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Abstract. In CHES 2017, Moradi et al. presented a paper on “Bit-Sliding” in which
the authors proposed lightweight constructions for SPN based block ciphers like AES,
PRESENT and SKINNY. The main idea behind these constructions was to reduce
the length of the datapath to 1 bit and to reformulate the linear layer for these
ciphers so that they require fewer scan flip-flops (which have built-in multiplexer
functionality and so larger in area as compared to a simple flip-flop). In this paper
we take the idea forward: is it possible to construct the linear layer using only 2
scan flip-flops? Take the case of PRESENT: in the language of mathematics, the
above question translates to: can the PRESENT permutation be generated by some
ordered composition only two types of permutations? The question can be answered
in the affirmative by drawing upon the theory of permutation groups. However
straightforward constructions would require that the “ordered composition” consist
of a large number of simpler permutations. This would naturally take a large number
of clock cycles to execute in a flip-flop array having only two scan flip-flops and thus
incur heavy loss of throughput.
In this paper we try to analyze SPN ciphers like PRESENT and GIFT that have a bit
permutation as their linear layer. We tried to construct the linear layer of the cipher
using as little clock cycles as possible. As an outcome we propose smallest known
constructions for PRESENT and GIFT block ciphers for both encryption and combined
encryption+decryption functionalities. We extend the above ideas to propose the
first known construction of the FLIP stream cipher.
Keywords: Lightweight circuit, PRESENT, GIFT, FLIP

1 Introduction
The block cipher family Katan [CDK09] and then later Simon [BSS+] were in some sense
aimed to achieve a lower limit of lightweight encryption in terms of area occupied in silicon.
Both these ciphers have shift register based update functions, which is efficient to imple-
ment in ASIC when the length of datapath is reduced to one bit. In CHES 2017, Moradi
et al. presented the concept of “Bit-Sliding” [JMPS17]. The authors proposed lightweight
constructions for SPN based block ciphers like AES [DR02], PRESENT [BKL+07] and
SKINNY [BJK+16] that also had a datapath width of 1 bit. This was counter-intuitive
because the block ciphers in question used 8/4-bit S-boxes and it was not immediately clear
how the width of the data-path could be made smaller than the size of the S-box that the
block cipher was employing. The main idea behind these constructions was to reformulate
the linear layer for these ciphers so that they require fewer scan flip-flops (which have
built-in multiplexer functionality at the input port and so larger in area as compared
to a simple flip-flop). In particular, the PRESENT linear layer which is essentially a bit
permutation over the state, was decomposed as P 4

2 ◦ P1, where P1 was a permutation that
operated on each 16-bit block of the 64-bit state and P2 is some other permutation. This
decomposition allowed the authors of [JMPS17] to implement the linear layer using only
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24 scan flip-flops and 40 regular flip-flops, whereas previous implementations [RPLP08]
have required all 64 flip-flops holding the state to have additional multiplexer at its input.

Contribution: Thus the main idea behind [JMPS17] was that the fewer scan flip-flops one
uses to construct the circuit is likely to translate into a lowering of the total hardware
area of the circuit. Taking this idea forward, in this paper we try to answer is it possible
to construct the linear layer if only 2 of the 64 flip-flops used to store the state are scan
flip-flops? The question can be answered in the affirmative by drawing upon the theory
of permutation groups and the methods presented in [Con]. However a straightforward
application of the ideas in [Con] is computation intensive: for example we will subsequently
show that to execute the PRESENT permutation P using just 2 scan flip-flops using the
ideas in [Con] requires decomposing P into around 36000 simpler permutations which
naturally will an equal number of clock cycles to implement in a flip-flop array. Hence
such a construction would incur heavy lowering of throughput of the cipher which is very
impractical. Much of the theory developed in this paper tries to investigate if we can
speed-up the execution of P in the 2 scan flip-flop setup.

As a result of the theoretical foundations built in the paper, we construct lightweight
implementations of the PRESENT and GIFT [BPP+17] circuits for both encryption (E)
and combined encryption+decryption (ED) modes. Both PRESENT and GIFT are block
ciphers in which the linear layer is composed with a bit permutation over the internal
state. In a particular configuration, the circuits of both PRESENT at 727 GE and GIFT at
925 GE are the smallest reported in literature so far. In the ED mode, the PRESENT and
GIFT circuits occupy 809 GE and 1050 GE which are also the smallest reported thus far.
(Note all circuits have been synthesized with the standard cell library CORE90GPHVT v
2.1.a of the STM 90nm CMOS logic process). We take the ideas forward and look at the
stream cipher FLIP [MJSC16] whose core state update function is also a bit permutation.
We propose three circuits for FLIP: the first is a direct implementation of the ideas in
[Con]. This version however takes time proportional to the cube of the size of the secret
key to produce a single keystream bit and is hence not practical. The second circuit we
construct takes quadratic time and occupies only 3581 GE. The third circuit we propose
uses slightly different ideas for bit swapping and can achieve the FLIP functionality in
linear time. This circuit has an area of around 8605 GE. These are the first reported
hardware implementations of FLIP.

Organization: The paper is organized in the following manner. In Section 2, we start
with some preliminary definitions and notations along with a brief sketch of the proofs
presented in [Con]. The main mathematical background is then developed in Section 3.
This section is mainly concerned with the PRESENT block cipher. The theory built up
in this section is done in various stages: in each stage we try to decrease the number
permutations required to describe the the PRESENT bit permutation. Section 4 contains a
circuit level description of the cipher along with a cycle by cycle operational details of its
functions. Thereafter we extend these ideas to the GIFT block cipher in Section 5. Finally,
we look at the circuit construction of FLIP in Section 6. Section 7 concludes the paper.

2 Preliminaries
We use the symbol Sn to denote the permutation group on n elements. Naturally we have,
|Sn| = n! and the group is non-commutative. A k-cycle π ∈ Sn (for 1 ≤ k ≤ n) is generally
expressed as the k-tuple (i1, i2, . . . , ik) which implies

• π(i1) = i2, π(i2) = i3, · · · , π(ik) = i1, and
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• π(i) = i, ∀i /∈ {i1, i2, . . . , ik}

This is a permutation of order equal to k. A transposition (or a swap) τ ∈ Sn is a 2-cycle.
Denote by Aπ the set {i1, i2, . . . , ik}. In general, if π is a composition of several cycles of
different orders, then define

Aπ = {x : π(x) 6= x}

The cycles π1 and π2 of orders k1 and k2 respectively are called disjoint if Aπ1 and Aπ2

are disjoint, i.e. have no elements in common. It is easy to see all disjoint cycles commute
under the composition operation. It is well known that every permutation in Sn can be
expressed as a composition of disjoint k-cycles, uniquely up to ordering of the k-cycles. To
begin discussions, we cite a couple of results from [Con].

Lemma 1. [Con, Theorem 2.1] For n ≥ 2, Sn is generated by its transpositions.

The above is not particularly difficult to prove. We know that the identity permutation
can be written as τ2 where τ is any transposition. Of course, any permutation can be
expressed as compositions of k-cycles and any k-cycle (i1, i2, . . . , ik) can be written as
(i1, i2) ◦ (i2, i3) ◦ · · · ◦ (ik−1, ik) and so the result follows.

Lemma 2. [Con, Theorem 2.5] For n ≥ 2, Sn is generated by the transposition (1, 2)
and the n-cycle (1, 2, . . . , n).

The proof of the above may be found in [Con], but for the benefit of the reader we give
a small sketch. First note that the set G1 = {(1, 2), (2, 3), · · · , (n− 1, n)} also generates
Sn, since any arbitrary transposition (i, j) = (i, i+ 1) ◦ (i+ 1, j) ◦ (i, i+ 1). The first and
third transpositions are already in G1. If |i + 1 − j| > 1, then (i + 1, j) can be further
written as (i+ 1, i+ 2) ◦ (i+ 2, j) ◦ (i+ 1, i+ 2), and so on till the term in the middle is in
G1. Given the following identity

π ◦ (i1, i2, . . . , ik) ◦ π−1 = (π(i1), π(i2), . . . , π(ik)),

for all k-cycles and π ∈ Sn, it is possible to show that any transposition of the form (i, i+1)
can be generated by (1, 2) and the n-cycle (1, 2, . . . , n). This is true since, if we denote
σ = (1, 2, . . . , n), then we have

σi−1 ◦ (1, 2) ◦ σ−(i−1) = (σi−1(1), σi−1(2)) = (i, i+ 1).

This completes the proof.

3 Application to PRESENT
The bit-permutation layer in PRESENT is given in Table 1. The round function specifies
that the i-th state bit is moved to the P (i)-th position after application of the permutation
layer. Let us look at the decomposition of P into its disjoint k-cycles. The disjoint
decomposition of P consists of a total of twenty 3-cycles, since there are 4 fixed points.
The 3-cycles are listed as follows:

• (1, 16, 4), (2, 32, 8), (3, 48, 12), (5, 17, 20), (6, 33, 24),

• (7, 49, 28), (9, 18, 36), (10, 34, 40), (11, 50, 44), (13, 19, 52),

• (14, 35, 56), (15, 51, 60), (22, 37, 25), (23, 53, 29), (26, 38, 41),

• (27, 54, 45), (30, 39, 57), (31, 55, 61), (43, 58, 46), (47, 59, 62).
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
P (i) 0 16 32 48 1 17 33 49 2 18 34 50 3 19 35 51

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
P (i) 4 20 36 52 5 21 37 53 6 22 38 54 7 23 39 55

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
P (i) 8 24 40 56 9 25 41 57 10 26 42 58 11 27 43 59

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
P (i) 12 28 44 60 13 29 45 61 14 30 46 62 15 31 47 63

Table 1: Specifications of PRESENT bit-permutation layer.

i ci si ◦ ti i ci si ◦ ti

0 (1, 16, 4) (4, 16) ◦ (1, 4) 10 (14, 35, 56) (14, 35) ◦ (35, 56)
1 (2, 32, 8) (8, 32) ◦ (2, 8) 11 (15, 51, 60) (15, 51) ◦ (51, 60)
2 (3, 48, 12) (12, 48) ◦ (3, 12) 12 (22, 37, 25) (25, 37) ◦ (22, 25)
3 (5, 17, 20) (5, 17) ◦ (17, 20) 13 (23, 53, 29) (29, 53) ◦ (23, 29)
4 (6, 33, 24) (24, 33) ◦ (6, 24) 14 (26, 38, 41) (26, 38) ◦ (38, 41)
5 (7, 49, 28) (28, 49) ◦ (7, 28) 15 (27, 54, 45) (45, 54) ◦ (27, 45)
6 (9, 18, 36) (9, 18) ◦ (18, 36) 16 (30, 39, 57) (30, 39) ◦ (39, 57)
7 (10, 34, 40) (10, 34) ◦ (34, 40) 17 (31, 55, 61) (31, 55) ◦ (55, 61)
8 (11, 50, 44) (44, 50) ◦ (11, 44) 18 (43, 58, 46) (46, 58) ◦ (43, 46)
9 (13, 19, 52) (13, 19) ◦ (19, 52) 19 (47, 59, 62) (47, 59) ◦ (59, 62)

Table 2: Decomposition of the ci’s in the PRESENT permutation

Let the above k-cycles be labeled by the symbols c0 to c19. Note that since all the ci’s
are disjoint, the composition of all of them in any order will result in P . Each ci may be
further expressed as a composition of two transpositions: ci = si ◦ ti. Table 2 lists all such
decompositions explicitly.

Note that if we were to compose a permutation consisting of application of all the ti’s
(in any order) followed by application of all the si’s (again in any order) we would get back
P . That is to say

P = sb0 ◦ sb1 ◦ · · · ◦ sb19 ◦ ta0 ◦ ta1 ◦ · · · ◦ ta19 ,

where a0, a1, . . . a19 and b0, b1, . . . b19 are any arbitrary orderings of the set {0, 1, . . . , 19}.
We will prove a generalized form of the above statement in the following Lemma.

Lemma 3. Let π be a permutation in Sn whose disjoint cycle decomposition consists of
the cycles c0, c1, . . . , cm−1 each with orders i0, i1 . . . , im−1 respectively (with

∑m−1
j=0 ij = n),

i.e.
π = c0 ◦ c1 ◦ · · · ◦ cm−1.

