
Designs, Codes and Cryptography manuscript No.
(will be inserted by the editor)

Solving a Class of Modular Polynomial Equations and its
Relation to Modular Inversion Hidden Number Problem
and Inversive Congruential Generator

Jun Xu · Santanu Sarkar · Lei Hu ·
Zhangjie Huang · Liqiang Peng

Received: date / Accepted: date

Abstract In this paper we revisit the modular inversion hidden number problem
(MIHNP) and the inversive congruential generator (ICG) and consider how to
attack them more efficiently. We consider systems of modular polynomial equations
of the form aij + bijxi + cijxj + xixj = 0 (mod p) and show the relation between
solving such equations and attacking MIHNP and ICG. We present three heuristic
strategies using Coppersmith’s lattice-based root-finding technique for solving the
above modular equations.

In the first strategy, we use the polynomial number of samples and get the
same asymptotic bound on attacking ICG proposed in PKC 2012, which is the
best result so far. However, exponential number of samples is required in the
work of PKC 2012. In the second strategy, a part of polynomials chosen for the
involved lattice are linear combinations of some polynomials and this enables us to
achieve a larger upper bound for the desired root. Corresponding to the analysis
of MIHNP we give an explicit lattice construction of the second attack method
proposed by Boneh, Halevi and Howgrave-Graham in Asiacrypt 2001. We provide
better bound than that in the work of PKC 2012 for attacking ICG. Moreover, we
propose the third strategy in order to give a further improvement in the involved
lattice construction in the sense of requiring fewer samples.

Keywords Modular inversion hidden number problem · inversive congruential
generator · lattice · LLL algorithm · Coppersmith’s technique

Mathematics Subject Classification (2000) 94A60

J. Xu · L. Hu · Z. Huang · L. Peng
State Key State Laboratory of Information Security, Institute of Information Engineering,
Chinese Academy of Sciences, Beijing 100093, China
Data Assurance and Communication Security Research Center, Chinese Academy of Sciences,
Beijing 100093, China
E-mail: {xujun,hulei,huangzhangjie,pengliqiang}@iie.ac.cn

S. Sarkar (�)
Department of Mathematics, Indian Institute of Technology Madras, Chennai 600036, India.
E-mail: sarkar.santanu.bir@gmail.com

2 Jun Xu et al.

1 Introduction

1.1 Background

Modular Inversion Hidden Number Problem. Hidden Number Problem (HN-
P) was introduced in [6] by Boneh and Venkatesan. They used it to prove that
computing the most significant bits (MSBs) of the secret key from the public keys
of participants in a Diffie-Hellman key-exchange protocol is as hard as computing
the secret key itself. The work [6] has originated a whole direction of research
and HNP has been exploited in a wide spectrum of applications like an attack on
weak versions of the Digital Signature Algorithm (DSA) [13] and appeared in a
number of questions, related and unrelated to cryptography (see [22] for a survey
of relevant results and also [1] for some developments in this direction).

A closely related class to HNP, known as Modular Inversion Hidden Num-
ber Problem (MIHNP), was introduced and studied in [5] by Boneh, Halevi and
Howgrave-Graham. They utilized MIHNP to construct pseudo random number
generator (PRNG) and message authentication code (MAC). The exact problem
(MIHNP) is as follows.

For a given prime p, consider a secret α ∈ Zp and n + 1 elements t0, t1, . . . , tn
∈ Zp\{−α}, chosen independently and uniformly at random. The question is, given
n + 1 samples

{ (
ti,MSBδ((α+ ti)

−1 mod p)
) }n

i=0
for some δ > 0 (here MSBδ(z)

refers to the δ most significant bits of z), whether it is possible to recover the
hidden number α.

Inversive Congruential Generator. Number-theoretic PRNGs work by iterating
an algebraic map f over a residue ring ZN on a secret random initial seed value v0
to compute values vi+1 = f(vi) mod N . The output is some consecutive bits of the
state value vi at each iteration. The first input v0 is called the seed. PRNGs have
numerous applications in signature schemes and public key encryption schemes.
When f is affine, generator is known as linear congruential generator. However
this generator is not cryptographically secure [7, 23]. It was suggested to use a
non-linear algebraic map f in order to avoid these attacks.

The Inversive Congruential Generator (ICG) proposed by Eichenauer and
Lehn [10] is an important kind of nonlinear number-theoretic pseudo random
number generator. There are extensive applications of ICG in Quasi-Monto Carlo
simulation and public key schemes (see the surveys in [11,16,17,19,24] and recent
results in [18,20,21,25]). ICG works as follows:

For a given prime p, let f(x) = ax−1 + b (mod p) where a, b ∈ Zp. Input a
secret seed v0 to the recursive relation vi+1 = f(vi) for 0 ≤ i ≤ n. Then output a
random-looking sequence (MSBδ(v1),MSBδ(v2), · · · ,MSBδ(vn+1)).

A very strong goal of attacking ICG is to recover the secret seed v0 given n+ 1
outputs MSBδ(vi+1) for i = 0, 1 · · · , n.

1.2 Previous Works

Analysis of MIHNP. Boneh et al. [5] presented two polynomial time heuristic lat-
tice methods to solve MIHNP, provided that the number of samples is sufficiently
large. Their first heuristic works only if more than 2

3 portion of most significan-
t bits of (α + ti)

−1 mod p’s are given, i.e., δ > 2
3 log2 p. Importantly, the second

Solving a Class of Modular Polynomial Equations and its Applications 3

heuristic (where multiples are used [5, Section 3.2] that we refer here as Method II)
claimed knowledge of significantly fewer bits which is δ > 1

3 log2 p only. However,
no explicit lattice construction for this case was presented.

Ling et al. [15] provided a rigorous probabilistic polynomial time algorithm
for MIHNP. The work in [15] could match one of the heuristics (Method I) of
Boneh et al. [5], where one requires two-third of the bits of the output to solve
the problem. However, Ling et al. could not theoretically justify the more efficient
heuristic (Method II) by Boneh et al., that requires only one-third of the bits of
the output.

Based on the observation that the algorithm in [15] is not ideal when the num-
ber of samples is relatively small, Xu et al. [26] proposed a heuristic lattice method
by combining Coppersmith’s lattice technique and the priority queue technique.
The corresponding result is δ > 1

2 log2 p, which is better than that of Method I of
Boneh et al in [5] and the rigorous algorithm of Ling et al. in [15], but weaker than
Method II of Boneh et al.

Attack of ICG. In [3,4], Blackburn et al. pointed out that ICG can be attacked in
polynomial time if sufficiently many bits of some consecutive values vi are revealed
by combining lattice method and linearization technique. In PKC 2012, Bauer et
al. [2] improved the work of Blackburn et al. by utilizing Coppersmith’s method.
They showed that the secret seed of ICG can be recovered if more than 1

2 portion
of most significant bits of vi’s are given, i.e., δ > 1

2 log2 p, provided that the number
of samples is sufficiently large. In this paper, we improve the bound of δ. In Table 1,
we compare new bound of δ with the existing bounds for ICG.

Table 1 Comparison of asymptotic lower bound of δ for ICG with existing methods.

Lower bound of δ/log2p

Blackburn et al. [4] 2/3

Bauer et al. [2] 1/2

Our bound 1/3

1.3 Our Contribution

We first translate the recovering problem of the hidden number in MIHNP and
the secret seed of ICG into solving multivariate modular polynomial equations

aij + bijxi + cijxj + xixj = 0 (mod p), 0 ≤ i < j ≤ n

and then, we give three heuristic lattice methods to find the small solutions of the
above modular equations.

In the first strategy, for given n + 1 samples in MIHNP or n + 1 outputs in
ICG, the hidden number or the secret seed can be recovered when the number of
known MSBs

δ >
(1

2
+

1

2n+ 2

)
· log2 p.

