Some gas tokens, which rely on external oracles to derive their
price, are susceptible to adversarial manipulation [87]. Another type of gas token
has relied on the refund mechanism of the Ethereum protocol [88�90]. However,
these gas tokens were ine�cient, and were broken as Ethereum evolved [91,92].

Compared to existing solutions, LedgerHedger brings substantial bene�ts.
It enables long-term reservations for transaction processing at predetermined
fees, eliminating the need for fee estimation. The two-party interaction basis en-
hances its resilience to external manipulations, congestion, and protocol changes.
Furthermore, it achieves this robustness without requiring an external oracle or
modi�cations to the underlying blockchain, o�ering a self-contained and reliable
solution.

In summary, our contributions (�7) are: (1) a gas-price �uctuation model,
con�rmed by Ethereum measurements; (2) LedgerHedger, the �rst mecha-
nism for addressing the prevalent requirement of timely blockchain con�rma-
tion; (3) an analysis showing LedgerHedger's security and applicability for a
wide range of parameters; and (4) an open-source implementation for Ethereum,
deployed on a test network.

2 Model

To reason about blockchain reservation, we �rst describe a general model for
an underlying blockchain-based cryptocurrency (�2.1). We then present the
setup for a future transaction inclusion deal (�2.2), and the stochastic value
of fees (�2.3). Finally, we describe the participants' utility functions (�2.4).

2.1 Cryptocurrency System

The blockchain system tracks internal cryptocurrency tokens that its users can
transact. To apply their transactions, users broadcast them across a peer-to-peer
network. A subset of users, called miners, batch transactions in data structures
called blocks.

Miners add blocks to a global data structure, called the blockchain, forming
an append-only list of blocks. Blocks have indexes matching their append order,
and we denote the i'th block by bi. A transaction is con�rmed when it is included
in the blockchain.

We follow the common assumption [1, 25, 26, 41, 42, 44, 74, 83, 93�95] that
all miners create blocks according to the above description, and all published
transactions and all created blocks are instantaneously available to all system
users and miners.

The system state is the association of tokens to smart contracts, predicates
that need to be satis�ed in order to transact their associated tokens. Parties infer
the state by sequentially parsing the blockchain. Only transactions that satisfy
the contract predicates can be con�rmed, and we disregard transactions that do
not.

The smart contract predicates can verify that the transaction is digitally
signed, for an existentially unforgeable under chosen message attacks (EU-
CMA) [44,74,96�98] digital signature algorithm; that the transaction is included

LedgerHedger: Gas Reservation for Smart Contract Security 5

in a block numbered higher or lower than a parameter; that the transaction
transfers a number of tokens; or a combination of the above. We say a user owns
tokens if she is the only user that is able to satisfy the contract predicate.

Transactions are measured by their gas requirement � an internal measure
of transaction resource consumption. Each operation in a transaction requires a
certain amount of gas, and the total transaction gas is the sum of all operations'
gas. When considering a transaction tx's gas requirement, denoted by gtx, we
consider it with respect to the system state when it is con�rmed.

Each block has a bound on the total gas of its transactions. Transactions
o�er tokens as a fee for the including miner. This fee is set by the transaction
issuer, determining a non-negative tokens-per-gas ratio, which we denote by πtx
for transaction tx. When con�rmed, transaction tx pays gtx · πtx tokens to the
miner that included it in a block.

Miners choose which transactions to include in a block based on their of-
fered πtx values. We refer to the minimal required value to be included in a
block by gas-price. For simplicity, we assume there are always su�ciently many
transactions that o�er gas-price to exactly �ll a block [95, 99], and that any
transaction o�ering at least gas-price is con�rmed.

2.2 Future Transaction Setup

Consider two system participants, Buyer and Seller, with the following inter-
ests: Buyer requires galloc gas allocated to a transaction of her choice in future
blocks; Seller has a gas allocation of galloc in such a suitable block, which she
can sell for tokens.

We denote the transaction that Buyer wants to be included by txpayload,
and the relevant block interval for its inclusion by [bstart, bend]. Note that the
content of txpayload is not necessarily known up to bstart. We also denote the block
interval in which Buyer wishes to assure the future allocation by [binit, bacc] such
that init ≤ acc < start ≤ end.

If Seller is a miner, a suitable choice of block interval will guarantee with
overwhelming probability that Seller will obtain the necessary gas allocation
regardless if block generators are chosen probabilistically, as in Ethereum, or
deterministically, as in planned Central Bank Digital Currencies (CBDCs) [100,
101] (Appendix B). Furthermore, Seller does not have to be a miner, as she can
simply purchase the necessary gas allocation when the time comes.

2.3 Gas Price

To reason about hedging, one requires a prediction of the commodity future
price. We assume the future gas-price is drawn from some price distribution. We
assume both Buyer and Seller have perfect knowledge of this distribution.

Previous work [77�82] provides gas-price predictions, but focuses exclusively
on prediction for the next block. We are not aware of work modeling the gas-
price for a further future (e.g., a week ahead), hence we assume it follows the
prevalent random-walk price model [102�105]. According to this model, the gas-
price follows a Gaussian random walk, where in each block it changes according

6 I. Tsabary et al.

to a random sample from a normal distribution N
(
µ, σ2

)
. It follows [106, 107]

that the future gas-price change after n blocks is also drawn from a normal
distribution with parameters N

(
n · µ, n · σ2

)
.

For simplicity, we assume the random walk is without a drift, meaning µ = 0.
We also assume that σ2 is small [108], so in the short term the gas-price has a
low variance.

We validate this model using the Kolmogorov�Smirnov [109] test on historical
Ethereum gas prices over a month (Appendix C).

We slightly enhance the price model to neglect rare events. Speci�cally, the
gas-price cannot be negative, as that would imply the miner pays users to trans-
act, instead of the obvious option of leaving blocks empty; excessively high gas-
price is also impossible, as that removes any incentive to transact and renders
the system unusable.

In summary, denote by F the gas-price distribution in the target interval.
F is a truncated normal distribution [110]; its mean value is the gas-price for
block binit; its lower tail is truncated such that the gas-price is non-negative, and
we truncate the upper tail symmetrically with respect to the mean. Denote the
probability density function (PDF) of F by Fpdf.

Denote the gas-price for block binit by πsetup. We assume that [binit, bacc] is
relatively short, and make the simplifying assumption that the gas-price for this
entire interval is πsetup. Similarly, we assume that [bstart, bend] is relatively short,
and denote the gas-price for this interval by πexec ∼ F .

2.4 Wealth and Utility

The interaction with the contract concludes with each player having some num-
ber of tokens � their resultant wealth. We model the exogenous motivation
of Buyer from having a transaction txpayload that consumes at least galloc gas
con�rmed during φexec as her receiving tokens from doing so, denoting their
number by wexo. We capture the player's happiness from having wealth using a
utility function.

We denote the initially available tokens of Buyer and Seller by winit
Buyer

and winit
Seller, respectively. Each player's resultant wealth therefore depends on

these values, their paid and received transaction fees, and the values of πsetup
and πexec. A player's utility U : W → R is a function describing happiness from
eventually having W tokens, including the exogenous motivation wexo for Buyer.

We assume both Seller and Buyer are risk-averse [62�66, 111�114], that is,
they value the certainty of their resultant wealth. This implies that they might
not prefer to maximize their expected wealth. For example, a risk-averse player
might prefer getting 4 tokens with probability 1 over getting 10 token with prob-
ability 0.5, despite the latter higher expected value of 5. Risk aversion justi�es
actions like individuals purchasing insurance [115, 116], or airlines hedging oil
prices [117,118]. Risk and ambiguity [119,120] aversion also capture that players
do not have perfect knowledge of F .

The common practice [61, 65�70] to model risk aversion is using a utility
function U (W) with the following two properties: (1) U (W) is strictly in-
creasing in W , meaning a player is strictly happier with having more tokens,

LedgerHedger: Gas Reservation for Smart Contract Security 7

Blocks:

Phases:

binit bacc bstart bend
//

setup exec

Fig. 1: LedgerHedger interaction block ranges.

and (2) U (W) is concave, where higher curvature implies a stronger risk aver-
sion tendency. Hereinafter, we consider utility functions that meet this de�nition.

3 LedgerHedger

We present LedgerHedger, our construction enabling a Buyer and a Seller
to hedge future block gas for a predetermined gas-price. We begin by detailing
LedgerHedger's design (�3.1), and follow by formalizing its security guaran-
tees (�3.2).

3.1 LedgerHedger Design

LedgerHedger operates in two phases, setup and exec, representing its setup
and execution in the block intervals of interest, presented in Figure 1. Through-
out the following functions, the contract veri�es identities using the EU-CMA
digital signature algorithm.

In the setup phase, Buyer initiates a LedgerHedger instance using a trans-
action. The initiation sets the contract parameters, including the block ranges
in which interactions can be made with the contract instance, the required gas
for the future transaction, and a required collateral to be deposited by Seller.
She also deposits the token payment for the future transaction con�rmation.

Following its initiation, the contract starts an acceptance block countdown,
during which a Seller can accept it using a transaction. Additionally, accept-
ing the contract requires Seller to deposit tokens as a collateral matching the
collateral parameter. The collateral is returned conditioned on Seller further
interacting with the contract. Either if Seller accepted the contract, or if the
acceptance countdown is completed, the contract accepts no further interactions
until the exec phase.

Towards or even during the exec phase, Buyer can publish txpayload. This al-
lows Seller to apply it, executing txpayload, and getting the payment and collateral
tokens from the contract. This is the main functionality of LedgerHedger �
enabling Seller to execute a transaction provided by Buyer.

Alternatively, Seller can exhaust the contract, consuming the hedged gas
on null operations, and then receiving its tokens. The motivation for this func-
tionality is to enable Seller to claim the tokens, regardless if Buyer provides a
transaction or not; this protects Seller from a faulty or malicious Buyer. How-
ever, the naive solution of letting Seller report Buyer as faulty is not su�cient:
It allows a Seller to falsely accuse a correct Buyer, getting the contract tokens
without providing the con�rmation service. By making Seller waste equivalent
gas, we remove her incentive to do so.

If Seller has not accepted the contract, then Buyer can recoup the contract
tokens using a transaction.

LedgerHedger comprises these functions, which we now describe in detail
and present in Alg. 1.

8 I. Tsabary et al.

Initiate Buyer initiates the contract through the invocation of the Initiate
function (lines 1�6), setting the contract parameters. These include acc, the
block number by which Seller is required to accept the contract; start and end,
the range in block numbers during which block Seller is required to con�rm the
transaction; galloc, a positive number of gas units Buyer wishes to use; col,
the non-negative token collateral required by Seller; and, ε, an additional non-
negative number of tokens that will be transferred to Seller for con�rming the
provided Buyer transaction. For simplicity, we consider the block con�rming the
initiation transaction is binit.

The contract veri�es the provided parameters are valid according to the above
speci�cation: the block numbers are ascending, the gas parameter is positive, and
the token parameters are non-negative (lines 2� 3).

After this veri�cation, the contract derives the o�ered payment: the addi-
tional ε tokens are subtracted from the sent tokens sentTokens. This is the
number of tokens that will be paid to Seller for either executing a transac-
tion or exhausting the contract. This implies the contract's o�ered gas-price
is πcontract = payment

galloc
(line 4). It also stores the public identi�er of Buyer

as PKBuyer (line 5). Finally, the contract sets its status variable status to
initiated (line 6), indicating the contract has been initiated, but no further trans-
actions have interacted with it. We denote the gas consumption of the Initiate
function by ginit.

Accept Once the contract is initiated, a Seller can accept it through the invo-
cation of the Accept function (lines 6�12). This enables only a single Seller to
accept the contract, and only before the timeout set by Buyer expires. It also
requires Seller to deposit the requested collateral.

For that, this function �rst veri�es that this invocation is no later
than bacc (line 8), that the contract has been initiated, but not further interacted
with (line 9), and that the sent tokens collateral su�ces (line 10).

The contract then stores Seller public identi�er as PKSeller (line 11), and up-
dates its status variable status to accepted, indicating the contract has been ac-
cepted (line 12). We denote the gas consumption of the Accept function by gaccept.

The previous Initiate and Accept functions facilitate the initiation and accep-
tance of LedgerHedger. The following three functions detail its conclusion.

Recoup The Recoup function (lines 12�18) enables Buyer to withdraw her de-
posited tokens from LedgerHedger if no Seller accepts it prior to bacc.

For that, it �rst veri�es the invocation is within [bstart, bend] (line 14), that
the contract is initiated, but no Seller had accepted it (line 15), and that the
invocation is by Buyer (line 15). We discuss earlier recouping in Appendix D.

Then, the contract marks its status completed (line 17), and sends Buyer
her deposited payment + ε tokens (line 18). We denote the gas consumption of
the Recoup function by gdone.

Apply The Apply function (lines 18�26) implements the main functionally
of LedgerHedger: Seller executing a transaction txprovided provided by Buyer,
and receiving the agreed-upon payment for doing so. Let gpub be the gas con-
sumption of txprovided.

LedgerHedger: Gas Reservation for Smart Contract Security 9

This function takes as an input a transaction txprovided, and �rst veri-
�es txprovided was issued by Buyer (line 20). Then, it veri�es the invocation
is within [bstart, bend] (line 21), that Seller had previously accepted (line 22), and
that the invocation is by Seller (line 23).

The contract then executes the operations of txprovided as a subrou-
tine (line 24), marks its status completed (line 32), and sends payment+ ε+ col
tokens to Seller (line 33).

Considering all operations except the execution of txprovided, the Apply func-
tion performs similar operations to those of Recoup. We therefore consider its
gas consumption, aside from execution of txprovided, is also gdone.

Exhaust The Exhaust function (lines 26�33) allows Seller to get payment+ col
tokens for expending galloc gas during the required block interval. Its goal is
to protect Seller from a spiteful Buyer, speci�cally from the case where Buyer
does not publish a txprovided transaction, or publishes ones that consume more
than galloc gas.

When Exhaust is invoked, the contract �rst veri�es it is
within [bstart, bend] (line 28), that Seller had previously accepted (line 29),
and that the invocation is by Seller (line 30).

The contract then performs null operations consuming galloc gas (line 31),
marks its status completed (line 32), and sends Seller payment + col to-
kens (line 33). Note that executing Exhaust results with the remaining ε being
forever locked in the contract.

Similarly, the operations of Exhaust, aside from the exhaustion, resemble
those of Recoup. Therefore, its gas cost, aside from the exhaustion, is also gdone.

3.2 Possible LedgerHedger Interactions

Following immediately from the functions of LedgerHedger (Alg. 1) and the
EU-CMA digital signature algorithm, we get the following properties, which
de�ne all possible interactions of the participants with the contract:

Contract parameters are immutable The contract parameters are set only
once by Buyer at its initiation and are immutable.

These parameters are set before πexec is drawn. Moreover, Buyer must trans-
fer payment+ ε tokens to the contract at its initiation.

Single Seller accepting Only a single Seller can accept the contract, only
after it is initiated, and only before bacc. That means Seller can accept the con-
tract only after its parameters are set, and only after Buyer has already trans-
ferred payment+ ε tokens to it. Seller can accept the contract only before πexec
is known, and only by transferring col tokens.

