All papers in 2014 (Page 2 of 1029 results)

Last updated:  2014-11-13
Zeroizing without zeroes: Cryptanalyzing multilinear maps without encodings of zero
Craig Gentry, Shai Halevi, Hemanta K. Maji, Amit Sahai
We extend the recent zeroizing attacks of Cheon et al. on multilinear maps to some settings where no encodings of zero below the maximal level are available. Some of the new attacks apply to the CLT scheme (resulting in total break) while others apply to the GGH scheme (resulting in a weak-DL attack).
Last updated:  2015-09-11
Implementing Candidate Graded Encoding Schemes from Ideal Lattices
Uncategorized
Martin R. Albrecht, Catalin Cocis, Fabien Laguillaumie, Adeline Langlois
Show abstract
Uncategorized
Multilinear maps have become popular tools for designing cryptographic schemes since a first approximate realisation candidate was proposed by Garg, Gentry and Halevi (GGH). This construction was later improved by Langlois, Stehlé and Steinfeld who proposed GGHLite which offers smaller parameter sizes. In this work, we provide the first implementation of such approximate multilinear maps based on ideal lattices. Implementing GGH-like schemes naively would not allow instantiating it for non-trivial parameter sizes. We hence propose a strategy which reduces parameter sizes further and several technical improvements to allow for an efficient implementation. In particular, since finding a prime ideal when generating instances is an expensive operation, we show how we can drop this requirement. We also propose algorithms and implementations for sampling from discrete Gaussians, for inverting in some Cyclotomic number fields and for computing norms of ideals in some Cyclotomic number rings. Due to our improvements we were able to compute a multilinear jigsaw puzzle for κappa=52 (resp. kappa=38) and lambda=52 (resp. lambda=80).
Last updated:  2014-11-12
Physical functions : the common factor of side-channel and fault attacks ?
Bruno Robisson, Hélène Le Bouder
Security is a key component for information technologies and communication. Among the security threats, a very important one is certainly due to vulnerabilities of the integrated circuits that implement cryptographic algorithms. These electronic devices (such as smartcards) could fall into the hands of malicious people and then could be sub- ject to \physical attacks". These attacks are generally classified into two categories : fault and side-channel attacks. One of the main challenges to secure circuits against such attacks is to propose methods and tools to estimate as soundly as possible, the efficiency of protections. Numer- ous works attend to provide tools based on sound statistical techniques but, to our knowledge, only address side-channel attacks. In this article, a formal link between fault and side-channel attacks is presented. The common factor between them is what we called the 'physical' function which is an extension of the concept of 'leakage function' widely used in side-channel community. We think that our work could make possible the re-use (certainly modulo some adjustments) for fault attacks of the strong theoretical background developed for side-channel attacks. This work could also make easier the combination of side-channel and fault attacks and thus, certainly could facilitate the discovery of new attack paths. But more importantly, the notion of physical functions opens from now new challenges about estimating the protection of circuits.
Last updated:  2017-07-23
Road-to-Vehicle Communications with Time-Dependent Anonymity: A Light Weight Construction and its Experimental Results
Keita Emura, Takuya Hayashi
This paper describes techniques that enable vehicles to collect local information (such as road conditions and traffic information) and report it via road-to-vehicle communications. To exclude malicious data, the collected information is signed by each vehicle. In this communications system, the location privacy of vehicles must be maintained. However, simultaneously linkable information (such as travel routes) is also important. That is, no such linkable information can be collected when full anonymity is guaranteed using cryptographic tools such as group signatures. Similarly, continuous linkability (via pseudonyms, for example) may also cause problem from the viewpoint of privacy. In this paper, we propose a road-to-vehicle communication system with relaxed anonymity via group signatures with time-token dependent linking (GS-TDL). Briefly, a vehicle is unlinkable unless it generates multiple signatures in the same time period. We provide our experimental results (using the RELIC library on a cheap and constrained computational power device, Raspberry Pi), and simulate our system by using a traffic simulator (PTV), a radio wave propagation analysis tool (RapLab), and a network simulator (QualNet). Though a similar functionality of time-token dependent linking was proposed by Wu, Domingo-Ferrer and Gonzälez-Nicoläs (IEEE T. Vehicular Technology 2010), we can show an attack against the scheme where anyone can forge a valid group signature without using a secret key. In contrast, our GS-TDL scheme is provably secure. In addition to the time-dependent linking property, our GS-TDL scheme supports verifier-local revocation (VLR), where a signer (vehicle) is not involved in the revocation procedure. It is particularly worth noting that no secret key or certificate of a signer (vehicle) must be updated whereas the security credential management system (SCMS) must update certificates frequently for vehicle privacy. Moreover, our technique maintains constant signing and verification costs by using the linkable part of signatures. This might be of independent interest.
Last updated:  2014-12-02
Indistinguishability Obfuscation for Turing Machines with Unbounded Memory
Uncategorized
Venkata Koppula, Allison Bishop Lewko, Brent Waters
Show abstract
Uncategorized
We show how to build indistinguishability obfuscation (iO) for Turing Machines where the overhead is polynomial in the security parameter lambda, machine description |M| and input size |x| (with only a negligible correctness error). In particular, we avoid growing polynomially with the maximum space of a computation. Our construction is based on iO for circuits, one way functions and injective pseudo random generators. Our results are based on new ''selective enforcement'' techniques. Here we first create a primitive called positional accumulators that allows for a small commitment to a much larger storage. The commitment is unconditionally sound for a select piece of the storage. This primitive serves as an ''iO-friendly'' tool that allows us to make two different programs equivalent at different stages of a proof. The pieces of storage that are selected depend on what hybrid stage we are at in a proof. We first build up our enforcement ideas in a simpler context of ''message hiding encodings'' and work our way up to indistinguishability obfuscation.
Last updated:  2014-11-11
Improving the Polynomial time Precomputation of Frobenius Representation Discrete Logarithm Algorithms - Simplified Setting for Small Characteristic Finite Fields
Antoine Joux, Cécile Pierrot
In this paper, we revisit the recent small characteristic discrete logarithm algorithms. We show that a simplified description of the algorithm, together with some additional ideas, permits to obtain an improved complexity for the polynomial time precomputation that arises during the discrete logarithm computation. With our new improvements, this is reduced to O(q^6), where q is the cardinality of the basefield we are considering. This should be compared to the best currently documented complexity for this part, namely O(q^7). With our simplified setting, the complexity of the precomputation in the general case becomes similar to the complexity known for Kummer (or twisted Kummer) extensions.
Last updated:  2015-02-06
New Cryptosystem Using The CRT And The Jordan Normal Form
Hemlata Nagesh, Birendra Kumar Sharma
In this paper we introduce a method for improving the implementation of GGH cryptosystem using the Chinese Remainder Theorem (CRT) and jordan normal form. In this paper we propose a method for improving the speed of Babai’s Round- Off CVP approximation algorithm [1] in lattices using the Chinese Remainder Theorem (CRT) then formulate a new lattice-based cryptosystem usng jordan normal form instead of hermite normal form would improve substantially the efficiency of the lattice based cryptosystem having Goldreich-Goldwaser-Halevi cryptosystem.
Last updated:  2014-11-11
Differential Analysis of Block Ciphers SIMON and SPECK
Alex Biryukov, Arnab Roy, Vesselin Velichkov
In this paper we continue the previous line of research on the analysis of the differential properties of the lightweight block ciphers Simon and Speck. We apply a recently proposed technique for automatic search for differential trails in ARX ciphers and improve the trails in Simon32 and Simon48 previously reported as best. We further extend the search technique for the case of differen- tials and improve the best previously reported differentials on Simon32, Simon48 and Simon64 by exploiting more effectively the strong differential effect of the cipher. We also present improved trails and differentials on Speck32, Speck48 and Speck64. Using these new results we improve the currently best known attacks on several versions of Simon and Speck. A second major contribution of the paper is a graph based algorithm (linear time) for the computation of the exact differential probability of the main building block of Simon: an AND operation preceded by two bitwise shift operations. This gives us a better insight into the differential property of the Simon round function and differential effect in the cipher. Our algorithm is general and works for any rotation constants. The presented techniques are generic and are therefore applicable to a broader class of ARX designs.
Last updated:  2014-11-10
Daniel J. Bernstein, Tanja Lange
This paper shows, assuming standard heuristics regarding the number-field sieve, that a "batch NFS" circuit of area L^{1.181...+o(1)} factors L^{0.5+o(1)} separate B-bit RSA keys in time L^{1.022...+o(1)}. Here L=exp((log 2^B)^{1/3}(log log 2^B)^{2/3}). The circuit's area-time product (price-performance ratio) is just L^{1.704...+o(1)} per key. For comparison, the best area-time product known for a single key is L^{1.976...+o(1)}. This paper also introduces new "early-abort" heuristics implying that "early-abort ECM" improves the performance of batch NFS by a superpolynomial factor, specifically exp((c+o(1))(log 2^B)^{1/6}(log log 2^B)^{5/6}) where c is a positive constant.
Last updated:  2014-11-10
Simpler and More Efficient Rank Estimation for Side-Channel Security Assessment
Cezary Glowacz, Vincent Grosso, Romain Poussier, Joachim Schueth, François-Xavier Standaert
Rank estimation algorithms allow analyzing the computational security of cryptographic keys for which adversaries have obtained partial information thanks to leakage or cryptanalysis. They are particularly useful in side-channel security evaluations, where the key is known by the evaluator but not reachable with exhaustive search. A first instance of such algorithms has been proposed at Eurocrypt 2013. In this paper, we propose a new tool for rank estimation that is conceptually simpler and much more efficient than this previous proposal. It allows approximating the key rank of (128-bit, 256-bit) symmetric keys with very tight bounds (i.e. with less than one bit of error), almost instantaneously and with limited memory. It also scales nicely to larger (e.g. asymmetric) key sizes, for which the previous algorithm was hardly applicable.
Last updated:  2014-11-10
Experimenting with Shuffle Block Cipher and SMT Solvers
Martin Stanek
We experiment with the block cipher proposed by Hoang, Morris, and Rogaway, even though the cipher is insecure. The cipher is based on swap-or-not shuffle, and we call it the Shuffle Block Cipher. We show how the cipher can be translated into SMT-LIB v2 format, suitable for automated solving by SMT solvers. We compare performance of various SMT solvers on the encryption and known plaintext attack problems.
Last updated:  2014-11-10
Web Tap Payment Authentication and Encryption With Zero Customer Effort
Uncategorized
Henry Ng
Show abstract
Uncategorized
We propose a public-key authentication and encryption application that secures the messages between Tap-Card-Pay application, Tap-Card-Pay Systems Corporation, customers, and merchants allowing the customer to complete transactions without requiring the customer to input sensitive information. With authentication and encryption, the application transfers the credit card information from the smartphone's near field communication device onto the merchant webpage. Security weaknesses are also presented to show how to attack this design.
Last updated:  2015-02-16
From Selective to Adaptive Security in Functional Encryption
Prabhanjan Ananth, Zvika Brakerski, Gil Segev, Vinod Vaikuntanathan
In a functional encryption (FE) scheme, the owner of the secret key can generate restricted decryption keys that allow users to learn specific functions of the encrypted messages and nothing else. In many known constructions of FE schemes, security is guaranteed only for messages that are fixed ahead of time (i.e., before the adversary even interacts with the system). This so-called selective security is too restrictive for many realistic applications. Achieving adaptive security (also called full security), where security is guaranteed even for messages that are adaptively chosen at any point in time, seems significantly more challenging. The handful of known adaptively-secure schemes are based on specifically tailored techniques that rely on strong assumptions (such as obfuscation or multilinear maps assumptions). We show that any sufficiently-expressive selectively-secure FE scheme can be transformed into an adaptively-secure one without introducing any additional assumptions. We present a black-box transformation, for both public-key and private-key schemes, making novel use of hybrid encryption, a classical technique that was originally introduced for improving the efficiency of encryption schemes. We adapt the hybrid encryption approach to the setting of functional encryption via a technique for embedding a "hidden execution thread'' in the decryption keys of the underlying scheme, which will only be activated within the proof of security of the resulting scheme. As an additional application of this technique, we show how to construct functional encryption schemes for arbitrary circuits starting from ones for shallow circuits (NC1 or even TC0).
Last updated:  2015-11-14
Adaptively Secure Fully Homomorphic Signatures Based on Lattices
Uncategorized
Xavier Boyen, Xiong Fan, Elaine Shi
Show abstract
Uncategorized
In a homomorphic signature scheme, given the public key and a vector of signatures $\vec{\sigma}:= (\sigma_1, \ldots, \sigma_l)$ over $l$ messages $\vec{\mu}:= (\mu_1, \ldots, \mu_l)$, there exists an efficient algorithm to produce a signature $\sigma'$ for $\mu = f(\vec{\mu})$. Given the tuple $(\sigma', \mu, f)$, anyone can then publicly verify the validity of the signature $\sigma'$. Inspired by the recent (selectively secure) key-homomorphic functional encryption for circuits, recent works propose fully homomorphic signature schemes in the selective security model. However, in order to gain adaptive security, one must rely on generic complexity leveraging, which is not only very inefficient but also leads to reductions that are ``unfalsifiable''. In this paper, we construct the first \emph{adaptively secure} homomorphic signature scheme that can evaluate any circuit over signed data. For {\it poly-logarithmic depth} circuits, our scheme achieves adaptive security under the standard {\it Small Integer Solution} (SIS) assumption. For {\it polynomial depth} circuits, the security of our scheme relies on sub-exponential SIS --- but unlike complexity leveraging, the security loss in our reduction depends only on circuit depth and on neither message length nor dataset size.