Let i0 ≤ i1 ≤ · · · ≤ im−1. Let each cj be expressed as composition of ij − 1 transpositions
sj(1), sj(2), . . . , sj(ij − 1). So we have
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sm−1(im−1 − 1) ◦ · · · ◦ · · · ◦ · · · ◦ sm−1(2) ◦ sm−1(1) =cm−1
...

sj(ij − 1) ◦ · · · ◦ · · · ◦ sj(2) ◦ sj(1) = cj
...

s0(i0 − 1) ◦ · · · ◦ s0(2) ◦ s0(1) = c0

Sets: χim−1−1 χij−1 χi0−1 · · · χ2 χ1

Define the set χk = {sm−1(k), sm−2(k), . . .} (for 1 ≤ k < im−1) as explained above. Let θk
be the composition of all transpositions in χk in any arbitrary order. Then we must have
A Each θk is invariant of the order in which the transpositions in χk are applied.

B We must have π = θim−1−1 ◦ · · · θij−1 ◦ · · · θ2 ◦ θ1.
Proof. We start with A as it is not difficult to prove. Note that cj ’s are themselves disjoint
decompositions of π. Thus it is easy to verify that any sj1(a) and sj2(b) will be disjoint
for any j1 6= j2 and any a, b. In particular, they are of course disjoint when a = b. This
proves that all transpositions in any given χk are disjoint. Since disjoint cycles commute,
composing the elements of χk in any order, gives the same permutation. This proves that
θk is invariant with respect to ordering.

Denote by µj [x → y] = sj(x) ◦ sj(x − 1) ◦ · · · ◦ sj(y) (for x ≥ y). Naturally we have
µj [ij − 1 → 0] = cj . Although cj is a cycle of order ij , for the completeness of the
proof, let us define sj(ij), sj(ij + 1), . . . , sj(im−1 − 1) to be the identity permutation
with Asj(ij),Asj(ij+1), . . . ,Asj(im−1−1) equal to ∅. With this definition we also have
µj [im−1 − 1→ 0] = cj . Now to prove B, consider the following composition θ2 ◦ θ1.

θ2 ◦ θ1 = sm−1(2) ◦ sm−2(2) ◦ · · · ◦ s0(2) ◦ sm−1(1) ◦ sm−2(1) ◦ · · · ◦ s0(1) (1)
= sm−2(2) ◦ · · · ◦ s0(2) ◦ (sm−1(2) ◦ sm−1(1)) ◦ sm−2(1) ◦ · · · ◦ s0(1) (2)
= sm−2(2) ◦ · · · ◦ s0(2) ◦ µm−1[2→ 1] ◦ sm−2(1) ◦ · · · ◦ s0(1) (3)
= µm−1[2→ 1] ◦ sm−2(2) ◦ · · · ◦ s0(2) ◦ sm−2(1) ◦ · · · ◦ s0(1) (4)
= µm−1[2→ 1] ◦ µm−2[2→ 1] ◦ · · · ◦ µ0[2→ 1] (5)

(1)→ (2) is true because all θk’s are invariant to internal ordering of transpositions as
proven in A. (2)→ (3) follows from the definition of µj [x→ y]. To prove (3)→ (4), we
start with the fact that sj1(a) and sj2(b) are disjoint for any j1 6= j2 and any a, b, which is
to say

Asj1 (a) ∩ Asj2 (b) = ∅, ∀j1 6= j2,∀ a, b
Therefore, we have, for all j ∈ [0,m− 2], the following relation:

Aµm−1[2→1] ∩ Asj(2) = (Asm−1(2) ∪ Asm−1(1)) ∩ Asj(2)

= (Asm−1(2) ∩ Asj(2)) ∪ (Asm−1(1) ∩ Asj(2))
= ∅ ∪∅ = ∅

This proves that µm−1[2 → 1] is disjoint with all of sm−2(2), sm−3(2) . . . , s0(2) and so
(3) → (4) follows. (4) → (5) is just a generalization of steps (2), (3), (4) for the indices
m− 2,m− 3, . . . , 0. Proceeding as in mathematical induction, we can follow exactly the
steps above to prove that θ3 ◦ θ2 ◦ θ1 = µm−1[3→ 1] ◦ µm−2[3→ 1] ◦ · · · ◦ µ0[3→ 1] and
ultimately the fact that

θim−1−1 ◦ θim−2−1 ◦ · · · ◦ θ1 = µm−1[im−1 − 1→ 1] ◦ µm−2[im−1 − 1→ 1] ◦ · · · ◦ µ0[im−1 − 1→ 1]
= cm−1 ◦ cm−2 ◦ · · · ◦ c0 = π
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The PRESENT permutation P follows a specific instance of the above lemma, with
m = 20 and i0 = i1 = · · · = i19 = 3. Thus the fact that

P = sb0 ◦ sb1 ◦ · · · ◦ sb19 ◦ ta0 ◦ ta1 ◦ · · · ◦ ta19 ,

is a corollary of the above lemma.

3.1 Implementation using 2 scan flip-flops
We will now to try to implement the PRESENT permutation using only 2 scan flip-flops.
In Lemma 2, we have proven that any permutation in Sn can be generated by the cycles
(1, 2) and (1, 2, . . . , n). By using the index notations commonly used in bock ciphers, we
relabel the set of 64 elements by the indices {63, 62, . . . , 0}. After this relabeling, we can
analogously claim that S64 is generated by the cycles w = (62, 63) and r = (0, 1, 2, . . . , 63).
The idea is to implement all the transpositions ti followed by all the si’s. In order to
do so let us first see how any arbitrary transposition can be implemented only using r and w.

Implementing a transposition (x, y) for(x > y) and x, y ∈ [0, 63]: Let x = 63 − x,
y = 63− y. As per the proofs outlined in Lemmas 1 and 2, we have :

(x, y) = (x, x− 1) ◦ (x− 1, y) ◦ (x, x− 1)
= (x, x− 1) ◦ (x− 1, x− 2) ◦ (x− 2, y) ◦ (x− 1, x− 2) ◦ (x, x− 1)
= (x, x− 1) ◦ (x− 1, x− 2) ◦ · · · ◦ (y + 1, y) ◦ · · · ◦ (x− 1, x− 2) ◦ (x, x− 1)
= (r−x ◦ w ◦ rx) ◦ (r−1−x ◦ w ◦ r1+x) ◦ · · · ◦ (r1−y ◦ w ◦ ry−1) ◦ · · · ◦

(r−1−x ◦ w ◦ r1+x) ◦ (r−x ◦ w ◦ rx)
= r−x ◦ w ◦ (r−1 ◦ w)x−y−1 ◦ (r ◦ w)x−y−1 ◦ rx

= r64−x ◦ w ◦ (r63 ◦ w)x−y−1 ◦ (r ◦ w)x−y−1 ◦ rx

= r1+x ◦ w ◦ (r63 ◦ w)x−y−1 ◦ (r ◦ w)x−y−1 ◦ r63−x

Given the decomposition (x, y) in terms of r and w as given above, the next question
naturally arises as to how to implement it using 2 scan flip-flops. Consider the circuit in
Figure 1. It consists of an array of 64 flip-flops, with the 2 at the extreme ends being
scan flip-flops controlled by a Sel signal. When Sel is 0, the data in the flip-flops simply
rotate bitwise towards the left. When Sel is 1, the b63 bit is held in place, and the data in
the remaining 63 flip-flops is rotated left bitwise. Implementing a particular permutation
π ∈ S64 on this circuit, essentially tries to answer the following question: If we consider
bi(t), i ∈ [0, 63], t ≥ 0 to be the bit value stored on the ith flip-flop at time t, does there
exist some sequence of Sel signals s0, s1, . . . , sT−1 such that for all b0(0), ..., b63(0), setting
Sel to st at clock cycle t implies that bπ(i)(T ) = bi(0) for all i. The length T of the sequence
is the number of clock cycles needed to perform the permutation π.

Lemma 4. Consider the circuit in Figure 1. Implementing an arbitrary swap operation
(x, y) using it requires at most 64(x− y) clock cycles.

Proof. To begin with, note that r is a function that performs a rotation operation by
one location towards the left. In Figure 1, setting the select signal Sel to 0, causes the
shift register to implement the r function, as data follows the circular path marked in the
bottom. Setting Sel to 1, brings about the following transformation:

(b63, b62, b61, . . . , b1, b0)→ (b63, b61, b60, . . . , b0, b62)

This is same as applying the function (r ◦ w). It is easy to see that r and (r ◦ w) also
generate S64. Thus by controlling the Sel signal, we can make the shift register circuit
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b b b b
b63 b62 b61 b1 b0

Sel Sel

Figure 1: Shift register circuit with 2 scan flip-flops

alternate between r and v = (r ◦ w) functions. Note that (x, y) can be rewritten in blocks
of 64 operations each, in the following manner:

(x, y) = r1+x ◦ w ◦ (r63 ◦ w)x−y−1 ◦ (r ◦ w)x−y−1 ◦ r63−x

= [rx ◦ v ◦ r63−x] ◦ [rx−1 ◦ v ◦ r64−x] ◦ · · · ◦ [ry+2 ◦ v ◦ r61−y] ◦ [ry+1 ◦ vx−y ◦ r63−x]

Each block of operations in square braces in the above equation is a set of 64 operations,
and thus would take 64 clock cycles to execute using the shift register circuit. Since there
are a total of (x− y) braces, the result follows.

Corollary 1. Employing the shift register circuit in figure 1, one round of the PRESENT bit
permutation can be executed in 36480 clock cycles.

Proof. The idea is to execute the PRESENT permutation P by executing each of the
transpositions ti and then si sequentially. Denoting ti = (xi, yi) and si = (x20+i, y20+i) for
i ∈ [0, 19], (with xi > yi) the number of clock cycles can be calculated as

∑39
i=0 64·(xi−yi) =

36480.

The above result is a pessimistic one since it implies that to perform the PRESENT en-
cryption operation on a shift register based circuit as given in Figure 1, would result in
heavy loss of throughput. In the following subsections, we will try to see if the number of
operations can be reduced in any way.

3.2 Decreasing the number of operations
Before we outline the method used to reduce the number of operations, let us look at the
following definition.

Definition 1. As in Lemma 4, let π be a permutation in Sn whose disjoint cycle decom-
position consists of the cycles c0, c1, . . . , cm−1 each with orders i0, i1 . . . , im−1 respectively.
Let each cj be expressed as composition of ij − 1 transpositions sj(1), sj(2), . . . , sj(ij − 1).
Denote the transposition sj(k) = (xj(k), yj(k)) with xj(k) > yj(k). π is said to be a
special permutation of the type κ, if κ is the largest integer for which the following holds:

xj(k)− yj(k) ≡ 0 mod κ, ∀ j ∈ [0,m− 1],∀ k ∈ [0, ij − 1]

It is easy to see from Table 2, that the PRESENT permutation P is a special permutation
of type 3. Before we proceed, let us look at a result concerning special permutations of
type κ.

Lemma 5. Let Gκ denote the set of all the special permutations of S64 of type κ. Then
Gκ can be generated by the permutations wκ = (63− κ, 63) and r = (0, 1, . . . , 63).
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b b b
b63 b64−κ b63−κ b1 b0

Sel Sel

b b

Figure 2: Shift register circuit with 2 scan flip-flops

Proof. The only thing we need to show is that any transposition (x, y) with x > y and
x ≡ y mod κ, can be generated using wκ and r. Let z = x−y

κ . We have

(x, y) = (x, x− κ) ◦ (x− κ, y) ◦ (x, x− κ)
= (x, x− κ) ◦ (x− κ, x− 2κ) ◦ (x− 2κ, y) ◦ (x− κ, x− 2κ) ◦ (x, x− κ)
= (x, x− κ) ◦ (x− κ, x− 2κ) ◦ · · · ◦ (y + κ, y) ◦ · · · ◦ (x− κ, x− 2κ) ◦ (x, x− κ)
= (r−x ◦ wκ ◦ rx) ◦ (r−κ−x ◦ wκ ◦ rκ+x) ◦ · · · ◦ (rκ−y ◦ wκ ◦ ry−κ) ◦ · · · ◦

(r−κ−x ◦ wκ ◦ rκ+x) ◦ (r−x ◦ wκ ◦ rx)
= r−x ◦ wκ ◦ (r−κ ◦ wκ)z−1 ◦ (rκ ◦ wκ)z−1 ◦ rx

= r64−x ◦ wκ ◦ (r64−κ ◦ wκ)z−1 ◦ (rκ ◦ wκ)z−1 ◦ rx

= r1+x ◦ wκ ◦ (r64−κ ◦ wκ)z−1 ◦ (rκ ◦ wκ)z−1 ◦ r63−x

The next step naturally is too see how any transposition (x, y) with x ≡ y mod κ can
be implemented in a shift register structure using only 2 scan flip-flops using a method
that requires lesser number of cycles as compared to the previous construction. We try to
address this is the next lemma.

