
Fly, you fool! Faster Frodo for the ARM Cortex-M4

Joppe W. Bos1, Simon Friedberger1,2, Marco Martinoli3, Elisabeth Oswald3, and Martijn
Stam3

1 NXP Semiconductors joppe.bos@nxp.com
2 KU Leuven - iMinds - COSIC simon.friedberger@esat.kuleuven.com

3 University of Bristol, United Kingdom
marco.martinoli, elisabeth.oswald, martijn.stam@bristol.ac.uk

Abstract. We present an efficient implementation of FrodoKEM-640 on an ARM Cortex-M4
core. We leverage the single instruction, multiple data paradigm, available in the instruction
set of the ARM Cortex-M4, together with a careful analysis of the memory layout of matrices
to considerably speed up matrix multiplications. Our implementations take up to 79.4% less
cycles than the reference. Moreover, we challenge the usage of a cryptographically secure pseu-
dorandom number generator for the generation of the large public matrix involved. We argue
that statistically good pseudorandomness is enough to achieve the same security goal. There-
fore, we propose to use xoshiro128∗∗ as a PRNG instead: its structure can be easily integrated in
FrodoKEM-640, it passes all known statistical tests and greatly outperforms previous choices. By
using xoshiro128∗∗ we improve the generation of the large public matrix, which is a considerable
bottleneck for embedded devices, by up to 96%.

Keywords: LWE · Frodo · ARM Cortex-M4 · SIMD · PRNG

1 Introduction

FrodoKEM-640 is a Key Encapsulation Mechanism (KEM) submitted to the NIST post-
quantum standardisation effort [10] and designed to be conservative yet practical. Its secu-
rity is based on the hardness of the (plain) Learning With Errors (LWE) problem [11]. On
the one hand this means that security follows from the hardness of certain problems over
generic “unstructured” lattices. On the other, the main operation to achieve such strong se-
curity guarantees and the desired functionality is multiplication by large matrices. This makes
FrodoKEM-640 less attractive from a performance perspective compared to, for example, the
ring [8] and module [6] “algebraically structured” variants.

Performance of the implementation informs deployment in the real world. Constrained
environments, included in the Internet of Things (IoT) framework, are especially challeng-
ing platforms. For instance, a näıve implementation of FrodoKEM-640 exceed the resources
available on such platforms, hence requiring particular care and analysis.

A popular choice for implementing cryptography on embedded devices is the ARM Cortex-
M4. We target this platform and showcase the fastest implementation of FrodoKEM-640
to date on it. The most delicate and resource intense operations are the expansion of a
public pseudorandom matrix A from a seed and various matrix multiplications by smaller
matrices. We exploit a combination of on-the-fly expansion of A, originally proposed in the
specifications [10], with a particular set of instructions available in our target platform through
the Digital Signal Processing (DSP) extension.

These instructions fall into the Single Instruction, Multiple Data (SIMD) paradigm. As
the ARM Cortex-M4 is a 32-bit architecture, it can hold up to 32 bits in each internal register.



Conveniently, FrodoKEM-640 is formed of matrices defined over Zq with q = 215, which we
embed in Z216 for convenience of computation. This implies that each element can be stored as
a halfword in a register, and this is where SIMD instructions turn out to be most useful: when
four values are correctly stored in the four halves of two registers, it is possible to operate on
them in parallel with a single instruction. We will make a particular heavy use of the smlad

instruction, which multiplies corresponding halfwords from two registers, adds them together,
accumulates the result to a third register and stores the final output in a fourth one, all in
one instruction.

Furthermore, we analyse a suit of algorithms and memory layouts of matrices: with which
function A is generated, either cSHAKE128 or AES128, and whether it is involved in a
multiplication as a left or as a right operand are all slightly different variants which require
different optimisations.

Despite our carefully tailored optimisations, however, performance of matrix multiplica-
tions involving A is still dominated by its generation. A fine grained benchmark does in-
deed show that the greatest number of cycles is spent to perform AES128 and cSHAKE128.
We analyse the rationale behind the choice of such cryptographically secure PseudoRandom
Number Generators (PRNGs), and conclude that they are over-conservative for the task of
generating a public matrix from a public seed. We therefore suggest to use a different, non-
cryptographic PRNG in order to speed up the generation of A. We choose to implement
FrodoKEM-640 using the PRNG xoshiro128∗∗, which produces high quality pseudorandom-
ness at a fraction of the cycle count. We show how to embed it in FrodoKEM-640 and
benchmark it against the above two PRNGs.

Our contributions. We improve multiplication to the right of A by up to 62.8%, and by
up to 78.9% when multiplication is to the left of A, compared to reference. We achieve such
results by carefully analysing the layout in memory of small matrices, and how portions of
A are generated and stored. We coded tailored algorithms for each situation, while having
the use of SIMD instruction as a common design rationale for all our implementations. We
also applied some of our algorithms to multiplication between “small” matrices, i.e. when A
is not an operand: even in these cases we obtained improvements up to 78.9%, compared to
reference.

With faster multiplication routines, generating the matrix A became even more dominant
than before. For instance, the number of cycles at a clock frequency of 24 MHz spent to gener-
ate A account for the 86% of the whole execution of FrodoKEM-640: the remaining 14% can
be as optimised as possible, but the difference will be barely noticeable anyway. These cryp-
tographically secure PRNGs are not suitable, we instead suggest the usage of xoshiro128∗∗.
Generation of A suddenly becomes one of the cheapest operations in FrodoKEM-640, as it
gets reduced by up to 96%.

We will soon release all our implementations to the public domain.

Related works. Howe et al. [3] recently implemented FrodoKEM-640 on the same target
platform, yet did not use SIMD techniques. Secondly the PQM4 project [5], which we partially
used as the backbone of our implementation, is a unified framework where to evaluate post-
quantum candidates on an ARM Cortex-M4. We dedicate part of Section 5 to extensively
compare our work with these two.

2



Very recently, Kannwischer et al. [4] implemented a plethora of schemes submitted to
the NIST standardisation effort on an ARM Cortex-M4. The common denominator of all
schemes is that their use of polynomials in Z2m [x]. Kannwischer et al. created a tool which
automatically explores different divide-and-conquer multiplication approaches and generates
assembly code for these different algorithms. The DSP assembly instructions are also adopted.

An implementation for the ARM Cortex-M4 of a lattice-based scheme using different
moduli has also been implemented: Alkim et al. [1] show how NewHope does benefit from an
optimised implementation.

Structure of the paper. We introduce FrodoKEM-640 and the ARM Cortex-M4 in Sec-
tion 2. Our optimisations are extensively described in Section 3. Then we discuss the pro-
posal of using a non-cryptographically secure PRNG in Section 4, where we also introduce
xoshiro128∗∗. We finally combine everything together in Section 5, where we first describe in
details several metrics we benchmarked our code with, then we show how our implementations
in different contexts perform, and we conclude by comparing them with the aforementioned
relevant previous works. We draw conclusions in Section 6.

