All papers in 2018 (Page 2 of 1249 results)

Last updated:  2018-12-03
Analysis Of The Simulatability Of An Oblivious Transfer
Bing Zeng
In the Journal of Cryptology (25(1): 158-193. 2012), Shai Halevi and Yael Kalai proposed a general framework for constructing two-message oblivious transfer protocols using smooth projective hashing. The authors asserts that this framework gives a simulation-based security guarantee when the sender is corrupted. Later this work has been believed to be half-simulatable in literatures. In this paper, we show that the assertion is not true and present our ideas to construct a fully-simulatable oblivious transfer framework.
Last updated:  2023-04-20
Quantum-secure message authentication via blind-unforgeability
Gorjan Alagic, Christian Majenz, Alexander Russell, Fang Song
Formulating and designing authentication of classical messages in the presence of adversaries with quantum query access has been a longstanding challenge, as the familiar classical notions of unforgeability do not directly translate into meaningful notions in the quantum setting. A particular difficulty is how to fairly capture the notion of "predicting an unqueried value" when the adversary can query in quantum superposition. We propose a natural definition of unforgeability against quantum adversaries called blind unforgeability. This notion defines a function to be predictable if there exists an adversary who can use "partially blinded" oracle access to predict values in the blinded region. We support the proposal with a number of technical results. We begin by establishing that the notion coincides with EUF-CMA in the classical setting and go on to demonstrate that the notion is satisfied by a number of simple guiding examples, such as random functions and quantum-query-secure pseudorandom functions. We then show the suitability of blind unforgeability for supporting canonical constructions and reductions. We prove that the "hash-and-MAC" paradigm and the Lamport one-time digital signature scheme are indeed unforgeable according to the definition. To support our analysis, we additionally define and study a new variety of quantum-secure hash functions called Bernoulli-preserving. Finally, we demonstrate that blind unforgeability is stronger than a previous definition of Boneh and Zhandry [EUROCRYPT '13, CRYPTO '13] in the sense that we can construct an explicit function family which is forgeable by an attack that is recognized by blind-unforgeability, yet satisfies the definition by Boneh and Zhandry.
Last updated:  2018-12-03
Compressive Sensing based Leakage Sampling and Reconstruction: A First Study
Changhai Ou, Chengju Zhou, Siew-Kei Lam
An important prerequisite for Side-channel Attack (SCA) is leakage sampling where the side-channel measurements (e.g. power traces) of the cryptographic device are collected for further analysis. However, as the operating frequency of cryptographic devices continues to increase due to advancing technology, leakage sampling will impose higher requirements on the sampling equipment. This paper undertakes the first study to show that effective leakage sampling can be achieved without relying on sophisticated equipments through Compressive Sensing (CS). In particular, CS can obtain low-dimensional samples from high-dimensional power traces by simply projecting the useful information onto the observation matrix. The leakage information can then be reconstructed in a workstation for further analysis. With this approach, the sampling rate to obtain the side-channel measurements is no longer limited by the operating frequency of the cryptographic device and Nyquist sampling theorem. Instead it depends on the sparsity of the leakage signal. Our study reveals that there is large amount of information redundancy in power traces obtained from the leaky device. As such, CS can employ a much lower sampling rate and yet obtain equivalent leakage sampling performance, which significantly lowers the requirement of sampling equipments. The feasibility of our approach is verified theoretically and through experiments.
Last updated:  2018-12-03
Towards Practical Security of Pseudonymous Signature on the BSI eIDAS Token
Mirosław Kutyłowski, Lucjan Hanzlik, Kamil Kluczniak
In this paper we present an extension of Pseudonymous Signature introduced by the German Federal BSI authority as a part of technical recommendations for electronic identity documents. Without switching to pairing friendly groups we enhance the scheme so that: (a) the issuer does not know the private keys of the citizen (so it cannot impersonate the citizen), (b) a powerful adversary that breaks any number of ID cards created by the Issuer cannot forge new cards that could be proven as fake ones, (c) deanonymization of the pseudonyms used by a citizen is a multi-party protocol, where the consent of each authority is necessary to reveal the identity of a user. (d) we propose extended features concerning fully anonymous signatures and a pragmatic revocation approach. (e) we present an argument for unlinkability (cross-domain anonymity) of the presented schemes. In this way we make a step forwards to overcome the substantial weaknesses of the Pseudonymous Signature scheme. Moreover, the extension is on top of the original scheme with relatively small number of changes, following the strategy of reusing the previous schemes -- thereby reducing the costs of potential technology update.
Last updated:  2020-05-29
Stronger Leakage-Resilient and Non-Malleable Secret-Sharing Schemes for General Access Structures
Divesh Aggarwal, Ivan Damgard, Jesper Buus Nielsen, Maciej Obremski, Erick Purwanto, Joao Ribeiro, Mark Simkin
In this work we present a collection of compilers that take secret sharing schemes for an arbitrary access structures as input and produce either leakage-resilient or non-malleable secret sharing schemes for the same access structure. A leakage-resilient secret sharing scheme hides the secret from an adversary, who has access to an unqualified set of shares, even if the adversary additionally obtains some size-bounded leakage from all other secret shares. A non-malleable secret sharing scheme guarantees that a secret that is reconstructed from a set of tampered shares is either equal to the original secret or completely unrelated. To the best of our knowledge we present the first generic compiler for leakage-resilient secret sharing for general access structures. In the case of non-malleable secret sharing, we strengthen previous definitions, provide separations between them, and construct a non-malleable secret sharing scheme for general access structures that fulfills the strongest definition with respect to independent share tampering functions. More precisely, our scheme is secure against concurrent tampering: The adversary is allowed to (non-adaptively) tamper the shares multiple times, and in each tampering attempt can freely choose the qualified set of shares to be used by the reconstruction algorithm to re-construct the tampered secret. This is a strong analogue of the multiple-tampering setting for split-state non-malleable codes and extractors. We show how to use leakage-resilient and non-malleable secret sharing schemes to construct leakage-resilient and non-malleable threshold signatures. Classical threshold signatures allow to distribute the secret key of a signature scheme among a set of parties, such that certain qualified subsets can sign messages. We construct threshold signature schemes that remain secure even if an adversary leaks from or tampers with all secret shares.
Last updated:  2018-12-05
Functional Analysis Attacks on Logic Locking
Uncategorized
Deepak Sirone, Pramod Subramanyan
Uncategorized
This paper proposes Functional Analysis attacks on state of the art Logic Locking algorithms (abbreviated as FALL attacks). FALL attacks have two stages. The first stage identifies nodes involved in the locking functionality and analyzes functional properties of these nodes to shortlist a small number of candidate locking keys. In many cases, this shortlists exactly one locking key, so no further analysis is needed. However, if more than one key is shortlisted, the second stage introduces a SAT-based algorithm to identify the correct locking key from a list of alternatives using simulations on an unlocked circuit. In comparison to past work, the FALL attack is more practical as it can often succeed (90% of successful attempts in our experiments) by only analyzing the locked netlist, without requiring oracle access to an unlocked circuit. Further, FALL attacks successfully defeat Secure Function Logic Locking (SFLL), the only locking algorithm that is resilient to known attacks on logic locking. Our experimental evaluation shows that FALL is able to defeat 65 out of 80 (81%) circuits locked using SFLL.
Last updated:  2018-12-03
Privacy Computing: Concept, Computing Framework And Future Development Trends
Uncategorized
Fenghua Li, Hui Li, Ben Niu, Jinjun Chen
Show abstract
Uncategorized
With the rapid development of information technology and the continuous evolution of personalized services, huge amounts of data are accumulated by the large Internet company in the process of serving users. Moreover, dynamic data interactions increase the intentional/unintentional privacy persistence in different information systems. However, the following problems such as the short board effect of privacy information preservation among different information systems and the difficulty of tracing the source of privacy violations are becoming more and more serious. Therefore, existing privacy preserving schemes cannot provide a systematic preservation. In this paper, we pay attention to the links of information lifecycle, such as information collection, storage, processing, distribution and destruction. Then we propose the theory of privacy computing and the key technology system, including privacy computing framework, formal definition of privacy computing, four principles that should be followed in privacy computing, algorithm design criteria, evaluation of privacy preserving effect, privacy computing language and so on. Finally, we employ four application scenarios to describe the universal application of privacy computing and prospect of the future research trends. It is expected to guide the theoretical research on user's privacy preservation under open environments.
Last updated:  2019-08-19
Revisiting Non-Malleable Secret Sharing
Saikrishna Badrinarayanan, Akshayaram Srinivasan
A threshold secret sharing scheme (with threshold $t$) allows a dealer to share a secret among a set of parties such that any group of $t$ or more parties can recover the secret and no group of at most $t-1$ parties learn any information about the secret. A non-malleable threshold secret sharing scheme, introduced in the recent work of Goyal and Kumar (STOC'18), additionally protects a threshold secret sharing scheme when its shares are subject to tampering attacks. Specifically, it guarantees that the reconstructed secret from the tampered shares is either the original secret or something that is unrelated to the original secret. In this work, we continue the study of threshold non-malleable secret sharing against the class of tampering functions that tamper each share independently. We focus on achieving greater efficiency and guaranteeing a stronger security property. We obtain the following results: - Rate Improvement. We give the first construction of a threshold non-malleable secret sharing scheme that has rate $> 0$. Specifically, for every $n,t \geq 4$, we give a construction of a $t$-out-of-$n$ non-malleable secret sharing scheme with rate $\Theta(\frac{1}{t\log ^2 n})$. In the prior constructions, the rate was $\Theta(\frac{1}{n\log m})$ where $m$ is the length of the secret and thus, the rate tends to 0 as $m \rightarrow \infty$. Furthermore, we also optimize the parameters of our construction and give a concretely efficient scheme. - Multiple Tampering. We give the first construction of a threshold non-malleable secret sharing scheme secure in the stronger setting of bounded tampering wherein the shares are tampered by multiple (but bounded in number) possibly different tampering functions. The rate of such a scheme is $\Theta(\frac{1}{k^3t\log^2 n})$ where $k$ is an apriori bound on the number of tamperings. We complement this positive result by proving that it is impossible to have a threshold non-malleable secret sharing scheme that is secure in the presence of an apriori unbounded number of tamperings. - General Access Structures. We extend our results beyond threshold secret sharing and give constructions of rate-efficient, non-malleable secret sharing schemes for more general monotone access structures that are secure against multiple (bounded) tampering attacks.
Last updated:  2019-08-27
A new SNOW stream cipher called SNOW-V
Patrik Ekdahl, Thomas Johansson, Alexander Maximov, Jing Yang
In this paper we are proposing a new member in the SNOW family of stream ciphers, called SNOW-V. The motivation is to meet an industry demand of very high speed encryption in a virtualized environment, something that can be expected to be relevant in a future 5G mobile communication system. We are revising the SNOW 3G architecture to be competitive in such a pure software environment, making use of both existing acceleration instructions for the AES encryption round function as well as the ability of modern CPUs to handle large vectors of integers (e.g. SIMD instructions). We have kept the general design from SNOW 3G, in terms of linear feedback shift register (LFSR) and Finite State Machine (FSM), but both entities are updated to better align with vectorized implementations. The LFSR part is new and operates 8 times the speed of the FSM. We have furthermore increased the total state size by using 128-bit registers in the FSM, we use the full AES encryption round function in the FSM update, and, finally, the initialization phase includes a masking with key bits at its end. The result is an algorithm generally much faster than AES-256 and with expected security not worse than AES-256.
Last updated:  2019-01-18
Factoring Products of Braids via Garside Normal Form
Simon-Philipp Merz, Christophe Petit
Braid groups are infinite non-abelian groups naturally arising from geometric braids. For two decades they have been proposed for cryptographic use. In braid group cryptography public braids often contain secret braids as factors and it is hoped that rewriting the product of braid words hides individual factors. We provide experimental evidence that this is in general not the case and argue that under certain conditions parts of the Garside normal form of factors can be found in the Garside normal form of their product. This observation can be exploited to decompose products of braids of the form $ABC$ when only $B$ is known. Our decomposition algorithm yields a universal forgery attack on WalnutDSA, which is one of the 20 proposed signature schemes that are being considered by NIST for standardization of quantum-resistant public-key cryptography. Our attack on WalnutDSA can universally forge signatures within seconds for both the 128-bit and 256-bit security level, given one random message-signature pair. The attack worked on 99.8% and 100% of signatures for the 128-bit and 256-bit security levels in our experiments. Furthermore, we show that the decomposition algorithm can be used to solve instances of the conjugacy search problem and decomposition search problem in braid groups. These problems are at the heart of other cryptographic schemes based on braid groups.
Last updated:  2018-11-29
Fast Authentication from Aggregate Signatures with Improved Security
Muslum Ozgur Ozmen, Rouzbeh Behnia, Attila A. Yavuz
An attempt to derive signer-efficient digital signatures from aggregate signatures was made in a signature scheme referred to as Structure-free Compact Rapid Authentication (SCRA) (IEEE TIFS 2017). In this paper, we first mount a practical universal forgery attack against the NTRU instantiation of SCRA by observing only 8161 signatures. Second, we propose a new signature scheme (FAAS), which transforms any single-signer aggregate signature scheme into a signer-efficient scheme. We show two efficient instantiations of FAAS, namely, FAAS-NTRU and FAAS-RSA, both of which achieve high computational efficiency. Our experiments confirmed that FAAS schemes achieve up to 100x faster signature generation compared to their underlying schemes. Moreover, FAAS schemes eliminate some of the costly operations such as Gaussian sampling, rejection sampling, and exponentiation at the signature generation that are shown to be susceptible to side-channel attacks. This enables FAAS schemes to enhance the security and efficiency of their underlying schemes. Finally, we prove that FAAS schemes are secure (in random oracle model), and open-source both our attack and FAAS implementations for public testing purposes.