Lemma 6. Consider the circuit in Figure 2. Implementing an arbitrary swap operation
(x, y) with x > y and x ≡ y mod κ using it can be implemented in 64(x−y)

κ = 64z clock
cycles.

Proof. As before, setting Sel to 0, executes the rotate function r. Setting Sel to 1, achieves
the following transformation:

(b63, b62, b61, . . . , b1, b0)→ (b62, b61, . . . , b64−κ, b63, b62−κ, b61−κ, . . . , b0, b63−κ)

This is same as applying the transformation vκ = r ◦ wκ. Thus, as before, controlling Sel
makes the circuit alternate between r and vκ operations. As before we express (x, y) in
blocks of 64 operations:

(x, y) = r1+x ◦ wκ ◦ (r64−κ ◦ wκ)z−1 ◦ (rκ ◦ wκ)z−1 ◦ r63−x

= [rx ◦ vκ ◦ r63−x] ◦ [rx−κ ◦ vκ ◦ r63−x+κ] ◦ · · · ◦ [rx−(z−2)κ ◦ vκ ◦ r63−x+(z−2)κ]◦
[ry+1 ◦ (rκ−1 ◦ vκ)z ◦ r63−x]

Operations in each of the square braces takes 64 cycles and since there are exactly z such
braces, the result follows.

Corollary 2. Using the shift register circuit in Figure 2, one round of the PRESENT bit
permutation P can be executed in 12160 clock cycles.
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Proof. We have already noted that P is a special permutation of type 3. As in the previous
corollary, let ti = (xi, yi) and si = (x20+i, y20+i) for i ∈ [0, 19], (with xi > yi). For
performing all the ti’s followed by all the si’s sequentially, the number of clock cycles can
be calculated as

∑39
i=0 64 · (xi−yi)

3 = 12160.

By using the modified shift register structure, we obtain a threefold increase of through-
put in computation of the PRESENT permutation. However, this is still way too slow, and
in the subsequent sections we will try to find if the computations can be further sped up.

3.3 Further reduction
Till now, we were executing each transposition operation sequentially, i.e. one after the
other. However in the interest of speeding up computations, let us investigate if it is at all
possible to execute some of the swap operations concurrently.

Definition 2. Define Let σ = (x, y) be a transposition in S64 with x > y. #  »Selσ to be
the vector of Sel signals that achieves the computation of σ using the circuit in Figure 2.
The length of #  »Selσ is therefore 64(x−y)

κ . For example, let κ = 3, as in PRESENT. Consider
σ = (60, 51), for which z = 3. We have

σ = [rx ◦ vκ ◦ r63−x] ◦ [rx−κ ◦ vκ ◦ r63−x+κ] ◦ · · · ◦ [rx−(z−2)κ ◦ vκ ◦ r63−x+(z−2)κ]◦
[ry+1 ◦ (rκ−1 ◦ vκ)z ◦ r63−x]

= [r60 ◦ v3 ◦ r3] ◦ [r57 ◦ v3 ◦ r6] ◦ [r52 ◦ (r2 ◦ v3)3 ◦ r3]
#  »Selσ = 060 1 03 057 1 06 052 021 021 021 03

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
←− Increasing Index

Note that to keep notations consistent as to the order of application of the permutations,
the rightmost element in the vector is denoted as the 0th element, and the index is increased
as we go left. This is consistent with the order of application in the composition notation,
in which the rightmost permutation of the composition is applied first. Let us now re-write
the permutations r and vκ in functional form:

r(α) = (α+ 1) mod 64, vκ(α) =


64− κ, if α = 63,
0, if α = 63− κ,
(α+ 1) mod 64, otherwise.

We can see that r and vκ differ on only two inputs 63 and 63− κ. By stretching notations
slightly, let #  »Selp also denote a random 64 bit binary vector that implements the permutation
p when fed to the Sel port of the circuit in Figure 2 over 64 consecutive clock cycles. Let
Bp be the set of elements that denote the positions of 1’s in #  »Selp. From the functional
equations of r and vκ, it is not difficult to deduce that (a simple code in programming
language is sufficient to do this) Ap = Up ∪ Vp, where

Up = {63− α : α ∈ Bp}, Vp = {63− α− κ mod 64 : α ∈ Bp}

It is also possible to deduce p from Bp. If Bp contains elements b, b+κ, b+2κ, . . . , b+(l−1)κ
which are in an arithmetic sequence with common difference κ then we will have

p(63− b− iκ) = 63− b− (i− 1)κ, ∀i ∈ [1, l], and p(63− b) = 63− b− lκ

For all other elements b̂ in Bp that are not part of an arithmetic sequence with common
difference κ, we have p(63 − b̂) = 63 − b̂ − κ and p(63 − b̂ − κ) = 63 − b̂. For all other
elements we have p(b) = b.
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x, x− κ, x− 2κ, · · ·, y + 2κ, y + κ, yπ0: x− κ, x− 2κ, · · ·, y + 2κ, y + κ, y, x

x− κ, x− 2κ, · · ·, y + 2κ, y + κ, y, xπ1: x− κ, x− 2κ, · · ·, y + 2κ, y, y + κ, x

x− κ, x− 2κ, · · ·, y + 2κ, y, y + κ, xπ2: x− κ, x− 2κ, · · ·, y, y + 2κ, y + κ, x

b

b
b

x− κ, y, · · ·, y + 3κ, y + 2κ, y + κ, xπz−1: y, x− κ, x− 2κ, · · ·, y + 2κ, y + κ, x

Figure 3: Rotations in each πi

Example 1. For example if Bp = {6, 9, 19, 29, 53, 56, 60, 61} with κ = 3, we see that
we have 2 arithmetic sequences of common difference 3: 6, 9 and 53, 56. So we have
Ap = {0, 2, 3, 4, 7, 10, 31, 34, 41, 44, 51, 54, 57, 63} We have p = (51, 54, 57) ◦ (4, 7, 10) ◦
(44, 41) ◦ (34, 31) ◦ (3, 0) ◦ (2, 63).

Consider every 64 bit block of the #  »Selσ vector. Let πi (for i = 0 to z − 1) be the
composition of all the permutations in the ith 64-bit block. Let us use the notation

#  »Selσ = #  »Selπz−1 ||
#  »Selπz−2 || · · · ||

#  »Selπ2 ||
#  »Selπ1 ||

#  »Selπ0 .

Of course we have σ = πz−1 ◦πz−2 ◦ · · · ◦π2 ◦π1 ◦π0. In the above example, for σ = (60, 51)
we have Bπ0 = {3, 6, 9}, Bπ1 = {6}, Bπ2 = {3}. Generalizing the above we can see
that Bπ0 = {63 − x, 63 − x − κ, . . . , 63 − y − κ}. Bπ0 only contains elements that are
x = 63 − x mod κ. And we have that Bπi ⊂ Bπ0 , ∀ i > 0. From the analysis presented
above, it can be deduced that for all i,

πi(α) = α, ∀α 6≡ x mod κ.

This is because the 1’s (equivalently vκ’s) in this block appear at distances of κ. If we
apply each function in πi one by one, for any input α 6≡ x mod κ, the corresponding
input to vκ is never 63 or 63− κ, and so a plain rotation is effectively executed. Therefore
all the πi’s perform shuffling on only a subset of elements that are x mod κ and leave
the others untouched. From the equation Ap = Up ∪ Vp, we can also deduce that
Aπ0 = {x, x− κ, x− 2κ, . . . , y}. Thus each πi is effectively a permutation function on only
a subset of {0, 1, 2, 3, . . . , 63} that are x mod κ and effectively follows the transition shown
in Figure 3.

Figure 3 provides more insights into the working of each πi. π0 effectively rotates the
elements in the set {x, x− κ, x− 2κ, . . . , y} by one location to the left, and delivers x to
location y. The other πi’s are mini-swaps, that lets y bubble up to position x after z − 1
executions. From the figure we can see that Aπ1◦π0 = Aπ0 − {y + κ} and more generally,
Aπi◦···◦π0 = Aπi−1◦···◦π0 − {y + iκ}.

Lemma 7. Let #  »Selp1 and #  »Selp2 be two 64 bit signal vectors implementing permutations
p1 and p2 on the circuit of Figure 2. If Ap1 ∩ Ap2 = ∅, then p1 ◦ p2 can be concurrently
executed on this circuit using the signal vector #  »Selp1ˆ

#  »Selp2 , where ˆ denotes a bitwise OR
operation on the vectors.

Proof. To begin with we have p1 and p2 disjoint, as Ap1 ∩Ap2 = ∅. Note that this implies
Bp1 ∩Bp2 = ∅ (although the converse may not always be true). This means that the 1’s in
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the #  »Selp1 and #  »Selp2 vectors are not aligned. Which is to say #  »Selp1ˆ
#  »Selp2 has 1’s in all the

locations in which either #  »Selp1 or #  »Selp2 has 1. Let #  »Selp = #  »Selp1ˆ
#  »Selp2 . We already know

that Bp would contain all elements of Bp1 and Bp2 . Thus the arithmetic sequence structures
of both Bp1 and Bp2 are preserved in Bp. Furthermore, Ap1 ∩ Ap2 = ∅ ensures that no
new arithmetic sequence of common difference κ is created Bp that are already not present
in Bp1 or Bp2 . We will prove this by contradiction: if possible let ∃b1 ∈ Bp1 , b2 ∈ Bp2 such
that b2 = b1 +κ. Then by definition 63−b1, 63−b1−κ ∈ Ap1 and 63−b2, 63−b2−κ ∈ Ap2 .
But 63− b1 − κ = 63− b2, and so this contradicts the fact that Ap1 ∩ Ap2 = ∅. Since the
arithmetic structures are preserved, p essentially executes p1 and p2 concurrently: we have
∀α ∈ Ap1 , p(α) = p1(α) and ∀α ∈ Ap2 , p(α) = p2(α). Also p(α) = α for all α 6∈ Ap1 ∪ Ap2 .
Thus we have p = p1 ◦ p2.

Lemma 8. Let σ1 = (x1, y1) and σ2 = (x2, y2) be two special transpositions (xi > yi,
i = 1, 2) in S64 of type κ. Without loss of generality let `1 = (x1 − y1) ≥ (x2 − y2) = `2,
and zi = `i

κ . Let the respective decompositions are denoted by the symbols πi and θi, i.e.
σ1 = πz1−1 ◦ πz1−2 ◦ · · · ◦ π2 ◦ π1 ◦ π0 and σ2 = θz2−1 ◦ θz2−2 ◦ · · · ◦ θ2 ◦ θ1 ◦ θ0.