Last updated:  2016-04-23
Cryptanalysis of the Structure-Preserving Signature Scheme on Equivalence Classes from Asiacrypt 2014
Uncategorized
Yanbin Pan
Show abstract
Uncategorized
At Asiacrypt 2014, Hanser and Slamanig presented a new cryptographic primitive called structure-preserving signature scheme on equivalence classes in the message space $(\G_1^*)^\ell $, where $\G_1$ is some additive cyclic group. Based on the signature scheme, they constructed an efficient multi-show attribute-based anonymous credential system that allows to encode an arbitrary number of attributes. The signature scheme was claimed to be existentially unforgeable under the adaptive chosen message attacks in the generic group model. However, for $\ell=2$, Fuchsbauer pointed out a valid existential forgery can be generated with overwhelming probability by using 4 adaptive chosen-message queries. Hence, the scheme is existentially forgeable under the adaptive chosen message attack at least when $\ell=2$. In this paper, we show that even for the general case $\ell\geq 2$, the scheme is \textit{existentially forgeable} under the \textit{non-adaptive} chosen message attack and \textit{universally forgeable} under the \textit{adaptive} chosen message attack. It is surprising that our attacks will succeed all the time and need fewer queries, which give a better description of the scheme's security.
Last updated:  2015-07-15
Cryptography with One-Way Communication
Sanjam Garg, Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Amit Sahai
There is a large body of work on using noisy communication channels for realizing different cryptographic tasks. In particular, it is known that secure message transmission can be achieved unconditionally using only {\em one-way} communication from the sender to the receiver. In contrast, known solutions for more general secure computation tasks inherently require interaction, even when the entire input originates from the sender. We initiate a general study of cryptographic protocols over noisy channels in a setting where only one party speaks. In this setting, we show that the landscape of what a channel is useful for is much richer. Concretely, we obtain the following results. [-] Relationships between channels. The binary erasure channel (BEC) and the binary symmetric channel (BSC), which are known to be securely reducible to each other in the interactive setting, turn out to be qualitatively different in the setting of one-way communication. In particular, a BEC cannot be implemented from a BSC, and while the erasure probability of a BEC can be manipulated in both directions, the crossover probability of a BSC can only be manipulated in one direction. [-] Zero-knowledge proofs and secure computation of deterministic functions. One-way communication over BEC or BSC is sufficient for securely realizing any deterministic (possibly reactive) functionality which takes its inputs from a sender and delivers its outputs to a receiver. This provides the first truly non-interactive solutions to the problem of zero-knowledge proofs. [-] Secure computation of randomized functions. One-way communication over BEC or BSC {\em cannot} be used for realizing general randomized functionalities which take input from a sender and deliver output to a receiver. On the other hand, one-way communication over other natural channels, such as bursty erasure channels, can be used to realize such functionalities. This type of protocols can be used for distributing certified cryptographic keys without revealing the keys to the certification authority.
Last updated:  2016-10-26
Fully Leakage-Resilient Signatures Revisited: Graceful Degradation, Noisy Leakage, and Construction in the Bounded-Retrieval Model
Antonio Faonio, Jesper Buus Nielsen, Daniele Venturi
We construct new leakage-resilient signature schemes. Our schemes remain unforgeable against an adversary leaking arbitrary (yet bounded) information on the entire state of the signer (sometimes known as *fully* leakage resilience), including the random coin tosses of the signing algorithm. The main feature of our constructions is that they offer a graceful degradation of security in situations where standard existential unforgeability is impossible. This property was recently put forward by Nielsen, Venturi, and Zottarel (PKC 2014) to deal with settings in which the secret key is much larger than the size of a signature. One remarkable such case is the so-called Bounded-Retrieval Model (BRM), where one intentionally inflates the size of the secret key while keeping constant the signature size and the computational complexity of the scheme. Our main constructions have leakage rate $1-o(1)$, and are proven secure in the standard model. We additionally give a construction in the BRM, relying on a random oracle. All of our schemes are described in terms of generic building blocks, but also admit efficient instantiations under fairly standard number-theoretic assumptions. Finally, we explain how to extend some of our schemes to the setting of noisy leakage, where the only restriction on the leakage functions is that the output does not decrease the min-entropy of the secret key by too much.
Last updated:  2014-11-05
Low-Cost Concurrent Error Detection for GCM and CCM
Xiaofei Guo, Ramesh Karri
In many applications, encryption alone does not provide enough security. To enhance security, dedicated authenticated encryption (AE) mode are invented. Galios Counter Mode (GCM) and Counter with CBC-MAC mode (CCM) are the AE modes recommended by the National Institute of Standards and Technology. To support high data rates, AE modes are usually implemented in hardware. However, natural faults reduce its reliability and may undermine both its encryption and authentication capability. We present a low-cost concurrent error detection (CED) scheme for 7 AE architectures. The proposed technique explores idle cycles of the AE mode architectures. Experimental results shows that the performance overhead can be lower than 100% for all architectures depending on the workload. FPGA implementation results show that the hardware overhead in the 0.1-23.3% range and the power overhead is in the 0.2-23.2% range. ASIC implementation results show that the hardware overhead in the 0.1-22.8% range and the power overhead is in the 0.3-12.6% range. The underlying block cipher and hash module need not have CED built in. Thus, it allows system designers to integrate block cipher and hash function intellectual property from different vendors.
Last updated:  2015-09-30
A Denial of Service Attack against Fair Computations using Bitcoin Deposits
Jethro Beekman
Bitcoin supports complex transactions where the recipient of a transaction can be programmatically determined. Using these transactions, multi-party computation protocols that aim to ensure fairness among participants have been designed. We present a Denial of Service attack against these protocols that results in a net loss for some or all of the honest parties involved, violating those fairness goals.
Last updated:  2014-11-21
Adaptive Multiparty Non-interactive Key Exchange Without Setup In The Standard Model
Uncategorized
Vanishree Rao
Show abstract
Uncategorized
Non-interactive key exchange (NIKE) is a fundamental notion in Cryptography. This notion was introduced by Diffie and Hellman in 1976. They proposed the celebrated 2-party NIKE protocol and left open as a fascinating question, whether NIKE could be realized in the multiparty setting. NIKE has since then been an active area of research with an ultimate goal of obtaining best possible security in the multiparty setting. Although this has evaded researchers for many decades, advancements have been made through relaxations in multiple directions such as restricting to 3-parties, static/semi-static model (where the adversary needs to commit to the set of parties he wishes to be challenged upon ahead of time), random-oracle model, allowing initial setup, etc. In this work, we settle the longstanding open question: we present the first multiparty NIKE protocol that is adaptively secure with no setup and in the standard model. Our construction is based on indistinguishability obfuscation and obliviously-patchable puncturable pseudorandom functions, a new notion that we introduce. We employ novel techniques of using indistinguishability obfuscation, which are interesting in their own right and which we believe would find wider applications in other settings. One such technique pertains overcoming, the somewhat inherent, drawback of non-adaptivity of the puncturing technique introduced by Sahai and Waters [STOC'14]. Central to this technique is our new notion of obliviously-patchable puncturable pseudorandom functions. We present a concrete construction of these pseudorandom functions using multilinear maps and their recent approximations -- the leveled-graded encoding schemes. Note that pseudorandom functions amount to an interactive assumption. We shall establish via a meta-reduction technique that, in natural settings, an interactive assumption is necessary (even with setup).
Last updated:  2015-02-11
Robust Secret Sharing Schemes Against Local Adversaries
Allison Bishop Lewko, Valerio Pastro
We study robust secret sharing schemes in which between one third and one half of the players are corrupted. In this scenario, robust secret sharing is possible only with a share size larger than the secrets, and allowing a positive probability of reconstructing the wrong secret. In the standard model, it is known that at least $m+k$ bits per share are needed to robustly share a secret of bit-length $m$ with an error probability of $2^{-k}$; however, to the best of our knowledge, the efficient scheme that gets closest to this lower bound has share size $m+\widetilde O (n+k)$, where $n$ is the number of players in the scheme. We show that it is possible to obtain schemes with close to minimal share size in a model of local adversaries, i.e. in which corrupt players cannot communicate between receiving their respective honest shares and submitting corrupted shares to the reconstruction procedure, but may coordinate before the execution of the protocol and can also gather information afterwards. In this limited adversarial model, we prove a lower bound of roughly $m+k$ bits on the minimal share size, which is (somewhat surprisingly) similar to the lower bound in the standard model, where much stronger adversaries are allowed. We then present an efficient secret sharing scheme that essentially meets our lower bound, therefore improving upon the best known constructions in the standard model by removing a linear dependence on the number of players. For our construction, we introduce a novel procedure that compiles an error correcting code into a new randomized one, with the following two properties: a single local portion of a codeword leaks no information on the encoded message itself, and any set of portions of a codeword reconstructs the message with error probability exponentially low in the set size.
Last updated:  2014-11-16
Practical UC security with a Global Random Oracle
Ran Canetti, Abhishek Jain, Alessandra Scafuro
We show that there exist commitment, zero-knowledge and general function evaluation protocols with universally composable security, in a model where all parties and all protocols have access to a single, global, random oracle and no other trusted setup. This model provides significantly stronger composable security guarantees than the traditional random oracle model of Bellare and Rogaway [CCS’93] or even the common reference string model. Indeed, these latter models provide no security guarantees in the presence of arbitrary protocols that use the same random oracle (or reference string or hash function). Furthermore, our protocols are highly efficient. Specifically, in the interactive setting, our commitment and general computation protocols are much more efficient than the best known ones due to Lindell [Crypto’11,’13] which are secure in the common reference string model. In the non-interactive setting, our protocols are slightly less efficient than the best known ones presented by Afshar et al. [Eurocrypt ’14] but do away with the need to rely on a non-global (programmable) reference string.
Last updated:  2015-04-17
Finding shortest lattice vectors faster using quantum search
Thijs Laarhoven, Michele Mosca, Joop van de Pol
By applying a quantum search algorithm to various heuristic and provable sieve algorithms from the literature, we obtain improved asymptotic quantum results for solving the shortest vector problem on lattices. With quantum computers we can provably find a shortest vector in time $2^{1.799n + o(n)}$, improving upon the classical time complexities of $2^{2.465n + o(n)}$ of Pujol and Stehlé and the $2^{2n + o(n)}$ of Micciancio and Voulgaris, while heuristically we expect to find a shortest vector in time $2^{0.286n + o(n)}$, improving upon the classical time complexity of $2^{0.337n + o(n)}$ of Laarhoven. These quantum complexities will be an important guide for the selection of parameters for post-quantum cryptosystems based on the hardness of the shortest vector problem.
Last updated:  2017-09-15
Cryptanalysis on the Multilinear Map over the Integers and its Related Problems
Uncategorized
Jung Hee Cheon, Kyoohyung Han, Changmin Lee, Hansol Ryu, Damien Stehle
Show abstract
Uncategorized
The CRT-ACD problem is to find the primes p_1,...,p_n given polynomially many instances of CRT_{(p_1,...,p_n)}(r_1,...,r_n) for small integers r_1,...,r_n. The CRT-ACD problem is regarded as a hard problem, but its hardness is not proven yet. In this paper, we analyze the CRT-ACD problem when given one more input CRT_{(p_1,...,p_n)}(x_0/p_1,...,x_0/p_n) for x_0=\prod\limits_{i=1}^n p_i and propose a polynomial-time algorithm for this problem by using products of the instances and auxiliary input. This algorithm yields a polynomial-time cryptanalysis of the (approximate) multilinear map of Coron, Lepoint and Tibouchi (CLT): We show that by multiplying encodings of zero with zero-testing parameters properly in the CLT scheme, one can obtain a required input of our algorithm: products of CRT-ACD instances and auxiliary input. This leads to a total break: all the quantities that were supposed to be kept secret can be recovered in an efficient and public manner. We also introduce polynomial-time algorithms for the Subgroup Membership, Decision Linear, and Graded External Diffie-Hellman problems, which are used as the base problems of several cryptographic schemes constructed on multilinear maps.
Last updated:  2015-03-31
Primary-Secondary-Resolver Membership Proof Systems
Uncategorized
Moni Naor, Asaf Ziv
Show abstract
Uncategorized
We consider Primary-Secondary-Resolver Membership Proof Systems (PSR for short) and show different constructions of that primitive. A PSR system is a 3-party protocol, where we have a primary, which is a trusted party which commits to a set of members and their values, then generates a public and secret keys in order for secondaries (provers with knowledge of both keys) and resolvers (verifiers who only know the public key) to engage in interactive proof sessions regarding elements in the universe and their values. The motivation for such systems is for constructing a secure Domain Name System (DNSSEC) that does not reveal any unnecessary information to its clients. We require our systems to be complete, so honest executions will result in correct conclusions by the resolvers, sound, so malicious secondaries cannot cheat resolvers, and zero-knowledge, so resolvers will not learn additional information about elements they did not query explicitly. Providing proofs of membership is easy, as the primary can simply precompute signatures over all the members of the set. Providing proofs of non-membership, i.e. a denial-of-existence mechanism, is trickier and is the main issue in constructing PSR systems. We provide three different strategies to construct a denial of existence mechanism. The first uses a set of cryptographic keys for all elements of the universe which are not members, which we implement using hierarchical identity based encryption and a tree based signature scheme. The second construction uses cuckoo hashing with a stash, where in order to prove non-membership, a secondary must prove that a search for it will fail, i.e. that it is not in the tables or the stash of the cuckoo hashing scheme. The third uses a verifiable ``random looking'' function which the primary evaluates over the set of members, then signs the values lexicographically and secondaries then use those signatures to prove to resolvers that the value of the non-member was not signed by the primary. We implement this function using a weaker variant of verifiable random/unpredictable functions and pseudorandom functions with interactive zero knowledge proofs. For all three constructions we suggest fairly efficient implementations, of order comparable to other public-key operations such as signatures and encryption. The first approach offers perfect ZK and does not reveal the size of the set in question, the second can be implemented based on very solid cryptographic assumptions and uses the unique structure of cuckoo hashing, while the last technique has the potential to be highly efficient, if one could construct an efficient and secure VRF/VUF or if one is willing to live in the random oracle model.
Last updated:  2016-04-05
How Secure is TextSecure?
