
Distance Lower Bounding

Xifan Zheng, Reihaneh Safavi-Naini, and Hadi Ahmadi

University of Calgary, Calgary, Canada
{xzheng,rei,hahmadi}@ucalgary.ca

Abstract. Distance (upper)-bounding (DUB) allows a verifier to know
whether a proving party is located within a certain distance bound. DUB
protocols have many applications in secure authentication and location
based services. We consider the dual problem of distance lower bound-
ing (DLB), where the prover proves it is outside a distance bound to
the verifier. We motivate this problem through a number of application
scenarios, and model security against distance fraud (DF), Man-in-the-
Middle (MiM), and collusion fraud (CF) attacks. We prove impossibility
of security against these attacks without making physical assumptions.
We propose approaches to the construction of secure protocols under
reasonable assumptions, and give detailed design of our DLB protocol
and prove its security using the above model. This is the first treatment
of the DLB problem in the untrusted prover setting, with a number of
applications and raising new research questions. We discuss our results
and propose directions for future research.

1 Introduction

Distance (upper) bounding (DUB) protocols have been widely studied in recent
years: a verifier V interacts with a prover P to obtain assurance that the prover
is at a distance at most B from the verifier. A DUB protocol was first proposed
in [7] to thwart relay attacks in authentication protocols, by using the location
as an unforgeable attribute of the prover. DUB protocols have been widely used
for proximity based authentication (e.g., passive keyless entry and start system
in modern cars [17]), proximity based control (e.g., implantable medical device
[28]), and Radio-Frequency Identification (RFID) authentication [2, 32].

To estimate distance, secure DUB protocols measure the round-trip time of a
fast-exchange challenge-response protocol, using electromagnetic (EM) commu-
nication and assuming constant speed for EM signals. We refer to protocols that
use this method for distance estimation, as class EF (i.e., EM fast-exchange).

In this paper, we consider the dual problem of distance lower bounding (DLB),
where a prover P wants to prove its distance from a verifier V is higher than a
bound B. DLB problem naturally arises in application scenarios where privileges
are given based on the distance of the requester to a verifier. For example a com-
pany offering unrestricted Internet access to games and entertainment software
to employees, when they are outside of main office area of the company campus
(e.g, Google campus), and restricted access when employees are within the main

office area. Here the requirement is for employees to prove they are outside the
main working area. A second scenario is when the parking lot is divided into
zones and parking charge depends on the distance of the car to the main point
of interest (e.g. discounted rate will be given if users park their car at farer
distance from the shopping mall entrance). In both cases once the privilege is
granted based on the distance, one needs to use monitoring mechanisms such as
continuous authentication to ensure that the user stays within the claimed area.
Embedding such authentication in streaming services such as games or music
is straightforward. For the latter scenario, one can use random scanning of the
area to ensure correct claim. Although determined users may be able to bypass
the authentication, but they will be inconvenient (e.g. move the car frequently)
and also have to accept the risk of detection and penalty.

A first approach to solving DLB problem would be to use a DUB protocol.
However although a successful run of a DUB protocol proves that the prover
is close to the verifier, its failure does not say anything about the distance of
the prover. This is because none of the DUB protocols protect against distance
enlargement attack [10], where the malicious prover enlarges the distance by
delaying the response. Other applications of DUB protocol, such as using DUB
protocols with multiple verifiers for secure positioning[10], will also be vulnera-
ble to distance enlargement attack. A second approach would be to use Global
Positioning System (GPS)[21] to determine the location of the user. However
one needs to trust the GPS measurements, which is known to be vulnerable to
attacks, such as GPS spoofing attack [35] where fake satellite signals are used
to modify the GPS location data. This solution also results in privacy loss and
so one needs to consider privacy enhancing GPS solutions that require extra
infrastructure.

Attacks on DLB protocols depend on the application scenario. In Section
2.1 we formalize attacks that are applicable in the above application scenarios,
and show that they are parallel to attacks on DUB protocols. DUB protocols
have been analyzed against three broad classes of attacks[34]: distance fraud
(DF) where the prover is malicious and wants to shorten its distance to the
verifier; collusion fraud (CF) where the prover is malicious and has a helper that
would assist them to shorten its distance to the verifier ; and finally Man-in-the-
middle (MiM) attack where the prover is honest and is the victim of an external
attacker, who aims to shorten the distance between the honest prover and the
verifier. These classes include attacks such as impersonation, Mafia fraud and
Terrorist fraud, that are traditionally considered for DUB. We show that all
above attacks are directly applicable to our DLB scenario above and capture
important DLB attacks.

The solution to DLB depends on the trust assumption. The DLB problem in
a setting that both the prover and the verifier are trusted, has been considered
in [33]. In this paper, we consider a setting where the prover is untrusted and
the verifier is trusted.

Here we unravel the main difference between DUB and DLB protocols: DUB
protocols have been primarily designed in the setting that an untrusted prover

interacts with a trusted verifier. However, unlike DUB problem, one cannot com-
pletely remove trust assumption on the prover in DLB problem. In Section 2.2,
we prove that it is impossible to have secure DLB protocol if provers are fully
untrusted (have full control of the device hardware and software), which allows
them to deviate arbitrarily from the protocol. One however can have secure pro-
tocols by making assumptions on the malicious prover’s access to the device
and/or communication channel. Table 1 summarizes trust assumptions in the
two problems.

Table 1: Impossibility result of DB protocols with different trust assumptions
Trust DLB problem DUB problem

Trusted prover Possible (e.g., secure ranging[33])
Possible1 (e.g., DB [5])Fully untrusted prover2 Impossible (Section 2.2)

Partially trusted prover3 Possible (Section 3, ΠDLB−BM)

Our contribution. First, we initiate the study of distance lower bounding
(DLB) problem in a setting where the prover is untrusted using motivating
application scenarios. Second, we construct security model for DLB problem
and define three broad classes of attacks: distance fraud (DF) where the prover
is malicious and acts alone to enlarge its distance to the verifier; collusion fraud
(CF) where the prover is malicious and has an helper to collaborate to enlarge
its distance to the verifier ; and finally Man-in-the-middle (MiM) attack where
the prover is honest and is the victim of an external attacker, who aims to
enlarge the distance between the honest prover and the verifier. Third, we prove
that security against any of these attacks without making physical assumptions4

is impossible. In particular, a fully malicious prover can always succeed in the
DF attack, and an external attacker (without the cryptographic credentials) can
always jam-and-delay the signal between the verifier and the prover, and succeed
in the MIM attack. This also implies that a malicious prover that has a helper
(CF) will always succeed. Fourth, we study under which reasonable assumptions
the problem is solvable and construct a secure DLB protocols under reasonable
assumptions, and prove its security against DF, MiM and CF attacks. Finally,
we estimate time, memory and energy requirements of our protocol and conclude
with open questions and directions for future research.

1 DUB protocols with fully untrusted prover are secure for all types of trust assump-
tions.

2 The malicious prover who has unrestricted control of hardware and software of the
prover device.

3 The malicious prover who has restricted control of the hardware of the prover device,
but can run malicious software on the device.