#  »Selσ1 and
#  »Selσ2 may not be of the same length, in which case append 64(z1 − z2) zeroes to #  »Selσ2

1 to
make them of the same length. If Aπ0 ∩ Aθ0 = ∅, then it is possible to execute σ1 and
σ2 concurrently on the circuit in Figure 2 and achieve σ1 ◦ σ2 in 64 · z1 clock cycles. Let
#  »Selσ1◦σ2 be the vector of Sel signals required to achieve this. Then #  »Selσ1◦σ2 = #  »Selσ1ˆ

#  »Selσ2 .

Proof. Since Aπ0 ∩ Aθ0 = ∅, from the result of the previous lemma, we can certainly use
#  »Selπ0ˆ

#  »Selθ0 to get π0 ◦ θ0. Since all Aπi ’s and Aθi ’s are subsets of Aπ0 and Aθ0 respectively,
we also have Aπi ∩ Aθi = ∅ for all 0 ≤ i ≤ z1 − 1. We can then use #  »Selπiˆ

#  »Selθi to get
πi ◦ θi for all 0 ≤ i ≤ z1 − 1. Thus if #  »Selp = #  »Selσ1ˆ

#  »Selσ2 , we naturally have

p = (πz1−1 ◦ θz1−1) ◦ (πz1−2 ◦ θz1−2) ◦ · · · ◦ (π1 ◦ θ1) ◦ (π0 ◦ θ0)

Denote by π[i → j] = πi ◦ πi−1 ◦ · · · ◦ π0 and θ[i → j] = θi ◦ θi−1 ◦ · · · ◦ θ0. Note that
Aπ[i1→j1] ∩ Aθ[i2→j2] = ∅, since the parent sets Aπ0 and Aθ0 are themselves disjoint. So
we have

p = (πz1−1 ◦ θz1−1) ◦ (πz1−2 ◦ θz1−2) ◦ · · · ◦ (π1 ◦ θ1 ◦ π0 ◦ θ0) (6)
= (πz1−1 ◦ θz1−1) ◦ (πz1−2 ◦ θz1−2) ◦ · · · ◦ (θ1 ◦ π1 ◦ π0 ◦ θ0) (7)
= (πz1−1 ◦ θz1−1) ◦ (πz1−2 ◦ θz1−2) ◦ · · · ◦ (θ1 ◦ π[1→ 0] ◦ θ0) (8)
= (πz1−1 ◦ θz1−1) ◦ (πz1−2 ◦ θz1−2) ◦ · · · ◦ (θ1 ◦ θ0 ◦ π[1→ 0]) (9)
= (πz1−1 ◦ θz1−1) ◦ (πz1−2 ◦ θz1−2) ◦ · · · ◦ (θ[1→ 0] ◦ π[1→ 0]) (10)

(6→ 7) follows because Aπ1 ∩ Aθ1 = ∅. (8→ 9) follows because Aπ[1→0] ∩ Aθ0 = ∅. The
remaining statements follow from definition. The steps in the above equations can be
repeated for i = 2 to z1 − 1 to get p = π[z1 − 1→ 0] ◦ θ[z1 − 1→ 0] = σ1 ◦ σ2.

The above result may be extended to a set of any number of special transpositions σi
(i = 1 to k) of the type κ, provided that the respective Aπ0 sets are pairwise disjoint. In
that case we have

#  »Selσ1◦σ2◦···◦σk = #  »Selσ1ˆ
#  »Selσ2ˆ · · ·ˆ

#  »Selσk
Corollary 3. Let σ1 = (x1, y1) and σ2 = (x2, y2) be two transpositions (xi > yi, i = 1, 2)
in S64 such that x1 − y1 ≡ x2 − y2 mod κ, and x1 6≡ x2 mod κ. Without loss of generality
let `1 = (x1−y1) ≥ (x2−y2) = `2, and zi = `i

κ . As before, let the respective decompositions
are denoted by the symbols πi and θi and append 64(z1 − z2) zeroes to #  »Selσ2 to make the
two #  »Sel vectors of the same length. It is possible to execute σ1 and σ2 concurrently on the

1Since r64 is the identity function, this does not affect either permutation
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circuit in Figure 2 and achieve σ1 ◦ σ2 in 64 · z1 clock cycles by using #  »Selσ1ˆ
#  »Selσ2 as the

select signal vector.

Proof. We have already seen that for any transposition σ = (x, y) = πz−1 ◦ · · · ◦ π0, we
have Aπ0 = {x, x− κ, x− 2κ, . . . , y}. Thus Aπ0 contains elements that are only x mod κ.
Since x1, y1 and x2, y2 belong to different equivalence classes modulo κ, Aπ0 ∩ Aθ0 = ∅.
Thus the result follows.

Corollary 4. Let σ1 = (x1, y1) and σ2 = (x2, y2) be two transpositions (xi > yi, i = 1, 2)
in S64 such that y1 > x2. Without loss of generality let `1 = (x1 − y1) ≥ (x2 − y2) = `2,
and zi = `i

κ . Let the respective decompositions are denoted by the symbols πi and θi. Then
after making the #  »Sel vectors of the same length by appending zeroes, it is possible to execute
σ1 and σ2 concurrently on the circuit in Figure 2 and achieve σ1 ◦ σ2 in 64 · z1 clock cycles
by using #  »Selσ1ˆ

#  »Selσ2 as the select signal vector.

Proof. We have Aπ0 = {x1, x1−κ, x1−2κ, . . . , y1} and Aθ0 = {x2, x2−κ, x2−2κ, . . . , y2}.
Since y1 > x2, clearly Aπ0 ∩ Aθ0 = ∅. Thus the result follows.

We can use the results in the above two corollaries to further reduce the execution
time of the PRESENT permutation. We have to execute all the transpositions ti followed
by the transpositions si. The idea is to execute as many permutations concurrently which
have pairwise disjoint Aπ0 ’s. We can easily partition the transpositions modulo κ = 3.
Transpositions that are in different classes modulo 3 can obviously be executed concurrently.
Also transpositions in the same class modulo 3, which have disjoint Aπ0 ’s can also be
executed together. For the ti’s we can think of the following solution given in Table 4,
that takes (11 + 7 + 1) · 64 = 704 + 448 + 64 = 1216 cycles. All the swaps in ith group can
be executed concurrently, thereby reducing the number of cycles.

Group mod3 ti max(xi − yi) #Cycles
1 0 (57, 39), (36, 18), (12, 3) 33 704

1 (61, 55), (52, 19), (4, 1)
2 (62, 59), (44, 11), (8, 2)

2 0 (60, 51), (45, 27), (24, 6) 21 448
1 (46, 43), (40, 34), (28, 7)
2 (56, 35), (29, 23), (20, 17)

3 1 (25, 22) 3 64
2 (41, 38)

Table 3: Concurrent execution of the ti’s in the PRESENT permutation

A similar construction for the si’s will take (12 + 12 + 7 + 4) · 64 = 2240 cycles. So
a total of 1216 + 2240 = 3456 cycles are required which is already way better than our
previous construction of 12160 cycles.

3.4 Final Optimization
In this final subsection we see if the number of clock cycles can be further optimized.
Specifically we want to see if it is possible to implement transpositions σ1 and σ2 concur-
rently, even if the corresponding Aπ0 ∩ Aθ0 6= ∅. We start with a well known result in
permutation theory.
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Group mod3 si max(xi − yi) #Cycles
1 0 (51, 15) 36 768

1 (55, 31), (19, 13)
2 (53, 29), (17, 5)

2 0 (48, 12) 36 768
1 (58, 46), (34, 10)
2 (59, 47), (32, 8)

3 0 (54, 45), (39, 30), (18, 9) 21 448
1 (49, 28), (16, 4)
2 (50, 44), (35, 14)

4 0 (33, 24) 12 256
1 (37, 25)
2 (38, 26)

Table 4: Concurrent execution of the si’s in the PRESENT permutation

Theorem 1. For every permutation σ ∈ S64, and every transposition (x, y) ∈ S64:

f = σ ◦ (x, y) = (σ(x), σ(y)) ◦ σ

The above is not difficult to prove, ∀α 6∈ {x, y}, we have f(α) = σ(α). And both sides
evaluates to f(x) = σ(y) and f(y) = σ(x).

Lemma 9. Let σ1 = (x1, y1) and σ2 = (x2, y2) be two special disjoint transpositions (xi >
yi, i = 1, 2) in S64 of type κ. Without loss of generality let `1 = (x1− y1) ≥ (x2− y2) = `2,
and zi = `i

κ . Let the respective decompositions are denoted by the symbols πi and θi, i.e.
σ1 = πz1−1 ◦ πz1−2 ◦ · · · ◦ π2 ◦ π1 ◦ π0 and σ2 = θz2−1 ◦ θz2−2 ◦ · · · ◦ θ2 ◦ θ1 ◦ θ0. Let us have
Aπ0 ∩ Aθ0 6= ∅. Denote by p = (π[i→ 0](x2), π[i→ 0](y2)), for some i ∈ [0, z1 − 1]. Let
the decomposition of p be denoted as

p = γq−1 ◦ γq−2 ◦ · · · ◦ γ1 ◦ γ0.

Now denote #  »Sel1 = #  »Selπz1−1 ||
#  »Selπz1−2 || · · · ||

#  »Selπi+1 and #  »Sel2 = #  »Selp. After appending with
zeroes to make #  »Sel1 and #  »Sel2 of the same length, the following vector

#  »Sel1ˆ
#  »Sel2 ||

#  »Selπ[i→0]

will execute σ1 ◦ σ2 on the circuit in Figure 2, if Bγ0 ∩ Bπi+1 = ∅.

Proof. First of all, let us clarify what we are trying to do. We want to implement

σ1 ◦ σ2 = πz1−1 ◦ πz1−2 ◦ · · · ◦ π2 ◦ π1 ◦ π0 ◦ (x2, y2)
= πz1−1 ◦ πz1−2 ◦ · · · ◦ πi+1 ◦ π[i→ 0] ◦ (x2, y2)
= πz1−1 ◦ πz1−2 ◦ · · · ◦ πi+1 ◦ (π[i→ 0](x2), π[i→ 0](y2)) ◦ π[i→ 0]
= πz1−1 ◦ πz1−2 ◦ · · · ◦ πi+1 ◦ p ◦ π[i→ 0]

We are therefore trying to implement πz1−1 ◦ πz1−2 ◦ · · · ◦ πi+1 = π[z1 − 1→ i+ 1] and p
concurrently after implementing π[i→ 0]. Now Bπi+1 ,Bπi+2 , . . . are singleton sets and so
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are Bγ1 ,Bγ2 , . . .. If Bγ0 = {g1, g1 + κ, g1 + 2κ, . . . , h1} and Bπi+1 = {g2} are disjoint (note
we have taken h1 > g1), then we have

Bγ1 = {h1 − κ}, Bπi+2 = {g2 − κ}
Bγ2 = {h1 − 2κ}, Bπi+3 = {g2 − 2κ}

...

Thus Bγj and Bπi+j+1 are not only disjoint (for j ≥ 1), but the distance between the
single elements in the sets equals g2 − h1 which is a non-zero constant. Note that we have
g1 ≡ h1 ≡ g2 mod κ, since Aπ0 ∩ Aθ0 6= ∅. Since Bγ0 ∩ Bπi+1 = ∅, we must have either
g2 ≥ h1 + κ or g2 < g1 − κ. g2 = g1 − κ is not possible as it leads to a contradiction: if
g2 = g1 − κ, then the largest element in Bπ0 is g1 + iκ, and so σ1 = (u, 63− g1 − (i+ 1)κ),
for some u. We have p = (63− h1, 63− g1 − κ) = (63− h1, π[i→ 0](63− g1 − (i+ 1)κ)),
which means σ2 = (v, 63 − g1 − (i + 1)κ), for some v. This contradicts the fact that σ1
and σ2 are disjoint. Denote z3 = π[i→ 0](x2)− π[i→ 0](y2)). We have

Aγ0 = {63− g1, 63− g1 − κ, . . . , 63− h1, 63− h1 − κ}, Aπi+1 = {63− g2, 63− g2 − κ}
Aγ1 = {63− h1 + κ, 63− h1}, Aπi+2 = {63− g2 + κ, 63− g2}

Aγ2 = {63− h1 + 2κ, 63− h1 + κ}, Aπi+3 = {63− g2 + 2κ, 63− g2 + κ}
...

Aγq−1 = {63− g1, 63− g1 − κ}.