Tilman Frosch, Christian Mainka, Christoph Bader, Florian Bergsma, Joerg Schwenk, Thorsten Holz
Instant Messaging has gained popularity by users for both private and business communication as low-cost short message replacement on mobile devices. However, until recently, most mobile messaging apps did not protect confidentiality or integrity of the messages. Press releases about mass surveillance performed by intelligence services such as NSA and GCHQ motivated many people to use alternative messaging solutions to preserve the security and privacy of their communication on the Internet. Initially fueled by Facebook's acquisition of the hugely popular mobile messaging app WhatsApp, alternatives claiming to provide secure communication experienced a significant increase of new users. A messaging app that claims to provide secure instant messaging and has attracted a lot of attention is TextSecure. Besides numerous direct installations, its protocol is part of Android's most popular aftermarket firmware CyanogenMod. TextSecure's successor Signal continues to use the underlying protocol for text messaging. In this paper, we present the first complete description of TextSecure's complex cryptographic protocol, provide a security analysis of its three main components (key exchange, key derivation and authenticated encryption), and discuss the main security claims of TextSecure. Furthermore, we formally prove that - if key registration is assumed to be secure - TextSecure's push messaging can indeed achieve most of the claimed security goals.
Last updated:  2016-11-26
Falcon Codes: Fast, Authenticated LT Codes (Or: Making Rapid Tornadoes Unstoppable)
Uncategorized
Ari Juels, James Kelley, Roberto Tamassia, Nikos Triandopoulos
Show abstract
Uncategorized
We introduce Falcon codes, a class of authenticated error correcting codes that are based on LT codes and achieve the following properties, for the first time simultaneously: (1) with high probability, they can correct adversarial corruptions of an encoded message, and (2) they allow very efficient encoding and decoding times, even linear in the message length. Our design framework encompasses a large number of such coding schemes. Through judicious use of simple cryptographic tools at the core LT-coding level, Falcon codes lend themselves to secure extensions of any LT-based fountain code, in particular providing Raptor codes that achieve resilience to adversarial corruptions while maintaining their fast encoding/decoding times. Falcon codes also come in three variants, each offering different performance trade-offs. For instance, one variant works well with small input messages (100s of KB to 10s of MB), but two other variants are designed to handle much larger messages (several GB). We study Falcon codes in a novel adversarial model for rateless codes over computational (corrupting) channels and prove their security under standard assumptions. We analyze the performance of our new coding schemes through a prototype implementation of their Raptor-code extension and a thorough experimental study that demonstrates their high efficiency in practice. Applied to data transmission, Falcon codes can provably protect Raptor codes against targeted-erasure attacks, which were recently shown by Lopes and Neves [Oakland, 2014] to cause decoding failures of RaptorQ—the most advanced, standardized (IETF RFC6330) rateless code used in practice. Applied to data storage, Falcon codes can provide significant efficiency gainings as drop-in replacements of Reed-Solomon codes; in particular, a 35% speed-up over the state-of-the-art PoR scheme by Shi et al. [CCS, 2013].
Last updated:  2018-08-25
The Power of Negations in Cryptography
Siyao Guo, Tal Malkin, Igor C. Oliveira, Alon Rosen
The study of monotonicity and negation complexity for Boolean functions has been prevalent in complexity theory as well as in computational learning theory, but little attention has been given to it in the cryptographic context. Recently, Goldreich and Izsak (2012) have initiated a study of whether cryptographic primitives can be monotone, and showed that one-way functions can be monotone (assuming they exist), but a pseudorandom generator cannot. In this paper, we start by filling in the picture and proving that many other basic cryptographic primitives cannot be monotone. We then initiate a quantitative study of the power of negations, asking how many negations are required. We provide several lower bounds, some of them tight, for various cryptographic primitives and building blocks including one-way permutations, pseudorandom functions, small-bias generators, hard-core predicates, error-correcting codes, and randomness extractors. Among our results, we highlight the following. i) Unlike one-way functions, one-way permutations cannot be monotone. ii) We prove that pseudorandom functions require log n - O(1) negations (which is optimal up to the additive term). iii) Error-correcting codes with optimal distance parameters require log n - O(1) negations (again, optimal up to the additive term). iv) We prove a general result for monotone functions, showing a lower bound on the depth of any circuit with t negations on the bottom that computes a monotone function f in terms of the monotone circuit depth of f.
Last updated:  2015-01-05
A Practical Attack Against the Use of RC4 in the HIVE Hidden Volume Encryption System
Kenneth G. Paterson, Mario Strefler
The HIVE hidden volume encryption system was proposed by Blass et al. at ACM-CCS 2014. Even though HIVE has a security proof, this paper demonstrates an attack on its implementation that breaks the main security property claimed for the system by its authors, namely plausible hiding against arbitrary-access adversaries. Our attack is possible because of the HIVE implementation's reliance on the RC4 stream cipher to fill unused blocks with pseudorandom data. While the attack can be easily eliminated by using a better pseudorandom generator, it serves as an example of why RC4 should be avoided in all new applications and a reminder that one has to be careful when instantiating primitives.
Last updated:  2014-12-22
Some Security Results of the RC4+ Stream Cipher
Uncategorized
Subhadeep Banik, Sonu Jha
Show abstract
Uncategorized
RC4+ stream cipher was proposed by Maitra et. al. at Indocrypt 2008. It was claimed by the authors that this new stream cipher is designed to overcome all the weaknesses reported on the alleged RC4 stream cipher. In the design specifications of RC4+, the authors make use of an 8-bit design parameter called pad which is fixed to the value 0xAA. The first Distinguishing Attack on RC4+ based on the bias of its first output byte was shown by Banik et. al. in Indocrypt 2013. In this paper, it was also mentioned that the distinguishing attack would still hold if the pad used in RC4+ is fixed to any even 8-bit constant other than 0xAA. Therefore, the question that arises is whether the design of RC4+ can be protected by fixing the pad parameter to some constant odd value. In this paper, we try to answer this very question. We show that the design is still vulnerable by mounting a distinguishing attack even if the pad is fixed to some constant 8-bit odd value. Surprisingly we find that if the value of the pad is made equal to 0x03, the design provides maximum resistance to distinguishing attacks. Lastly we return to the original cipher i.e. in which pad is set to 0xAA and unearth another bias in the second output byte of the cipher, thereby showing that practical implementations of this cipher should discard the use of the first two output bytes for encryption.
Last updated:  2015-03-19
Side Channel Power Analysis of an AES-256 Bootloader
Colin O'Flynn, Zhizhang Chen
Side Channel Attacks (SCA) using power measurements are a known method of breaking cryptographic algorithms such as AES. Published research into attacks on AES frequently target only AES-128, and often target only the core Electronic Code-Book (ECB) algorithm, without discussing surrounding issues such as triggering, along with breaking the initialization vector. This paper demonstrates a complete attack on a secure bootloader, where the firmware files have been encrypted with AES-256-CBC. A classic Correlation Power Analysis (CPA) attack is performed on AES-256 to recover the complete 32-byte key, and a CPA attack is also used to attempt recovery of the initialization vector (IV).
Last updated:  2015-03-12
A key recovery attack to the scale-invariant NTRU-based somewhat homomorphic encryption scheme
Uncategorized
Eduardo Morais, Ricardo Dahab
Show abstract
Uncategorized
In this paper we present a key recovery attack to the scale-invariant NTRU-based somewhat homomorphic encryption scheme proposed by Bos et al~\cite{NTRUbasedFHE} in 2013. The attack allows us to compute the private key for $t>2$ and when the private key is chosen with coefficients in $\{-1,0,1\}$. The efficiency of the attack is optimal since it requires just one decryption oracle query, showing that if we don't look for this kind of vulnerabilities in homomorphic encryption constructions we are likely to choose insecure parameters. The existence of a key recovery attack means that the scheme is not CCA1-secure. Indeed, almost every somewhat homomorphic construction proposed till now in the literature is vulnerable to this kind of attack, hence our result indicates that building CCA1-secure homomorphic schemes is not trivial. We also provide tables showing how the multiplicative depth is affected when the critical parameter $\Bkey$ is chosen in order to mitigatte the attack.
Last updated:  2014-11-07
Leveled Fully Homomorphic Signatures from Standard Lattices
Sergey Gorbunov, Vinod Vaikuntanathan, Daniel Wichs
In a homomorphic signature scheme, a user Alice signs some large dataset $x$ using her secret signing key and uploads the signed data to an untrusted remote server. The server can then run some computation $y=f(x)$ over the signed data and homomorphically derive a short signature $\sigma_{f,y}$ certifying that $y$ is the correct output of the computation $f$. Anybody can verify the tuple $(f, y, \sigma_{f,y})$ using Alice's public verification key and become convinced of this fact without having to retrieve the entire underlying data. In this work, we construct the first (leveled) fully homomorphic signature schemes that can evaluate arbitrary circuits over signed data. Only the maximal depth $d$ of the circuits needs to be fixed a-priori at setup, and the size of the evaluated signature grows polynomially in $d$, but is otherwise independent of the circuit size or the data size. Our solution is based on the (sub-exponential) hardness of the small integer solution (SIS) problem in standard lattices and satisfies full (adaptive) security. In the standard model, we get a scheme with large public parameters whose size exceeds the total size of a data-set. In the random-oracle model, we get a scheme with short public parameters. In both cases, the schemes can be used to sign many different data-sets. The complexity of verifying a signature for a computation $f$ is at least as large as that of computing $f$, but can be amortized when verifying the same computation over many different data-sets. Furthermore, the signatures can be made context-hiding so as not to reveal anything about the data beyond the outcome of the computation. These results offer a significant improvement in capabilities and assumptions over the best prior homomorphic signature schemes, which were limited to evaluating polynomials of constant degree. As a building block of independent interest, we introduce a new notion called homomorphic trapdoor functions (HTDF) which conceptually unites homomorphic encryption and signatures. We construct HTDFs by relying on the techniques developed by Gentry et al. (CRYPTO '13) and Boneh et al. (EUROCRYPT '14) in the contexts of fully homomorphic and attribute-based encryptions.
Last updated:  2016-01-08
Efficiently Making Secure Two-Party Computation Fair
Uncategorized
Handan Kılınç, Alptekin Küpçü
Show abstract
Uncategorized
Secure two-party computation cannot be fair in general against malicious adversaries, unless a trusted third party (TTP) or a gradual-release type super-constant round protocol is employed. Existing optimistic fair two-party computation protocols with constant rounds are either too costly to arbitrate (e.g., the TTP may need to re-do almost the whole computation), or require the use of electronic payments. Furthermore, most of the existing solutions were proven secure and fair via a partial simulation, which, we show, may lead to insecurity overall. We propose a new framework for fair and secure two-party computation that can be applied on top of any secure two party computation protocol based on Yao's garbled circuits and zero-knowledge proofs. We show that our fairness overhead is minimal, compared to all known existing work. Furthermore, our protocol is fair even in terms of the work performed by Alice and Bob. We also prove our protocol is fair and secure simultaneously, through one simulator, which guarantees that our fairness extensions do not leak any private information. Lastly, we ensure that the TTP never learns the inputs or outputs of the computation. Therefore, even if the TTP becomes malicious and causes unfairness by colluding with one party, the security of the underlying protocol is still preserved.
Last updated:  2014-10-30
Analysis of ARX Functions: Pseudo-linear Methods for Approximation, Differentials, and Evaluating Diffusion
Kerry A. McKay, Poorvi L. Vora
This paper explores the approximation of addition mod $2^n$ by addition mod $2^w$, where $1 \le w \le n$, in ARX functions that use large words (e.g., 32-bit words or 64-bit words). Three main areas are explored. First, \emph{pseudo-linear approximations} aim to approximate the bits of a $w$-bit window of the state after some rounds. Second, the methods used in these approximations are also used to construct truncated differentials. Third, branch number metrics for diffusion are examined for ARX functions with large words, and variants of the differential and linear branch number characteristics based on pseudo-linear methods are introduced. These variants are called \emph{effective differential branch number} and \emph{effective linear branch number}, respectively. Applications of these approximation, differential, and diffusion evaluation techniques are demonstrated on Threefish-256 and Threefish-512.
Last updated:  2014-10-30
THE UBERCRYPT FRAMEWORK: A NEW APPROACH IN CRYPTOSYSTEMS
Joe Chiarella, Greg Mosher, Dr. J. Robert Buchanan
This article describes a novel and unique cryptosystem making use of a small set of private security parameters and public initialization values to produce a pseudorandom byte stream with large period. The byte stream can be used as a one-time stream cipher for securing communication between parties and for data archival. The cryptosystem makes use of geometry and number theory to generate a set of large prime integers and then from the primes a column-periodic matrix of bytes from which further calculation produces a pseudorandom, long period byte stream. The cryptosystem is extensible in that additional private user-supplied security parameters can supplement the private geometric security parameters while adding strength in the process. The article discusses the design and operation of the system and lists many potential questions of interest to the community of mathematical and cryptological researchers. Foremost among these questions are determining the most appropriate method for assessing the cryptographic strength of the algorithm and determining any weaknesses in the security of the algorithm.
Last updated:  2015-11-28
Advanced Algebraic Attack on Trivium
Frank Quedenfeld, Christopher Wolf
This paper presents an algebraic attack against Trivium that breaks 625 rounds using only $4096$ bits of output in an overall time complexity of $2^{42.2}$ Trivium computations. While other attacks can do better in terms of rounds ($799$), this is a practical attack with a very low data usage (down from $2^{40}$ output bits) and low computation time (down from $2^{62}$). From another angle, our attack can be seen as a proof of concept: how far can algebraic attacks can be pushed when several known techniques are combined into one implementation? All attacks have been fully implemented and tested; our figures are therefore not the result of any potentially error-prone extrapolation, but results of practical experiments.
Last updated:  2014-10-30
Breaking Existential Unforgeability of a Signature Scheme from Asiacrypt 2014
Georg Fuchsbauer
We show how to compute an existential forgery after querying 4 signatures on chosen messages for a signature scheme presented at Asiacrypt 2014.
