How Secure is TextSecure?

Tilman Frosch*', Christian Mainka, Christoph Bader!, Florian Bergsma*, Jorg Schwenk', Thorsten Holz!
*G DATA Advanced Analytics GmbH
{firstname.lastname} @ gdata.de
YHorst Gériz Institute for IT-Security
Ruhr University Bochum
{firstname.lasmame} @rub.de

Abstract—Instant Messaging has gained popularity by users
for both private and business communication as low-cost
short message replacement on mobile devices. However, until
recently, most mobile messaging apps did not protect confi-
dentiality or integrity of the messages.

Press releases about mass surveillance performed by intelli-
gence services such as NSA and GCHQ motivated many people
to use alternative messaging solutions to preserve the security
and privacy of their communication on the Internet. Initially
fueled by Facebook’s acquisition of the hugely popular mobile
messaging app WHATSAPP, alternatives claiming to provide
secure communication experienced a significant increase of new
users.

A messaging app that claims to provide secure instant
messaging and has attracted a lot of attention is TEXTSECURE.
Besides numerous direct installations, its protocol is part of
Android’s most popular aftermarket firmware CYANOGEN-
Mob. TEXTSECURE’s successor Signal continues to use the
underlying protocol for text messaging. In this paper, we
present the first complete description of TEXTSECURE’s com-
plex cryptographic protocol, provide a security analysis of
its three main components (key exchange, key derivation and
authenticated encryption), and discuss the main security claims
of TEXTSECURE. Furthermore, we formally prove that—if key
registration is assumed to be secure—TEXTSECURE’s push
messaging can indeed achieve most of the claimed security
goals.

1. Introduction

Since more than a decade, Instant Messaging (IM) is
an alternative to classical e-mail communication, for both
private and business communication. IM has different fea-
tures; most importantly, messages are delivered in real-time,
but only if both parties are online. However, in contrast to
security mechanisms available for e-mail such as PGP [1]
and S/MIME [2], instant messages were sent unprotected:
In the early days, many popular IM solutions like MSN
MESSENGER and YAHOO MESSENGER did not provide any
security mechanisms at all. AOL only added a protection
mechanism similar to S/MIME to their IM service later
on and Trillian’s SECUREIM messenger encrypted the data

without providing any kind of authentication. Today, many
clients implement only client-to-server encryption via TLS,
although security mechanisms like Off the Record (OTR)
communication [3] or SCIMP [4] providing end-to-end con-
fidentiality and integrity are available.

With the advent of smartphones, low-cost short-message
alternatives that use the data channel to communicate,
gained popularity. However, in the context of mobile ap-
plications, the assumption of classical instant messaging,
for instance, that both parties are online at the time the
conversation takes place, is no longer necessarily valid.
Instead, the mobile context requires solutions that allow for
asynchronous communication, where a party may be offline
for a prolonged time. In this setting, existing solutions, such
as OTR, are only applicable in a limited fashion.

Secure Messaging and TextSecure. In the light of the
recent revelations of mass surveillance actions performed
by intelligence services such as NSA and GCHQ, several
secure text messaging (TM) solutions that claim not to be
prone to surveillance and to offer a certain level of security
have appeared on the market [5].

One of the most popular apps for secure TM is TEXT-
SECURE!, an app developed by Open WhisperSystems that
claims to support end-to-end security of text messages.
While previously focusing on encrypted short message ser-
vice (SMS) communication, Open WhisperSystems intro-
duced data channel-based push messaging in February 2014.
Thus, the app offers both an iMessage- and WhatsApp-like
communication mode, providing SMS+data channel or data
channel-only communications [6]. Following Facebook’s ac-
quisition of WHATSAPP, TEXTSECURE gained in popular-
ity among the group of privacy-conscious users and has cur-
rently more than 500,000 installations via Google Play. Its
encrypted messaging protocol has also been integrated into
the OS-level SMS-provider of CyanogenMod [7], a popular
open-source aftermarket Android firmware that has been
installed on about 10 million Android devices [8]. According
to media reports [9], TextSecure’s protocol has additionally
been implemented in WhatsApp’s Android client. While we
did not verify this claim, in consequence the protocol’s secu-

1. The name of the App has been changed to SIGNAL in November 2015
to be consistant with the iOS App.

rity would affect several hundred million users. Despite this
popularity, the messaging protocol behind TEXTSECURE
has not been rigorously reviewed so far. While the develop-
ers behind TEXTSECURE have a long history of research
in computer security, a security assessment is needed to
carefully review the approach.

Contribution. In summary, we make the following contri-
butions:

e We are the first to completely and precisely docu-
ment and analyze TEXTSECURE’s secure push mes-
saging protocol. Our description was confirmed by
the developers of TEXTSECURE.

e« We show that the main protocol of TEXTSECURE
consists of three building blocks: A cached One-
Round Key Exchange (cORKE) protocol, a secure
key derivation function, and authenticated encryp-
tion. We give formal security definitions and security
proofs for these blocks.

+ We found subtle, but avoidable flaws in the protocol
that allows for an Unknown Key-Share attack. We
have documented the issues and show how they
can be mitigated. They have been communicated to
the developers of TEXTSECURE. We show that our
proposed method of mitigation actually solves the
issues.

e We discuss how and to which extent deniability,
perfect forward secrecy (PFS) and future security
(FS) are realized. While TEXTSECURE meets PFS
and FS, deniability is only achieved partially in
practice.

2. High-level Overview of TextSecure and re-
lated protocols

TEXTSECURE was previously compared [10] to the Oft-
the-Record Protocol (OTR) and the Silent Circle Instant
Messaging Protocol (SCIMP) [11]. In the following, we
discuss common elements and differences.