4 Physical assumptions include limited access to the device hardware, and/or the
communication channel.

Related work. There is a large body of research on secure positioning and
distance estimation problem, including distance bounding protocols[5, 7, 20],
positioning techniques[10, 21] and secure ranging protocols[33]. As we argued
earlier, these approaches are not directly applicable to the DLB problem in the
setting that the prover is not trusted. GPS systems use a set of satellites signals
to determine the location and are designed for non-adversarial setting, and so
GPS systems are vulnerable to signal spoofing attacks[35]; DUB protocols pro-
tect against malicious provers trying to shorten the distance, but are in general
vulnerable to the distance enlargement attack[10]; secure positioning systems use
a DUB protocol with multiple verifiers to triangulate the prover’s location, but is
also vulnerable to distance enlargement attack, making positioning an insecure
approach for DLB; and secure ranging systems only consider non-adversarial
setting as well.

To our knowledge this is the first paper to study DLB problem in a setting
where the prover is not trusted. Our approach to defining attacks, distance esti-
mation, and design of the protocol is inspired by the large body of literature on
DUB, in particular, [34] for formalization of attacks, and [5, 20] for the design
of the protocol. The use of bounded-memory assumption for the prover’s de-
vice in the context of secure code update had been considered in [25]. Appendix
A provides a more complete review of relevant works on distance estimation
techniques and bounded memory model.

Paper organization. Section 2 introduces the model and impossibility results.
Section 3 describes our approach and proposed protocol. Section 4 provides the
security analysis. Section 5 presents relevant practical considerations and Section
6 concludes the paper.

2 DLB - Model and Impossibilities

We consider a multi-party system where a party U is modeled by a polynomially
bounded interactive Turing machine (ITM) with a certain location locU , and
some pre-shared key. Messages that are sent from one location to another, travel
at the speed of light and the time taken for travel can be used to determine
the distance between the two locations. We assume parties will receive privileges
based on their pre-shared secrets and their location. A party can be a prover
or a verifier. A prover P engages in a two-party protocol with a verifier V , to
prove the claim that its distance to the verifier satisfies certain bound. Honest
parties run predefined algorithms for their side of the interaction.

The verifier V is always honest. The prover however may be malicious, in
which case it is denoted by P ∗. A malicious prover deviates from the protocol
to make incorrect distance claim and access privileges they are not entitled to.
The experiment is expanded to include an external adversary A who interacts
with the parties in the system according to its defined abilities as stated below.

A protocol instance defines an experiment denoted by exp = (P (x; rP) ↔
A(rA)↔ V (y; rV)), where rP and rV are random coins, and x and y are secret
keys, of the prover and the verifier, respectively. At the end of a protocol instance,

V has an output OutV , which is 1 or 0, showing acceptance or rejection of the
DLB, respectively. The prover does not have an output.

A participant in an experiment has a view consisting of all its inputs, coins,
and messages that it can see. The external attacker A may interact with multiple
P s and V s, and its view will include all these interactions. Throughout the paper
Prr[event : experiment] denotes the probability of the event for the experiment,
where r denotes that random coins used in the experiment.

Definition 1 (DLB Protocol). A Distance Lower Bounding (DLB) proto-
col is a tuple (Gen, P, V,B), where (x, y) ← Gen(1s, rk) is a randomized key-
generation algorithm that takes security parameter s and randomness rk and
outputs keys x and y; P (x; rP) is the prover’s ppt ITM that takes secret-key x
and randomness rP ; V (y; rV) is the verifier’s ppt ITM taking secret-key y and
randomness rV , and B is a distance-bound. It satisfies two properties:

– Termination: (∀s)(∀R)(∀rk; rV)(∀locV) if (.; y) ← Gen(1s; rk) and (R ↔
V (y; rV)) is an execution of the protocol between the verifier and any (un-
bounded) prover algorithm, V halts in Poly(s) computational steps;

– p-Completeness: (∀s)(∀locV ; locP such that d(locV ; locP) ≥ B) we have

Prrk;rP ;rV

[
Outv = 1 :

(x; y)← Gen(1s; rk))
P (x; rP)↔ V (y; rV)

]
≥ p

2.1 Attacks on DLB Protocols

(a)

(b)

Fig. 1: MiM and CF attacks in DLB

We consider three classes of attacks: distance fraud (DF), man-in-the-middle
attack (MiM), and collusion fraud (CF). In DF, P ∗, with d(P ∗, V) < B, wants
to convince V that its distance is at least B. In MiM attack, an external attacker
who does not have the secret key, interacts with multiple P s and V s, and finally
succeeds in taking the role of a prover in a protocol instance (See Figure 1a). In
CF, P ∗ colludes with a helper to claim a longer distance to V (See Figure 1b).
The collusion should not leak the prover’s secret key to the helper. The formal
definitions of the attacks are below.

Distance fraud (DF) attack. In this attack, a dishonest prover who is closer
than the distance (bound) B, wants to convince the verifier that it has a distance
at least B.

Definition 2 (DF-resistance). A DLB protocol Π is α-resistant to distance
fraud if (∀s)(∀P ∗)(∀locv such that d(locv, locp∗) ≤ B)(∀rk), we have

Prrv

[
Outv = 1 :

(x, y)← Gen(1s; rk)
P ∗(x)↔ V (y; rv)

]
≤ α

where P ∗ is any dishonest prover. Because of the concurrent setting we effec-
tively allow polynomially bounded number of P (x′) and V (y′) close to V (y) with
independent (x′, y′).

Distance hijacking. Definition 2 captures distance hijacking attack [12] against
DLB protocols. In this attack, P ∗ who is at distance < B, uses DLB communi-
cations of unaware honest provers at a distance ≥ B, to claim a distance ≥ B.

Man-in-the-middle (MiM) attack. In the MiM attack, there is an external
adversary who does not have the secret-key of the protocol, interacts with honest
provers and verifiers, and finally takes the role of a prover in a protocol instance
with the verifier.

Definition 3 (MiM-resistance). A DLB protocol Π is β-resistant to MiM
attack if (∀s), (∀m, `, z) that are polynomially bounded, (∀A1, A2) polynomially
bounded, for all locations such that d(locPj

, locV) < B, where j ∈ {m+1, · · · , `},
we have

Prrv

Outv = 1 :
(x, y)← Gen(1s)
P1(x)...Pm(x)↔ A1 ↔ V1(y)...Vz(y)
Pm+1(x)...P`(x)↔ A2(V iewA1

)↔ V (y)

 ≤ β
Here probability is over all random coins of the protocol, and V iewA1 is the

final view of A1. The definition effectively allows polynomially bounded number
of P (x′), P ∗(x′), and V (y′) with independent (x′, y′), anywhere.

In this definition the attacker can have a learning phase during which it
interacts with m honest provers and z verifiers. It then uses its view in the
attack phase, and engages in ` −m protocol instances between honest provers
and the target verifier.

Mafia fraud and impersonation attack. Definition 3 is general and covers Mafia
fraud and impersonation attack as special cases. In Mafia fraud, there is no
learning phase. The attacker interacts with an honest prover and makes the
verifier to output accept. That is, m = z = 0 and ` = 1 in the attack phase. In
impersonation attack the attacker uses multiple possibly concurrent interactions
with the verifier to make the verifier output 1.