Thus Aγj and Aπi+j+1 are non-disjoint (for j ≥ 0) only if g2 = h1 + κ or g2 = g1 − κ. Also
note that

Aπ[i+j+1→i+1] = {63− g2 − κ, 63− g2, 63− g2 + κ, . . . , 63− g2 + jκ}

We want to find Aπ[i+j+1→i+1] ∩ Aγj . The numerical maximum of Aπ[i+j+1→i+1] is
63− g2 + jκ and numerical minimum of Aγj is 63−h1 + (j−1)κ. The min - max difference
comes out to be g2−h1−κ. If g2 > h1 +κ, this is always greater than 0 and so the sets are
disjoint. If g2 < g1−κ, then the minimal element of Aπ[i+j+1→i+1], i.e. 63−g2−κ > 63−g1
which is the maximal element in the Aγj ’s. Here too the sets are disjoint. So we have
three cases to analyze (A) g2 > h1 + κ or g2 < g1 − κ, (B) g2 = h1 + κ. So let us split the
analysis into two cases:

A: g2 > h1 + κ or g2 < g1 − κ: We have Aγj ∩ Aπi+j+1 = Bγj ∩ Bπi+j+1 = ∅ for all j ≥ 0.
We also have Aπ[i+j+1→i+1]∩Aγj = ∅. This means that #  »Sel1̂

#  »Sel2 has 1’s in locations
where either #  »Sel1 or #  »Sel2 is 1. Let z be the final length of #  »Sel1,

#  »Sel2 after padding. By
Lemma 7, if #  »SelΠ = #  »Sel1̂

#  »Sel2, then

Π = (πz+i ◦ γz−1) ◦ (πz+i−1 ◦ γz−2) ◦ · · · ◦ (πi+2 ◦ γ1) ◦ (πi+1 ◦ γ0) (11)
= (πz+i ◦ γz−1) ◦ (πz+i−1 ◦ γz−2) ◦ · · · ◦ (γ1 ◦ πi+2) ◦ (πi+1 ◦ γ0) (12)
= (πz+i ◦ γz−1) ◦ (πz+i−1 ◦ γz−2) ◦ · · · ◦ (γ1 ◦ π[i+ 2→ i+ 1] ◦ γ0) (13)
= (πz+i ◦ γz−1) ◦ (πz+i−1 ◦ γz−2) ◦ · · · ◦ (π[i+ 2→ i+ 1] ◦ γ1 ◦ γ0) (14)
= (πz+i ◦ γz−1) ◦ (πz+i−1 ◦ γz−2) ◦ · · · ◦ (π[i+ 2→ i+ 1] ◦ γ[1→ 0]) (15)
= π[z + i→ i+ 1] ◦ γ[z− 1→ 0] = π[z + i→ i+ 1] ◦ p (16)

(11 → 12) follows because Aγj ∩ Aπi+j+1 = ∅ for all j. (13 → 14) follows because
Aπ[i+j+1→i+1] ∩ Aγj = ∅ for all j. (15→ 16) follows after repeating (11→ 15) for
j = 0, 1, 2 . . . etc. The remaining statements follow by definition.
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B: g2 = h1 + κ: Before we analyze this case, let us restate a result in permutation theory

(xn1 , xn2 , . . . , xnl) ◦ (xnl , xnl+1 , . . . , xnk) = (xn1 , xn2 , . . . , xnl , . . . , xnk). (17)

Since g2 = h1 + κ, the following is easy to verify (denote h1 = 63− h1, g1 = 63− g1)

πi+j+1 = (h1 + (j − 2)κ, h1 + (j − 1)κ), and

γj =
{

(h1 − κ, h1, h1 + κ, . . . , g1), if j = 0,
(h1 + (j − 1)κ, h1 + jκ), otherwise.

By directly applying equation (17), we can obtain the following

πi+j+1 ◦ γj =
{

(h1 − 2κ, h1 − κ, h1, h1 + κ, . . . , g1), if j = 0,
(h1 + (j − 2)κ, h1 + (j − 1)κ, h1 + jκ), otherwise.

(18)

π[i+ j + 1→ i+ 1] = (h1 + (j − 1)κ, . . . , h1, h1 − κ, h1 − 2κ)
From figure 3, (or by induction) it is easy to deduce that

γ[j → 0] = (h1 − κ, h1 + jκ, h1 + (j + 1)κ, . . . , g1)

From the above two equations we can deduce that

π[i+j+1→ i+1]◦γ[j → 0] = (h1−2κ, h1 +(j−1)κ, . . . , h1, h1−κ, h1 +jκ, . . . , g1)
(19)

Note that if we denote Bqj = Bγj ∪ Bπi+j+1 , then Bq0 = {g1, g1 + κ, . . . , h1, h1 + κ}
and Bqj = {h1 − (j − 1)κ, h1 + jκ} for j > 0. From this it is easy to deduce that
qj = πi+j+1 ◦ γj for all j, (only that this time πi+j+1 and γj do not commute). Thus
as per the analysis of case (A) we again have

Π = (πz+i ◦ γz−1) ◦ (πz+i−1 ◦ γz−2) ◦ · · · ◦ (πi+2 ◦ γ1) ◦ (πi+1 ◦ γ0)

where Π is such that #  »SelΠ = #  »Sel1̂
#  »Sel2. In spite of the fact that πi+j+1 and γj do

not commute, we intend to prove that

(πi+j+1 ◦ γj) ◦ · · · ◦ (πi+2 ◦ γ1) ◦ (πi+1 ◦ γ0) = π[i+ j + 1→ i+ 1] ◦ γ[j → 0], ∀ j

which would prove equation (16) for this case too. We proceed by mathematical
induction: for j = 1, from equation (19), we have

π[i+ 2→ i+ 1] ◦ γ[1→ 0] = (h1 − 2κ, h1, h1 − κ, h1 + κ, . . . , g1)

Also (πi+2 ◦ γ1) ◦ (πi+1 ◦ γ0) can be calculated from equation (18) as:

(h1 − κ, h1, h1 + κ) ◦ (h1 − 2κ, h1 − κ, h1, h1 + κ, . . . , g1)
= (h1 − 2κ, h1, h1 − κ, h1 + κ, . . . , g1) = π[i+ 2→ i+ 1] ◦ γ[1→ 0].

We will now prove instance j+1 assuming all instances from 1→ j are correct. From
equations (18), (19) we can calculate (πi+j+2 ◦ γj+1) ◦ π[i+ j + 1→ i+ 1] ◦ γ[j → 0]
as follows:

(h1 + (j − 1)κ, h1 + jκ, h1 + (j + 1)κ) ◦ (h1 − 2κ, h1 + (j − 1)κ, . . . , h1,

h1 − κ, h1 + jκ, . . . , g1)
= (h1 − 2κ, h1 + jκ, h1 + (j − 1)κ, . . . , h1, h1 − κ, h1 + (j + 1)κ, . . . , g1)
= π[i+ j + 2→ i+ 1] ◦ γ[j + 1→ 0].

This concludes proof for case (B).
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Example 2. An immediate application of the above is to construct a #  »Sel vector to execute
(51, 15) and (48, 12) concurrently on the PRESENT circuit. In the previous subsection we
had executed them sequentially which had cost us 12 · 64 = 768 cycles each. Start with
σ1 = (48, 12). We have Bπ0 = {15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48}, Bπj = {48− 3j}
for 1 ≤ j ≤ 11. For σ2 = (51, 15), we observe that (π0(51), π0(15)) = (51, 18). If we let
p = (51, 18), then Bγ0 = {12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42}. Since Bγ0 ∩ Bπ1 = ∅,
this choice of p will work. Also #  »Sel1 and #  »Sel2 will be of the same length, due to which
zero padding is also not required. So we have Bγj = {42− 3j} for all 1 ≤ j ≤ 10. Since
#  »Selσ1◦σ2 = #  »Sel1̂

#  »Sel2 ||
#  »Selπ[i→0], denoting the decomposition of σ1 ◦ σ2 by the symbols ηj ,

we have Bη0 = Bπ0 , Bηj+1 = Bπj+1 ∪Bγj for 0 ≤ j ≤ 10. This therefore implements σ1 ◦ σ2
in only 12 · 64 = 768 cycles.

In the next lemma, we take things forward. If σ is a permutation which implements a
set of disjoint transpositions (instead of just a single transposition), it may be possible to
implement another transposition σ′ concurrently along with σ if certain conditions are
met.

Lemma 10. Let σ be a special permutation of type κ that is a composition of several
pairwise disjoint transpositions. Let σ′ = (x, y) be a special transposition (x > y) of type
κ, that is also pairwise disjoint with each of the transpositions that compose σ. Let the
respective decompositions are denoted by the symbols πi and θi, i.e. σ = πz1−1 ◦ πz1−2 ◦
· · · ◦ π2 ◦ π1 ◦ π0 and σ′ = θz2−1 ◦ θz2−2 ◦ · · · ◦ θ2 ◦ θ1 ◦ θ0. Let us have Aπ0 ∩ Aθ0 6= ∅.
Denote by p = (π[i→ 0](x), π[i→ 0](y)), for some i ∈ [0, z1 − 1]. Let the decomposition of
p be denoted as

p = γq−1 ◦ γq−2 ◦ · · · ◦ γ1 ◦ γ0.

Now denote #  »Sel1 = #  »Selπz1−1 ||
#  »Selπz1−2 || · · · ||

#  »Selπi+1 and #  »Sel2 = #  »Selp. After appending with
zeroes to make #  »Sel1 and #  »Sel2 of the same length, the following vector

#  »Sel1ˆ
#  »Sel2 ||

#  »Selπ[i→0]

will execute σ ◦ σ′ on the circuit in Figure 2, if Bγ0 ∩ Bπi+1 = ∅.

Proof. We give a sketch of the proof as a complete analytical proof is likely to be quite
complicated. The idea is similar to the ideas explained in the proof of Lemma 9. Note that
Bπi+j+1 (j ≥ 0) will be the union of the corresponding B sets of the several transpositions
that compose σ. One has to iterate the “disjoincy” arguments introduced in Lemma 9, for
Bγ0 and each of those B sets to arrive at a proof.

Example 3. Let us construct a #  »Sel vector for all the si’s in PRESENT that are 0 mod 3.
The transpositions are (51, 15), (48, 12), (54, 45), (39, 30), (18, 9), (33, 24). We already
have a #  »Sel vector for (51, 15) ◦ (48, 12) in the previous example.

1. To start, we have σ = (51, 15) ◦ (48, 12), Bπ0 = {15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48},
Bπ1 = {12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45}, and Bπj = {48 − 3j, 45 − 3j} for
all 2 ≤ j ≤ 11. Let σ′ = (54, 45). Now (π[1 → 0](54), π[1 → 0](45)) = (54, 51). If
p = (54, 51) then Bγ0 = {9}. which is disjoint with Bπ2 = {42, 39}. Since Bγ0 has only
one element it is sufficient to generate p. So we have Bη2 = Bπ2 ∪ Bγ0 = {42, 39, 9}.
For all other j, we have Bηj = Bπj . This will give us σ ◦ σ′.

2. This time σ = (51, 15) ◦ (48, 12) ◦ (54, 45). Shifting notations, we have Bπ0 =
{15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48}, Bπ1 = {12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45},
Bπ2 = {42, 39, 9}, and Bπj = {48− 3j, 45− 3j} for all 3 ≤ j ≤ 11. Let σ′ = (33, 24).
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Now (π[1→ 0](33), π[1→ 0](24)) = (39, 30). If p = (39, 30) then Bγ0 = {24, 27, 30}.
which is disjoint with Bπ2 = {42, 39, 9}. We have Bγ1 = {27} and Bγ2 = {24}. So
we have Bη2 = Bπ2 ∪ Bγ0 = {42, 39, 30, 27, 24, 9}, Bη3 = Bπ3 ∪ Bγ1 = {39, 36, 27},
Bη4 = Bπ4 ∪ Bγ2 = {36, 33, 24}. For all other j, we have Bηj = Bπj .

3. Now σ = (51, 15) ◦ (48, 12) ◦ (54, 45) ◦ (33, 24). Since we are using shifting
notations, all Bπj ’s are the corresponding Bηj ’s of the previous iteration. Let
σ′ = (39, 30). Now (π[2 → 0](39), π[2 → 0](30)) = (45, 39). If p = (45, 39) then
Bγ0 = {18, 21}. which is disjoint with Bπ3 = {39, 36, 27}. We have Bγ1 = {18}. So
we have Bη3 = Bπ3 ∪Bγ0 = {39, 36, 27, 21, 18} and Bη4 = Bπ4 ∪Bγ1 = {36, 33, 24, 18}.
For all other j, we have Bηj = Bπj .