4 Jun Xu et al.

The asymptotic bound when n → +∞ is better than the first result of Boneh et
al. in [5] and the rigorous result of Ling et al. in [15], and same as the asymptotic
results in [2, 26]. However, the dimension of the lattices in our first strategy is
polynomial on n but the dimension of the involved lattices in [2,26] is exponential
on n.

In the second strategy, a part of polynomials used for the lattices are linear
combinations of several polynomials, which obtains a larger upper bound for the
desired root. Given n+ 1 samples in MIHNP or n+ 1 outputs in ICG, the hidden
number or the secret seed can be obtained when

δ > (1− F (n, d)) · log2 p

where F (n, d) is defined in Section 5 and parameter d satisfies 1 ≤ d ≤ n. For
integers n and d, there is always δ

log2 p
> 1

3 . Taking d = c ·n for 0 < c ≤ 1
2 , one can

get
δ

log2 p
→ 1

3
when n→ +∞.

This asymptotic bound is superior than the best work on the attack of ICG [26]
and is same as the result of MIHNP in Method II [5]. However, here we explicitly
present lattice construction not given in Method II [5].

In the third strategy, we improve the lattice construction in the second strategy.
Under the situation that n + 1 samples in MIHNP or n + 1 outputs in ICG are
given, one can get the hidden number or the secret seed if

δ > (1− F (n, d, k)) · log2 p

where F (n, d, k) is described in Section 6 and 1 ≤ d ≤ n and k ≥ 1. For integers
n, d, k, there is also always δ

log2 p
> 1

3 . When k = 1, it becomes the second strategy.

When k > 1, it is better than the second strategy as δ
log2 p

is closer to 1
3 in this

strategy. Moreover, δ
log2 p

< 1
2 for n = 4, which is superior to the asymptotic results

in the case that sufficiently many samples are given in [2, 26].

1.4 Organization of the Paper

The rest of this paper is organized as follows. In Section 2, we recall some termi-
nologies and preliminary knowledge. In Section 3, we transform analysis of MIHNP
and attack of ICG into solving a class of modular polynomial equations. In Sections
4, 5 and 6, we respectively present three strategies for solving a class of modu-
lar polynomial equations and give the corresponding applications for MIHNP and
ICG. Section 7 is the conclusion.

2 Preliminaries

Throughout the paper, the set {0, 1, · · · , ps − 1} is denoted as Zps where s is
some positive integer, in case of need, the elements of Zps are also treated as the
corresponding integers.

Solving a Class of Modular Polynomial Equations and its Applications 5

2.1 Order of Monomials

First, we describe reverse lexicographic order and graded lexicographic reverse
order respectively. For more details about the orders of monomials, please refer
to [9]. Let integer vectors In =(i1, · · · , in), Jn =(j1, · · · , jn).

Reverse Lexicographic Order:

In ≺revlex Jn ⇔ the rightmost nonzero entry in In − Jn is negative.

For example,

(0, 0) ≺revlex (3, 0) ≺revlex (1, 1) ≺revlex (0, 2).

Graded Reverse Lexicographic Order:

In ≺grevlex Jn ⇔
n∑

m=1

im <

n∑
m=1

jm or (
n∑

m=1

im =
n∑

m=1

jm and In ≺revlex Jn).

For vectors in the above example, we have

(0, 0) ≺grevlex (1, 1) ≺grevlex (0, 2) ≺grevlex (3, 0).

Next, we define an order of monomials which will be used to arrange the poly-
nomials according to their leading monomials in the following lattice construction.

A New Defined Order:

xi00 x
i1
1 · · ·x

in
n ≺ xj00 x

j1
1 · · ·x

jn
n ⇔ In ≺grelex Jn or (In = Jn and i0 < j0). (1)

For example, f(x0, x1) = a+ bx0 + cx1 + x0x1. According to (1), there is 1 ≺ x0 ≺
x1 ≺ x0x1. Thus, x0x1 is the leading monomial of f(x0, x1).

2.2 Polynomial Coefficients

For positive integers k and n, the coefficient of xs in the expansion of the poly-
nomial (1 + x+ · · ·+ xk)n is called the polynomial coefficient (ns)k+1

, 0 ≤ s ≤ nk.
Namely, we have

(1 + x+ · · ·+ xk)n =
nk∑
s=0

(
n

s

)
k+1

xs,

where (ns)k+1
=

∑
n1+···+knk=s

(n
n−n1−···−nk,n1,··· ,nk). Obviously, when k = 1, the

polynomial coefficient (ns)k+1
is the binomial coefficient (ns). When m(k+ 1) ≤ s ≤

(m+ 1)(k + 1)− 1, we have(
n

s

)
k+1

=
m∑
i=0

(−1)i
(
n+ s− i(k + 1)− 1

s− i(k + 1)

)(
n

i

)
,

where m ∈ N. Euler first studied this expansion. For more details on polynomial
coefficients, please refer to [8].

6 Jun Xu et al.

2.3 Lattice

Let the vectors b1, . . . ,bω be linearly independent in Rn, the set

L =
{ ω∑
i=1

kibi, ki ∈ Z
}

is called a lattice with basis vectors b1, · · · ,bω. The dimension and determinant
of L are respectively

dim(L) = ω,det(L) =
√

det(BBT).

Here, B = [bT1 , · · · ,bTω]T is a basis matrix. If B is a square matrix, then det(L) =
|det(B)|. In this paper all lattice basis matrices are square.

It is well known that the LLL algorithm [14] can find a reduced basis of the
lattice as follows.

Lemma 1 ([14]) Let L be a lattice. Within polynomial time, the LLL algorithm

outputs reduced basis vectors v1, . . . ,vω that satisfy

‖v1‖ ≤ ‖v2‖ ≤ · · · ≤ ‖vi‖ ≤ 2
ω(ω−1)

4(ω+1−i) det(L)
1

ω+1−i , 1 ≤ i ≤ ω.

2.4 Coppersmith’s Technique

The Coppersmith technique can be used for finding the small solution of modular
polynomials. Its key step is to generate more modular polynomials with common
root which is the desired solution and then use the lattice reduction algorithms
to obtain integer polynomials with the desired root. In this step, the following
Lemma reformulated by Howgrave-Graham is needed.

Lemma 2 ([12]) Let f(x0, x1, . . . , xn) be an integer polynomial that consists of at

most ω monomials. Let d be a positive integer and the Xi be the upper bound of |xi|
for i = 0, 1, · · · , n. Suppose that

1. f(x0, x1, . . . , xn) = 0 (mod pd),

2. ‖f(x0X0, x1X1, . . . , xnXn)‖ < pd√
ω

,

then f(x0, x1, . . . , xn) = 0 holds over Z.

Now see that ‖f(x0X0, x1X1, . . . , xnXn)‖ in Lemma 2 is the Euclidean norm of
the coefficient vector of the polynomial f(x0X0, x1X1, . . . , xnXn). This is also the
norm of the corresponding row vector of the involved lattice. To obtain at least
n + 1 polynomials with the common desired root (x0, x1, . . . , xn), from Lemma 1
and Lemma 2, we need

2
ω(ω−1)
4(ω−n) · (det(L))

1
ω−n <

pd√
ω

(2)

Since the terms 2
ω(ω−1)
4(ω−n) and

√
ω are much smaller than p, we give the following

simplified condition
det(L) < pd·(ω−n−o(1)),

Solving a Class of Modular Polynomial Equations and its Applications 7

where ω = dim(L). Further, we expect that the obtained integer polynomials are
algebraically independent. Then, we can utilize numerical or symbolic methods
such as the resultant method or the Gröbner basis technique to compute the
desired root (x0, x1, . . . , xn). In this process, the following assumption is used.