Last updated:  2015-02-11
Conversion from Arithmetic to Boolean Masking with Logarithmic Complexity
Uncategorized
Jean-Sebastien Coron, Johann Groszschaedl, Praveen Kumar Vadnala, Mehdi Tibouchi
Show abstract
Uncategorized
A general method to protect a cryptographic algorithm against side-channel attacks consists in masking all intermediate variables with a random value. For cryptographic algorithms combining Boolean operations with arithmetic operations, one must then perform conversions between Boolean masking and arithmetic masking. At CHES 2001, Goubin described a very elegant algorithm for converting from Boolean masking to arithmetic masking, with only a constant number of operations. Goubin also described an algorithm for converting from arithmetic to Boolean masking, but with O(k) operations where k is the addition bit size. In this paper we describe an improved algorithm with time complexity O(log k) only. Our new algorithm is based on the Kogge-Stone carry look-ahead adder, which computes the carry signal in O(log k) instead of O(k) for the classical ripple carry adder. We also describe an algorithm for performing arithmetic addition modulo 2^k directly on Boolean shares, with the same complexity O(log k) instead of O(k). We prove the security of our new algorithms against first-order attacks.
Last updated:  2014-10-30
Fast Evaluation of Polynomials over Binary Finite Fields and Application to Side-channel Countermeasures
Jean-Sebastien Coron, Arnab Roy, Srinivas Vivek
We describe a new technique for evaluating polynomials over binary finite fields. This is useful in the context of anti-DPA countermeasures when an S-box is expressed as a polynomial over a binary finite field. For $n$-bit S-boxes our new technique has heuristic complexity ${\cal O}(2^{n/2}/\sqrt{n})$ instead of ${\cal O}(2^{n/2})$ proven complexity for the Parity-Split method. We also prove a lower bound of ${\Omega}(2^{n/2}/\sqrt{n})$ on the complexity of any method to evaluate $n$-bit S-boxes; this shows that our method is asymptotically optimal. Here, complexity refers to the number of non-linear multiplications required to evaluate the polynomial corresponding to an S-box. In practice we can evaluate any $8$-bit S-box in $10$ non-linear multiplications instead of $16$ in the Roy-Vivek paper from CHES 2013, and the DES S-boxes in $4$ non-linear multiplications instead of $7$. We also evaluate any $4$-bit S-box in $2$ non-linear multiplications instead of $3$. Hence our method achieves optimal complexity for the PRESENT S-box.
Last updated:  2014-10-30
Efficient Zero-Knowledge Proofs for Commitments from Learning With Errors over Rings
Fabrice Benhamouda, Stephan Krenn, Vadim Lyubashevsky, Krzysztof Pietrzak
We design an efficient commitment scheme, and companion zero-knowledge proofs of knowledge, based on the learning with errors over rings (RLWE) problem. In particular, for rings in which almost all elements have inverses, we construct a perfectly binding commitment scheme whose hiding property relies on the RLWE assumption. Our scheme maps elements from the ring (or equivalently, n elements from F_q) to a small constant number of ring elements. We then construct Sigma-protocols for proving, in a zero-knowledge manner, knowledge of the message contained in a commitment. We are able to further extend our basic protocol to allow us to prove additive and multiplicative relations among committed values. Our protocols have a communication complexity of O(Mn\log q) and achieve a negligible knowledge error in one run. Here M is the constant from a rejection sampling technique that we employ, and can be set close to 1 by adjusting other parameters. Previously known Sigma-protocols for LWE-related languages either relied on ``smudging'' out the error (which necessitates working over large fields, resulting in poor efficiency) or only achieved a noticeable or even constant knowledge error (thus requiring many repetitions of the protocol).
Last updated:  2014-12-14
Distance Lower Bounding
Xifan Zheng, Reihaneh Safavi-Naini, Hadi Ahmadi
Distance (upper)-bounding (DUB) allows a verifier to know whether a proving party is located within a certain distance bound. DUB protocols have many applications in secure authentication and location based services. We consider the dual problem of distance lower bounding (DLB), where the prover proves it is outside a distance bound to the verifier. We motivate this problem through a number of application scenarios, and model security against distance fraud (DF), Man-in-the-Middle (MiM), and collusion fraud (CF) attacks. We prove impossibility of security against these attacks without making physical assumptions. We propose approaches to the construction of secure protocols under reasonable assumptions, and give detailed design of our DLB protocol and prove its security using the above model. This is the first treatment of the DLB problem in the untrusted prover setting, with a number of applications and raising new research questions. We discuss our results and propose directions for future research.
Last updated:  2014-10-30
Hardware Implementation of Secure Shamir's Secret Sharing Scheme
Pei Luo, Yu-Lun Lin, Zhen Wang, Mark Karpovsky
Shamir's secret sharing scheme is an effective way to distribute secret to a group of shareholders. But this scheme is vulnerable to cheaters and attackers and thus how to protect the system from cheating and attacks is a big problem. In this paper, we proposed to use robust codes and algebraic manipulation detection (AMD) codes to protect the secret sharing module. Simulation and synthesis results show that the proposed architecture can improve the security level significantly even under strong cheating and attack models with some extra area and timing overheads.
Last updated:  2014-12-04
Accountable Storage
Giuseppe Ateniese, Michael T. Goodrich, Vassilios Lekakis, Charalampos Papamanthou, Evripidis Paraskevas, Roberto Tamassia
We introduce Accountable Storage, a framework allowing a client with small local space to outsource n file blocks to an untrusted server and be able (at any point in time after outsourcing) to provably compute how many bits have been discarded by the server. Such protocols offer ``provable storage insurance" to a client: In case of a data loss, the client can be compensated with a dollar amount proportional to the damage that has occurred, forcing the server to be more ``accountable" for his behavior. The insurance can be captured in the SLA between the client and the server. Although applying existing techniques (e.g., proof-of-storage protocols) could address the problem, the related costs of such approaches are prohibitive. Instead, our protocols can provably compute the damage that has occurred through an efficient recovery process of the lost or corrupted file blocks, which requires only sublinear $O(\delta\log n)$ communication, computation and local space, where $\delta$ is the maximum number of corrupted file blocks that can be tolerated. Our technique is based on an extension of invertible Bloom filters, a data structure used to quickly compute the distance between two sets. Finally, we show how our protocol can be integrated with Bitcoin, to support automatic compensations proportional to the number of corrupted bits at the server. We also build and evaluate our protocols showing that they perform well in practice.
Last updated:  2015-08-18
Efficient Stochastic Methods: Profiled Attacks Beyond 8 Bits
Marios O. Choudary, Markus G. Kuhn
Template attacks and stochastic models are among the most powerful side-channel attacks. However, they can be computationally expensive when processing a large number of samples. Various compression techniques have been used very successfully to reduce the data dimensionality prior to applying template attacks, most notably Principal Component Analysis (PCA) and Fisher's Linear Discriminant Analysis (LDA). These make the attacks more efficient computationally and help the profiling phase to converge faster. We show how these ideas can also be applied to implement stochastic models more efficiently, and we also show that they can be applied and evaluated even for more than eight unknown data bits at once.
Last updated:  2014-10-30
Faulty Clock Detection for Crypto Circuits Against Differential Fault Analysis Attack
Pei Luo, Yunsi Fei
Clock glitch based Differential Fault Analysis (DFA) attack is a serious threat to cryptographic devices. Previous error detection schemes for cryptographic devices target improving the circuit reliability and cannot resist such DFA attacks. In this paper, we propose a novel faulty clock detection method which can be easily implemented either in FPGAs or integrated circuits to detect the glitches in system clock. Results show that the proposed method can detect glitches efficiently while needs very few system resource. It is also highly reconfigurable to tolerant clock inherent jitters, and will not involve complex design work for different processing technologies.
Last updated:  2016-02-13
Faulty Clock Detection for Crypto Circuits Against Differential Fault Analysis Attack
Uncategorized
Pei Luo, Yunsi Fei
Uncategorized
Clock glitch based Differential Fault Analysis (DFA) attack is a serious threat to cryptographic devices. Previous error detection schemes for cryptographic devices target improving the circuit reliability and cannot resist such DFA attacks. In this paper, we propose a novel faulty clock detection method which can be easily implemented either in FPGAs or integrated circuits to detect the glitches in system clock. Results show that the proposed method can detect glitches efficiently while needs very few system resource. It is also highly reconfigurable to tolerant clock inherent jitters, and will not involve complex design work for different processing technologies.
Last updated:  2014-10-28
Obfuscation of Probabilistic Circuits and Applications
Ran Canetti, Huijia Lin, Stefano Tessaro, Vinod Vaikuntanathan
This paper studies the question of how to define, construct, and use obfuscators for probabilistic programs. Such obfuscators compile a possibly randomized program into a deterministic one, which achieves computationally indistinguishable behavior from the original program as long as it is run on each input at most once. For obfuscation, we propose a notion that extends indistinguishability obfuscation to probabilistic circuits: It should be hard to distinguish between the obfuscations of any two circuits whose output distributions at each input are computationally indistinguishable, possibly in presence of some auxiliary input. We call the resulting notion probabilistic indistinguishability obfuscation (pIO). We define several variants of pIO, using different approaches to formalizing the above security requirement, and study non-trivial relations among them. Moreover, we give a construction of one of our pIO variants from sub-exponentially hard indistinguishability obfuscation (for deterministic circuits) and one-way functions, and conjecture this construction to be a good candidate for other pIO variants. We then move on to show a number of applications of pIO: * We give a general and natural methodology to achieve leveled homomorphic encryption (LHE) from variants of semantically secure encryption schemes and of pIO. In particular, we propose instantiations from lossy and re-randomizable encryption schemes, assuming the two weakest notions of pIO. * We enhance the above constructions to obtain a full-fledged (i.e., non-leveled) FHE scheme under the same (or slightly stronger) assumptions. In particular, this constitutes the first construction of full-fledged FHE that does not rely on encryption with circular security. * Finally, we show that assuming sub-exponentially secure puncturable PRFs computable in NC1, sub-exponentially-secure indistinguishability obfuscation for (deterministic) NC1 circuits can be bootstrapped to obtain indistinguishability obfuscation for arbitrary (deterministic) poly-size circuits.
Last updated:  2015-07-15
Overview of the Candidates for the Password Hashing Competition - And Their Resistance Against Garbage-Collector Attacks
Uncategorized
Christian Forler, Eik List, Stefan Lucks, Jakob Wenzel
Show abstract
Uncategorized
In this work we provide an overview of the candidates of the Password Hashing Competition (PHC) regarding to their functionality, e.g., client-independent update and server relief, their security, e.g., memory-hardness and side-channel resistance, and its general proper- ties, e.g., memory usage and flexibility of the underlying primitives. Furthermore, we formally introduce two kinds of attacks, called Garbage- Collector and Weak Garbage-Collector Attack, exploiting the memory management of a candidate. Note that we consider all candidates which are not yet withdrawn from the competition.
Last updated:  2016-03-01
Sieving for Shortest Vectors in Ideal Lattices: a Practical Perspective
Uncategorized
Joppe W. Bos, Michael Naehrig, Joop van de Pol
Show abstract
Uncategorized
The security of many lattice-based cryptographic schemes relies on the hardness of finding short vectors in integral lattices. We propose a new variant of the parallel Gauss sieve algorithm to compute such short vectors. It combines favorable properties of previous approaches resulting in reduced run time and memory requirement per node. Our publicly available implementation outperforms all previous Gauss sieve approaches for dimensions 80, 88, and 96. When computing short vectors in ideal lattices, we show how to reduce the number of multiplications and comparisons by using a symbolic Fourier transform. We computed a short vector in a negacyclic ideal lattice of dimension 128 in less than nine days on 1024 cores, more than twice as fast as the recent record computation for the same lattice on the same computer hardware.
Last updated:  2014-10-28
Watch your Constants: Malicious Streebog
Uncategorized
Riham AlTawy, Amr M. Youssef
Show abstract
Uncategorized
In August 2012, the Streebog hash function was selected as the new Russian cryptographic hash standard (GOST R 34.11-2012). In this paper, we investigate the new standard in the context of malicious hashing and present a practical collision for a malicious version of the full hash function. In particular, we apply the rebound attack to find three solutions for three different differential paths for four rounds, and using the freedom of the round constants we connect them to obtain a collision for the twelve rounds of the compression function. Additionally, and due to the simple processing of the counter, we bypass the barrier of the checksum finalization step and transfer the compression function collision to the hash function output with no additional cost. The presented attack has a practical complexity and is verified by an example. While the results of this paper may not have a direct impact on the security of the current Streebog hash function, it presents an urge for the designers to publish the origin of the used parameters and the rational behind their choices in order for this function to gain enough confidence and wide spread adoption by the security community.
Last updated:  2015-12-01
Protecting obfuscation against arithmetic attacks
Uncategorized
Eric Miles, Amit Sahai, Mor Weiss
Show abstract
Uncategorized
Obfuscation, the task of compiling circuits or programs to make the internal computation unintelligible while preserving input/output functionality, has become an object of central focus in the cryptographic community. A work of Garg et al. [FOCS 2013] gave the first candidate obfuscator for general polynomial-size circuits, and led to several other works constructing candidate obfuscators. Each of these constructions is built upon another cryptographic primitive called a multilinear map, or alternatively a graded encoding scheme. Several of these candidates have been shown to achieve the strongest notion of security (virtual black-box, or VBB) against "purely algebraic" attacks in a model that we call the fully-restricted graded encoding model. In this model, each operation performed by an adversary is required to obey the algebraic restrictions of the graded encoding scheme. These restrictions essentially impose strong forms of homogeneity and multilinearity on the allowed polynomials. While important, the scope of the security proofs is limited by the stringency of these restrictions. We propose and analyze another variant of the Garg et al. obfuscator in a setting that imposes fewer restrictions on the adversary, which we call the arithmetic setting. This setting captures a broader class of attacks than considered in previous works. We also explore connections between notions of obfuscation security and longstanding questions in arithmetic circuit complexity. Our results include the following. (1) In the arithmetic setting where the adversary is limited to creating multilinear, but not necessarily homogenous polynomials, we obtain an unconditional proof of VBB security. This requires a substantially different analysis than previous security proofs. (2) In the arithmetic setting where the adversary can create polynomials of arbitrary degree, we show that a proof of VBB security for any currently available candidate obfuscator would imply VP != VNP. To complement this, we show that a weaker notion of security (indistinguishability obfuscation) can be achieved unconditionally in this setting, and that VBB security can be achieved under a complexity-theoretic assumption related to the Exponential Time Hypothesis.