Contract token extraction Extracting the contract tokens requires success-
fully invoking either Recoup, Apply or Exhaust, which all require to be invoked
during [bstart, bend].

Buyer extracting tokens Only Buyer can successfully invoke Recoup, only
during [bstart, bend], and only if Seller had not accepted the contract.

10 I. Tsabary et al.

Seller extracting tokens Only Seller that accepted the contract can success-
fully invoke Apply or Exhaust, but not both. For either function, a successful
invocation can be made only during [bstart, bend], and only if Seller had accepted
the contract before bstart (speci�cally, before bacc which precedes bstart).

Additionally, Seller can only successfully invoke Apply by providing a trans-
action txpayload published by Buyer.

4 Incentive Compatibility

To demonstrate incentive compatibility, we identify the conditions under which
it is in the best interest of both parties to ful�ll a given contract. In addition,
we �nd contract parameters for which Buyer and Seller initiate and accept a
contract in the �rst place. Our analysis culminates in the following theorem.

Theorem 1. There exist utility functions, a distribution F , and contract gas
and token parameters such that: Buyer is incentivized to initiate the con-
tract; Seller is incentivized to accept the initiated contract; Buyer is incentivized
to publish txpayload with gas consumption gpub equal to galloc; and, Seller is
incentivized to ful�ll the contract by con�rming txpayload.

To prove the theorem, we �rst model LedgerHedger as a game be-
tween Buyer and Seller. We then consider a subgame perfect equilibrium (SPE),
capturing the dynamic, turn-based nature of the game. We express the equilib-
rium strategy as a function of the distribution, the utility functions, and the
contract parameters. Afterward, we prove there are scenarios where engaging
and ful�lling the contract is an SPE. The game de�nition and analysis of the
SPE are deferred to Appendix E.

5 E�cacy

To show the e�cacy of LedgerHedger, we �rst review relevant contract pa-
rameters, gas-price distributions, and utility functions (�5.1). We then show how
to set the contract parameters to assure its ful�llment (�5.2), and conclude by
describing concrete ranges where both parties bene�t from the contract (�5.3).

5.1 Contract Parameters, Distributions, Utility Functions

Contract parameters We set galloc = 5e6
(
5 · 106

)
as a representative example

of a ZK roll-up proof gas requirement [121, 122], and arbitrarily choose wexo =
winit
Buyer = winit

Seller = 1e9. Considering our implementation gas requirements (pre-
sented in Appendix A), we �x the contract function gas requirements at ginit =
0.1e6, gaccept = 75e3 and gdone = 20e3. We still consider ε = 1, and derive the
desired values of payment and col throughout this section.

Distribution F The resultant players' wealth depends on their strategies and
on the gas-price value πexec, which is drawn from F . Therefore, towards our anal-
ysis, we need to instantiate F . Inspired by Ethereum current gas-price [123],
we set the gas-price at initiation to πsetup = 100. For the distribution F ,
we consider normal distributions with a mean value of πsetup, and truncate
them symmetrically at 0 and 200. We consider three di�erent distributions, de-
noted ∀i ∈ [1, 3] : F i, di�ering in their variance σ2

i = 10i+1.

LedgerHedger: Gas Reservation for Smart Contract Security 11

6e+08

8e+08

1e+09

0.5 0.6 0.7 0.8 0.9 1
pa
ym

en
t
+
co
l+

ε

Desired Pr [πexec < πbound]

F1

F2

F3

Fig. 2: Required contract funds payment + col + ε to achieve desired ful�llment
probability Pr [πexec < πbound].

Utility functions Agent risk aversion is modeled through the concavity of its
utility function. However, the optimal strategy is not a�ected by a�ne trans-
formations of the utility function [70, 124], so simply measuring the curvature
fails to capture this preference. Instead, the risk preference of a utility func-
tion U (W) is typically measured using its Arrow-Pratt Relative Risk Aversion

(RRA) [65,66], RRA = −W ·U ′′(W)
U ′(W) , where U ′ (W) and U ′′ (W) are the �rst and

second derivatives of U (W), respectively.
For our instantiation we use a few common options for utility functions [66�

70,112�114]: Linear utility U (W) = W with RRA = 0, exhibiting risk-neutrality;
Sqrt utility U (W) =

√
W with RRA = 0.5, exhibiting mild risk-aversion; and,

Log utility U (W) = log (W) with RRA = 1, exhibiting higher risk-aversion.

5.2 Contract Ful�llment

With the contract parameters, distributions, and utility functions set, we are
�rst interested in �nding the payment and col parameters for Seller to con-
�rm txpayload. By Lemma 1, this occurs when πexec < payment+col+ε

galloc+gdone
(Ap-

pendix E). Let us denote πbound = payment+col+ε
galloc+gdone

, hence we are interested in
�nding when πexec < πbound.

Recall πexec ∼ F , so the condition holds only with some probability. This
is not a predicament speci�c to LedgerHedger but to hedging in general �
in extreme cases one party might be better o� violating the contract, as the
incurred punishment is smaller than the cost of abiding by the contract [71].
However, setting a su�cient incentive can achieve any desired probability. For
bounded probabilities, we can achieve deterministic success.

The probability that πexec < πbound is given by the distribution's cumulative
distribution function (CDF) at πbound. Figure 2 shows the required payment +
col+ ε value to achieve Pr [πexec < πbound].

Figure 2 illustrates that increasing payment and col results with higher ful�ll-
ment probability, as they increase the incentive for Seller to ful�ll the contract.

Additionally, Figure 2 shows the e�ect of the distribution variance on meeting
the πbound bound. As expected, the more variant distributions have heavier right
tails, requiring more funds to achieve the same success probability.

If there exists an upper bound on the distribution value, like in the truncated
normal distribution, simply setting payment + ε + col such that πbound exceeds

12 I. Tsabary et al.

-4
-2
0
2
4

96 98 100 102 104

E
U
D

(s
ca
le
d)

πcontract

UBuyer = Log

UBuyer = Sqrt

UBuyer = Linear

USeller = Log

USeller = Sqrt

USeller = Linear

(a) Distribution F1

-4
-2
0
2
4

96 98 100 102 104

E
U
D

(s
ca
le
d)

πcontract

UBuyer = Log

UBuyer = Sqrt

UBuyer = Linear

USeller = Log

USeller = Sqrt

USeller = Linear

(b) Distribution F3

Fig. 3: Normalized expected utility di�erence.

that upper bound assures success deterministically. In case of an unbounded
distribution, the failure probability is negligible in payment + ε + col according
to the Cherno� bound [125]. As such, hereinafter, we consider payment and col
values such that Pr [πexec < πbound] = 1.

5.3 Initiation and Acceptance

Let us begin by considering the e�ect of the payment and the col parameters.
Buyer pays payment tokens to Seller for galloc gas. Too high payment values
disincentivize Buyer from initiating the contract, as she can buy galloc for the
gas-price instead. Too low payment values disincentivize Seller from accepting
the contract, as she can instead sell galloc for gas-price. The col tokens are used to
incentivize Seller to abide by an accepted contract, as she loses them otherwise.

We now analyze the contract initiation and acceptance for concrete values
of payment and col, for a speci�c F , and assuming Buyer and Seller each have a
utility function Utility ∈ {Linear,Sqrt,Log}.

Let EUDBuyer represent Buyer's additional expected utility from initiating
a LedgerHedger contract, as opposed to directly purchasing a gas allocation
when the target timeframe arrives. Similarly, let EUDSeller represent Seller's ad-
ditional expected utility from accepting a LedgerHedger contract, as opposed
to directly selling her gas allocation in the target timeframe. Thus, when the ex-
pected utility di�erence is positive, the corresponding participant will interact
with LedgerHedger (Corollary 1 and Corollary 2,Appendix E).

We arbitrarily set col = 1e9 to satisfy Pr [πexec < πbound] = 1 (lower val-
ues su�ce as well, as we need payment + col > 1e9), and numerically calcu-
late EUDBuyer and EUDSeller for the various distributions and utility functions,
as a function of πcontract =

payment
galloc

.

Figure 3 presents these values, scaled for comparison, for the various util-
ity functions, and for the lowest-variance distribution F1 (Figure 3a) and for
highest-variance distribution F3 (Figure 3b). As expected, the higher the agreed
price πcontract is, engaging in a contract becomes less pro�table for Buyer and
more for Seller, since the utility functions are strictly increasing. That is, Buyer
agrees to initiate up to a maximal price, and Seller agrees to accept for no less
than a minimal price. We denote these by πmax

Buyer and by πmin
Seller, respectively,

and refer to these as the required prices.

LedgerHedger: Gas Reservation for Smart Contract Security 13

95

97.5

100

102.5

105

F1 F2 F3

R
eq
u
ir
ed

π
c
o
n
tr
a
c
t

USeller = Log

USeller = Sqrt

USeller = Linear

UBuyer = Log

UBuyer = Sqrt

UBuyer = Linear

(a) With friction

95

97.5

100

102.5

105

F1 F2 F3

R
eq
u
ir
ed

π
c
o
n
tr
a
c
t

USeller = Log

USeller = Sqrt

USeller = Linear

UBuyer = Log

UBuyer = Sqrt

UBuyer = Linear

(b) Without friction

Fig. 4: πcontract for initiation and acceptance.

Determining the πcontract that Buyer and Seller agree upon is a matter of
negotiation, outside the scope of this work. We focus on �nding conditions for
such a price to exist, i.e., for πmax

Buyer > πmin
Seller.

Figure 3 shows that utility functions with higher RRA are more amenable to
engage in the contract. Speci�cally, it shows that πmax

Buyer is the highest in case
of a logarithmic utility function Log (RRA = 1), followed by the price in case of
a square root utility function Sqrt (RRA = 0.5), and then by the price in case
of a linear utility function Linear (RRA = 0). This is expected � higher RRA
means higher preference for certainty, which is achieved through engaging in the
contract. Symmetrically, it shows that πmin

Seller is the lowest with a logarithmic
utility function, and highest with a linear utility function.

Lastly, Figure 3 highlights how the distribution F a�ects the existence of
a πcontract such that πmax

Buyer > πmin
Seller. For F1 (Figure 3a), there is no πcontract

where for any combination of utility function for Buyer and Seller both utility
di�erences are positive, i.e., πmax

Buyer < πmin
Seller. However, for F3 (Figure 3b), there

is a range of πcontract values where πmax
Buyer > πmin

Seller for some utility function
combinations. This is due to the di�erent variance values of the distributions.
Intuitively, a distribution with higher variance o�ers less certainty about πexec,
making the contract-induced certainty more appealing for risk-averse (RRA > 0)
participants.

To further emphasize the distribution e�ect, Figure 4a presents the required
prices for the various utility functions and distributions. It shows the distribu-
tions with lower variance values F1 and F2 both result with πmax

Buyer < πmin
Seller,

i.e., no contract. However, for a high variance value, there exist combinations
of UBuyer and USeller that result with πmax

Buyer > πmin
Seller. For example, the above

is satis�ed for F3 when UBuyer is Log and USeller is Linear, or vice versa. This
implies that the parties engage in a contract even if one of them is risk neutral.

Figure 4a also shows that the required prices are �xed for the linear utility
function, for both Buyer and Seller, for any considered F . Broadly speaking,
this holds due to Pr [πexec < πbound] = 1, the linearity of the utility function,
and the fact all considered distributions have the same mean value. We bring a
thorough explanation in Appendix F.

Finally, as a theoretical exercise, we consider the cost of friction [126] �
the inherent costs of ginit, gaccept and gdone that Buyer and Seller incur. The
reason this experiment might be of interest is due to further optimizations in
LedgerHedger that result with even lower overheads. We set ginit = gaccept =

14 I. Tsabary et al.

gdone = 0 and �nd the required prices for the various utility functions and distri-
butions (Figure 4b). As expected, reducing the friction results with both Buyer
and Seller being more amenable to initiate and accept the contract. Speci�cally,
this relaxation facilitates the contract creation even for F1 and F2.

6 Related work

We are not aware of previous work that guarantees future transaction con�rma-
tion in a timely manner, despite this being a security requirement of prominent
cryptocurrency applications.

Recently, Lotem et al. [86] suggested extending Ethereum's contract capa-
bilities to allow applications to monitor the blockchain congestion level. The
applications can then extend their timeouts in case of congestion. This mecha-
nism replaces safety with liveness violations � the timeout does not expire, but
the application cannot progress to its post-timeout state. In contrast, Ledger-
Hedger assures con�rmation at the desired interval, and is directly applicable
to Ethereum and similar blockchains.

Infura's any.sender [76] service gets issuers' transactions con�rmed at com-
petitive fees using estimation and dynamic fee update. Unlike LedgerHedger,
it does not address long-term reservation and its necessary mechanisms.

Several projects suggest mitigating gas-price changes using gas tokens. These
are managed by designated smart contracts, whose value follows the gas-price.
To protect against gas-price rising (falling), one buys (sells) gas-tokens, and later
sells (buys) them. A future transaction issuer can acquire gas-tokens beforehand,
and sell them to fund the transaction fees at the desired inclusion time.

The �rst type of gas token [88�90] was implemented by abusing Ethereum's
gas refund mechanism, where several operations had negative gas costs. The
principle was to deliberately expend gas on storing arbitrary data when the gas-
price is low, and later, when the gas-price rises, delete that data for a gas refund.
This method was ine�cient, as only about a third of the spent gas is refunded.
Moreover, the August 2021 Ethereum upgrade [127] broke this mechanism by
changing the refund policy [91, 92]. In contrast, LedgerHedger does not rely
on Ethereum's internal implementation, and hence applies to a wide range of
systems. Moreover, its overhead is three orders of magnitude less than the hedged
amount for practical parameter values.

Another approach for implementing gas tokens is pegging them to the
gas value, e.g., uGAS [87], and Pitch Lake [128]. uGAS tokens have month-
granularity expiration dates, and their expiration value is set according to an
oracle [129] � another contract that, by external measures, feeds the median
gas price of all Ethereum transactions. Users can deposit and release cryptocur-
rency to mint and destroy uGAS tokens, respectively. The required cryptocur-
rency amount, deposit duration and withdrawal availability all depend on a set
of variables such as the oracle-reported price and the token availability in the
managing contract. Moreover, user deposits may be con�scated in a so-called
liquidation if their deposit value falls below a certain threshold. Protocols of this
kind are susceptible to various attacks and manipulations [130�135], in particu-
lar to taking advantage of the oracle [136�147]. Furthermore, setting the oracle

LedgerHedger: Gas Reservation for Smart Contract Security 15

measured time period is nontrivial � short periods make it easy to manipulate,
but long periods result with the reported value being inaccurate.

In contrast, LedgerHedger does not rely on oracles, and is conducted
solely among the two interacting parties, removing the ability to a�ect its state
through the aforementioned manipulations. LedgerHedger also enables arbi-
trary choice of the target time frame.

Traditional �nancial hedging instruments typically rely on either cash settle-
ment or the delivery of goods [71, 148]. The latter kind of gas tokens, as men-
tioned previously, leans on cash settlement. This method, however, necessitates
knowledge of the price, typically sourced from oracles, which are vulnerable to
manipulation. In contrast, LedgerHedger paves the way for a novel category
of oracle-less gas tokens, which can use it for transferring gas allocations. We
leave the exploration of this direction for future work.

