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ABSTRACT
Scalability of distributed ledgers is a key adoption factor. As an
alternative to blockchain-based protocols, directed acyclic graph
(DAG) protocols are proposed with the intention to allow a higher
volume of transactions to be processed. However, there is still
limited understanding of the behaviour and security considerations
of DAG-based systems. We present an asynchronous, continuous
time, and multi-agent simulation framework for DAG-based cryp-
tocurrencies. We model honest and semi-honest actors in the sys-
tem to analyse the behaviour of one specific cryptocurrency, IOTA.
Our simulations show that the agents that have low latency and a
high connection degree have a higher probability of having their
transactions accepted in the network with honest and semi-honest
strategies. Last, the simulator is built with extensibility in mind.
We are in the process of implementing SPECTRE as well as in-
cluding malicious agents.

Categories and Subject Descriptors
C.2 [Networks]: Network types—Peer-to-peer networks

General Terms
Design, Experimentation, Measurement, Performance, Security, Stan-
dardization, Theory

Keywords
cryptocurrency, blockchain, distributed public ledger, directed acyclic
graph, simulation

1. INTRODUCTION
Bitcoin introduced the possibility to transact monetary value be-

tween parties without the need to trust an intermediary and pro-
vides for the prevention of censorship [Nakamoto 2008]. A com-
bination of consensus algorithms, cryptographic proof, and game
theory allows mutually distrusting participants to interact on dis-
tributed ledgers. However, eliminating trust requirements comes
with trade-offs. One of the main obstacles for cryptocurrency adop-
tion is its limited scalability of a few transactions per second while
being independent of trusted third parties [Sompolinsky and Zohar
2013, Decker and Wattenhofer 2013, Bamert et al. 2013]. Several
proposals have been made to increase the scalability of distributed
ledgers [Croman et al. 2016], including alternative data structures
like directed acyclic graphs (DAGs) [Lewenberg et al. 2015, Som-
polinsky and Zohar 2018].
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DAGs are proposed as a generalisation of blockchains, e.g. [Som-
polinsky et al. 2016, Sompolinsky and Zohar 2018, Popov 2016,
Baird 2016]. Instead of having a sequence of blocks, blocks or
transactions can exist in parallel. The network reaches consensus
not about a single next block, but over a range of several blocks.
Yet, DAG-based cryptocurrencies are little understood. Most DAG-
based systems have not been formally analysed, for example with
regard to the asynchronous communication model by Pass et. al.
[Pass et al. 2017] or as extension of the formal framework by Ki-
ayias and Panagiotakos [Kiayias and Panagiotakos 2016]. Mesh-
cash, a recent work by Bentov et. al. [Bentov et al. 2017], is an
exception.

Contribution Simulations help to verify formal work and are use-
ful to check analytical calculations. We contribute an asynchronous,
continuous time, and multi-agent simulator of DAG-based cryp-
tocurrencies. Specifically, we implement our simulator in Python
with extensions for various DAG-based protocols in mind. In our
current version we implement an asynchronous representation of
IOTA [Popov 2016] and an initial, yet incomplete, version of SPEC-
TRE [Sompolinsky et al. 2016]. We evaluate the performance of
our simulator and note that we depend on the computational com-
plexity of the algorithms we simulate. Further, we present results
of attachment probabilities (i.e. having transactions accepted by the
network) in relation to the latency and degree of connections of an
agent in the IOTA network.

Outline Our article is structured as follows. We explain our sim-
ulation framework in section 2. Section 3 details our results w.r.t
simulator performance and the IOTA protocol. We present future
work and conclude in section 4.

2. SIMULATION FRAMEWORK
The framework enables the simulation of arbitrary scenarios, and

evaluates whether the implemented consensus algorithms have the
desired effects in terms of stability and security. Adversaries devi-
ating from a protocol are currently not implemented.

2.1 A Network of Agents
Nodes are called agents in our framework, and multiple agents

are supported by default. Pass et. al. [Pass et al. 2017] propose a
way of modelling blockchain protocols in a fully asynchronous set-
ting, including an arbitrary number of players with identical com-
putational power. This is superior to models assuming fully or par-
tially synchronous network channels, which is a strong assump-
tion (the Internet and most peer-to-peer (P2P) networks are essen-
tially asynchronous networks with network latencies). Thus, we
call the framework an asynchronous multi-agent simulation frame-



work, generally supporting N ∈N agents, and each newly incoming
transaction is issued by an agent i.