Last updated:  2021-06-03
Efficient Fully-Leakage Resilient One-More Signature Schemes
Antonio Faonio
In a recent paper Faonio, Nielsen and Venturi (ICALP 2015) gave new constructions of leakage-resilient signature schemes. The signature schemes proposed remain unforgeable against an adversary leaking arbitrary information on the entire state of the signer, including the random coins of the signing algorithm. The main feature of their signature schemes is that they offer a graceful degradation of security in situations where standard existential unforgeability is impossible. The notion, put forward by Nielsen, Venturi, and Zottarel (PKC 2014), defines a slack parameter $\gamma$ which, roughly speaking, describes how gracefully the security degrades. Unfortunately, the standard-model signature scheme of Faonio,Nielsen and Venturi has a slack parameter that depends on the number of signatures queried by the adversary. In this paper we show two new constructions in the standard model where the above limitation is avoided. Specifically, the first scheme achieves slack parameter $O(1/\lambda)$ where $\lambda$ is the security parameter and it is based on standard number theoretic assumptions, the second scheme achieves optimal slack parameter (i.e. $\gamma = 1$) and it is based on knowledge of the exponent assumptions. Our constructions are efficient and have leakage rate $1 - o(1)$, most notably our second construction has signature size of only 8 group elements which makes it the leakage-resilient signature scheme with the shortest signature size known to the best of our knowledge.
Last updated:  2018-11-29
Breaking the Binding: Attacks on the Merkle Approach to Prove Liabilities and its Applications
Kexin Hu, Zhenfeng Zhang, Kaiven Guo
Proofs of liabilities are used for applications, function like banks or Bitcoin exchanges, to prove the sums of money in their dataset that they should owe. The Maxwell protocol, a cryptographic proof of liabilities scheme which relies on a data structure well known as the summation Merkle tree, utilizes a Merkle approach to prove liabilities in the decentralized setting, i.e., clients independently verify they are in the dataset with no trusted auditor. In this paper, we go into the Maxwell protocol and the summation Merkle tree. We formalize the Maxwell protocol and show it is not secure. We present an attack with which the proved liabilities using the Maxwell protocol are less than the actual value. This attack can have significant consequences: A Bitcoin exchange controlling a total of $n$ client accounts can present valid liabilities proofs including only one account balance in its dataset. We suggest two improvements to the Maxwell protocol and the summation Merkle tree, and present a formal proof for the improvement that is closest in spirit to the Maxwell protocol. Moreover, we show the DAM scheme, a micropayment scheme of Zerocash which adopts the Maxwell protocol as a tool to disincentivize double/multiple spending, is vulnerable to an multi-spending attack. We show the Provisions scheme, which adopts the Maxwell protocol to extend its privacy-preserving proof of liabilities scheme, is also infected by a similar attack.
Last updated:  2018-12-14
Leakage-Resilient Secret Sharing
Ashutosh Kumar, Raghu Meka, Amit Sahai
In this work, we consider the natural goal of designing secret sharing schemes that ensure security against a powerful adaptive adversary who may learn some ``leaked'' information about all the shares. We say that a secret sharing scheme is $p$-party leakage-resilient, if the secret remains statistically hidden even after an adversary learns a bounded amount of leakage, where each bit of leakage can depend jointly on the shares of an adaptively chosen subset of $p$ parties. A lot of works have focused on designing secret sharing schemes that handle individual and (mostly) non-adaptive leakage for (some) threshold secret sharing schemes [DP07,DDV10,LL12,ADKO15,GK18,BDIR18]. We give an unconditional compiler that transforms any standard secret sharing scheme with arbitrary access structure into a $p$-party leakage-resilient one for $p$ logarithmic in the number of parties. This yields the first secret sharing schemes secure against adaptive and joint leakage for more than two parties. As a natural extension, we initiate the study of leakage-resilient non-malleable secret sharing} and build such schemes for general access structures. We empower the computationally unbounded adversary to adaptively leak from the shares and then use the leakage to tamper with each of the shares arbitrarily and independently. Leveraging our $p$-party leakage-resilient schemes, we also construct such non-malleable secret sharing schemes: any such tampering either preserves the secret or completely `destroys' it. This improves upon the non-malleable secret sharing scheme of Goyal and Kumar (CRYPTO 2018) where no leakage was permitted. Leakage-resilient non-malleable codes can be seen as 2-out-of-2 schemes satisfying our guarantee and have already found several applications in cryptography [LL12,ADKO15,GKPRS18,GK18,CL18,OPVV18]. Our constructions rely on a clean connection we draw to communication complexity in the well-studied number-on-forehead (NOF) model and rely on functions that have strong communication-complexity lower bounds in the NOF model (in a black-box way). We get efficient $p$-party leakage-resilient schemes for $p$ upto $O(\log n)$ as our share sizes have exponential dependence on $p$. We observe that improving this dependence from $2^{O(p)}$ to $2^{o(p)}$ will lead to progress on longstanding open problems in complexity theory.
Last updated:  2018-11-29
Genus 2 curves with given split Jacobian
Jasper Scholten
We construct a genus 2 curve inside the product of 2 elliptic curves. The formula for this construction has appeared in a previous paper. The current paper discusses how this formula arises naturally by using some theory of elliptic Kummer surfaces
Last updated:  2019-11-22
A Provably-Secure Unidirectional Proxy Re-Encryption Scheme Without Pairing in the Random Oracle Model
S. Sharmila Deva Selvi, Arinjita Paul, C. Pandu Rangan
Proxy re-encryption (PRE) enables delegation of decryption rights by entrusting a proxy server with special information, that allows it to transform a ciphertext under one public key into a ciphertext of the same message under a different public key. It is important to note that, the proxy which performs the re-encryption learns nothing about the message encrypted under either public keys. Due to its transformation property, proxy re-encryption schemes have practical applications in distributed storage, encrypted email forwarding, Digital Rights Management (DRM) and cloud storage. From its introduction, several proxy re-encryption schemes have been proposed in the literature, and a majority of them have been realized using bilinear pairing. In Africacrypt 2010, the first PKI-based collusion resistant CCA secure PRE scheme without pairing was proposed in the random oracle model. In this paper, we point out an important weakness in the scheme. We also present the first collusion-resistant pairing-free unidirectional proxy re-encryption scheme which meets CCA security under a variant of the computational Diffie-Hellman hardness assumption in the random oracle model.
Last updated:  2018-11-29
PoTS - A Secure Proof of TEE-Stake for Permissionless Blockchains
Sébastien Andreina, Jens-Matthias Bohli, Ghassan O. Karame, Wenting Li, Giorgia Azzurra Marson
Proof-of-Stake (PoS) protocols have been actively researched for the past few years. PoS finds direct applicability in permissionless blockchain platforms and emerges as one of the strongest candidates to replace the largely inefficient Proof of Work mechanism that is currently plugged in the majority of existing permissionless blockchain systems. Although a number of PoS variants have been proposed, these protocols suffer from a number of security shortcomings. Namely, most existing PoS variants are either subject to the nothing at stake, the long range, or the stake grinding attacks which considerably degrade security in the blockchain. These shortcomings do not result from a lack of foresight when designing these protocols, but are inherently due to the ease of manipulating "stake" when compared to other more established variants, such as "work". In this paper, we address these problems and propose a secure Proof of Stake protocol, PoTS, that leverages Trusted Execution Environments (TEEs), such as Intel SGX, to ensure that each miner can generate at most one block per "height" for strictly increasing heights—thus thwarting the problem of nothing at stake and a large class of long-range attacks. In combination with TEEs, PoTS additionally uses cryptographic techniques to also prevent grinding attacks and protect against posterior corruption. We show that our protocol is secure, in the sense of well-established cryptographic notions for blockchain protocols, down to realistic hardware assumptions on TEE and well-established cryptographic assumptions. Finally, we evaluate the performance of our proposal by means of implementation. Our evaluation results show that PoTS offers a strong tradeoff between security of performance of the underlying PoS protocol.
Last updated:  2018-11-29
Echoes of the Past: Recovering Blockchain Metrics From Merged Mining
Nicholas Stifter, Philipp Schindler, Aljosha Judmayer, Alexei Zamyatin, Andreas Kern, Edgar Weippl
So far, the topic of merged mining has mainly been considered in a security context, covering issues such as mining power centralization or crosschain attack scenarios. In this work we show that key information for determining blockchain metrics such as the fork rate can be recovered through data extracted from merge mined cryptocurrencies. Specifically, we reconstruct a long-ranging view of forks and stale blocks in Bitcoin from its merge mined child chains, and compare our results to previous findings that were derived from live measurements. Thereby, we show that live monitoring alone is not sufficient to capture a large majority of these events, as we are able to identify a non-negligible portion of stale blocks that were previously unaccounted for. Their authenticity is ensured by cryptographic evidence regarding both, their position in the respective blockchain, as well as the Proof-of-Work difficulty. Furthermore, by applying this new technique to Litecoin and its child cryptocur rencies, we are able to provide the first extensive view and lower bound on the stale block and fork rate in the Litecoin network. Finally, we outline that a recovery of other important metrics and blockchain characteristics through merged mining may also be possible.
Last updated:  2018-11-29
A Public Key Exchange Cryptosystem Based on Ideal Secrecy
Vamshi Krishna Kammadanam, Virendra R. Sule, Yi Hong
This paper proposes two closely related asymmetric key (or a public key) schemes for key exchange whose security is based on the notion of ideal secrecy. In the first scheme, the private key consists of two singular matrices, a polar code matrix and a random permutation matrix all over the binary field. The sender transmits addition of two messages over a public channel using the public key of the receiver. The receiver can decrypt individual messages using the private key. An adversary, without the knowledge of the private key, can only compute multiple equiprobable solutions in a space of sufficiently large size related to the dimension of the kernel of the singular matrices. This achieves security in the sense of ideal secrecy. The next scheme extends over general matrices. The two schemes are cryptanalyzed against various attacks.
Last updated:  2019-05-15
Ouroboros Crypsinous: Privacy-Preserving Proof-of-Stake
Thomas Kerber, Markulf Kohlweiss, Aggelos Kiayias, Vassilis Zikas
We present Ouroboros Crypsinous, the first formally analysed privacy-preserving proof-of-stake (PoS) block\-chain protocol. To model its security we give a thorough treatment of private ledgers in the universal composition (UC) setting that might be of independent interest. To prove our protocol secure against adaptive attacks, which are particularly critical in the PoS setting, we introduce a new coin evolution technique that relies on SNARKs and key-private forward secure encryption. The latter primitive - and the associated construction - can be of independent interest. We stress that existing approaches to private blockchains, such as the proof-of-work-based Zerocash are analyzed only against static corruptions.
Last updated:  2018-11-29
A CCA-secure collusion-resistant Identity-based Proxy Re-encryption Scheme
Uncategorized
Arinjita Paul, Varshika Srinivasavaradhan, S. Sharmila Deva Selvi, C. Pandu Rangan
Show abstract
Uncategorized
Cloud storage enables its users to store confidential information as encrypted files in the cloud. A cloud user (say Alice) can share her encrypted files with another user (say Bob) by availing proxy re-encryption services of the cloud. Proxy Re-Encryption (PRE) is a cryptographic primitive that allows transformation of ciphertexts from Alice to Bob via a semi-trusted proxy, who should not learn anything about the shared message. Typically, the re-encryption rights are enabled only for a bounded, fixed time and malicious parties may want to decrypt or learn messages encrypted for Alice, even beyond that time. The basic security notion of PRE assumes the proxy (cloud) is semi-trusted, which is seemingly insufficient in practical applications. The proxy may want to collude with Bob to obtain the private keys of Alice for later use. Such an attack is called collusion attack, allowing colluders to illegally access all encrypted information of Alice in the cloud. Hence, achieving collusion resistance is indispensable to real-world scenarios. Realizing collusion-resistant PRE has been an interesting problem in the ID-based setting. To this end, several attempts have been made to construct a collusion-resistant IB-PRE scheme and we discuss their properties and weaknesses in this paper. We also present a new collusion-resistant IB-PRE scheme that meets the adaptive CCA security under the decisional bilinear Diffie-Hellman hardness assumption and its variant in the random oracle model.
Last updated:  2022-09-03
A Survey on Applications of H-Technique: Revisiting Security Analysis of PRP and PRF
Ashwin Jha, Mridul Nandi
The Coefficients H Technique (also called H-technique), developed by Patarin in circa '91, is a tool to obtain upper bounds on distinguishing advantages. This tool is known to provide relatively simpler and (in some cases) tight bound proofs in comparison to some other well-known tools such as the Game-playing technique and Random Systems methodology. In this systematization of knowledge (SoK) paper, we aim to provide a brief survey on the H-technique. The SoK is in four parts: First, we redevelop the necessary nomenclatures and tools required to study the security of any symmetric key design, especially in the H-technique setting. Second, we give a full description of H-technique and some related tools. Third, we give (simple) H-technique based proofs for some popular symmetric-key designs, across different paradigms. Finally, we show that H-technique can actually provide optimal bounds on distinguishing advantage.
Last updated:  2021-06-24
On Kilian's Randomization of Multilinear Map Encodings
Jean-Sebastien Coron, Hilder V. L. Pereira
Indistinguishability obfuscation constructions based on matrix branching programs generally proceed in two steps: first apply Kilian's randomization of the matrix product computation, and then encode the matrices using a multilinear map scheme. In this paper we observe that by applying Kilian's randomization after encoding, the complexity of the best attacks is significantly increased for CLT13 multilinear maps. This implies that much smaller parameters can be used, which improves the efficiency of the constructions by several orders of magnitude. As an application, we describe the first concrete implementation of non-interactive Diffie-Hellman key exchange secure against existing attacks. Key exchange was originally the most straightforward application of multilinear maps; however it was quickly broken for the three known families of multilinear maps (GGH13, CLT13 and GGH15). Here we describe the first implementation of key exchange based on CLT13 that is resistant against the Cheon et al. attack. For N=4 users and a medium level of security, our implementation requires 18 GB of public parameters, and a few minutes for the derivation of a shared key.