Definition 4 (CF-resistance). A DLB protocol Π is (γ, η) resistant to collu-
sion fraud if (∀s)(∀P ∗)(∀locv0) such that d(locv0 , locP∗) < D), (∀ACF ppt.), if
we have,

Prrv

[
Outv0 = 1 :

(x, y)← Gen(1s)

P∗(x)↔ ACF ↔ V0(y)

]
> γ

over all random coins of the protocol, there exists an extended5 MiM attack
with m, `, z, A1, A2, Pi,
Pj , Vi that uses interaction with P and P ∗ both, and V , in the learning phase
and have

Pr

Outv = 1 :

(x, y)← Gen(1s)

P
(∗)
1 (x)...P (∗)

m (x)↔ A1 ↔ V1(y)...Vz(y)
Pm+1(x)...P`(x)↔ A2(V iewA1)↔ V (y)

 > η

Here P (∗) is a prover that is either P or P ∗. We have d(locPj
, locV) < B, for all

j ∈ {m+ 1 · · · `}. We implicitly allow a polynomially bounded number of P (x′),
P ∗(x′), and V (y′) with independent (x′, y′), anywhere but no honest participant
is far from V0.

Collusion fraud implies that if a malicious prover P ∗ who is close to V0 can
help ACF to succeed in the DLB verifier to output 1, then there is an adversary
(A1, A2) who will succeed in an (extended) MiM attack, where multiple instances
of P (∗)(x), denoting honest or dishonest prover, is used during the learning phase.
In other words colluding attack will not succeed unless some secret information
of the malicious prover is leaked.

Terrorist fraud. In Terrorist fraud, P ∗, with d(P ∗, V) < B, gets aid from a helper
who does not have the secret key, to succeed in an instance of the protocol with
the verifier. Definition 4 captures terrorist fraud as a special case by letting
m = z = ` = 1, by simply allowing A1 to run ACF and succeed in impersonation
and making V to accept.

2.2 Impossibility results

We consider protocols in EF . Let C denote speed of light, tc and tr denote the
verifier’s clock readings, when the challenge is sent and the response is received,
respectively. Let Tproc denote the processing time of the prover. If the received
response is correct, the verifier calculates T∆ = tr − tc to estimate the distance
of the prover. The verifier estimates the prover’s distance D as

D =
(T∆ − Tproc)C

2
. (1)

In DF, considering a malicious prover with full (hardware and software)
control over the proving device, the malicious prover at close distance D is a
registered user of the system and knows the credential to calculate correct re-
sponses to the verifier challenges. To claim a longer distance, the prover simply
modifies the execution to add appropriate delay by tampering with the hard-
ware/software. This results in the impossibility of DF resistance. Without as-
suming any restrictions, a MiM adversary can easily succeed in DLB by sitting

5 Because learning phase allows interaction with P ∗.

between the verifier and an honest prover and launching a jam-and-delay at-
tack to add appropriate delay. Hence, we have impossiblity of MiM resistance.
The impossibility of resistance against CF follows immediately from the above
impossibility results for DF and MiM resistance. We can state this even more
generally: Any setting (set of assumptions) that makes DLB security against
DF or MiM impossible will make it impossible to resist against CF. The rea-
son is CF attackers can make prearrangements to simulate a DF attack (e.g.,
without helper being engaged in the DLB instance) or a MiM attack (e.g., by
the dishonest prover acting as an honest one). These statements are formalized
below

Theorem 1. 1. Any DLB protocol in EF is vulnerable to DF if P ∗ has full
(hardware and software) control over the prover’s device.

2. No DLB protocols in EF can provide β-resistance with β < 1 to MiM attack
launched by an external attacker who can jam and delay messages to (or
from) the prover.

3. For any DLB protocol in EF , P ∗ can succeed in CF with probability 1 and
negligible key leakage to the helper, if the helper has full access to the commu-
nication channels with P ∗, and P ∗ has full control over the prover’s device.
The result holds even if communication is only allowed in one direction be-
tween the prover and the helper.

The proof sketch of Theorem 1 can be found in Appendix C.

2.3 Restricted DF, MiM, and CF

Although it is impossible to protect DLB against unrestricted adversaries, secu-
rity may become feasible if certain restrictive assumptions are made. To remove
the above impossibility results, we use reasonable assumptions (restrictions) on
the adversary’s control of the device and/or the communication channel. We re-
fer to attacks under these conditions as restricted DF, MiM and CF (rDF, rMiM
and rCF), to emphasize extra assumptions are needed.

Table 2: DLB security against the three attacks in different settings.

Attacks
Assumptions

No Assumption
Prover’s device Communication Combined

[BM] [OC] [BM + OC]

DF-security × X × X
MiM-security × × X X
CF-security × × × X

Notations. We use PD to denote the prover’s device, and rX[Y] to denote re-
stricted version of attack X, where X ∈ {DF,MiM,CF} and restrictions are

stated in Y . For example, rDF[BM] refers to the restricted DF attack, under the
restriction that PD has bounded memory.

Table 2 summarizes our impossibility results and shows assumptions that
are used in our construction in Section 3. The assumptions that we use for
security against rDF are, (i) P ∗ cannot access (read or write) the PD ’s read-
only memory (ROM), and (ii) PD has bounded memory (BM). Note that the
first assumption still allows P ∗ to inject malicious codes into the device writable
memory (RAM), and modify correct execution of the protocol. The bounded
memory assumption is a well-established model in cryptography [8], and has
also been used in the design of security systems [25]. To achieve the security
against rMiM and rCF, in addition to the above assumptions, we require the
helper to have no Online Communication (OC) with the prover during the fast-
exchange phase. In Section 3, we present a DLB protocol that provides security
against rDF, rMiM and rCF under the above assumptions. Note that one may
achieve rDF, rMiM and rCF resistance using other assumptions that restrict the
prover and the helper. For example instead of assuming a root of trust on the PD,
one may establish a dynamic root of trust using software attestation. We give
a software attestation-based DLB protocol in Appendix B. This protocol also
requires no online-communication assumption for security against all attacks.
We also provide an overview of security analysis and implementation challenges
of the protocol.

3 DLB protocol Constructions

Assumptions and attack model. We assume that the PD is a bounded memory
device, which has a protected memory (ROM), and a writable memory (RAM)
with (fixed) L bit size. Without loss of generality, we consider RAM as an array
indexed from 1 to L. The DLB protocol code is stored partly in ROM, denoted
by DLBROM , and partly in RAM, denoted by DLBRAM . We assume V has
a shared key with the PD, and holds the same DLB code. The secret key of
PD is stored in ROM and is accessible only to the code in ROM. We assume
communication channel is noise free, although our results are extendable to noisy
communication by applying similar methods as [31]. The adversary may store
and run arbitrary malicious code on the RAM of the PD, but is not able to
tamper the hardware of the device.

Approach. Using equation 1, P ∗ at distance D can always delay the response
by 2D′/C second(s) to claim a longer distance D + D′. Let Tmax denote the
maximum expected response generation (processing) time by the verifier. (This
can be estimated for example, by measuring the processing time of a set of func-
tional devices, and choosing Tmax larger than all the measured times.) Knowing
that 0 ≤ Tproc ≤ Tmax, the verifier uses the round-trip time T∆ to obtain the
following distance bounds.

D ≥ Dlower =
(T∆ − Tmax)C

2
(2)

We propose a protocol that assumes bounded memory for PD and enables V to
force an upper bound on the delay introduced by P ∗.

