
Lightweight AE and HASH in a Single Round
Function

Dingfeng Ye1,2, Danping Shi1,2, and Peng Wang1,2

1State Key Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, China

2Data Assurance and Communication Security Research Center, Chinese Academy of
Sciences, China

{ydf, dpshi, wp}@is.ac.cn

Abstract. To deal with message streams, which is required by many
symmetric cryptographic functionalities (MAC, AE, HASH), we propose
a lightweight round function called Thin Sponge. We give a framework to
construct all these functionalities (MAC, AE, and HASH) using the same
Thin Sponge round function. Besides the common security assumptions
behind traditional symmetric algorithms, the security of our schemes
depends on the hardness of problems to find collisions of some states.
We give a class of constructions of Thin Sponge, which is improvement
of the round function of Trivium and ACORN. We give simple criteria for
determining parameters. According to these criteria, we give an example,
which achieves all functionalities in a single round function and hence
can be realized by the same hardware. Our algorithm is also efficient in
software.

Keywords: Thin Sponge, lightweight, MAC, AE, HASH

1 Introduction

Authentication encryption (AE), message authentication code (MAC) and hash
function are widely used in modern society. Recently various competitions such
as eSTREAM, SHA-3, PHC and CAESAR are held to satisfy the need of more
and more applications. Due to the rapid development of lightweight devices,
requirements in different application scenarios are proposed, such as IoT, em-
bedded system, smart card and wireless sensor node. In resource-constrained
environment, if confidentiality, integrity and identity verification are required,
and if all these functionalities are implemented by different circuits, it would
violate the resource limits. We hope to find a solution which implements all the
functionalities in a single small circuit.

There are mainly three approaches to construct MAC or AE scheme. Some
use block cipher algorithms, such as cipher block chaining message authentica-
tion code(CBC-MAC) [1], One-key MAC(OMAC) [2], Parallelizable MAC(PMAC)
[3], CCM[4], EAX[5], GCM[6], and OCB[7]. Some utilize hash functions, such as
HMAC [8] and JHAE[9]. The last approach (adopted by ACORN [10]) achieves

2

stream cipher, MAC and AE with a single lightweight round function, similar
functions are called Thin Sponge in this paper. However, construction of hash
function is not addressed.

There are mainly two common constructions for hash functions. One is
based on Merkle-Damg̊ard (MD)-structure, such as SHA-1[11], SHA-2[12] and
MD5[13]. And the other is based on a sponge or sponge-like functions, such as
Keccak[14], PHOTON[15], Quark[16], SPONGENT[17] and GLUON[18]. How-
ever, the modular addition operation used in the MD-structure is not suitable to
hardware, and the implementation of sponge functions relies on large hardware,
which is very slow in lightweight hardware.

In this paper, we give a heuristic construction of hash function using the
Thin Sponge function of an AE. For security, we give an analysis which leads to
criteria for deciding parameters for a specific security level. Our analysis suggests
that the security strength depends on 2 parameters which are not affected by
Thin Sponge function. So our method gives a solution whose security level and
assurance can be adjusted at application layer without affecting hardware im-
plementation. In addition, we give an improved Thin Sponge construction over
ACORN and give a concrete example.

Thin Sponge function is a lightweight function for processing bit stream as
follows:

F : S× {0, 1} → S

where S is the state space. Here Thin means F can be realized by a small number
(tens) of bit operations.

We present our constructions in the following framework. The first thing for
setting all functionalities is to construct a MAC using Thin Sponge. Then AE
can be heuristically obtained from MAC as in ACORN. To achieve our goal, we
only need to construct HASH from AE.

First, we recall the method to construct MAC using Thin Sponge.

– (k, IV)
Init−−−→ S0: use secret key k and IV to get initial state S0.

– (Si,mi)
F−→ Si+1: update state by Thin Sponge round function F with mes-

sage stream.
– RO(Sm) → Tag: use a random oracle RO to produce output of MAC,

where(and in the follows) Sm denotes state obtained from S by processing
a message stream m.