Last updated:  2021-07-11
Direct Anonymous Attestation with Optimal TPM Signing Efficiency
Kang Yang, Liqun Chen, Zhenfeng Zhang, Christopher J. P. Newton, Bo Yang, Li Xi
Direct Anonymous Attestation (DAA) is an anonymous signature scheme, which allows the Trusted Platform Module (TPM), a small chip embedded in a host computer, to attest to the state of the host system, while preserving the privacy of the user. DAA provides two signature modes: fully anonymous signatures and pseudonymous signatures. One main goal of designing DAA schemes is to reduce the TPM signing workload as much as possible, as the TPM has only limited resources. In an optimal DAA scheme, the signing workload on the TPM will be no more than that required for a normal signature like ECSchnorr. To date, no scheme has achieved the optimal signing efficiency for both signature modes. In this paper, we propose the first DAA scheme which achieves the optimal TPM signing efficiency for both signature modes. In this scheme, the TPM takes only a single exponentiation to generate a signature, and this single exponentiation can be pre-computed. Our scheme can be implemented using the existing TPM 2.0 commands, and thus is compatible with the TPM 2.0 specification. We benchmarked the TPM 2.0 commands needed for three DAA use cases on an Infineon TPM 2.0 chip, and also implemented the host signing and verification algorithm for our scheme on a laptop with 1.80GHz Intel Core i7-8550U CPU. Our experimental results show that our DAA scheme obtains a total signing time of about 144 ms for either of two signature modes (compared to an online signing time of about 65 ms). Based on our benchmark results for the pseudonymous signature mode, our scheme is roughly 2x (resp., 5x) faster than the existing DAA schemes supported by TPM 2.0 in terms of total (resp., online) signing efficiency. In addition, our DAA scheme supports selective attribute disclosure, which can satisfy more application require- ments. We also extend our DAA scheme to support signature-based revocation and to guarantee privacy against subverted TPMs. The two extended DAA schemes keep the TPM signing efficiency optimal for both of two signa- ture modes, and outperform existing related schemes in terms of signing performance.
Last updated:  2018-11-29
Freestyle, a randomized version of ChaCha for resisting offline brute-force and dictionary attacks
P. Arun Babu, Jithin Jose Thomas
This paper introduces Freestyle, a randomized, and variable round version of the ChaCha cipher. Freestyle demonstrates the concept of hash based halting condition, where a decryption attempt with an incorrect key is likely to take longer time to halt. This makes it resistant to key-guessing attacks i.e. brute-force and dictionary based attacks. Freestyle uses a novel approach for ciphertext randomization by using random number of rounds for each block of message, where the exact number of rounds are unknown to the receiver in advance. Due to its inherent random behavior, Freestyle provides the possibility of generating up to $2^{256}$ different ciphertexts for a given key, nonce, and message; thus resisting key and nonce reuse attacks. This also makes cryptanalysis through known-plaintext, chosen-plaintext, and chosen-ciphertext attacks difficult in practice. Freestyle is highly customizable, which makes it suitable for both low-powered devices as well as security-critical applications. It is ideal for: (i) applications that favor ciphertext randomization and resistance to key-guessing and key reuse attacks; and (ii) situations where ciphertext is in full control of an adversary for carrying out an offline key-guessing attack.
Last updated:  2018-11-29
Lightweight AE and HASH in a Single Round Function
Dingfeng Ye, Danping Shi, Peng Wang
To deal with message streams, which is required by many symmetric cryptographic functionalities (MAC, AE, HASH), we propose a lightweight round function called Thin Sponge. We give a framework to construct all these functionalities (MAC, AE, and HASH) using the same Thin Sponge round function. Besides the common security assumptions behind traditional symmetric algorithms, the security of our schemes depends on the hardness of problems to find collisions of some states. We give a class of constructions of Thin Sponge, which is improvement of the round function of Trivium and ACORN. We give simple criteria for determining parameters. According to these criteria, we give an example, which achieves all functionalities in a single round function and hence can be realized by the same hardware. Our algorithm is also efficient in software.
Last updated:  2019-02-18
Verifying liquidity of Bitcoin contracts
Massimo Bartoletti, Roberto Zunino
A landmark security property of smart contracts is liquidity: in a non-liquid contract, it may happen that some funds remain frozen. The relevance of this issue is witnessed by a recent liquidity attack to the Ethereum Parity Wallet, which has frozen 160M USD within the contract, making this sum unredeemable by any user. We address the problem of verifying liquidity of Bitcoin contracts. Focussing on itML, a contracts DSL with a computationally sound compiler to Bitcoin, we study various notions of liquidity. Our main result is that liquidity of BitML contracts is decidable, in all the proposed variants. To prove this, we first transform the infinite-state semantics of BitML into a finite-state one, which focusses on the behaviour of any given set of contracts, abstracting the moves of the context. With respect to the chosen contracts, this abstraction in sound and complete. Our decision procedure for liquidity is then based on model-checking the finite space of states of the abstraction. The computational soundness of the BitML compiler allows to lift this result from the symbolic to the computational level: if our decision procedure establishes that a contract is liquid, then it will be such also under a computational adversary, and vice versa.
Last updated:  2018-11-20
Secure Opportunistic Multipath Key Exchange
Sergiu Costea, Marios O. Choudary, Doru Gucea, Björn Tackmann, Costin Raiciu
The security of today's widely used communication security protocols is based on trust in Certificate Authorities (CAs). However, the real security of this approach is debatable, since certificate handling is tedious and many recent attacks have undermined the trust in CAs. On the other hand, opportunistic encryption protocols such as Tcpcrypt, which are currently gaining momentum as an alternative to no encryption, have similar security to using untrusted CAs or self-signed certificates: they only protect against passive attackers. In this paper, we present a key exchange protocol, Secure Multipath Key Exchange (SMKEX), that enables all the benefits of opportunistic encryption (no need for trusted third parties or pre-established secrets), as well as proven protection against some classes of active attackers. Furthermore, SMKEX can be easily extended to a trust-on-first-use setting and can be easily integrated with TLS, providing the highest security for opportunistic encryption to date while also increasing the security of standard TLS. We show that SMKEX is made practical by the current availability of path diversity between different AS-es. We also show a method to create path diversity with encrypted tunnels without relying on the network topology. These allow SMKEX to provide protection against most adversaries for a majority of Alexa top 100 web sites. We have implemented SMKEX using a modified Multipath TCP kernel implementation and a user library that overwrites part of the socket API, allowing unmodified applications to take advantage of the security provided by SMKEX.
Last updated:  2021-06-09
When Theory Meets Practice: A Framework for Robust Profiled Side-channel Analysis
Stjepan Picek, Annelie Heuser, Lichao Wu, Cesare Alippi, Francesco Regazzoni
Profiling side-channel attacks are considered the most potent form of side-channel attacks. They consist of two steps. First, the adversary builds a leakage model using a device similar to the target one. This leakage model is then exploited to extract the secret information from the victim's device. These attacks can be seen as a classification problem, where the adversary needs to decide to what class (and consequently, the secret key) the traces collected from the victim's device belong. The research community investigated profiling attacks in-depth, primarily by using an empirical approach. As such, it emerges that a theoretical framework to analyze profiling side-channel attacks comprehensively is still missing. In this paper, we propose a theory-grounded framework capable of modeling and evaluating profiling side-channel analysis. The framework is based on the expectation estimation problem that has strong theoretical foundations. We quantify the effects of perturbations injected at different points in our framework through the robustness analysis, where the perturbations represent sources of uncertainty associated with measurements, non-optimal classifiers, and countermeasures. Finally, we use our framework to evaluate the performance of different classifiers using publicly available traces.
Last updated:  2019-01-28
Improved Quantum Multicollision-Finding Algorithm
Akinori Hosoyamada, Yu Sasaki, Seiichiro Tani, Keita Xagawa
The current paper improves the number of queries of the previous quantum multi-collision finding algorithms presented by Hosoyamada et al. at Asiacrypt 2017. Let an $l$-collision be a tuple of $l$ distinct inputs that result in the same output of a target function. In cryptology, it is important to study how many queries are required to find $l$-collisions for random functions of which domains are larger than ranges. The previous algorithm finds an $l$-collision for a random function by recursively calling the algorithm for finding $(l-1)$-collisions, and it achieves the average quantum query complexity of $O(N^{(3^{l-1}-1) / (2 \cdot 3^{l-1})})$, where $N$ is the range size of target functions. The new algorithm removes the redundancy of the previous recursive algorithm so that different recursive calls can share a part of computations. The new algorithm finds an $l$-collision for random functions with the average quantum query complexity of $O(N^{(2^{l-1}-1) / (2^{l}-1)})$, which improves the previous bound for all $l\ge 3$ (the new and previous algorithms achieve the optimal bound for $l=2$). More generally, the new algorithm achieves the average quantum query complexity of $O\left(c^{3/2}_N N^{\frac{2^{l-1}-1}{ 2^{l}-1}}\right)$ for a random function $f\colon X\to Y$ such that $|X| \geq l \cdot |Y| / c_N$ for any $1\le c_N \in o(N^{\frac{1}{2^l - 1}})$. With the same query complexity, it also finds a multiclaw for random functions, which is harder to find than a multicollision.
Last updated:  2021-09-17
An Analysis of the ProtonMail Cryptographic Architecture
Nadim Kobeissi
ProtonMail is an online email service that claims to offer end-to-end encryption such that "even [ProtonMail] cannot read and decrypt [user] emails." The service, based in Switzerland, offers email access via webmail and smartphone applications to over five million users as of November 2018. In this work, we provide the first independent analysis of ProtonMail's cryptographic architecture. We find that for the majority of ProtonMail users, no end-to-end encryption guarantees have ever been provided by the ProtonMail service and that the "Zero-Knowledge Password Proofs" are negated by the service itself. We also find and document weaknesses in ProtonMail's "Encrypt-to-Outside" feature. We justify our findings against well-defined security goals and conclude with recommendations.
Last updated:  2018-11-20
Organizational Cryptography for Access Control
Masahito Gotaishi, Shigeo Tsujii
A cryptosystem for granting/rescinding access permission is proposed, based on elliptic curve cryptography. The `Organizational Cryptosystem' grants access permission not by giving secret (decription) key to the corresponding user but by converting the ciphertext so that the user can decript with their secret key. The `conversion key' for the document, which is created from the secret key which the ciphertext has been originally encrypted for, the public key of the member who shall be permitted to read the ciphertext, and a part of the ciphertext. Therefore it is not possible to decrypt the ciphertext with the conversion key. Nor, for the administrator who issues the conversion key, to obtain any information about the plaintext.
Last updated:  2018-11-30
Parallel Chains: Improving Throughput and Latency of Blockchain Protocols via Parallel Composition
Matthias Fitzi, Peter Ga{ž}i, Aggelos Kiayias, Alexander Russell
Two of the most significant challenges in the design of blockchain protocols is increasing their transaction processing throughput and minimising latency in terms of transaction settlement. In this work we put forth for the first time a formal execution model that enables to express transaction throughput while supporting formal security arguments regarding safety and liveness. We then introduce parallel-chains, a simple yet powerful non-black-box composition technique for blockchain protocols. We showcase our technique by providing two parallel-chains protocol variants, one for the PoS and one for PoW setting, that exhibit optimal throughput under adaptive fail-stop corruptions while they retain their resiliency in the face of Byzantine adversity assuming honest majority of stake or computational power, respectively. We also apply our parallel-chains composition method to improve settlement latency; combining parallel composition with a novel transaction weighing mechanism we show that it is possible to scale down the time required for a transaction to settle by any given constant while maintaining the same level of security.
Last updated:  2018-11-20
Non-Interactive Non-Malleability from Quantum Supremacy
Yael Tauman Kalai, Dakshita Khurana
We construct non-interactive non-malleable commitments without setup in the plain model, under well-studied assumptions. First, we construct non-interactive non-malleable commitments with respect to commitment for $\epsilon \log \log n$ tags for a small constant $\epsilon > 0$, under the following assumptions: - Sub-exponential hardness of factoring or discrete log. - Quantum sub-exponential hardness of learning with errors (LWE). Second, as our key technical contribution, we introduce a new tag amplification technique. We show how to convert any non-interactive non-malleable commitment with respect to commitment for $\epsilon\log \log n$ tags (for any constant $\epsilon>0$) into a non-interactive non-malleable commitment with respect to replacement for $2^n$ tags. This part only assumes the existence of sub-exponentially secure non-interactive witness indistinguishable (NIWI) proofs, which can be based on sub-exponential security of the decisional linear assumption. Interestingly, for the tag amplification technique, we crucially rely on the leakage lemma due to Gentry and Wichs (STOC 2011). For the construction of non-malleable commitments for $\epsilon \log \log n$ tags, we rely on quantum supremacy. This use of quantum supremacy in classical cryptography is novel, and we believe it will have future applications. We provide one such application to two-message witness indistinguishable (WI) arguments from (quantum) polynomial hardness assumptions.
Last updated:  2018-11-20
A Note on Transitional Leakage When Masking AES with Only Two Bits of Randomness
Felix Wegener, Amir Moradi
Recently, Gross et al. demonstrated a first-order probing-secure implementation of AES using only two bits of randomness for both the initial sharing and the entire computation of AES. In this note, we recall that first-order probing security may not be sufficient for practical first-order security when randomness is re-cycled. We demonstrate that without taking the transitional leakage into account, the expected security level in a serialized design based on their concept might not be achieved in practice.
Last updated:  2018-11-20
Fly, you fool! Faster Frodo for the ARM Cortex-M4
Joppe W. Bos, Simon Friedberger, Marco Martinoli, Elisabeth Oswald, Martijn Stam
We present an efficient implementation of FrodoKEM-640 on an ARM Cortex-M4 core. We leverage the single instruction, multiple data paradigm, available in the instruction set of the ARM Cortex-M4, together with a careful analysis of the memory layout of matrices to considerably speed up matrix multiplications. Our implementations take up to 79.4% less cycles than the reference. Moreover, we challenge the usage of a cryptographically secure pseudorandom number generator for the generation of the large public matrix involved. We argue that statistically good pseudorandomness is enough to achieve the same security goal. Therefore, we propose to use xoshiro128** as a PRNG instead: its structure can be easily integrated in FrodoKEM-640, it passes all known statistical tests and greatly outperforms previous choices. By using xoshiro128** we improve the generation of the large public matrix, which is a considerable bottleneck for embedded devices, by up to 96%.
Last updated:  2020-04-14
Group Signature without Random Oracles from Randomizable Signatures
Remi Clarisse, Olivier Sanders
Group signature is a central tool for privacy-preserving protocols, ensuring authentication, anonymity and accountability. It has been massively used in cryptography, either directly or through variants such as direct anonymous attestations. However, it remains a complex tool, especially if ones wants to avoid proving security in the random oracle model. In this work, we propose a new group signature scheme proven secure without random oracles which significantly decreases the complexity in comparison with the state-of-the-art. More specifically, we halve both the size and the computational cost compared to the most efficient alternative in the same model. Moreover, our construction is also competitive against the most efficient ones in the random oracle model. Our construction is based on a tailored combination of two popular signatures, which avoids the explicit use of encryption schemes or zero-knowledge proofs while signing. It is flexible enough to achieve security in different models and is thus suitable for most contexts.