4. Now σ = (51, 15) ◦ (48, 12) ◦ (54, 45) ◦ (33, 24) ◦ (39, 30). All Bπj ’s are
the corresponding Bηj ’s of the previous iteration. Let σ′ = (18, 9). Now (π[3 →
0](18), π[3→ 0](9)) = (18, 9). If p = (18, 9) then Bγ0 = {45, 48, 51}. which is disjoint
with Bπ4 = {36, 33, 24, 18}. We have Bγ1 = {48} and Bγ2 = {45}. So we have
Bη4 = Bπ4 ∪ Bγ0 = {51, 48, 45, 36, 33, 24, 18}, Bη5 = Bπ5 ∪ Bγ1 = {48, 33, 30} and
Bη6 = Bπ6 ∪ Bγ2 = {45, 30, 27}. For all other j, we have Bηj = Bπj . This completes
the construction for all the si’s of the form 0 mod 3. Let us enumerate the sets
explicitly

Bη0 = {15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45, 48}
Bη1 = {12, 15, 18, 21, 24, 27, 30, 33, 36, 39, 42, 45}
Bη2 = {42, 39, 30, 27, 24, 9}
Bη3 = {39, 36, 27, 21, 18}
Bη4 = {51, 48, 45, 36, 33, 24, 18}
Bη5 = {48, 33, 30}
Bη6 = {45, 30, 27}
Bηj = {48− 3j, 45− 3j}, ∀ 7 ≤ j ≤ 11

This therefore constructs all the si’s of the PRESENT permutation that are 0 mod 3
in 12 · 64 = 768 cycles. We can use a similar approach to construct #  »Sel vectors for the
si’s that are 1, 2 mod 3, that can operate in 8 · 64 = 512 cycles each. After padding
of each of them to 768 cycles, a simple application of lemma 8 and corollary 3,
allows us to construct the #  »Sel vector for the composition of all the si’s by computing
#  »Sel0 mod 3̂

#  »Sel1 mod 3̂
#  »Sel2 mod 3 that operates in just 768 cycles. Table 5 lists the B

vectors for all the si transpositions that are 1, 2 mod 3. Using a similar approach
one can construct a similar #  »Sel vector for the composition of all ti’s that operate in
11 · 64 = 704 cycles. The B vectors for the si transpositions are also listed in Table 5.
Since our strategy is to execute the composition of the ti’s followed by the si’s this
approach takes 704 + 768 = 1472 cycles, which is the best we could manage.

4 The PRESENT circuit
Using the mathematical background presented in the previous section, we present our
construction of the PRESENT circuit. Note that the sequence of operation in PRESENT are
as follows:
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Group mod3 j Bηj #Cycles

si 1 0 {29, 32, 35, 38, 41, 44, 47, 50} 512
1 {8, 11, 14, 17, 20, 23, 26, 47}
2 {5, 8, 11, 23, 44}
3 {8, 20, 26, 29, 32, 41}
4 {5, 17, 29, 38, 47, 50, 53, 56}
5 {14, 26, 35, 44, 53}
6 {11, 32, 50}
7 {8, 29, 47}

2 0 {31, 34, 37, 40, 43, 46, 49, 52} 512
1 {10, 13, 16, 19, 22, 25, 28, 49}
2 {25, 28, 31, 34, 37, 40, 43, 46}
3 {4, 7, 10, 22, 40, 43}
4 {7, 19, 25, 28, 37, 40, 46, 49, 52, 55}
5 {4, 10, 13, 16, 25, 34, 37, 52}
6 {10, 13, 31, 34, 49}
7 {10, 28, 31, 46}

ti 0 0 {18, 21, 24, 27, 30, 33, 39, 42, 45, 48, 51, 54} 576
1 {6, 9, 12, 15, 18, 30, 51}
2 {15, 27, 48}
3 {12, 24, 45}
4 {9, 21, 27, 30, 33, 36, 39, 42}
5 {6, 18, 36, 39}
6 {3, 6, 9, 33, 51, 54, 57}
7 {6, 30, 54}
8 {3, 27, 51}

1 0 {11, 14, 17, 20, 23, 26, 29, 32, 35, 38, 41} 704
1 {38}
2 {35}
3 {32}
4 {29, 35, 38, 41, 44, 47, 50, 53}
5 {2, 5, 20, 23, 26, 50}
6 {2, 14, 20, 23, 35, 59}
7 {20, 44}
8 {17, 41}
9 {14, 38}

10 {11, 35}
2 0 {19, 22, 25, 28, 31, 34, 37, 40, 43, 46, 49} 704

1 {7, 10, 13, 16, 19, 22, 46}
2 {19, 31, 34, 43, 55, 58}
3 {1, 16, 31, 40, 55}
4 {13, 19, 37, 43}
5 {10, 34}
6 {7, 31}
7 {28}
8 {25}
9 {22}

10 {19}

Table 5: Constructed B sets for the ti’s and si’s in the PRESENT permutation

PRESENT Datapath

1. For i = 1→ 31 do

addRoundkey(STATE,Ki)

sBoxLayer(STATE)

pLayer(STATE)

2. addRoundkey(STATE,K32)

PRESENT Keypath

1. For i = 1→ 32 do

Ki = [k79, k78, . . . , k16]

[k79, k78, . . . , k1, k0]← [k18, k17, . . . , k20, k19]

[k79, k78, k77, k76]← S[k79, k78, k77, k76]

[k19, k18, k17, k16, k15]← [k19, k18, k17, k16, k15]⊕ i

The circuit for the datapath and the keypath are described in Figures 4 and 5 respec-
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Figure 4: The PRESENT datapath

tively. Note that although it appears that the circuit employs two s-boxes, one for the data
and keypaths each, in fact the there is only one s-box circuit with a multiplexer in front
which accepts inputs from the state and key registers at different periods in the encryption
cycle. In order to explain the circuit operations, it is most instructive to give a cycle by
cycle explanation of the flow of data in the registers.

First 80 cycles: In this period the plaintext and key are loaded onto the state and key
registers bit by bit. We initiate a register Cycle which is reset to zero at the end of
the key and plaintext loading.

Cycle 0 to 63: This period is used for adding the roundkey to the state bits and then
a subsequent S-box operation. Although key addition and the subsequent register
updates are done bitwise, it is possible to execute the 4-bit S-box operation by using
the idea introduced in [JMPS17]. In Figure 4, we can see that the last 4 flip-flops
in the circuit are in fact scan flip-flops which will help in the S-box operation. In
the first 3 cycles of every 4-cycle period, the SB signal that controls these flip-flops
are kept at zero so that in these 3 cycles the updated value is the addition of the
corresponding state and keybits without the S-box operation. In the 4th cycle of
this 4-cycle period, the SB signal is changed to 1 so that 4 bit output of the S-box is
updated en-masse in this cycle.

Cycle 64 to 1535: The next 1472 cycles are used to implement the permutation layer as
explained in the previous sub-section. The Sel port that controls the 61st flip-flop is
fed the signals from the #  »Sel vector constructed in the previous section. The Cycle
register is reset to zero at the end of this period.

The above procedure is repeated 31 times. In the 32nd iteration the first 64 cycles are used
for the final roundkey addition operation and the ciphertext is available at the output of the
xor gate that does the key addition. The keypath operations are slightly more involved. We
need to perform the key update operations correctly, and at the same time ensure that the
correct roundkey bit is available during the roundkey addition operation. The key update
operation rotates the 80-bit key towards the left by 61 bits, then applies the s-box to a fixed
nibble and then adds the round-constant to another fixed 5 bit chunk. The main concern
therefore is to ensure that after the completion of a round, which in this case consists of
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1536 cycles, the key is rotated by exactly 61 bits. It may have been possible to achieve
this using a gated clock in the key registers that freezes the update operations for certain
period of time. But clock gating requires some logic of its own and our intention was to
see if we could achieve the required functionality without resorting to gating. Note that if
we were to let the key register rotate uninterrupted for 1536 cycles, we would achieve a left
key rotation of 1536 mod 80 = 16 bits. However if we rotate the register for β cycles such
that β ≡ 61 mod 80 and somehow freeze the rotation for the remaining 1536−β cycles, we
would achieve the required functionality. We chose β = 1341, which would require freezing
the rotation operation for 195 cycles. To achieve this we use a scan flip-flop in the 15th
location, controlled by a Rtx signal. When the Rtx signal is 1, the key register performs inter-
nal rotation between the first 65 and the next 15 bit chunks as shown in the following figure.

k79 k78 k77
b b b b

k15 k14 k13
b b b b

k0

195 cycles

Since 195 is a multiple of both 15 and 65, such internal rotation when performed for
195 clock cycles, results in the identity function, and so we achieve our end objective of
arresting rotation for exactly 195 cycles. For this purpose, one can choose any 195 of the
1536 cycles used in every round, except of course for the first 64 when the key addition is
being performed. There are additional control signals KB that like SB in the case of of the
state path controls the S-box operation in the key registers. And the AddC signal controls
addition with round constants. These signals are set to 1 at appropriate cycles to ensure
the respective functionalities.

4.1 Area and throughput results
The number of cycles taken to compute the encryption is therefore 80+1536·31+64 = 47760.
This is around 24 times slower than the implementation in [JMPS17]. Assuming that the
#  »Sel vector is stored as look-up-table within the circuit, then after synthesizing the circuit
using the STM 90nm standard cell library, the synthesized circuit occupies logic area of
around 915 GE which is also 65 GE more than the implementation in [JMPS17]. Let us
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call this circuit: configuration A. However it may be possible have a configuration B in
which the #  »Sel vector in stored in some local memory of the processor communicating with
the circuit. The processor could then input the this signal bit-by-bit via an extra input Sel
port of the circuit. Around 200 B of storage is required which could be accommodated in
a EEPROM or any similar memory. In this event, the encryption circuit would occupy
only 727 GE which is the smallest area reported for this block cipher in literature. The
results are summarized in Table 9.

4.2 Circuit for combined encryption and decryption
The approach outlined in the previous section is surprisingly effective when we try to
implement a PRESENT circuit that can offer the combined functionalities of encryption
and decryption. As already pointed out in [BBR16, BBR17a, JMPS17], such circuits are
useful in implementing modes of operation like ELmD, CBC that require access to both the
block cipher and its inverse operation. Our strategy to execute the PRESENT permutation
P was to first execute the transpositions ti in any order and then the transpositions si
again in any order. In order to execute the inverse permutation P−1 it is enough to reverse
the order: first execute the si’s followed by the ti’s as explained below.

In order to understand why this is so, let us denote the composition of all si’s as S and
the composition of all ti’s as T , so that we have P = S ◦T . Both S and T are compositions
of disjoint transpositions. Transpositions are involutary functions, which is to say they are
self-inverses. Since all the ti’s in T are disjoint, T −1 is again the composition of all the ti’s
therefore equal to T . The same is true for S. So we have P−1 = T −1 ◦ S−1 = T ◦ S. Thus
the inverse permutation can be executed on the same circuit by shuffling around the #  »Sel
vector. There are however a few additions to the combined circuit that are listed below:

• There is an additional circuit for the PRESENT inverse S-box.

• The order of operations in the decryption process is listed as follows:

PRESENT Datapath

1. addRoundkey(STATE,K32)

2. Inv-pLayer(STATE)

3. For i = 31→ 2 do

Inv-sBoxLayer(STATE)

addRoundkey(STATE,Ki)

Inv-pLayer(STATE)

4. Inv-sBoxLayer(STATE)

5. addRoundkey(STATE,K1)

PRESENT Keypath

1. K32 = [k79, k78, . . . , k16]

2. For i = 31→ 1 do

[k19, k18, k17, k16, k15]← [k19, k18, k17, k16, k15]⊕ i

[k79, k78, k77, k76]← S−1[k79, k78, k77, k76]

[k79, k78, . . . , k1, k0]← [k60, k59, . . . , k62, k61]

The sequence of operations during decryption is slightly different. So let us look at
the sequence of operations in each cycle:

First 80 cycles: As usual the ciphertext and key are loaded onto the respective registers.

Cycle 0 to 63: In the round immediately after ciphertext loading, we perform only bitwise
round key addition in this period. However in all the subsequent rounds, we need to
do an Inverse s-box operation before roundkey addition. This would require some
incremental additions to the circuit. First of all we need a 4-bit xor to do the key
addition instead of just a single bit xor in the encryption path. A four bit multiplexer
is additionally required to select between the 4-bit updates during encryption and
decryption. The logic circuit is explained diagrammatically in figure 6.
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Figure 6: Modified logic around the last 4 flip-flops to accommodate decryption

Cycle 64 to 1535: The next 1472 cycles are used to implement the inverse permutation
layer, with the S executed ahead of T .

• The keyschedule involves addition by round constant followed by application of
inverse s-box on a fixed nibble followed by rotation by 19 bits to the left. As before
we need to try to rotate the key register for β ≡ 19 mod 80 cycles and somehow arrest
the rotation for the remaining 1536− β cycles. We choose β = 1399. which requires
stopping the rotation for 237 cycles. Again, we try to achieve this by breaking up the
key into chunks of 79 and 1 bits and doing internal rotation within the key-chunks
for 237 cycles. Since 237 is a multiple of 79 and 1, internal rotation for 237 cycles
again gives the identity transformation which satisfies our end objective. In terms of
hardware, this requires two extra multiplexers to do the internal rotation as shown
in Figure 6.