The security strength of this MAC is determined by max
m ̸=m′

Pr[Sm = Sm
′

] for

unknown random S.
AE can be constructed by adding a non-linear filter function GK on MAC

state to generate key stream as Fig.(1). At the initialization step, S0 is obtained

as S0 ← S
0l
0 , where 0l is the all zero bit stream of length l, and l is the number

of rounds to repeat a sightly modified round function. The key stream bit k is
fed back to the state.

HASH is constructed from AE using the same Thin Sponge as in Fig.2. As
the AE state is too small, we use a buffer to expand the state of HASH. The

3

(S,m)
F

S

k

GK

Fig. 1: AE round function TAE

(S,m)
F

S

k

g

⊕

Buffer

a0

Fig. 2: HASH round function THASH

buffer is a pipe used to temporarily store a segment of re-encrypted key stream,
and its size is denoted by lB.

The actual message stream inputted to HASH round function is m̃, which is
obtained by dividing original message into fixed-length (such as 32-bit) blocks
and inserting some fixed-length constant blocks. The length of a valid message
block and a constant block are respectively denoted by lm and lc, and the rate
of valid messages is denoted as ρ = lm

lm+lc
.

Heuristically, we guess that the security strength depends on lB and ρ: bigger
lB and smaller ρ means stronger security.

The process of HASH is as follows:

– S0: use fixed random constant bits to fill the initial state S0.

– (Si, m̃i)
THASH−−−−−→ Si: update state by HASH round function THASH with

packed message stream. In this stage, the input of buffer is k⊕d, the output
is d, and the bit string in buffer is shifted to the right by 1 bit. At the
same time, the output bit of buffer is fed back to AE state as in the AE
initialization stage.

4

– RO(S
m̃

0 ,mlength) → Dig: RO is a random oracle, S
m̃

0 is the final state,
and mlength is the length of message m. RO can be realized by iterating
the round function THASH for enough number of rounds. In each round the
message bit is replaced by e⊕ v, where e is the middle bit of the buffer and
v is a corresponding bit of the stream h obtained by repeating mlength:
h = ||∗[mlength], where [mlength] is seen as a bit stream of length 64.

The security of this HASH is determined by the hardness of following prob-

lem: to find m ̸= m′ of equal length satisfying S
m̃

0 = S
m̃′

0 . Generally, the problem
is defined by systems of equations. This kind of systems of equations are too
complex for existing solvers. The only known method for solving this type of
equations is differential cryptanalysis.

We consider a special kind of Thin Sponge functions where the security of
MAC is easy to estimate. Denote

G× {0, 1} H−→ {0, 1}
H(G,m) = SB(G) +m,

G ⊆ S

S A−→ S
S 7→ AS.

Our Thin Sponge is defined as F (S,m) = AS+ bβ, where A is a linear trans-
formation over S(considered as a linear space), SB is the S-box function taking
several state bits to one output bit, where G denotes the subspace consisting
of the input bits of the S-box, and β is the constant state determined by the
positions where b = H(G,m) embedded in.

The probability max
m ̸=m′

Pr[S
m
0 = S

m
′

0] is determined by the number of active

S-boxes of all valid differential trails b = {bi}i∈{0,1,2,... } such that 0b = 0, where
round function is just a linear function A, S-box is active if and only if its
input G is non-zero. Generally, the number of active S-boxes is smallest when
{bi}i∈{0,1,2,... } is the coefficients of the minimal polynomial of A. In this case,
state difference sequence is called the characteristic sequence and we denote
AG = |{i : Gi ̸= 0}|, where Gi is input difference of S-box in the i-th round. To
give a MAC of λ-bit security, we just make AG > λ.

To give the GK function of the AE, we need another independent S-box
SB

′
: G −→ {0, 1}, and define GK(S) = SB

′
(G) + s, where s is some bit of S.

A Concrete Construction
We give a MAC round function with 256-bit state for 128-bit security. The

linear transformation A is defined by four 64-bit LFSRs, which can run at least
32 steps in parallel. The leftmost bit of every LFSR is simply updated by xoring
three bits of its right half 32 bits and one bit from another register at each step
so that 32 steps can be done in parallel. The four LFSRs are concatenated in a
circle where one bit of one register affects its next register.