Assumption 1. Let g1, · · · , gn+1 ∈ Z[x0, x1, · · · , xn] be the polynomials that are

found by Coppersmith’s technique. Then the ideal generated by the polynomial equations

g1(x0, x1, · · · , xn) = 0, · · · , gn+1(x0, x1, · · · , xn) = 0 has dimension zero.

We consider the above assumption to be true in all the results that will be
presented in this paper. In all the experiments, we observe the correctness of the
assumption. So we collect the roots efficiently using Gröbner basis technique.

We implement programs in SAGE 5.13 on a Linux Mint 12 on a laptop with
Intel(R) Core(TM) i5-4200U CPU @ 1.60GHz, 3 GB RAM and 3 MB Cache.

3 A Class of Modular Polynomial Equations

In this section, we obtain a class of modular polynomial equations with small roots
from the analysis of HIMNP and the attack on ICG respectively.

3.1 Analysis of MIHNP

First, we propose the following problem on the analysis of MIHNP.

Problem 1 For a sufficiently large prime p, consider a hidden number α ∈ Zp and
n + 1 elements t0, t1, . . . , tn ∈ Zp \ {−α}, chosen independently and uniformly at
random. The goal is to recover α given n+ 1 samples{(

ti,MSBδ((α+ ti)
−1 mod p)

)}n
i=0

for some k > 0.

Next, we transform Problem 1 into solving simultaneous modular equations
with small roots. Since the MSBδ((α + ti)

−1 mod p)) (i.e., δ many MSBs of the
integers (α + ti)

−1 mod p) are known, we let ui = MSBδ((α + ti)
−1 mod p)) and

can write ui + xi = (α + ti)
−1 mod p where ui is known and xi is unknown for

i = 0, 1, · · · , n. Rearranging the above relations, we get

(α+ ti)(ui + xi) = 1 (mod p).

Further, eliminating α from these equations, we can obtain (n+1
2) modular equa-

tions as follows:

aij + bijxi + cijxj + xixj = 0 (mod p), 0 ≤ i < j ≤ n, (3)

where
aij = uiuj + (ui − uj)(ti − tj)−1 mod p,

bij = uj + (ti − tj)−1 mod p,

cij = ui − (ti − tj)−1 mod p.

Since δ many MSBs of (α + ti)
−1 mod p are known, we have 0 ≤ xi ≤ p

2δ
for

0 ≤ i ≤ n. It is easy to see that we can recover the hidden number α once xi’s are
obtained.

8 Jun Xu et al.

3.2 Recovering Seed Attack on ICG

First, let us recall ICG. For a given prime p, the generator function of ICG is
f(x) = ax−1 + b (mod p) where a, b ∈ Zp. Input a secret seed v0 to the recursive
relation vi+1 = f(vi) for 0 ≤ i ≤ n. Then outputs are MSBδ(vi+1) (i.e., δ many
MSBs of vi+1) for some δ > 0. Naturally, one concerns with the attack on recovering
the secret seed. In other words, one will consider the following concrete problem.

Problem 2 For a sufficiently large prime p, the goal is to recover the seed v0 given
n+ 1 ICG outputs {

MSBδ(vi+1)
}n
i=0

.

Then, let us translate Problem 2 into finding small roots of modular equations.
According to the relations vi+1 = av−1

i + b (mod p) for 0 ≤ i ≤ n, we have

a+ bvi − vivi+1 = 0 mod p, i = 0, 1, · · · , n.

From these relations, we can use the resultant method and generate relations

a′ij + b′ijvi + c′ijvj + d′ijvivj = 0 mod p for 0 ≤ i < j ≤ n+ 1, (4)

where a′ij , b
′
ij , c
′
ij , d

′
ij are known. For example we have a + bv1 − v1v2 = 0 mod p

and a + bv2 − v2v3 = 0 mod p. Now we utilize the resultant method to eliminate
the variable v2 and get

ab+ (a+ b2)v1 − av3 − bv1v3 = 0 mod p.

Next, let ui+1 = MSBδ(vi+1), we can write

vi+1 = ui+1 + xi for i = 0, 1, · · · , n (5)

where ui+1 is known and xi is unknown. Now plugging (5) into the relations in
(4), we get the following relations

aij + bijxi + cijxj + xixj = 0 mod p for 0 ≤ i < j ≤ n (6)

where the integers aij , bij , cij are known. Since δ many MSBs of vi are known, we
get 0 ≤ xi ≤ p

2δ
for 0 ≤ i ≤ n. Obviously, if xi’s are found out, we can recover the

seed v0 from (4) and (5).

Note that the forms of equations in (3) and (6) are the same. Therefore, in
order to solve Problems 1 and 2, our goal in the following sequel is to find the
small roots (xi, xj) of the following modular polynomial equations

fij(xi, xj) := aij + bijxi + cijxj + xixj = 0 (mod p), 0 ≤ i < j ≤ n (7)

where x0, x1, · · · , xn are bounded by X. In the cases of MIHNP and ICG, we take
X = p

2δ
where δ is the number of known MSBs.

For our second and third strategies on solving (7) in the sequent sections, we
need to utilize the following assumption.

Solving a Class of Modular Polynomial Equations and its Applications 9

Assumption 2. Assume that the c0,j in equation (7) are independent and uniformly

random in Zp for all j = 1, · · · , n and positive number n2

p is negligible.

Based on Assumption 2, we can deduce that the c0,j are distinct in Zp for all
j = 1, · · · , n with overwhelming probability. Concretely speaking, from the c0,j are
independent and uniformly random in Zp for all j = 1, · · · , n, we have

Pr{all c0,j are distinct mod p for j = 1, · · · , n} =
n−1∏
i=1

(1− i

p
).

Note that n2

p is negligible, we get

n−1∏
i=1

(1− i

p
) ≈ e

−
n−1∑
i=1

i
p

= e−
n(n−1)

2p ≈ 1− n2 − n
2p

,

which is close to 1.

4 The First Strategy on Solving (7)

In this section, we propose the first strategy for solving (7) and give the corre-
sponding application on MIHNP and ICG. First, we present the following heuristic
result, which is verified by our experiments.

Result 1. For given polynomials fij(xi, xj) with 0 ≤ i < j ≤ n in (7), under As-

sumption 1, one can solve (7) in time polynomial in (n, log p) when the bound X of

x0, x1, · · · , xn satisfies

X < p
1
2
− 1

2n+2
−ε1

where ε1 is some positive real number.

Proof. Consider the following set of polynomials

P =

{
p, px0, px1, · · · , pxn, f0,1, · · · , f0,n, · · · , fn−1,n

}
.

Now construct a lattice L using the coefficient vectors of h(x0X,x1X, . . . , xnX) for
each h ∈ P.

Then the matrix M , corresponding to L, is of the form



x0x1 . . . x0xn . . . xn−1xn x0 . . . xn 1

X2 . . . 0 . . . 0 − . . . 0 −
...

. . .
...

...
...

...
. . .

...
...

0 . . . X2 . . . 0 − . . . − −
...

...
...

. . .
...

...
. . .

...
...

0 . . . 0 . . . X2 0 . . . − −
0 . . . 0 . . . 0 Xp . . . 0 0
...

...
...

...
...

...
. . .

...
...

0 . . . 0 . . . 0 0 . . . Xp 0
0 . . . 0 . . . 0 0 . . . 0 p



10 Jun Xu et al.

Here ‘−’ indicates non zero element.
Clearly, the dimension of L is dim(L) = (n+1

2) + n+ 2. Also

det(L) = pn+2 ·
n+1︷ ︸︸ ︷

X · · ·X ·

(n+1
2)︷ ︸︸ ︷

X2 · · ·X2 = pn+2X(n+1)2 .