DLB protocol outline. ΠDLB−BM consists of three phases: (i) Initialization: dur-
ing which the prover and the verifier exchange nonce, and use them together with
their pre-shared secrets to compute a shared response table. (ii) Fast-exchange:
that consists of n challenge-response rounds, each round consisting of two consec-
utive challenges, followed by the two corresponding responses. (iii) Verification:
during which the verifier checks the received responses to distance estimation
and erasing sequence, and accepts if they satisfy the required conditions.

Our protocol referred to as ΠDLB−BM , is composed of two basic protocol
blocks, Π1 for distance estimation and Π2 for secure memory erasure, shown in
Figure 2. The combination effectively upper bounds the delay that the malicious
prover can introduce. Π1 is a pre-computation challenge-and-response distance
estimation protocol [1] and Π2 is a secure erasure protocol [25] (see Section A).
A challenge-response round in Π1 is used for distance estimation. A challenge-
response round in Π2 however is used to refresh part of the memory that will
not be required for the future rounds.

Fig. 2: Basic building blocks Π1(a) and Π2(b)

3.1 The protocol ΠDLB−BM

The secret key consists of two l-bits strings, x, and x̂. When clear from context,
we refer to each string as key also. The protocol uses a secure Pseudo Random
Function (PRF) fx : {0, 1}2k → {0, 1}2n, x ∈ {0, 1}`, and a secure keyed-hash
function (Hx̂)x̂∈{0,1}` : {0, 1}∗ → {0, 1}b. Figure 3 shows the messages commu-
nicated in the three phases of the protocol.

Phase 1: Initialization phase. The prover generates a k-bit nonce Np and sends
it to the verifier. The verifier selects a k-bit nonce Nv and a 2n-bit random string
A, calculates M = A⊕ fx(Np, Nv), and sends (M,Nv) to the prover. With this
information, the prover decrypts M to retrieve A = M ⊕ fx(Np, Nv) and stores
it in memory. A is the response table that will be used by the prover to respond

to challenges in Phase 2. Considering A = (a(1,j), a(2,j)), where j = 1 · · ·n, as a
sequence of n bit pairs, we define a third string a(3,j) = a(1,j) ⊕ a(2,j) ⊕ x. a(3,j)
is computed at run time from the response table and so is not stored in memory.

Phase 2: Fast-exchange phase. This phase proceeds in n consecutive challenge-
response rounds. In each round 1 ≤ i ≤ n, the verifier chooses a random chal-
lenge ci ∈ {1, 2, 3} and sends it to the prover, immediately followed by a random
erasing sequence RSi of length zi. In section 3.2, we will discuss how zi is de-
termined. The role of RSi is to prevent P from delaying the response to extend
its distance. On receiving the challenge ci, the prover will retrieve the response
ri = a(ci,i). When zi − 1 bits of RSi are received, the prover must send ri to
avoid it being overwritten by the final bit of RSi. The prover must also send
the response to the erasing sequence (also referred to as proof of erasure hi). By
correctly designing the computation of the hash, the correct proof of erasure will
“prove” that the prover has received and stored the full RSi and also has kept
the code DLBRAM intact (see Section 3.2 for details). In addition, the verifier
records the time difference T∆,i between sending ci and receiving ri.

Fig. 3: Distance lower bounding protocol ΠDLB−BM

Phase 3: Verification phase. The verifier checks the correctness of response ri and
proof of erasure hi for all rounds, i = 1 · · ·n. It also verifies whether all response
times are higher than a threshold θ, determined as follows. Let B denote the
distance-bound, and T (zi − 1) denote the time interval required by the prover
to receive zi − 1 bits. The acceptable round-trip time in round i must satisfy
T∆,i ≥ θ = 2B

C + T (zi − 1), where C = 3 ∗ 108 is the speed of light (see equation

2). The verifier outputs Outv = 1, if and only if all verifications and time checks
succeed. Here for simplicity, we have assumed the communication channel is
noise free, and so a successful protocol requires all challenges to be correctly
responded.

3.2 The design of erasure sequence and its response

In fast-exchange round i, an erasure sequence RSi is sent to the P , and a correct
response is required. RSi is used to guarantee all the device memory is erased,
except DLB code and the part of the memory that is required for future response.
The length of the erasing sequence RSi must be chosen as follows.

Sequence length. If one bit of memory in addition to what is required for future
the responses is left out, the dishonest prover can exploit that bit to store the
response bit of the current challenge and delay it. In order to erase all but the
part of the memory that is required for future response, the length of the erasing
sequence RSi must be chosen as follows.

Let the sizes of the RAM and DLBRAM , be L and λ, respectively. After
the initialization phase, the 2n-bit random table A is stored in the prover’s
device memory. In Round 1, the erasing sequence RS1 must erase L − λ − 2n
unused memory, together with (a(1,1), a(2,1)), the two response bits associated
with round 1. In each subsequent challenge-response round i, two additional
bits (a(1,i), a(2,i)) of A will be used and so the length of the erasing sequence
must be increased by two bits. By induction, the random sequence RSi in round
1 ≤ i ≤ n must have length L − λ − 2(n − i). Figure 4 shows the state of the
prover’s memory during protocol execution.

Fig. 4: Prover’s memory during protocol execution

Response to the erasure sequence. The response in round i, denoted by hi, must
guarantee that the PD’s memory, contains the sequence RSi and DLB code
DLBRAM in full, and prove that the rest of the memory is erased. We refer to
this response as proof of erasure, as it is inspired by [25]. To obtain assurance
that RSi is fully stored, it’s sufficient to require the prover to return the exact
RSi, starting from the last received bit, to the first one. This however will be
expensive from communication and power consumption view point. An efficient
approach is to send the cryptographic hash of RSi. To prevent the prover from
calculating the hash value in real-time without storing the whole RSi, we require
the hash function to be applied to the received sequence in the reverse order
of arrival. That is, assuming RSi = (u1 · · ·uzi), the hash will be applied to
R̄Si = (uzi · · ·u1). This leaves the prover no choice other than waiting for the
last bit to arrive, before starting the calculation. To prevent P ∗ to simply store
the required hash value of the code, we use hi = Hx̂(R̄Si ‖ DLBRAM). In this
construction, R̄Si serves as a random nonce, and rules out the possibility of P ∗

successfully passing the verification without storing the full DLBRAM .
The response calculation must be such that it cannot be delegated to a helper.

This requirement is for achieving security against rCF (Section 4). We thus use
a keyed-hash message authentication code, that requires the prover’s secret key.
The keyed-hash message authentication code uses a suitable cryptographic hash
function in a specific structure (e.g. HMAC), to construct a secure MAC, which
ensures the keyed-hash value cannot be forged.

4 Security analysis of ΠDLB−BM

ΠDLB−BM protocol uses a PRF and HMAC, and we analyse its security against
a computationally bounded adversary. We note that it is possible to construct an
information theoretically secure version of this protocol, by replacing the PRF
and HMAC with appropriate primitives.

rDF[BM] resistance. In DF, a malicious prover P ∗ with d(locv, locP∗) ≤ B,
wants to prove, its distance is higher than the bound. To achieve this goal,
P ∗ must send the correct response bit ri, and the correct proof of erasure hi,
both with sufficient delay, in all rounds 1 ≤ i ≤ n, of the fast-exchange phase.
Theorem 2 proves that the DF resistance of the DLB protocol ΠDLB , assuming
that a malicious code of length at least g bits is required.