3 choose z(B |
[Xo=gm (1) Xo.oa
L (2) Yo,08
| choose x 3
| Xy =g i
Ko = H (%))
R = (ko)
1 coo = Enc(kfy, moo) .
1 macgp := MAC(kg, (X1, co0)) | (3) X1, coo, macoo
Ry 1= H(ks,)

77777777777777777777777 (4) Y1, 10, macio 1610 1= E]C(kTO’T{I,‘LO) .
i choose z 4 ’ 1 macio i= MAC(kS, (11, c10)).
| Xo 1= g*2 !
VT = H ()™
VT = H(k)
111 = Enc(k§y,mi1) ' !
"macy; i= MAC(KTL, (Xg, cqy)) | (%) X2 enrmacin, kg)

,,,,,,,,,,,,,,,,,,,,,,,

Figure 1: The Off-the-Record protocol.

Off-the-Record Protocol. OTR was proposed by Borisov et
al. [3] as a method to secure conventional instant messaging.

OTR’s focus differed significantly from previous message
prKGotection mechanisms like OpenPGP and S/MIME by
introducing two novel properties: Perfect Forward Secrecy
and Deniability.

Figure 1 shows how the OTR protocol version 1 works:
After an initial signed Diffie-Hellman (DH) key exchange,
novel DH shares are exchanged with every message, and the
resulting DH key is constantly changed. OTR uses malleable
encryption [12] in combination with MACs (instead of digi-
tal signatures). The OTR protocol reveals the MAC keys one
round later to the public. This is essential for the deniability
property of the protocol: anyone can change the value of the
plaintext message, as inverting bits of the ciphertext will
result in an inversion of the same bits at the same positions
in the plaintext. Thus, the received messages are authentic
at the time of reception only (given a party verifies the first
signature and the following MACs). Since the MAC keys
are derived as hash values of the encryption keys, revealing
MAC keys does not compromise the security of the former,
and the exchanged messages remain confidential. Private
DH shares x; and y; are deleted as soon as the key k;;
has been computed. This guarantees perfect forward secrecy
since without these private shares the encryption keys cannot
be recomputed from the public shares X;, Y later.

Di Raimondo et al. [13] showed that OTR vl is vul-
nerable to an unknown key-share (UKS) attack (also called
identity misbinding attack) [14]. We will discuss this kind
of attack in Section 4.2. OTR version 2 did address this
issue by introducing a four message handshake that follows
the SIGMA protocol paradigm [15], effectively mitigating
the UKS attack. Moreover, the protocol achieves deniability:
public keys and signatures are exchanged within a con-
fidential channel, leaving no trace of participation for an
eavesdropper. However, these strong capabilities come at the
cost of a four-message handshake.

OTR and Mobile Messaging. Instant Messaging connec-
tions are typically short-lived and online, whereas text mes-
saging conversation may last for prolonged spans of time,
and parties may be offline temporarily. Additionally, text
messaging may be asynchronous, such that a sender sends
several messages before receiving an answer.

The first adaption needed to derive a secure text mes-
saging protocol from OTR is to make OTR work in offline
scenarios. The basic idea here is due to EIGamal [16]. Thus
OTR can be adapted to an offline scenario by storing many
ephemeral DH shares of each party on a server.

The second adaption concerns key bookkeeping: In
OTR, an ephemeral DH share must be protected by a MAC
computed with a previous key, and must be acknowledged
by the recipient B before being used by the sender A.
This secure chaining of keys through MACs needs a lot
of bookkeeping, as well as the acknowledgment. Here,
TEXTSECURE adapts to the scenario by replacing MAC
chaining by a secret value derived from long-lived (g%, g°)
and ephemeral (¢g”*, g”*) DH shares, which is fed into any
key generation step.

Silent Circle Instant Messaging protocol (SCIMP). In
SCIMP [11] the idea of using different generations of sym-
metric keys is essential: After sending a message, the sender
updates his own key by replacing it with its own hash value:
knew = hash(keq). In doing so, perfect forward secrecy
between two DH key exchanges can be achieved: Even if
the sender is forced to reveal all his keys, an adversary can
no longer decrypt the message sent, since this key has been
deleted.

TextSecure. Informally speaking, TEXTSECURE builds on
a (cached) one-round key exchange (ORKE) protocol [17]
executed between parties A and B to compute the long-
lived secret, a key derivation function (KDF) which takes
as input the long-lived secret and a fresh DH secret, and an
authenticated encryption scheme.

For the first message, a cached ephemeral key of the
receiver (called prekey)” is fetched from the TEXTSECURE
server, together with its long-lived public key. Later, new
ephemeral public DH shares are included in each (first)
response to a message. The process of changing ephemeral
DH shares is called ratcheting in OTR and TEXTSECURE
terminology. If a party sends several messages before receiv-
ing an answer, it updates the symmetric key used for each
message in a one-way fashion by applying a key derivation
function on an intermediate value (called chaining key), from
which all cryptographic keys are computed. The structure of
the TEXTSECURE communication is depicted in Figure 2.
A complete representation of the protocol can be found
online?.

L Get Prekey——N

b \b‘ ;) Ratchet

Messag:e A2 |

L \Messag‘g A,2:2*D‘ @ Ratchet
! Message Aoy 4 |
! ! LY

Figure 2: High-Level view on the Axolotl-ratchet protocol
in TEXTSECURE.

3. TextSecure Protocol

We analyzed the source code of the Android app to
recover the individual building blocks of the protocol.
TEXTSECURE builds upon a set of cryptographic primi-
tives. For ECDH operations, Curve25519 [18] is used as it
is implemented in Google’s Android native cryptographic
library. Symmetric encryption in TEXTSECURE relies on

2. We refer to prekeys as cached ephemeral keys to distinguish them
from ephemeral keys which are chosen at the time of protocol execution,
whereas prekeys are chosen in advance and then stored on the server.

3. http://bit.ly/1TPIJ3Y

AES [19] in both, counter mode without padding and cipher
block chaining mode with PKCS7 [20] padding. HMAC-
SHA256 [21], [22] is used for message integrity. Security
considerations of the cryptographic primitives are not within
the scope of this paper.