By the property of LLL algorithm and Howgrave-Graham’s lemma, if the condition
(2) satisfies (here d = 1), i.e., there is(

ω
ω−n

2 2
ω(ω−1)

4 pn
)
· det(L) < pω (8)

where ω = det(L), after reduction of lattice we get n+ 1 polynomials g1, · · · , gn+1

which contain the root (x0, x1, · · · , xn) over integers. Under Assumption 1, we can
find x0, x1, · · · , xn from g1, · · · , gn+1.

Finally, we analyze the situation that the condition (8) holds. Plugging the
determinant and dimension of the lattice L into (8), we get the condition

X <
(
ω
ω−n

2 2
ω(ω−1)

4 pn
)− 1

(n+1)2 · p
1
2
− 1

2n+2 .

Note that ω = (n+1
2) + n+ 2 < (n+ 1)2 for n > 2, we can deduce that(
ω
ω−n

2 2
ω(ω−1)

4 pn
) 1

(n+1)2

< ω
1
2 2

ω−1
4 p

n
(n+1)2 = pε1

where ε1 = 2 log2 ω+(ω−1)
4 log2 p

+ n
(n+1)2

> 0. It implies that the right side of the above

condition on X can be lower bounded by p
1
2
− 1

2n+2
−ε1 . Hence, in order to let (8)

be satisfy, we need

X < p
1
2
− 1

2n+2
−ε1 .

When log2 p� dim(L) and n is large enough, ε1 is negligible.

Note that X = p
2δ

for the situations of MIHNP and ICG. Hence, we have the
following application.

Application 1. Given n + 1 samples in MIHNP or n + 1 outputs in ICG, under

Assumption 1, one can recover the hidden number or the secret seed in time polynomial

in (n, log2 p) if the number δ of known MSBs satisfies

δ

log2 p
>

1

2
+

1

2n+ 2
+ ε1.

Remark 1 It is shown that one can obtain the hidden number in MIHNP if δ
log2 p

>
2
3 for n → ∞ by using the first heuristic method in [5] or the rigorous technique

in [15] respectively. In this section, we need δ
log2 p

> 1
2 for n → ∞. Hence, we get

the better heuristic bound.

Remark 2 It is proved that one can heuristically recover the hidden number in
MIHNP [26] or the secret seed in ICG [2] if δ

log2 p
> 1

2 for n → ∞ using the

idea of Coppersmith. However, the involved lattices dimension in [2, 26] becomes
exponential in n. We achieve the asymptotic bound of [2, 26] when the lattice
dimension is polynomial in n.

Solving a Class of Modular Polynomial Equations and its Applications 11

Remark 3 The asymptotic result of the first strategy is better than those of the
Method I in [5] or the rigorous technique in [15], which is due to that it uses all
basic polynomials fij(xi, xj) with 0 ≤ i < j ≤ n. Although the first strategy gets
the same asymptotic result as [2, 26] when n → ∞, it obtains worse bounds for
given n, which is because that it only utilizes all basic polynomials instead of their
shifts or powers. We present the concrete comparison in Table 4.

Experimental results. The first strategy works successfully with low lattice di-
mensions and we can easily obtain the experimental results for a few values of
n ≤ 14 as given in Table 2. In our experiments, we find out that the condition
det(L) < pω−o(1) is sufficient for the attack in the first strategy.

Table 2 Experimental results of the first strategy on low bounds of δ
log2 p

for 1000-bit p.

n Low bound Asymptotic low bound Low bound Lattice Time in Seconds
1
2

+ 1
2n+2

+ ε1 (theory) 1
2

+ 1
2n+2

(theory) (experiment) Dimension LLL Gröbner basis

4 0.766 0.600 0.602 16 < 1 < 1

6 0.703 0.571 0.573 29 2.70 < 1

8 0.668 0.556 0.558 46 14.78 1.42

10 0.648 0.545 0.548 67 61.22 9.62

12 0.635 0.539 0.541 92 210.12 43.68

14 0.629 0.533 0.536 121 1002.52 161.62

5 The Second Strategy on Solving (7)

In this section, we give the second strategy on Solving (7) and use it to analyze
MIHNP and ICG. First, let us define the notation

F (n, d) =

2d
d∑
s=0

s(ns)

d(d+ 1)
d∑
s=0

(ns) + 2(d+ 1)
d∑
s=0

s(ns)

and the set

I(n, d) = {(i0, i1, · · · , in) | 0 ≤ i0 ≤ d, 0 ≤ i1, · · · , in ≤ 1, 0 ≤ i1 + · · ·+ in ≤ d}

where integers n, d satisfy 0 ≤ d ≤ n. Then, we propose the following heuristic
result, which is also confirmed by our experiments.

Result 2. For given polynomials f0j(x0, xj) with 1 ≤ j ≤ n in (7), under Assumptions

1 and 2, one can solve (7) in polynomial time, if the bound X of x0, x1, · · · , xn satisfies

X < pF (n,d)−ε2

where ε2 is some positive real number.

12 Jun Xu et al.

Proof. First, we construct the polynomial fi0,i1,...,in(x0, x1, · · · , xn) such that the

leading monomial is xi00 x
i1
1 · · ·x

in
n in terms of the defined order (1), where the tuples

(i0, i1, · · · , in) ∈ I(n, d).

Case 1: When i1 + · · ·+ in = 0, we have i1 = · · · = in = 0 and xi00 x
i1
1 · · ·x

in
n = xi00 .

We generate the polynomial

fi0,i1,...,in(x0, x1, · · · , xn) = xi00 . (9)

Clearly, xi00 x
i1
1 · · ·x

in
n is the corresponding leading monomial.

Case 2: When i1 + · · ·+ in ≥ 1, let s = i1 + · · ·+ in, we can write

xi00 x
i1
1 · · ·x

in
n = xi00 · (xj1 · · ·xjs)

where 1 ≤ s ≤ d and 1 ≤ j1 < · · · < js ≤ n. For example,

x20x
1
1x

0
2x

1
3x

1
4 = x20 · (x1x3x4).

Here n = 4, s = 3, and xj1 = x1, xj2 = x3, xj3 = x4. Then, we construct the
polynomial fi0,i1,...,in according to the following two situations:

Case 2.a: For i0 ≥ s, we generate the polynomial

fi0,i1,...,in(x0, x1, · · · , xn) = xi0−s0 f0,j1 · · · f0,js . (10)

It is easy to see that fi0,i1,...,in(x0, x1, · · · , xn) = 0 mod ps and xi00 x
i1
1 · · ·x

in
n is the

leading monomial in this case.

Case 2.b: For 0 ≤ i0 < s, consider the polynomials

gl(x0, xj1 , · · · , xjs) = (f0,j1 · · · f0,jl−1
) · xjl · (f0,jl+1

· · · f0,js) for l = 1, . . . , s.

It is easy to see that gl(x0, xj1 , · · · , xjs) = 0 mod ps−1 for l = 1, . . . , s. Note that
the polynomials g1, · · · , gs have common monomials

xj1 · · ·xjs , x0 · (xj1 · · ·xjs), · · · , x
s−1
0 · (xj1 · · ·xjs).

We can rewrite the polynomials g1, · · · , gs according to the following way:


g1

g2
...

gs

 = M [j1, · · · , js] ·


xj1 · · ·xjs
x0xj1 · · ·xjs

...

xs−1
0 xj1 · · ·xjs

+



h1

h2
...

hs


. (11)

Here, the polynomial hl (1 ≤ l ≤ s) is composed of the terms in gl except for the
corresponding terms of the above common monomials and the matrix

M [j1, · · · , js] =


σs−1(∧1) · · · σ1(∧1) 1

σs−1(∧2) · · · σ1(∧2) 1

· · ·
σs−1(∧s) · · · σ1(∧s) 1



Solving a Class of Modular Polynomial Equations and its Applications 13

where σi(∧l) is the i-th elementary symmetric polynomial on

∧l := (c0,j1 , · · · , c0,jl−1
, c0,jl+1

, · · · , c0,js)

with 1 ≤ i ≤ s− 1 and 1 ≤ l ≤ s. Let us continue with the monomial x20x
1
1x

0
2x

1
3x

1
4.