Last updated:  2015-02-24
CM55: special prime-field elliptic curves almost optimizing den Boer's reduction between Diffie-Hellman and discrete logs
Daniel R. L. Brown
Using the Pohlig--Hellman algorithm, den Boer reduced the discrete logarithm problem to the Diffie--Hellman problem in groups of an order whose prime factors were each one plus a smooth number. This report reviews some related general conjectural lower bounds on the Diffie-Hellman problem in elliptic curve groups that relax the smoothness condition into a more commonly true condition. This report focuses on some elliptic curve parameters defined over a prime field size of size 9+55(2^288), whose special form may provide some efficiency advantages over random fields of similar sizes. The curve has a point of Proth prime order 1+55(2^286), which helps to nearly optimize the den Boer reduction. This curve is constructed using the CM method. It has cofactor 4, trace 6, and fundamental discriminant -55. This report also tries to consolidate the variety of ways of deciding between elliptic curves (or other algorithms) given the efficiency and security of each.
Last updated:  2015-11-13
Resisting Randomness Subversion: Fast Deterministic and Hedged Public-key Encryption in the Standard Model
Uncategorized
Mihir Bellare, Viet Tung Hoang
Show abstract
Uncategorized
This paper provides the first efficient, standard-model, fully-secure schemes for some related and challenging forms of public-key encryption (PKE), namely deterministic and hedged PKE. These forms of PKE defend against subversion of random number generators, an end given new urgency by recent revelations on the nature and extent of such subversion. We resolve the (recognized) technical challenges in reaching these goals via a new paradigm that combines UCEs (universal computational extractors) with LTDFs (lossy trapdoor functions). Crucially, we rely only on a weak form of UCE, namely security for statistically (rather than computationally) unpredictable sources. We then define and achieve unique-ciphertext PKE as a way to defend against implementation subversion via algorithm-substitution attacks.
Last updated:  2014-11-06
Side-channel Power Analysis of Different Protection Schemes Against Fault Attacks on AES
Pei Luo, Yunsi Fei, Liwei Zhang, A. Adam Ding
A protection circuit can be added into cryptographic systems to detect both soft errors and injected faults required by Differential Fault Analysis (DFA) attacks. While such protection can improve the reliability of the target devices significantly and counteract DFA, they will also incur extra power consumption and other resource overhead. In this paper, we analyze the side-channel power leakage of AES protection methods against fault attacks and quantify the amount. We implement six different schemes and launch correlation power analysis attacks on them. The results show that the protection circuits have all increased the power leakage and therefore make the system more vulnerable to power analysis attacks. We further compare different protection schemes in terms of power consumption, area, fault coverage, and side-channel leakage. Our results demonstrate trade-offs among multiple design metrics, and suggest that reliability, security, and costs have to be all considered together in the design phase of cryptographic systems.
Last updated:  2014-10-22
Accelerating Bliss: the geometry of ternary polynomials
Léo Ducas
The signature scheme Bliss proposed by Ducas, Durmus, Lepoint and Lyubashevsky at Crypto’13, is currently the most compact and efficient lattice-based signature scheme that is provably secure under lattice assumptions. It does compare favourably with the standardized schemes RSA and ECDSA on both Software and Hardware. In this work, we introduce a new technique that improves the above scheme, offering an acceleration factor up to 2.8, depending on the set of parameters. Namely, we improve the unnatural geometric bound used in Bliss to a tighter and much more natural bound by using some extra degree of freedom: the ternary representations of binary challenges. Precisely, we efficiently choose a ternary representation that makes the result deterministically shorter than the expected length for a random challenges. Our modified scheme Bliss-b is rather close to the original scheme, and both versions are compatible. The patch has been implemented on the Open-Source Software implementation of Bliss, and will be released under similar license.
Last updated:  2020-04-21
Bootstrapping for HElib
Shai Halevi, Victor Shoup
Gentry's bootstrapping technique is still the only known method of obtaining fully homomorphic encryption where the system's parameters do not depend on the complexity of the evaluated functions. Bootstrapping involves a *recryption* procedure where the scheme's decryption algorithm is evaluated homomorphically. Prior to this work there were very few implementations of recryption, and fewer still that can handle ``packed ciphertexts'' that encrypt vectors of elements. In the current work, we report on an implementation of recryption of fully-packed ciphertexts using the HElib library for somewhat-homomorphic encryption. This implementation required extending previous recryption algorithms from the literature, as well as many aspects of the HElib library. Our implementation supports bootstrapping of packed ciphertexts over many extension fields/rings. One example that we tested involves ciphertexts that encrypt vectors of 1024 elements from $GF(2^{16})$. In that setting, the recryption procedure takes under 3 minutes (at security-level $\approx 80$) on a single core, and allows a multiplicative depth-11 computation before the next recryption is needed. This report updates the results that we reported in Eurocrypt 2015 in several ways. Most importantly, it includes a much more robust method for deriving the parameters, ensuring that recryption errors only occur with negligible probability. Many aspects of this analysis are proven, and for the few well-specified heuristics that we made, we report on thorough experimentation to validate them. The procedure that we describe here is also significantly more efficient than in the previous version, incorporating many optimizations that were reported elsewhere (such as more efficient linear transformations) and adding a few new ones. Finally, our implementation now also incorporates Chen and Han's techniques from Eurocrypt 2018 for more efficient digit extraction (for some parameters), as well as for ``thin bootstrapping'' when the ciphertext is only sparsely packed.
Last updated:  2014-10-22
Recent Results in Scalable Multi-Party Computation
Jared Saia, Mahdi Zamani
Secure multi-party computation (MPC) allows multiple parties to compute a known function over inputs held by each party, without any party having to reveal its private input. Unfortunately, traditional MPC algorithms do not scale well to large numbers of parties. In this paper, we describe several recent MPC algorithms that are designed to handle large networks. All of these algorithms rely on recent techniques from the Byzantine agreement literature on forming and using quorums. Informally, a quorum is a small set of parties, most of which are trustworthy. We describe the advantages and disadvantages of these scalable algorithms, and we propose new ideas for improving practicality of current techniques. Finally, we conduct simulations to measure bandwidth cost for several current MPC algorithms.
Last updated:  2014-11-07
An algorithm for MD5 single-block collision attack using high-performance computing cluster
Anton A. Kuznetsov
The parallel algorithm and its implementation for performing a single-block collision attack on MD5 are described. The algorithm is implemented as MPI program based upon the source code of Dr Marc Stevens' collision search sequential program. In this paper we present a parallel single-block MD5 collision searching algorithm itself and details of its implementation. We also disclose a pair of new single-block messages colliding under MD5 that were found using our algorithm on the high-performance computing cluster.
Last updated:  2016-09-13
Dynamic Behavior of RS latches using FIB processing and probe connection
Naoya Torii, Dai Yamamoto, Masahiko Takenaka, Tsutomu Matsumoto
PUF (Physically Unclonable Function) technologies attract attention as a candidate to prevent counterfeit chips. A latch PUF is known as a high performance PUF among various types of proposed PUFs. In this paper we describe an experiment on a dynamic attack to a latch PUF consisting of RS latches, such as measuring the latch output by a probe connection after a FIB (Focused Ion Beam) processing. As a result, we confirmed that the latch PUF using the RS latch has a tolerance for the dynamic analysis, because the RS latch output was influenced and changed by the FIB processing in our experiment.
Last updated:  2015-08-01
Exclusive Exponent Blinding May Not Suffice to Prevent Timing Attacks on RSA
Werner Schindler
The references [9,3,1] treat timing attacks on RSA with CRT and Montgomery's multiplication algorithm in unprotected implementations. It has been widely believed that exponent blinding would prevent any timing attack on RSA. At cost of significantly more timing measurements this paper extends the before-mentioned attacks to RSA with CRT when Montgomery's multiplication algorithm and exponent blinding are applied. Simulation experiments are conducted, which confirm the theoretical results. Effective countermeasures exist. In particular, the attack efficiency is higher than in the previous version [12] while large parts of both papers coincide.
Last updated:  2014-10-22
Functional Encryption for Randomized Functionalities in the Private-Key Setting from Minimal Assumptions
Ilan Komargodski, Gil Segev, Eylon Yogev
We present a construction of a private-key functional encryption scheme for any family of randomized functionalities based on any such scheme for deterministic functionalities that is sufficiently expressive. Instantiating our construction with existing schemes for deterministic functionalities, we obtain schemes for any family of randomized functionalities based on a variety of assumptions (including the LWE assumption, simple assumptions on multilinear maps, and even the existence of any one-way function) offering various trade-offs between security and efficiency. Previously, Goyal, Jain, Koppula and Sahai [Cryptology ePrint Archive, 2013] constructed a public-key functional encryption scheme for any family of randomized functionalities based on indistinguishability obfuscation. One of the key insights underlying our work is that, in the private-key setting, a sufficiently expressive functional encryption scheme may be appropriately utilized for implementing proof techniques that were so far implemented based on obfuscation assumptions (such as the punctured programming technique of Sahai and Waters [STOC 2014]). We view this as a contribution of independent interest that may be found useful in other settings as well.
Last updated:  2015-02-15
Random-Oracle Uninstantiability from Indistinguishability Obfuscation
Chris Brzuska, Pooya Farshim, Arno Mittelbach
Assuming the existence of indistinguishability obfuscation (iO), we show that a number of prominent transformations in the random-oracle model are uninstantiable in the standard model. We start by showing that the Encrypt-with-Hash transform of Bellare, Boldyreva and O'Neill (CRYPTO 2007) for converting randomized public-key encryption schemes to deterministic ones is not instantiable in the standard model. To this end, we build on the recent work of Brzuska, Farshim and Mittelbach (CRYPTO 2014) and rely on the existence of iO for circuits or iO for Turing machines to derive uninstantiability for hash functions of a priori bounded polynomial size and arbitrary polynomial size, respectively. The techniques that we use to establish this result are flexible and lend themselves to a number of other transformations such as the classical Fujisaki--Okamoto transform (CRYPTO 1998) and transformations akin to those by Bellare and Keelveedhi (CRYPTO 2011) and Douceur et al. (ICDCS 2002) for obtaining KDM-secure encryption and de-duplication schemes respectively. Our results call for a re-assessment of scheme design in the random-oracle model and highlight the need for new transforms that do not suffer from iO-based attacks.
Last updated:  2015-08-03
Self-Destruct Non-Malleability
Sandro Coretti, Yevgeniy Dodis, Björn Tackmann, Daniele Venturi
=== NOTE: This submission has been replaced by a corrected version (2015/772). === We introduce a new security notion for public-key encryption (PKE) that we dub non-malleability under (chosen-ciphertext) self-destruct attacks (NM-SDA), which appears to be the strongest natural PKE security notion below full-blown chosen-ciphertext (IND-CCA) security. In this notion, the adversary is allowed to ask many adaptive ``parallel'' decryption queries (i.e., a query consists of many ciphertexts) up to the point when the first invalid ciphertext is submitted. As such, NM-SDA security generalizes non-malleability against chosen plaintext attacks (NM-CPA, where only one parallel decryption query is allowed) and recently introduced indistinguishability against (chosen-ciphertext) self-destruct attacks (IND-SDA, where each adaptive query consists of a single ciphertext). After showing that NM-SDA is a {\em strict} strengthening of NM-CPA and IND-SDA and allows for more applications, we establish the following two results: Domain Extension: For any $K > 1$, there is a black-box construction of a $K$-bit NM-SDA PKE scheme from a single-bit NM-SDA PKE scheme. Moreover, this can be done using only $O(\lambda)$ calls to the underlying single-bit NM-SDA scheme, where $\lambda$ is the security parameter. To achieve our goal, we define and construct a novel type of continuous non-malleable code (NMC), called secret-state NMC, as we show that standard continuous NMCs are not enough for the natural ``expand-then-encrypt-bit-by-bit'' approach to work. Black-Box Construction from IND-CPA: Prior work showed that NM-CPA secure PKE can be constructed from any IND-CPA secure PKE in a black-box way. Here we show that the same construction actually achieves our strictly stronger notion of NM-SDA security. (This requires a non-trivial extension of the original security proof to handle multiple parallel decryption queries.) Hence, the notions of IND-CPA, NM-CPA, IND-SDA and NM-SDA security are all equivalent, lying (plausibly, strictly?) below IND-CCA security. We also show how to improve the rate of the resulting NM-SDA scheme from quadratic to linear.
Last updated:  2015-06-22
Impossibility of Black-Box Simulation Against Leakage Attacks
Uncategorized
Rafail Ostrovsky, Giuseppe Persiano, Ivan Visconti
Show abstract
Uncategorized
In this work, we show how to use the positive results on succinct argument systems to prove impossibility results on leakage-resilient black-box zero knowledge. This recently proposed notion of zero knowledge deals with an adversary that can make leakage queries on the state of the prover. Our result holds for black-box simulation only and we also give some insights on the non-black-box case. Additionally, we show that, for several functionalities, leakage-resilient multi-party computation is impossible (regardless of the number of players and even if just one player is corrupted). More in details, we achieve the above results by extending a technique of [Nielsen, Venturi, Zottarel -- PKC 13] to prove lower bounds for leakage-resilient security. Indeed, we use leakage queries to run an execution of a communication-efficient protocol in the head of the adversary. Moreover, to defeat the black-box simulator we connect the above technique for leakage resilience to security against reset attacks. Our results show that the open problem of [Ananth, Goyal, Pandey -- Crypto 14] (i.e., continual leakage-resilient proofs without a common reference string) has a negative answer when security through black-box simulation is desired. Moreover our results close the open problem of [Boyle et al. -- STOC 12] for the case of black-box simulation (i.e., the possibility of continual leakage-resilient secure computation without a leak-free interactive preprocessing).