2 Preliminaries

We describe our target algorithm, FrodoKEM-640, and some characteristics of the target
platform, an ARM Cortex-M4 core. The specification of FrodoKEM-640 [10] provides two
parameter sets, targeting different levels of security. We study embedded devices used in the
IoT ecosystem, therefore we focus on the parameter set which targets NIST level 1 (matching
or exceeding the brute-force security of AES128), described in Section 2.2.

The ARM Cortex-M4 core is a popular choice for microcontroller usage and has be-
come a representative platform to benchmark cryptographic application for usage in the IoT
([1,3,4,5]). We target the ARM Cortex-M4 core as well to allow for easy comparison against
previous applied cryptographic research, and we discuss it in Section 2.3.

2.1 Notation

We denote vectors and matrices by lowercase boldface letters and uppercase boldface letters,
respectively. We use subscript notation to access them, e.g. vi is the ith element of vector v
and Mi,j is the element on row i and column j of matrix M. Concatenation of bit strings,
including binary representation of vectors, matrices and integers, is denoted by ‖.

In the official implementation of FrodoKEM-640, matrices are stored and operated upon
as arrays. The convention used to linearise a two-dimensional structure like a matrix into one
dimension has a huge impact on performance on embedded devices. It changes which elements
are adjacent in memory, affecting how they are loaded. There is no universal convention which
the matrices in FrodoKEM-640 follow, rather it comes down to convenience on a case-by-case
basis. Throughout this work, we use teletype font to denote arrays obtained from matrices,
e.g. a is the array corresponding to matrix A. Indexes start from 0, and we will make use
of pointer arithmetic notation derived from the C programming language to make notation
easier when handling arrays. If an n× n matrix A is stored in a row-wise, for instance, then
a+n denotes a pointer to the first element of the second row of A, as it lies n positions away
from the base address (always pointing to the top-left element of a matrix: A0,0).

3



Algorithm 1 FrodoKEM-640.KeyGen

Input: None.
Output: Key pair pk = (seedA,B) ∈ {0, 1}128 × Zn×n

q and sk = (s,S) ∈ {0, 1}128 × Zn×n
q .

Parameters: n = 640, n = 8, q = 215.

1: s, seedE, z
$←− {0, 1}128

2: seedA ← cSHAKE128(z)
3: A← Frodo.Gen(seedA)
4: S,E← Frodo.Sample(seedE)
5: B← AS + E (mod q)
6: return public key pk = (seedA,B) and secret key sk = (s,S)

Algorithm 2 FrodoKEM-640.Encaps

Input: Public key pk = (seedA,B) ∈ {0, 1}128 × Zn×n
q .

Output: Ciphertext c = (B′,C,d) ∈ Zm×n
q × Zm×n

q × {0, 1}128 and shared secret ss ∈ {0, 1}128.
Parameters: n = 640, n = 8, m = 8, q = 215.

1: µ
$←− {0, 1}128

2: seedE′ ,k,d← cSHAKE128(pk‖µ)
3: S′,E′ ← Frodo.Sample(seedE′)
4: A← Frodo.Gen(seedA)
5: B′ ← S′A + E′ (mod q)
6: E′′ ← Frodo.Sample(seedE′)
7: V← S′B + E′′ (mod q)
8: C← V + Frodo.Encode(µ) (mod q)
9: ss← cSHAKE128(B′‖C‖k‖d)

10: return Ciphertext c = (B′,C,d) and shared secret ss

2.2 Details of Frodo

FrodoKEM-640 is a key encapsulation mechanism whose security is based on the LWE prob-
lem [11]. Intuitively, security is derived from the hardness of finding solutions to systems of
linear equations which are perturbed by small amounts of additive noise, typically from a
distribution close to Gaussian. Matrix multiplication is therefore the main operation, which
becomes problematic when the matrix sizes become prohibitively large for embedded devices.
All operations are performed modulo q = 2D. In the parameter set we target D = 15 and
we work with residues in Z215 . In practice it is more efficient to use a redundant representa-
tion and work with residues in Z216 (e.g., the usual 16-bit datatypes). Converting from the
redundant representation can be done by simply ignoring the most significant bit. The only
other relevant parameters we make use of in this work are n = 640 and n = m = 8, which
will determine the sizes of all handled matrices.

Algorithms 1, 2 and 3 describe the functionality of FrodoKEM-640, almost exactly as de-
scribed in the specification [10]. Whenever something is drawn randomly, we assume a source
of randomness is present on the target device. We use the Random Number Generator (RNG)
built into our setup, see Section 2.3 for more details. The function cSHAKE128 is used mul-
tiple times to expand true randomness into longer pseudorandom sequences, which can be
interpreted as matrices or bitstrings depending on the requirements. The only other discrep-
ancy between Algorithms 1,2 and 3 and the official specification is that the latter includes
two additional functions called Frodo.Pack/Unpack, which turn matrices into bitstrings and
vice-versa. We omit them as they are irrelevant for our purposes.

4



Algorithm 3 FrodoKEM-640.Decaps

Input: Ciphertext c = (B′,C,d) ∈ Zm×n
q × Zm×n

q × {0, 1}128 and secret key sk = (s,S) ∈ {0, 1}128 × Zn×n
q .

Output: Shared secret ss ∈ {0, 1}128.
Parameters: n = 640, n = 8, m = 8, q = 215.

1: M← C−B′S (mod q)
2: µ′ ← Frodo.Decode(M)
3: seedE′ ,k′,d′ ← cSHAKE128(pk‖µ′)
4: S′,E′ ← Frodo.Sample(seedE′)
5: A← Frodo.Gen(seedA)
6: B′′ ← S′A + E′ (mod q)
7: E′′ ← Frodo.Sample(seedE′)
8: V← S′B + E′′ (mod q)
9: C′ ← V + Frodo.Encode(µ′) (mod q)

10: if B′ = B′′ and C = C′ and d = d then
11: return ss← cSHAKE128(B′‖C‖k′‖d′)
12: else
13: return ss← cSHAKE128(B′‖C‖s‖d′)

Algorithm 4 Frodo.Gen-AES128

Input: Seed seedA ∈ {0, 1}128.
Output: Pseudorandom matrix A ∈ Zn×n

q .
Parameters: n = 640, q = 215.

1: for 0 ≤ i < n do
2: for 0 ≤ j < n, j ← j + 8 do
3: p← i‖j‖0‖ . . . ‖0 ∈ {0, 1}128
4: ci,j‖ . . . ‖ci,j+7 ← AES128seedA(p) where ci,k ∈ {0, 1}16
5: for 0 ≤ k < 8 do
6: Ai,j+k ← ci,j+k (mod q)

7: return A

The two functions Frodo.Encode and Frodo.Decode turn a bit string into a matrix with
coefficients in Zq in such a way that the original bits can be recovered even if some bounded
noise is introduced. We refer the interested reader to the original publication for more infor-
mation on this procedure [10].

Secret and error matrices are generated by expanding a seed into a pseudorandom sequence
with cSHAKE128, and then by applying inversion sampling to this sequence. This way, their
elements follow a Gaussian-like distribution called χ, whose outputs are smaller than 11 in
absolute value. Since this part is not central to our work, we hide all the details behind the
Frodo.Sample function.