The August 2021 [127] update to the Ethereum network applied Ethereum
Improvement Proposal (EIP) 1559 [83], changing the transaction fee mechanism.
EIP1559, along with other work [77�82], attempts to ease transaction issuers
estimation of the required fee solely for the next block; they do not apply (or
claim to apply) to further blocks.

Aside from benign price �uctuations, previous work shows the fee market is
susceptible to congestion attacks [12,149,150]. These create multiple transactions
that arti�cially increase the market price, congesting the network, resulting with
time-sensitive transactions being delayed. A similar impact can arise from cen-
sorship attacks [151], where a malicious party prevents transaction from being
con�rmed. Such attacks are executed by manipulating miners' incentives, often
through methods like bribes [152�155].

LedgerHedger is capable of withstanding such attacks or benign market
spikes of any magnitude by incorporating a su�ciently high Seller collateral,
thereby ensuring future con�rmations at predetermined prices, even in far-future
scenarios. Moreover, LedgerHedger's functionality remains una�ected by up-
dates such as EIP1559, underlining its resilience and versatility in a rapidly-
evolving domain.

7 Conclusion

We introduce LedgerHedger, a blockchain smart contract for con�rming a
future transaction of Buyer for a predetermined fee by Seller. We analyze fee
variability and prove that ful�lling the contract is an SPE for a wide range of
practical parameters. We implement LedgerHedger as a smart contract for
Ethereum, deploy it, and demonstrate its e�cacy and low gas overhead compared
to common gas requirements.

LedgerHedger is directly applicable to secure smart contracts executed
over Ethereum and similar systems, resolving the prevalent issue of unjusti�ed
reliance on fee stability.

Acknowledgments

This research was supported by Avalanche Foundation and by IC3.

16 I. Tsabary et al.

References

1. Buterin, V.: A next generation smart contract & decentralized application plat-
form (2013), https://www.ethereum.org/pdfs/EthereumWhitePaper.pdf/

2. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum project yellow paper 151(2014), 1�32 (2014)

3. Yakovenko, A.: Solana: A new architecture for a high performance blockchain v0.
8.13. Whitepaper (2018)

4. Rocket, T.: Snow�ake to avalanche: A novel metastable consensus protocol family
for cryptocurrencies. Available [online] (2018)

5. Rocket, T., Yin, M., Sekniqi, K., van Renesse, R., Sirer, E.G.: Scalable and
probabilistic leaderless bft consensus through metastability. arXiv preprint
arXiv:1906.08936 (2019)

6. Binance: Binance smart chain (2020), https://github.com/binance-chain/
whitepaper/blob/master/WHITEPAPER.md

7. coinmarketcap.com: Cryptocurrency market capitalizations (2022), https://

coinmarketcap.com/, accessed: 2022-01-10
8. Decker, C., Wattenhofer, R.: Information propagation in the Bitcoin network. In:

IEEE P2P. Trento, Italy (2013)
9. Croman, K., Decker, C., Eyal, I., Gencer, A.E., Juels, A., Kosba, A., Miller, A.,

Saxena, P., Shi, E., Sirer, E.G., et al.: On scaling decentralized blockchains. In:
International conference on �nancial cryptography and data security. pp. 106�125.
Springer (2016)

10. Venugopal, S.: Users raise a stink over sun�ower farmers nft for gas fee
spikes on polygon (2022), https://ambcrypto.com/users-raise-a-stink-over-
sunflower-farmers-nft-for-gas-fee-spikes-on-polygon/

11. Frangella, E.: Crypto black thursday: The good, the bad, and the ugly (2020),
https://medium.com/aave/crypto-black-thursday-the-good-the-bad-and-
the-ugly-7f2acebf2b83

12. Munro, A.: Fomo3d ethereum ponzi game r1 ends as hot play outmaneu-
vers bots (2018), https://www.finder.com.au/fomo3d-ethereum-ponzi-game-
r1-ends-as-hot-play-outmaneuvers-bots

13. ConsenSys: The inside story of the cryptokitties congestion crisis (2018),
https://media.consensys.net/the-inside-story-of-the-cryptokitties-
congestion-crisis-499b35d119cc

14. Shevchenko, A.: Here are the best and worst times of the day to use
ethereum (2021), https://cointelegraph.com/news/here-are-the-best-and-
worst-times-of-the-day-to-use-ethereum

15. Sigalos, M.: Ethereum had a rough september. here's why and how it's be-
ing �xed (2021), https://www.cnbc.com/2021/10/02/ethereum-had-a-rough-
september-heres-why-and-how-it-gets-fixed.html

16. Hake, M.R.: Fees threaten ethereum's perch as king of nfts, https:

//www.nasdaq.com/articles/fees-threaten-ethereums-perch-as-king-
of-nfts-2021-10-11

17. Analytics, D.: Average gas price per day for the last 30 days (2022), https:

//dune.xyz/queries/7898/15742, accessed: 2022-01-13
18. Hoenicke, J.: Johoe's mempool statistics (2021), https://jochen-hoenicke.de/

queue/#ETH,all,fee, accessed: 2022-01-13
19. coinmarketcap.com: Loopring market cap (2022), https://coinmarketcap.com/

currencies/loopring/, accessed: 2022-01-10

https://www.ethereum.org/ pdfs/EthereumWhitePaper.pdf/
https://github.com/binance-chain/whitepaper/blob/master/WHITEPAPER.md
https://github.com/binance-chain/whitepaper/blob/master/WHITEPAPER.md
https://coinmarketcap.com/
https://coinmarketcap.com/
https://ambcrypto.com/users-raise-a-stink-over-sunflower-farmers-nft-for-gas-fee-spikes-on-polygon/
https://ambcrypto.com/users-raise-a-stink-over-sunflower-farmers-nft-for-gas-fee-spikes-on-polygon/
https://medium.com/aave/crypto-black-thursday-the-good-the-bad-and-the-ugly-7f2acebf2b83
https://medium.com/aave/crypto-black-thursday-the-good-the-bad-and-the-ugly-7f2acebf2b83
https://www.finder.com.au/fomo3d-ethereum-ponzi-game-r1-ends-as-hot-play-outmaneuvers-bots
https://www.finder.com.au/fomo3d-ethereum-ponzi-game-r1-ends-as-hot-play-outmaneuvers-bots
https://media.consensys.net/the-inside-story-of-the-cryptokitties-congestion-crisis-499b35d119cc
https://media.consensys.net/the-inside-story-of-the-cryptokitties-congestion-crisis-499b35d119cc
https://cointelegraph.com/news/here-are-the-best-and-worst-times-of-the-day-to-use-ethereum
https://cointelegraph.com/news/here-are-the-best-and-worst-times-of-the-day-to-use-ethereum
https://www.cnbc.com/2021/10/02/ethereum-had-a-rough-september-heres-why-and-how-it-gets-fixed.html
https://www.cnbc.com/2021/10/02/ethereum-had-a-rough-september-heres-why-and-how-it-gets-fixed.html
https://www.nasdaq.com/articles/fees-threaten-ethereums-perch-as-king-of-nfts-2021-10-11
https://www.nasdaq.com/articles/fees-threaten-ethereums-perch-as-king-of-nfts-2021-10-11
https://www.nasdaq.com/articles/fees-threaten-ethereums-perch-as-king-of-nfts-2021-10-11
https://dune.xyz/queries/7898/15742
https://dune.xyz/queries/7898/15742
https://jochen-hoenicke.de/queue/#ETH,all,fee
https://jochen-hoenicke.de/queue/#ETH,all,fee
https://coinmarketcap.com/currencies/loopring/
https://coinmarketcap.com/currencies/loopring/

LedgerHedger: Gas Reservation for Smart Contract Security 17

20. coinmarketcap.com: Hermez market cap (2022), https://coinmarketcap.com/
currencies/hermez-network/, accessed: 2022-01-10

21. Möser, M., Eyal, I., Sirer, E.G.: Bitcoin covenants. In: Financial Cryptography
and Data Security (2016)

22. McCorry, P., Möser, M., Ali, S.T.: Why preventing a cryptocurrency exchange
heist isn't good enough. In: Cambridge International Workshop on Security Pro-
tocols (2018)

23. Bryan Bishop: Bitcoin vaults with anti-theft recovery/clawback mechanisms,
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/
017231.html

24. Zamyatin, A., Harz, D., Lind, J., Panayiotou, P., Gervais, A., Knottenbelt, W.:
Xclaim: Trustless, interoperable, cryptocurrency-backed assets. In: 2019 IEEE
S&P (2019)

25. Herlihy, M.: Atomic cross-chain swaps. In: Proceedings of the 2018 ACM sympo-
sium on principles of distributed computing (2018)

26. Malavolta, G., Moreno-Sanchez, P., Schneidewind, C., Kate, A., Ma�ei, M.:
Anonymous multi-hop locks for blockchain scalability and interoperability. In:
NDSS (2019)

27. van der Meyden, R.: On the speci�cation and veri�cation of atomic swap smart
contracts. In: IEEE ICBC (2019)

28. Miraz, M.H., Donald, D.C.: Atomic cross-chain swaps: development, trajectory
and potential of non-monetary digital token swap facilities. Annals of Emerging
Technologies in Computing (AETiC) Vol (2019)

29. Zie, J.Y., Deneuville, J.C., Bri�aut, J., Nguyen, B.: Extending atomic cross-chain
swaps. In: Data Privacy Management, Cryptocurrencies and Blockchain Technol-
ogy (2019)

30. Xue, Y., Herlihy, M.: Hedging against sore loser attacks in cross-chain transac-
tions. arXiv preprint arXiv:2105.06322 (2021)

31. Maxwell, G.: The �rst successful zero-knowledge contingent payment,
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-
payments-announcement/

32. Campanelli, M., Gennaro, R., Goldfeder, S., Nizzardo, L.: Zero-knowledge con-
tingent payments revisited: Attacks and payments for services. In: Proceedings of
the 2017 ACM CCS (2017)

33. Banasik, W., Dziembowski, S., Malinowski, D.: E�cient zero-knowledge contin-
gent payments in cryptocurrencies without scripts. In: European Symposium on
Research in Computer Security (2016)

34. Fuchsbauer, G.: Wi is not enough: Zero-knowledge contingent (service) payments
revisited. In: Proceedings of the 2019 ACM CCS (2019)

35. Bursuc, S., Kremer, S.: Contingent payments on a public ledger: models and
reductions for automated veri�cation. In: European Symposium on Research in
Computer Security (2019)

36. Poon, J., Buterin, V.: Plasma: Scalable autonomous smart contracts. White paper
pp. 1�47 (2017)

37. Poon, J., Dryja, T.: The bitcoin lightning network: Scalable o�-chain instant
payments (2016)

38. Decker, C., Wattenhofer, R.: A fast and scalable payment network with Bitcoin
Duplex Micropayment Channels. In: Stabilization, Safety, and Security of Dis-
tributed Systems - 17th International Symposium (2015)

39. Green, M., Miers, I.: Bolt: Anonymous payment channels for decentralized cur-
rencies. In: Proceedings of the 2017 ACM CCS (2017)

https://coinmarketcap.com/currencies/hermez-network/
https://coinmarketcap.com/currencies/hermez-network/
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/017231.html
https://lists.linuxfoundation.org/pipermail/bitcoin-dev/2019-August/017231.html
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/
https://bitcoincore.org/en/2016/02/26/zero-knowledge-contingent-payments-announcement/

18 I. Tsabary et al.

40. McCorry, P., Möser, M., Shahandasti, S.F., Hao, F.: Towards bitcoin payment
networks. In: Australasian Conference on Information Security and Privacy (2016)

41. Miller, A., Bentov, I., Bakshi, S., Kumaresan, R., McCorry, P.: Sprites and state
channels: Payment networks that go faster than lightning. In: Financial Cryptog-
raphy and Data Security (2019)

42. Dziembowski, S., Faust, S., Hostáková, K.: General state channel networks. In:
Proceedings of the 2018 ACM CCS (2018)

43. Dziembowski, S., Eckey, L., Faust, S., Malinowski, D.: Perun: Virtual payment
channels over cryptographic currencies. IACR ePrint (2017)

44. Tsabary, I., Yechieli, M., Manuskin, A., Eyal, I.: Mad-htlc: because htlc is crazy-
cheap to attack. In: 2021 IEEE Symposium on Security and Privacy (SP) (2021)

45. Wadhwa, S., Stöter, J., Zhang, F., Nayak, K.: He-htlc: Revisiting incentives in
htlc. Cryptology ePrint Archive (2022)

46. Garo�olo, A., Kaidalov, D., Oliynykov, R.: Zendoo: a zk-snark veri�able cross-
chain transfer protocol enabling decoupled and decentralized sidechains. In:
2020 IEEE 40th International Conference on Distributed Computing Systems
(ICDCS). pp. 1257�1262. IEEE (2020)

47. Buterin, V.: The dawn of hybrid layer 2 protocols (2019), available online
48. McCorry, P., Buckland, C., Yee, B., Song, D.: Sok: Validating bridges as a scaling

solution for blockchains. Cryptology ePrint Archive (2021)
49. Kalodner, H., Goldfeder, S., Chen, X., Weinberg, S.M., Felten, E.W.: Arbi-

trum: Scalable, private smart contracts. In: 27th {USENIX} Security Symposium
({USENIX} Security 18). pp. 1353�1370 (2018)

50. Optimism: Optimism website (2021), https://www.optimism.io/
51. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and

post-quantum secure computational integrity. IACR Cryptol. ePrint Arch. 2018,
46 (2018)

52. Starkware: Starkware website (2021), https://starkware.co/
53. Hermez: Scalable payments. decentralised by design, open for everyone. (2020),

https://hermez.io/hermez-whitepaper.pdf
54. Wang, D., Zhou, J., Wang, A., Finestone, M.: Loopring: A decentralized to-

ken exchange protocol. URL https://github. com/Loopring/whitepaper/blob/-
master/en_whitepaper. pdf (2018)

55. Labs, M.: Matter labs website (2021), https://matter-labs.io/
56. Sguanci, C., Spatafora, R., Vergani, A.M.: Layer 2 blockchain scaling: A survey.

arXiv preprint arXiv:2107.10881 (2021)
57. Thibault, L.T., Sarry, T., Ha�d, A.S.: Blockchain scaling using rollups: A com-

prehensive survey. IEEE Access (2022)
58. Cong, L.W., He, Z., Li, J.: Decentralized mining in centralized pools. The Review

of Financial Studies 34(3), 1191�1235 (2021)
59. Chatzigiannis, P., Baldimtsi, F., Griva, I., Li, J.: Diversi�cation across mining

pools: Optimal mining strategies under pow. arXiv preprint arXiv:1905.04624
(2019)

60. Jiang, S., Li, Y., Wang, S., Zhao, L.: Blockchain competition: The tradeo� be-
tween platform stability and e�ciency. European Journal of Operational Research
296(3), 1084�1097 (2022)

61. Chen, X., Papadimitriou, C., Roughgarden, T.: An axiomatic approach to block
rewards. In: Proceedings of ACM AFT (2019)

62. Lewenberg, Y., Bachrach, Y., Sompolinsky, Y., Zohar, A., Rosenschein, J.S.: Bit-
coin mining pools: A cooperative game theoretic analysis. In: Proceedings of the

https://www.optimism.io/
https://starkware.co/
https://hermez.io/hermez-whitepaper.pdf
https://matter-labs.io/

LedgerHedger: Gas Reservation for Smart Contract Security 19

2015 International Conference on Autonomous Agents and Multiagent Systems
(2015)

63. Wang, C., Chu, X., Qin, Y.: Measurement and analysis of the bitcoin networks:
A view from mining pools. In: 2020 6th International Conference on Big Data
Computing and Communications (BIGCOM). pp. 180�188. IEEE (2020)

64. Yaish, A., Zohar, A.: Correct cryptocurrency asic pricing: Are miners overpaying.
arXiv preprint arXiv:2002.11064 (2020)

65. Arrow, K.J.: The theory of risk aversion. Essays in the theory of risk-bearing pp.
90�120 (1971)

66. Pratt, J.W.: Risk aversion in the small and in the large. In: Uncertainty in eco-
nomics, pp. 59�79. Elsevier (1978)

67. Karatzas, I., Shreve, S.E., Karatzas, I., Shreve, S.E.: Methods of mathematical
�nance, vol. 39. Springer (1998)

68. Cochrane, J.: Asset pricing: Revised edition. Princeton university press (2009)
69. Shreve, S.: Stochastic calculus for �nance I: the binomial asset pricing model.