Theorem 2. ΠDLB−BM is ε-resistant to rDF[BM], with,

ε <= max
(

2−(
g
2)

2

, 2−n(n+1)
)
,

against any rDF[BM] attack that requires at least g-bit malicious code, assuming
Hx() is HMAC with a suitable cryptographic hash function.

rMiM[OC] resistance. In rMiM[OC], the adversary cannot send or receive signal
to, or from the prover during the fast-exchange phase of the target instance. It

however has full communication power during other phases. We do allow the
adversary to jam communications between the verifier and provers in all phases
of the protocol (including fast exchange phase). The proof outline of the following
Theorem 3 is given in the appendix E.

Theorem 3. The DLB protocol ΠDLB−BM is β-resistant to rMiM[OC]attack
with β = 2−l, by choosing b > l

n − 1.

rCF[BM, OC] resistance.
Providing rCF security requires security against rDF and rMiM, and so their

associated assumptions. We consider rCF[BM, OC], and show (i) this is a stronger
attack than rDF[BM] (see Appendix F for details), and (ii) ΠDLB−BM is secure
against this attack (see Theorem 4 and its formal proof is given in Appendix G).

Theorem 4. The protocol ΠDLB is (γ, η)-resistant to rCF[BM, OC], with

γ ≤ max{2−
g+0.5

2
g+1
2 , 2−(n+0.25)(n+1)} and η = 2−l,

assuming the malicious code is at least g bits.

5 Practical consideration

We noted earlier that although time is essential for distance estimation, it can-
not be used as a single-handed resource to provide DLB guarantees because
signals can be easily delayed by malicious provers to show they are farther. Se-
curity of DLB will thus rely on making physical assumptions about the device
and the communication channel(s). Our basic DLB protocol relies on a memory-
bounded device with known memory size, and assuming that attacks are software
based and through codes that reside in memory. That is all other registers and
memories (e.g. ROM, write protected flash memory, etc) are inaccessible to the
malicious code. These assumptions are not unrealistic and have been made in
previous work [25]. In the following, we discuss the parameter choices of the
DLB protocol and analyze its performance in terms of time, energy, and mem-
ory consumption on a MicaZ sensor [22] with a TinyOS host. Below we give
some specifications about the MicaZ sensor and explain our design of the DLB
protocol. To be secure against real-time attacks, we seek for 10−6-resistance
to distance and restricted-collusion frauds. The security analysis of Section 4
shows resistance against malicous codes of length at least 1 byte, which quite
reasonable.

The computation during the initialization and challenge-response distance
estimation is similar to DUB protocols and so the excellent works [27] on the im-
plementation of DUB protocols can be used to have performance estimates. How-
ever using erasing sequence is unique to ΠDLB−BM . We estimate memory, time,
and energy consumption of ΠDLB−BM on a MicaZ sensor [22] using TinyOS.
We assume the following parameters: n = 10 rounds and k = 192 bits of nonces.

We use HMAC-SHA1, denoted by HMAC(.; .), for the PRF, fx, and generation
of response for RSi, Hx̂. That is, fx(Np, Nv) equals the first 2n = 20 bits of
HMAC(x;Np||Nv) and Hx̂(R̄Si||DLBRAM) equals HMAC(x̂; R̄Si||DLBRAM)
of length b = 160 bits.

MicaZ sensor specifications. The device is supplied by two AA batteries and
includes an ATMEGA128 microcontroller and a TI-CC2420 radio transceiver.
The micro-controller provides 4KB of writable memory (SRAM), with 4KB of
EEPROM and 640 KB of write-protected flash memory. The radio transceiver
chip works for an RF band of 2.4–2.48 GHz and has 250 Kbps data rate.

Memory consumption. HMAC-SHA1 takes code size of 4650 bytes [25] for
implementation on ROM, and around 124 bytes of RAM to load data structures
and stack. Considering l = 128 of secret key x, we have a reasonable estima-
tion of code size to be 10KB. Although the EEPROM is only 4KB large, the
ATMEGA128 architecture allows for ROM extension via the use of mask ROM,
locked flash memory, and fuse bits. Using these extension methods, one can build
read-only memory of size 10KB or more. Note that in order to obtain maximum
energy consumption, we assume the size of DLBRAM to be 0.

Energy and time consumption. The writable memory in ATMEGA128 (when
flash memory is write-protected) is the 4KB SRAM. For a n = 10 rounds DLB
protocol, the erasing sequence has length 32758 bits on average.

Communication costs. The protocol requires the prover to receive Nv, M in
initialization phase and ci, RSi in each fast-exchange round, which gives a to-
tal of lrx = len(Nv) + len(M) + 2n + n × len(RSi) = 326912 bits. There is
also requirement for sending Np, ri’s, and hi’s which sums to ltx = len(Np) +
n + n × len(hi) = 1802 transmission bits. Sending (resp. receiving) a single
bit requires Erx = 2.34µJ/b (resp. Etx = 4.6µJ/b) by the radio transceiver
with typical power adjustments [9]. The total communication energy is thus
Ecomm = ltxEtx + lrxErx = 773mJ .

Computation costs. The main part belongs to computing hi. The remaining
computation is negligible. Extrapolating the figures for memory erasure phase
in [25] to our 4KB-memory device, we require less than 600 milliseconds time for
computing proof of erasure, which is quite practical. As for energy consumption,
each HMAC-SHA1 computation uses 3.5µJ per memory byte. Considering the
memory size and the number of rounds, the required computation energy is
obtained as Ecomp = 3.5× 10−6 × 4× 210 × 10 = 140mJ .

Each AA battery is capable of delivering 1.2 Amperes under an average volt-
age of 1.2 Volts for one hour [9], implying the power supply of 10, 368J via the
two batteries. This means the proving device can be used for approximately

10,368
(773+140)10−3 > 11, 000 runs of DLB protocol before the batteries die. This is

quite a reasonable turn out for power consumption. Although we should consider
idle/sleep mode energy consumption for more accurate analysis, this considera-
tion will not cause a drastic change on the above result.

6 Concluding remarks

We motivated the novel security problem of DLB in the setting that the prover is
not trusted using a number of application scenarios, and gave formal definition of
security against three general classes of attacks (DF, MiM and CF). We proved
that it is impossible to provide security against any of these attacks without
making physical assumptions. Our results show that an adversary, even if it
is computationally bounded, will always succeed in DF if it has unrestricted
access to the prover’s device (fully untrusted prover), and will succeed in MiM
attacks, if it has unrestricted access to the communication channel. And security
against CF requires restrictions on both types of accesses. These results show
a fundamental difference between DLB and DUB problems. The only physical
assumption in DUB protocols, is that the speed of EM signals is constant. In
DLB protocols however, in addition to this assumption, one must assume other
restrictions on the physical access of the adversary.

Our protocol considers a malicious prover that has restricted access to the
prover device, and an external attacker that has restricted access to the commu-
nication channel to the prover. We provides security against rDF[BM], rMiM[OC],
and rCF[BM, OC], using reasonable assumptions that have been used in theoreti-
cal cryptography as well as security systems in practice, including systems for
secure code update [25]. Enforcing assumptions in practice would need special
technologies such as targeted jamming [18].