Seed expansion. Of particular interest to us is the Frodo.Gen function in Algorithms 1, 2
and 3, which expands a seed to generate A. A is a matrix of size n×n, hence requiring a total
of 16n2 bits, i.e. 800 KB for n = 640. As we will describe in Section 2.3, our target device
does not have enough memory to fully generate and load A, which is why the FrodoKEM-640
team implemented an on-the-fly generate-and-multiply routine to be used in constrained
devices. The function Frodo.Gen can be instantiated with two different PRNGs: AES128 or
cSHAKE128. It is very important to analyse each case separately as elements of A are filled
in a different orders, making any optimisation dependent on this choice.

5



Algorithm 5 Frodo.Gen-cSHAKE128

Input: Seed seedA ∈ {0, 1}128.
Output: Pseudorandom matrix A ∈ Zn×n

q .
Parameters: n = 640, q = 215.

1: for 0 ≤ i < n do
2: ci,1‖ . . . ‖ci,n ← cSHAKE128(seedA‖(28 + i)) where ci,j ∈ {0, 1}16
3: for 0 ≤ j < n do
4: Ai,j ← ci,j (mod q)

5: return A

Algorithm 4 uses AES128 and works as follows. Two indexes i, j are converted to binary
and padded to form a 128-bit plaintext. AES128 is then applied with seedA as a key and
the resulting 128-bit ciphertext is interpreted as eight 16-bit numbers modulo q and stored
in Ai,j , . . . , Ai,j+7. This is repeated for all rows, index by i, and every eight columns, index
by j.

The second possibility is using cSHAKE128 and is described in Algoritm 5. In this case
cSHAKE128 is initialised with seedA and with a customisation value which only depends on
the row index, and produces n 16-bit numbers modulo q which are stored as one full row of
A.

Algorithms 4 and 5 are different and not compatible with one another. A fair comparison
in performance of the two algorithms is also quite hard to establish due to the large number of
possible implementations of the two PRNGs. On the one hand, AES128 is exceptionally fast
when the underlying platform has dedicated instructions to run it, e.g. AES-NI instructions
on Intel platforms. When they are not available, however, cSHAKE128 seems to offer better
performance according to the Frodo specification [10]. For this work, we choose a highly
optimised implementation of cSHAKE128 in ARM assembly made by the Keccak team, also
used in PQM4 [5] and by Howe et al. [3]. With the latter we also share the implementation
of AES128, proposed by Schwabe and Stoffelen [12].

Remark. We noticed that there are ways of speeding up the computation of AES128 and
cSHAKE128 by exploiting the fact that the inputs are partly fixed for each iteration. By
reformatting how bitstrings are given, it is possible to compute and store parts of the internal
state. For example, the plaintext of AES128 is mostly formed of zeros, hence portions of the
first and second rounds could be precomputed and reused at every iteration. Similarly, since
seedA is fixed, the first few absorption of cSHAKE128 can be computed in advance. We do
not explore these ideas further, as doing so would mean to enter in the details of how the two
PRNGs are implemented. We instead decided to use them as black boxes and focus on the
operations in FrodoKEM-640.

2.3 Fast Arithmetic on an ARM Cortex-M4 Core

In recent works the ARM Cortex-M4 core has been considered a representative platform
when benchmarking post-quantum primitives targeting embedded applications [1,3,4,5]. This
platform has a word-size of 32 bits. The Cortex-M4 has specific instructions which can work
on two half-words (of size 16 bits) in parallel following the single instruction, multiple data
(SIMD) paradigm. This has recently been explored by Kannwischer et al. [4] to optimise

6



multiplication of polynomials in Z2m [x]. Let us recall the most relevant instructions we use
in the implementation.

– ldmia loads multiple (up to eight) full-word values from consecutive memory into the
corresponding amount of registers and, optionally, updates the pointer to the memory
accordingly.

– smlad multiplies four half-word sized values stored in two word registers and adds them
to an accumulator. More specifically,

smlad d, a, b, c

computes

d =
(
a mod 216

)
·
(
b mod 216

)
+
⌊ a

216

⌋
·
⌊
b

216

⌋
+ c mod 232.

– ldrh and strh are useful for loading and storing half-word sized values from memory in
one instruction, without needing to load a full-word combined with masking or shifting.

– bfi copies a bit field from one register into another one. This is useful for merging two
half-word values for using the aforementioned SIMD instruction.

Given the amount of available registers these instructions allow multiplying two matrices five
values at a time, in a pretty straightforward way. This is under the assumption that the left
matrix is given in row-major order and the right matrix in column-major order such that
they can both be accessed linearly. As outlined in Section 3 this is not always the case, hence
the need for dedicated subroutines accessing non-adjacent portions of a linearised matrix.

The ARM Cortex-M4 in our setup is mounted on a STM32F407 board, equipped with 1
MB of flash and 192 KB of memory. The default clock frequency is 168 MHz. The board is
equipped with a True Random Number Generator (TRNG) that derives entropy from analog
noise. A Linear Feedback Shift Register (LFSR) is seeded with the noise and with a dedicated
clock. Its output is stored in the RNG DR register, which is read when randomness is needed.
Checks to verify the absence of abnormalities in both the noise-derived seed and clock are
present too.

The matrix A is the main obstacle to any implementation of FrodoKEM-640 on embedded
devices. Apart from being resource intensive to generate, it also simply does not fit in memory.
Our platform is ideal to test on-the-fly solutions, because we are forced to generate A in
chunks.

3 FrodoKEM-640 Optimisations

Despite the clear differences outlined in Algorithms 4 and 5, AES128 and cSHAKE128 do
show a certain degree of similarity, allowing us to write some common subroutines in ARM
assembly to be reused in both cases. They will also turn useful when we describe how we
optimised other matrix multiplications other than those by A, namely the ones between
n× n matrices in Encaps and Decaps.

We opted for addressing different multiplications in different sections, rather than dividing
the discussion between PRNGs. Therefore, Section 3.1 describes the common subroutines,
which are used in Sections 3.2 and 3.3 that describe AS and S′A, respectively. We conclude
with multiplications between small matrices in Section 3.4.

7



3.1 Common Subroutines

Both AES128 and cSHAKE128 can generate a full row of A, although in slightly different
ways. This perfectly fits the case when A is the left operand in a multiplication, because
it implies that some of its rows are fully stored in adjacent memory locations, and happens
during KeyGen only. Even more conveniently, S is stored column-wise, effectively opening
the way to an inner product function based on SIMD instructions.

We call our first subroutine ip n, as it computes the inner product between two vectors of
length n, which we assume have their elements stored in adjacent locations in memory. The
inner functionality and a description of all instructions follow.

ip n
1 mov %[r], #0

2 ldmia %[s]!, {r0, r1, r2, r3, r4}

3 ldmia %[a]!, {r5, r6, r7, r8, r9}

4 smlad %[r], r0, r5, %[r]

5 smlad %[r], r1, r6, %[r]

6 smlad %[r], r2, r7, %[r]

7 smlad %[r], r3, r8, %[r]

8 smlad %[r], r4, r9, %[r]

9 (lines 4-10 are repeated 64 times)

1 The register holding the final result, named %[r], is initialised to zero.

2-3 The instruction ldmia is used to load multiple registers at once. We load five registers,
i.e. 20 bytes, exploiting the fact that all elements we are interested in are adjacent
in memory. The exclamation mark after the address registers indicates that pointers,
stored in registers %[s] and %[a], are also updated, hence no other instructions will be
needed in the next iteration.