Springer Science & Business Media (2005)
70. Simon, C.P.: Mathematics for economists. Norton & Company, Inc (1994)
71. Hull, J.C.: Options futures and other derivatives. Pearson Education India (2003)
72. Kawai, M.: Spot and futures prices of nonstorable commodities under rational

expectations. The Quarterly Journal of Economics 98(2), 235�254 (1983)
73. Narayanan, A., Bonneau, J., Felten, E., Miller, A., Goldfeder, S.: Bitcoin and

cryptocurrency technologies: a comprehensive introduction (2016)
74. Dziembowski, S., Eckey, L., Faust, S.: Fairswap: How to fairly exchange digital

goods. In: ACM CCS (2018)
75. Asgaonkar, A., Krishnamachari, B.: Solving the buyer and seller's dilemma: A

dual-deposit escrow smart contract for provably cheat-proof delivery and payment
for a digital good without a trusted mediator. In: IEEE ICBC (2019)

76. McCorry, P.: any.sender, transactions made simple (2020), https://medium.com/
anydot/any-sender-transactions-made-simple-34b36ba7519b

77. Pierro, G.A., Rocha, H., Tonelli, R., Ducasse, S.: Are the gas prices oracle reliable?
a case study using the ethgasstation. In: 2020 IEEE International Workshop on
Blockchain Oriented Software Engineering (IWBOSE). pp. 1�8. IEEE (2020)

78. Werner, S.M., Pritz, P.J., Perez, D.: Step on the gas? a better approach for rec-
ommending the ethereum gas price. In: Mathematical Research for Blockchain
Economy, pp. 161�177. Springer (2020)

79. Valson, P.: Transaction fee estimations: How to save on gas? (2020),
https://medium.com/@pranay.valson/transaction-fee-estimations-how-
to-save-on-gas-part-2-72f908b13d67

80. Turksonmez, K., Furtak, M., Wittie, M.P., Millman, D.L.: Two ways gas price
oracles miss the mark. In: 2021 IEEE International Conference on Omni-Layer
Intelligent Systems (COINS). pp. 1�7. IEEE (2021)

81. Liu, F., Wang, X., Li, Z., Xu, J., Gao, Y.: E�ective gasprice prediction for carrying
out economical ethereum transaction. In: 2019 6th International Conference on
Dependable Systems and Their Applications (DSA). pp. 329�334. IEEE (2020)

82. Mars, R., Abid, A., Cheikhrouhou, S., Kallel, S.: A machine learning approach
for gas price prediction in ethereum blockchain. In: 2021 IEEE 45th Annual Com-
puters, Software, and Applications Conference (COMPSAC). pp. 156�165. IEEE
(2021)

83. Roughgarden, T.: Transaction fee mechanism design for the ethereum blockchain:
An economic analysis of eip-1559. arXiv preprint arXiv:2012.00854 (2020)

https://medium.com/anydot/any-sender-transactions-made-simple-34b36ba7519b
https://medium.com/anydot/any-sender-transactions-made-simple-34b36ba7519b
https://medium.com/@pranay.valson/transaction-fee-estimations-how-to-save-on-gas-part-2-72f908b13d67
https://medium.com/@pranay.valson/transaction-fee-estimations-how-to-save-on-gas-part-2-72f908b13d67

20 I. Tsabary et al.

84. Lavi, R., Sattath, O., Zohar, A.: Redesigning bitcoin's fee market. In: The World
Wide Web Conference (2019)

85. Basu, S., Easley, D., O'Hara, M., Sirer, G.: Stablefees: A predictable fee market
for cryptocurrencies. Work. Pap. (2020)

86. Lotem, A., Azouvi, S., Zohar, A., McCorry, P.: Sliding window challenge process
for congestion detection. In: Financial Cryptography and Data Security (2022)

87. Degenerative: ugas token (2021), https://web.archive.org/web/
20220119144017/https://docs.degenerative.finance/

88. Breidenbach, L., Daian, P., Tramer, F.: Gas token (2018), https://gastoken.io/
89. 1inch Network: 1inch introduces chi gastoken (2020), https://blog.1inch.io/

1inch-introduces-chi-gastoken-d0bd5bb0f92b

90. Nadler, M.: A quantitative analysis of the ethereum fee market: How storing gas
can result in more predictable prices (2020)

91. Vitalik Buterin, M.S.: Eip-3529: Reduction in refunds (2021), https://

eips.ethereum.org/EIPS/eip-3529
92. Benson, J.: Ethereum london hard fork to make some tokens worthless

(2021), https://decrypt.co/77345/ethereum-london-hard-fork-make-some-
tokens-worthless

93. Nakamoto, S.: Bitcoin: A peer-to-peer electronic cash system (2008), http://
www.bitcoin.org/bitcoin.pdf

94. Poon, J., Dryja, T.: The Bitcoin Lightning Network, http://lightning.network/
lightning-network.pdf

95. Tsabary, I., Eyal, I.: The gap game. In: ACM CCS (2018)
96. Goldwasser, S., Micali, S., Rivest, R.L.: A digital signature scheme secure against

adaptive chosen-message attacks. SIAM Journal on computing (1988)
97. Johnson, D., Menezes, A., Vanstone, S.: The elliptic curve digital signature algo-

rithm (ecdsa). International journal of information security 1(1), 36�63 (2001)
98. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction

ledger: A composable treatment. In: Annual International Cryptology Conference
(2017)

99. Carlsten, M., Kalodner, H., Weinberg, S.M., Narayanan, A.: On the instability of
bitcoin without the block reward. In: Proceedings of the 2016 ACM CCS (2016)

100. Allen, S., �apkun, S., Eyal, I., Fanti, G., Ford, B.A., Grimmelmann, J., Juels, A.,
Kostiainen, K., Meiklejohn, S., Miller, A., et al.: Design choices for central bank
digital currency: Policy and technical considerations. Tech. rep., National Bureau
of Economic Research (2020)

101. Fung, B.S., Halaburda, H.: Central bank digital currencies: a framework for as-
sessing why and how. Available at SSRN 2994052 (2016)

102. Fama, E.F.: Random walks in stock market prices. Financial analysts journal
51(1), 75�80 (1995)

103. Kendall, M.G., Hill, A.B.: The analysis of economic time-series-part i: Prices.
Journal of the Royal Statistical Society. Series A (General) 116(1), 11�34 (1953)

104. Reeve, T.A., Vigfusson, R.J.: Evaluating the forecasting performance of commod-
ity futures prices. FRB International Finance Discussion Paper (1025) (2011)

105. Bowman, C., Husain, A.M., et al.: Forecasting commodity prices: Futures versus
judgment. March (2004)

106. Walker, H.M., Helen, M.: De moivre on the law of normal probability. Smith,
David Eugene. A source book in mathematics. Dover (1985)

107. Papoulis, A., Pillai, S.U.: Probability, random variables, and stochastic processes.
Tata McGraw-Hill Education (2002)

https://web.archive.org/web/20220119144017/https://docs.degenerative.finance/
https://web.archive.org/web/20220119144017/https://docs.degenerative.finance/
https://gastoken.io/
https://blog.1inch.io/1inch-introduces-chi-gastoken-d0bd5bb0f92b
https://blog.1inch.io/1inch-introduces-chi-gastoken-d0bd5bb0f92b
https://eips.ethereum.org/EIPS/eip-3529
https://eips.ethereum.org/EIPS/eip-3529
https://decrypt.co/77345/ethereum-london-hard-fork-make-some-tokens-worthless
https://decrypt.co/77345/ethereum-london-hard-fork-make-some-tokens-worthless
http://www.bitcoin.org/bitcoin.pdf
http://www.bitcoin.org/bitcoin.pdf
http://lightning.network/lightning-network.pdf
http://lightning.network/lightning-network.pdf

LedgerHedger: Gas Reservation for Smart Contract Security 21

108. etherscan.info: Ethereum average gas price chart (2021), https://etherscan.io/
chart/gasprice

109. Massey Jr, F.J.: The kolmogorov-smirnov test for goodness of �t. Journal of the
American statistical Association 46(253), 68�78 (1951)

110. Thomopoulos, N.T., Thomopoulos, N.T., Philipson: Probability Distributions.
Springer (2018)

111. Levy, H.: Stochastic dominance: Investment decision making under uncertainty.
Springer (2015)

112. Kimball, M.S.: Standard risk aversion. Econometrica: Journal of the Econometric
Society pp. 589�611 (1993)

113. Chiappori, P.A., Paiella, M.: Relative risk aversion is constant: Evidence from
panel data. Journal of the European Economic Association 9(6), 1021�1052 (2011)

114. Dyer, J.S., Sarin, R.K.: Relative risk aversion. Management science 28(8), 875�
886 (1982)

115. Outreville, J.F.: Risk aversion, risk behavior, and demand for insurance: A survey.
Journal of Insurance Issues pp. 158�186 (2014)

116. Cicchetti, C.J., Dubin, J.A.: A microeconometric analysis of risk aversion and the
decision to self-insure. Journal of political Economy 102(1), 169�186 (1994)

117. Conlon, T., Cotter, J., Gençay, R.: Commodity futures hedging, risk aversion and
the hedging horizon. The European Journal of Finance 22(15), 1534�1560 (2016)

118. Haushalter, D.: Why hedge? some evidence from oil and gas producers. Journal
of Applied Corporate Finance 13(4), 87�92 (2001)

119. Traeger, C.P.: Why uncertainty matters: discounting under intertemporal risk
aversion and ambiguity. Economic Theory 56(3), 627�664 (2014)

120. Ellsberg, D.: Risk, ambiguity, and the savage axioms. The quarterly journal of
economics pp. 643�669 (1961)

121. etherscan.io: Optimism 10.2m gas transaction (2021), https://etherscan.io/tx/
0x90ebd9630d98d5b0a186eec4c2382c296e5f41e828da910d76a53ab72ffe30e8

122. Ohad Barta: Zk roll-up gas consumption (2021), https://twitter.com/
OhadBarta/status/1463875770196049931

123. etherscan.io: Ether transaction fees, https://etherscan.io/chart/
transactionfee

124. Benchimol, J.: Risk aversion in the eurozone. Research in Economics 68(1), 39�56
(2014)

125. Cherno�, H., et al.: A measure of asymptotic e�ciency for tests of a hypothesis
based on the sum of observations. The Annals of Mathematical Statistics (1952)

126. Kallsen, J., Muhle-Karbe, J.: Option pricing and hedging with small transaction
costs. Mathematical Finance 25(4), 702�723 (2015)

127. Foundation, E.: Ethereum london hard fork (2021), https://ethereum.org/en/
history/#london

128. Network, O.: Pitch lake. Available at SSRN 4123018 (2022)
129. UMA: How uma solves the oracle problem (2020), https://docs.umaproject.org/

oracle/econ-architecture

130. Daian, P., Goldfeder, S., Kell, T., Li, Y., Zhao, X., Bentov, I., Breidenbach, L.,
Juels, A.: Flash boys 2.0: Frontrunning in decentralized exchanges, miner ex-
tractable value, and consensus instability. In: 2020 IEEE S&P

131. Zhou, L., Qin, K., Torres, C.F., Le, D.V., Gervais, A.: High-frequency trading
on decentralized on-chain exchanges. In: 2021 IEEE Symposium on Security and
Privacy (SP). pp. 428�445. IEEE (2021)

132. Qin, K., Zhou, L., Gervais, A.: Quantifying blockchain extractable value: How
dark is the forest? arXiv preprint arXiv:2101.05511 (2021)

https://etherscan.io/chart/gasprice
https://etherscan.io/chart/gasprice
https://etherscan.io/tx/0x90ebd9630d98d5b0a186eec4c2382c296e5f41e828da910d76a53ab72ffe30e8
https://etherscan.io/tx/0x90ebd9630d98d5b0a186eec4c2382c296e5f41e828da910d76a53ab72ffe30e8
https://twitter.com/OhadBarta/status/1463875770196049931
https://twitter.com/OhadBarta/status/1463875770196049931
https://etherscan.io/chart/transactionfee
https://etherscan.io/chart/transactionfee
https://ethereum.org/en/history/#london
https://ethereum.org/en/history/#london
https://docs.umaproject.org/oracle/econ-architecture
https://docs.umaproject.org/oracle/econ-architecture

22 I. Tsabary et al.

133. Zhou, L., Qin, K., Cully, A., Livshits, B., Gervais, A.: On the just-in-time
discovery of pro�t-generating transactions in de� protocols. arXiv preprint
arXiv:2103.02228 (2021)

134. Qin, K., Zhou, L., Livshits, B., Gervais, A.: Attacking the de� ecosystem with �ash
loans for fun and pro�t. In: International Conference on Financial Cryptography
and Data Security. pp. 3�32. Springer (2021)

135. Wang, Z., Qin, K., Minh, D.V., Gervais, A.: Speculative multipliers on de�: Quan-
tifying on-chain leverage risks. In: Financial Cryptography and Data Security
(2022)

136. Tjiam, K., Wang, R., Chen, H., Liang, K.: Your smart contracts are not secure:
Investigating arbitrageurs and oracle manipulators in ethereum. In: Proceedings
of the 3rd Workshop on Cyber-Security Arms Race. pp. 25�35 (2021)

137. Gupta, M.: All twaps are subject to manipulation (2021), https://tinyurl.com/
5xv2nnpj

138. Paleko: The bzx attacks explained (2020), https://www.palkeo.com/en/projets/
ethereum/bzx.html

139. Eskandari, S., Salehi, M., Gu, W.C., Clark, J.: Sok: Oracles from the ground truth
to market manipulation. arXiv preprint arXiv:2106.00667 (2021)

140. Todd, R.: Synthetix su�ers oracle attack, more than 37 million synthetic ether
exposed (2019), https://www.theblockcrypto.com/linked/28748/synthetix-
suffers-oracle-attack-potentially-looting-37-million-synthetic-ether