In configuration A, the area occupied by the circuit when synthesized with the standard
cell library of the STM 90nm CMOS process, is around 1040 GE. This is around 200 GE less
than the previous best reported implementation of the combined circuit for PRESENT in
[BBR17b], which occupies around 1240 GE. In configuration B, the circuit occupies only
around 809 GE.

5 Application to GIFT
GIFT was a block cipher designed by Banik et al. [BPP+17] and presented at CHES 2017,
with a view to strengthen the cryptographic properties of PRESENT by redesigning the
permutation layer and keyschedule. It is a block cipher with an SPN round function in
which the linear layer is a bit permutation similar to PRESENT. The permutation function
G is listed in table 6.

The following can be said about the function G:

1. It is a special permutation of type κ = 4.

2. It can be decomposed into fourteen 4-cycles and two 2-cycles all of which are pairwise
disjoint. Additionally it has 4 fixed points.
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i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
G(i) 0 17 34 51 48 1 18 35 32 49 2 19 16 33 50 3

i 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
G(i) 4 21 38 55 52 5 22 39 36 53 6 23 20 37 54 7

i 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
G(i) 8 25 42 59 56 9 26 43 40 57 10 27 24 41 58 11

i 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
G(i) 12 29 46 63 60 13 30 47 44 61 14 31 28 45 62 15

Table 6: Specifications of GIFT bit-permutation layer.

3. Each 4-cycle can be decomposed into three transpositions si ◦ ti ◦ ui. The decompo-
sition is shown in the following table.

i ci si ◦ ti ◦ ui i ci si ◦ ti ◦ ui

0 (1, 17, 21, 5) (5, 17) ◦ (17, 21) ◦ (1, 5) 8 (11, 19, 55, 47) (19, 47) ◦ (19, 55) ◦ (11, 47)
1 (2, 34, 32, 10) (10, 34) ◦ (34, 42) ◦ (2, 10) 9 (13, 33, 25, 53) (13, 25) ◦ (25, 53) ◦ (13, 33)
2 (3, 51, 63, 15) (15, 51) ◦ (51, 63) ◦ (3, 15) 10 (14, 50, 46, 58) (14, 46) ◦ (46, 58) ◦ (14, 50)
3 (4, 48, 12, 16) (12, 16) ◦ (16, 48) ◦ (4, 16) 11 (20, 52, 60, 28) (28, 52) ◦ (52, 60) ◦ (20, 28)
4 (6, 18, 38, 26) (18, 26) ◦ (18, 38) ◦ (6, 26) 12 (23, 39, 43, 27) (27, 39) ◦ (39, 43) ◦ (23, 27)
5 (7, 35, 59, 31) (31, 35) ◦ (35, 59) ◦ (7, 31) 13 (24, 36, 56, 44) (36, 44) ◦ (36, 56) ◦ (24, 44)
6 (8, 32) (8, 32) ◦ ◦ 14 (30, 54) (30, 54) ◦ ◦
7 (9, 49, 29, 37) (29, 37) ◦ (37, 49) ◦ (9, 37) 15 (41, 57, 61, 45) (45, 57) ◦ (57, 61) ◦ (41, 45)

Table 7: Decomposition of the ci’s in the GIFT permutation

As per the strategies outlined in the case of PRESENT, we try to implement all the ui’s
first, followed by the ti’s and si’s, since as per lemma 3, we would have then constructed
G. Furthermore for each of the ui’s, ti’s and si’ we construct composite #  »Sel vectors by
finding #  »Sel vectors for each equivalence class modulo 4 and then doing a bitwise OR. Each
of the transposition sets can be implemented in 9× 64 = 576 cycles. This implies that G
can be executed in 3× 576 = 1728 cycles. The results are tabulated in table 8.

5.1 Circuit details

Since the structure of GIFT is similar to PRESENT, the circuit for the datapath is exactly
the same as in Figure 4, with the obvious exception that the scan flip-flop is used in the
60th instead of the 61st location. The sequence of operations in GIFT is only slightly
different from PRESENT:
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Group mod4 j Bηj mod4 j Bηj
ui 0 0 {19, 23, 27, 31, 35} 1 0 {26, 30, 34, 38, 42, 46, 50}

1 {31, 47, 51, 55} 1 {26, 30, 34, 38, 42, 46}
2 {27, 35, 39, 51} 2 {18, 38, 42}
3 {23, 35, 47} 3 {34, 38, 58}
4 {19} 4 {30, 34}

5 {26, 30}
6 {26}

2 0 {13, 17, 21, 25, 29, 33, 37, 41, 45} 3 0 {16, 20, 24, 28, 32, 36, 40, 44, 48}
1 {41, 53, 57} 1 {28, 32, 36, 40, 44, 48, 52}
2 {37, 53} 2 {40, 44, 48, 52, 56}
3 {33} 3 {28, 36, 44, 52}
4 {29, 37, 41, 45, 49, 53} 4 {32, 40, 48}
5 {25, 49} 5 {28, 36}
6 {21, 45} 6 {24, 32}
7 {17, 41} 7 {20}
8 {13, 37} 8 {16}

ti 0 0 {15, 19, 23, 27, 31, 35, 39, 43} 1 0 {10, 14, 18, 22, 26, 30, 34}
1 {7, 11, 15, 19, 39} 1 {10, 14, 18, 30}
2 {3, 15, 35} 2 {14, 26, 42}
3 {11, 31} 3 {2, 10, 22}
4 {7, 27} 4 {18}
5 {23} 5 {14}
6 {19} 6 {10}
7 {15}

2 0 {25, 29, 33, 37, 41} 3 0 {8, 12, 16, 20, 24, 28, 32, 36, 40}
1 {5, 9, 13, 37} 1 {4, 8, 12, 16, 20, 36}
2 {9, 21, 33} 2 {0, 16, 32}
3 {5, 29} 3 {12, 16, 28}
4 {25} 4 {8, 24}

5 {4, 20}
6 {16}
7 {12}
8 {8}

si 0 0 {31, 35, 39, 43, 47, 51} 1 0 {6, 10, 14, 38, 42, 46}
1 {11, 15, 19, 23, 27, 57} 1 {10, 26, 30, 42}
2 {15, 19, 23, 43} 2 {6, 26, 38, 46, 50, 54}
3 {15, 19, 39, 47} 3 {50}
4 {15, 35} 4 {54}
5 {11, 31}

2 0 {17, 21, 25, 29, 33, 37, 41, 45} 3 0 {12, 16, 20, 24, 28, 32, 36, 40, 44}
1 {9, 13, 17, 21, 25, 41} 1 {12, 16, 20, 24, 28, 32, 36, 40}
2 {21, 25, 29, 33, 37, 41, 45, 49} 2 {16, 20, 24, 32, 36}
3 {17, 29, 33, 37, 45} 3 {16, 20, 28, 32}
4 {13, 29, 33, 41} 4 {16, 24, 28}
5 {9, 25, 37} 5 {20, 24}
6 {21, 33} 6 {16, 20}
7 {17, 29} 7 {12, 16}

8 {12}

Table 8: Constructed B sets for the ui’s, ti’s and si’s in the GIFT permutation

GIFT Datapath

1. For i = 1→ 28 do

sBoxLayer(STATE)

pLayer(STATE)

addRoundkey(STATE,RKi)

GIFT Keypath

1. For i = 1→ 28 do

Ki = [k127, k78, . . . , k0]

For j = 0→ 7: Lj ← [k16j+15, k16j+15, . . . , k16j ]

RKi = L1||L0

L7||L6|| · · · ||L0 ← L1 ≫ 2||L0 ≫ 12||L7|| · · · ||L2
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Figure 7: The GIFT key register

So the sequence of operations in the datapath is as follows:

First 128 cycles: In this period the key is loaded onto the state and key registers bit by bit.
In cycles 64 to 127, the plaintext is loaded onto the state register after performing
the s-box operation. Thereafter we have 28 iterations of the following operations.

Cycle 0 to 1727: Used to compute the permutation layer.

Cycle 1728 to 1791: The next 64 cycles are used to compute add roundkeys and then
perform the s-box operation of the next round.

Thus the total number of cycles taken for the encryption routine is 128+28×1792 = 50304.
The keyschedule is slightly more complicated: it breaks up the current key into eight 16 bit
words L7 to L0. L1 and L0 are internally right rotated by 2, 12 bits respectively and the
whole key is then right rotated by 32 bits. In other words this means internal left rotation
of L1 and L0 by 14, 4 bits and overall left rotation by 96 bits. So we do the following

• Let the key register rotate left for 96 cycles. After this L1 and L0 occupy the the
most significant 32 bits of the register(k127 to k96).

• At this point of time we will partition the key register in to chunks of 16 (k127 to
k112), 16 (k111 to k96) and 96 bits (k95 to k0) and do an internal rotation for 288
cycles. Since 1792− 288 = 1504 ≡ 96 mod 128 this achieves our first objective of 96
bit left rotation.

• To achieve left rotation of L1 by 14 bits, we partition the 1st 16 MSBs into chunks
of 2 (k127 to k126) and 14 (k125 to k112) bits and do an internal rotation in these 2
groups for 98 cycles, and do a normal rotation over (k127 to k112) over the remaining
288-98=190 cycles (see figure 7). Since 2 and 14 both divide 98, the rotation results
in identity transformation. So the effective rotation is for 190 ≡ 14 mod 16 cycles.

• Similarly rotating L0 by 4 bits, we partition 2nd 16 MSBs into chunks of 12 (k111
to k100) and 4 (k99 to k96) bits. Internal rotation is carried out for in these smaller
chunks 12 cycles. So effectively we rotate the 2nd chunk by 276 ≡ 4 mod 16 bits.

However the key addition in GIFT is quite complicated: neighboring key bits do not
xor with neighboring state bits as in PRESENT. In fact, the designers recommend that
∀i ∈ [0, 31] the ith bit of L1 be xored with the (4i+ 2)nd state bit and the the ith bit of L0
be xored with the (4i+ 1)st state bit. Thus, the circuit also requires a filter to extract the
correct roundkey bit in every cycle, which increases the total area slightly. In configuration
A, the circuit occupies 1132 GE. In configuration B, the circuit occupies 925 GE, which is
only around 5 GE smaller than the figure reported in [BPP+17] for the same standard cell
library.
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5.2 Combined Circuit for encryption and decryption
The GIFT decryption circuit suffers from the same issues as the corresponding PRESENT cir-
cuit, and therefore the circuit for the combined decryption is same as the one outlined in
figure 6. The only differences are in the order in which the functions are carried out. The
following is the sequence of operations:

GIFT Datapath

1. addRoundkey(STATE,RK28)

2. inv-pLayer(STATE)

3. For i = 27→ 1 do

inv-sBoxLayer(STATE)

addRoundkey(STATE,RKi)

inv-pLayer(STATE)

4. inv-sBoxLayer(STATE)

GIFT Keypath

1. For i = 1→ 28 do

Ki = [k127, k78, . . . , k0]

For j = 0→ 7: Lj ← [k16j+15, k16j+15, . . . , k16j ]

RKi = L1||L0

L7||L6|| · · · ||L0 ← L5|| · · · ||L0||L7 ≪ 2||L6 ≪ 12

As expected, the inverse permutation layer is constructed by executing the si trans-
positions first, followed by the ti’s and then the ui’s. The cycle by cycle execution of
operations is as follows:

First 128 cycles: In this period the key is loaded onto the state and key registers bit by bit.
In cycles 64 to 127, the plaintext is loaded onto the state register without performing
the inverse s-box operation. Thereafter the following operations are executed 28
times.

Cycle 0 to 63: Used for executing the inverse s-box operations followed by roundkey
addition as shown in figure 6. As in PRESENT only in the first round, the inverse
s-box operation is omitted.

Cycle 64 to 1791: Used for executing the inverse p-layer.