For push messaging via data channel, TEXTSECURE
relies on a central server* (7'S) to relay messages to the
intended recipient. Parties communicate with 7S via a
REST-API using HTTPS. 7 S’s certificate is self-signed; the
certificate of the signing CA is hard-coded in the TEXT-
SECURE app. Actual message delivery is performed via
Google Cloud Messaging.

From TEXTSECURE’s description in Google’s Play
store, the authors’ blog and github we can identify some
security goals of TEXTSECURE®®. These are end-to-end
security, deniability, forward secrecy, and future secrecy. We
formalize and prove the first of these goals in Section 5, and
discuss the remaining goals in Section 6.

TEXTSECURE’s protocol consists of several phases as
shown in Figure 3. We distinguish (1) registration, (2)
key comparison, (3) sending/receiving a first message, (4)
sending a follow-up message, and (5) sending a reply.
We provide a complete overview of the protocol in the
Appendix.

i
. long-lived public key |
one-time DH shares

) long-lived public key 3
(ii) cached ORKE ! one-time DH shares ! !
| long-lived public key
| ephemeral DH share

(iif) key derivation with 3
DH, Encryption + MAC |

(iv) key derivation,
Encryption + MAC

..

key derivation with) " s _‘ \inhertex Y
(v) DII, Eneryption + MAC ‘Qi ephemeral DH share, ciphertext + MAC

Figure 3: High-Level view on the different phases in TEXT-
SECURE.

Notation

In the protocol description, we use the following nota-
tion: Each protocol participant P, is associated with a set of
parameters, which all share the same index: e.g. phone#,
is the phone number associated with P,. We denote the
private, long-lived key of this party with a, and its public
counterpart with g®. Prekeys (recall that prekeys actually are
ephemerals keys stored on the server) belonging to P, are
named g*+* with z € {0,99}, their private counterparts are
Zq,z- The t-th ephemeral public Diffie-Hellman (DH) share
chosen by P, is denoted as g%+, with its private counterpart
Zq,t- (Please note the overline symbol.)

4. textsecure-service.whispersystems.org

5. https://play.google.com/store/apps/details?id=org.thoughtcrime.
securesms

6. https://github.com/trevp/axolotl/wiki

Phase 1: TEXTSECURE Registration

The registration process is depicted in detail in Figure 4.
To register with the TEXTSECURE server 7S, a party
‘P, requests a verification token by transmitting its phone
number (phone#,) and its preferred form of transport to
TS (Step 1), which 7S confirms with a HTTP status 204
(Step 2). Depending on the transport P, chose, 7S then
dispatches either a short message or a voice call containing
a random token (Step 3) to the number transmitted in Step
1. P, performs the actual registration in Step 4, where
it shows ownership of phone#, by including the token,
registers its credentials with the server via HTTP basic
authentication [23], and sets its signaling keys kpac, 75,4
and kepe 785, 4’. In this step, the client also states whether it
wishes to communicate only via data channel push message
or also accepts short messages. The server accepts if the
token corresponds to the one supplied in Step 3 and the
phone number has not been registered yet.

,,,,,,,,,,,,,,,,,,,,,,,,, (1) phones#,
' g € Curve25519 — P
H(a,9") € Z, x Curve2sslg 1y (201 OK ‘
' pw € SHAIPRNG[128] ! (3) token €x {100000, ...,999999}

| authentication, = (phone#v ;mr) ;<* ””””””””””””””””””””
' reglD,, €r SHAIPRNG[128] 1 (1) token, kene.r-
Vkene, 75,4 €r SHAIPRNG[128] !
Ukmaers.4 €x SHAIPRNG(128] |
1 Generate 100 prekeys <

+ last resort key (ki)

(@i

5.4sKmac, 75,4, reglDg, 1
supportSms (bool), icati M
d

(5) 204 OK

! @ gTa0 %00 gFa,100 — k, icati i
rai) e Z, x Curve25519 ' (6) g%, g"=0,..., g N ki, authentication, Dw‘
I \

(7) 204 OK

(8) Registration GCM

(9) regIDE™

(10) regID5™, authentication,

(11) 204 OK

Figure 4: TEXTSECURE registration.

In Step 6, P, supplies its 100 prekeys (or one-time keys)
and ki to 7S. Prekeys are not transmitted individually, but
within a JSON structure consisting of a keyID z, a prekey
g®+*, and the long-term key ¢®. The last resort key ki,
(the meaning of which will be clear at the end of this
section) is transmitted in the same way and identified by
keyID OxFFFFFFE. The server accepts, if the message is
well-formed and HTTP basic authentication is successful.
‘P, then registers with Google Cloud Messaging (GCM) in
Step 8 and receives its regIDE™™ (Step 9), which it transmits
to 7S in Step 10 after authenticating again.

Taking a look ahead, a prekey for P, is needed whenever
a new session is to start in which P, plays the role of
the responder. Thus, the number of prekeys on the server
decreases. If there are only a few prekeys left on the server,
‘P, may store new prekeys on the server. In the case that no
more prekeys are available, the last resort key is used. This
key, however, will not be erased from the server.

7. These keys are later used by 7S to encrypt messages that are
transmitted via GCM so that GCM cannot see any metadata, e.g. reglD,,

Phase 2: Key Comparison

In an attempt to establish that a given public key in-
deed belongs to a certain party, TEXTSECURE offers the
possibility to display the fingerprint of a user’s long-term
public key. Two parties can then compare fingerprints using
an out-of-band channel, for example, a phone call or an in-
person meeting. If two parties meet in person, TEXTSECURE
also offers to conveniently render the fingerprint of one’s
own long-term public key as a QR code, using a third-
party application on Android, which the other party can
then scan using the same application on its mobile device.
TEXTSECURE then compares the fingerprint it just received
to the party’s fingerprint it received as part of a conversation.