One can replace the above assumptions with other reasonable assumptions.
The assumptions are necessary to prevent the adversary from introducing delay
in the challenge and response time estimation phase. For example, instead of
assuming bounded memory, one can use a software-based externally verifiable
code execution (EVCE) system such as Pioneer [30], to guarantee that the target
executable code associated with the distance measurement, is executed without
modification by a malicious code that may reside on the device. Using this ap-
proach, in each challenge-response round, the device first proves that it has an
untampered environment, and then provides the response. Note that EVCE also
assumes a trusted network to eliminate proxy attacks allowing the construction
to provide security against rMiM[OC] and rCF[SA, OC]. More details on an EVCE
based DLB protocol is given in Appendix B. The important point to note is that
one must restrict the adversary’s physical access to the environment to achieve
any DLB security.

Our primary application scenarios of DLB in this paper were examples of
proximity-based access control. Other application scenarios in DLB may have
different security requirements. Examining these requirements will be an impor-
tant step in modelling security and designing secure protocols. Another inter-
esting question is to efficiently incorporate DLB in DUB protocol to provide
security against distance enlargement.

Bibliography

[1] G. Avoine, C. Lauradoux, and B. Martin. How secret-sharing can defeat
terrorist fraud. In ACM conference on Wireless network security, 2011.

[2] G. Avoine and A. Tchamkerten. An efficient distance bounding rfid authen-
tication protocol. In Information Security, pages 250–261. 2009.

[3] I. Boureanu, A. Mitrokotsa, and S. Vaudenay. On the pseudorandom func-
tion assumption in (secure) distance-bounding protocols. In LATINCRYPT.

[4] I. Boureanu, A. Mitrokotsa, and S. Vaudenay. Practical & provably secure
distance-bounding.

[5] I. Boureanu, A. Mitrokotsa, and S. Vaudenay. Secure & lightweight distance-
bounding. In LightSec 2013.

[6] I. Boureanu, A. Mitrokotsa, and S. Vaudenay. Towards secure distance
bounding. FSE 2013.

[7] S. Brands and D. Chaum. Distance-bounding protocols. In EUROCRYPT
1993, pages 344–359.

[8] C. Cachin and U. Maurer. Unconditional security against memory-bounded
adversaries. In CRYPTO’97.

[9] M. Calle and J. Kabara. Measuring energy consumption in wireless sensor
networks using gsp. In Personal, Indoor and Mobile Radio Communications.

[10] S. Capkun and J.-P. Hubaux. Secure positioning in wireless networks. IEEE
Journal on Selected Areas in Communications, 2006.

[11] D. Cash, Y. Z. Ding, Y. Dodis, W. Lee, R. Lipton, and S. Walfish. Intrusion-
resilient key exchange in the bounded retrieval model. In Theory of Cryp-
tography. 2007.

[12] C. Cremers, K. B. Rasmussen, B. Schmidt, and S. Capkun. Distance hi-
jacking attacks on distance bounding protocols. In S&P, pages 113–127.

[13] G. Di Crescenzo, R. Lipton, and S. Walfish. Perfectly secure password
protocols in the bounded retrieval model. In Theory of Cryptography.

[14] S. Dziembowski. Intrusion-resilience via the bounded-storage model. In
Theory of Cryptography, pages 207–224. 2006.

[15] M. Fischlin and C. Onete. Subtle kinks in distance-bounding: an analysis
of prominent protocols. In S & P in wireless and mobile networks.

[16] M. Fischlin and C. Onete. Terrorism in distance bounding: modeling
terrorist-fraud resistance. In Applied Cryptography and Network Security.

[17] A. Francillon, B. Danev, and S. Capkun. Relay attacks on passive keyless
entry and start systems in modern cars. In NDSS, 2011.

[18] S. Gollakota, H. Hassanieh, B. Ransford, D. Katabi, and K. Fu. They can
hear your heartbeats: non-invasive security for implantable medical devices.
In ACM SIGCOMM, pages 2–13, 2011.

[19] G. P. Hancke. Distance-bounding for rfid: Effectiveness of terrorist fraud in
the presence of bit errors. In RFID-Technologies and Applications, 2012.

[20] G. P. Hancke and M. G. Kuhn. An rfid distance bounding protocol. In
SecureComm, pages 67–73, 2005.

[21] B. Hofmann-Wellenhof, H. Lichtenegger, and J. Collins. Global positioning
system. theory and practice. 1993.

[22] C. T. Inc. Micaz datasheet.
[23] C. H. Kim, G. Avoine, F. Koeune, F.-X. Standaert, and O. Pereira. The

swiss-knife rfid distance bounding protocol. In ICISC 2008, pages 98–115.
[24] A. Mitrokotsa, P. Peris-Lopez, C. Dimitrakakis, and S. Vaudenay. On select-

ing the nonce length in distance-bounding protocols. The Comp. Journal.
[25] D. Perito and G. Tsudik. Secure code update for embedded devices via

proofs of secure erasure. In Computer Security–ESORICS 2010. 2010.
[26] A. Ranganathan, N. O. Tippenhauer, B. Škorić, D. Singelée, and S. Čapkun.

Design and implementation of a terrorist fraud resilient distance bounding
system. In ESORICS 2012, pages 415–432.

[27] K. B. Rasmussen and S. Capkun. Realization of rf distance bounding. In
USENIX Security Symposium, pages 389–402, 2010.

[28] K. B. Rasmussen, C. Castelluccia, T. S. Heydt-Benjamin, and S. Capkun.
Proximity-based access control for implantable medical devices. In Com-
puter and communications security, pages 410–419, 2009.

[29] J. Reid, J. M. G. Nieto, T. Tang, and B. Senadji. Detecting relay attacks
with timing-based protocols. In Information, comp. and comm. security.

[30] A. Seshadri, M. Luk, A. Perrig, L. v. Doorn, and P. Khosla. Externally
verifiable code execution. Communications of the ACM, pages 45–49, 2006.

[31] D. Singelée and B. Preneel. Distance bounding in noisy environments. In
Security and Privacy in Ad-hoc and Sensor Networks, pages 101–115. 2007.

[32] B. Song and C. J. Mitchell. Rfid authentication protocol for low-cost tags.
In Wireless network security, 2008.

[33] N. O. Tippenhauer, K. B. Rasmussen, and S. Capkun. Secure ranging with
message temporal integrity. IACR Cryptology ePrint Archive, 2009.

[34] S. Vaudenay, I. Boureanu, A. Mitrokotsa, et al. Practical & provably secure
distance-bounding. In The 16th Information Security Conference.

[35] J. S. Warner and R. G. Johnston. A simple demonstration that the global
positioning system (gps) is vulnerable to spoofing. Journal of Security Ad-
ministration, 25(2):19–27, 2002.

A Related Work

A.1 Secure DUB protocols

A distance upper bounding (DUB) protocol obtains an upper bound on the
distance between a prover and a verifier. Secure DUB protocols [5, 20, 27, 29]
estimate the distance through measuring the round-trip time of simple challenge-
response messages. The three commonly considered attacks on DUB protocols
are, distance fraud, Mafia fraud and terrorist fraud. In [12], the authors proposed
a new type of attack called distance hijacking, as an extension to distance fraud.

Brands and Chaum proposed the first pre-commitment DUB protocol[7].
Hancke and Kuhn then proposed a pre-computation DUB protocol[20] that can

be easily implemented on RFID devices. Singelee et. al [31] considered distance
bounding in noisy environment and proposed a protocol that can tolerate noise.
None of the above protocols is secure against terrorist fraud.