4-8 Five SIMD instructions are everything we need to perform 10 multiplications and 10
additions (accumulations) on the output register %[r].

9 Since the above lines compute over 10 elements at the time, we need to repeat them
n/10 = 64 times.

The function ip n crucially relies on the vectors to be multiplied to have adjacent posi-
tions in memory such that their addresses can be loaded once and then updated directly by
the loading instruction. Unfortunately such an optimal scenario only happens when AS is
performed during KeyGen. Apart from there, A has to be generated during Encaps and for
the re-encapsulation part of Decaps. In these cases it is multiplied to the left by the matrix
S′, while still being generated row-wise for consistency and correctness. On the bright side,
S′ is generated row-wise.

The function we developed for the matrix multiplication S′A is denoted row by chunk

and is depicted in Figure 1. Four registers, are loaded with eight consecutive elements in a
column of A (we represent only four of them in Figure 1 for the sake of compactness). As
this procedure differs between cSHAKE128 and AES128, we defer the details and the adopted
instructions for later, while for now referring to those elements as the vector a temp. Then, for
every row of S′, the corresponding eight elements are loaded, SIMD-multiplied with a temp

and the result is accumulated in the corresponding positions of the output matrix. The colour
code in Figure 1 visualises them. The code and a line by line description follow.

8



=… …

a_temp

…

Fig. 1: Visualisation of the row by chunk function. Circles refer to elements, where for com-
pactness we depicted a temp holding four elements, while in reality it holds eight. Lines show
how elements are disposed in memory. Finally, the colour code simply highlights how multi-
plication by a temp works.

row by chunk
1 mov r0, %[s]

2 mov r9, %[o]

3 ldmia r0, {r5,r6,r7,r8}

4 ldrh r10, [r9, #0]

5 smlad r10, r1, r5, r10

6 smlad r10, r2, r6, r10

7 smlad r10, r3, r7, r10

8 smlad r10, r4, r8, r10

9 strh r10, [r9, #0]

10 add r0, r0, #1280

11 (lines 3-10 are repeated 8 times)

1 The address of the matrix S′ is held in %[s].

2 The address of the matrix B′ is held in %[o]. We use hard-coded offsets to access the
correct position: each element in a column of B′ is 2n = 1280 bytes away from the top
element in the same column.

3 Four registers are filled with eight elements of S′. Note that we do not use the excla-
mation mark because we manually modify the address to access non adjacent memory
locations (line 10).

4 One element of B′ is loaded: this is a 16-bit value, hence the instruction to load a
halfword is used.

5-8 Four SIMD instructions are used to perform 8 multiplications and 8 additions (accu-
mulations). We assume the elements of a temp are stored in registers r1 up to r4.

9 The partially updated element of B′ is stored back in place.

10 The address of S′ is shifted by 2n = 1280 bytes, therefore it now points to the second
row of S′.

11 Lines 3 to 8 are repeated a total of n = 8 times, hence partially updating a full column
of B′. The only caveat is that after four columns, the register r9 holding the pointer
to B′ must be updated by 4 · 2n = 5120 bytes with an extra add instruction, otherwise
the offset would exceed the maximum allowed by the architecture.

9



Algorithm 6 AS multiplication

Input: Seed seedA ∈ {0, 1}128, output vector b ∈ Znn
q initialised with error matrix E, and secret vector

s ∈ Znn
q .

Output: b← b + AS.
Parameters: n = 640, n = 8, q = 215.

1: a rows←{0}4n
2: for 0 ≤ i < n, i← i+ 4 do
3: for 0 ≤ j < 4 do
4: if PRNG = AES128 then
5: for 0 ≤ k < n, k ← k + 8 do
6: p← (i+ j)‖k‖0‖ . . . ‖0 ∈ {0, 1}128
7: a rows + j · n+ k ← AES128seedA(p)

8: else if PRNG = cSHAKE128 then
9: a rows + j · n← cSHAKE128(seedA‖(28 + i+ j))

10: for 0 ≤ k < n do
11: for 0 ≤ j < 4 do . Unrolled loop
12: b[k + (i+ j)n]← b[k + (i+ j)n] + ip n(s + k · n, a rows + j · n)

3.2 Optimising the Matrix Multiplication AS

This setting is straight-forward and we can tackle it independently from the PRNG adopted.
The matrix A is the left operand which we store row-wise. We can apply cSHAKE128 as
specified in Algorithm 5 whenever we need a row, while in the case of AES128 we can fix the
index i and run the j-loop from Algorithm 4. Once one or more rows are generated, we can
simply run the ip n subroutine directly.

In Algorithm 6 four rows of A are genearted at-a-time, which works slightly different
depending if AES128 or cSHAKE128 is being used. In the first case, an extra loop over the
columns, eight by eight, is needed; while the latter PRNG generates full rows straight away.
Next, we multiply each of the generated rows by all columns of S and accumulate the output
vector. Note that ip n returns a value, which is added in to b.

3.3 Optimising the Matrix Multiplication S′A

In the setting of the matrix multiplication S′A it is crucial to understand how A is placed in
memory and how AES128 differs from cSHAKE128. The row by chunk subroutine assumes
eight consecutive elements in a column of A, which do need to be adjacent in memory,
are stored in the a temp array. Next, this is multiplied by corresponding portions of S′,
accumulated and stored directly in memory. We denote the portion of A being generated
each time as a cols, which is the counterpart of a rows from Section 3.2.

Figure 2 visualises the process in both the AES128 (left) and the cSHAKE128 (right)
cases. In the former, a n × 8 submatrix is generated by performing the whole i-loop with a
fixed j in Algorithm 4. Performing the same operation with an incremented j yields to the
next submatrix, hence shifting a cols to the right by 8 positions. Since cSHAKE128 can only
generate full rows a cols is simply filled with the first eight of them (only four are shown for
compactness). Dashed arrows show in which direction a cols moves in both cases. Note that
Figure 2 represents only four elements in a temp for compactness.