5

G = {sjj0 , s
j
j1
}j∈{0,1,...,3} ⊆ S and SB(G) = 1 ⊕

⊕3
j=0 s

j
j0
· sjj1 , where sjj0 ,s

j
j1

are two bits from the j-th register. SB
′
=

3⊕
i0 ̸=i1i0=0

si0t0 · s
i1
t1 , ti ∈ {j0, j1}, it is

independent to SB except at 3 input difference values.
The main imporvements over ACORN are the follows. The shift operation in

software is easier on 64-bit registers. The concatenation of the registers has more
choices to make the characteristic polynomial of A is irreducible. The S-boxes
we used are lighter.

An example is given by replacing the indexes with specific numbers in above
description, where the hardness of collision problems for MAC and HASH are
supposed to be 148 and 192 bits respectively, and the efficiency of AE is slightly
better than ACORN. HASH runs in half speed of AE.

To summarize, our main contributions are as follows:

– We give an improved construction of AE over ACORN.
– We give the construction from AE to Hash and heuristic criteria for security

strength.
– According to the security criteria, we give an example, which achieves all

functionalities with a single small hardware.

2 Notations

We use small letters for bits, underlined ′small letters′ for vector streams,
sequences of bits etc. | · | for the number of elements in a set, + for Xor, · for
And.

For any round function of the form T : S×{0, 1} −→ S, we denote Sm to be
the state obtained as follows:

S ←− T (S,mi), for i = 0, 1, . . . ,

where T is omitted if the context is clear.

3 MAC and AE

In this section, we give explicit construction of our Thin Sponge function, and
its security analysis.

3.1 Description

Suppose the security level is 128-bit, our Thin Sponge function acts on a 256-bit
state S.

– S consists of four 64-bit LFSR registers {Sj}j=0,1,2,3 as Fig.3 shows. Each
register uses a linear feedback function Fj , j ∈ {0, 1, 2, 3}. The shift operation
is easier on 64-bit register. We write Sj = . . . , sj−1, s

j
−2, . . . , s

j
−64.

6

– The concatenation of the registers is as follows: the four registers are con-
catenated to a circle where one bit of each register is xored to the input of
the next register, where the extracted position of register j is denoted by uj .

– G = {sjj0 , s
j
j1
}j∈{0,1,...,3} ⊆ S, and SB(G) = 1⊕

⊕3
j=0 s

j
j0
· sjj1 , where sjj0 ,s

j
j1

are two bits of the j-th register Sj . SB′
=

3⊕
i0 ̸=i1,i0=0

si0t0 · s
i1
t1 , ti ∈ {j0, j1}.

F0 F1 F2 F3

b b

Fig. 3: TMAC

In the following, we give the algebraic description of the algorithm. The state
S can be seen as a vector of polynomials in t−1, polynomials are seen as in the
ring F2[t

−1] mod ((t−1)64) or written as F2[t
−1]/((t−1)64). Each linear feedback

function Fj has a connection polynomial, denoted by fj ∈ F2[t]. For example, if

Fj(S
j
0) = sj−32 ⊕ sj−47 ⊕ sj−64, then fj(t) = t32 + t47 + t64.

Then the linear transformation A is represented as a 4× 4 matrix of polyno-
mials in t as follows:

P =


f0 tu1 0 0
0 f1 tu2 0
0 0 f2 tu3

tu0 0 0 f3

 .

AS = t−1 · S + [t−1 · P · S]0. (1)

where []0 denotes the constant term(of degree 0).
The MAC round function TMAC is:

S× {0, 1} −→ S
TMAC(S,m) = AS + (SB(G) +m)β,

where

β =


1
0
1
0

 .

7

To do differential cryptanalysis, the content of j-th register is denoted as a
power series

Sj =
∑

i≥−64

sji · t
i.

Denote Si (S
j
i) be the i-th state (j-th register state), that is

S =


S0

S1

S2

S3

 , (2)

and Si = [S]i−1,i−2,...,i−64, i.e. terms of degree ranging from i− 1 to i− 64.

Input sequence is also denoted as

B =
∑
i≥0

bi · ti,

where bi = SB(Gi) +mi, Gi = {sji−j1
, sji−j2

}j=0,1,2,3.