Last updated:  2018-11-16
Lightweight Circuits with Shift and Swap
Subhadeep Banik, Francesco Regazzoni, Serge Vaudenay
In CHES 2017, Moradi et al. presented a paper on ``Bit-Sliding'' in which the authors proposed lightweight constructions for SPN based block ciphers like AES, Present and SKINNY. The main idea behind these constructions was to reduce the length of the datapath to 1 bit and to reformulate the linear layer for these ciphers so that they require fewer scan flip-flops (which have built-in multiplexer functionality and so larger in area as compared to a simple flip-flop). In this paper we take the idea forward: is it possible to construct the linear layer using only 2 scan flip-flops? Take the case of Present: in the language of mathematics, the above question translates to: can the Present permutation be generated by some ordered composition only two types of permutations? The question can be answered in the affirmative by drawing upon the theory of permutation groups. However straightforward constructions would require that the ``ordered composition'' consist of a large number of simpler permutations. This would naturally take a large number of clock cycles to execute in a flip-flop array having only two scan flip-flops and thus incur heavy loss of throughput. In this paper we try to analyze SPN ciphers like Present and Gift that have a bit permutation as their linear layer. We tried to construct the linear layer of the cipher using as little clock cycles as possible. As an outcome we propose smallest known constructions for Present and Gift block ciphers for both encryption and combined encryption+decryption functionalities. We extend the above ideas to propose the first known construction of the Flip stream cipher.
Last updated:  2019-02-20
Private Function Evaluation with Cards
Alexander Koch, Stefan Walzer
Card-based protocols allow to evaluate an arbitrary fixed Boolean function $f$ on a hidden input to obtain a hidden output, without the executer learning anything about either of the two (e.g. Crépeau and Kilian, CRYPTO 1993). We explore the case where $f$ implements a universal function, i.e. $f$ is given the encoding $\langle P\rangle$ of a program $P$ and an input $x$ and computes $f(\langle P\rangle, x) = P(x)$. More concretely, we consider universal circuits, Turing machines, RAM machines, and branching programs, giving secure and conceptually simple card-based protocols in each case. We argue that card-based cryptography can be performed in a setting that is only very weakly interactive, which we call the “surveillance” model. Here, when Alice executes a protocol on the cards, the only task of Bob is to watch that Alice does not illegitimately turn over cards and that she shuffles in a way that nobody knows anything about the total permutation applied to the cards. We believe that because of this very limited interaction, our results can be called program obfuscation. As a tool, we develop a useful sub-protocol $\mathsf{sort}_{\Pi}X\mathop{\uparrow}Y$ that couples the two equal-length sequences $X, Y$ and jointly and obliviously permutes them with the permutation $\pi\in\Pi$ that lexicographically minimizes $\pi(X)$. We argue that this generalizes ideas present in many existing card-based protocols. In fact, AND, XOR, bit copy (Mizuki and Sone, FAW 2009), coupled rotation shuffles (Koch and Walzer, ePrint 2017) and the “permutation division” protocol of (Hashimoto et al., ICITS 2017) can all be expressed as “coupled sort protocols”.
Last updated:  2018-11-19
DEXON: A Highly Scalable, Decentralized DAG-Based Consensus Algorithm
Tai-Yuan Chen, Wei-Ning Huang, Po-Chun Kuo, Hao Chung, Tzu-Wei Chao
A blockchain system is a replicated state machine that must be fault tolerant. When designing a blockchain system, there is usually a trade-off between decentralization, scalability, and security. In this paper, we propose a novel blockchain system, DEXON, which achieves high scalability while remaining decentralized and robust in the real-world environment. We have two main contributions. First, we present a highly scalable sharding framework for blockchain. This framework takes an arbitrary number of single chains and transforms them into the blocklattice data structure, enabling high scalability and low transaction confirmation latency with asymptotically optimal communication overhead. Second, we propose a single-chain protocol based on our novel verifiable random function and a new Byzantine agreement that achieves high decentralization and low latency.
Last updated:  2019-07-05
Cryptanalysis of the Wave Signature Scheme
Paulo S. L. M. Barreto, Edoardo Persichetti
In this paper, we cryptanalyze the signature scheme \textsc{Wave}, which has recently appeared as a preprint. First, we show that there is a severe information leakage occurring from honestly-generated signatures. Then, we illustrate how to exploit this leakage to retrieve an alternative private key, which enables efficiently forging signatures for arbitrary messages. Our attack on the proposed 128-bit secure \textsc{Wave} parameters runs in about 13 minutes, most of which are actually spent collecting genuine signatures. We also explain how our attack applies to generalized versions of the scheme which could potentially be achieved using generalized admissible $(U,U+V)$ codes and larger field characteristics. Finally, as a target for further cryptanalysis, we describe a variant of \textsc{Wave} that we call \textsc{Tsunami}, which appears to thwart our attacks while keeping the positive aspects of that scheme.
Last updated:  2018-11-16
Minting Mechanisms for Blockchain -- or -- Moving from Cryptoassets to Cryptocurrencies
Dominic Deuber, Nico Döttling, Bernardo Magri, Giulio Malavolta, Sri Aravinda Krishnan Thyagarajan
Permissionless blockchain systems, such as Bitcoin, rely on users using their computational power to solve a puzzle in order to achieve a consensus. To incentivise users in maintaining the system, newly minted coins are assigned to the user who solves this puzzle. A hardware race that has hence ensued among the users, has had a detrimental impact on the environment, with enormous energy consumption and increased global carbon footprint. On the other hand, proof of stake systems incentivise coin hoarding as players maximise their utility by holding their stakes. As a result, existing cryptocurrencies do not mimic the day-to-day usability of a fiat currency, but are rather regarded as cryptoassets or investment vectors. In this work we initiate the study of minting mechanisms in cryptocurrencies as a primitive on its own right, and as a solution to prevent coin hoarding we propose a novel minting mechanism based on waiting-time first-price auctions. Our main technical tool is a protocol to run an auction over any blockchain. Moreover, our protocol is the first to securely implement an auction without requiring a semi-trusted party, i.e., where every miner in the network is a potential bidder. Our approach is generically applicable and we show that it is incentive-compatible with the underlying blockchain, i.e., the best strategy for a player is to behave honestly. Our proof-of-concept implementation shows that our system is efficient and scales to tens of thousands of bidders.
Last updated:  2019-01-25
Faster SeaSign signatures through improved rejection sampling
Thomas Decru, Lorenz Panny, Frederik Vercauteren
We speed up the isogeny-based ``SeaSign'' signature scheme recently proposed by De Feo and Galbraith. The core idea in SeaSign is to apply the ``Fiat–Shamir with aborts'' transform to the parallel repeated execution of an identification scheme based on CSIDH. We optimize this general transform by allowing the prover to not answer a limited number of said parallel executions, thereby lowering the overall probability of rejection. The performance improvement ranges between factors of approximately 4.4 and 65.7 for various instantiations of the scheme, at the expense of roughly doubling the signature sizes.
Last updated:  2018-11-16
Covert Security with Public Verifiability: Faster, Leaner, and Simpler
Cheng Hong, Jonathan Katz, Vladimir Kolesnikov, Wen-jie Lu, Xiao Wang
The notion of covert security for secure two-party computation serves as a compromise between the traditional semi-honest and malicious security definitions. Roughly, covert security ensures that cheating behavior is detected by the honest party with reasonable probability. It provides more realistic guarantees than semi-honest security with significantly less overhead than is required by malicious security. The rationale for covert security is that it dissuades cheating by parties that care about their reputation and do not want to risk being caught. Further thought, however, shows that a much stronger disincentive is obtained if the honest party can generate a publicly verifiable certificate of misbehavior when cheating is detected. While the corresponding notion of publicly verifiable covert (PVC) security has been explored, existing PVC protocols are complex and less efficient than the best-known covert protocols, and have impractically large certificates. We propose a novel PVC protocol that significantly improves on prior work. Our protocol uses only ``off-the-shelf'' primitives (in particular, it avoids signed oblivious transfer) and, for deterrence factor 1/2, has only 20-40% overhead (depending on the circuit size and network bandwidth) compared to state-of-the-art semi-honest protocols. Our protocol also has, for the first time, constant-size certificates of cheating (e.g., 354 bytes long at the 128-bit security level). As our protocol offers strong security guarantees with low overhead, we suggest that it is the best choice for many practical applications of secure two-party computation.
Last updated:  2018-11-16
Further observations on SIMON and SPECK families of block ciphers
S. M. Dehnavi
SIMON and SPECK families of block ciphers are well-known lightweight ciphers designed by NSA. In this note, based on the previous investigations on SIMON, a closed formula for the squared correlations and differential probabilities of the mapping $\phi(x) = x \odot S^1(x)$ on $\mathbb{F}_2^n$ is given. From the aspects of linear and differential cryptanalysis, this mapping is equivalent to the core quadratic mapping of SIMON via rearrangement of coordinates and EA-equivalence. Based upon the proposed explicit formula, a full description of DDT and LAT of $\phi$ is provided. In the case of SPECK, as the only nonlinear operation in this family of ciphers is, addition mod $2^n$, after reformulating the formula for linear and differential probabilities of addition mod $2^n$, straightforward algorithms for finding the output masks with maximum squared correlation, given the input masks as well as the output differences with maximum differential probability, given the input differences, are presented.
Last updated:  2019-12-12
P4TC—Provably-Secure yet Practical Privacy-Preserving Toll Collection
Valerie Fetzer, Max Hoffmann, Matthias Nagel, Andy Rupp, Rebecca Schwerdt
Electronic toll collection (ETC) is widely used all over the world not only to finance our road infrastructures, but also to realize advanced features like congestion management and pollution reduction by means of dynamic pricing. Unfortunately, existing systems rely on user identification and allow tracing a user's movements. Several abuses of this personalized location data have already become public. In view of the planned European-wide interoperable tolling system EETS and the new EU General Data Protection Regulation, location privacy becomes of particular importance. In this paper, we propose a flexible security model and crypto protocol framework designed for privacy-preserving toll collection in the most dominant setting, i.e., Dedicated Short Range Communication (DSRC) ETC. A major challenge in designing the framework at hand was to combine provable security and practicality, where the latter includes practical performance figures and a suitable treatment of real-world issues, like broken on-board units etc. To the best of our knowledge, our work is the first in the DSRC setting with a rigorous security model and proof and arguably the most comprehensive formal treatment of ETC security and privacy overall. Additionally, we provide a prototypical implementation on realistic hardware. This implementation already features fairly practical performance figures, even though there is still room for optimizations. An interaction between an on-board unit and a road-side unit is estimated to take less than a second allowing for toll collection at full speed assuming one road-side unit per lane.
Last updated:  2019-05-09
Proof-of-Stake Protocols for Privacy-Aware Blockchains
Chaya Ganesh, Claudio Orlandi, Daniel Tschudi
Proof-of-stake (PoS) protocols are emerging as one of the most promising alternative to the wasteful proof-of-work (PoW) protocols for consensus in Blockchains (or distributed ledgers). However, current PoS protocols inherently disclose both the identity and the wealth of the stakeholders, and thus seem incompatible with privacy-preserving cryptocurrencies (such as ZCash, Monero, etc.). In this paper we initiate the formal study for PoS protocols with privacy properties. Our results include: - A (theoretical) feasibility result showing that it is possible to construct a general class of private PoS (PPoS) protocols; and to add privacy to a wide class of PoS protocols, - A privacy-preserving version of a popular PoS protocol, Ouroboros Praos. Towards our result, we define the notion of anonymous verifiable random function, which we believe is of independent interest.
Last updated:  2018-11-16
Tropical cryptography II: extensions by homomorphisms
Dima Grigoriev, Vladimir Shpilrain
We use extensions of tropical algebras as platforms for very efficient public key exchange protocols.
Last updated:  2018-11-18
Some Properties of Modular Addition
Victoria Vysotskaya
In this paper we study a problem which emerged during an attempt to apply a differential cryptanalysis method to the <<Magma>> algorithm. We obtained a general formula of distribution in the difference distribution table of addition modulo $2^n$ and provided an efficient method for computing the distribution in a row with given index. Moreover, an exact formula that may be used to solve the task of counting all the distributions was obtained, and an asymptotically accurate approximation of number of distinct distributions was proved. Finally, we designed an algorithm to generate all distributions in $2^{O(\sqrt{(n)})}$ operations (whereas the corresponding brute-force method takes $2^{\Omega(n)}$).
Last updated:  2018-11-16
A fully distributed revocable ciphertext-policy hierarchical attribute-based encryption without pairing
Mohammad Ali, Javad Mohajeri, Mohammad-Reza Sadeghi
Several appealing features of cloud computing such as cost-effectiveness and user-friendliness have made many users and enterprises interested to outsource their sensitive data for sharing via cloud. However, it causes many new challenges toward data confidentiality, access control , scalability, and flexibility. Ciphertext-policy Hierarchical attribute-based encryption (CP-HABE) can be a promising solution to the mentioned problems. But, the existing HABE schemes have several limitations in their key delegation and user revocation mechanisms. In this work, to solve these problems, we introduce the concept of \textit{fully distributed revocable } CP-HABE (FDR-CP-HABE) system and propose the first FDR-CP-HABE scheme. The proposed scheme provides a high level of flexibility and scalability in the key delegation and user revocation mechanisms. Moreover, our proposed system is pairing-free and realizes lightweight computing in decryption phase. Indeed, by exploiting the computational operation outsourcing technique, most of the operations have been done by the powerful cloud service provider and very few computations have been leaved to the data user. Also, in our scheme the storage cost on the data user side has been decreased, compared to the other similar works. Moreover, using the hardness assumption of Decisional Bilinear Diffie-Hellman (DBDH) problem, we show that the proposed scheme is adaptively semantically secure in the standard model.
Last updated:  2018-11-16
Insecurity of a provably secure and lightweight certificateless signature scheme for IIoT environments
Lunzhi Deng
Recently, Karati et al. presented a lightweight certificateless signature scheme for industrial Internet of Things (IIoT) environments, and claimed the scheme was provably secure in the standard model. In this paper, it is indicated that the scheme is not secure by showing two concrete attacks.