Once a cols is generated and stored, values corresponding to a temp have to be loaded to
be used by row by chunk. This is where cSHAKE128 and AES128 differ: a temp contains eight

10



a_
te
m
p

… a_cols

a_
te
m
p

a_cols

Fig. 2: The matrix A as generated and accessed by AES128 (left) and cSHAKE128 (right).
Dashed arrows show in which order a cols moves to different portions of A.

consecutive values in one column, and moves to the next column for the next iteration. Once
there are no more columns available in a cols, a temp jumps to the subsequent eight rows.
Such a wrap around happens after 8 columns for AES128 and n columns for cSHAKE128. In
particular, in the former case a temp jumps more often, but the next eight rows are present
in memory; in the latter a temp covers the full eight rows present in memory, then a cols

has to be filled with other eight rows. The following ARM assembly snippet illustrates how
we dealt with such a discrepancy.

load a temp
1 __________aes_________|_________cshake________

2 ldrh r1, [%[a], #0] | ldrh r1, [%[a], #0]

3 ldrh r5, [%[a], #16] | ldrh r5, [%[a], #1280]

4 bfi r1, r5, #16, #16 | bfi r1, r5, #16, #16

5 ldrh r2, [%[a], #32] | ldrh r2, [%[a], #2560]

6 ldrh r5, [%[a], #48] | ldrh r5, [%[a], #3840]

7 bfi r2, r5, #16, #16 | bfi r2, r5, #16, #16

8 | add %[a], %[a], #5120

9 ldrh r3, [%[a], #64] | ldrh r3, [%[a], #0]

10 ldrh r5, [%[a], #80] | ldrh r5, [%[a], #1280]

11 bfi r3, r5, #16, #16 | bfi r3, r5, #16, #16

12 ldrh r4, [%[a], #96] | ldrh r4, [%[a], #2560]

13 ldrh r5, [%[a], #112] | ldrh r5, [%[a], #3840]

14 bfi r4, r5, #16, #16 | bfi r4, r5, #16, #16

The code snippet load a temp reports both AES128 (left) and cSHAKE128 (right) ver-
sions, with differences highlighted in red. Starting from the address stored in %[a], even
positions are loaded to the bottom half of each register, while odd ones are first loaded to
the bottom half of the temporary register r5 and subsequently moved to the top half of the
designated register (r1 up to r4) thanks to the bfi instruction. Such a procedure is common
to both halves of the snippet.

What differs is the offset when loading values from %[a]. In the case of AES128 (left) the
offset among values in the same column is a multiple of 16 bytes because a cols is a n × 8
submatrix of A. Instead, elements in the same column of a cols when cSHAKE128 is used
are 2n = 1280 bytes apart from each other, hence offsets in the right half of the snippet are
multiples of 1280 (cf. Figure 2). This introduces an extra complication: offsets are not allowed

11



Algorithm 7 S′A multiplication

Input: Seed seedA ∈ {0, 1}128, output vector bp ∈ Znn
q initialised with error matrix E′, and secret vector

sp ∈ Znn
q .

Output: bp← bp + S′A.
Parameters: n = 640, n = 8, q = 215.

1: a cols←{0}8n
2: for 0 ≤ k < n, k ← k + 8 do
3: if PRNG = AES128 then
4: for 0 ≤ i < n do
5: p← i‖k‖0 . . . 0 ∈ {0, 1}128
6: a cols + 8 · i← AES128seedA(p)

7: for 0 ≤ i < n, i← i+ 8 do
8: for 0 ≤ j < 8 do
9: a temp← load a temp(a cols + 8 · i+ j)

10: row by chunk(sp + i, a temp, bp + k + j)

11: else if PRNG = cSHAKE128 then
12: for 0 ≤ j < 8 do . Unrolled loop
13: a cols + j · n← cSHAKE128(seedA‖(28 + k + j))

14: for 0 ≤ i < n do
15: a temp← load a temp(a cols + i)
16: row by chunk(sp + k, a temp, bp + i)

to exceed 4095, hence we have to spend an extra add instruction, highlighted in red, to make
the address in %[a] point to the first position of the fourth row.

Algorithm 7 incorporates both AES128 and cSHAKE128 variants of the S′A multipli-
cation. We denoted by load a temp aes and load a temp cshake the two halves of the
load a temp snippet. Once the appropriate values are loaded, the row by chunk function
is applied. Note that it does not return any value, as the memory location of bp is an input,
hence results are immediately stored back. Loop structures make sure that submatrices are
traversed in the correct order, depending on the situations.

3.4 Small Matrix Multiplication Optimisations

Multiplications involving A are by far the most time consuming. There are however multipli-
cations between smaller matrices (n × n and vice-versa) which take a much smaller portion
of the overall computation time, but can still benefit from some of the subroutines outlined
in Section 3.1.

During Decaps, the function ip n can be used to efficiently perform B′S, since both
matrices are conveniently stored in memory. Differently than before, they are fully present in
memory, and the matrix B′ is not initialised to an error matrix because it comes from the
ciphertext. The result of multiplication is therefore saved in a different vector and is later
subtracted from C using a different function.

Algorithm 8 shows how to use ip n for the B′S multiplication. Effectively we efficiently
perform the inner product along the bigger dimension n, while the two smaller dimensions n
are taken care in a loop and in an unrolled fashion.

Similarly, we can compute the function V ← S′B + E′′ in both Encaps and Decaps
using the row by chunk function. In this case, B is a n× 8 matrix stored row-wise, precisely
like a cols in the AES128 case because n = 8. It is worth noticing that B is generated

12



Algorithm 8 B′S multiplication

Input: Uninitialised output vector out ∈ Znn
q , vectors bp, s ∈ Znn

q containing B′ and S, respectively.
Output: out← B′S.
Parameters: n = 640, n = 8, q = 215.

1: for 0 ≤ i < n do
2: for 0 ≤ j < 8 do . Unrolled loop
3: out[i · n+ j]← ip n(bp + in, s + j · n)

Algorithm 9 S′B multiplication

Input: Output vector v ∈ Znn
q initialised with elements of E′′, vectors b, sp ∈ Znn

q containing B and S′,
respectively.

Output: v← v + S′A.
Parameters: n = 640, n = 8, q = 215.

1: for 0 ≤ i < n, i← i+ 8 do
2: for 0 ≤ j < n do
3: b temp← load a temp aes(b + 8i+ j)
4: row by chunk(sp + i, b temp, v + j)

during KeyGen, being it part of the public key, and then used both in Encaps and Decaps
as rightmost operand in matrix multiplications. Therefore a column-wise layout in memory
would be more beneficial, but we do not explore this idea further being the impact on the
overall computation time too marginal. Algorithm 9 shows the pseudocode, which is exactly
the same as in lines 6 to 9 of Algorithm 7.

We postpone the showcase of performances our optimisations achieve to Section 5, where
a unified view on benchmarks, together with comparisons with other relevant works, will be
given. In the coming section, instead, we focus our attention on how A is generated. So far
we have been compliant with the design choices in the specification of FrodoKEM-640 [10],
and optimised the usage of AES128 and cSHAKE128 inside matrix multiplications. We are
about to offer an alternative o them greatly outperforming both.

4 Faster PRNG for A: xoshiro128∗∗

Generating the large matrix A is typically problematic on embedded devices. More generally,
the competitiveness of FrodoKEM-640 on any device is hampered by the need to deal with
big matrices rather than small polynomials, as happens in its ring and module variants.

A step in the right direction has already been taken with the design choice of expanding
true randomness with a PRNG. When it comes to generating large matrices, both randomness
cost and performance improve. Setting aside the unavoidable cost of generating a seed from
random, the next question is which PRNG to choose. As we pointed out several times, this
choice impacts on how portions of a matrix are actually generated, thus on performance.