We first construct

g1 = x1 · (f0,3f0,4), g2 = x3 · (f0,1f0,4), g3 = x4 · (f0,1f0,3),

which have common monomials x1x3x4, x0x1x3x4, x
2
0x1x3x4. Then, we get

g1

g2

g3

 =


c0,3c0,4 c0,3 + c0,4 1

c0,1c0,4 c0,1 + c0,4 1

c0,1c0,3 c0,1 + c0,3 1




x1x3x4

x0x1x3x4

x20x1x3x4

+


h1

h2

h3

 .

We can compute out the determinant of the matrix M [j1, · · · , js] by mathe-
matical induction, i.e.,

det(M [j1, · · · , js]) =
∏

1≤l<t≤s
(c0,jl − c0,jt).

Under Assumption 2, we have obtained that all c0,j are distinct in Zp for j =
1, · · · , n with overwhelming probability. Then, det(M [j1, · · · , js]) is coprime to
prime p and hence any power of p, and the inverse of M [j1, · · · , js] exists mod the
power of p. Let integer matrix U [j1, · · · , js] be the inverse of matrix M [j1, · · · , js]
mod ps−1, i.e.,

U [j1, · · · , js] ·M [j1, · · · , js] = Is (mod ps−1).

Multiplying (11) by U [j1, · · · , js] from the left and taking modulo ps−1 on both
sides, we get

U [j1, · · · , js] ·



g1

g2
...

gs


≡


xj1 · · ·xjs
x0xj1 · · ·xjs

...

xs−1
0 xj1 · · ·xjs

+ U [j1, · · · , js] ·



h1

h2
...

hs


(mod ps−1). (12)

Let (ui0+1,1, · · · , ui0+1,s) be the (i0 + 1)-th row of U [j1, · · · , js], where 0 ≤ i0 ≤
s− 1. Then, we form the polynomial

fi0,i1,...,in(x0, x1, · · · , xn) = ui0+1,1 · g1 + · · ·+ ui0+1,s · gs. (13)

Since that gl(x0, x1, · · · , xn) = 0 mod ps−1 for all 1 ≤ l ≤ s, there is

fi0,i1,...,in(x0, x1, . . . , xn) = 0 mod ps−1.

Moreover, the leading monomial of fi0,i1,...,in(x0, x1, · · · , xn) in this situation is

also xi00 x
i1
1 · · ·x

in
n which is analyzed in Appendix A.

14 Jun Xu et al.

Next, we utilize the idea of Coppersmith’s technique and construct the lattice
L(n, d) using the coefficient vectors of the polynomials hi0,i1,··· ,in(x0, x1, · · · , xn)

=


pd · fi0,i1,...,in(x0X0, x1X1, · · · , xnXn) Case 1

pd−s · fi0,i1,...,in(x0X0, x1X1, · · · , xnXn) Case 2.a

pd+1−s · fi0,i1,...,in(x0X0, x1X1, · · · , xnXn) Case 2.b

where s = i1 + · · ·+ in. Obviously, for all tuples (i0, i1, · · · , in) ∈ I(n, d), there are

hi0,i1,··· ,in(x0, x1, · · · , xn) = 0 mod pd.

We arrange these polynomials according to the leading monomials and can make
the corresponding basis matrix be a lower triangular. It is easy to see that the
dimension of L(n, d) is equal to the number of vectors in I(n, d), i.e.,

dim(L(n, d)) = (d+ 1)
d∑
s=0

(
n

s

)
. (14)

We can compute the determinant of L(n, d) as

det(L(n, d)) = pα(n,d) ·Xβ(n,d), (15)

where

α(n, d) = d(d+ 1)
d∑
s=0

(
n

s

)
− d

d∑
s=0

s

(
n

s

)
and

β(n, d) =
d(d+ 1)

2

d∑
s=0

(
n

s

)
+ (d+ 1)

d∑
s=0

s

(
n

s

)
.

The detail computation is left in Appendix B. By the property of LLL algorithm
and Howgrave-Graham’s lemma, if the condition (2) satisfies, namely,(

ω
ω−n

2 2
ω(ω−1)

4 pdn
)
· det(L(n, d)) < pdω (16)

where ω = dimL(n, d), after reduction of lattice we get n + 1 polynomials which
contain the root (x0, x1, · · · , xn) over integers. Under Assumption 1, we can find
x0, x1, · · · , xn.

Finally, we analyze the case that (16) holds. Plugging (14) and (15) into (16),
we obtain the condition

X <
(
ω
ω−n

2 2
ω(ω−1)

4 pdn
)− 1

β(n,d)

· p
dω−α(n,d)
β(n,d) .

The right side of this condition can be lower bounded by pF (n,d)−ε2 where ε2 =
2 log2 ω+(ω−1)
2(d+2) log2 p

+ dn
β(n,d) > 0. The detail analysis is given in Appendix C. Therefore,

in order to make (16) hold, we need

X < pF (n,d)−ε2 .

If d log2 p� dim(L(n, d)) and β(n, d)� nd, ε2 is negligible.

Solving a Class of Modular Polynomial Equations and its Applications 15

Since X = p
2δ

about the cases of MIHNP and ICG, we give the following
application.

Application 2. Given n + 1 samples in MIHNP or n + 1 outputs in ICG, under

Assumptions 1 and 2, we can recover the hidden number or the secret seed in polynomial

time when the number δ of known MSBs satisfies

δ

log2 p
≥ 1− F (n, d) + ε2. (17)

Remark 4 From
d∑
s=0

s(ns) ≤ d
d∑
s=0

(ns) and 1 ≤ d ≤ n, we can deduce

F (n, d) =

2d
d∑
s=0

s(ns)

d(d+ 1)
d∑
s=0

(ns) + 2(d+ 1)
d∑
s=0

s(ns)

<
2d

3d+ 3
≤ 2n

3n+ 3
<

2

3
.

According to (17), we get δ
log2 p

> 1
3 .

Remark 5 When d� n, we have

F (n, d) =

2d
d∑
s=0

s(ns)

d(d+ 1)
d∑
s=0

(ns) + 2(d+ 1)
d∑
s=0

s(ns)

=
2d2(nd)(1 + o(1))

3d(d+ 1)(nd)(1 + o(1))
.

Taking d = c ·n where 0 < c ≤ 1
2 , there is F (n, d)→ 2

3 when n→ +∞. According to

(17), we have δ
log2 p

→ 1
3 . This asymptotic result is better than those in [2,15,26],

the first result of Boneh et al. in [5] and the result of the first strategy in Section
4, and same as the second result in [5], which however did not give an explicit
lattice construction.

Experimental results. The second strategy works efficiently with low lattice di-
mensions and we present our experimental results given in Table 3. In these ex-
periments, we observe that the condition det(L(n, d)) < pd·dim(L(n,d)) is sufficient
to find the desired solutions with an exception where (n, d) = (3, 2). We can see
that the experiment values are better than the corresponding theoretical results
in most cases.