Along the lines of [Gal and Shikhelman 2018], agents can be
thought of being part of an agent network, which is a weighted
undirected graph. We define the network G ≡ (A,E, f ) where A is
the set of agents, E ⊆ A×A is the set of edges and f : A×A→
R is the weight function. We enforce (a1,a2) ∈ E ⇔ (a2,a1) ∈
E (because G is undirected) f (a,b)≥ 0 (non-negative weights), f (a,a)=
0 (zero self-distance), and extend f such that f (a,b)=∞⇔ (a,b) /∈
E.

Essential for implementing an asynchronous model are the net-
work latencies between agents, which are stored in a distance ma-
trix d. This matrix can be obtained by considering the shortest
paths between agents d (a1,a2), thus the distance function d A×
A→ R is defined as: d (a1,a2)≡ minP∈P(a1→a2) ∑e∈P f (e), where
P(a1→ a2) is the set of all paths from a1 to a2. We then obtain a
N×N distance matrix d over R, such that the following holds:

• For all i : dii = 0

• For all i 6= j : di j > 0

• For all i, j,k : di j +d jk ≥ dik

2.2 The DAG model
There are two classes of DAGs we have considered for our sim-

ulator. Vertexes in the graph can either transactions (i.e. IOTA
[Popov et al. 2017]) or blocks that contain multiple transactions
(i.e. SPECTRE and PHANTOM [Sompolinsky et al. 2016, Som-
polinsky and Zohar 2018]). We refer to the first class as txDAG
and the second class as blockDAG. The DAG data structure built up
during a simulation can be defined as a stochastic process:

Let G be the set of all DAGs G = (V,E) with the following prop-
erties:

• G is finite and the root of the DAG is called genesis G, such
that degout(v)≥ 1 for all v ∈V\{G}, and degout(G) = 0.

• Any v ∈V such that v 6= G references G.

At time t ≥ 0 the state of the DAG ledger is L (t) ≡ (V (t),E(t)),
where V (t) is the set of vertices and E(t) is the multi-set of directed
edges. Furthermore, the following dynamics hold:

• The initial state of the DAG at t = 0 is defined by V (0) =
{G},E(0) = /0.

• Over time, the DAG grows: if 0 < t1 < t2 then V (t1) ⊆
V (t2) and E (t1)⊆ E (t2).

• Transactions arrive with a rate λ > 0 according to a Poisson
process. They are either included in a block (i.e. blockDAG)
or become vertices of the DAG (i.e. txDAG).

• A miner attaches a vertex v to the graph (i.e. a transaction
or a block). The consensus protocol votes on accepting the
vertex. If a vertex arrives at time t, then V (t+) = V (t)∪
{v} and E(t+) = E(t)∪{(v,v′)}.

2.3 Design and Implementation Details
There are two main methods being executed during a simulation,

setup() and run(). setup() initialises Agent and Transaction
instances, whereas run() iterates over all transaction instances ex-
cept for the genesis G in the order of their arrival times. This is
the main simulation loop, i.e. the arrival of each transaction is one
event. Arrival times of incoming transactions are sampled from the

exponential distribution according to the rate of incoming transac-
tions λ , which follows a Poisson process.

Together with a parameter h, defining the average computational
cost for transaction propagation (mainly POW), the network laten-
cies stored in d are crucial in deciding of which part of the network
is visible for an agent at a certain point in time (during the simu-
lation). As explained above, we assume that agents have the same
computational power, such that we can fix h = 1 for simplicity.

Note that the presented Algorithm 1 deals with the creation of the
DAG data structure and that the method called in line 11 differs for
every protocol, e.g. IOTA has a different method of adding trans-
actions to the DAG as opposed to other DAG-based protocols such
as SPECTRE. The methods to determine the part of the ledger that
the agents agree on as the true state are not included in this algo-
rithm, because different protocols use different ideas and methods
to resolve this question. Besides, how confirmed a transaction is
does not directly play a role when the ledger is formed but is of in-
terest for a merchant who needs to decide whether or not to accept
a transaction. Consequently, this is not of interest during the sim-
ulation, but can be done after run() is finished, together with any
other methods concerned with the analysis of the resulting ledger.
More important for correct functioning of the asynchronous sim-
ulation framework is that an agent in every iteration of the main
simulation loop deals with the currently visible part of the DAG,
i.e. it is bounded by the network latencies contained in d.