To remedy the performance penalty incurred by FrodoKEM-640 for generating A, we
propose a third option for the PRNG in this section by challenging the need for a cryp-
tographically secure PRNG to generate a public matrix. The purpose of cryptographically
secure PRNGs is to provide streams of pseudorandom numbers achieving some form of se-
curity. When the seed of the sequence is secret, an adversary learning the first k bits should

13



Algorithm 10 xoshiro128∗∗

Input: State s ∈ ({0, 1}32)4.
Output: Pseudorandom number r ∈ {0, 1}32.
Parameters: None.

1: r ← (((s[0] · 5) << 7) ∨ ((s[0] · 5) >> 25)) · 9
2: t← s[1] << 9
3: s[2]← s[2]⊕ s[0]
4: s[3]← s[3]⊕ s[1]
5: s[1]← s[1]⊕ s[2]
6: s[0]← s[0]⊕ s[3]
7: s[2]← s[2]⊕ t
8: s[3]← (s[3] << 11) ∨ (s[3] >> 21)
9: return r

not be able to predict the (k + 1)th bit. If the internal state is compromised, reverting the
computation upstream until the seed is disclosed should also be infeasible.

Therefore, the whole point of a cryptographically secure PRNG is that, as long as some-
thing inside remains secret, be it the seed or some internal state, an adversary cannot tell
the difference between the output stream and a truly random sequence, nor recover anything
that would allow reconstructing part of the sequence. Crucially, disclosing the secret reveals
the deterministic nature of the sequence, hence making any security notion useless.

For the above reasons, we suggest the usage of a non-cryptographic PRNG over a secure
one for the generation of the public matrix A, whose seed is part of the public key. This is
advantageous because non-cryptographic PRNGs are usually faster and have smaller internal
states, since they are only designed to achieve good statistical properties. The latter is still
a stringent property of A, as clear patterns and other generic statistical weaknesses could
potentially weaken the underlying LWE problem.

4.1 Description of xoshiro128∗∗

We propose to use xoshiro128∗∗ [2] as the designated PRNG for our implementation in
FrodoKEM-640. There are several reasons behind this decision. As the name says, it has
a 128 bit state, which is precisely the length of seedA. Moreover, the state is seen as an array
of four 32 bit values, which matches the word size of the target architecture. However, larger
versions achieving the same statistical properties are available [2].

Statistical quality and performance are the main advantages of xoshiro128∗∗. The design
is inspired by the xorshift family of PRNGs [9], which are linear functions and therefore do
not always pass all statistical tests. To fix this issue a scrambler is used, that is to say a
non-linear layer to avoid linear dependencies in output. The authors of xoshiro128∗∗ use a
sequence of multiplication-rotation-multiplication operations called a ∗∗ scrambler, hence the
name xoshiro128∗∗. One word of the state is multiplied by constants of the form 2s + 1 and
rotated. Constants are chosen to be efficiently implemented as one shift and one addition.
Algorithm 10 shows the pseudocode of xoshiro128∗∗, where << and >> indicate left and
right rotations, respectively. Firstly the output of the current iteration r is computed, then
the internal state s is updated.

Outputs of xoshiro128∗∗ achieve very good statistical quality. According to the original
publication [2], xoshiro128∗∗ passes the BigCrush test from the TestU01 suite [7]. It is in fact
one of the fastest doing so. On top of that, the authors designed a test to discover statistical

14



bias in the Hamming weight of w-bit words generated by a PRNG, showing that xoshiro128∗∗

and closely related PRNGs succeed.

4.2 Frodo and xoshiro128∗∗, Love at First Sight

We used xoshiro128∗∗ to generate A inside Frodo. We left everything else as it was, including
the fact that cSHAKE128 is used to generate seedA and all secret and error matrices. For the
latter, security of the PRNG is indeed mandatory, as the seeds are supposed to be kept secret.
In the case of seedA, adopting a cryptographically secure PRNG fed with true randomness
makes sure that tampering with the seed of A is not feasible, and that xoshiro128∗∗ is seeded
correctly. Since an adversary does not choose nor can tamper with the seed, statistical quality
harming the underlying LWE security is the only potential problem. Since xoshiro128∗∗ has
very good statistical properties [2], no such issue holds.

We opted for changing the order in which A is stored in memory: instead of having row
values adjacent in memory, we generate A column-wise. This is motivated by the fact that
the former convention is only convenient in KeyGen, while being problematic for Encaps
and Decaps. This way, the situation is reverted.

Column-wise layout in memory has another advantage: its symmetry with respect to the
AES128 and cSHAKE128 generate A. We can therefore simply swap the subroutines described
in Section 3.1 for the multiplications by A: ip n can be used for S′A and row by chunk can
be used in AS. The former returns a value, which is then added to the output matrix in the
wrapping C code, but note that the latter stores results directly to memory. Therefore there
is one caveat to take care of: row by chunk was originally designed to output B′, which is
saved in rows of length n, while here we want it to output B, whose rows are of length n = 8.
A simple change of offsets in the loading and storing instructions is then enough to solve the
issue.

We realised three implementations: a first one in portable C where A is fully pre-generated,
an implementation in portable C where A is generated and multiplied on-the-fly which we
use as our reference, and finally our optimised implementation.

In the next section we describe how we benchmarked our optimised xoshiro128∗∗ imple-
mentation only, alongside with reference and optimised implementations from Section 3. We
provide several metrics to understand and, more importantly, contextualise results. Finally
we compare our work with existing papers in the literature.

5 Results and Comparison with Previous Works

Benchmarks are never straightforward to carry out, and interpreting their results to derive
recommendations is an even more delicate task. In this section we collect all performance
results of our implementations, as well as compare them with relevant previous works.

As we mentioned in Section 2, the default clock frequency of our target development
board is 168 MHz. However when the main interest is how the implementation of a specific
function performs, i.e. how many clock cycles the operations in that function take, then it
is useful to run benchmarks at a lower clock frequency to compensate for memory accesses.
If there are any inside the benchmarked function, the final number of clock cycles computed
at a normal frequency might not be representative, as a good part of them might have been
simply wasted by the function waiting for memory to retrieve the queried values. Memory is
indeed notoriously slower than the microprocessor. On the other hand, not contextualising

15



Function
cSHAKE128 AES128 xoshiro128∗∗

Ref [10] This work Ref [10] This work This work

KeyGen 99, 762, 353 88, 288, 589 105, 892, 559 95, 593, 272 14, 205, 132
Encaps 118, 213, 358 92, 814, 363 110, 258, 517 99, 800, 669 14, 927, 835
Decaps 118, 686, 081 93, 776, 021 110, 699, 504 100, 7471, 40 15, 731, 086

Table 1: Cycle counts averaged over 100 executions and obtained at 168 MHz.

benchmarks at a lower frequency is equally, if not more, misleading, and can yield to erroneous
conclusions on the actual performance.

The STM32F407 development board offers a very neat and simple way of precisely com-
puting cycle count, thanks to the Data Watchpoint and Trace (DWT) registers. We reset
and read the DWT CYCCNT register around functions to benchmark to have a confident
measure of how many cycles they took. We use the default 168 MHz clock frequency for
benchmarking time of algorithms, and the lower 24 MHz when benchmarking cycle count of
internal operations. This seems to be a popular choice in the literature [3,4,5], thus making
comparisons fairer.