Phase 3.1: Sending an Initial Message

Before a first message can be sent from P, to P,
three main steps have to be completed (see left side of
Figure 5): (a) a (cached) ORKE-type key exchange protocol
(cf. Section 5.1) to establish a shared, long-lived symmetric
secret 7kpa (also called root key), (b) a key derivation and
update protocol (the so-called Axolotl-ratchet [24]), which
updates the root key, and generates a chaining key from
which the encryption and MAC keys are derived, and (c) an
authenticated encryption scheme. The process is depicted in
detail in Figure 5.

(a) Establishment of shared secret. In the first step, P, re-
quests a prekey for Py, and receives a JSON structure consist-
ing of prekey-ID z, a prekey g**=, and P}’s long-term key
g°. P, also receives reglD, from 7S and then chooses a new
ephemeral key Z, o to calculate an intermediate secret secint
as the concatenation of three DH operations, combining P’s
prekey, P,’s long-term key, Pp’s long-term key, and P,’s
freshly chosen ephemeral key, seciny = (g™, g"%a0,
g*v-=Ta.0) From this value, the first root key is derived via
the HKDF key derivation function.

(b) Key Management (Axolotl-ratchet). After P, has com-
puted the shared secret, a fresh secret kgpqreq 1S derived
from the received prekey and a freshly generated private
Diffie-Hellman share Z,2: Ksharea = (g%>=)%+2.8 From
ksharea and rkp4, a new root key rksp and a chaining
key ckap are derived, again via HKDF.

The chaining key ck4p is finally used to derive (again
via HKDF) the encryption and MAC keys (Kgne, Kpac)
to encrypt and protect the integrity of the first message.

(c) Authenticated Encryption. A message m € M is
encrypted using AES in counter mode without padding.
That is, ¢ = ENCy__(m). P, then forms message (3.)
and thus calculates tag = MAC, (x), where y =
(v, g2, ctry, petr,, ¢). v represents the protocol version and
is set to 0x02. For ordering messages within a conversation
ctr and pctr are used. Both are initially set to 0. ctr is
incremented with every message a party sends, while pctr is

8. Please note that the DH share (Z,,1, g%e:1) is only generated because
of code reuse, but never used.

set to the value ctr carried in the message a party is replying
to. Message (3.) is sent to TS.

Forwarding the message to GCM. Upon receiving mes-
sage (3.), TS checks if reglD, corresponds to phone#,. It
then encrypts the parts of message (3.) intended for P}, with
Py’s signaling key (kenc,7s,8), using AES in CBC mode
with PKCSS5 padding. 7S additionally calculates a MAC
over the result, which we denote as mac*€ TS sends both,
encrypted message data "4 and mac*e", to the GCM
server, together with reglD{™" as the recipient. The result
of this additional encryption layer is that Google’s Cloud
Messaging servers will only be able to see the recipient but
not the sender of the message.

(1) get prekey: phone#,, authentication, !

Phase 3.2: Receiving a message

The receiving process is depicted in Figure 6. P, re-
ceives the message in Step (5.). First, P, verifies mac®ien!
and, if successful, decrypts €, It looks up its long-lived
private key and the one-time private key that corresponds
to prekey-ID z and calculates secj,; and the first root key
rkp4. From now on, all computations are identical to those
done by the sender, until the message keys (kgnc, karac)
are derived. P, now verifies the MAC and, if successful,
decrypts the message.

Phase 4: Sending a Follow-up Message

If P, wants to
replies, P, first

send a message before P
derives a new chaining key

GOM

(2) g*v=, 2, g°, regIDy,

M Choose prekey with !

= i S€Cint = (gurh z"lygb"l:a,“.’ gobzTa u)

¢ | (rkpa,ckpa) = HK DF (secin, constg, constg)
\ (Ta1,9%*1) € Z, x Curve25519

| (Ta,2,9%*2) €R Z, x Curve25519

—~| 1 Eshared = g*=Te2

i (rkap,ckap) = HKDF (ksharea, 7kBa, constg)

1 (Kgne> kmac) = HKDF (MAC,y , , (consty) , constg, const i)
&1 ckap = MAC,, (consts)

TimeM

i c=ENGCy__(m)

ictr, =0

o petr, =0

1 x = (v, g%2, ctr,, petry,)

T (Za,0,9%*°) €R Zy x Curve25519 ¢
|
|
|
|
|
|
|
|
|
|
|
|
!

| b :

Lime=mac,)

(3) x, tag, z, g“=:0, g%, reglD,,, reglDy,
phone#,, authentication,

i prekey ID z |
| delete g i

Ycheck: reglD, belongs to phone#,

Legend:

consty = 020032

const; = 0201

conste = 0202

constp = ” WhisperRatchet”
const g = ”WhisperMessageKeys”

v=2
GeM
I CTT T T T TTT T T T
I (5) cdienal pacsignal ! macsignal” — MACkmcLCATS,B
. oy '
| if macsignal’ = macsienal then:

i DECkem,Ts,B (cSignal)
1 get prekey: wp .

La,2 ' Th,z

I
1 Kshared = g

|tag’ = MACy,,. (x) *

|if tag” = tag then:

im = DECy__(c)

i ckap = MAC.,, , (consts)

(Csignal)

: S€Cint = (ga'l‘b.z7gja.!)‘b’ gia.()’whz)
i (rkpa,ckpa) = HKDF (secint, constg, constg)

\ (rkap, ckap) = HK DF (ksharea, 7k A, cONStR)
' (Kene> kmac) = HKDF (MAC,, (consty) , constg, const)

|
p el = ENCy.,,. . (X:tag, 2,97, g°, phone#,,)
| macsienal — MACk,,mL TS.B ((isignal) |

(4) csignal macsignal, regIDE*™

Legend:

consty = 020032

const; = 0201

conste = 0202

constp = ”WhisperRatchet”
const g = 7" WhisperMessageKeys”

Figure 6: Receiving an initial TEXTSECURE message.