Last updated:  2021-01-04
Correction to "Improving the DGK comparison protocol"
Uncategorized
Thijs Veugen
Show abstract
Uncategorized
At the IEEE Workshop on Information Forensics and Security in 2012, Veugen introduced two ways of improving a well-known secure comparison protocol by Damgård, Geisler and Krøigaard, which uses additively homomorphic encryption. The first new protocol reduced the computational effort of one party by roughly $50\%$. The second one showed how to achieve perfect security towards one party without additional costs, whereas the original version with encrypted inputs only achieved statistical security. However, the second protocol contained a mistake, leading to incorrect outputs in some cases. We show how to correct this mistake, without increasing its computational complexity.
Last updated:  2018-12-14
SoK: Modular and Efficient Private Decision Tree Evaluation
Ágnes Kiss, Masoud Naderpour, Jian Liu, N. Asokan, Thomas Schneider
Decision trees and random forests are widely used classifiers in machine learning. Service providers often host classification models in a cloud service and provide an interface for clients to use the model remotely. While the model is sensitive information of the server, the input query and prediction results are sensitive information of the client. This motivates the need for private decision tree evaluation, where the service provider does not learn the client's input and the client does not learn the model except for its size and the result. In this work, we identify the three phases of private decision tree evaluation protocols: feature selection, comparison, and path evaluation. We systematize protocols for each of these phases to identify the best available instantiations using the two main paradigms for secure computation: garbling techniques and homomorphic encryption. There is a natural tradeoff between runtime and communication considering these two paradigms: garbling techniques use fast symmetric-key operations but require a large amount of communication, while homomorphic encryption is computationally heavy but requires little communication. Our contributions are as follows: Firstly, we systematically review and analyse state-of-the-art protocols for the three phases of private decision tree evaluation. Our methodology allows us to identify novel combinations of these protocols that provide better tradeoffs than existing protocols. Thereafter, we empirically evaluate all combinations of these protocols by providing communication and runtime measures, and provide recommendations based on the identified concrete tradeoffs.
Last updated:  2018-11-15
MARVELlous: a STARK-Friendly Family of Cryptographic Primitives
Tomer Ashur, Siemen Dhooghe
The ZK-STARK technology, published by Ben-Sasson et al. in ePrint 2018/046 is hailed by many as being a viable, efficient solution to the scaling problem of cryptocurrencies. In essence, a ZK-STARK proof uses a Merkle-tree to compress the data that needs to be verified, thus greatly reduces the communication overhead between the prover and the verifier. We propose MARVELlous a family of cryptographic algorithms specifically designed for STARK efficiency. The family currently includes the block cipher Jarvis and the hash function Friday. The design of Jarvis is inspired by the design of Rijndael, better known as the AES. By doing so we create a cipher with similar properties to those of Rijndael which allows us to reuse the wide-trail strategy to argue the resistance of the design against differential and linear cryptanalysis and focus our efforts on resistance against algebraic attacks. Friday is a Merkle-Damgard based hash function instantiated with Jarvis as its compression function thus it inherits its security properties up to the birthday bound. Jarvis and Friday have been suggested to be used in the Ethereum protocol by Ben-Sasson in Ethereum's Devcon IV. In this paper, we instantiate versions of Jarvis offering 128, 160, 192 and 256-bit security (both state- and key-size) which are used to implement Friday. We warmly invite the community to study and assess the security of the designs.
Last updated:  2018-11-15
End-to-End Secure Mobile Group Messaging with Conversation Integrity and Deniability
Michael Schliep, Nicholas Hopper
In this paper, we describe Mobile CoWPI, a deployable, end-to-end secure mobile group messaging application with proofs of security. Mobile CoWPI allows dynamic groups of users to participate in, join, and leave private, authenticated conversations without requiring the participants to be simultaneously online or maintain reliable network connectivity. We identify the limitations of mobile messaging and how they affect conversational integrity and deniability. We define strong models of these security properties, prove that Mobile CoWPI satisfies these properties, and argue that no protocol that satisfies these properties can be more scalable than Mobile CoWPI. We also describe an implementation of Mobile CoWPI and show through experiments that it is suitable for use in real-world messaging conditions.
Last updated:  2019-02-27
On Finding Quantum Multi-collisions
Qipeng Liu, Mark Zhandry
A $k$-collision for a compressing hash function $H$ is a set of $k$ distinct inputs that all map to the same output. In this work, we show that for any constant $k$, $\Theta\left(N^{\frac{1}{2}(1-\frac{1}{2^k-1})}\right)$ quantum queries are both necessary and sufficient to achieve a $k$-collision with constant probability. This improves on both the best prior upper bound (Hosoyamada et al., ASIACRYPT 2017) and provides the first non-trivial lower bound, completely resolving the problem.
Last updated:  2019-09-07
Scalable One-Time Pad --- From Information Theoretic Security to Information Conservational Security
Wen-Ran Zhang
Whereas it is widely deemed an impossible task to scale down One-Time Pad (OTP) key length without sacrificing information theoretic security or network traffic, this project started with the attempt to develop a paradigm of Scalable One-Time Pad (S-OTP) ciphers based on information conservational computing/cryptography (ICC). This line of research, however, hits a dead-end at the limitation of information entropy and computational precision for full information conservation when long messages are transmitted. The dead-end suggests a 2-phase study. First, to explore the boundaries of scalability with data compression to reduce a long message to a tiny minimum but assuming only partial information conservation. Second, to explore the possibility of scalability with full information conservation but with limited increase of network traffic for transmitting long messages with information theoretic security. This paper reports results of the first phase. This study suggests two future directions of ICC: (1) using S-OTP to scale down key length at the expense of limited increase of network traffic for full information conservation (See solution at https://eprint.iacr.org/2019/913.pdf ); (2) develop a type of quantum crypto machine for full information conservation.
Last updated:  2021-02-02
Match Me if You Can: Matchmaking Encryption and its Applications
Giuseppe Ateniese, Danilo Francati, David Nuñez, Daniele Venturi
We introduce a new form of encryption that we name matchmaking encryption (ME). Using ME, sender S and receiver R (each with its own attributes) can both specify policies the other party must satisfy in order for the message to be revealed. The main security guarantee is that of privacy-preserving policy matching: During decryption nothing is leaked beyond the fact that a match occurred/did not occur. ME opens up new ways of secretly communicating, and enables several new applications where both participants can specify fine-grained access policies to encrypted data. For instance, in social matchmaking, S can encrypt a file containing his/her personal details and specify a policy so that the file can be decrypted only by his/her ideal partner. On the other end, a receiver R will be able to decrypt the file only if S corresponds to his/her ideal partner defined through a policy. On the theoretical side, we define security for ME, as well as provide generic frameworks for constructing ME from functional encryption. These constructions need to face the technical challenge of simultaneously checking the policies chosen by S and R, to avoid any leakage. On the practical side, we construct an efficient identity-based scheme for equality policies, with provable security in the random oracle model under the standard BDH assumption. We implement and evaluate our scheme and provide experimental evidence that our construction is practical. We also apply identity-based ME to a concrete use case, in particular for creating an anonymous bulletin board over a Tor network.
Last updated:  2018-11-13
Adaptively Simulation-Secure Attribute-Hiding Predicate Encryption
Pratish Datta, Tatsuaki Okamoto, Katsuyuki Takashima
This paper demonstrates how to achieve simulation-based strong attribute hiding against adaptive adversaries for predicate encryption (PE) schemes supporting expressive predicate families under standard computational assumptions in bilinear groups. Our main result is a simulation-based adaptively strongly partially-hiding PE (PHPE) scheme for predicates computing arithmetic branching programs (ABP) on public attributes, followed by an inner-product predicate on private attributes. This simultaneously generalizes attribute-based encryption (ABE) for boolean formulas and ABP’s as well as strongly attribute-hiding PE schemes for inner products. The proposed scheme is proven secure for any a priori bounded number of ciphertexts and an unbounded (polynomial) number of decryption keys, which is the best possible in the simulation-based adaptive security framework. This directly implies that our construction also achieves indistinguishability-based strongly partially-hiding security against adversaries requesting an unbounded (polynomial) number of ciphertexts and decryption keys. The security of the proposed scheme is derived under (asymmetric version of) the well-studied decisional linear (DLIN) assumption. Our work resolves an open problem posed by Wee in TCC 2017, where his result was limited to the semi-adaptive setting. Moreover, our result advances the current state of the art in both the fields of simulation-based and indistinguishability-based strongly attribute-hiding PE schemes. Our main technical contribution lies in extending the strong attribute hiding methodology of Okamoto and Takashima [EUROCRYPT 2012, ASIACRYPT 2012] to the framework of simulation-based security and beyond inner products.
Last updated:  2018-11-28
Shuffle and Mix: On the Diffusion of Randomness in Threshold Implementations of Keccak
Felix Wegener, Christian Baiker, Amir Moradi
Threshold Implementations are well-known as a provably firstorder secure Boolean masking scheme even in the presence of glitches. A precondition for their security proof is a uniform input distribution at each round function, which may require an injection of fresh randomness or an increase in the number of shares. However, it is unclear whether violating the uniformity assumption causes exploitable leakage in practice. Recently, Daemen undertook a theoretical study of lossy mappings to extend the understanding of uniformity violations. We complement his work by entropy simulations and practical measurements of Keccak’s round function. Our findings shed light on the necessity of mixing operations in addition to bit-permutations in a cipher’s linear layer to propagate randomness between S-boxes and prevent exploitable leakage. Finally, we argue that this result cannot be obtained by current simulation methods, further stressing the continued need for practical leakage measurements.
Last updated:  2018-11-12
Simulation-based Receiver Selective Opening CCA Secure PKE from Standard Computational Assumptions
Keisuke Hara, Fuyuki Kitagawa, Takahiro Matsuda, Goichiro Hanaoka, Keisuke Tanaka
In the situation where there are one sender and multiple receivers, a receiver selective opening (RSO) attack for a public key encryption (PKE) scheme considers adversaries that can corrupt some of the receivers and get their secret keys and plaintexts. Security against RSO attacks for a PKE scheme ensures confidentiality of ciphertexts of uncorrupted receivers. Simulation-based RSO security against chosen ciphertext attacks (SIM-RSO-CCA) is the strongest security notion in all RSO attack scenarios. Jia, Lu, and Li (INDOCRYPT 2016) proposed the first SIM-RSO-CCA secure PKE scheme. However, their scheme used indistinguishablility obfuscation, which is not known to be constructed from any standard computational assumption. In this paper, we give two contributions for constructing SIM-RSO-CCA secure PKE from standard computational assumptions. Firstly, we propose a generic construction of SIM-RSO-CCA secure PKE using an IND-CPA secure PKE scheme and a non-interactive zero-knowledge proof system satisfying one-time simulation soundness. Secondly, we propose an efficient and concrete construction of SIM-RSO-CCA secure PKE based on the decisional Diffie-Hellman (DDH) assumption. Moreover, we give a method for efficiently expanding the plaintext space of the DDH-based construction. By applying this method to the construction, we obtain the first DDH-based SIM-RSO-CCA secure PKE scheme supporting a super-polynomially large plaintext space with compact ciphertexts.
Last updated:  2019-03-21
Plaintext Recovery Attack of OCB2
Tetsu Iwata
Inoue and Minematsu [Cryptology ePrint Archive: Report 2018/1040] presented efficient forgery attacks against OCB2, and Poettering [Cryptology ePrint Archive: Report 2018/1087] presented a distinguishing attack. In this short note, based on these results, we show a plaintext recovery attack against OCB2 in the chosen plaintext and ciphertext setting. We also show that the decryption oracle of the underlying block cipher can be simulated. This complements the simulation of the encryption oracle of the block cipher by Poettering in [Cryptology ePrint Archive: Report 2018/1087].
Last updated:  2019-01-28
On the impact of decryption failures on the security of LWE/LWR based schemes
Jan-Pieter D'Anvers, Frederik Vercauteren, Ingrid Verbauwhede
In this paper we investigate the impact of decryption failures on the chosen-ciphertext security of (Ring/Module)-Learning With Errors and (Ring/Module)-Learning with Rounding based primitives. Our analysis is split in three parts: First, we use a technique to increase the failure rate of these schemes called failure boosting. Based on this technique we investigate the minimal effort for an adversary to obtain a failure in 3 cases: when he has access to a quantum computer, when he mounts a multi-target attack and when he can only perform a limited number of oracle queries. Secondly, we examine the amount of information that an adversary can derive from failing ciphertexts. Finally, these techniques are combined in an attack on (Ring/Module)-LWE and (Ring/Module)-LWR based schemes with decryption failures. We provide both a theoretical analysis as well as an implementation to calculate the security impact and show that an attacker can significantly reduce the security of (Ring/Module)-LWE/LWR based schemes that have a relatively high failure rate. However, for the candidates of the NIST post-quantum standardization process that we assessed, the number of required oracle queries is above practical limits due to their conservative parameter choices.
Last updated:  2018-11-09
High-speed Side-channel-protected Encryption and Authentication in Hardware
Nele Mentens, Vojtech Miskovsky, Martin Novotny, Jo Vliegen
This paper describes two FPGA implementations for the encryption and authentication of data, based on the AES algorithm running in Galois/Counter mode (AES-GCM). Both architectures are protected against side-channel analysis attacks through the use of a threshold implementation (TI). The first architecture is fully unrolled and optimized for throughput. The second architecture uses a round-based structure, fits on a relatively small FPGA board, and is evaluated for side-channel attack resistance. We perform a Test Vector Leakage Assessment (TVLA), which shows no first-order leakage in the power consumption of the FPGA. To the best of our knowledge, our work is (1) the first to describe a throughput-optimized FPGA architecture of AES-GCM, protected against first-order side-channel information leakage, and (2) the first to evaluate the side-channel attack resistance of a TI-protected AES-GCM implementation.
Last updated:  2019-03-20
Breaking the confidentiality of OCB2
Bertram Poettering
OCB2 is a widely standardized mode of operation of a blockcipher that aims at providing authenticated encryption. A recent report by Inoue and Minematsu (IACR EPRINT report 2018/1040) indicates that OCB2 does not meet this goal. Concretely, by describing simple forging attacks the authors evidence that the (sub)goal of authenticity is not reached. The report does not question the confidentiality offered by OCB2. In this note we show how the attacks of Inoue and Minematsu can be extended to also break the confidentiality of OCB2. We do this by constructing both IND-CCA and plaintext recovering adversaries, all of which require minimal resources and achieve overwhelming success rates.