Table 3 Experimental results of the second strategy on low bounds of δ
log2 p

for 1000-bit p.

n d Low bound Asymptotic low bound Low bound Lattice Time in Seconds

1 − F (n, d) + ε2 (theory) 1 − F (n, d) (theory) (experiment) Dimension LLL Gröbner basis

3 2 0.754 0.625 0.630 21 < 1 < 1

4 3 0.651 0.585 0.555 60 29.57 < 1

5 3 0.613 0.562 0.525 104 1105.61 14.29

6 3 0.594 0.548 0.505 168 11742.05 149.82

6 4 0.581 0.538 0.485 285 285205.42 639.05

16 Jun Xu et al.

Comparison. In Table 4 and Table 5, we compare the result between the second
strategy and the existing works. The symbols “− ” and “× ” respectively denote
that the concrete result was not given and the concrete situation can not be reached
in the corresponding paper. In Table 4, we compute the needed minimum value of
the ratio δ

log2 p
for the fixed n. In Table 5, we present the needed smallest n for the

fixed δ
log2 p

. The corresponding d is optimal in our second strategy. For n ≥ 9, we

can see that the ratio δ
log2 p

< 1/2, which is better than the results in [2,15,26], the

first work in [5] and the result in the first strategy. Interestingly, the ratio δ
log2 p

in our result is close to 1
3 when n ≥ 100.