CkAB = MACCk}AB

pair (kg Kyac) =
constp, constg).

ota (consty), and derives a new
HKDF(MAC,, (consty),

Phase 5: Sending a Reply

If P, wants to reply to a message within an existing
session with P, it first chooses a new ephemeral keypair
(Zp,0, g™ °) and calculates a new Kksparea as the output of
a DH operation that takes P,’s latest ephemeral public
key g%2 and its own freshly chosen ephemeral private
key Tpo as input: kgarea = g7*2"0°. P, then updates
the root key and derives a new chaining key by seeding
HKDF with the new kgaea and rkap: (rkpa,ckpa) =
HKDF (kshared, "k AB, constr). From the chaining key, a
new encryption and MAC key pair is derived, the message
is protected with these keys, and the encrypted message is
sent together with g% = back to P,.

4. Issues with TextSecure

During our analysis, we found several issues that we
discuss in the following.

4.1. Password-based Key Registration

In TEXTSECURE, the password pw is both required to
register prekeys with the server and to send messages on
behalf of a party. The password is stored in the application-
specific storage on an Android device. When we first
analyzed TEXTSECURE, the easiest way to recover the
password of another party was to trigger TEXTSECURE’S
encrypted export function, which exported an encrypted
representation of the user’s messages and an XML file
containing the unencrypted pw. The export function placed
the data on the device’s SD card, thus easily accessible.
This is a very limited level of protection for a token that is
rather attractive for an attacker. Having access to pw does
not only facilitate one way of conducting the Unknown Key
Share attack we describe below, but allows for much more
severe scenarios, where an attacker can register arbitrary
key material on behalf of a party, as well as, send arbitrary
messages. The encrypted export function has been silently
removed in more recent versions of TEXTSECURE.

In more recent versions of the TEXTSECURE proto-
col, digital signatures have been added for the ephemeral
public shares. In particular, a conversion of the long-lived
key (a,9%) € Z, x Curve25519 is used to sign prekeys
before sending them to the TEXTSECURE server 7S. The
signature scheme used here is Ed25519, a variant of the
Schnorr-Signature scheme which is known to be a non-
interactive proof of knowledge of the secret key a. However,
prekeys are still not bound to an identity, as it is the case
with PGP keys. Also, as the proof is non-interactive, it can
be forwarded.

(10-11)

4.2. Unknown Key-Share Attack

An Unknown Key-Share Attack (UKS) is an attack vector
first described by Diffie et al. [14]. Informally speaking, if
such an attack is mounted against P,, then P, believes to
share a key with P}, whereas in fact P, shares a key with
Pe # Ps.

For a better understanding how this can be related
to TEXTSECURE, suppose the following example (jealous
spouse attack): Bart (P,) wants to trick his friend Milhouse
(P,). Bart knows that Milhouse will invite him to his birth-
day party using TEXTSECURE (e.g., because Lisa already
told him). He starts the UKS attack by replacing his own
public key with Nelsons (P.) public key and lets Milhouse
verify the fingerprint of his new public key. This can be
justified, for instance, by claiming to have a new device and
having simply re-registered, as that requires less effort than
restoring an encrypted backup of the existing key material.
Now, as explained in more detail below, if Milhouse invites
Bart to his birthday party, then Bart may just forward this
message to Nelson who will believe that this message was
actually sent from Milhouse. Thus, Milhouse (P,) believes
that he invited Bart (P}) to his birthday party, where in fact,
he invited Nelson (P,.).

In detail, the attacker (Bart, P,) has to perform the
steps shown in Figure 7 for this attack (only the important
protocol parameters and steps are mentioned):

(1-2) Pp requests g¥ezo,...,gve=
phone#,.

Py commits g¥e=o,... g%z to TS as his own
prekeys plus g° as its own long-term public key.
(5) Py lets P, verify the fingerprint of its new public
key g°. Note that this step uses QR-codes, therefore
it is offline.

Once P, wants to send the message to Py, P,
requests a prekey for P, by using phone#,. TS re-
turns g**% = ¢g"=% and the long-term key ¢ = ¢°.
‘P, computes the secj,; using ¢*>* and gb from

from TS using

(3-4)

(6-7)

(8-9)
which (kEnC’AB, kMAc,AB are going to be derived.
For computing those keys, he uses in fact P.’s
prekey and identity key although he believes to
use Py’s ones. He then encrypts message m € M,
computes the respective MAC tag, and sends it to
Py (GCM is omitted for simplicity).

Py is neither able to verify the tag nor to decrypt
the message c. He sends the ciphertext and message
tag to P..

(12) P, processes the incoming message as usual. He

computes the same seci,; as P,, because g"** =
Te,z
g

i and gb = ¢°. The secj,; is then used to com-
pute (Kene ar = Kenc an: Kmac,ae = kMAC,AB) S0
that P, is able to read and verify the message.

In Step 10, Py has to forward the message to P., such
that it appears to be sent by P,. Therefore, he needs to
include authentication,, for 7S and phone# , in Step 11, so

that P, will receive phone#, with the forwarded message.
This can be achieved in several ways:

j 1 (1) get prekey: phone#,,authentication;, (repeat it i times) j
| (@) 5570, 20,975, 20, 9° 4 |
I | I
! :Q (3) g%, g%, ..., g% =i authentication, | !
————————————————————————— N ‘
! Tb,z; 0% b-Ta 0 ,Tbz; Ta,0 N | (4) 204 OK | |
| S€Cint = (g 79 g) i (5) Verify new public key fingerprint ‘@] |
| o mn oot ST : | |
! . i (6) get prekey: phonedf,, authenticationg ! , '
| (kEnc,ABv kMAC.AB) = T C— T 4 |
| (Mg =g ,2,9" =g | i |
re=ENGC (m €M) 4 ‘ | |
1tag = MACy,, (c,...) ! © ..ot . henticati ! ! !
' i @) e g, 2j, phones#;,, authentication, i h i
i | 1 (9) ..., c tag, zj, phone#, D\ |
I I I
. ! :% (10) ..., ¢, tag, zj, phone#,, authentication, ! !