Last updated:  2018-11-09
Two Party Distribution Testing: Communication and Security
Alexandr Andoni, Tal Malkin, Negev Shekel Nosatzki
We study the problem of discrete distribution testing in the two-party setting. For example, in the standard closeness testing problem, Alice and Bob each have $t$ samples from, respectively, distributions $a$ and $b$ over $[n]$, and they need to test whether $a=b$ or $a,b$ are $\varepsilon$-far (in the $\ell_1$ distance) for some fixed $\varepsilon>0$. This is in contrast to the well-studied one-party case, where the tester has unrestricted access to samples of both distributions, for which optimal bounds are known for a number of variations. Despite being a natural constraint in applications, the two-party setting has evaded attention so far. We address two fundamental aspects of the two-party setting: 1) what is the communication complexity, and 2) can it be accomplished securely, without Alice and Bob learning extra information about each other's input. Besides closeness testing, we also study the independence testing problem, where Alice and Bob have $t$ samples from distributions $a$ and $b$ respectively, which may be correlated; the question is whether $a,b$ are independent of $\epsilon$-far from being independent. Our contribution is three-fold: $\bullet$ Communication: we show how to gain communication efficiency as we have more samples, beyond the information-theoretic bound on $t$. Furthermore, the gain is polynomially better than what one may obtain by adapting one-party algorithms. For the closeness testing, our protocol has communication $s = \tilde{\Theta}_{\varepsilon}\left(n^2/t^2\right)$ as long as $t$ is at least the information-theoretic minimum number of samples. For the independence testing over domain $[n] \times [m]$, where $n\ge m$, we obtain $s = \tilde{O}_{\varepsilon}(n^2 m/t^2 + n m/t + \sqrt{m})$. $\bullet$ Lower bounds: we prove tightness of our trade-off for the closeness testing, as well as that the independence testing requires tight $\Omega(\sqrt{m})$ communication for unbounded number of samples. These lower bounds are of independent interest as, to the best of our knowledge, these are the first 2-party communication lower bounds for testing problems, where the inputs represent a set of i.i.d. samples. $\bullet$ Security: we define the concept of secure distribution testing and argue that it must leak at least some minimal information when the promise is not satisfied. We then provide secure versions of the above protocols with an overhead that is only polynomial in the security parameter.
Last updated:  2018-11-09
Exact maximum expected differential and linear probability for 2-round Kuznyechik
Vitaly Kiryukhin
This paper presents the complete description of the best differentials and linear hulls in 2-round Kuznyechik. We proved that 2-round $\mathrm{MEDP}=2^{-86.66...}$, $\mathrm{MELP}=2^{-76.739...}$. A comparison is made with similar results for the AES cipher.
Last updated:  2018-11-09
A Deep Dive into Blockchain Selfish Mining
Uncategorized
Qianlan Bai, Xinyan Zhou, Xing Wang, Yuedong Xu, Xin Wang, Qingsheng Kong
Show abstract
Uncategorized
This paper studies a fundamental problem regarding the security of blockchain on how the existence of multiple misbehaving pools influences the profitability of selfish mining. Each selfish miner maintains a private chain and makes it public opportunistically for the purpose of acquiring more rewards incommensurate to his Hashrate. We establish a novel Markov chain model to characterize all the state transitions of public and private chains. The minimum requirement of Hashrate together with the minimum delay of being profitable is derived in close-form. The former reduces to 21.48% with the symmetric selfish miners, while their competition with asymmetric Hashrates puts forward a higher requirement of the profitable threshold. The profitable delay increases with the decrease of the Hashrate of selfish miners, making the mining pools more cautious on performing selfish mining.
Last updated:  2018-11-09
Private Stateful Information Retrieval
Sarvar Patel, Giuseppe Persiano, Kevin Yeo
Private information retrieval (PIR) is a fundamental tool for preserving query privacy when accessing outsourced data. All previous PIR constructions have significant costs preventing widespread use. In this work, we present private stateful information retrieval (PSIR), an extension of PIR, allowing clients to be stateful and maintain information between multiple queries. Our design of the PSIR primitive maintains three important properties of PIR: multiple clients may simultaneously query without complex concurrency primitives, query privacy should be maintained if the server colludes with other clients, and new clients should be able to enroll into the system by exclusively interacting with the server. We present a PSIR framework that reduces an online query to performing one single-server PIR on a sub-linear number of database records. All other operations beyond the single-server PIR consist of cryptographic hashes or plaintext operations. In practice, the dominating costs of resources occur due to the public-key operations involved with PIR. By reducing the input database to PIR, we are able to limit expensive computation and avoid transmitting large ciphertexts. We show that various instantiations of PSIR reduce server CPU by up to 10x and online network costs by up to 10x over the previous best PIR construction.
Last updated:  2019-09-20
An Algebraic Method to Recover Superpolies in Cube Attacks
Chen-Dong Ye, Tian Tian
Cube attacks are an important type of key recovery attacks against NFSR-based cryptosystems. The key step in cube attacks closely related to key recovery is recovering superpolies. However, in the previous cube attacks including original, division property based, and correlation cube attacks, the algebraic normal form of superpolies could hardly be shown to be exact due to an unavoidable failure probability or a requirement of large time complexity. In this paper, we propose an algebraic method aiming at recovering the exact algebraic normal forms of superpolies practically. Our method is developed based on degree evaluation method proposed by Liu in Crypto-2017. As an illustration, we apply our method to Trivium. As a result, we recover the algebraic normal forms of some superpolies for the 818-, 835-, 837-, and 838-round Trivium. Based on these superpolies, on a large set of weak keys, we can recover at least five key bits equivalently for up to the 838-round Trivium with a complexity of about $2^{37}$. Besides, for the cube proposed by Liu in Crypto-2017 as a zero-sum distinguisher for the 838-round Trivium, it is proved that its superpoly is not zero-constant. Hopefully, our method would provide some new insights on cube attacks against NFSR-based ciphers.
Last updated:  2019-11-02
Statistical Zeroizing Attack: Cryptanalysis of Candidates of BP Obfuscation over GGH15 Multilinear Map
Uncategorized
Jung Hee Cheon, Wonhee Cho, Minki Hhan, Jiseung Kim, Changmin Lee
Show abstract
Uncategorized
We present a new cryptanalytic algorithm on obfuscations based on GGH15 multilinear map. Our algorithm, statistical zeroizing attack, directly distinguishes two distributions from obfuscation while it follows the zeroizing attack paradigm, that is, it uses evaluations of zeros of obfuscated programs. Our attack breaks the recent indistinguishability obfuscation candidate suggested by Chen et al. (CRYPTO'18) for the optimal parameter settings. More precisely, we show that there are two functionally equivalent branching programs whose CVW obfuscations can be efficiently distinguished by computing the sample variance of evaluations. This statistical attack gives a new perspective on the security of the indistinguishability obfuscations: we should consider the shape of the distributions of evaluation of obfuscation to ensure security. In other words, while most of the previous (weak) security proofs have been studied with respect to algebraic attack model or ideal model, our attack shows that this algebraic security is not enough to achieve indistinguishability obfuscation. In particular, we show that the obfuscation scheme suggested by Bartusek et al. (TCC'18) does not {achieve} the desired security in a certain parameter regime, in which their algebraic security proof still holds. The correctness of statistical zeroizing attacks holds under a mild assumption on the preimage sampling algorithm with a lattice trapdoor. We experimentally verify this assumption for implemented obfuscation by Halevi et al. (ACM CCS'17).
Last updated:  2018-11-09
How Does Strict Parallelism Affect Security? A Case Study on the Side-Channel Attacks against GPU-based Bitsliced AES Implementation
Uncategorized
Yiwen Gao, Yongbin Zhou, Wei Cheng
Show abstract
Uncategorized
Parallel cryptographic implementations are generally considered to be more advantageous than their non-parallel counterparts in mitigating side-channel attacks because of their higher noise-level. So far as we know, the side-channel security of GPU-based cryptographic implementations have been studied in recent years, and those implementations then turn out to be susceptible to some side-channel attacks. Unfortunately, the target parallel implementations in their work do not achieve strict parallelism because of the occurrence of cached memory accesses or the use of conditional branches, so how strict parallelism affects the side-channel security of cryptographic implementations is still an open problem. In this work, we make a case study of the side-channel security of a GPU-based bitsliced AES implementation in terms of bit-level parallelism and thread-level parallelism in order to show the way that works to reduce the side-channel security of strict parallel implementations. We present GPU-based bitsliced AES implementation as the study case because (1) it achieves strict parallelism so as to be resistant to cache-based attacks and timing attacks; and (2) it achieves both bit-level parallelism and thread-level parallelism (a.k.a. task-level parallelism), which enables us to research from multiple perspectives. More specifically, we first set up our testbed and collect electro-magnetic (EM) traces with some special techniques. Then, the measured traces are analyzed in two granularity. In bit-level parallelism, we give a non-profiled leakage detection test before mounting attacks with our proposed bit-level fusion techniques like multi-bits feature-level fusion attacks (MBFFA) and multi-bits decision-level fusion attacks (MBDFA). In thread-level parallelism, a profiled leakage detection test is employed to extract some special information from multi-threads leakages, and with the help of those information our proposed multi-threads hybrid fusion attack (MTHFA) method takes effect. Last, we propose a simple metric to quantify the side-channel security of parallel cryptographic implementations. Our research shows that the secret key of our target implementation can be recovered with less cost than expected, which suggests that the side-channel security of parallel cryptographic implementations should be reevaluated before application.
Last updated:  2019-05-01
Analysis of Deterministic Longest-Chain Protocols
Uncategorized
Elaine Shi
Show abstract
Uncategorized
Most classical consensus protocols rely on a leader to coordinate nodes’ voting efforts. One novel idea that stems from blockchain-style consensus is to rely, instead, on a “longest-chain” idea for such coordination. Such a longest-chain idea was initially considered in randomized protocols, where in each round, a node has some probability of being elected a leader who can propose the next block. Recently, well-known systems have started implementing the deterministic counterpart of such longest-chain protocols — the deterministic counterpart is especially attractive since it is even simpler to implement than their randomized cousins. A notable instantiation is the Aura protocol which is shipped with Parity’s open-source Ethereum implementation. Interestingly, mathematical analyses of deterministic, longest-chain protocols are lacking even though there exist several analyses of randomized versions. In this paper, we provide the first formal analysis of deterministic, longest-chain-style consensus. We show that a variant of the Aura protocol can defend against a Byzantine adversary that controls fewer than 1/3 fraction of the nodes, and this resilience parameter is tight by some technical interpretation. Based on insights gained through our mathematical treatment, we point out that Aura’s concrete instantiation actually fails to achieve the resiliene level they claim. Finally, while our tight proof for the longest-chain protocol is rather involved and non-trivial; we show that a variant of the “longest-chain” idea which we call “largest-set” enables a textbook construction that admits a simple proof (albeit with slower confirmation).
Last updated:  2019-04-26
Two Round Information-Theoretic MPC with Malicious Security
Uncategorized
Prabhanjan Ananth, Arka Rai Choudhuri, Aarushi Goel, Abhishek Jain
Show abstract
Uncategorized
We provide the first constructions of two round information-theoretic (IT) secure multiparty computation (MPC) protocols in the plain model that tolerate any $t<n/2$ malicious corruptions. Our protocols satisfy the strongest achievable standard notions of security in two rounds in different communication models. Previously, IT-MPC protocols in the plain model either required a larger number of rounds, or a smaller minority of corruptions.
Last updated:  2018-11-09
More Efficient Lattice PRFs from Keyed Pseudorandom Synthesizers
Hart Montgomery
We develop new constructions of lattice-based PRFs using keyed pseudorandom synthesizers. We generalize all of the known `basic' parallel lattice-based PRFs--those of [BPR12], [BLMR13], and [BP14]--to build highly parallel lattice-based PRFs with smaller modulus (and thus better reductions from worst-case lattice problems) while still maintaining computational efficiency asymptotically equal to the fastest known lattice-based PRFs at only the cost of larger key sizes. In particular, we build several parallel (in $NC^{2}$) lattice-based PRFs with modulus independent of the number of PRF input bits based on both standard LWE and ring LWE. Our modulus for these PRFs is just $O \left(m^{ f \left(m \right)} \right)$ for lattice dimension $m$ and any function $f \left(m \right) \in \omega \left(1 \right)$. The only known parallel construction of a lattice-based PRF with such a small modulus is a construction from Banerjee's thesis, and some of our parallel PRFs with equivalently small modulus have smaller key sizes and are very slightly faster (when using FFT multiplication). These PRFs also asymptotically match the computational efficiency of the most efficient PRFs built from any LWE- or ring LWE-based assumptions known (potentially excluding some concurrent work), respectively, and concretely require less computation per output than any known parallel lattice-based PRFs (again when using FFT multiplication). We additionally use our techniques to build other efficient PRFs with very low circuit complexity (but higher modulus) which improve known results on highly parallel lattice PRFs. For instance, for input length $\lambda$, we show that there exists a ring LWE-based PRF in $NC^{1}$ with modulus proportional to $m^{\lambda^{c}}$ for any $c \in \left(0, 1 \right)$. Constructions from lattices with this circuit depth were only previously known from larger moduli.
Last updated:  2020-12-09
Game Theoretic Notions of Fairness in Multi-Party Coin Toss
Kai-Min Chung, Yue Guo, Wei-Kai Lin, Rafael Pass, Elaine Shi
Coin toss has been extensively studied in the cryptography literature, and the well-accepted notion of fairness (henceforth called strong fairness) requires that a corrupt coalition cannot cause non-negligible bias. It is well-understood that two-party coin toss is impossible if one of the parties can prematurely abort; further, this impossibility generalizes to multiple parties with a corrupt majority (even if the adversary is computationally bounded and fail-stop only). Interestingly, the original proposal of (two-party) coin toss protocols by Blum in fact considered a weaker notion of fairness: imagine that the (randomized) transcript of the coin toss protocol defines a winner among the two parties. Now Blum's notion requires that a corrupt party cannot bias the outcome in its favor (but self-sacrificing bias is allowed). Blum showed that this weak notion is indeed attainable for two parties assuming the existence of one-way functions. In this paper, we ask a very natural question which, surprisingly, has been overlooked by the cryptography literature: can we achieve Blum's weak fairness notion in multi-party coin toss? What is particularly interesting is whether this relaxation allows us to circumvent the corrupt majority impossibility that pertains to strong fairness. Even more surprisingly, in answering this question, we realize that it is not even understood how to define weak fairness for multi-party coin toss. We propose several natural notions drawing inspirations from game theory, all of which equate to Blum's notion for the special case of two parties. We show, however, that for multiple parties, these notions vary in strength and lead to different feasibility and infeasibility results.