141. Qin, K., Zhou, L., Gamito, P., Jovanovic, P., Gervais, A.: An empirical
study of de� liquidations: Incentives, risks, and instabilities. arXiv preprint
arXiv:2106.06389 (2021)

142. Perez, D., Werner, S.M., Xu, J., Livshits, B.: Liquidations: De� on a knife-edge.
In: International Conference on Financial Cryptography and Data Security. pp.
457�476. Springer (2021)

143. Salehi, M., Clark, J., Mannan, M.: Red-black coins: Dai without liquidations.
In: International Conference on Financial Cryptography and Data Security. pp.
136�145. Springer (2021)

144. Sardon, A.: Zero-liquidation loans: A structured product approach to de� lending.
arXiv preprint arXiv:2110.13533 (2021)

145. Analytica, C.: Mev attack � just-in-time liquidity (2021), https://twitter.com/
ChainsightA/status/1457958811243778052

146. Zhao, M.: Yield farming is a misnomer (2021), https://twitter.com/
FabiusMercurius/status/1454513434209312772

147. Wang, Y., Li, J., Su, Z., Wang, Y.: Arbitrage attack: Miners of the world, unite!
In: Financial Cryptography and Data Security (2022)

148. Lioui, A., Poncet, P.: Dynamic asset allocation with forwards and futures.
Springer Science & Business Media (2005)

149. Harris, J., Zohar, A.: Flood & loot: A systemic attack on the lightning network. In:
Proceedings of the 2nd ACM Conference on Advances in Financial Technologies.
pp. 202�213 (2020)

150. Mizrahi, A., Zohar, A.: Congestion attacks in payment channel networks. In:
International Conference on Financial Cryptography and Data Security. pp. 170�
188. Springer (2021)

151. Wahrstätter, A., Ernstberger, J., Yaish, A., Zhou, L., Qin, K., Tsuchiya, T., Stein-
horst, S., Svetinovic, D., Christin, N., Barczentewicz, M., et al.: Blockchain cen-
sorship. arXiv preprint arXiv:2305.18545 (2023)

https://tinyurl.com/5xv2nnpj
https://tinyurl.com/5xv2nnpj
https://www.palkeo.com/en/projets/ethereum/bzx.html
https://www.palkeo.com/en/projets/ethereum/bzx.html
https://www.theblockcrypto.com/linked/28748/synthetix-suffers-oracle-attack-potentially-looting-37-million-synthetic-ether
https://www.theblockcrypto.com/linked/28748/synthetix-suffers-oracle-attack-potentially-looting-37-million-synthetic-ether
https://twitter.com/ChainsightA/status/1457958811243778052
https://twitter.com/ChainsightA/status/1457958811243778052
https://twitter.com/FabiusMercurius/status/1454513434209312772
https://twitter.com/FabiusMercurius/status/1454513434209312772

LedgerHedger: Gas Reservation for Smart Contract Security 23

152. Bonneau, J.: Why buy when you can rent? bribery attacks on bitcoin-style consen-
sus. In: International Conference on Financial Cryptography and Data Security.
pp. 19�26. Springer (2016)

153. McCorry, P., Hicks, A., Meiklejohn, S.: Smart contracts for bribing miners. In:
Financial Cryptography and Data Security: FC 2018 International Workshops,
BITCOIN, VOTING, and WTSC, Nieuwpoort, Curaçao, March 2, 2018, Revised
Selected Papers 22. pp. 3�18. Springer (2019)

154. Judmayer, A., Stifter, N., Zamyatin, A., Tsabary, I., Eyal, I., Gazi, P., Meiklejohn,
S., Weippl, E.R.: Pay-to-win: Incentive attacks on proof-of-work cryptocurrencies.
IACR Cryptol. ePrint Arch. 2019, 775 (2019)

155. Winzer, F., Herd, B., Faust, S.: Temporary censorship attacks in the presence of
rational miners. In: 2019 IEEE European Symposium on Security and Privacy
Workshops (EuroS&PW). pp. 357�366. IEEE (2019)

156. Ethereum: Solidity language (2020), https://github.com/ethereum/solidity
157. Foundation, E.: Smart contract wallets (2022), https://docs.ethhub.io/using-

ethereum/wallets/smart-contract-wallets/

158. di Angelo, M., Salzer, G.: Wallet contracts on ethereum�identi�cation, types,
usage, and pro�les. arXiv preprint arXiv:2001.06909 (2020)

159. Gri�th, A.T.: Ethereum meta transactions (2022)
160. OpenZeppelin: Ecdsa solidity library (2022), https://github.com/

OpenZeppelin/openzeppelin-contracts/blob/master/contracts/

cryptography/ECDSA.sol
161. Goerli: Ethereum goerli test network (2018), https://goerli.net/
162. Blockchair: Blockchain explorer, analytics and web services (2021),

blockchair.com
163. Watson, J.: Strategy: an introduction to game theory (2002)
164. Grossman, S., Abraham, I., Golan-Gueta, G., Michalevsky, Y., Rinetzky, N., Sa-

giv, M., Zohar, Y.: Online detection of e�ectively callback free objects with appli-
cations to smart contracts. Proceedings of the ACM on Programming Languages
2(POPL), 1�28 (2017)

165. Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., Smaragdakis, Y.: Mad-
max: Surviving out-of-gas conditions in ethereum smart contracts. Proceedings
of the ACM on Programming Languages 2(OOPSLA), 1�27 (2018)

166. Cecchetti, E., Yao, S., Ni, H., Myers, A.C.: Compositional security for reentrant
applications. In: 2021 IEEE Symposium on Security and Privacy (SP). pp. 1249�
1267. IEEE (2021)

167. Shoham, Y., Leyton-Brown, K.: Multiagent systems: Algorithmic, game-theoretic,
and logical foundations (2008)

168. Osborne, M.J., Rubinstein, A.: A course in game theory (1994)
169. Bernheim, B.D.: Rationalizable strategic behavior. Econometrica: Journal of the

Econometric Society (1984)
170. Rosenthal, R.W.: Games of perfect information, predatory pricing and the chain-

store paradox. Journal of Economic theory (1981)
171. Fudenberg, D., Tirole, J.: Game theory, 1991. Cambridge, Massachusetts (1991)
172. Myerson, R.: Game theory: Analysis of con�ict harvard univ. Press, Cambridge

(1991)
173. Selten, R.: Spieltheoretische behandlung eines oligopolmodells mit nach-

frageträgheit: Teil i: Bestimmung des dynamischen preisgleichgewichts. Zeitschrift
für die gesamte Staatswissenschaft/Journal of Institutional and Theoretical Eco-
nomics (1965)

https://github.com/ethereum/solidity
https://docs.ethhub.io/using-ethereum/wallets/smart-contract-wallets/
https://docs.ethhub.io/using-ethereum/wallets/smart-contract-wallets/
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/cryptography/ECDSA.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/cryptography/ECDSA.sol
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/master/contracts/cryptography/ECDSA.sol
https://goerli.net/
blockchair.com

24 I. Tsabary et al.

174. Van Damme, E.: Strategic equilibrium. Handbook of game theory with economic
applications (2002)

175. Cerny, J.: Playing general imperfect-information games using game-theoretic al-
gorithms. Ph.D. thesis, PhD thesis, Czech Technical University (2014)

176. Aumann, R.J.: Backward induction and common knowledge of rationality. Games
and Economic Behavior (1995)

177. Kami«ski, M.M.: Backward induction: Merits and �aws. Studies in Logic, Gram-
mar and Rhetoric (2017)

178. Roughgarden, T.: Algorithmic game theory. Communications of the ACM (2010)

A Implementation

To demonstrate the practicality of LedgerHedger, we implement it as an
Ethereum smart contract, and deploy it on a test network. In this section, we
describe the implementation and deployment details, and present measured gas
overheads.

Appendix G reviews an alternative implementation, based on a recent
Ethereum improvement proposal [83,127]. Appendix D reviews possible modi�-
cations, concerning user experience and overheads. These include enabling Buyer
to withdraw the tokens earlier in case Seller is unresponsive, and reducing func-
tion overheads by using constant, prede�ned parameters.

Ethereum smart contracts are written in the Solidity smart contract pro-
gramming language [156]; we bring the code in Appendix H.

Design Our implementation follows the smart contract wallet (SCW) [76, 157,
158] design pattern. This design enables customizing the retrieval of the contract
tokens, which, for LedgerHedger, is done only through the Apply, Exhaust,
and Recoup functions.

Additionally, this design enables decoupling the transaction issuer (i.e., the
party that pays the transaction fees) from the transaction signer (the party that
creates the transaction). This, in turn, enables having one party, Seller, use her
gas allocation (or pay the transaction fees) to con�rm a transaction by the other
party Buyer, using so-called meta transactions [159].

We implemented LedgerHedger to be reusable for Buyer, that is, it is
deployed once, and then can be used to create new instances over and over
again. This amortizes the deployment gas requirements, which are higher than
other operations [2].

Function Implementations The implementation of Initiate, Accept
and Recoup is straightforward, based on Alg. 1.

In the Exhaust function, the only novel element is the gas exhaustion through
null operations. We implement this by looping su�ciently many times to ensure
the exhausted gas matches its target. Our implementation results in a di�erence
between the target galloc and actual consumed gas of up to 120 gas units � 4
orders of magnitude lower than practical values of galloc.

LedgerHedger: Gas Reservation for Smart Contract Security 25

Finally, the contract pinnacle, the Apply function, is implemented using the
aforementioned meta-transaction mechanism. It accepts a meta transaction, is-
sued by Seller, veri�es it is signed by Buyer, and then executes it. The signature
veri�cation is performed using a prevalent Ethereum cryptographic library [160].
Note this requires Buyer to create her transaction txpayload in a format �tting
this design.

EIP1559 Compatibility Recall the payment for txpayload con�rmed by
LedgerHedger is payment, and it does not need to pay an additional fee.
In principle, we could have had txpayload o�er no fee, and let Seller con�rm it as
an ordinary transaction. However, Ethereum's EIP1559 [83,127] requires that all
transactions in a block pay a minimal, base fee. Our implementation is compat-
ible with EIP1559 since txpayload is a meta transaction, and Seller's transaction
that invokes the Apply pays the required base fee.

Deployment and Gas Costs We deploy LedgerHedger on the Ethereum
Goerli test network [161], and invoke all its functions. We bring the transaction
identi�ers in Appendix I.

We initiate the contract using the Initiate function three times, and conclude
it di�erently after each initiation.

The �rst initiation consumed ginit = 117e3 gas. We then concluded the con-
tract using the Recoup function, consuming gdone = 57.3e3 gas.

The second initiation consumed ginit = 37.4e3 gas, followed by an invo-
cation of the Accept, consuming gaccept = 50e3 gas, and then an invocation
of Exhaust, consuming galloc + gdone = 3.021e6 gas. Using a local pro�ler, we
found that gdone = 21e3, aligned with this experiment's chosen galloc = 3e6
value.

Finally, we initiated the contract for the third time, consuming ginit = 37.4e3
gas, again invoked Accept for gaccept = 50e3 gas. Then, we invoked the Apply
function on an arbitrary meta-transaction that we created, consuming gpub +
gdone = 2.668e6 gas. Again, using a local pro�ler, we �nd that gdone = 12e3.

Note that the �rst initiation required 2.5X gas compared to the second and
third initiations. This discrepancy is due to Ethereum operations consuming gas
as a function of their state changes, e.g., setting a value to an unassigned variable
is more gas-consuming than assigning a value to an already-assigned one. The
�rst initiation higher costs can therefore be considered as part of the deployment.

To conclude, our LedgerHedger implementation incurs an (amortized)
overhead of ginit = 37.4e3 gas on Buyer, and gaccept+gdone = 62e3 gas on Seller
in the desired execution. These are 3 orders of magnitude lower than a represen-
tative example of an applicable hedging use-case of galloc = 10e6 gas [121].

B Gas Allocation Assurances

As mentioned (�2.2), we consider Seller to have a gas allocation of galloc in the
required block interval. This modeling trivially �ts ledger systems where the

26 I. Tsabary et al.

system validators (miners) are chosen in advance, such as planned Central Bank
Digital Currencies (CBDCs) [100,101].

We now show this modeling also applies to systems where miners are chosen
probabilistically. We begin by �rst considering practical parameters, showing
that Seller manages to create a block with overwhelming probability. Conser-
vatively, consider a short interval of a one hour (cf., Optimistic roll-ups like
Optimism [50] and Arbitrum [49] that use week-long intervals). For Ethereum,
in one hour interval there are about 240 blocks, and the probability that a 10%
miner would fail to create any block in that interval is (1 − 0.1)240 ≈ 10−11.
A 5% miner would reach the same probability in about two hours. These values
mean failing to �nd a single block is expected to occur only once in a few million
years. We emphasize that in a probabilistic system we do not expect a miner to
reserve all her expected future blocks, i.e., miners will retain margins of their
reservations.

Finally, we emphasize that a Seller does not need to create a block by her-
self to begin with, as she can have the txpayload con�rmed (the action denoted
by aapply) by paying the required gas-price, regardless of her block-creation capa-
bilities and regardless of random events occurring or not. Moreover, all of Seller's
possible interactions with LedgerHedger do not require Seller creating a block
by herself, and therefore can all be performed even by non-mining entities. It
immediately follows that any mining or non-mining Seller can simply use the
aforementioned transaction-fee mechanism to ful�ll the contract as required.

C Price-Prediction-Model Validation

We compare Ethereum past gas-price measurements with a normal distribution,
validating the random walk prediction model (�2.3).

First, we use Blockchair [162] to obtain measurements of Ethereum's blocks
for September 2021, chosen arbitrarily. During this period, about 200K blocks
(numbered 13136427 to 13330089) were created, for which we consider the gas-
price as the ratio of the total paid fees and the total consumed gas (while ignoring
empty blocks).

Then, we �nd the gas-price di�erence between each two consecutive blocks;
the hypothesis is that these di�erences follow a normal distribution, i.e., they
are each independently drawn from N

(
µ, σ2

)
, for some µ and σ2 values.

To mitigate e�ects of long-lasting trends (e.g., gas-price increases at US day-
time, where there is generally higher volume of trade and therefore higher de-
mand), we split our samples to batches of 20 blocks, corresponding to an expected
time period of 5 minutes. For each batch we numerically �nd µ and σ2 values
that maximizes the p-value for the Kolmogorov�Smirnov test [109], i.e., values
of µ and σ2 that maximize the probability that the gas-price change is drawn
from N

(
µ, σ2

)
. We present histogram of the resultant p-values (signi�cance lev-

els) in Figure 5.
Figure 5 shows that, indeed, gas-price �uctuations for most of the examined

batches can be modeled as drawn from a normal distribution with high probabil-

LedgerHedger: Gas Reservation for Smart Contract Security 27

0

100

200

300

400

500

600

700

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

P-value median � 0.966

P-value average � 0.941

N
u
m
b
er

o
f
b
a
tc
h
es

P-values of best-�tting N
(
µ, σ2

)
Fig. 5: Kolmogorov�Smirnov test p-values for September 2021 Ethereum blocks
and normal distributions.

ity, thus justifying the gas-price random walk model. Speci�cally, 99.8% of the
batches are normally distributed with signi�cance level of at least 0.5, 90.4% of
batches are normally distributed with signi�cance level of at least 0.85, and 66%
of the batches are normally distributed with signi�cance level of at least 0.95.
Additionally, we note the average p-value is 0.941, and the median is 0.966, both
indicating statistical signi�cance that the samples were drawn from a normal
distribution, verifying the hypothesis.