After this, the GIFT decryption process requires one more inverse s-box operation. Hence
the decryption operation requires an additional 64 cycles to complete. The key schedule for
decryption can be carried out using the same circuit as in figure 7. We need left rotation of
L7, L6 by 2, 12 bits followed by a left rotation by 32 bits. At the beginning of the round
cycle when L7, L6 still occupy the 32 msbs in the key register we do internal rotation for
96 cycles. It is easy to see to verify that this will achieve left rotation by 32 bits. In these
96 cycles, we do further internal rotation between the 2 and 14 bit chunks (k127 to k126
and k125 to k112) for 14 cycles, and for 36 cycles between the 12 and 4 bits chunks (k111 to
k100 and k99 to k96) for 36 cycles. This is sufficient to achieve the required functionalities
in the inverse keyschedule.

The circuit in configuration A occupies 1290 GE and the area is around 1050 GE in
configuration B. This is the first reported synthesis results for the combined circuit for
this block cipher.

6 Application to FLIP (how to do Knuth shuffles in con-
strained hardware)

FLIP is a family of stream ciphers proposed by Méaux et al. at Eurocrypt 2016 for FHE
based applications. In [MJSC16] the authors suggested a stream cipher based solution to
implement the above. The FLIP family stream ciphers have the lowest multiplicative depth
compared with previous ciphers. Several versions are provided including 80-bit and 128-bit
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Figure 8: The FLIP stream cipher

security instantiations. The main design principle is to filter a constant key register with a
time-varying public bit permutation. For 80 bit security the authors suggest the use of
the instance FLIP(42, 128,8 ∆9) which uses a 530 bit secret key with hamming weight 265.
The internal state Statei of the cipher is a permutation of the original secret key sk. The
cipher works as follows:

• Let skS ∈ {0, 1}530 with HW (sk) = 265.

• For i = 1→ n do

1. Choose a random permutation Pi from the symmetric group S530. (Pi may be
a function of IV)

2. Let Statei = Pi(sk).
3. Compute zi = F (Statei).

In the above definition, F is a {0, 1}530 → {0, 1} boolean function of multiplicative depth
4. It consists of a linear function of 42 variables, a quadratic bent function of 128 variables
and the remaining 360 variables are used to construct 8 triangular functions of algebraic
degree 9 each. For example a degree 3 triangular function is given as x1 + x2x3 + x4x5x6
(a degree n function thus has n(n+ 1)/2 variables).

Although the designers stop short of providing detailed design specifications, they do
however mention that the permutations are generated by employing a combination of the
IV and a PRP (possibly in the counter mode) to generate a sequence of pseudo-random
bits, which are then used as random inputs to a Knuth shuffle module which generate
the permutation. The question is therefore how to efficiently do a Knuth shuffle in a
lightweight setting. In this let us make two observations

Observation 1: If P1 and P2 are random permutations over any symmetric group then
P1 ◦ P2 is also a random permutation. This means that we can modify the the
sequence of operations in FLIP to the following:

• Let sk ∈ {0, 1}530 with HW (sk) = 265.
• State0 = sk

• for i = 1→ n do
1: Pi

$← S530.
2: Let Statei = Pi(Statei−1).
3: Compute zi = F (Statei).
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This makes the ith state Pi ◦ Pi−1 ◦ · · · ◦ P1(sk) in place of Pi(sk) but since Pi and
Pi ◦ Pi−1 ◦ · · · ◦ P1 are both random permutations, this does not differ from the
ideology of FLIP.

Observation 2: The above allows us to simply place the secret key in a register of equal
length and do state updates by implementing the permutations Pi via some circuit.
Since the authors recommend Knuth Shuffle, let us look at the algorithm. Let the
state be denoted by the bits b529, b528, . . . , b0.

• for i from 529 downto 1 do
1: j ← random integer such that 0 ≤ j ≤ i.
2: swap bj and bi

Each of these swaps could be implemented with a circuit as shown in Fig 1.

6.1 First Attempt
The first idea is therefore to use the circuit in Fig 1 to implement a swap. As explained
in Lemma 4, any swap of the form bi ↔ bj (j < i) is implemented by the sequence of
functions:

[ri ◦ v ◦ r529−i] ◦ [ri−1 ◦ v ◦ r530−i] ◦ · · · ◦ [rj+2 ◦ v ◦ r527−j ] ◦ [rj+1 ◦ vi−j ◦ r529−i]

and by the identity function when i = j. This transpositions would take 530(i− j) cycles
to complete and we could certainly use this circuit to implement one swap. The average
value of i− j is around 530

4 and so implementing 529 swaps one after the other would take
around 5303

4 ≈ 225 cycles which is a high price to pay for one keystream bit.

6.2 Second Attempt
We try to investigate if we can affect any speedup by increasing the circuit size. One of
the reasons that a swap takes 530(i− j) cycles is that data can be transferred in only one
direction. This is true because as per Lemma 4, the above sequence of transitions may
also be written as

r1+i ◦ w ◦ (r529 ◦ w)i−j−1 ◦ (r ◦ w)i−j−1 ◦ r529−i

= (r−1)530−i ◦ (r−1 ◦ w′)i−j−1 ◦ (r ◦ w)i−j ◦ r529−i

In the above equation w′ is a permutation that swaps the 1st and 0th bits i.e. (1, 0). The
above is not difficult to deduce once we use the fact r−1 = r529 and r−1 ◦w′ = r ◦w ◦ r−2.
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Denote u = r−1 ◦ w′, then the above is written as (r−1)530−i ◦ ui−j−1 ◦ vi−j ◦ r529−i. It
can be seen that the circuit of Figure 9, it is possible to realize the functions r, u, v by
appropriately adjusting the Sel, S1 and S2 signals. If we assume that in Figure 9, the
signal at the top is filtered when the corresponding select signal is 0 and the one at the
bottom when select is 1, it is easy to deduce that Sel, S1, S2 = (0,0,0) achieves v, Sel, S1,
S2 = (0,1,1) achieves r and Sel, S1, S2 = (1,*,*) achieves u (* denotes any signal 0 or 1).

The algorithm for the Knuth shuffle basically consists of applying the following trans-
positions

πK = (1, j1) ◦ (2, j2) ◦ (3, j3) ◦ · · · ◦ (528, j528) ◦ (529, j529), with (ji ≤ i, ∀ i)

Denote ∆i = i− ji, we have

(i, ji) =
{

(r−1)530−i ◦ u∆i−1 ◦ v∆i ◦ r529−i, if ∆i > 0,
(r−1)529−i ◦ r529−i, if ∆i = 0.

This results in the following expression for πK :

πk = r ◦ [u∆1−1 ◦ v∆1 ] ◦ [u∆2−1 ◦ v∆2 ] ◦ · · · ◦ [r]
when ∆i = 0

◦ · · · ◦ [u∆529−1 ◦ v∆529 ]

The above expression is solely in terms of r, u, v and thus can be executed on the circuit
in figure 9. Unless ∆i = 0 which requires a single rotation, each of the expressions in the
square braces takes 2∆i− 1 cycles. Since ∆i has an average value of 530

4 , each shuffle takes
around 530 ∗ (2 ∗ 530

4 − 1) ≈ 217 cycles. A synthesis of the above circuit using the standard
cell library of the STM 90nm logic process, yielded a circuit of 3581 GE. The circuit is
certainly an improvement on the previous circuit but still takes a lot of cycles to produce
one keystream bit.

6.3 Third Attempt
The previous circuits took time proportional to N3 and N2 clock cycles respectively to
produce one keystream bit where N is the size of the key. In this part, we will try to
construct a circuit in which the number of clock cycles taken to produce a keystream bit
is at least linear in N . In order to achieve this, let us look at a few facts:

1: In order to achieve a shuffle in linear time, each individual swap has to be executed in
constant time.

2: Observe that logically, a swap bi ↔ bj needs to be executed only when bi and bj are of
opposite parities. No swap operation is really necessary if bi and bj are logically equal.
Furthermore, when bi and bj are logically unequal, a swap is essentially executed
by toggling the polarities of both bi and bj , i.e. swap(bi, bj) is same as bi ← not bi
and bj ← not bj .

3: In order to design this circuit, we note that a memory element must be able to
accommodate a) the secret key during the initial loading cycle, b) hold the current
value stored in the flip-flop for the next cycle, if no swap is required and finally c)
toggle the current logic state if a swap is required at the particular location. In
order to do this we use a scan flip-flop with an additional ENABLE pin that allows
transitions at the positive clock edge only if it is HIGH, as shown in Figure 10a.

Thus we propose the circuit in Figure 10b. The circuit comprises of the following
elements:
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Figure 10: 3rd Circuit for FLIP

Multiplexer: We employ two banks of multiplexers to filter out the bits bi and bj from
the current state. We compute c = bi ⊕ bj to determine the difference in the logic
values of bi and bj .

Decoder: We employ 2 decoder circuits that convert the 10 bit values i and j into a
corresponding set of 530 bit signals et, dt (for t = 0→ 529), such that et = 1 iff t = i,
and dt = 1 iff t = j, and all signals are 0 otherwise. These signals are employed to
feed the the ENABLE ports of the register bank. We argue that the logic value ent
driving the t− th flip-flop is given as [(et ⊕ dt) · c] OR LOAD. The logic behind this
is as follows. The signal LOAD is high only in the first cycle when in loads the key
on to the register and is low thereafter. Thus ent is forced to be high when LOAD is
high. In the subsequent cycles ent evaluates as (et ⊕ dt) · c. If c = 0, i.e. bi and bj
are of same parity then ent evaluates to 0 which means that the flip-flop holds its
previous value as no swap is required. If c = 1, then ent = et ⊕ dt. Now et = dt = 0
implies that no swap is scheduled at location t in that particular clock cycle and
in this event ent is 0. Now et = dt = 1 occurs when i = j in some iteration of the
Knuth Shuffle. Here too, no swap operation is required and ent evaluates to 0. When
et 6= dt, ent evaluates to 1, and it is then that bi and bj are both toggled to effect a
swap.

From the above description of the circuit elements and operational details, it is clear
that each swap can be performed in one clock cycle, and so the shuffle takes exactly
529 + 1 = 530 (1 extra cycle for key loading) clock cycles to execute a shuffle and hence
produce one keystream bit. This circuit when synthesized with standard cell library of the
STM 90nm logic process occupies around 8605 GE.

7 Results and Conclusion
In this paper we looked at a few circuit constructions aimed at achieving minimalism
in block cipher and stream cipher circuits. The final results are presented in Table 9.
More specifically, we tried to answer the question if bit-permutations like the one used
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Design Config. Area (GE) Power (µW) Latency Ref
1 PRESENT (E) A 935 40.0 1472 per round Section 4

B 727 35.8 1472 per round Section 4
8472 0.433 68 per round [JMPS17]

2 PRESENT (ED) A 1039 41.4 1472 per round Section 4
B 809 37.7 1472 per round Section 4

1238 56.0 17 per round [BBR17b]
3 GIFT (E) A 1132 49.8 1728 per round Section 5

B 925 45.8 1728 per round Section 5
930 35.9 96 per round [BPP+17]

4 GIFT (ED) A 1290 52.6 1728 per round Section 5
B 1050 44.8 1728 per round Section 5

5 FLIP 2nd ckt 3581 164.9 ≈ 217 per bit Section 6
3rd ckt 8605 171.9 530 per bit Section 6

Table 9: Tabulation of Results (Unless other wise stated, power reported at 10 MHz)

in the linear layers of block ciphers PRESENT and GIFT can be executed in a flip-flop
array using only two scan flip-flops. While it was already known [Con] that the answer to
the above question was yes, a straightforward application of the ideas [Con] would take
a lot of clock cycles, and thus affect the throughput of the resulting circuit drastically.
Much of the paper is then dedicated to reducing the number of operations required to
execute the bit permutation in this setting. As an outcome, we construct extremely
lightweight implementations of the PRESENT and GIFT circuits for both encryption (E)
and combined encryption+decryption (ED) functionalities. In configuration B, the circuits
of both PRESENT and GIFT are the smallest reported so far for both the (E) and (ED)
variants. We extend these ideas to construct a circuit for the stream cipher FLIP. The
first circuit we investigate is due to a straightforward application of the results [Con], but
takes around 225 cycles to produce one keystream bit. This is deemed too impractical
to be of any use. The second circuit we construct takes time quadratic in the size of
the secret key to produce a keystream bit and occupies only 3581 GE. We then observe
that a third circuit that uses slightly different ideas for bit swapping can achieve the
FLIP functionality in linear time but occupies around 8605 GE. these are the first reported
hardware implementations of FLIP.
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