Last updated:  2019-01-30
Rectangle and Impossible-differential Cryptanalysis on Versions of ForkAES
Jannis Bossert, Eik List, Stefan Lucks
The rapid distribution of lightweight devices raised the demand for efficient encryption and authenticated encryption schemes for small messages. For this purpose, Andreeva et al. recently proposed forkciphers, which fork the middle state within a cipher and encrypt it twice further under two smaller independent permutations. So, forkciphers can produce two output blocks which can allow to authenticate and encrypt small messages more efficiently. As instance of particular interest, Andreeva et al. proposed ForkAES, a tweakable forkcipher based on the AES-128 round function, which forks the state after five out of ten rounds. While their authenticated encrypted schemes were accompanied by proofs, the security discussion for ForkAES could not be covered in their work, and founded on existing results on the AES and KIASU-BC; so, the study of advanced differential attacks remained to be filled by the community. This work tries to foster the understanding of the security of ForkAES. It outlines a rectangle and an impossible-differential attack on nine rounds in the single-key related-tweak model; moreover, it describes a rectangle attack on ten rounds for a fraction of approximately $2^{32}$ keys. We emphasize that our results do not break ForkAES in the single-key setting, but shed more light on its security margin.
Last updated:  2018-11-09
Yet Another Size Record for AES: A First-Order SCA Secure AES S-box Based on GF($2^8$) Multiplication
Felix Wegener, Amir Moradi
It is well known that Canright’s tower field construction leads to a very small, unprotected AES S-box circuit by recursively embedding Galois Field operations into smaller fields. The current size record for the AES S-box by Boyar, Matthews and Peralta improves the original design with optimal subcomponents, while maintaining the overall tower-field structure. Similarly, all small state-of-the-art first-order SCA-secure AES S-box constructions are based on a tower field structure. We demonstrate that a smaller first-order secure AES S-box is achievable by representing the field inversion as a multiplication chain of length 4. Based on this representation, we showcase a very compact S-box circuit with only one GF($2^8$)-multiplier instance. Thereby, we introduce a new high-level representation of the AES S-box and set a new record for the smallest first-order secure implementation
Last updated:  2018-11-09
Faster Homomorphic Discrete Fourier Transforms and Improved FHE Bootstrapping
Jung Hee Cheon, Kyoohyung Han, Minki Hhan
In this work, we propose a faster homomorphic linear transform algorithm for structured matrices such as the discrete Fourier transform (DFT) and linear transformations in bootstrapping. First, we proposed new method to evaluate the DFT homomorphically for a given packed ciphertext from the Cooley-Tukey fast Fourier transform algorithm. While the previous method requires $O(\sqrt n)$ rotations and $O(n)$ constant vector multiplications, our method only needs $O(\log n)$ rotations/multiplications by consuming $O(\log n)$ depth for the length of input vector $n$. Second, we apply the same method to the linear transform of bootstrapping for $\textsf{HEAAN}$. To achieve this, we construct a recursive relation of matrices in those linear transformations. Accordingly, we can highly accelerate the linear transformation part of bootstrapping: the number of homomorphic operations becomes logarithmic to the number of slots, as in homomorphic DFT. We also implement both algorithms. Our homomorphic DFT with length $2^{14}$ only takes about 8 seconds which is about 150 times faster result than previous one. The bootstrapping for $\textsf{HEAAN}$ with our linear transform algorithm takes about 2 minutes for $\mathbb{C}^{32768}$ plaintext space with 8 bit precision, which takes 26 hours using the previous method.
Last updated:  2019-05-29
Construction of MDS Matrices from Generalized Feistel Structures
Mahdi Sajadieh, Mohsen Mousavi
This paper investigates the construction of MDS matrices with generalized Feistel structures (GFS). The approach developed by this paper consists in deriving MDS matrices from the product of several sparser ones. This can be seen as a generalization to several matrices of the recursive construction which derives MDS matrices as the powers of a single companion matrix. The first part of this paper gives some theoretical results on the iteration of GFS. In second part, using GFS and primitive matrices, we propose some types of sparse matrices that are called extended primitive GFS (EGFS) matrices. Then, by applying binary linear functions to several round of EGFS matrices, lightweight $4\times 4$, $6\times 6$ and $8\times 8$ MDS matrices are proposed which are implemented with $67$, $156$ and $260$ XOR for $8$-bit input, respectively. The results match the best known lightweight $4\times 4$ MDS matrix and improve the best known $6\times 6$ and $8\times 8$ MDS matrices. Moreover, we propose $8\times 8$ Near-MDS matrices such that the implementation cost of the proposed matrices are $108$ and $204$ XOR for 4 and $8$-bit input, respectively. Although none of the presented matrices are involutions, the implementation cost of the inverses of the proposed matrices is equal to the implementation cost of the given matrices. Furthermore, the construction presented in this paper is relatively general and can be applied for other matrix dimensions and finite fields as well.
Last updated:  2019-04-29
CertLedger: A New PKI Model with Certificate Transparency Based on Blockchain
Uncategorized
Murat Yasin Kubilay, Mehmet Sabir Kiraz, Haci Ali Mantar
Show abstract
Uncategorized
In conventional PKI, CAs are assumed to be fully trusted. However, in practice, CAs' absolute responsibility for providing trustworthiness caused major security and privacy issues. To prevent such issues, Google introduced the concept of Certificate Transparency (CT) in 2013. Later, several new PKI models (e.g., AKI, ARPKI, and DTKI) are proposed to reduce the level of trust to the CAs. However, all of these proposals are still vulnerable to split-world attacks if the adversary is capable of showing different views of the log to the targeted victims. In this paper, we propose a new PKI architecture with certificate transparency based on blockchain, what we called CertLedger, to eliminate the split-world attacks and to provide certificate/revocation transparency. All TLS certificates' validation, storage, and entire revocation process are conducted in CertLedger as well as Trusted CA certificate management. During a TLS connection, TLS clients get an efficient proof of existence of the certificate directly from its domain owners. Hence, privacy is now perfectly preserved by eliminating the traceability issue of OCSP servers. It also provides a unique, efficient, and trustworthy certificate validation process eliminating the conventional inadequate and incompatible certificate validation processes implemented by different software vendors. TLS clients in CertLedger also do not require to make certificate validation and store the trusted CA certificates anymore. We analyze the security and performance of CertLedger and provide a comparison with the previous proposals.
Last updated:  2018-11-09
A New Batch FHE Scheme over the Integers
Kwak Wi Song, Kim Chol Un
The FHE (fully homomorphic encryption) schemes [7, 13] based on the modified AGCD problem (noise-free AGCD problem) are vulnerable to quantum attacks, because its security relies partly on the hardness of factoring, and some FHE schemes based on the decisional AGCD without the noise-free assumption, for example [1], has a drawback that its ciphertexts are very large. In this paper, we construct a new batch FHE scheme based on the decisional AGCD problem to overcome these weaknesses and prove its security.
Last updated:  2020-09-12
Non-Malleable Codes, Extractors and Secret Sharing for Interleaved Tampering and Composition of Tampering
Eshan Chattopadhyay, Xin Li
Non-malleable codes were introduced by Dziembowski, Pietrzak, and Wichs (JACM 2018) as a generalization of standard error correcting codes to handle severe forms of tampering on codewords. This notion has attracted a lot of recent research, resulting in various explicit constructions, which have found applications in tamper-resilient cryptography and connections to other pseudorandom objects in theoretical computer science. We continue the line of investigation on explicit constructions of non-malleable codes in the information theoretic setting, and give explicit constructions for several new classes of tampering functions. These classes strictly generalize several previously studied classes of tampering functions, and in particular extend the well studied split-state model which is a ``compartmentalized" model in the sense that the codeword is partitioned a prior into disjoint intervals for tampering. Specifically, we give explicit non-malleable codes for the following classes of tampering functions. (1) Interleaved split-state tampering: Here the codeword is partitioned in an unknown way by an adversary, and then tampered with by a split-state tampering function. (2) Affine tampering composed with split-state tampering: In this model, the codeword is first tampered with by a split-state adversary, and then the whole tampered codeword is further tampered with by an affine function. In fact our results are stronger, and we can handle affine tampering composed with interleaved split-state tampering. Our results are the first explicit constructions of non-malleable codes in any of these tampering models. As applications, they also directly give non-malleable secret sharing schemes with binary shares in the split-state joint tampering model and the stronger model of affine tampering composed with split-state joint tampering. We derive all these results from explicit constructions of seedless non-malleable extractors, which we believe are of independent interest. Using our techniques, we also give an improved seedless extractor for an unknown interleaving of two independent sources.
Last updated:  2018-11-09
Partial Key Exposure in Ring-LWE-Based Cryptosystems: Attacks and Resilience
Dana Dachman-Soled, Huijing Gong, Mukul Kulkarni, Aria Shahverdi
We initiate the study of partial key exposure in ring-LWE-based cryptosystems. Specifically, we - Introduce the search and decision Leaky-RLWE assumptions (Leaky-SRLWE, Leaky-DRLWE), to formalize the hardness of search/decision RLWE under leakage of some fraction of coordinates of the NTT transform of the RLWE secret and/or error. - Present and implement an efficient key exposure attack that, given certain $1/4$-fraction of the coordinates of the NTT transform of the RLWE secret, along with RLWE instances, recovers the full RLWE secret for standard parameter settings. - Present a search-to-decision reduction for Leaky-RLWE for certain types of key exposure. - Analyze the security of NewHope key exchange under partial key exposure of $1/8$-fraction of the secrets and error. We show that, assuming that Leaky-DRLWE is hard for these parameters, the shared key $v$ (which is then hashed using a random oracle) is computationally indistinguishable from a random variable with average min-entropy $238$, conditioned on transcript and leakage, whereas without leakage the min-entropy is $256$.
Last updated:  2018-11-09
On Quantum Slide Attacks
Xavier Bonnetain, María Naya-Plasencia, André Schrottenloher
At Crypto 2016, Kaplan et al. proposed the first quantum exponential acceleration of a classical symmetric cryptanalysis technique: they showed that, in the superposition query model, Simon's algorithm could be applied to accelerate the slide attack on the alternate-key cipher. This allows to recover an n-bit key with O(n) quantum time and queries. In this paper we propose many other types of quantum slide attacks. First, we are able to quantize classical advanced slide attacks on Feistel networks. With modular additions inside branch or key-addition operations, these attacks reach up to two round self-similarity. With only XOR operations, they reach up to four rounds self-similarity, with a cost at most quadratic in the block size. Moreover, some of these variants combined with whitening keys (FX construction) can be successfully attacked. We show how these results relate to general quantization principles of classical techniques including sliding with a twist, complementation slide and mirror slidex. Furthermore, we show that some quantum slide attacks can be composed with other quantum attacks to perform efficient key-recoveries even when the round founction is a strong function classically. Finally, we analyze the case of quantum slide attacks exploiting cycle-finding, that were thought to enjoy an exponential speed up in a paper by Bar-On et al. in 2015, where these attacks were introduced. We show that the speed-up is smaller than expected and less impressive than the above variants, but nevertheless provide improved complexities on the previous known quantum attacks in the superposition model for some self-similar SPN and Feistel constructions.
Last updated:  2020-09-04
Finding Collisions in a Quantum World: Quantum Black-Box Separation of Collision-Resistance and One-Wayness
Akinori Hosoyamada, Takashi Yamakawa
Since the celebrated work of Impagliazzo and Rudich (STOC 1989), a number of black-box impossibility results have been established. However, these works only ruled out classical black-box reductions among cryptographic primitives. Therefore it may be possible to overcome these impossibility results by using quantum reductions. To exclude such a possibility, we have to extend these impossibility results to the quantum setting. In this paper, we study black-box impossibility in the quantum setting. We first formalize a quantum counterpart of fully-black-box reduction following the formalization by Reingold, Trevisan and Vadhan (TCC 2004). Then we prove that there is no quantum fully-black-box reduction from collision-resistant hash functions to one-way permutations (or even trapdoor permutations). We take both of classical and quantum implementations of primitives into account. This is an extension to the quantum setting of the work of Simon (Eurocrypt 1998) who showed a similar result in the classical setting.
Last updated:  2018-11-09
Homomorphic Secret Sharing for Low Degree Polynomials
Uncategorized
Russell W. F. Lai, Giulio Malavolta, Dominique Schröder
Show abstract
Uncategorized
Homomorphic secret sharing (HSS) allows $n$ clients to secret-share data to $m$ servers, who can then homomorphically evaluate public functions over the shares. A natural application is outsourced computation over private data. In this work, we present the first plain-model homomorphic secret sharing scheme that supports the evaluation of polynomials with degree higher than 2. Our construction relies on any degree-$k$ (multi-key) homomorphic encryption scheme and can evaluate degree-$\left( (k+1)m -1 \right)$ polynomials, for any polynomial number of inputs $n$ and any sub-logarithmic (in the security parameter) number of servers $m$. At the heart of our work is a series of combinatorial arguments on how a polynomial can be split into several low-degree polynomials over the shares of the inputs, which we believe is of independent interest.
Last updated:  2018-11-09
Towards Provably-Secure Analog and Mixed-Signal Locking Against Overproduction
Nithyashankari Gummidipoondi Jayasankaran, Adriana Sanabria Borbon, Edgar Sanchez-Sinencio, Jiang Hu, Jeyavijayan Rajendran
Similar to digital circuits, analog and mixed-signal (AMS) circuits are also susceptible to supply-chain attacks such as piracy, overproduction, and Trojan insertion. However, unlike digital circuits, supply-chain security of AMS circuits is less explored. In this work, we propose to perform “logic locking” on digital section of the AMS circuits. The idea is to make the analog design intentionally suffer from the effects of process variations, which impede the operation of the circuit. Only on applying the correct key, the effect of process variations are mitigated, and the analog circuit performs as desired. We provide the theoretical guarantees of the security of the circuit, and along with simulation results for the band-pass filter, low-noise amplifier, and low-dropout regulator, we also show experimental results of our technique on a band-pass filter.