It is also important to note that when this simulation framework
is extended to blockDAG-protocols, such as SPECTRE, then trans-
action instances in this algorithm are instead blocks. Each block
contains a list of transactions.

2.4 Current limitations
One of the main limitations of the currently implemented simula-

tion framework is that it assumes honest and semi-honest agents, as
opposed to specifically including malicious agents as well. These
honest and semi-honest agents might influence the build DAG struc-
ture within the range of the simulated protocol only. However,
the simulator is built in a flexible and modular way, which would
make future extensions possible. Thus, in future versions, mali-
cious agents could be included, and scenarios of specific attacks
against the network could be modelled, where these agents pur-
posely break the protocol and use different consensus algorithms.

3. RESULTS

3.1 Performance results
The efficiency of the framework determines at which scale sim-

ulations can be performed. IOTA was simulated with 5000 transac-
tions [Zander 2018], using the Python module cProfile to generate
profiling statistics of the simulation. The simulation is completed
in 10 minutes 14 seconds on an i7 processor with 8 threads and 16
GB RAM. Significantly, it was found that the process of updating
the cumulative weights [IOTA Foundation 2018b] took the largest
amount of time - responsible for 61.81% of the run-time [Zander
2018]. This analysis, together with the investigation of the effect
of different weight update algorithms, allows us to conclude that
the simulator efficiency is fundamentally restricted by the compu-
tational complexity of the underlying weight update algorithm. As
outlined in the IOTA documentation [IOTA Foundation 2018b, Gal
2018], the run-time complexity is O(n2).

In practice, the IOTA implementation avoids this efficiency prob-
lem through the use of milestones [IOTA Foundation 2018b]. These
are checkpoints in the ledger past that define a sub-graph upon
which the tip selection process, and as a result the weight update



Algorithm 1: Setup and run of a simulation

Input : Number of transactions x, number of agents N,
transaction rate λ , POW parameter h,
distance matrix d

Output: DAG data structure with all transactions

1 procedure setup()
2 Create set of agents A, consisting of N agents
3 Generate x inter-arrival times τ1, . . . ,τx ∼ Exp(λ )
4 Initialise V (t) with arrival times: atv for each

v ∈V (t)\{G} is given as at1 = τ1 and ati = ati−1 + τi
5 atG = 0
6 end

7 procedure run()
8 foreach v ∈V (t)\{G} do
9 Choose issuing agent i ∈ A with uniform probabilities

10 Determine which transactions are visible and valid for
agent i according to h and d

11 Add v to DAG according to chosen protocol
12 end
13 end

process, is applied. However, this relies on a centralised and trusted
entity called the coordinator [IOTA Foundation 2018a].

It is anticipated that our investigations of SPECTRE will yield
similar efficiency results, as it is noted that the published core block
wise ordering algorithm has a run-time complexity of O(n3) [Som-
polinsky et al. 2016]. Potentially, we can reduce the complexity and
optimise resources in the simulation by holding intermediary com-
putation steps in memory with frameworks such as Apache Spark
[Zaharia et al. 2016].

3.2 IOTA protocol
In this section we present results obtained by using our multi-

agent simulation framework to simulate the IOTA protocol, first
presented in [Zander 2018]. The created DAGs contain 10,000
transactions. We generate random sparsely connected agent net-
works and examine attachment probabilities per agent, a measure
concerned with the relative “importance of agents”, i.e. telling us
how likely the transactions issued by an agent are being part of the
consensus part of the formed ledger (accepted by the network). We
show the development of this measure over time (during a simula-
tion) and how it is affected by the network latencies between agents.
Sparse networks are commonly found in practice and have a num-
ber of links L between nodes N (here agents) much smaller than the
maximal possible number of links Lmax. Similarly to [Sompolinsky
et al. 2016], we generate a Erdős-Rényi random network topology
[Erdos and Rnyi 1960] with N = 10 agents for the experiments.