Then our MAC can be described as

P · S +B · β = S, (3)

which is

(P + I) · S = b · β. (4)

The round function in AE (initialization and finalization) is:

TAE = AS + (SB(G) +m)β +GK(S)β
′
,

where

β
′
=


0
1
0
1

 .

3.2 Security Analysis

The security strength λ of this MAC is determined by δ = max
m ̸=m′

Pr[Sm
0 = Sm

′

0].

That is λ = log2(
1
δ), which is supposed to be AG, the number of active S-boxes

in the characteristic sequence.

From Eq.(4), S can be expressed as follows:

S =
(P + I)∗ · β · b
det(P + I)

, (5)

8

where (P + I)∗ is the adjoint matrix of (P + I), and det(P + I) =
3∏

j=0

(1 +

fj) + t

3∑
j=0

uj

is the characteristic polynomial of A. When b = det(P + I), we get
S = (P + I)∗ · β, and

AG = |{i : Gi ̸= 0}|,

where Gi = {sji−j0
, sji−j1

}j∈{0,1,...,3}

3.3 Deciding Parameters

We let fj have exactly 3 terms, i.e. fj = tϵ
j
0 + tϵ

j
1 + tϵ

j
2 . We choose all ϵj0, ϵ

j
1, ϵ

j
2 to

make that the weight of characteristic sequence S is as large as we can achieve,
and also the characteristic polynomial irreducible. Weight of the sequence is
defined as the number of 1.

Then we chose G to be random positions and to make AG as large as possible.
For Example, if we let

– f0 = t64+t33+t32, f1 = t64+t36+t34, f2 = t64+t42+t37, f3 = t64+t56+t45.
u0 = 33, u1 = 51, u2 = 63, u3 = 38.

– G = {s0−34, s
0
−35, s

1
−32, s

1
−40, s

2
−33, s

2
−60, s

3
−49, s

3
−50}.

– then we get AG = |{i : Gi ̸= 0}| = 148.

4 HASH

4.1 Definition

The round function of HASH is as follows:

S× B× {0, 1} → S× B

THASH(S, b′, m̃) = (AS + bβ + b′β′, b′ +GK(S) + t−1b′),

where S and B denote respectively the state space of registers and buffer. B =

F2[t
−1]/((t−1)lB), b′ =

lB−1∑
i=0

b′it
−i ∈ B, b = SB(G) + m̃, b′ = b′lB−1.

Note that the register part of THASH is the same as TAE , except that GK(S)
is replaced by b′Blength−1, and it goes to the buffer state as key stream for en-
crypting buffer output, where the latter is an operation of the AE process.

We get the output of HASH by applying a random oracle RO:

RO(S
m̃

0 ,mlength)→ Dig,

where mlength is the length of message stream. RO is realized by the iterating

the round function S ← S
h̃
. At this stage, m̃ is replaced by h̃ = b′Blength

2 −1
+ h,

where h is provided by the stream h of repeating the message length.

9

Finally we output the newest n bits of the buffer as the digest of HASH,
where n is the required length of HASH output.

In the message encoding phase, the original message stream m is divided
into fixed-length blocksM0,M1,M2, . . . , and inserted some fixed-length constant
blocks C0, C1, C2 . . . to get the input string m̃, i.e.

if m = M0||M1||M2|| . . . ,
then m̃ = M0||C0||M1||C1||
In our example, we chose Ci = 0 for all i.

4.2 Security Analysis

The security of HASH is reduced to the problem of finding collisions: to find

m ̸= m′ so that S
m̃

0 = S
m̃′

0 . In general, the problem of finding collisions will be
transformed into solving systems of equations. This kind of systems of equations
are too complex for existing solvers. The only known method for solving this
type of equations is differential cryptanalysis.

Differential cryptanalysis is a method to find a differential trail which has the
smallest cost. A differential trail is a sequence pair (b, b′), which is the differential
sequence that appears in the expression of THASH . A full valid trail is the one
that makes the whole state from 0 to 0. Note that b′ is decided by b and the
output of SB

′
(which must be 0 for inactive S-boxes). At step i, bi is either the

output of SB or arbitrary, which we say the S-box is at constant position or
message position respectively. The cost of a trail denoted the work factor to
realize this trail, when the cost is q, we mean the work factor is 2q.