Last updated:  2018-11-09
Your Culture is in Your Password: An Analysis of a Demographically-diverse Password Dataset
Uncategorized
Mashael AlSabah, Gabriele Oligeri, Ryan Riley
Show abstract
Uncategorized
A large number of studies on passwords make use of passwords leaked by attackers who compromised online services. Frequently, these leaks contain only the passwords themselves, or basic information such as usernames or email addresses. While metadata-rich leaks exist, they are often limited in the variety of demographics they cover. In this work, we analyze a meta-data rich data leak from a Middle Eastern bank with a demographically-diverse user base. We provide an analysis of passwords created by groups of people of different cultural backgrounds, some of which are under-represented in existing data leaks, e.g., Arab, Filipino, Indian, and Pakistani. The contributions provided by this work are many-fold. First, our results contribute to the existing body of knowledge regarding how users include personal information in their passwords. Second, we illustrate the differences that exist in how users from different cultural/linguistic backgrounds create passwords. Finally, we study the (empirical and theoretical) guessability of the dataset based on two attacker models, and show that a state of the art password strength estimator inflates the strength of passwords created by users from non-English speaking backgrounds. We improve its estimations by training it with contextually relevant information.
Last updated:  2018-11-09
DAGsim: Simulation of DAG-based distributed ledger protocols
Manuel Zander, Tom Waite, Dominik Harz
Scalability of distributed ledgers is a key adoption factor. As an alternative to blockchain-based protocols, directed acyclic graph (DAG) protocols are proposed with the intention to allow a higher volume of transactions to be processed. However, there is still limited understanding of the behaviour and security considerations of DAG-based systems. We present an asynchronous, continuous time, and multi-agent simulation framework for DAG-based cryptocurrencies. We model honest and semi-honest actors in the system to analyse the behaviour of one specific cryptocurrency, IOTA. Our simulations show that the agents that have low latency and a high connection degree have a higher probability of having their transactions accepted in the network with honest and semi-honest strategies. Last, the simulator is built with extensibility in mind. We are in the process of implementing SPECTRE as well as including malicious agents.
Last updated:  2018-11-09
On the Design of a Secure Proxy Signature-based Handover Authentication Scheme for LTEWireless Networks
Behnam Zahednejad, Majid Bayat, Ashok Kumar Das
Designing a secure and efficient handover authentication scheme has always been a concern of cellular networks especially in 4G Long Term Evolution (LTE) wireless networks. What makes their handover so complex, is the presence of different types of base stations namely eNodeB (eNB) and Home eNodeB (HeNB). In addition, they cannot directly communicate with each other. Recently, an efficient proxy signature-based handover authentication scheme has been suggested by Qui et al. Despite its better performance and security advantages than previous schemes, it suffers serious vulnerabilities, namely being prone to DoS attack , eNB impersonation attack and lack of perfect forward secrecy. In this paper, we propose an improved handover authentication scheme in LTE wireless networks that resists against such attacks. Further, we validate the security of the proposed scheme using Real-Or- Random (ROR) model and ProVerif analysis tool. The results confirm our security claims of the proposed scheme. In addition, the performance analysis shows that compared to other schemes, our proposed scheme is more efficient.
Last updated:  2019-02-01
Port Contention for Fun and Profit
Alejandro Cabrera Aldaya, Billy Bob Brumley, Sohaib ul Hassan, Cesar Pereida García, Nicola Tuveri
Simultaneous Multithreading (SMT) architectures are attractive targets for side-channel enabled attackers, with their inherently broader attack surface that exposes more per physical core microarchitecture components than cross-core attacks. In this work, we explore SMT execution engine sharing as a side-channel leakage source. We target ports to stacks of execution units to create a high-resolution timing side-channel due to port contention, inherently stealthy since it does not depend on the memory subsystem like other cache or TLB based attacks. Implementing said channel on Intel Skylake and Kaby Lake architectures featuring Hyper-Threading, we mount and end-to-end attack that recovers a P-384 private key from an OpenSSL-powered TLS server using a small number of repeated TLS handshake attempts. Furthermore, we show that traces targeting shared libraries, static builds, and SGX enclaves are essentially identical, hence our channel has wide target application.
Last updated:  2019-03-05
Quantum circuits for the CSIDH: optimizing quantum evaluation of isogenies
Daniel J. Bernstein, Tanja Lange, Chloe Martindale, Lorenz Panny
Choosing safe post-quantum parameters for the new CSIDH isogeny-based key-exchange system requires concrete analysis of the cost of quantum attacks. The two main contributions to attack cost are the number of queries in hidden-shift algorithms and the cost of each query. This paper analyzes algorithms for each query, introducing several new speedups while showing that some previous claims were too optimistic for the attacker. This paper includes a full computer-verified simulation of its main algorithm down to the bit-operation level.
Last updated:  2018-11-02
Ciphertext-Policy Attribute-Based Encrypted Data Equality Test and Classification
Uncategorized
Yuzhao Cui, Qiong Huang, Jianye Huang, Hongbo Li, Guomin Yang
Show abstract
Uncategorized
Thanks to the ease of access and low expenses, it is now popular for people to store data in cloud servers. To protect sensitive data from being leaked to the outside, people usually encrypt the data in the cloud. However, management of these encrypted data becomes a challenging problem, e.g. data classification. Besides, how to selectively share data with other users is also an important and interesting problem in cloud storage. In this paper, we focus on ciphertext-policy attribute based encryption with equality test (CP-ABEET). People can use CP-ABEET to implement not only flexible authorization for the access to encrypted data, but also efficient data label classification, i.e. test of whether two encrypted data contain the same message. We construct an efficient CP-ABEET scheme, and prove its security based on a reasonable number-theoretic assumption. Compared with the only existing CP-ABEET scheme, our construction is more efficient in key generation, and has shorter attribute-related secret keys and better security.
Last updated:  2019-10-16
Limiting the impact of unreliable randomness in deployed security protocols
Liliya Akhmetzyanova, Cas Cremers, Luke Garratt, Stanislav V. Smyshlyaev, Nick Sullivan
Many cryptographic mechanisms depend upon the availability of securely generated random numbers. In practice, the sources of random numbers can be unreliable for many reasons, including bugs, compromise or subversion of standards. While there exist ways to significantly reduce the impact of unreliable randomness, these typically do not work well with practical constraints, such as long-term keys stored in hardware security modules. In practice, even modern protocols like TLS 1.3 lack such mechanisms and are therefore highly vulnerable to unreliable randomness. We propose a wrapper construction that reduces the impact of untrusted randomness, and which is is compatible with, and effective in, existing deployments of protocols such as TLS. We provide a security analysis of the construction and elaborate on design choices and practical interpretations. Our findings show that it is possible to effectively harden deployed protocols against unreliable randomness.
Last updated:  2020-08-19
Towards the AlexNet Moment for Homomorphic Encryption: HCNN, the First Homomorphic CNN on Encrypted Data with GPUs
Ahmad Al Badawi, Jin Chao, Jie Lin, Chan Fook Mun, Jun Jie Sim, Benjamin Hong Meng Tan, Xiao Nan, Khin Mi Mi Aung, Vijay Ramaseshan Chandrasekhar
Deep Learning as a Service (DLaaS) stands as a promising solution for cloud-based inference applications. In this setting, the cloud has a pre-learned model whereas the user has samples on which she wants to run the model. The biggest concern with DLaaS is the user privacy if the input samples are sensitive data. We provide here an efficient privacy-preserving system by employing high-end technologies such as Fully Homomorphic Encryption (FHE), Convolutional Neural Networks (CNNs) and Graphics Processing Units (GPUs). FHE, with its widely-known feature of computing on encrypted data, empowers a wide range of privacy-concerned applications. This comes at high cost as it requires enormous computing power. In this paper, we show how to accelerate the performance of running CNNs on encrypted data with GPUs. We evaluated two CNNs to classify homomorphically the MNIST and CIFAR-10 datasets. Our solution achieved sufficient security level (> 80 bit) and reasonable classification accuracy (99%) and (77.55%) for MNIST and CIFAR-10, respectively. In terms of latency, we could classify an image in 5.16 seconds and 304.43 seconds for MNIST and CIFAR-10, respectively. Our system can also classify a batch of images (> 8,000) without extra overhead.
Last updated:  2018-11-15
Candidate Differing-Inputs Obfuscation from Indistinguishability Obfuscation and Auxiliary-Input Point Obfuscation
Pan Dongxue, Li Hongda, Ni Peifang
Differing-inputs obfuscation (diO), first proposed by Barak et. al. [4], provides stronger security than that provided by indistinguishability obfuscation (iO). An iO scheme provides indistinguishability between the obfuscations of two programs that are equivalent and have the same length of description. A diO scheme ensures that the obfuscations of two efficiently generated programs with the same description length are indistinguishable if it is hard to find an input on which their outputs differ. Ananth et. al. [1] showed the definition of diO with respect to arbitrary auxiliary inputs. However, Garg et al. [19] showed that the existence of this kind of diO contradicts a certain “special-purpose obfuscation” conjecture. Ishai, Pandey and Sahai [23] suggested a diO variant called public-coin diO, which requires the auxiliary input to be a public random string and given as input to all relevant algorithms. They gave a construction of public-coin diO by assuming the existence of public-coin differing-inputs obfuscator for NC^1 circuits. In this paper, we use a slightly different definition, called public-coin-dependent diO. It allows the obfuscation algorithm to additionally take as input the random coins used to sample the circuit pair (including the circuit to be obfuscated) and thus the obfuscation algorithm can use the property of the circuit pair. We first construct a public-coin differing-inputs obfuscator for a class of new defined function with iO and point obfuscation with auxiliary input (AIPO). And then we use it to complete the public-coin-dependent diO for any pair of circuits that are hard to be found an input on which their outputs differ. The constructions are based on secure iO schemes for NC^1, fully homomorphic encryption scheme, and the existence of AIPO. Besides, we show the applications of our constructions.
Last updated:  2019-06-25
Efficient Multi-key FHE with short extended ciphertexts and less public parameters
Tanping Zhou, Ningbo Li, Xiaoyuan Yang, Yiliang Han, Wenchao Liu
Multi-Key Full Homomorphic Encryption (MKFHE) can perform arbitrary operations on encrypted data under different public keys (users), and the final ciphertext can be jointly decrypted by all involved users. Therefore, MKFHE has natural advantages and application value in security multi-party computation (MPC). The MKFHE scheme based on Brakerski-Gentry-Vaikuntanathan (BGV) inherits the advantages of BGV FHE scheme in aspects of encrypting a ring element, the ciphertext/plaintext ratio, and supporting the Chinese Remainder Theorem (CRT)-based ciphertexts packing technique. However some weaknesses also exist such as large ciphertexts and keys, and complicated process of generating evaluation keys. In this paper, we present an efficient BGV-type MKFHE scheme. Firstly, we construct a nested ciphertext extension for BGV and separable ciphertext extension for Gentry-Sahai-Waters (GSW), which can reduce the size of the extended ciphertexts about a half. Secondly, we apply the hybrid homomorphic multiplication between RBGV ciphertext and RGSW ciphertext to the generation process of evaluation keys, which can significantly reduce the amount of input/output ciphertexts and improve the efficiency. Finally, we construct a directed decryption protocol which allows the evaluated ciphertext to be decrypted by any target user, thereby enhancing the ability of data owner to control their own plaintext, and abolish the limitation in current MKFHE schemes that the evaluated ciphertext can only be decrypted by users involved in homomorphic evaluation.
Last updated:  2018-11-02
Revisiting Single-server Algorithms for Outsourcing Modular Exponentiation
Jothi Rangasamy, Lakshmi Kuppusamy
We investigate the problem of securely outsourcing modular exponentiations to a single, malicious computational resource. We revisit recently proposed schemes using single server and analyse them against two fundamental security properties, namely privacy of inputs and verifiability of outputs. Interestingly, we observe that the chosen schemes do not appear to meet both the security properties. In fact we present a simple polynomial-time attack on each algorithm, allowing the malicious server either to recover a secret input or to convincingly fool the client with wrong outputs. Then we provide a fix to the identified problem in the ExpSOS scheme. With our fix and without pre-processing, the improved scheme becomes the best to-date outsourcing scheme for single-server case. Finally we present the first precomputation-free single-server algorithm, \pi ExpSOS for simultaneous exponentiations.
Last updated:  2018-11-02
Verifiability Analysis of CHVote
David Bernhard, Véronique Cortier, Pierrick Gaudry, Mathieu Turuani, Bogdan Warinschi
This document details analyses of verifiability properties of the CH-Vote v1.3 electronic voting protocol, as defined by the preprint publication [12]. Informally, these properties are: • Individual verifiability: a voter is convinced that a ballot confirmed as coming from the voter contains his intended vote • Ballot verifiability: all ballots that are confirmed contain correct votes • Eligibility uniqueness: there are no two distinct entries in the list of confirmed ballots which correspond to the same voter • Confirmed as intended: if a confirmed ballot is on the bulletin board for some voter, then that ballot records that voter’s voting intention • Universal verifiability: any party can verify that the votes on this board were tallied correctly The analyses employ the currently well-established approach used within the scientific community. Specifically, they rely on mathematical abstractions for the adversary and for the system under analysis, as well as mathematical formulations of the properties to be established. Mathematical proofs are then used to establish that (under certain assumptions) the security properties hold. We provide two types of analysis (which differ in the level of abstraction at which they operate). Part I contains a pen-and-paper computational/cryptographic analysis. Part II describes an automated symbolic analysis. Broadly speaking, both the symbolic and the computational analyses conclude that CH-Vote satisfy the desired security properties under several assumptions. The assumptions include, for example, computational assumptions (which mathematical problems are assumed to be hard), trust assumptions (which parties, if any, are assumed to behave honestly and what are parties assume to know before they interact with the system). Besides the concrete mathematical statements the analyses led to a number of recommendations which aim to improve the security. Part III concludes with a number of recommendations which reflect assumptions made in the analyses and weaknesses that were identified. The recommendations also sum up the results of a (light) code review of the code available via GitHub 1 – commit 9b0e7c9fcd409, from April 2017.
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.