We compare our implementations against the portable C implementation of FrodoKEM-640
denoted as “optimised” in the official specifications [10]. The “reference” implementation can-
not possibly fit in our setup because A is fully generated, and it would occupy 2n2 = 819, 200
bytes of memory, i.e. 800 KB against the 192 KB available. The “optimised” implementation,
instead, generates and multiplies chunks of A on-the-fly. Since the latter is the only official
implementation we can refer to for benchmarking purposes, we call it reference for the rest
of the paper.

We use the same implementation of cSHAKE128 as in the PQM4 framework [5], which
has been optimised in ARM assembly. Since AES128 is not part of the framework, we opted
for the Schwabe and Stoffelen [12] implementation, also optimised for the ARM Cortex-M4
and used by Howe et al. [3] too. Finally, we deploy the implementation of xoshiro128∗∗ in C
code, available at http://xoshiro.di.unimi.it/xoshiro128starstar.c.

5.1 Benchmarks at 168 MHz

We benchmark both the reference [10] and our optimised implementations of FrodoKEM-640
for all three PRNGs. We set the clock frequency to the default 168 MHz, and execute the
whole protocol 100 times, measuring cycle counts of KeyGen, Encaps and Decaps each
time. Results are shown in Table 1.

Overall, we improve the cycle counts of FrodoKEM-640 on the ARM Cortex-M4 by 18.4%
when using cSHAKE128, and by 9.4% when using AES128. However, our optimised implemen-
tation using xoshiro128∗∗ is on average 84.3% faster than the above two, which is emblematic
of how many cycles are spent in the generation of a publicly known matrix whose only goal
is to look random.

We can fairly accurately estimate the time taken by FrodoKEM-640 in the three cases by
dividing the total cycle count in Table 1 by 168 · 106 to obtain a time expressed in seconds.
Our optimised implementations take around 1.64 seconds when cSHAKE128 is adopted, 1.76
second with AES128 and 0.27 seconds with xoshiro128∗∗.

16

http://xoshiro.di.unimi.it/xoshiro128starstar.c


Function
cSHAKE128 AES128 xoshiro128∗∗

Ref [10] This work Ref [10] This work This work

AS 90, 053, 180 78, 068, 108 48, 764, 566 38, 449, 619 10, 811, 476
Gen. A 73, 612, 819 71, 948, 659 32, 315, 402 32, 327, 961 2, 867, 639
Mult. 16, 423, 218 6, 114, 896 16, 423, 218 6, 114, 896 7, 527, 058

S′A 105, 905, 509 80, 789, 865 50, 544, 249 40, 292, 651 9, 192, 436
Gen. A 73, 614, 739 73, 615, 219 32, 469, 159 32, 469, 079 3, 072, 351
Mult. 35, 955, 867 7, 578, 258 17, 240, 744 7, 041, 221 6, 115, 378

KeyGen 93, 301, 265 81, 299, 689 52, 012, 652 41, 681, 042 14, 042, 899
Encaps 111, 616, 496 86, 255, 368 56, 255, 552 45, 758, 155 14, 657, 940
Decaps 112, 084, 038 87, 212, 153 56, 684, 122 46, 720, 217 15, 456, 163

Table 2: Cycle count of the reference and our optimised implementations, obtained at 24 MHz
and with data cache disabled.

5.2 Benchmarks at 24 MHz

For the second part of our results showcase, we downclock the microprosessor to 24 MHz,
because we are interested in studying the number of cycles taken by our implementations to
perform its operations, thus excluding time spent waiting for memory from the picture. On top
of this, we also disable data cache: this forces the Schwabe and Stoffelen [12] implementation
of AES128 to run in constant time, and slightly simplifies the flow of execution. Since memory
is not a bottleneck at this clock frequency, keeping data in cache is not beneficial anyway.

Table 2 summarises results of all our implementations, in terms of clock cycles measured
at 24 MHz and with data cache disabled. Several aspects are worth noticing. When it comes to
the official PRNGs, our multiplication routines improve the reference ones by between 59.2%
(S′A with AES128) and 78.9% (S′A with cSHAKE128). The most prominent fact about our
version using xoshiro128∗∗, instead, is the immensely better generation of A: within the AS
multiplication, it takes 91.1% less cycles than AES128 and 96.0% less than cSHAKE128.

A further point of interest, which backs up our initial discussion on benchmarking at
different clock frequencies, is in the performance in clock cycles of AES128 at 24 MHz in
Table 2 when compared to those listed in Table 1 at 168 MHz. Despite the former numbers
are smaller than those of cSHAKE128, FrodoKEM-640 turns out to be slightly slower when
using AES128. This is explained by the crucial role that memory access plays in AES128,
being based on tables, which is in turns almost neglected by counting cycles at 24 MHz.

We omitted matrix multiplications between small matrices from Table 2, as they do not
depend on the PRNG. We improved also in this area: S′B passed from 369, 439 cycles to
111, 103 (69.9% better), while B′S from 410, 222 to only 84, 461 (79.4% better).

5.3 Comparison with Previous Works

There are two relevant previous works we can compare our results against. The first one is
the PQM4 project [5], which we also used as a framework to embed and evaluate our code on
the board. Secondly, Howe et al. [3] also recently proposed an implementation of Frodo on the
same microcontroller. Table 3 compares the cycle counts of KeyGen, Encaps, Decaps, as
well as of some internal functions, across different PRNGs. All numbers, from all sources, have
been obtained on the same board running at 24 MHz. Howe et al. [3] also disabled data cache

17



PRNG Function PQM4 [5] Howe et al. [3] This work

cSHAKE128

KeyGen 94, 119, 511 85, 585, 315 81, 299, 689
Encaps 106, 992, 266 112, 103, 350 86, 255, 368
Decaps 107, 505, 670 112, 442, 770 87, 212, 153

AS 82, 256, 529 78, 068, 108
S′A 106, 178, 196 80, 789, 865

AES128

KeyGen 44, 603, 160 41, 681, 042
Encaps 47, 742, 966 45, 758, 155
Decaps 48, 051, 929 46, 720, 217

AS + E 41, 308, 745 38, 449, 619
S′A + E′ 41, 833, 535 40, 292, 651

xoshiro128∗∗

KeyGen 14, 042, 899
Encaps 14, 657, 940
Decaps 15, 456, 163

AS + E 10, 811, 476
S′A + E′ 9, 192, 436

Table 3: Cycle count of KeyGen, Encaps, Decaps and other functions as reported by
previous works and compared to ours. Numbers were obtained on the same board, running
at 24 MHz. Blank spaces refer to data not available.

since the used the same implementation of AES128, thus the comparison holds. The impact
of this on the implementation based on cSHAKE128 is negligible, hence also the comparison
with PQM4 [5] is meaningful.

PQM4 [5] does not come with a M4-specific implementation of Frodo, hence performance
benchmarks were done on the code that we used as a reference in this work. Moreover, only
cSHAKE128 is currently implemented and benchmarked.