| | | (11)c tag, z;, phone#, F----

| ! ‘ 5 (12) |

I ' I

Figure 7: UKS attack on TEXTSECURE: P, believes to share a key with P, but shares one with P..

e TS is corrupted. In this case, it is a trivial task to
get or circumvent authentication,.

o If 7§ is benign, an attacker might be able to eaves-
drop authentication,. Although TLS is used for all
connections between clients and server, future or
existing issues with TLS implementations [25]-[29]
can not be ruled out and would allow for a com-
promise of authentication,. Another way to obtain
authentication, could be a governmental agency
(legally) enforcing access to the TLS keys.

o In contrast to a party’s other key material, the pass-
word is stored unencrypted and is not protected by
TEXTSECURE’s master password. Thus, the easiest
possibility to realize this attack might be for an
attacker to recover the password for authentication,

from TEXTSECURE’s preferences’.

Remark 1. The signing of prekeys, as it is implemented
in current versions of TEXTSECURE, does not prevent the
attack. As the keys are still not cryptographically bound to
the parties’ identities, an attacker can still download keys
of an arbitrary party and pass them off as their own. Thus
the UKS attack described in this section was not mitigated.

4.3. Mitigation of Unknown Key-Share Attack

Let us consider the message that is sent in Step 8 of Figure 7:

X, tag, g7, g%, reglD,, reglD.,
phone#,, authentication,,

where x = (v, g"*2, ctr,, petr,, ¢) and tag = MAC _ (x)-
Intuitively, if both P,’s and P.’s identity were protected
by the tag, then the attacks above do not longer work. As
identities we propose to use the respective parties’ phone
numbers, as they represent a unique identifier within the
system. x would thus be formed as

(v, g%*2, ctry, petr,, phone# ,, phone#,, c).

If kyac 18 secret (i.e., only shared among P, and P.) and
if MAC is secure, the inclusion of both identities in the
tag provides a proof of P, towards P, that P, is aware

9. File: shared-prefs/org.thoughtcrime.securesms_preferences.xml

of P, as its peer, i.e., that the message is indeed intended
for P.. Moreover, P, is convinced that P, actually sent
the message. Thus, P, will not be able to mount the above
attacks.

4.4. Mitigation of Authentication Issue

While the Unknown Key-Share Attack is mitigated if
the message in Step 8 is modified as we propose in Sec-
tion 4.3, the underlying problem is not resolved. It results
from a party’s erroneous assumption that a communication
partner’s long-term identity key is authentic, if they have
compared key fingerprints, and these fingerprints matched
their assumptions. However, this is not necessarily the case.
Given the attack scenario described in Section 4.2, a mali-
cious party would always be able to present a third party’s
long-term public key as their own, as only fingerprints are
compared — a party is not required to show their knowledge
of the corresponding secret key.

To resolve this issue and to enforce that only a party
in possession of the valid long-term identity key for this
respective party may register new key shares with the server,
we propose to use an interactive zero-knowledge proof of
knowledge. Instead of presenting pw before uploading new
prekeys, a party could present a proof that it knows the
private key that corresponds to the identity key already
registered with the server and used for signing previous
prekeys. Thus, the authentication required for registering
keys would now depend on a strongly protected secret: a
party’s identity key.

The Schnorr identification protocol [30] works ideally
in this case. Let (skq,pkq) = (a,9%) € Zp x Ed25519 be
the key pair of Party P,. Then the Schnorr protocol can be
used to prove possession of a to P, (the verifier) as follows:

1) P, chooses r < Z, and sends G = g" (the commit-
ment) to P.

2) P, samples e & Z, and sends e (the challenge) to F,.

3) P, computes s = a - e+ r mod p and sends s (the
response) to P,. P, accepts if ¢g° = pk¢ - G.

The protocol could easily be carried out between a
TEXTSECURE client and the server 7S to proof possession
of the corresponding secret key, each time a party attempts
to upload keys.

It is well known that the Schnorr protocol is an honest
verifier zero knowledge proof of knowledge [31]. That is, it
holds that:

1) Computing a proof requires knowledge of the secret
key, and

2) An honest verifier, i.e., a verifier that follows the pro-
tocol honestly, learns nothing about a.

In the sequel we assume public keys to be authentic.

Remark 2. If we do not want to trust the server TS, the
Schnorr protocol can also be carried out when to parties
meet face to face via exchange of QR-codes.

This would mitigate the UKS attack, because in addition
to being authenticated with his real identity at the TEXT-
SECURE server, the attacker would have to prove knowledge
of the private long-lived key of the victim, which he does
not know.

S. Security Proofs

In the following, we provide security proofs for the
building blocks of TEXTSECURE. Namely, we give a se-
curity proof for the cached ORKE protocol and prove the
key derivation function and authenticated encryption to be
secure.

We note that we do only prove security of the building
blocks of TEXTSECURE here, not of their composition. We
see this as a first step to provide a thorough security analysis
of TEXTSECURE and encourage further research in this
direction. This approach was succesful, for example when
proving the security of TLS where Jager et al. [32] built on
provable security results of the building blocks (e.g., [33]).

5.1. The computation of the long-lived symmetric
secret is a secure ORKE protocol

One of the main design criteria as described by Marlin-
spike in his blog entry on “Axolotl-ratchet” [10] is the re-
placement of the three-message ratchet (“key refreshment”)
used by OTR by a two-message ratchet. This, however,
disables the MAC-based “chain of trust” for successive
ephemeral DH shares. As a solution, TEXTSECURE first
establishes a shared, long-lived, symmetric secret rkpa
between sender A and receiver B. This secret is then used,
together with a fresh DH secret, in the TEXTSECURE key
derivation function.