Quantifying heaviness The IOTA protocol uses a Markov Chain
Monte Carlo algorithm as core of the consensus mechanism [Popov
2016]. When a new transaction comes in and the protocol specifies
a transaction to attach to for the incoming one, a weighted ran-
dom walk is used. This walk is biased towards heavy transactions
or branches of the ledger. Heaviness is a measure specifying how
many other transactions are directly or indirectly referencing any
transaction in the DAG (the integer storing this is called cumulative

weight). The larger the cumulative weight, the more likely a trans-
action is to be part of the main, agreed-on branch of the DAG (over
time). We can measure the following, at any specified iteration of
the simulation: How likely are the currently unreferenced trans-
actions (called tips) of an agent to be referenced by an incoming
transaction. Since this calculation incorporates exit probabilities,
which are the specific probabilities of the weighted random walk
returning a given tip (i.e. resembling the Markov Chain Monte
Carlo algorithm), our proposed measure called attachment proba-
bilities tells us the relative “importance” of agents in the system
[Zander 2018].

Experimental results We want to examine the impact of network
latencies on attachment probabilities. The idea is to find a rela-
tion between the centrality of agents in the random agent network
and the development of attachment probabilities per agent. We ex-
pect well connected agents to refer to each other more frequently,
thus building heavier branches and becoming more “important”,
i.e. more likely to being attached to (higher attachment probabil-
ity). Since the network latencies in our simulation framework are
represented by the shortest paths between agents, which are held in
a distance matrix, then a measure for agent centrality, namely close-
ness centrality, proves useful [Sabidussi 1966]. Closeness central-
ity is high (an agent is central in a network), if his average shortest
path to all other agents is small.

In the initial agent network, the distance between two neighbour-
ing agents is one by default. When ten agents are simulated, this
causes the relative differences in network latencies between agents
to be small (multiples of 1). To make differences in network laten-
cies more pronounced, we scale the distance matrix by 10 (network
latencies are multiples of 10). All agents issue the same amount
of transactions (equal hashing power). We run 20 simulations for
each parameter set and average the attachment probabilities. We
also report results for different α-values. α is a parameter used in
the IOTA consensus mechanism regulating the strength of the bias
in the weighted random walk. In other words, a higher α-value
means that heavier transactions (tips) are favoured when attaching
new transactions to the DAG.

Table 1 suggests a clear trend, i.e. higher closeness centrality
corresponds to larger average attachment probability. Furthermore,
this effect becomes pronounced with higher α-values, where the
most central agent builds even heavier transaction branches. How-
ever, we cannot show what happens in the long-run, and whether
the values eventually stay stable at their respective level. Larger
simulations should examine this matter. More results can be found
in [Zander 2018].

Overall, this shows how latency in the asynchronous IOTA net-
work can play together with the consensus mechanism for the ad-
vantage of well connected agents.

4. CONCLUSION
Summary This paper contributes an asynchronous, continuous time,
and multi-agent simulator for DAG-based protocols. The frame-
work does not yet model malicious agents and run-time complex-
ity remains a concern. IOTA has been simulated. This has shown
that tips issued by centrally located agents are more likely to be
referenced by an incoming transaction, i.e. these agents have a
higher probability of having their transactions accepted in the net-
work over time, assuming honest and semi-honest strategies. Thus,
in the real world IOTA implementation, adjustments of α might be
needed for less well connected agents.

Future Work The next steps involve simulating additional DAG-



Agent Closeness Average attachment prob.
centrality α = 0.001 α = 0.005 α = 0.01

1 0.6 0.127 0.127 0.145
2 0.53 0.123 0.129 0.13
3 0.47 0.109 0.107 0.116
4 0.43 0.099 0.094 0.101
5 0.39 0.092 0.088 0.094
6 0.39 0.095 0.097 0.084
7 0.36 0.09 0.094 0.081
8 0.36 0.098 0.093 0.098
9 0.36 0.089 0.092 0.081

10 0.27 0.078 0.078 0.07

Table 1: Transaction attachment probabilities depending on
closeness centrality of agents in the P2P network with average
results for 20 simulation rounds per α-level.

based protocols, refining the existing work and simulating larger
networks. The initial focus is on blockDAG-protocols, such as
SPECTRE [Sompolinsky et al. 2016] and PHANTOM [Sompolin-
sky and Zohar 2018]. An initial, albeit incomplete, implementation
of SPECTRE is under development. SPECTRE separates the min-
ing and consensus protocols into two distinct stages. The core of
the consensus algorithm is made up of a pairwise vote over the
order of the blocks, the outcome of which is then used to help de-
termine which transactions in each block are accepted. A robust
transaction algorithm then proceeds to specify a subset of accepted
transactions that are guaranteed, up to a particular error probability,
to remain accepted [Sompolinsky et al. 2016].
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