Last updated:  2014-12-20
How to Choose Interesting Points for Template Attacks More Effectively
Guangjun Fan, Yongbin Zhou, Hailong Zhang, Dengguo Feng
Template attacks are widely accepted to be the most powerful side-channel attacks from an information theoretic point of view. For template attacks to be practical, one needs to choose some special samples as the interesting points in actual power traces. Up to now, many different approaches were introduced for choosing interesting points for template attacks. However, it is unknown that whether or not the previous approaches of choosing interesting points will lead to the best classification performance of template attacks. In this work, we give a negative answer to this important question by introducing a practical new approach which has completely different basic principle compared with all the previous approaches. Our new approach chooses the point whose distribution of samples approximates to a normal distribution as the interesting point. Evaluation results exhibit that template attacks based on the interesting points chosen by our new approach can achieve obvious better classification performance compared with template attacks based on the interesting points chosen by the previous approaches. Therefore, our new approach of choosing interesting points should be used in practice to better understand the practical threats of template attacks.
Last updated:  2014-10-27
A Unified Approach to Idealized Model Separations via Indistinguishability Obfuscation
Matthew D. Green, Jonathan Katz, Alex J. Malozemoff, Hong-Sheng Zhou
It is well known that the random oracle model is not sound in the sense that there exist cryptographic systems that are secure in the random oracle model but when instantiated by any family of hash functions become insecure. However, all known separation results require the attacker to send an appropriately crafted message to the challenger in order to break security. Thus, this leaves open the possibility that some cryptographic schemes, such as bit-encryption, are still sound in the random oracle model. In this work we refute this possibility, assuming the existence of indistinguishability obfuscation. We do so in the following way. First, we present a random oracle separation for bit-encryption; namely, we show that there exists a bit-encryption protocol secure in the random oracle model but \emph{completely insecure} when the random oracle is instantiated by any concrete function. Second, we show how to adapt this separation to work for most natural simulation-based and game-based definitions. Our techniques can easily be adapted to other idealized models, and thus we present a \emph{unified approach} to showing separations for most protocols of interest in most idealized models.
Last updated:  2014-10-22
Low-Latency ECDSA Signature Verification - A Road Towards Safer Traffic -
Miroslav Knezevic, Ventzislav Nikov, Peter Rombouts
Car-to-car and Car-to-Infrastructure messages exchanged in Intelligent Transportation Systems can reach reception rates up to and over 1000 messages per second. As these messages contain ECDSA signatures this puts a very heavy load onto the verification hardware. In fact the load is so high that currently it can only be achieved by implementations running on high end CPUs and FPGAs. These implementations are far from cost-effective nor energy efficient. In this paper we present an ASIC implementation of a dedicated ECDSA verification engine that can reach verification rates of up to 27.000 verifications per second using only 1.034 kGE.
Last updated:  2014-10-22
Cats and Dogs An Integrity for Voting Systems Based on Paper Ballots
İhsan Haluk Akın
Abstract—Voting systems based on paper ballots has a long history with various problems. Vote-selling and correct outcome are two major problems among many. In this work, we propose a new solution to these problems by using UltraViolet (UV) fiber paper Physical Unclonable Function (PUF). When applied this solution not only prevents vote-selling but also ensures the correctness of the outcome. With these two problems eliminated, the voting systems based on paper ballots will have complete integrity.
Last updated:  2014-11-02
Differential Factors: Improved Attacks on SERPENT
Cihangir Tezcan, Ferruh Özbudak
A differential attack tries to capture the round keys corresponding to the S-boxes activated by a differential. In this work, we show that for a fixed output difference of an S-box, it may not be possible to distinguish the guessed keys that have a specific difference. We introduce these differences as differential factors. Existence of differential factors can reduce the time complexity of differential attacks and as an example we show that the 10, 11, and 12-round differential-linear attacks of Dunkelman et al. on SERPENT can actually be performed with time complexities reduced by a factor of 4, 4, and 8, respectively.
Last updated:  2014-11-17
Provably secure pairing-free identity-based partially blind signature scheme and its application in online e-cash system
SK Hafizul Islam, G. P. Biswas
The blind signature scheme permits the user to acquire a signature from the signer; however, the message and the final signature are unknown to the signer. In a partially blind signature (PBS) scheme, the signer can explicitly incorporate a common information in the signature based on some agreement with the user and without violating the blindness property. Many PBS schemes have been proposed recently either by using certificate authority-based public infrastructure (CA-PKI) or pairing along with map-to-point function. The CA-PKI-based PBS scheme needs huge computation and storage to keep public keys and certificates. On the other hand, pairing and map-to-point function are costly operations. Thus, the ID-PBS scheme without pairing is more appropriate for real environments, and an efficient pairing-free ID-PBS scheme is proposed in this paper. In the random oracle model, our scheme is analyzed to be provably secure. The proposed scheme is used to design an online e-cash system, in which a bank agrees on a common piece of information with a customer and can blindly sign some messages. It may be noted that our e-cash system has the properties of unforgeability, unlinkability, and non-deniability and can prevent the double-spending of e-cash.
Last updated:  2014-11-26
Adaptively Secure, Universally Composable, Multi-Party Computation in Constant Rounds
Dana Dachman-Soled, Jonathan Katz, Vanishree Rao
Cryptographic protocols with adaptive security ensure that security holds against an adversary who can dynamically determine which parties to corrupt as the protocol progresses---or even after the protocol is finished. In the setting where all parties may potentially be corrupted, and secure erasure is not assumed, it has been a long-standing open question to design secure-computation protocols with adaptive security running in constant rounds. Here, we show a constant-round, universally composable protocol for computing any functionality, tolerating a malicious, adaptive adversary corrupting any number of parties. Interestingly, our protocol can compute all functionalities, not just adaptively well-formed ones.
Last updated:  2015-09-01
Pseudonymous Broadcast and Secure Computation from Cryptographic Puzzles
Jonathan Katz, Andrew Miller, Elaine Shi
In standard models of distributed computation, point-to-point channels between parties are assumed to be authenticated by some pre-existing means. In other cases, even stronger pre-existing setup—e.g., a public-key infrastructure (PKI)—is assumed. These assumptions are too strong for open, peer-to-peer networks, where parties do not necessarily have any prior relationships and can come and go as they please. Nevertheless, these assumptions are made due to the prevailing belief that nothing “interesting” can be achieved without them. Taking inspiration from Bitcoin, we show that precise bounds on computational power can be used in place of pre-existing setup to achieve weaker (but nontrivial) notions of security. Specifically, under the assumption that each party can solve cryptographic puzzles only at a bounded rate (and the existence of digital signatures), we show that without prior setup and with no bound on the number of corruptions, a group of parties can agree on a PKI with which they can then realize pseudonymous notions of authenticated communication, broadcast, and secure computation. Roughly, “pseudonymous” here means that parties are identified by pseudoynms rather than by their true identities.
Last updated:  2014-10-22
Leakage-Resilient Circuits Revisited -- Optimal Number of Computing Components without Leak-free Hardware
Dana Dachman-Soled, Feng-Hao Liu, Hong-Sheng Zhou
Side channel attacks -- attacks that exploit implementation-dependent information of a cryptosystem -- have been shown to be highly detrimental, and the cryptographic community has recently focused on developing techniques for securing implementations against such attacks. An important model called \emph{Only Computation Leaks} (OCL) [Micali and Reyzin, TCC '04] and its stronger variants were proposed to model a broad class of leakage attacks (a type of side-channel attack). These models allow for unbounded, arbitrary leakage as long as (1) information in each leakage observation is bounded, and (2) different parts of the computation leak independently. Various results and techniques have been developed for these models and we continue this line of research in the current work. We address the problem of compiling any circuit into a circuit secure against OCL attacks. In order to leverage the OCL assumption, the resulting circuit will be split into components, where at any point in time only a single component is active. Optimally, we would like to output a circuit that has only one component, and no part of the computation needs to be leak-free. However, this task is impossible due to the result of Barak et al. [JACM '12].The current state-of-the-art constructions achieve either two components with additional leak-free hardware, or many components without leak-free hardware. In this work, we show how to achieve the best of both worlds: We construct two-component OCL schemes without relying on leak-free components. Our approach is general and modular -- we develop generic techniques to remove the hardware component from hardware-based constructions, when the functionality provided by the hardware satisfies some properties. Our techniques use universal deniable encryption (recently constructed by Sahai and Water [STOC '14] using indistinguishable obfuscation) and non-committing encryption in a novel way. Then, we observe that the functionalities of the hardware used in previous two-component constructions of Juma and Vahlis [Crypto '10], and Dziembowski and Faust [TCC '12] satisfy the required properties. The techniques developed in this paper have deep connections with adaptively secure and leakage tolerant multi-party computation (MPC). Our constructions immediately yield adaptively secure and leakage tolerant MPC protocols for any no-input randomized functionality in the semi-honest model. The result holds in the CRS model, without pre-processing. Our results also have implications to two-party leakage tolerant computation for arbitrary functionalities, which we obtain by combining our constructions with a recent result of Bitansky, Dachman-Soled, and Lin [Crypto '14].
Last updated:  2014-10-22
Relating Undisturbed Bits to Other Properties of Substitution Boxes
Uncategorized
Rusydi H. Makarim, Cihangir Tezcan
Show abstract
Uncategorized
Recently it was observed that for a particular nonzero input difference to an S-Box, some bits in all the corresponding output differences may remain invariant. These specific invariant bits are called undisturbed bits. Undisturbed bits can also be seen as truncated differentials with probability 1 for an S-Box. The existence of undisturbed bits was found in the S-Box of PRESENT and its inverse. A 13-round improbable differential attack on PRESENT was provided by Tezcan and without using the undisturbed bits in the S-Box an attack of this type can only reach 7 rounds. Although the observation and the cryptanalytic application of undisturbed bits are given, their relation with other properties of an S-Box remain unknown. This paper presents some results on mathematical properties of S-Boxes having undisturbed bits. We show that an S-Box has undisturbed bits if any of its coordinate functions has a nontrivial linear structure. The relation of undisturbed bits with other cryptanalytic tools such as difference distribution table (DDT) and linear approximation table (LAT) are also given. We show that autocorrelation table is proven to be a more useful tool, compared to DDT, to obtain all nonzero input differences that yield undisturbed bits. Autocorrelation table can then be viewed as a counterpart of DDT for truncated differential cryptanalysis. Given an nxm balanced S-Box, we state that the S-Box has undisturbed bits whenever the degree of any of its coordinate function is quadratic.
Last updated:  2014-10-30
Power Analysis Attack on Hardware Implementation of MAC-Keccak on FPGAs
Pei Luo, Yunsi Fei, Xin Fang, A. Adam Ding, Miriam Leeser, David R. Kaeli
Keccak is the hash function selected by NIST as the new SHA-3 standard. Keccak is built on Sponge construction and it provides a new MAC function called MAC-Keccak. These new algorithms have raised questions with regards to side-channel leakage and analysis attacks of MAC-Keccak. So far there exists prior work on attacks of software implementations of MAC-Keccak, but there has been no comprehensive side-channel vulnerability assessment of its hardware implementation. In this paper we describe an attack on the $\theta$ step of the first round of MAC-Keccak implemented on an FPGA. We construct several different side-channel leakage models and implement attacks based on them. Our work shows that an unmasked hardware implementation of SHA-3 is vulnerable to power-based side-channel attacks.
Last updated:  2014-10-22
Dynamic Searchable Encryption in Very-Large Databases: Data Structures and Implementation
Uncategorized
David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk, Marcel-Cătălin Roşu, Michael Steiner
Show abstract
Uncategorized
We design and implement dynamic symmetric searchable encryption schemes that efficiently and privately search server-held encrypted databases with tens of billions of record-keyword pairs. Our basic theoretical construction supports single-keyword searches and offers asymptotically optimal server index size, fully parallel searching, and minimal leakage. Our implementation effort brought to the fore several factors ignored by earlier coarse-grained theoretical performance analyses, including low-level space utilization, I/O parallelism and goodput. We accordingly introduce several optimizations to our theoretically optimal construction that model the prototype's characteristics designed to overcome these factors. All of our schemes and optimizations are proven secure and the information leaked to the untrusted server is precisely quantified. We evaluate the performance of our prototype using two very large datasets: a synthesized census database with 100 million records and hundreds of keywords per record and a multi-million webpage collection that includes Wikipedia as a subset. Moreover, we report on an implementation that uses the dynamic SSE schemes developed here as the basis for supporting recent SSE advances, including complex search queries (e.g., Boolean queries) and richer operational settings (e.g., query delegation), in the above terabyte-scale databases.
Last updated:  2015-03-23
Faster ECC over $\mathbb{F}_{2^{521}-1}$
Robert Granger, Michael Scott
In this paper we present a new multiplication algorithm for residues modulo the Mersenne prime $2^{521} - 1$. Using this approach, on an Intel Haswell Core i7-4770, constant-time variable-base scalar multiplication on NIST's (and SECG's) curve P-521 requires 1,073,000 cycles, while on the recently proposed Edwards curve E-521 it requires just 943,000 cycles. As a comparison, on the same architecture openSSL's ECDH speed test for curve P-521 requires 1,319,000 cycles. Furthermore, our code was written entirely in C and so is robust across different platforms. The basic observation behind these speedups is that the form of the modulus allows one to multiply residues with as few word-by-word multiplications as is needed for squaring, while incurring very little overhead from extra additions, in contrast to the usual Karatsuba methods.