Table 4 The minimum value of δ
log2 p

for fixed n

``````Results
n

1 2 3 4 5 6 7 8 9

[5] - - - - - - - - -

[2] 0.6667 0.5714 0.5333 0.5161 0.5079 0.5039 0.5020 0.5010 0.5005

[15] 0.8889 0.7778 0.7407 0.7222 0.7111 0.7037 0.6984 0.6944 0.6914

[26] 0.6667 0.5417 0.5083 0.5014 0.5002 0.5000 0.5000 0.5000 0.5000

The First Strategy 0.7500 0.6667 0.6250 0.6000 0.5833 0.5714 0.5625 0.5556 0.5500

The Second Strategy
0.7500 0.6667 0.6250 0.5841 0.5611 0.5378 0.5220 0.5073 0.4953

d = 1 d = 2 d = 2, 3 d = 3 d = 3 d = 4 d = 4 d = 5 d = 5

Table 5 The smallest n needed for fixed δ
log2 p

hhhhhhhhhhResults

δ
log2 p 0.6678 0.5714 0.5005 0.4953 0.4276 0.3782 0.3419

[5, Method I] − × × × × × ×
[5, Method II] − − − − − − −

[15] 200 × × × × × ×
[2] 1 2 9 × × × ×
[26] 1 2 8 × × × ×

The First Strategy 2 6 999 × × × ×
The Second Strategy 2 3 9 9 20 50 100

6 The Third Strategy on Solving (7)

In this section, we give the third strategy for solving (7) and present further
improvement on analyzing MIHNP and ICG. First, let us define notations

F (n, d, k) =
(2dk+1)

dk∑
s=0

s(ns)k+1
−n

k∑
i=0

min{dk−i,(n−1)k}∑
s=0

i2(n−1
s )

k+1

(dk+1)dk
dk∑
s=0

(ns)k+1
+2(dk+1)

dk∑
s=0

s(ns)k+1

,

and I(n, d, k)

=
{

(i0, i1, · · · , in), 0 ≤ i0 ≤ dk, 0 ≤ i1, · · · , in ≤ k, 0 ≤ i1 + · · ·+ in ≤ dk
}



Solving a Class of Modular Polynomial Equations and its Applications 17

where integers n, d, k satisfy 0 ≤ d ≤ n and k ≥ 1. Then, we give the following
heuristic result, which is also certified by the corresponding experiments.

Result 3. For given polynomials f0j(x0, xj) with 1 ≤ j ≤ n in (7), under Assumptions

1 and 2, one can solve (7) in polynomial time, if the bound X of x0, x1, · · · , xn satisfies

X < pF (n,d,k)−ε3

where ε3 is some positive real number.

Proof. First, we generate the polynomial fi0,i1,··· ,in(x0, x1, · · · , xn) such that the

leading monomial is xi00 x
i1
1 · · ·x

in
n in terms of the defined order (1), where all

(i0, i1, · · · , in) ∈ I(n, d, k). Let m = max{i1, · · · , in}, we discuss the following t-
wo situations in accordance with m.

Case 1: When m = 0, we have i1 = · · · = in = 0. In this case, we generate

fi0,i1,··· ,in(x0, x1, · · · , xn) = xi00 .

Case 2: When m > 0, we classify variables x1, · · · , xn in monomial xi00 x
i1
1 · · ·x

in
n

according to their exponents. Let 1 ≤ s1 ≤ s2 ≤ · · · ≤ sm ≤ n and

{xj1 , · · · , xjs1 } ⊆ {xj1 , · · · , xjs2 } ⊆ · · · ⊆ {xj1 , · · · , xjsm } ⊆ {x1, · · · , xn}

where the corresponding exponents of the variables in {xj1 , · · · , xjst } are greater
than or equal to (m− t+ 1) for t = 1, 2, · · · ,m. Thus, we can rewrite

xi00 x
i1
1 · · ·x

in
n = xi00 · (xj1 · · ·xjs1 ) · (xj1 · · ·xjs2 ) · · · (xj1 · · ·xjsm ). (18)

It is easy to see that i1 + · · ·+ in = s1 + · · ·+ sm. For example,

x40x
2
1x

3
2x

4
3 = x40 · x3 · (x3x2) · (x3x2x1) · (x3x2x1).

Here n = 3, m = 4, s1 = 1, s2 = 2, s3 = s4 = 3 and xj1 = x3, xj2 = x2, xj3 = x1.

Case 2.a: For i0 ≥ (s1 + · · ·+ sm), we generate fi0,i1,...,in(x0, x1, · · · , xn) which is
equal to

x
i0−(s1+···+sm)
0 · (f0,j1 · · · f0,js1 ) · (f0,j1 · · · f0,js2 ) · · · (f0,j1 · · · f0,jsm ).

It is easy to deduce that fi0,i1,...,in(x0, x1, · · · , xn) = 0 mod pi1+···+in due to i1 +

· · ·+ in = s1 + · · ·+sm and xi00 x
i1
1 · · ·x

in
n is the leading monomial of the polynomial

fi0,i1,...,in(x0, x1, · · · , xn) from (18).

Case 2.b: For i0 < (s1 + · · · + sm), for the sake of analysis, define the variable
set St = {xj1 , · · · , xjst } and introduce the new notation g(xi0;St) which is a poly-

nomial generated by the second strategy such that xi0 · (xj1 · · ·xjst ) is the leading
monomial for t = 1, · · · ,m.

When the integer l satisfies (s1 + · · ·+ sl) ≤ i0 < (s1 + · · ·+ sl + sl+1) where
0 ≤ l ≤ m− 1, we construct the polynomial fi0,i1,...,in(x0, x1, · · · , xn) as follows:(
g(xs10 ;S1) · · · g(xsl0 ;Sl)

)
· g(xi0−(s1+···+sl)

0 ;Sl+1) ·
(
g(x00;Sl+2) · · · g(x00;Sm)

)
. (19)



18 Jun Xu et al.

Let us consider the monomial x40x
2
1x

3
2x

4
3. Then we have

S1 = {x3}, S2 = {x2, x3}, S3 = S4 = {x1, x2, x3}.

Note that (s1 + s2) < i0 = 4 < (s1 + s2 + s3), thus l = 2 in this example. Then, we
construct the polynomial

f3,2,3,4(x0, x1, x2, x3) := g(x10;S1) · g(x20;S2) · g(x10;S3) · g(x00;S4).

In this situation, the leading monomial of the polynomial in (19) is xi00 x
i1
1 · · ·x

in
n

and fi0,i1,...,in(x0, x1, · · · , xn) = 0 mod p(i1+···+in)−(m−l). The corresponding anal-
ysis is given in Appendix D.

Next, we construct a lattice L(n, d, k) using coefficient vectors of the polyno-
mials hi0,i1,...,in(x0, x1, · · · , xn) which are respectively equal to

pdk · fi0,i1,...,in(x0X0, x1X1, · · · , xnXn) Case 1

pdk−(i1+···+in) · fi0,i1,...,in(x0X0, x1X1, · · · , xnXn) Case 2.a

pdk−(i1+···+in)+(m−l) · fi0,i1,...,in(x0X0, x1X1, · · · , xnXn) Case 2.b

where m = max{i1, · · · , in} and 0 ≤ l ≤ m− 1. Clearly, we have

hi0,i1,··· ,in(x0, x1, · · · , xn) = 0 mod pdk

for all (i0, i1, . . . , in) ∈ I(n, k, d). We arrange all polynomials according to the order
of the leading monomials and make the basis matrix of L(n, d, k) lower triangular.

Then, we directly give the following formule and leave the concrete computation
on the dimension and determinant of L(n, d, k) in Appendix E:

dim(L(n, d, k)) = (dk + 1)
dk∑
s=0

(
n

s

)
k+1

(20)

and
det(L(n, d, k)) = pα(n,d,k) ·Xβ(n,d,k) (21)

where α(n, d, k)=

dk(dk+1)
dk∑
s=0

(
n

s

)
k+1

+
n

2

k∑
i=0

min{dk−i,(n−1)k}∑
s=0

i2

(
n− 1

s

)
k+1

− 2dk + 1

2

dk∑
s=0

s

(
n

s

)
k+1

and

β(n, d, k) =
dk(dk + 1)

2

dk∑
s=0

(
n

s

)
k+1

+ (dk + 1)
dk∑
s=0

s

(
n

s

)
k+1

.

By the property of LLL algorithm and Howgrave-Graham’s lemma, if the condition
(2) satisfies, namely,(

ω
ω−n

2 2
ω(ω−1)

4 pdkn
)
· det(L(n, d, k)) < pdkω (22)

where ω = dimL(n, d, k), after reduction of lattice we obtain n + 1 polynomials
which contain the root (x0, x1, · · · , xn) over integers. Under Assumption 1, we can
find x0, x1, · · · , xn.



Solving a Class of Modular Polynomial Equations and its Applications 19

Finally, we analyze the situation on the condition (22) holds. Plugging (20)
and (21) into (22) and rearranging this relation, we get

X <
(
ω
ω−n

2 2
ω(ω−1)

4 pdkn
)− 1

β(n,d,k)

· p
dkω−α(n,d,k)
β(n,d,k) .

Further, the right side of this condition can be lower bounded by pF (n,d,k)−ε3 where
ε3 = 2 log2 ω+(ω−1)

2(dk+2) log2 p
+ dkn

β(n,d,k) > 0. Its analysis is given in Appendix F. Thus, we

need
X < pF (n,d,k)−ε3 .

Once dk log2 p� dim(L(n, d, k)) and β(n, d, k)� dkn, ε3 is negligible.

From X = p
2δ

about MIHNP and ICG, we can get the following application.

Application 3. Given n + 1 samples in MIHNP or n + 1 outputs in ICG, under

Assumptions 1 and 2, we can recover the hidden number or the secret seed in polynomial

time when the number δ of known MSBs satisfies

δ

log2 p
> 1− F (n, d, k) + ε3. (23)

Remark 6 For any positive integers k, n and d such that 1 ≤ d ≤ n, we can obtain

F (n, d, k) <
(2dk+1)

dk∑
s=0

s(ns)k+1

(dk+1)dk
dk∑
s=0

(ns)k+1
+2(dk+1)

dk∑
s=0

s(ns)k+1

< 2dk+1
3(dk+1) <

2
3 .

According to (23), there is always δ
log2 p

> 1
3 even for sufficiently large positive

integers n, k.

Remark 7 When k = 1, we can deduce that I(n, d, k) = I(n, d) and F (n, d, k) =
F (n, d), which implies that the third strategy for the case of k = 1 is same as the
second strategy.

Experimental results. Our results are presented in Table 6. In these experiments,
we observe that the condition det(L(n, d, k)) < pdk·dimL(n,d,k)) is sufficient to find
the desired roots. We can easily see that the experiment values are slightly better
than the corresponding theoretical results.

Table 6 Experimental results of the third strategy on low bounds of δ
log2 p

for 1000-bit p.

n d k Low bound Asymptotic low bound Low bound Lattice Time in Seconds

1 − F (n, d, k) + ε3 (theory) 1 − F (n, d, k) (theory) (experiment) Dimension LLL Gröbner basis

3 2 2 0.615 0.582 0.570 115 1794.22 139.29

4 2 2 0.590 0.555 0.545 250 46303.96 5493.06

Comparison. In order to give the explicit observation on Corollary 3, we present
the ratio δ

log2 p
for small n and different k in Table 7, where d is optimal for the

corresponding n. We can see that the ratio δ
log2 p

becomes smaller as k is bigger.



20 Jun Xu et al.

We give Table 8 and Table 9 to indicate relations between the ratio δ
log2 p

and
n for optimal d. We have known that the third strategy is same as the second
strategy when k = 1. From Table 8 and Table 9, we can see that the result in the
third strategy for k = +∞ is more ideal than that in the second strategy.

Compared to the works in [2, 26], we can find that the asymptotic result (k =
+∞) of δ

log2 p
in the third strategy is same as those in [2, 26] for n = 1. The

asymptotic results in the third strategy are slightly better than that in [2] but
slightly weaker than that in [26] for n = 2 and 3, and δ

log2 p
< 1/2 for n ≥ 4 in the

third strategy, which is always better than the results in [2, 26].

Table 7 The ratio δ
log2 p

about small n and different k

PPPPk
n

1 2 3 4 5 6

10
0.6818 0.5952 0.5308 0.4980 0.4780 0.4560

d=1 d=2 d=2 d=2 d=2 d=3

20
0.6746 0.5850 0.5230 0.4893 0.4687 0.4492

d=1 d=1 d=2 d=2 d=2 d=3

30
0.6720 0.5806 0.5203 0.4864 0.4654 0.4469

d=1 d=1 d=2 d=2 d=2 d=3

40
0.6707 0.5784 0.5190 0.4849 0.4638 0.4458

d=1 d=1 d=2 d=2 d=2 d=3

50
0.6699 0.5770 0.5182 0.4840 0.4628 0.4451

d=1 d=1 d=2 d=2 d=2 d=3

Table 8 The minimum value of δ
log2 p

for fixed n in the third strategy

PPPPk
n

1 2 3 4 5 6 7 8 9

1
0.7500 0.6667 0.6250 0.5841 0.5611 0.5378 0.5220 0.5073 0.4953

d = 1 d = 2 d = 2, 3 d = 3 d = 3 d = 4 d = 4 d = 5 d = 5

+∞
0.6667 0.5714 0.5085 0.4748 0.4518 0.4369 0.4235 0.4141 0.4066

d = 1 d = 1 d = 2 d = 3 d = 4 d = 3 d = 4 d = 4 d = 5

Table 9 The smallest n needed for fixed δ
log2 p

in the third strategy

``````k
δ/log2 p 0.6678 0.5714 0.5005 0.4953 0.4276 0.3782 0.3419

1 2 3 9 9 20 50 100

+∞ 1 2 4 4 7 16 86

7 Conclusion

We revisited the modular inversion hidden number problem and the inversive
congruential generator. We attacked these two problems by solving small roots of
a class of modular polynomial equations. Here three heuristic strategies based on
Coppersmith’s technique to solve such type of equation system were presented.