Protocols with claimed security against terrorist fraud include [1, 23, 26, 29].
These protocols used different approaches to provide this security. Reid et. al
[29] proposed to combine the response with the long-term secret key so that
knowing the whole response table enables the helper to recover the secret key
and impersonate the prover in future. Kim et. al [23] noted that Reid et. al’s
protocol will be insecure if the adversary can see the result of protocol. Avoine
et. al [1] used threshold secret sharing to prevent terrorist fraud.

Recently, a number of new attacks against protocols that were believed to be
secure, have been proposed[3, 12, 19, 24]. These attacks have generated further
interest in formalizing security of distance upper bounding protocols. In [1] a
semi-formal model for secure distance-bounding is given; [15] and [16] give a
formal model capturing resistance to terrorist fraud; [12] proposes a detailed
list of known attacks against distance bounding protocol and gives a formal
security model in multi-party setting; and [4] provides a security model in terms
of resistance to three general classes of attacks that include other known attacks
as special cases. We will follow this last approach.

Boureanu et. al framework Boureanu et. al [4, 5, 6] showed security weak-
nesses of a number of protocols and proposed a security driven design for a
class of protocols called SKI, which builds on the previous key papers including
[1, 29]. Our distance estimation sub-protcol follows the design approach of SKI
with security only for non-noisy environments. This allows a simplified design.

A.2 Bounded memory and bounded retrieval model

Memory bounded adversaries in cryptography were first considered in informa-
tion theoretic setting [8]. A related model is Bounded-Retrieval Model (BRM)
where the adversary is limited in the number of bits that it can access. BRM
[11, 13, 14] is a well established leakage model where leakage parameter is an
arbitrary and independent parameter in the system design showing the absolute
amount of leakage (to the adversary) that the system can tolerate.

B Software attestation based DLB protocol

In the setting of rDF[SA], we do not assume a root of trust on the PD. Instead,
we establish a dynamic root of trust, and guarantee correct execution of the
fast-exchange phase, as part of the DLB protocol. In [30], a software-based ex-
ternally verifiable code execution (EVCE) system (called Pioneer) is proposed
to assure correct code execution over an untrusted device. It guarantees that a
piece of code, referred to astarget executable, executes untampered from possi-
ble malicious codes that may reside on the device, by dynamically establishing

a root of trust and secure execution environment, on the device. The protocol
ΠDLB−EV CE uses EVCE in each fast-exchange round.

The fast exchange phase uses the externally verifiable code execution (EVCE)
system proposed in [30]. In EVCE, the goal is to ensure that the correct target
code is invoked, and the execution is untampered in the sense that, other than
performing denial of service attacks, no malware that may exist on the comput-
ing device can interfere with the execution of the target code. In this model,
no root of trust on the device is assumed: the verifier establishes an isolated
execution environment on the device using the verification function, and uses
checksum and time to ensure the correct execution of the verification function;
it then calculates the keyed-hash value of the target code and sends it to the
verifier, assuring the integrity of the target executable. By giving the verification
function and the target code the highest privilege level of the CPU, the execu-
tion of the verification function and the target executable will be atomic, and no
untrusted code can execute before the above two codes complete their execution.
EVCE requires the target executable code to be self-contained. To satisfy this
requirement, we propose protocol ΠDLB−EV CE that uses EVCE in each round
of DLB.

Fig. 5: software attestation based DLB protocol

ΠDLB−EV CE. The initialization and verification phases of this protocol are as in
Section 3.1. Figure 5 shows a fast-exchange round of the protocol. In each round,
the verifier sends a nonce that invokes the verification function of the prover.
The verification function computes the checksum over itself, and sets up an
isolated execution environment. The keyed-hash value of the target executable
is calculated for the purpose of integrity check, and then the target code is
invoked. The target code consists of the function used for finding the response

to the nonce, and sending the response to the verifier. The time T∆ is measured
from the time that the nonce is sent, until the time that the response is received.
The round trip time is then calculated as T∆−Tproc, where Tproc consists of the
time used for, (i) finding the checksum of the verification function, (ii) integrity
check of the target code, and (iii) finally its invocation. The main drawback of
the protocol however, is the accuracy of the distance estimation that depends
on correct estimation of Tproc. A correct estimation of Tproc in turn depends on
the correct estimation of these three components, and so high accuracy would
be hard to achieve.

Security analysis of ΠDLB−EV CE. Because of space, we only give an outline
of the security proof. DF-resistance of ΠDLB−EV CE follows from the correct
execution of fast-exchange rounds, which is guaranteed because of the security of
software-based attestation EVCE. This means that no delay will be introduced
in the execution of the protocol, and at the end of the fast-exchange phase,
the distance will be correctly estimated. EVCE also requires a trusted network
to eliminate proxy attacks where the computing device asks a faster computer
(proxy) to compute the checksum on its behalf, and so for this construction

only rMiM[OC] and rCF[SA, OC] can be considered. That is, any other restrictive
assumptions for rMiM and rCF must include no-online communication. Security
against rMIM and rCF follows from secure generation and sharing of the response
table that ensures that the response bits cannot be guessed by outsiders (See
Section 4).

C Proof sketch of Theorem 1

For (1), assume a malicious prover (who can calculate correct responses to the
verifier challenges) at D < B. To claim a longer distance D + D′, the prover
modifies the execution to add appropriate delay by tampering with the hard-
ware/software and responds after 2D′/C second(s). The attack succeeds with
probability 1.
For (2), A MiM attacker can use the following strategy: upon receiving a message
from one party, the adversary jams the signal to prevent it from being received
by the other, and later forwards it with appropriate delay. The theorem holds
irrespective of any hardware assumption (e.g. bounded memory) on the prover’s
device, and succeeds even if jam and delay can be applied in one direction only.
For (3), note that CF resistance requires both DF resistance and MiM resistance:
A CF attacker can simply simulate a successful DF attacker by simply ignoring
the helper; or it can also simulate a successful MiM attacker, by allowing P ∗

in the CF attack to run the algorithm of P , and the helper in CF to run the
algorithm of the MiM adversary, AMiM .

D Proof of Theorem 2

Proof. A dishonest prover P ∗ succeeds if it passes verification of all rounds. We
show that for all P ∗’s possible strategies, its success probability is bounded. A

P ∗’s strategy σ, is defined by a sequence of actions that it will take over the n
rounds. P ∗ needs a malicious code of size at least g to implement its strategy.
The code must be stored in the PD’s RAM. In each round, P ∗ must dedicate
g bits of RAM for the malicious code MC, by either over-writing the response
table A[i], or RSi, or DLBRAM , or part of each. Here A[i] is the un-used part of
A at the start of round i. It is important to note that success probability of P ∗

in each round, depends on the action taken in the current round, and all actions
taken in all the previous rounds. For example if P ∗ has overwritten (a(1,i), a(2,i)),
during an earlier round j, where j < i, then the success probability of producing
the correct response to ci, will be at most 1/2.

Let Pr(SuccσDF) denote the prover’s success probability for a strategy σ (n-
round strategy, possibly adaptive) used by P ∗. Let Si denote the event associated
with the success in round i, 1 ≤ i ≤ n. We have the following:

Pr(SuccσDF) = Pr(

n∧
i=1

Si) =

n∏
i=1

Pr(Si|Si−1, . . . , S1).