Last updated:  2014-10-22
Near Optimal Rate Homomorphic Encryption for Branching Programs
Aggelos Kiayias, Nikos Leonardos, Helger Lipmaa, Kateryna Pavlyk, Qiang Tang
We initiate the study of good rate homomorphic encryption schemes. Based on previous work on securely evaluating (binary I/O) branching programs, we propose a leveled homomorphic encryption scheme for {\em large-output} polynomial-size branching programs (which we call $\mathbf{L/poly}$) that possesses near optimal-rate. The rate analysis of the new scheme is intricate: the best rate is achieved if a certain parameter $s$ is set equal to the only positive root of a degree-$m$ polynomial, where $m$ is the length of the branching program. We employ the Newton-Puiseux algorithm to find a Puiseux series for this parameter, and based on this, propose a $\Theta (\log m)$-time algorithm to find an integer approximation to $s$. We also describe a rate-optimal 1-out-of-$n$ CPIR based on rate-optimal homomorphic encryption. In concrete terms, when applied to say, a movie database with $n = 2^{16}$ elements of $\ell = 3.8 \cdot 10^{9}$-bits, the client can privately download a movie with a communication rate of almost $0.99$, hence sacrificing only about $1\%$ of bandwidth for privacy. We also analyze the optimality of the rate efficiency of our scheme in a novel model that may be of independent interest. Our $1$-out-of-$n$ CPIR has rate $ 1- 1.72 \sqrt{k / \ell} \cdot \log_{2} n + O_\ell(\ell^{-1})$, while we show that no black-box construction surpasses $1 - \sqrt{k / \ell} (\log n/ \log \log n) + O_\ell(\ell^{-1})$ in terms of rate, where $\ell$ is the length of the database elements and $k$ the security parameter.
Last updated:  2015-12-14
The BRUTUS automatic cryptanalytic framework: Testing CAESAR authenticated encryption candidates for weaknesses
Uncategorized
Markku-Juhani O. Saarinen
Show abstract
Uncategorized
This report summarizes our results from security analysis covering all 57 competitions for authenticated encryption: security, applicability, and robustness (CAESAR) first-round candidates and over 210 implementations. We have manually identified security issues with three candidates, two of which are more serious, and these ciphers have been withdrawn from the competition. We have developed a testing framework, BRUTUS, to facilitate automatic detection of simple security lapses and susceptible statistical structures across all ciphers. From this testing, we have security usage notes on four submissions and statistical notes on a further four. We highlight that some of the CAESAR algorithms pose an elevated risk if employed in real-life protocols due to a class of adaptive-chosen-plaintext attacks. Although authenticated encryption with associated data are often defined (and are best used) as discrete primitives that authenticate and transmit only complete messages, in practice, these algorithms are easily implemented in a fashion that outputs observable ciphertext data when the algorithm has not received all of the (attacker-controlled) plaintext. For an implementor, this strategy appears to offer seemingly harmless and compliant storage and latency advantages. If the algorithm uses the same state for secret keying information, encryption, and integrity protection, and the internal mixing permutation is not cryptographically strong, an attacker can exploit the ciphertext–plaintext feedback loop to reveal secret state information or even keying material. We conclude that the main advantages of exhaustive, automated cryptanalysis are that it acts as a very necessary sanity check for implementations and gives the cryptanalyst insights that can be used to focus more specific attack methods on given candidates.
Last updated:  2014-10-22
A Proxy Re-Encryption Scheme with the Unforgeability of Re-Encryption Keys against Collusion Attacks
Ryotaro Hayashi, Tatsuyuki Matsushita
Proxy re-encryption (PRE) schemes are cryptosystems which allow a proxy who has a re-encryption key to convert a ciphertext originally encrypted for one party into a ciphertext which can be decrypted by another party. In IWSEC 2011, Hayashi et al. proposed the new security notion for PRE called ``unforgeability of re-encryption keys against collusion attacks,'' UFReKey-CA for short. They proposed the PRE schemes and claimed that their schemes meet UFReKey-CA. However, Isshiki et al. pointed out that the schemes do not meet UFReKey-CA in IWSEC 2013. It is an open problem of constructing the scheme which meets UFReKey-CA. In this paper, we propose new PRE schemes which meet confidentiality (RCCA security) assuming that the q-wDBDHI problem is hard and meet UFReKey-CA assuming that the 2-DHI problem is hard.
Last updated:  2014-10-22
Private Key Recovery Combination Attacks: On Extreme Fragility of Popular Bitcoin Key Management, Wallet and Cold Storage Solutions in Presence of Poor RNG Events
Nicolas T. Courtois, Pinar Emirdag, Filippo Valsorda
In this paper we study the question of key management and practical operational security in bitcoin digital currency storage systems. We study the security two most used bitcoin HD Wallet key management solutions (e.g. in BIP032 and in earlier systems). These systems have extensive audit capabilities but this property comes at a very high price. They are excessively fragile. One small security incident in a remote corner of the system and everything collapses, all private keys can be recovered and ALL bitcoins within the remit of the system can be stolen. Privilege escalation attacks on HD Wallet solutions are not new. In this paper we take it much further. We propose new more advanced combination attacks in which the security of keys hold in cold storage can be compromised without executing any software exploit on the cold system, but through security incidents at operation such as bad random number or related random events. In our new attacks all bitcoins over whole large security domains can be stolen by people who have the auditor keys which are typically stored in hot systems connected to the Internet and can be stolen easily. Our combination attacks allow to recover private keys which none of the earlier attacks in isolation could hope to recover. Classical bad random attacks typically concern only very few bitcoin accounts, and only some very lucky holders of bitcoins can actually steal other people's bitcoins. In this paper we go beyond identical random attacks and show several attacks which also work with related random events, which events are more probable and yet less likely to be detected before it is too late. We also present several attacks which work across distinct security domains which share no common setup, code or keys. Yet in certain circumstances all the bitcoins in each domain can be stolen. All our attacks are practical and realistic given the numerous relevant events have already happened in the bitcoin blockchain hundreds of times, some as recently as September 2014. It is not clear if this problem can be repaired, i.e. if there exists a key management solution with similar audit capabilities as BIP032 which would be immune against this sort of advanced combination attacks.
Last updated:  2015-05-22
Reflections on Slide with a Twist Attacks
Itai Dinur, Orr Dunkelman, Nathan Keller, Adi Shamir
Slide attacks use pairs of encryption operations which are slid against each other. Slide with a twist attacks are more sophisticated variants of slide attacks which slide an encryption operation against a decryption operation. Designed by Biryukov and Wagner in 2000, these attacks were used against several cryptosystems, including DESX, the Even-Mansour construction, and Feistel structures with four-round self-similarity. They were further extended in 2012 to the mirror slidex framework, which was used to attack the 20-round GOST block cipher and several additional variants of the Even-Mansour construction. In this paper, we revisit all the previously published applications of these techniques and show that in almost all cases, the same or better results can be achieved by a simpler attack which is based on the seemingly unrelated idea of exploiting internal fixed points. The observation that such fixed points can be useful in cryptanalysis of block ciphers is known for decades and is the basis of the reflection attack presented by Kara in 2007. However, all the examples to which reflection attacks were applied were based on particular constructions such as Feistel structures or GOST key schedules in which it was easy to explicitly list and count the fixed points. In this paper, we generalize Kara’s reflection attack by using the combinatorial result that random involutions on 2^n values are expected to have a surprisingly large number of O(2^n/2) fixed points (whereas random permutations are expected to have only O(1) fixed points). This makes it possible to reduce the complexity of the best known attack on additional cryptographic schemes in which it is difficult to explicitly characterize and count the internal fixed points.
Last updated:  2014-10-22
Verifiable computation using multiple provers
Andrew J. Blumberg, Justin Thaler, Victor Vu, Michael Walfish
The increasing ubiquity of the cloud computing paradigm has renewed focus on the classical problem of allowing weak clients to check the results of computation delegated to powerful servers. Recent advances in proof-based verifiable computation have led to several near-practical protocols. Protocols based on interactive proofs (IPs) work with highly restrictive models of computation and are thus efficient only for a limited class of computations. In contrast, protocols based on argument systems apply to a much larger class of computations, but efficiency requires amortization of very expensive setup costs. This paper initiates the study of the practical efficiency of multiprover interactive proofs (MIPs). We present a new MIP for delegating computation that extends insights from a powerful IP protocol (Goldwasser et al., STOC, 2008). Without reductions or amplification, our protocol uses only two provers (departing from prior work on MIPs), and achieves both the efficiency of interactive proof-based protocols and the generality of argument system-based protocols. Also, this result, together with recently developed machinery, creates a potential avenue toward concretely efficient arguments without setup costs. We describe Clover, a built system for verifiable computation, based on our protocol. Although Clover does not implement the full theory (it has setup costs), it applies to problems that existing IPs cannot efficiently handle, and achieves performance comparable to, or better than, the best argument systems.
Last updated:  2016-02-23
Adaptively secure two-party computation from indistinguishability obfuscation
Ran Canetti, Shafi Goldwasser, Oxana Poburinnaya
We present the first two-round, two-party general function evaluation protocol that is secure against honest-but-curious adaptive corruption of both parties. In addition, the protocol is incoercible for one of the parties, and fully leakage tolerant. It requires a global (non-programmable) reference string and is based on one way functions and general-purpose indistinguishability obfuscation with sub-exponential security, as well as augmented non-committing encryption. A Byzantine version of the protocol, obtained by applying the Canetti et al. [STOC 02] compiler, achieves UC security with comparable efficiency parameters, but is no longer incoercible.
Last updated:  2015-03-18
Two-Round Adaptively Secure MPC from Indistinguishability Obfuscation
Sanjam Garg, Antigoni Polychroniadou
Adaptively secure Multi-Party Computation (MPC) first studied by Canetti, Feige, Goldreich, and Naor in 1996, is a fundamental notion in cryptography. Adaptive security is particularly hard to achieve in settings where arbitrary number of parties can be corrupted and honest parties are not trusted to properly erase their internal state. We did not know how to realize constant round protocols for this task even if we were to restrict ourselves to semi-honest adversaries and to the simpler two-party setting. Specifically the round complexity of known protocols grows with the depth of the circuit the parties are trying to compute. In this work, using indistinguishability obfuscation, we construct the first UC two-round Multi-Party computation protocol secure against any active, adaptive adversary corrupting an arbitrary number of parties.
Last updated:  2017-10-27
Solving a Class of Modular Polynomial Equations and its Relation to Modular Inversion Hidden Number Problem and Inversive Congruential Generator
Uncategorized
Jun Xu, Santanu Sarkar, Lei Hu, Zhangjie Huang, Liqiang Peng
Show abstract
Uncategorized
In this paper we revisit the modular inversion hidden number problem (MIHNP) and the inversive congruential generator (ICG) and consider how to attack them more efficiently. We consider systems of modular polynomial equations of the form a_{ij}+b_{ij}x_i+c_{ij}x_j+x_ix_j=0 (mod p) and show the relation between solving such equations and attacking MIHNP and ICG. We present three heuristic strategies using Coppersmith's lattice-based root-finding technique for solving the above modular equations. In the first strategy, we use the polynomial number of samples and get the same asymptotic bound on attacking ICG proposed in PKC 2012, which is the best result so far. However, exponential number of samples is required in the work of PKC 2012. In the second strategy, a part of polynomials chosen for the involved lattice are linear combinations of some polynomials and this enables us to achieve a larger upper bound for the desired root. Corresponding to the analysis of MIHNP we give an explicit lattice construction of the second attack method proposed by Boneh, Halevi and Howgrave-Graham in Asiacrypt 2001. We provide better bound than that in the work of PKC 2012 for attacking ICG. Moreover, we propose the third strategy in order to give a further improvement in the involved lattice construction in the sense of requiring fewer samples.
Last updated:  2015-01-15
A Rate-Optimizing Compiler for Non-malleable Codes Against Bit-wise Tampering and Permutations
Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, Manoj Prabhakaran
A non-malleable code protects messages against a class of tampering functions. Informally, a code is non-malleable if the effect of applying any tampering function on an encoded message is to either retain the message or to replace it with an unrelated message. Two main challenges in this area -- apart from establishing the feasibility against different families of tampering -- are to obtain explicit constructions and to obtain high-rates for such constructions. In this work, we present a compiler to transform low-rate (in fact, zero rate) non-malleable codes against certain class of tampering into an optimal-rate -- i.e., rate 1 -- non-malleable codes against the same class. If the original code is explicit, so is the new one. When applied to the family of bit-wise tampering functions, this subsumes (and greatly simplifies) a recent result of Cheraghchi and Guruswami (TCC 2014). Further, our compiler can be applied to non-malleable codes against the class of bit-wise tampering and bit-level permutations. Combined with the rate-0 construction in a companion work, this yields the first explicit rate-1 non-malleable code for this family of tampering functions. Our compiler uses a new technique for boot-strapping non-malleability by introducing errors, that may be of independent interest.
Last updated:  2014-10-20
Explicit Non-malleable Codes Resistant to Permutations and Perturbations
Shashank Agrawal, Divya Gupta, Hemanta K. Maji, Omkant Pandey, Manoj Prabhakaran
A non-malleable code protects messages against various classes of tampering. Informally, a code is non-malleable if the message contained in a tampered codeword is either the original message, or a completely unrelated one. Although existence of such codes for various rich classes of tampering functions is known, \emph{explicit} constructions exist only for ``compartmentalized'' tampering functions: \ie the codeword is partitioned into {\em a priori fixed} blocks and each block can {\em only be tampered independently}. The prominent examples of this model are the family of bit-wise independent tampering functions and the split-state model. In this paper, for the first time we construct explicit non-malleable codes against a natural class of non-compartmentalized tampering functions. We allow the tampering functions to {\em permute the bits} of the codeword and (optionally) perturb them by flipping or setting them to 0 or 1. We construct an explicit, efficient non-malleable code for arbitrarily long messages in this model (unconditionally). We give an application of our construction to non-malleable commitments, as one of the first direct applications of non-malleable codes to computational cryptography. We show that non-malleable {\em string} commitments can be ``entirely based on'' non-malleable {\em bit} commitments. More precisely, we show that simply encoding a string using our code, and then committing to each bit of the encoding using a {\em CCA-secure bit commitment} scheme results in a non-malleable string commitment scheme. This reduction is unconditional, does not require any extra properties from the bit-commitment such as ``tag-based'' non-malleability, and works even with physical implementations (which may not imply standard one-way functions). Further, even given a partially malleable bit commitment scheme which allows toggling the committed bit (instantiated, for illustration, using a variant of the Naor commitment scheme under a non-standard assumption on the PRG involved), this transformation gives a fully non-malleable string commitment scheme. This application relies on the non-malleable code being explicit.