We can count the cost of a trail as follows: each active S-box at constant
position increases the cost by two and each non-active S-box at message position
decreases the cost by one. The cost of a differential trail is the maximum of costs
of its all sub-trails.

4.2.1 An Upper Bound of Security Strength

In our HASH, the state is consisted of two parts, the register part and the buffer
part. We consider the following trail which has 2 stages.

In the first stage, stream b (b′=0) is chosen as a small multiple of minimal
polynomial of A. The small multiple makes almost all the S-boxes active so that
this sub-trail is valid. This stream makes register state zero, and makes buffer
state containing a segment m′, where m′ is determined later. The number of
active S-boxes in this sub-trail is about (lS − c1), where lS is the size of the
register state, and c1 is a small constant. According to previous subsection, the
cost of this sub-trail is about

2 · (lS − c1) · (1− ρ).

Let m,m′ be sequences of suitable length which transform the register state
from 0 to 0. This suitable length is about half of lS , so the cost of this sub-trail

10

is

2 · (lS
2
) · (1− ρ).

After the first stage and a segment of zero input, we can make the input to the
register is (b = m, b′ = m′), which makes it zero and at the same time clear-off
the buffer contents m′.

The cost of the whole trail is the maximum of the two, i.e.

2 · (lS − c1) · (1− ρ).

This gives an upper bound of security strength of HASH.
We give an argument that it is also the lower bound. Consider trails which

begin with zero state and end before the buffer output affects S-boxes, i.e. b
′
= 0.

The length of these trails are lB + c2, where c2 is a constant (in our example,
c2 > 64). In any valid trail the inactive S-boxes’ input forms a linear space,
which is a subspace of the space generated by variables in b, where each bit is
considered a variable. Each S-box gives a subspace of dimension 8, some of which
overlap with other S-boxes, so we pretend that each S-box gives an independent
subspace of dimension 4. The total space has dimension less than lB + c2, the
number of inactive S-boxes is less than lB+c2

4 and the number of active S-boxes
is more than 3

4 (lB + c2). As a result, the cost of the trail would be larger than
2(34 − ρ)(lB + c2). This suggests that our upper bound above is also a lower
bound if lB is large enough.

5 Example

5.1 MAC and AE

– A is defined by f0 = t64+t33+t32, f1 = t64+t36+t34, f2 = t64+t42+t37, f3 =
t64 + t56 + t45, u0 = 33, u1 = 51, u2 = 63, u3 = 38.

– S-box position G = {s0−34, s
0
−35, s

1
−32, s

1
−40, s

2
−33, s

2
−60, s

3
−49, s

3
−50}.

– SB(G) = 1⊕ s0−34 · s0−35 ⊕ s1−32 · s1−40 ⊕ s2−33 · s2−60 ⊕ s3−49 · s3−50,

SB
′
(G) = s0−34 · s2−60 ⊕ s0−35 · s3−50 ⊕ s1−32 · s3−49 ⊕ s1−40 · s2−33.

– GK(S0) = s0−32 + SB
′
(G) with v = s0−32.

– Security strength for MAC state collision AG = 148.

Initialization: The round function is

S ←− AS +H(G,m) · β +GK(S) · β
′
, (6)

where

β
′
=


0
1
0
1

 .

11

At first, load the 128-bit key in right half of the four registers, and load constants
in left half to get S, then

S ←− SIV ,

S ←− S0512 .

0512 stands for 0-stream of length 512.
Processing Message:

S ← Sm,

where round function is
S ← AS +H(G,m)β.

Ciphertext: GK(S) +m
Finalization:

S ← S0512 ,

where the round function is the same as in the initiation stage. Then run the
encryption stage for message 0128 and Tag is the cipher text stream.

5.2 HASH

– lB = 1024, lm = lc = 32, ρ = 1
2 . In this condition, the hardness of state

collision is supposed to be 192 bits.
– In the initialization process, load the registers and buffer with fixed random

constants, which is generated by a pseudorandom number generator such as
B.B.S.[19] under the seed 0.

– In the RO stage, the number of rounds is set to be 1536.