Because of the properties of probability, for all rounds i, we have

Pr(Si|Si−1, . . . , S1) ≤ 1

In round i, the P ∗’s device receives a challenge symbol ci, followed by L−λ−
2(n− i) bits of RSi. The response consists of ri, and hi = Hx̂(R̄Si||DLBRAM).
Because of the unforgeability of HMAC, to calculate hi, the string RSi must be
fully stored, and DLBRAM must remain intact. If some of these bits, say `, are
overwritten, to generate the correct response, the ` missing bits can be guessed.,
with the success probability 2−`.

Let g be even and smaller than the original value of the response table,
g ≤ 2n. In each round, 2 bits of the this table is used and the erasing sequence
will be lengthened by 2 bits to overwrite them. The reduction in the size of the

table in each round finally reaches a round n0
4
= n − g

2 , after which the size

of A[i], i > n0, is less than the malicious code. That is, 2(n − i) < g and the
length of RSi satisfies L − 2(n − i) > L − g. From round i > n0, to keep the
g bit malicious code, some bits from RSi must be overwritten and this number
equals,

g − 2(n− i) = g − 2(n0 +
g

2
− i) = 2(i− n0).

This leads to a success chance of 2−(2(i−n0)+1) in calculating hi in round i. The
overall success chance is given by,

Pr(SuccσDF) ≤
∏

1≤i≤n0

1×
∏

n0+1≤i≤n

2−(2(i−n0))

= 2−(
∑n

i=n0+1 2(i−n0)) = 2−(
∑n−n0

i′=1
2i′) = 2−(

g
2)(

g
2+1) < 2−(

g
2)

2

.

If g is odd:. An argument similar to the above, shows that the prover needs to

drop 2(i− n0)− 1 bits in rounds i > n0 =
4
= n− g+1

2 . The success probability is
thus obtained as,

Pr(SuccσDF) ≤ 2−(
∑n

i=n0+1 2(i−n0)−1) = 2−(
∑n−n0

i′=1
2i′−1)

= 2−(
g+1
2)(g+1

2 +1).2
g+1
2 = 2−(

g+1
2)2 < 2−(

g
2)

2

.

If g ≥ 2n. Here, the prover needs to drop some bits of the erasing string RSi in
all rounds 1 ≤ i ≤ n; in other words, n0 = 0 and the prover’s success chance is,

Pr(SuccσDF) ≤
∏

1≤i≤n

2−(2i) = 2−(
∑n

i=1 2i) = 2−n(n+1).

This means that the success probability of P ∗ in any strategy is bounded, and
the proof is complete.

E Proof outline of Theorem 3

– If the target DLB instance does not include a prover, the MiM attack is the
same as an impersonation attack. To succeed in this attack, the attacker
needs to guess the secret key or guess all responses correctly. It can be
seen (and formally proved) that the initialization phase, and the prover’s
responses in the fast-exchange phase, do not leak prover’s secret key, resulting
in the success probability equals to 2−2l, assuming n(b+ 1) > 2l.

– Consider the case that the target instance includes a prover. The adversary
can succeed if it can jam the messages from prover to the verifier, and send
its own response. The adversary can only see the initialization phase, and not
the prover’s messages in the fast exchange phase of the target DLB instance.

Thus again, the adversary needs to either guess the key, or guess all challenge
and proof-of-erasure values, for all rounds. The probability of the attack will
thus be no more than 2−2l.

F Argument for rCF is more powerful than rMiM

We show rCF[BM, OC] is more powerful than rDF[BM]by giving a protocol that is
rDF[BM] resistant, but not rCF[BM, OC] resistant. Consider protocol Π∗DLB−BM
which is the same as ΠDLB−BM in Section 3.1, but uses the hash function with-
out the secret key. By using argument similar to Section 4, we prove Π∗DLB−BM
is rDF[BM] resistant. However now the response can be constructed by anyone.
The colluders can plan their responses as follows: P ∗ will delay the response to
the challenge symbol at will, and the helper prepares and sends the response to
RSi. This shows that Π∗DLB−BM is not rCF[BM, OC] resistant.

G Proof of Theorem 4

Proof. In the rCF[BM, OC], an L-bit-memory malicious prover P ∗ at distance D <
B wants to claim a distance D ≥ B by the help of an adversary ACF who
cannot communicate with the prover during the fast-exchange phase of DLB.
The choice of η = 2−l in the theorem implies that the prover cannot leak any
part of its key to the helper since any leakage would lead to a nOC-BM-MiM with
probability > 2−l. We thus study the best success probability (Pr(SuccCF)) of
nOC-BM-CF assuming no key leakage to the helper. We note that the prover still
can leak part of its response table, which is build as a result of initialization:
For each round of fast-exchange i, the prover’s response bit to the challenge
ci ∈ {1, 2, 3} is ri = aci,i where a1,i and a2,i come from the PRF output and
a3,i = a1,i ⊕ a2,i ⊕ xi, where xi is a bit of the secret-key. So, as long as only
two out of the three bits (a1,i, a2,i, a3,i) are passed by the prover, there is no
secret-key leakage and η = 2−` is satisfied. Hence, without loss of attack success
optimality, we let the adversary have exactly two elements (e.g., the first two)
from the triple (a1,i, a2,i, a3,i) for each and every round 1 ≤ i ≤ n. In analogy
to distance fraud, we let P ∗ store a malicious code of g > 0 in RAM and define
n0 = n− g−1

2 .
Let Pr(SuccσCF) denote the prover’s success probability for a strategy σ (n-

round strategy, possibly adaptive) used by P ∗ and ACF . Let Si denote the event
associated with the success in round i, 1 ≤ i ≤ n. Similar to the DF-security
analysis (proof of Theorem 2), we have

Pr(SuccσCF) =

n∏
i=1

Pr(Si|Si−1, . . . , S1), where Pr(Si|Si−1, . . . , S1) ≤ 1.

To simplify the proof like that for DF security, we assume without loss of
optimality all ri’s are calculated successfully (with probability 1) and only focus
on the calculation of hi’s. Since there is no communication between the prover
and the adversary during fast exchange, the should have made prearrangements
about which of them is in charge of sending which information to the verifier.
Although some part of the response table is known by the adversary, this can-
not help the adversary calculate hash responses hi with any better probability
(since the secret-key used for MAC is not leaked). This follows that the success
chance is maximized of the prover calculates and transmits hi’s. The CF success
probability thus will be bounded in the same way as that of DF in Theorem 2:

Pr(SuccσCF) ≤ max
(

2−(
g
2)

2

, 2−n(n+1)
)
.

	Distance Lower Bounding
	Introduction
	DLB - Model and Impossibilities
	Attacks on DLB Protocols
	Impossibility results
	Restricted DF, MiM, and CF

	DLB protocol Constructions
	 The protocol DLB-BM
	The design of erasure sequence and its response

	Security analysis of DLB-BM
	Practical consideration
	Concluding remarks
	Related Work
	Secure DUB protocols
	Boureanu et. al framework

	Bounded memory and bounded retrieval model

	Software attestation based DLB protocol
	Proof sketch of Theorem 1
	Proof of Theorem 2
	Proof outline of Theorem 3
	Argument for rCF is more powerful than rMiM
	Proof of Theorem 4