Last updated:  2015-11-18
Constrained PRFs for Unbounded Inputs
Uncategorized
Hamza Abusalah, Georg Fuchsbauer, Krzysztof Pietrzak
Show abstract
Uncategorized
A constrained pseudorandom function $F: K \times X \to Y$ for a family $T$ of subsets of $X$ is a function where for any key $k \in K$ and set $S \in T$ one can efficiently compute a constrained key $k_S$ which allows to evaluate $F(k,.)$ on all inputs $x\in S$, while even given this key, the outputs on all inputs $x \notin S$ look random. At Asiacrypt'13 Boneh and Waters gave a construction which supports the most general set family so far. Its keys $k_C$ are defined for sets decided by boolean circuits $C$ and enable evaluation of the PRF on any $x \in X$ where $C(x)=1$. In their construction the PRF input length and the size of the circuits $C$ for which constrained keys can be computed must be fixed beforehand during key generation. We construct a constrained PRF that has an unbounded input length and whose constrained keys can be defined for any set recognized by a Turing machine. The only a priori bound we make is on the description size of the machines. We prove our construction secure assuming public-coin differing-input obfuscation. As applications of our constrained PRF we build a broadcast encryption scheme where the number of potential receivers need not be fixed at setup (in particular, the length of the keys is independent of the number of parties) and the first identity-based non-interactive key exchange protocol with no bound on the number of parties that can agree on a shared key.
Last updated:  2014-10-20
A Simple and Improved Algorithm for Integer Factorization with Implicit Hints
Koji Nuida, Naoto Itakura, Kaoru Kurosawa
Given two integers $N_1 = p_1q_1$ and $N_2 = p_2q_2$ with $\alpha$-bit primes $q_1,q_2$, suppose that the $t$ least significant bits of $p_1$ and $p_2$ are equal. May and Ritzenhofen (PKC 2009) developed a factoring algorithm for $N_1,N_2$ when $t \geq 2\alpha + 3$; Kurosawa and Ueda (IWSEC 2013) improved the bound to $t \geq 2\alpha + 1$. In this paper, we propose a polynomial-time algorithm in a parameter $\kappa$, with an improved bound $t = 2\alpha - O(\log \kappa)$; it is the first non-constant improvement of the bound. Both the construction and the proof of our algorithm are very simple; the worst-case complexity of our algorithm is evaluated by an easy argument, without any heuristic assumptions. We also give some computer experimental results showing the efficiency of our algorithm for concrete parameters, and discuss potential applications of our result to security evaluations of existing factoring-based primitives.
Last updated:  2016-04-28
SHIELD: Scalable Homomorphic Implementation of Encrypted Data-Classifiers
Uncategorized
Alhassan Khedr, Glenn Gulak, Vinod Vaikuntanathan
Show abstract
Uncategorized
Homomorphic encryption (HE) systems enable computations on encrypted data, without decrypting and without knowledge of the secret key. In this work, we describe an optimized Ring Learning With Errors (RLWE) based implementation of a variant of the HE system recently proposed by Gentry, Sahai and Waters (GSW). Although this system was widely believed to be less efficient than its contemporaries, we demonstrate quite the opposite behavior for a large class of applications. We first highlight and carefully exploit the algebraic features of the system to achieve significant speedup over the state-of-the-art HE implementation, namely the IBM homomorphic encryption library (HElib). We introduce several optimizations on top of our HE implementation, and use the resulting scheme to construct a homomorphic Bayesian spam filter, secure multiple keyword search, and a homomorphic evaluator for binary decision trees. Our results show a factor of 10x improvement in performance (under the same security settings and CPU platforms) compared to IBM HElib for these applications. Our system is built to be easily portable to GPUs (unlike IBM HElib) which results in an additional speedup of up to a factor of 103.5x to offer an overall speedup of 1035x.
Last updated:  2014-10-20
True Random Number Generators Secure in a Changing Environment: Improved Security Bounds
Maciej Skorski
Barak, Shaltiel Tromer showed how to construct a True Random Number Generator (TRNG) which is secure against an adversary who has some limited control over the environment. In this paper we improve the security analysis of this TRNG. Essentially, we significantly reduce the entropy loss and running time needed to obtain a required level of security and robustness. Our approach is based on replacing the combination of union bounds and tail inequalities for $\ell$-wise independent random variables in the original proof, by a more refined of the deviation of the probability that a randomly chosen item is hashed into a particular location.
Last updated:  2015-03-19
A Tight Transformation between HILL and Metric Conditional Pseudoentropy
Uncategorized
Maciej Skorski
Show abstract
Uncategorized
HILL Entropy and Metric Entropy are generalizations of the information-theoretic notion of min-entropy to the realistic setting where adversaries are computationally bounded. The notion of HILL Entropy appeared in the breakthrough construction of a PRG from any one-way function (Håstad et al.), and has become the most important and most widely used variant of computational entropy. In turn, Metric Entropy defined as a relaxation of HILL Entropy, has been proven to be much easier to handle, in particular in the context of computational generalizations of the Green-Tao-Ziegler Dense Model Theorem which find applications in leakage-resilient cryptography, memory delegation or deterministic encryption. Fortunately, Metric Entropy can be converted, with some loss in quality, to HILL Entropy as shown by Barak, Shaltiel and Wigderson. In this paper we improve their result, reducing the loss in quality of entropy. Our bound is tight and, interestingly, independent of size of the probability space. As an interesting example of application we derive the computational dense model theorem with best possible parameters. Our approach is based on the theory of convex approximation in $L^p$-spaces.
Last updated:  2016-08-27
Implementation of a Leakage-Resilient ElGamal Key Encapsulation Mechanism
Uncategorized
David Galindo, Johann Großschädl, Zhe Liu, Praveen Kumar Vadnala, Srinivas Vivek
Show abstract
Uncategorized
Leakage-resilient cryptography aims to extend the rigorous guarantees achieved through the provable security paradigm to physical implementations. The constructions designed on basis of this new approach inevitably suffer from an Achilles heel: a bounded leakage assumption is needed. Currently, a huge gap exists between the theory of such designs and their implementation to confirm the leakage resilience in practice. The present work tries to narrow this gap for the leakage-resilient bilinear ElGamal key encapsulation mechanism (BEG-KEM) proposed by Kiltz and Pietrzak in 2010. Our first contribution is a variant of the bounded leakage and the only-computation-leaks model that is closer to practice. We weaken the restriction on the image size of the leakage functions in these models and only insist that the inputs to the leakage functions have sufficient min-entropy left, in spite of the leakage, with no limitation on the quantity of this leakage. We provide a novel security reduction for BEG-KEM in this relaxed leakage model using the generic bilinear group axiom. Secondly, we show that a naive implementation of the exponentiation in BEG-KEM makes it impossible to meet the leakage bound. Instead of trying to find an exponentiation algorithm that meets the leakage axiom (which is a non-trivial problem in practice), we propose an advanced scheme, BEG-KEM+, that avoids exponentiation by a secret value, but rather uses an encoding into the base group due to Fouque and Tibouchi. Thirdly, we present a software implementation of BEG-KEM+ based on the Miracl library and provide detailed experimental results. We also assess its (theoretical) resistance against power analysis attacks from a practical perspective, taking into account the state-of-the-art in side-channel cryptanalysis.
Last updated:  2015-05-26
Semantically Secure Order-Revealing Encryption: Multi-Input Functional Encryption Without Obfuscation
Uncategorized
Dan Boneh, Kevin Lewi, Mariana Raykova, Amit Sahai, Mark Zhandry, Joe Zimmerman
Show abstract
Uncategorized
Deciding "greater-than" relations among data items just given their encryptions is at the heart of search algorithms on encrypted data, most notably, non-interactive binary search on encrypted data. Order-preserving encryption provides one solution, but provably provides only limited security guarantees. Two-input functional encryption is another approach, but requires the full power of obfuscation machinery and is currently not implementable. We construct the first implementable encryption system supporting greater-than comparisons on encrypted data that provides the "best-possible" semantic security. In our scheme there is a public algorithm that given two ciphertexts as input, reveals the order of the corresponding plaintexts and nothing else. Our constructions are inspired by obfuscation techniques, but do not use obfuscation. For example, to compare two 16-bit encrypted values (e.g., salaries or age) we only need a 9-way multilinear map. More generally, comparing $k$-bit values requires only a $(k/2+1)$-way multilinear map. The required degree of multilinearity can be further reduced, but at the cost of increasing ciphertext size. Beyond comparisons, our results give an implementable secret-key multi-input functional encryption scheme for functionalities that can be expressed as (generalized) branching programs of polynomial length and width. Comparisons are a special case of this class, where for $k$-bit inputs the branching program is of length $k+1$ and width $4$.
Last updated:  2015-06-21
Efficient Distributed Tag-Based Encryption and its Application to Group Signatures with Efficient Distributed Traceability
Essam Ghadafi
In this work, we first formalize the notion of dynamic group signatures with distributed traceability, where the capability to trace signatures is distributed among $n$ managers without requiring any interaction. This ensures that only the participation of all tracing managers permits tracing a signature, which reduces the trust placed in a single tracing manager. The threshold variant follows easily from our definitions and constructions. Our model offers strong security requirements. Our second contribution is a generic construction for the notion which has a concurrent join protocol, meets strong security requirements, and offers efficient traceability, i.e.\ without requiring tracing managers to produce expensive zero-knowledge proofs for tracing correctness. To dispense with the expensive zero-knowledge proofs required in the tracing, we deploy a distributed tag-based encryption with public verifiability. Finally, we provide some concrete instantiations, which, to the best of our knowledge, are the first efficient provably secure realizations in the standard model simultaneously offering all the aforementioned properties. To realize our constructions efficiently, we construct an efficient distributed (and threshold) tag-based encryption scheme that works in the efficient Type-III asymmetric bilinear groups. Our distributed tag-based encryption scheme yields short ciphertexts (only 1280 bits at 128-bit security), and is secure under an existing variant of the standard decisional linear assumption. Our tag-based encryption scheme is of independent interest and is useful for many applications beyond the scope of this paper. As a special case of our distributed tag-based encryption scheme, we get an efficient tag-based encryption scheme in Type-III asymmetric bilinear groups that is secure in the standard model.
Last updated:  2014-10-16
Requirements for Standard Elliptic Curves
Manfred Lochter, Johannes Merkle, Jörn-Marc Schmidt, Torsten Schütze
Currently, the Internet Research Task Force (IRTF) discusses requirements for new elliptic curves to be standardized in TLS and other internet protocols. This position paper discusses the view of the members of the ECC Brainpool on these requirements, in particular with respect to hardware implementations.
Last updated:  2016-09-15
Tweaks and Keys for Block Ciphers: the TWEAKEY Framework
Jérémy Jean, Ivica Nikolić, Thomas Peyrin
We propose the TWEAKEY framework with goal to unify the design of tweakable block ciphers and of block ciphers resistant to related-key attacks. Our framework is simple, extends the key-alternating construction, and allows to build a primitive with arbitrary tweak and key sizes, given the public round permutation (for instance, the AES round). Increasing the sizes renders the security analysis very difficult and thus we identify a subclass of TWEAKEY, that we name STK, which solves the size issue by the use of finite field multiplications on low hamming weight constants. We give very efficient instances of STK, in particular, a 128-bit tweak/key/state block cipher Deoxys-BC that is the first AES-based ad-hoc tweakable block cipher. At the same time, Deoxys-BC could be seen as a secure alternative to AES-256, which is known to be insecure in the related-key model. As another member of the TWEAKEY framework, we describe Kiasu-BC, which is a very simple and even more efficient tweakable variation of AES-128 when the tweak size is limited to 64 bits. In addition to being efficient, our proposals, compared to the previous schemes that use AES as a black box, offer security beyond the birthday bound. Deoxys-BC and Kiasu-BC represent interesting pluggable primitives for authenticated encryption schemes, for instance, OCB instantiated with Kiasu-BC runs at about 0.75 c/B on Intel Haswell. Our work can also be seen as advances on the topic of secure key schedule design for AES-like ciphers, describing several proposals in this direction.
Last updated:  2016-01-05
Adaptively Secure Multi-Party Computation from LWE (via Equivocal FHE)
Uncategorized
Ivan Damgård, Antigoni Polychroniadou, Vanishree Rao
Show abstract
Uncategorized
Adaptively secure Multi-Party Computation (MPC) is an essential and fundamental notion in cryptography. In this work, we construct Universally Composable (UC) MPC protocols that are adaptively secure against all-but-one corruptions based on LWE. Our protocols have a constant number of rounds and communication complexity dependant only on the length of the inputs and outputs (it is independent of the circuit size). Such protocols were only known assuming an honest majority. Protocols in the dishonest majority setting, such as the work of Ishai et al. (CRYPTO 2008), require communication complexity proportional to the circuit size. In addition, constant-round adaptively secure protocols assuming dishonest majority are known to be impossible in the stand-alone setting with black-box proofs of security in the plain model. Here, we solve the problem in the UC setting using a set-up assumption which was shown necessary in order to achieve dishonest majority. The problem of constructing adaptively secure constant-round MPC protocols against arbitrary corruptions is considered a notorious hard problem. A recent line of works based on indistinguishability obfuscation construct such protocols with near-optimal number of rounds against arbitrary corruptions. However, based on standard assumptions, adaptively secure protocols secure against even just all-but-one corruptions with near-optimal number of rounds are not known. However, in this work we provide a three-round solution based only on LWE and NIZK secure against all-but-one corruptions. In addition, Asharov et al. (EUROCRYPT 2012) and more recently Mukherjee and Wichs (ePrint 2015) presented constant-round protocols based on LWE which are secure only in the presence of static adversaries. Assuming NIZK and LWE their static protocols run in two rounds where the latter one is only based on a common random string. Assuming adaptively secure UC NIZK, proposed by Groth et al. (ACM 2012), and LWE as mentioned above our adaptive protocols run in three rounds. Our protocols are constructed based on a special type of cryptosystem we call equivocal FHE from LWE. We also build adaptively secure UC commitments and UC zero-knowledge proofs (of knowledge) from LWE. Moreover, in the decryption phase using an AMD code mechanism we avoid the use of ZK and achieve communication complexity that does not scale with the decryption circuit.
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.