The attentive reader will notice a small discrepancy between the results of PQM4 in
Table 3 and those of our reference implementation in Table 2. This is due to a recent update
of the PQM4 framework (commit #23), in which the authors moved to a more recent version
of GCC for ARM on Arch Linux, i.e. arm-none-eabi-gcc version 8.2.0. Since our setup
is based on a different distribution we use arm-none-eabi-gcc version 7-2018-q2-update as
provided by ARM at https://developer.arm.com/open-source/gnu-toolchain/gnu-rm.
For the sake of comparison, before said commit #23 PQM4 reported that KeyGen took
94, 191, 951 cycles, Encaps took 111, 688, 861 cycles and Decaps took 112, 156, 317 cycles.
These numbers are indeed much closer to how the reference implementation [10] performs on
our board, according to Table 2.

Howe et al. [3] implemented both the AES128 and the cSHAKE128 flavours, including
optimised routines in ARM assembly. Several differences with our work exist. First and fore-
most, they do not optimise the S′A multiplication when cSHAKE128 is used, which makes
our implementation the first of its kind and explains the bigger gap in the first section of
Table 3. Note indeed that their Encaps and Decaps cycle count when using cSHAKE128 is
extremely close to the reference implementation in Table 2.

18

https://developer.arm.com/open-source/gnu-toolchain/gnu-rm


Secondly, they change the memory layout of the matrix S in the AS multiplication, for the
sake of optimising loading patterns in that specific case. However, unless amended somewhere
else in the code, this makes their implementation incompatible with the reference one, while
we chose to make AS and S′A interchangeable with the reference.

Finally, they did not use SIMD instructions in their ARM assembly code, instead optimised
for load/store operations. SIMD instructions do offer a speed-up, but require registers to be
filled in a precise way, see Section 2.3, hence the design of the multiplication needs to be
tailored around them. For instance, adjacent elements in memory can be loaded in multiple
registers using the ldmia instruction, but then SIMD instructions can be used only if the
two values contained in each register can be multiplied by values in the corresponding halves
of other registers, and optionally also accumulated. Since they did not have such a (mild)
restriction, they instead optimised for memory access patterns. Unfortunately, it is hard to give
precise comparisons in terms of overall performance as their cycle counts lack contextualisation
for different frequencies.

6 Conclusions

We showed how SIMD instructions in the ARM Cortex-M4 and a careful analysis of memory
layout are valuable tools to implement matrix multiplication. We showcased the performance
gain by improving FrodoKEM-640, but we believe that similar techniques can be applied to
any scheme based on the standard LWE problem [11] (and variants, as alread demonstrated
by Kannwischer et al. [4]). Our AS function is 62.7% faster than the reference, and we speeded
up S′A by 59.2% when AES128 is used, and by 78.9% when using cSHAKE128.

Our watchful analysis of performance at different clock frequencies sheds light on the
pitfalls of deriving strong conclusions after benchmarking. Our results apply to the ARM
Cortex-M4 mounted on a STM32f4 discovery board: different processors, and even different
packagings of the same processor, might change the picture unpredictably.

We can firmly state, however, how unsatisfactory the currently adopted PRNGS are.
Generating A is by far the most resources hungry operation in FrodoKEM-640, which sounds
paradoxical considering that is a public matrix, hence adversaries know all about it: seed,
internal state during generation and final result.

Moved by such considerations, we challenged the use of a cryptographically secure PRNG,
and instead put forward the idea of using a PRNG achieving pseudorandomness of good
statistical quality but not meeting any security goal. Our final suggestion is xoshiro128∗∗: it
is extremely fast, it passes all known statistical tests according to the original authors [2] and
has an easy-to-integrate structure. We therefore improved generation of A of up to 96.0%,
suddenly making it one of the least demanding operations in FrodoKEM-640.

Acknowledgements

The research leading to these results has received funding from the European
Union’s Horizon 2020 research and innovation programme Marie Sk lodowska-
Curie ITN ECRYPT-NET (Project Reference 643161). Furthermore, Elisabeth
Oswald was partially funded by H2020 grant SEAL (Project Reference 725042).

19



References

1. Erdem Alkim, Philipp Jakubeit, and Peter Schwabe. NewHope on ARM Cortex-M. In Security, Privacy,
and Applied Cryptography Engineering, pages 332–349. Springer International Publishing, 2016.

2. David Blackman and Sebastiano Vigna. Scrambled linear pseudorandom number generators. CoRR,
abs/1805.01407, 2018.

3. James Howe, Tobias Oder, Markus Krausz, and Tim Güneysu. Standard lattice-based key encapsulation on
embedded devices. IACR TCHES, 2018(3):372–393, 2018. https://tches.iacr.org/index.php/TCHES/

article/view/7279.
4. Matthias J. Kannwischer, Joost Rijneveld, and Peter Schwabe. Faster multiplication in Z2m [x] on Cortex-

M4 to speed up NIST PQC candidates. Cryptology ePrint Archive, Report 2018/1018, 2018. https:

//eprint.iacr.org/2018/1018.
5. Matthias J. Kannwischer, Joost Rijneveld, Peter Schwabe, and Ko Stoffelen. PQM4: Post-quantum crypto

library for the ARM Cortex-M4. https://github.com/mupq/pqm4.
6. Adeline Langlois and Damien Stehlé. Worst-case to average-case reductions for module lattices. Designs,

Codes and Cryptography, 75(3):565–599, Jun 2015.
7. Pierre L’Ecuyer and Richard Simard. TestU01: A C library for empirical testing of random number

generators. ACM Trans. Math. Softw., 33(4):22:1–22:40, August 2007.
8. Vadim Lyubashevsky, Chris Peikert, and Oded Regev. On ideal lattices and learning with errors over rings.

In Henri Gilbert, editor, EUROCRYPT 2010, volume 6110 of LNCS, pages 1–23. Springer, Heidelberg,
May / June 2010.

9. George Marsaglia. Xorshift RNGs. Journal of Statistical Software, Articles, 8(14):1–6, 2003.
10. Michael Naehrig, Erdem Alkim, Joppe Bos, Leo Ducas, Karen Easterbrook, Brian LaMacchia, Patrick

Longa, Ilya Mironov, Valeria Nikolaenko, Christopher Peikert, Ananth Raghunathan, and Douglas Stebila.
Frodokem. Technical report, National Institute of Standards and Technology, 2017. available at https:

//csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions.
11. Oded Regev. On lattices, learning with errors, random linear codes, and cryptography. In Harold N.

Gabow and Ronald Fagin, editors, 37th ACM STOC, pages 84–93. ACM Press, May 2005.
12. Peter Schwabe and Ko Stoffelen. All the AES you need on Cortex-M3 and M4. In Roberto Avanzi and

Howard M. Heys, editors, SAC 2016, volume 10532 of LNCS, pages 180–194. Springer, Heidelberg, August
2016.

20

https://tches.iacr.org/index.php/TCHES/article/view/7279
https://tches.iacr.org/index.php/TCHES/article/view/7279
https://eprint.iacr.org/2018/1018
https://eprint.iacr.org/2018/1018
https://github.com/mupq/pqm4
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions

	Fly, you fool! Faster Frodo for the ARM Cortex-M4