In this section we describe the establishment of this
secret as a cached one-round key establishment protocol
(cORKE, cf. Figure 8), where the first message has been
cached on the TEXTSECURE server. In the TEXTSECURE
cORKE protocol, each party B generates one long-lived key
pair (b,g%) and several one-time DH key pairs (xp, g%*).
The public shares of these key pairs are then registered.
Before party A can send the first message to B, he has to
request the long-lived and one one-time public DH share
from the TEXTSECURE server. Party A then chooses a
fresh ephemeral DH key pair (x,, g™), and sends the public

share g+ and his long-lived public share g together with
the encrypted message and additional data to B. A and B
then both derive an intermediate secret sec;,; by computing
3 of the 4 possible combinations of their public shares:
secint = (DH(g% g**), DH(¢" g**), DH(g"", g"")).
The long-lived secret rkp4 shared between A and B
is then derived by applying the key derivation function
HKDF to this intermediate secret and two constant values:
(rkpa,ckpa) = HKDF (secin,consty, constg).

Security models for ORKE protocols mostly follow
Canetti and Krawczyk [34], and the many different variants
of these models are often summarized under the term “ex-
tended Canetti-Krawczyk™ (eCK) model. All these models
differ slightly in the definition of a “protocol session”, and
in the adversarial capabilities.

Computational model. We model each instance of TEXT-
SECURE installed on a mobile device as a party P;, i €
{1,...,n}. Each party keeps track of the long-lived and
medium-lived variables (i.e., for party P, the long-lived
private key a, the corresponding public key g¢, the identity
A, and all the registered one-time key pairs).

For each communication started with another party, P;
forks off a (medium-lived) process 77, s € {1,...,¢}, to
maintain the different session key variables. For cORKE (cf.
Figure 8) and 7%, these variables include the identity B of
the communication partner Pp as requested in message (2),
the long-lived key ¢® and the one-time key g** as received in
message (3), the ephemeral secret key x,, the value sec;,,
and the pair (rkpa,ckpa).

Each child process may request a registered private key
from the party by presenting a reference to the correspond-
ing public key.

Remark: This computational model seems over-
idealized, since the different sessions are most likely im-
plemented as threads, not as separate processes. However,
in order to allow Reveal queries targeting only session-
specific variables, some kind of memory separation should
be in place, to avoid fatal effects like reading the com-
plete OpenSSL memory with a HeartBleed attack. So this
computational model should be seen as without memory
separation, the proof may not hold. Or to put it the other
way round: Without memory separation, we must remove
Reveal queries from the adversarial model to be able to
prove security.

The TEXTSECURE server is modelled as an additional
party, since this server does not compute any session-specific
values.

Adversarial model. Adversarial capabilities are formalized
as queries, where the fact that an active adversary controls
the whole communication network is modeled as a Send
query, together with various variants of queries which reveal
secret data from all but the Test session. The multiplicity of
different secret values established during the TEXTSECURE
protocol (cf. Section 6.2) makes it difficult to correctly
define queries revealing any long-, medium- or short-lived
values to the adversary. However, this is not the goal of this
section: we only want to prove security of the cORKE build-

(a.g%) ! (b.9")
| | e
| | (1) register (B‘g".g"b) | choose x |
e £
| ‘@ compute g |
| | i
| (2) request(B) i |
i D\ I
I I I
L | (3)B,_z/b7grb |
i choose z, I
| |
i compute = g** I |
| | |
rsecine 1= ((97)% (%)%, (97)™) (4) A g7, g7, s L e e .
|

! (rkpa,ckpa) = HKDF (seCint, constg, constg)

b secins = ((9°)", (97", (g7*)") !
(rkpa,ckpa) = HKDF (secint, consto, const)

Figure 8: The cached ORKE protocol in TEXTSECURE to compute a shared secret secret between parties A and B. Please

note that z is a pointer to g”®.

ing block. Therefore we formalize adversarial capabilities as
the following queries:

o Send(wf,m). With this query, the adversary .A can
send message m to process oracle 7;. The oracle
will process this input according to the protocol
specifications, and return any output it produces
to A. The Send query may also be used to send
messages to the TEXTSECURE server. This query
models that an active attacker may control the com-
plete communication between different process ora-
cles and the TEXTSECURE server, and may delete,
modify, delay or inject arbitrary messages.

o Reveal(nf). This query will reveal the values
(rkpa,ckpa) if they have already been computed
by the process oracle. If this computation is not
finished yet, the query will return L.

o Corrupt(P;). This query will return the long-lived
secrets of party P; to A, which consist of the long-
lived private key and the password. After this A is
able to completely impersonate P;, including regis-
tering one-time keys at the TEXTSECURE server.

o Test(n?). This query can only be asked once, and
is answered by the oracle in the following way: The
oracle flips a fair coin b, and returns kj, where ky =
(rkpa,ckpa) and ki = (r1,7r2) for two random
values 71, ro chosen from the same distribution.

Please note that the TEXTSECURE server may be ad-
dressed with Send queries, but not with (a) Reveal or (b)
Corrupt queries, because (a) he does not compute any
session secrets, and (b) corruption of the TEXTSECURE
server would also reveal long-lived passwords, and thus the
registration phase would become insecure by definition.

Security model. To define security, first we have to exclude
trivial attacks which result from a combination of the above
queries, but which do not correspond to any real attacks.
The simplest example is asking Reveal and Test to the same
oracle, which does not make sense. More subtly, we must
not allow this combination of queries against pairs of oracles
which should compute the same key, i.e., we must define
what a protocol session is. For protocol sessions, recently

Cremers [35] and Bergsma ef al. [36] independently came
up with a satisfactory definition, which we use.

Definition 1 (Origin session). Consider two parties A and
B with processes 7% and 7, and let M () and M°“ ()
be the sequences of messages received and sent by process
, resp. We say m% has origin session &, if M (7%) =
Mot (7ly), and denote this by 75 < .