5.3 Hardware

The hardware part could only treat 3 round functions MAC, AE initiation,
register part of HASH and control logic for shifting between the 3-modes. These
3 round functions share almost the same circuit, so we can implement all these
functionalities with a single small hardware.

References

1. Bellare, M., Kilian, J., Rogaway, P.: The security of the cipher block chaining
message authentication code. Journal of Computer and System Sciences 61(3)
(2000) 362–399

2. Iwata, T., Kurosawa, K.: OMAC: one-key CBC MAC. In: Fast Software En-
cryption, 10th International Workshop, FSE 2003, Lund, Sweden, February 24-26,
2003, Revised Papers. (2003) 129–153

3. Black, J., Rogaway, P.: A block-cipher mode of operation for parallelizable message
authentication. In: Advances in Cryptology - EUROCRYPT 2002, International
Conference on the Theory and Applications of Cryptographic Techniques, Ams-
terdam, The Netherlands, April 28 - May 2, 2002, Proceedings. (2002) 384–397

12

4. Dworkin, M.: SP 800-38C. Recommendation for Block Cipher Modes of Opera-
tion: the CCM Mode for Authentication and Confidentiality. National Institute of
Standards and Technology (2005)

5. Bellare, M., Rogaway, P., Wagner, D.A.: The EAX mode of operation. 3017 (2004)
389–407

6. McGrew, D.A., Viega, J.: The security and performance of the galois/counte mode
of operation (full version). IACR Cryptology ePrint Archive 2004 (2004) 193

7. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption
modes. In: FAST Software Encryption - International Workshop, FSE 2011, Lyn-
gby, Denmark, February 13-16, 2011, Revised Selected Papers. (2011) 306–327

8. Bellare, M., Canetti, R., Krawczyk, H.: Keying hash functions for message authen-
tication. In: Advances in Cryptology - CRYPTO ’96, 16th Annual International
Cryptology Conference, Santa Barbara, California, USA, August 18-22, 1996, Pro-
ceedings. (1996) 1–15

9. Alizadeh, J., Aref, M.R., Bagheri, N.: JHAE: A novel permutation-based authen-
ticated encryption mode based on the hash mode JH. Cryptology ePrint Archive,
Report 2014/193 (2014) https://eprint.iacr.org/2014/193.

10. Wu, H.: Acorn: A lightweight authenticated cipher (v3). (2016) https://

competitions.cr.yp.to/round3/acornv3.pdf.
11. NIST: Announcing the standard for secure hash standard. (1995)
12. NIST: Announcing the standard for secure hash standard. (2002)
13. Rivest, R.L.: The MD5 message-digest algorithm. RFC 1321 (1992) 1–21
14. BERTONI, G., DAEMEN, J., PEETERS, M., ASSCHE, G.V.: The keccak sha-3

submission. (2011)
15. Guo, J., Peyrin, T., Poschmann, A.: The PHOTON family of lightweight hash

functions. IACR Cryptology ePrint Archive 2011 (2011) 609
16. Aumasson, J., Henzen, L., Meier, W., Naya-Plasencia, M.: Quark: A lightweight

hash. In: Cryptographic Hardware and Embedded Systems, CHES 2010, 12th In-
ternational Workshop, Santa Barbara, CA, USA, August 17-20, 2010. Proceedings.
(2010) 1–15

17. Bogdanov, A., Knezevic, M., Leander, G., Toz, D., Varici, K., Verbauwhede, I.:
spongent: A lightweight hash function. In: Cryptographic Hardware and Embedded
Systems - CHES 2011 - 13th International Workshop, Nara, Japan, September 28
- October 1, 2011. Proceedings. (2011) 312–325

18. Berger, T.P., D’Hayer, J., Marquet, K., Minier, M., Thomas, G.: The GLUON
family: A lightweight hash function family based on fcsrs. In: Progress in Cryp-
tology - AFRICACRYPT 2012 - 5th International Conference on Cryptology in
Africa, Ifrance, Morocco, July 10-12, 2012. Proceedings. (2012) 306–323

19. Blum, L., Blum, M., Shub, M.: A simple unpredictable pseudo-random number
generator. SIAM J. Comput. 15(2) (1986) 364–383