Finally, we consider the found normal distribution parameters µ and σ2,
presented (excluding a few outliers) in Figure 6.

Figure 6 shows the vast majority of batches are best-�tted with µ ≈ 0 and
relatively low σ2 values. Indeed, 98% of the examined batches are best-�tted
with µ ∈ [−1, 1] and σ2 ≤ 5.

Repeating this analysis for di�erent batch sizes (10, 40 and 80) yields similar
results. We thus conclude that the random walk model describes with statistical
signi�cance the gas-price changes over the sampled period, and that each step
has little drift, if any, and low variance.

D Modi�cations

We present a few modi�cations to LedgerHedger that might be of practical
interest. These focus on user experience in case of unintended usage, e.g., en-
abling Buyer to get the contract tokens earlier in case of no Seller accepting the
contract. We also present a few modi�cations for reducing the contract overhead.

Enabling earlier refunds from a declined contract First, one can consider
a modi�cation the Recoup function requires to be invoked after bacc instead
of during [bstart, bend]. This allows Buyer to withdraw tokens from a declined
contract at an earlier stage.

28 I. Tsabary et al.

0.20

1.45

2.70

3.95

5.20

6.45

7.70

8.95

-2.4 -2.0 -1.6 -1.2 -0.8 -0.4 0.0 0.4 0.8 1.2 1.6 2.0 2.4

σ
2

µ

3 292 253 3

17 890 937 15 2

3 81 1063 1151 103 1 1

1 1 5 76 602 655 98 12 1

1 10 85 431 492 124 15 4 1

2 1 10 56 221 233 80 18 2 2

1 1 18 48 138 172 74 12 3 3 2 2

1 4 3 27 72 82 40 10 5 3 1

1 1 5 29 59 57 39 9 3 1 1

1 1 4 4 25 41 30 19 1 1 1

1 2 3 12 10 32 28 18 8 3 1

1 4 6 13 11 9 3 1 1 1 1

1 3 1 2 15 16 7 2 2 2 1 1 1

1 1 1 1 5 8 6 9 1 5 2 1

1 1 1 1 6 11 5 2 1 1 1 1 1

1 1 2 1 2 5 3 4 3 1 1 1

1 1 3 3 4 1 4 1 1 1 1

1 1 1 2 1 1 2 2 2 1 1 2 2 3 2 1

1 1 2 2 2 5 3 2 2

1 1 3 2 2 2 2 1

2 1 2 3 2 1 1 1 1

3 2 5 3 1 1 1

1 2 1 1 2 2 1 1

1 1 1 1 1 1 1

1 2 1 2 1

1 1 1 2 2 1

1 1 1 1 1 1 1 2 2

1 1 1 2 1

1 1 2 1 1 1

2 1 1 1 1

1 1 1 1 1

1 2 1

1

1 1 1 1 1 1

1 1 1 1 1

1

0

200

400

600

800

1000

B
a
tc
h
co
u
n
t

Fig. 6: Best-�tted µ and σ2 values for September 2021 Ethereum blocks.

Note that initiating a contract that will not be accepted is not an SPE �
Buyer pays the initiation fees, and then later either forfeits her tokens or pays
additional fees to withdraw them (Eq. 8).

Enabling refund from a non-depleted contract Additionally, we can
change the Recoup function to accept invocations after bend if Seller accepted
the contract, but then ignored it.

This allows Buyer to withdraw tokens in case Seller crashed. Similarly to the
previous refund modi�cation, initiating a contract that will be refunded is not
an SPE.

Higher ε values Setting ε = 1 su�ces to incentivize Seller to prefer con�rm-
ing txpayload (assuming she meets the galloc quota). Buyer setting higher values
for ε further improves this incentive, even in the presence of Seller having ex-
ogenous considerations for excluding txpayload.

Setting ε = 0 Setting ε = 0 means Buyer has to pay (a single token) less
for txpayload. This, however, means Seller has the same bene�t from con�rm-
ing txpayload and from exhausting the contract (see Table .1). This change might

LedgerHedger: Gas Reservation for Smart Contract Security 29

ϕ
se

tu
p

ϕ
e
x
ec

InitLH (Buyer)

AcceptLH (Seller)

Initiate (ainit)

Nature draws πexec ∼ F

Wait (await)

Nature draws πexec ∼ F

Decline (adecline)

Nature draws πexec ∼ F

Accept (aaccept)

NoLH (Buyer) RecoupLH (Buyer) PublishTx (Buyer)

txpayload confirmed
for market price

Publish (apubTx)

txpayload not
confirmed

No-op (anoPubTx)

Contract recouped
by Buyer

Refund (arecoup)

Contract forfeited
by Buyer

Forfeit (aforfeit)

FulfillTx (Seller)

Publish (apubTx)

txpayload confirmed
through contract

Confirm (aapply)

Contract forfeited by Seller,
txpayload not confirmed

Ignore (aignore)

Contract exhausted,
txpayload not confirmed

Exhaust (aexhaust)

FulfillNoTx (Seller)

No-op (anoPubTx)

Contract forfeited by Seller,
txpayload not confirmed

Ignore (aignore)

Contract exhausted,
txpayload not confirmed

Exhaust (aexhaust)

Fig. 7: Γ game states, actions, and conclusion.

be suitable if Seller is expected to prefer the former due to an exogenous con-
sideration or due to being benign.

Hard coding block intervals Our implementation takes as parameters bstart
and bend, indicating the block interval for transaction con�rmation or contract
exhaustion. However, this requires storing two values, and storing data is a
rather costly operation [2]. Instead, one can create a contract with a hard coded
interval length, and take only bstart as a parameter. This still enables enforcing
the engagement interval, but requires storing one less variable.

E Game De�nition and Analysis

The need of Buyer to con�rm a future transaction, Seller having a future gas
allocation, and the existence of LedgerHedger contract, all give rise to a game
played by Buyer and Seller. The game, denoted by Γ , begins when the blockchain
is at the block preceding binit, and progresses with the players taking actions.

We present the possible game states and actions (�E.1), and consider player
strategies (�E.2). We then specify the solution concept (�E.3): We consider a
subgame perfect equilibrium (SPE), capturing the dynamic, turn-based nature
of the game. We continue to express the equilibrium strategy as a function of
the distribution, the utility functions, and the contract parameters, and prove
Theorem 1, showing there are scenarios where engaging and ful�lling the contract
is an SPE (�E.4).

E.1 States and Actions

The game takes place during two phases. The �rst phase, denoted by φsetup,
describes the creation of blocks binit to bacc. The second phase, denoted by φexec,
describes the creation of blocks bstart to bend.

The game state comprises the player tokens, the contracts they possibly
engage with, their published transactions, the current phase, and the gas-price.
Figure 7 summarizes the game progress.

30 I. Tsabary et al.

Broadly speaking, Buyer and Seller can set a LedgerHedger contract at
the game start for φexec, and then execute it. Alternatively, Buyer and Seller can
wait for φexec, and then Buyer can publish txpayload as any other transaction for
con�rmation, and Seller can use her gas allocation to con�rm any transaction.

We ignore nonsensical, obviously dominated or unrelated actions [163] such
as either party sharing her private key, Seller not using her gas allocation, or
either player publishing unrelated transactions. We assume both parties initially
have su�ciently many tokens to support the following actions.

The value of πsetup is known to Buyer and Seller at the game beginning. How-
ever, the value of πexec is drawn by Nature from F just before φexec starts. After
the players publish and con�rm transactions for φexec the game is concluded.

The game starts in state InitLH (in φsetup), where Buyer can choose to ini-
tiate a LedgerHedger instance (action ainit), and choose its parameters. She
incurs the initiation cost ginit · πsetup, deposits the payment payment + ε, and
the game transitions to state AcceptLH. Alternatively, she can choose to refrain
from initiating (action await), incurring no costs, and the game transitions to
game state NoLH.

Game state NoLH (in φexec) takes place after Nature draws πexec ∼ F . In
this state, Buyer can pay the gas-price πexec to have txpayload con�rmed (ac-
tion apubTx), incurring the fee cost galloc · πexec, but have txpayload con�rmed.
Alternatively, she can do nothing, incurring no costs, but receiving no reward.
Seller sells her galloc gas for the gas-price πexec, earning galloc · πexec.

In game state AcceptLH (φsetup) Seller chooses whether to accept the
LedgerHedger instance (action aaccept). To accept, Seller publishes a trans-
action that invokes the Accept function, deposits the col collateral tokens, and
incurs a cost of gaccept ·πsetup. The game then transitions to state PublishTx . Al-
ternatively, she can decline by simply ignoring it (adecline), leading to RecoupLH.

Game state RecoupLH is in φexec, after Nature draws πexec ∼ F . Buyer
can choose to withdraw her deposited payment + ε tokens from the declined
LedgerHedger instance (action arecoup), incurring the withdrawal transaction
fee cost gdone · πexec. If not, she can simply ignore it (action aforfeit), forfeiting
the payment+ ε tokens. As in NoLH, Buyer can also publish txpayload, and Seller
can also con�rm other transactions; the former costs Buyer galloc · πexec tokens,
but has txpayload con�rmed, and the latter rewards Seller with galloc · πexec.

Game state PublishTx is in φexec, after Nature draws πexec ∼ F . Here Buyer
can publish transactions for Seller to con�rm using the contract's Apply function.
These transactions do need not to further incentivize a miner to con�rm them,
hence o�er no fee. However, Buyer can publish multiple transactions for Seller to
choose from, and Seller is clearly incentivized to consider only the transaction
requiring the least gas. So, we consider the following two cases. First, Buyer
chooses not to publish a transaction at all (action anoPubTx), incurring no costs,
leading to Ful�llNoTx . Alternatively, Buyer publishes txpayload (action apubTx),
leading to the Ful�llTx state.

In game states Ful�llNoTx and Ful�llTx (φexec) Seller can choose to invoke
the contract's Exhaust function (action aexhaust). This transfers payment + col

LedgerHedger: Gas Reservation for Smart Contract Security 31

tokens to Seller, but requires galloc for the null operations and gdone gas for the
remaining operations (veri�cation, token transfer, etc.). Note this action exceeds
the galloc quota of Seller, requiring Seller to pay fees for gdone, resulting in an
incurred cost of gdone ·πexec. Action aexhaust results with txpayload not con�rmed,
so Buyer can have it included by paying the gas-price.

Alternatively, Seller can choose to ignore the contract (action aignore), receiv-
ing no tokens but incurring no additional costs. Action aignore results with Seller
not using her gas, which she can sell for the gas-price of πexec. It also results
with txpayload not being con�rmed through the contract, so Buyer can pay the
current gas-price πexec to have it con�rmed.

Finally, in Ful�llTx , Seller can choose to invoke the contract's Apply function,
using the published transaction txpayload. This rewards Seller with payment +
ε + col tokens, but requires gpub + gdone gas, resulting in an incurred cost
of ((gpub + gdone)− galloc) · πexec.

Note 1. We assume that Seller veri�es the execution of txpayload and is content
with its results (as in, e.g., [164�166]). Namely, Seller veri�es txpayload does not
terminate the contract nor transfer away its funds.

Note 2. LedgerHedger works whether Seller is a miner or not: If she is a miner
she can use some of her block's gas to con�rm txpayload and get the contract
tokens, forfeiting other transactions that pay the market price (cost of loss-
of-opportunity); if she is not, she can con�rm txpayload and get the contract
tokens by publishing a transaction that pays the gas-price to a miner (cost of
the transaction fee). In both cases, the cost is identical, resulting in a similar
game-theoretic analysis.

As in the NoLH and the RecoupLH states, if txpayload is not con�rmed by Seller
as part of the contract (i.e., if Seller plays aexhaust or aignore), then Buyer can
pay to have txpayload included at market price, resulting with txpayload con�rmed
and a cost of galloc · πexec. Any of these actions concludes the game.

E.2 Strategy

Each player has a strategy, mapping each game state to an action. The action
space for Buyer comprises which transactions to publish and when to do so.
For Seller, it comprises which transactions to publish, when to publish them,
and which transactions to con�rm using her allotted gas.

We denote by s̄ a strategy pro�le, comprising the strategies of Buyer
and Seller. We denote s̄ (state) = a if the player's strategy in the pro�le s̄
dictates playing action a in game state state. We say a player follows strategy
pro�le s̄ if at each game state she chooses to play her strategy's mapped action.

E.3 Solution Concept

The sequential nature of Γ lends itself to the de�nition of subgames, each captur-
ing the possible extensions starting from a speci�c state. We denote by Γ player

state

32 I. Tsabary et al.

the subgame starting at state state where player ∈ {Buyer,Seller} is to take an

action. The game begins with the initial subgame ΓBuyer
InitLH = Γ .

We can therefore de�ne the wealth and utility of each player
starting in a subgame as follows. Let Buyer and Seller follow a
strategy pro�le s̄ in subgame Γ player

state , and let Nature draw gas-
price πexec. We denote the resultant wealth of Buyer and of Seller
by WBuyer (πexec, state, s̄) and by WSeller (πexec, state, s̄), respectively.
We denote the utility of Buyer by UBuyer (WBuyer (πexec, state, s̄)) and
of Seller by USeller (WSeller (πexec, state, s̄)), or simply UBuyer (state, s̄)
and USeller (state, s̄) for succinctness. We denote the expected utility of Buyer

and Seller when they follow strategy pro�le s̄ starting in Γ player
state , over the

distribution F , by E [UBuyer (state, s̄)] and by E [USeller (state, s̄)], respectively.
We focus on rational Buyer and Seller that strive to maximize their expected

utility. We assume the players' utility functions, their utility-maximizing tenden-
cies, and the game state are all common knowledge. So, the de�ned game is of
perfect information [167,168].

We are interested in a strategy pro�le that is a subgame perfect equilibrium
(SPE) [163,169�175]. Intuitively, this means that at any stage of the game both
players are content with the action de�ned in the strategy pro�le. Formally, an
SPE is a strategy pro�le where no player can increase her utility by deviating
in any subgame, considering the other player's reaction to such deviation, i.e.,
Nash equilibrium at every subgame.

We are interested in �nding conditions in which the SPE, denoted by s̄spe,
results with Buyer initiating the contract, Seller accepting it, Buyer publish-
ing txpayload with gpub = galloc, and Seller con�rming it.

The common method for �nding s̄spe is using backward induction [169, 176�
178], applicable in perfect information and �nite games. The analysis begins
at the subgames comprising only the last action (e.g., subgames ΓSeller

Ful�llNoTx

and ΓSeller
Ful�llTx), where the SPE is found by directly comparing the utility from

the di�erent possible actions. Then, considering the last player chooses that
utility-maximizing action, the second to last subgames are analyzed (e.g., sub-

game ΓBuyer
PublishTx). This process is repeated recursively until the initial sub-

game
(
ΓBuyer

InitLH = Γ
)
is analyzed. We move forward to �nding s̄spe in Γ .