In Figure 8 we assume that the one-time key retrieved
by P, in message (2) is unique, and that the TEXTSECURE
server does not issue the same key twice. (We do not
consider the last ressort key here.) The adversary .4 may
forward message (4) to different process oracles at party
P, which consequently would all compute the same key.
We consider this (trivial) attack by restricting the security
game with the help of the concept of origin sessions.

Definition 2 (Freshness). We say that an oracle 7 is fresh
if neither party P; nor the intended partner P; of this oracle
is corrupted, and

o if the oracle is an initiator oracle (i.e., if it retrieves
a one-time key from the TEXTSECURE server), then
no Reveal query has been asked against any oracle
wt with 7r§ «— 7s, or

e if the oracle is a responder oracle, the no Reveal
query has been asked against the unique initiator

oracle T} with 7§ <

J

Definition 3 (cORKE Security Game). Let £ be a poly-
nomial time adversary, and let C be a challenger who
simulates the TEXTSECURE communication network. Af-
ter observing and manipulating several instances of the
cached ORKE protocol from Figure 8 by using the Send,
Reveal and Corrupt queries, A may choose one fresh or-
acle which just has successfully completed this protocol,
and send a TEST query to this oracle. In our security
game, this oracle will now set sg := (rkpa,ckpa) and
s1 & {0,1}1ength(HKDFous) - Then the party throws a fair
coin and uses the result b to return sy to the adversary. The
adversary may now perform some additional computations

involving Send, Reveal and Corrupt, and eventually issue a
bit b'. He wins the game if b’ = b.

Since an attacker may always win this game with prob-
ability % by just guessing b, we cannot use this winning
probability directly in our security definition. A protocol
should only be considered broken if an attacker can do
significantly better that just guessing.

Definition 4 (cORKE security). Let Prg(b' = b) be the
probability that attacker £ wins the game described in
Definition 3. We say that an attacker breaks the cORKE
protocol if Advg = |Prg(t = b) — 1| is non-negligible.
The cORKE protocol is secure if no such attacker exists.

Theorem 1. If the Gap-DH assumption holds'® in
Curve25519 and we model HKDF as a non-programmable
random oracle, then cORKE is a secure cached ORKE
protocol and we have

Advy < + (nl)egpm-

(nt)?
29
Proof. The proof is organized as a sequence of games.
Let A be an arbitrary adversary, and let C be the cORKE

challenger. Let ¢ be the order of Curve25519.

Game 0: This is the original cORKE security game.

Game 1: In this game we exclude collisions in the DH
shares for the cORKE subprotocol. (For the full TEXT-
SECURE protocol we would need a different, but still neg-
ligible bound, because of the ephemeral shares used for
the ratcheting.) Since there are n parties, and each party
may fork off at most ¢ process oracles, at most n/ DH
shares (both one-time and ephemeral) are used in the dif-
ferent cORKE protocols. The challenger will now abort the
game if any of these shares have the same value. We get

Pro =b) < Pry + ("0 " and therefore also
A = A

24 >
(n0)?
2¢
Game 2: In this game we guess which of the n¢ oracles
will be asked the Test query. Note that according to our
security definition, neither the party of this oracle, nor its
intended partner may be corrupted. If our guess is wrong,
the simulation is aborted and the bit b’ is chosen randomly.
This gives us

AdvYy < Advly +

Advly = Adv? - (nf).

Game 3: We now want to embed our CDH challenge
(g,9% g%), where g is the generator of Curve25519 used in
our computations, into the simulation. To do this, we have
to distinguish two cases:

1) The test oracle is a initiator oracle 7. In this case we
know that z, is chosen by the test oracle itself, so that
the adversary cannot influence this value. Additionally,
we assume that the public key ¢° of the intended partner
has been authenticated offline. On the other hand, A

10. For instance, the CDH assumption holds but we have an oracle to
simulate the DDH assumption [37, p. 278f].

may choose x; by herself. Thus we set (g°, g%e) =
(9, 9%

2) The test oracle is a responder oracle wfg. In this case, A
may choose x,, and thus we have to embed the CDH
challenge as (g%, g%*) = (g¢, g%).

Since HKDF is modeled as a random oracle, we may
replace HKDF by a programmable random oracle RO sim-
ulated by the challenger C. The adversary may now follow
two strategies: either he tries to compute b’ by querying RO,
or he doesn’t. If he doesn’t, then his advantage in this game
is 0, since sy and s; are both random.

If he does query RO, then he has to provide the full input
(g%ve, gb®a g®a®v consty, consty). In case 1, the second
value is the solution to the CDH challenge, and in case 2
it is the first value. Since C simulates RO, he sees these
values. With the help of the DDH oracle C can check if
these values are the solution to the CDH problem.

For all other simulation steps, C only has to check if
the input provided by either .4 or by one of the simulated
oracles has already been asked to RO, and either return
a freshly chosen random value, or the value stored in the
database. To be able to do so, we need the DDH oracle from
the gap-DH assumption. For example, if we use ¢g® to embed
one value from the CDH assumption, and the adversary
sends message (4) where z, is chosen by the adversary,
then C cannot compute (g%)°; however, with the help of
the DDH oracle, C can check if CDH (g%, g*) equals any
value queried before, and thus adapt the answer.

Thus we have

Advi‘ = Advi‘ + €gpH-

5.2. Key derivation

Definition 5 (Key derivation function [38]). A key derivation

function KDF is a function KDF that takes as input 1) a

value SKM sampled from a source of keying material, 2)
a length value 1, 3) a salt value XTS , and 4) a context
variable CTXlInfo (the last two inputs being optional) and
outputs a string of 1 bits.

Let us elaborate on this definition. First of all, one may
wonder, why we cannot simply use a secure pseudo-random
function for key derivation. The reason is that PRFs require
a key of a certa