E.4 SPE Expressions

We start by expressing the SPE for an initiated and accepted contract, and then
address the initiation and acceptance.

Ful�lling an Initiated and Accepted Contract The subgame describing
possible interactions with the initiated and accepted contract is ΓBuyer

PublishTx , which
is played after Nature had already drawn πexec. Therefore, any choice of action
in ΓBuyer

PublishTx and the subsequent subgames results in deterministic wealth for
both Buyer and Seller.

LedgerHedger: Gas Reservation for Smart Contract Security 33

It follows that maximizing the expected utility (by choosing preferable ac-
tions) is the same as maximizing the utility. Additionally, since utility functions
are monotonic, maximizing the utility is equivalent to maximizing wealth.

Following this observation, we compare the resultant wealth of each action
in ΓBuyer

PublishTx and the subsequent subgames, presenting a condition on πexec, by
which the s̄spe action is decided.

Throughout the analysis, we assume ε = 1, that is, a single token (we consider
di�erent ε values in Appendix D).

Towards the upcoming resultant wealth analysis, recall that in the subgames
preceding ΓBuyer

PublishTx , Buyer already incurred a cost of ginit · πsetup + payment+ ε
for initiating the contract, and Seller incurred a cost of gaccept · πsetup + col for
accepting the contract.

The available actions in ΓBuyer
PublishTx are apubTx, leading to Γ

Seller
Ful�llTx , or anoPubTx,

leading to ΓSeller
Ful�llNoTx . We begin by considering these two subgames, and present

their analysis summary in Table 1.

Subgame ΓSeller
Ful�llNoTx In the ΓSeller

Ful�llNoTx subgame Seller plays either aexhaust
or aignore.

Playing aexhaust results with Seller exhausting the contract's gas, reward-
ing Seller with payment+ col at the incurred cost of gdone · πexec. Alternatively,
playing aignore results with Seller forfeiting the contract tokens, but selling her
gas for the gas-price, that is, a reward of galloc · πexec.

It follows aexhaust is preferred over aignore if payment + col − gdone · πexec >
galloc · πexec, and the resultant wealth of Seller in this subgame is therefore

WSeller (πexec,Ful�llNoTx , s̄spe) = winit
Seller − gaccept · πsetup

+max(payment− gdone · πexec, galloc · πexec − col) . (1)

Regardless of the action Seller chooses, Buyer can pay the gas-price πexec for
her transaction inclusion. The cost for that is galloc ·πexec with a reward of wexo.
This is pro�table as long as wexo > galloc · πexec, resulting with

WBuyer (πexec,Ful�llNoTx , s̄spe) = winit
Buyer − ginit · πsetup − payment− ε

+max (wexo − galloc · πexec, 0) . (2)

Subgame ΓSeller
Ful�llTx In the ΓSeller

Ful�llTx subgame Seller plays either aapply, aexhaust
or aignore.

Playing either aexhaust or aignore results with the same wealth as playing them
in ΓSeller

Ful�llNoTx . However, playing aapply includes the published txpayload transaction
with its gas requirement gpub, resulting with a reward of payment+ε+col. How-
ever, it also results with a cost of gdone ·πexec, and an additional (gpub − galloc) ·
πexec; note the latter is positive if galloc < gpub, that is, if txpayload exceeds the
agreed quota galloc, or negative if txpayload under-utilizes it, leaving gas for Seller
to sell, and thus netting a positive reward.

Comparing aapply and aexhaust, we get aapply is preferred if ε > (gpub − galloc)·
πexec. As ε = 1, πexec > 0, and (gpub − galloc) · πexec is a number of tokens (i.e.,

34 I. Tsabary et al.

an integer), this inequality holds if gpub ≤ galloc. Similarly, comparing aapply
and aignore results with the former yielding more tokens if πexec <

payment+col+ε
gpub+gdone

.

The resultant wealth of Seller in this subgame is therefore

WSeller (πexec,Ful�llTx , s̄spe) = winit
Seller − gaccept · πsetup

+max
(
galloc · πexec − col, payment− gdone · πexec,

payment+ ε− (gdone + gpub − galloc) · πexec
)
. (3)

If Seller chooses not to con�rm txpayload, then Buyer can pay the gas-
price πexec for her transaction inclusion. The cost for that is galloc · πexec with a
reward of wexo. This is preferred as long as wexo > galloc · πexec, resulting with

WBuyer (πexec,Ful�llTx , s̄spe) = winit
Buyer − ginit · πsetup − payment− ε

+

{
wexo, πexec <

payment+col+ε
gpub+gdone

and gpub ≤ galloc

max (wexo − galloc · πexec, 0) , otherwise
.

(4)

We are now ready to consider the ΓBuyer
PublishTx subgame.

Subgame ΓBuyer
PublishTx In this subgame, Buyer chooses whether to publish txpayload,

and with what gas requirement gpub. We present the following lemma, providing
an upper bound for gas-price πexec such that Buyer is strictly incentivized to
publish txpayload with gpub = galloc:

Lemma 1. If πexec < payment+col+ε
galloc+gdone

then s̄spe (PublishTx) = apubTx, satisfy-
ing gpub = galloc.

Intuitively, Buyer publishing a transaction with gas consumption gpub >
galloc disincentivizes Seller to con�rm it. But, by de�nition, the transaction
of Buyer yields no value to her if gpub < galloc, resulting with the optimal gas
consumption being gpub = galloc. Additionally, meeting the πexec bound results
with Seller con�rming the published transaction, incentivizing Buyer to publish
it to begin with.

Proof (Lemma 1). In the PublishTx subgame, Buyer chooses if to publish txpayload
or not. Additionally, if she chooses to publish txpayload then she also decides what
its gas consumption gpub is.

Publishing txpayload (apubTx) leads to subgame ΓSeller
Ful�llTx . If so, her resultant

wealth isWBuyer (πexec,Ful�llTx , s̄spe) = winit
Buyer−ginit·πsetup−payment−ε+wexo

if πexec <
payment+col+ε

gpub+gdone
and gpub ≤ galloc , and winit

Buyer−ginit ·πsetup−payment−
ε+max (wexo − galloc · πexec, 0) otherwise (Eq. 4).

Alternatively, not publishing a transaction (anoPubTx), leads to sub-
game ΓSeller

Ful�llNoTx . This results with wealth WBuyer (πexec,Ful�llNoTx , s̄spe) =
winit
Buyer − ginit · πsetup − payment− ε+max (wexo − galloc · πexec, 0) (Eq. 2).

LedgerHedger: Gas Reservation for Smart Contract Security 35

Let us take note that wexo > 0, πexec > 0 and galloc > 0. Therefore,
we get that wexo > max (wexo − galloc · πexec, 0). Subsequently, considering all
the aforementioned options, the wealth of Buyer is maximized when πexec <
payment+col+ε

gpub+gdone
and gpub ≤ galloc.

With that, let us consider the value of gpub. First, setting gpub > galloc violates
the mentioned condition, as Seller will not con�rm txpayload.

And, setting gpub < galloc is also unfavorable, as gpub ≥ galloc is required
to receive the wexo tokens to begin with. Thus, publishing a transaction that
requires exactly gpub = galloc is the preferred action.

When gpub = galloc, we get the condition for the preferable outcome is

simply πexec < payment+col+ε
galloc+gdone

, which is exactly the condition mentioned in the
lemma. ⊓⊔

Following Lemma 1, if the gas-price satis�es πexec <
payment+col+ε
galloc+gdone

then Seller

con�rms txpayload, and we get the resultant wealth of the ΓSeller
Ful�llTx subgame (see

Eq. 3 and Eq. 4). However, if gas-price exceeds πexec >
payment+col+ε

gpub+gdone
then Seller

does not con�rm txpayload. In that case, Seller chooses between exhausting or
ignoring the contract, and the resultant wealth is that of the ΓSeller

Ful�llNoTx sub-
game (see Eq. 1 and Eq. 2). Therefore, we get

WSeller (πexec,PublishTx , s̄spe) ={
WSeller (πexec,Ful�llTx , s̄spe) , πexec <

payment+col+ε
galloc+gdone

WSeller (πexec,Ful�llNoTx , s̄spe) , πexec ≥ payment+col+ε
galloc+gdone

, (5)

and

WBuyer (πexec,PublishTx , s̄spe) ={
WBuyer (πexec,Ful�llTx , s̄spe) , πexec <

payment+col+ε
galloc+gdone

WBuyer (πexec,Ful�llNoTx , s̄spe) , πexec ≥ payment+col+ε
galloc+gdone

. (6)

In conclusion, Lemma 1 presents the required conditions for the SPE to
include the publication and con�rmation of txpayload. We now proceed to express
the conditions for initiation and acceptance.

Seller Accepting We start with analyzing the contract acceptance, that is,
with subgame ΓSeller

AcceptLH . In this subgame, Seller can play aaccept, leading to

subgame ΓBuyer
PublishTx , discussed in Lemma 1. She can also play adecline, leading to

subgame ΓBuyer
RecoupLH , which we analyze below.

Subgame ΓBuyer
RecoupLH In the ΓBuyer

RecoupLH subgame, Buyer plays either arecoup
or aforfeit.

Playing arecoup results with Buyer getting payment+ ε and spending gdone ·
πexec tokens. Alternatively, she can play aforfeit, not getting or spending any

36 I. Tsabary et al.

tokens. She can also publish txpayload for wexo − galloc · πexec. Either way, Seller
gets galloc · πexec for her gas allocation.

It follows arecoup is preferred over aforfeit if payment+ ε > gdone · πexec. The
resultant wealth of Seller is

WSeller (πexec,RecoupLH, s̄spe) = winit
Seller + galloc · πexec , (7)

and of Buyer is

WBuyer (πexec,RecoupLH, s̄spe) = winit
Buyer − ginit · πsetup

+max (wexo − galloc · πexec, 0)
+ max (−gdone · πexec,−payment− ε)

. (8)

We are now ready to analyze the ΓSeller
AcceptLH subgame.

Subgame ΓSeller
AcceptLH Recall this is played in φsetup, before πexec is drawn, so Seller

chooses the action that maximizes her expected utility.

She can either play aaccept, resulting with

E [USeller (PublishTx , s̄spe)] =

∫ ∞

−∞
USeller (PublishTx , s̄spe) · Fpdf (πexec) dπexec ,

(9)
or play adecline, resulting with

E [USeller (RecoupLH, s̄spe)] =

∫ ∞

−∞
USeller (RecoupLH, s̄spe) · Fpdf (πexec) dπexec .

(10)
Let us denote the expected utility di�erence (EUD) of Seller by

EUDSeller = E [USeller (PublishTx , s̄spe)]− E [USeller (RecoupLH, s̄spe)] .

The following corollary therefore details the condition for Seller to accept the
contract:

Corollary 1. In ΓSeller
AcceptLH, if EUDSeller > 0 then s̄spe (AcceptLH) = aaccept, and

if EUDSeller ≤ 0 then s̄spe (AcceptLH) = adecline.

Corollary 1 presents the contract acceptance condition, as discussed in The-
orem 1. It also allows us to draft the expected utility of Buyer in ΓSeller

AcceptLH in
the following equation:

E [UBuyer (AcceptLH, s̄spe)] =

{
E [UBuyer (PublishTx , s̄spe)] , EUDSeller > 0

E [UBuyer (RecoupLH, s̄spe)] , EUDSeller ≤ 0
.

(11)

LedgerHedger: Gas Reservation for Smart Contract Security 37

Buyer Initiating It remains to consider the conditions for contract initia-
tion being an SPE for Buyer. The subgame describing this decision is ΓBuyer

InitLH ,
where Buyer decides whether to initiate the contract (ainit), leading to ΓSeller

AcceptLH ,

or to not initiate (await), leading to ΓBuyer
NoLH .

Subgame ΓBuyer
InitLH is also before Nature draws πexec, so we compare the actions'

expected utilities. Eq. 11 gives E [UBuyer (AcceptLH, s̄spe)], the expected utility
from playing ainit.

We now �nd E [UBuyer (NoLH, s̄spe)], the expected utility from playing await.

For that, we �rst analyze the ΓBuyer
NoLH subgame.

Subgame ΓBuyer
NoLH In the ΓBuyer

NoLH subgame, Buyer can pay galloc · πexec to
have txpayload con�rmed, receiving wexo tokens. We get

WBuyer (πexec,NoLH, s̄spe) = winit
Buyer +max (wexo − galloc · πexec, 0) , and

E [UBuyer (NoLH, s̄spe)] =

∫ ∞

−∞
UBuyer (NoLH, s̄spe) · Fpdf (πexec) dπexec . (12)

We are �nally ready to address the full game Γ = ΓBuyer
InitLH .

Subgame ΓBuyer
InitLH Given E [UBuyer (NoLH, s̄spe)] (Eq. 12) and

E [UBuyer (AcceptLH, s̄spe)] (Eq. 11), we denote the expected utility di�er-
ence of Buyer by

EUDBuyer = E [UBuyer (AcceptLH, s̄spe)]− E [UBuyer (NoLH, s̄spe)] .

The following corollary presents the condition for Buyer initiating the con-
tract.

Corollary 2. If EUDBuyer > 0 then s̄spe

(
ΓBuyer

InitLH

)
= ainit.

Corollary 2 shows the contract initiation condition, thus concluding the con-
ditions for the SPE to be as detailed in Theorem 1.

It is now easy to see the correctness of Theorem 1. Take any distribution F .
By Lemma 1, setting col su�ciently high deterministically assures (or assures
with high probability for an unbounded distribution) that if LedgerHedger
is initiated and accepted, then Buyer publishes an adequate txpayload and Seller
con�rms it.

Corollary 1 and Corollary 2 both present conditions for the contract initiation
and acceptance � conditions on preferring a predetermined payment over one
that changes according to the drawn πexec. Su�ciently risk-averse participants
result with both of them preferring a predetermined contract over the drawn
price uncertainty.

F Resultant Required Price for Linear Utility Functions

Recall Figure 4a shows that the required prices are �xed for the linear utility
function, for both Buyer and Seller, for any considered F . We thoroughly explain
this result.

38 I. Tsabary et al.

Broadly speaking, this holds due to Pr [πexec < πbound] = 1, the linearity of
the utility function, and the fact all considered distributions have the same mean
value.

First, note that our parameter choice results
in Pr [πexec < πbound] = 1, where πbound = payment+col+ε

galloc+gdone
(Lemma 1).

So, we get WSeller

(
πexec, Γ

Buyer
PublishTx , s̄spe

)
(Eq. 5)

and WBuyer

(
πexec, Γ

Buyer
PublishTx , s̄spe

)
(Eq. 6) are linear in πexec. This is in

contrast to parameter values where 0 < Pr [πexec < πbound] < 1, resulting in
piece-wise linear functions of πexec.

Following that, consider the linear utility Linear is also a linear function,

so both USeller

(
ΓBuyer

PublishTx , s̄spe

)
and UBuyer

(
ΓBuyer

PublishTx , s̄spe

)
are also linear

in πexec.
When considering the expected utility (e.g., Eq. 10), the integration is

therefore of a linear function. Let us denote that function as aπexec + b for
some constants a and b, and note that

∫∞
−∞ (aπexec + b) · Fpdf (πexec) dπexec =

a
∫∞
−∞ πexec · Fpdf (πexec) dπexec + b

∫∞
−∞ Fpdf (πexec) dπexec.

The result of the �rst integral
∫∞
−∞ πexec · Fpdf (πexec) dπexec is the distribu-

tion's mean value, which is equal for all our considered distributions. The result
of the second integral

∫∞
−∞ Fpdf (πexec) dπexec is exactly 1, as Fpdf (πexec) is a

probability density function.
So, we get that the expected utility from the ΓBuyer

PublishTx subgame is equal
for all distributions. Similar considerations apply to the expected utility from
the ΓBuyer

NoLH subgame, resulting with these expected utility di�erences being con-
stant across the distributions, as indicated by Figure 4a.

G Alternative Implementation

The recent implementation of EIP1559 [83,127] introduced a new GASPRICE op-
code, opening doors to query the current gas price. This development enables
us to create an economically equivalent alternative implementation of Ledger-
Hedger.

Instead of relying on Seller to publish the transaction, this alternative ap-
proach allows LedgerHedger to mandate Buyer to publish the transaction,
following which Seller reimburses Buyer for the incurred gas cost. Before the ad-
vent of this new opcode, smart contracts lacked the ability to retrieve the current
gas price, thereby hindering the calculation of the reimbursement amount.

This alternative route suggests a streamlined implementation of Ledger-
Hedger. It relinquishes the need for Seller to publish the transaction and in-
volves no meta transactions. Essentially, it constitutes a straightforward future
contract where Buyer is reimbursed for the transaction's gas cost at the con-
tract's conclusion.

While this approach retains the same economic outcome and o�ers simpli�ed
implementation, it's not without drawbacks. Firstly, it necessitates that Buyer

LedgerHedger: Gas Reservation for Smart Contract Security 39

possess su�cient funds to cover the transaction's gas cost. Secondly, the new
opcode's limitations restrict its application to a single block, as it doesn't support
retrieving the gas price for any block other than the current one. This limitation
reduces �exibility, preventing Seller from waiting for a more advantageous gas
price or for a block that Seller has mined. Furthermore, since Buyer is responsible
for publishing the transaction, she can overpay for the gas to ensure its inclusion.
This would cause Seller to incur unnecessary loss. Thus, this alternative approach
would require some additional mechanism to prevent this.

H LedgerHedger Solidity Implementation

1 // SPDX=License=I d e n t i f i e r : MIT
2 pragma s o l i d i t y ^ 0 . 8 . 0 ;
3

4 import "@openzeppel in / con t r a c t s / u t i l s / cryptography /ECDSA. s o l " ;
5

6 s t r u c t MetaTx {
7 uint256 nonce ;
8 address to ;
9 uint256 value ;

10 bytes ca l lData ;
11 }
12

13 enum State {
14 INIT ,
15 REGISTERED,
16 IDLE
17 }
18

19 cont rac t GasFuture {
20 uint256 pub l i c nonce ;
21

22 uint32 pub l i c s t a r tB lock ;
23 uint32 pub l i c endBlock ;
24 uint32 pub l i c regBlock ;
25

26 address pub l i c buyer ;
27 address pub l i c s e l l e r ;
28 uint256 pub l i c gasHedged ;
29

30 uint256 pub l i c c o l l a t e r a l ;
31 uint256 pub l i c payment ;
32 uint256 pub l i c eps ;
33

34 State pub l i c s t a tu s ;
35

36 con s t ruc to r (address _owner) pub l i c {
37 buyer = _owner ;

40 I. Tsabary et al.

38 s t a tu s = State . IDLE ;
39 }
40

41 r e c e i v e () ex t e rna l payable {}
42

43 function i n i t (
44 uint32 _regBlock ,
45 uint32 _startBlock ,
46 uint32 _endBlock ,
47 uint256 _gasHedged ,
48 uint256 _col ,
49 uint256 _eps
50) ex t e rna l payable {
51 r e qu i r e (buyer == msg . sender , "Not owner") ;
52 r e qu i r e (b lock . number <= _regBlock && _regBlock <

_startBlock && _startBlock <= _endBlock , " block
out o f bound") ;

53 // NOTE: Opt iona l ly l e t t h i s be r e i n i t i a t e d i f

depe l e t ed
54 r e qu i r e (s t a tu s == State . IDLE , "Contract a l r eady

i n i t i a l i z e d ") ;
55 r e qu i r e (_gasHedged > 0 , "Hedged amount can ' t be

negat ive ") ;
56 r e qu i r e (_col >= 0 , " Co l l a t e r a l can ' t be negat ive ") ;
57 r e qu i r e (_eps > 0 , "Eps i lon can ' t be negat ive ") ;
58 r e qu i r e (msg . va lue > eps , "Payment can ' t be negat ive ") ;
59

60 regBlock = _regBlock ;
61 s t a r tB lock = _startBlock ;
62 endBlock = _endBlock ;
63

64 gasHedged = _gasHedged ;
65

66 eps = _eps ;
67 payment = msg . va lue = eps ;
68 c o l l a t e r a l = _col ;
69

70 s t a tu s = State . INIT ;
71 }
72

73 // The c a l l e r s o f the function s e t s themse lves as the
gasPayer

74 function r e g i s t e r () ex t e rna l payable {
75 r e qu i r e (b lock . number <= regBlock , " Reg i s t e r block

exp i red ") ;
76 r e qu i r e (s t a tu s == State . INIT , "Contract not

i n i t i a l i z e d ") ;
77 r e qu i r e (msg . va lue >= c o l l a t e r a l , " I n s u f f i c i e n t

c o l l a t e r a l provided ") ;
78 s e l l e r = msg . sender ;

LedgerHedger: Gas Reservation for Smart Contract Security 41

79 s t a tu s = State .REGISTERED;
80 }
81

82 function re fund () ex t e rna l {
83 r e qu i r e (b lock . number >= sta r tB lock && block . number <=

endBlock , "Block must be between s t a r t and end") ;
84 r e qu i r e (s t a tu s == State . INIT , "Contract must be only

i n i t i a t e d ") ;
85 r e qu i r e (msg . sender == buyer , "Not owner") ;
86 s t a tu s = State . IDLE ;
87 buyer . c a l l { va lue : payment + eps }("") ;
88 // the payment i s sent to the buyer anyway
89 }
90

91 function execute (MetaTx memory _metaTx , bytes memory _sig)
ex t e rna l {

92 r e qu i r e (b lock . number >= sta r tB lock && block . number <=
endBlock , "Block must be between s t a r t and end") ;

93 r e qu i r e (s t a tu s == State .REGISTERED, "Contract not
r e g i s t e r e d ") ;

94 r e qu i r e (msg . sender == s e l l e r , "Wrong s e l l e r ") ;
95 s t a tu s = State . IDLE ;
96 veri fyAndExecute (_metaTx , _sig) ;
97 s e l l e r . c a l l { va lue : c o l l a t e r a l + payment + eps }("") ;
98 // the payment i s sent to the s e l l e r anyway
99 }

100

101 function exhaust () ex t e rna l {
102 r e qu i r e (b lock . number >= sta r tB lock && block . number <=

endBlock , "Block must be between s t a r t and end") ;
103 r e qu i r e (s t a tu s == State .REGISTERED, "Contract not

r e g i s t e r e d ") ;
104 r e qu i r e (msg . sender == s e l l e r , "Wrong s e l l e r ") ;
105 l oopUnt i l () ;
106 s t a tu s = State . IDLE ;
107 s e l l e r . c a l l { va lue : c o l l a t e r a l + payment }("") ;
108 // the payment i s sent to the s e l l e r anyway
109 }
110

111 function veri fyAndExecute (MetaTx memory _metaTx , bytes
memory _sig)

112 pub l i c r e tu rn s (bytes memory) {
113 r e qu i r e (_metaTx . nonce == nonce , "Nonce i n c o r r e c t ") ;
114 bytes32 metaTxHash = keccak256 (abi . encode (_metaTx .

nonce ,
115 _metaTx . to , _metaTx . value , _metaTx .

ca l lData)) ;
116 address s i g n e r = ECDSA. recove r (ECDSA.

toEthSignedMessageHash (metaTxHash) , _sig) ;
117 r e qu i r e (buyer == s igner , "UNAUTH") ;

42 I. Tsabary et al.

118 nonce++; // We increment the nonce r e g a r d l e s s o f
su c c e s s

119 (bool _success , bytes memory _resu l t) = _metaTx . to .
c a l l {

120 value : _metaTx . va lue }(_metaTx .
ca l lData) ;

121 i f (s t a tu s == State . INIT) {
122 r e qu i r e (address (t h i s) . balance >= payment + eps ,
123 " cannot spend locked funds ") ;
124 } else i f (s t a tu s == State .REGISTERED) {
125 r e qu i r e (address (t h i s) . balance >= payment + eps +

co l l a t e r a l ,
126 " cannot spend locked funds ") ;
127 }
128 return _resu l t ;
129 }
130

131 function l oopUnt i l () pub l i c {
132 uint256 i = 0 ;
133 uint256 t imes = (gasHedged = 23330) / 117 ;
134 for (i ; i < times ; i++) {}
135 }
136 }

I Goerli Test Network Deployment

Table 2 presents our deployment of LedgerHedger on the Goerli Ethereum
test network. It lists the invoked contract function, the transaction identi�ers,
and the consumed gas.

We took the following approach to verify the gas overhead of Apply produced
by our local pro�ler. We created another meta-transaction, and performed its
operations both with and without the contract. The gas consumption di�erence
is 12e3, matching the local pro�ler measurement gdone = 12e3. Table 2 includes
the relevant transaction identi�ers for this experiment as well.

LedgerHedger: Gas Reservation for Smart Contract Security 43

Algorithm 1: LedgerHedger

Parameter : acc, start, end, block number operation ranges
Parameter : galloc, required gas
Parameter : col, the required collateral by Seller

Parameter : payment, payment for execution
Parameter : ε, additional payment for successful execution.
Global Variable: current, current block number
Variable : status← ⊥, contract status variable
Variable : PKSeller ← ⊥, public identi�er of Seller
Variable : PKBuyer ← ⊥, public identi�er of Buyer

1 Function Initiate(txIssuer, sentTokens; acc, start, end, galloc, col, ε):
2 Assert: current ≤ acc < start ≤ end

3 Assert: galloc > 0, col ≥ 0, ε ≥ 0, sentTokens ≥ ε
4 Set acc, start, end, galloc, col from inputs, payment← sentTokens− ε
5 PKBuyer ← txIssuer

6 status← initiated

7 Function Accept(txIssuer, sentTokens):
8 Assert: current ≤ acc

9 Assert: status = initiated

10 Assert: sentTokens ≥ col

11 PKSeller ← txIssuer

12 status← accepted

13 Function Recoup(txIssuer, sentTokens):
14 Assert: start ≤ current ≤ end

15 Assert: status = initiated

16 Assert: PKBuyer = txIssuer

17 status← completed

18 Send payment+ ε to PKBuyer

19 Function Apply(txIssuer, sentTokens; txprovided):
20 Assert: txprovided was issued by PKBuyer

21 Assert: start ≤ current ≤ end

22 Assert: status = accepted

23 Assert: PKSeller = txIssuer

24 Execute the operations of txprovided
25 status← completed

26 Send payment+ ε+ col to PKSeller

27 Function Exhaust(txIssuer, sentTokens):
28 Assert: start ≤ current ≤ end

29 Assert: status = accepted

30 Assert: PKSeller = txIssuer

31 Perform null operations summing to galloc gas
32 status← completed

33 Send payment+ col to PKSeller

44 I. Tsabary et al.

Table 1: ΓSeller
Ful�llNoTx and ΓSeller

Ful�llTx subgame summaries.

Subgame Condition
s̄spe
Action

WBuyer WSeller

ΓSeller
Ful�llNoTx

πexec < payment+col

galloc+gdone
aexhaust

winit
Buyer − ginit ·

πsetup − payment−
ε+max(wexo − galloc ·
πexec, 0) (Eq. 2)

winit
Seller − gaccept ·

πsetup + payment−
gdone · πexec (Eq. 1)

πexec > payment+col

galloc+gdone
aignore

winit
Buyer − ginit ·

πsetup − payment−
ε+max(wexo − galloc ·
πexec, 0) (Eq. 2)

winit
Seller − gaccept ·

πsetup + galloc ·
πexec − col (Eq. 1)

ΓSeller
Ful�llTx

πexec < payment+col+ε
gpub+gdone

gpub ≤ galloc
aapply

winit
Buyer−ginit ·πsetup−

payment− ε+ wexo

(Eq. 4)

winit
Seller − gaccept ·

πsetup + payment+
ε− (gdone + gpub −
galloc) · πexec (Eq. 3)

πexec < payment+col

galloc+gdone
gpub > galloc

aexhaust

winit
Buyer − ginit ·

πsetup − payment−
ε+max(wexo − galloc ·
πexec, 0) (Eq. 4)

winit
Seller − gaccept ·

πsetup + payment−
gdone · πexec (Eq. 3)

πexec > payment+col

galloc+gdone

πexec > payment+col+ε
gpub+gdone

aignore

winit
Buyer − ginit ·

πsetup − payment−
ε+max(wexo − galloc ·
πexec, 0) (Eq. 4)

winit
Seller − gaccept ·

πsetup + galloc ·
πexec − col (Eq. 3)

Table 2: Ethereum Goerli Network Deployment and Gas Requirements.
Invocation Transaction Identi�er Consumed Gas

Initiate
37d4a7332ad18753277c62b96f9e8b97

d2f59c7aa22126dd23fe6825c361743f
ginit = 117e3

Recoup
e8b69c4ae70f40e72e3a8df353c38e44

9c176d9a4d7aee86b073e3a3a6a55531
gdone = 57.3e3

Initiate
7a47b67e574b748105ef31f6ebed8990

c17a96f19ef01307779a6119edf2318f
ginit = 37.4e3

Accept
b5607e9c499279c7bd4b0abf2f3d212b

b3c294c684d87678cd06dd5d049a6b26
gaccept = 50e3

Exhaust
c482ad2b3bfc1ca64b83e8fcdc29fe82

652ef7d839fc24323d035f8aba0b66b0
galloc + gdone = 3.021e6

Initiate
9fee96dcfedd8f94e5442c1d8d50c92e

40bcfbf27ae512f9e2e3b01e670b005f
ginit = 37.4e3

Accept
b0f3cd808d5ad637b94541f3519614dc

444d2c76eaf60e4917f32bfc57df6eb9
gaccept = 50e3

Apply
facb062758d24a2266b3e6d989ffe430

202fdc2f23f4f73a585945e132fe0d7b
gpub + gdone = 2.668e6

Arbitrary tx

without Apply
27b4ad41e814d432a6c3e060eee6c6e7

f7e8fdc615b904548dfd9387db79020a
gpub = 63e3

Arbitrary tx

with Apply

b8a45902b247cd812e784e940ed822c3

cf8155a732b09ced2823fc27265fb7e2
gpub + gdone = 75e3

	LedgerHedger: Gas Reservation for Smart Contract Security