Solving a Class of Modular Polynomial Equations and its Applications 21

For analyzing the modular inversion hidden number problem, we gave a concrete
lattice for explaining the best result up to now proposed by Boneh et al., and
further improved the lattice construction such that the requirement of samples
are fewer. Our attacks on inversive congruential generator improve the existing
works.

Acknowledgements.

The authors would like to thank anonymous reviewers for their helpful comments
and suggestions.

References

1. Akavia, A.: Advances in Cryptology - CRYPTO 2009: 29th Annual International Cryp-
tology Conference, Santa Barbara, CA, USA, August 16-20, 2009. Proceedings, chap.
Solving Hidden Number Problem with One Bit Oracle and Advice, pp. 337–354. Springer
Berlin Heidelberg, Berlin, Heidelberg (2009). DOI 10.1007/978-3-642-03356-8 20. URL
http://dx.doi.org/10.1007/978-3-642-03356-8_20

2. Bauer, A., Vergnaud, D., Zapalowicz, J.C.: Inferring sequences produced by nonlinear
pseudorandom number generators using coppersmiths methods. In: M. Fischlin, J. Buch-
mann, M. Manulis (eds.) Public Key Cryptography-PKC 2012, Lecture Notes in Com-
puter Science, vol. 7293, pp. 609–626. Springer Berlin Heidelberg (2012). DOI 10.1007/
978-3-642-30057-8 36. URL http://dx.doi.org/10.1007/978-3-642-30057-8_36

3. Blackburn, S., Gomez-Perez, D., Gutierrez, J., Shparlinski, I.: Predicting the inversive
generator. In: K. Paterson (ed.) Cryptography and Coding, Lecture Notes in Comput-
er Science, vol. 2898, pp. 264–275. Springer Berlin Heidelberg (2003). DOI 10.1007/
978-3-540-40974-8 21. URL http://dx.doi.org/10.1007/978-3-540-40974-8_21

4. Blackburn, S.R., Gomez-perez, D., Gutierrez, J., Shparlinski, I.E.: Predicting nonlinear
pseudorandom number generators. MATH. COMPUTATION 74, 2004 (2004)

5. Boneh, D., Halevi, S., Howgrave-Graham, N.: The modular inversion hidden number prob-
lem. In: ASIACRYPT 2001, pp. 36–51. Springer (2001)

6. Boneh, D., Venkatesan, R.: Hardness of computing the most significant bits of secret keys
in Diffie-Hellman and related schemes. In: CRYPTO 1996, pp. 129–142. Springer (1996)

7. Boyar, J.: Inferring sequences produced by pseudo-random number generators. J. ACM
36(1), 129–141 (1989). DOI 10.1145/58562.59305. URL http://doi.acm.org/10.1145/
58562.59305

8. Comtet, L.: Advanced Combinatorics. D. Reidel Publishing Company (1974)
9. Cox, D.A.: Ideals, varieties, and algorithms: an introduction to computational algebraic

geometry and commutative algebra. Springer (2007)
10. Eichenauer, J., Lehn, J.: A non-linear congruential pseudo random number generator.

Statistische Hefte 27(1), 315–326 (1986). DOI 10.1007/BF02932576. URL http://dx.
doi.org/10.1007/BF02932576

11. Eichenauer-Herrmann, J., Herrmann, E., Wegenkittl, S.: A survey of quadratic and in-
versive congruential pseudorandom numbers, pp. 66–97. Springer New York, New Y-
ork, NY (1998). DOI 10.1007/978-1-4612-1690-2 4. URL http://dx.doi.org/10.1007/
978-1-4612-1690-2_4

12. Howgrave-Graham, N.: Finding small roots of univariate modular equations revisited. In:
Crytography and Coding, pp. 131–142. Springer (1997)

13. Howgrave-Graham, N.A., Smart, N.P.: Lattice attacks on digital signature schemes. De-
signs, Codes and Cryptography 23(3), 283–290 (2001). DOI 10.1023/A:1011214926272.
URL http://dx.doi.org/10.1023/A:1011214926272

14. Lenstra, A.K., Lenstra, H.W., Lovász, L.: Factoring polynomials with rational coefficients.
Mathematische Annalen 261(4), 515–534 (1982)

15. Ling, S., Shparlinski, I.E., Steinfeld, R., Wang, H.: On the modular inversion hidden
number problem. Journal of Symbolic Computation 47(4), 358–367 (2012)

22 Jun Xu et al.

16. Niederreiter, H.: Random Number Generation and Quasi-Monte Carlo Methods. Society
for Industrial and Applied Mathematics (1992). DOI 10.1137/1.9781611970081. URL
http://epubs.siam.org/doi/abs/10.1137/1.9781611970081

17. Niederreiter, H.: New developments in uniform pseudorandom number and vector gener-
ation. In: H. Niederreiter, P.S. Shiue (eds.) Monte Carlo and Quasi-Monte Carlo Meth-
ods in Scientific Computing, Lecture Notes in Statistics, vol. 106, pp. 87–120. Springer
New York (1995). DOI 10.1007/978-1-4612-2552-2 5. URL http://dx.doi.org/10.1007/
978-1-4612-2552-2_5

18. Niederreiter, H., Rivat, J.: On the correlation of pseudorandom numbers generated by
inversive methods. Monatshefte für Mathematik 153(3), 251–264 (2008). DOI 10.1007/
s00605-007-0503-3. URL http://dx.doi.org/10.1007/s00605-007-0503-3

19. Niederreiter, H., Shparlinski, I.: Recent advances in the theory of nonlinear pseudorandom
number generators. In: K.T. Fang, H. Niederreiter, F. Hickernell (eds.) Monte Carlo and
Quasi-Monte Carlo Methods 2000, pp. 86–102. Springer Berlin Heidelberg (2002). DOI
10.1007/978-3-642-56046-0 6. URL http://dx.doi.org/10.1007/978-3-642-56046-0_6

20. Niederreiter, H., Winterhof, A.: On the Structure of Inversive Pseudorandom Number
Generators, pp. 208–216. Springer Berlin Heidelberg, Berlin, Heidelberg (2007). DOI 10.
1007/978-3-540-77224-8 25. URL http://dx.doi.org/10.1007/978-3-540-77224-8_25

21. Pirsic, G., Winterhof, A.: On the structure of digital explicit nonlinear and inver-
sive pseudorandom number generators. Journal of Complexity 26(1), 43 – 50 (2010).
DOI http://dx.doi.org/10.1016/j.jco.2009.07.001. URL http://www.sciencedirect.com/
science/article/pii/S0885064X09000661

22. Shparlinski, I.E.: Playing hide-and-seek with numbers: the hidden number problem, lat-
tices, and exponential sums. In: proceeding of symposia in applied mathematics, vol. 62,
pp. 153–177 (2005)

23. Stern, J.: Secret linear congruential generators are not cryptographically secure. In: Foun-
dations of Computer Science, 1987., 28th Annual Symposium on, pp. 421–426 (1987).
DOI 10.1109/SFCS.1987.51

24. Topuzoğlu, A., Winterhof, A.: On the linear complexity profile of nonlinear congruential
pseudorandom number generators of higher orders. Applicable Algebra in Engineering,
Communication and Computing 16(4), 219–228 (2005). DOI 10.1007/s00200-005-0181-0.
URL http://dx.doi.org/10.1007/s00200-005-0181-0

25. Winterhof, A.: Recent Results on Recursive Nonlinear Pseudorandom Number Gen-
erators, pp. 113–124. Springer Berlin Heidelberg, Berlin, Heidelberg (2010). DOI
10.1007/978-3-642-15874-2 9. URL http://dx.doi.org/10.1007/978-3-642-15874-2_9

26. Xu, J., Hu, L., Huang, Z., Peng, L.: Modular inversion hidden number problem revisited.
In: Information Security Practice and Experience, pp. 537–551. Springer (2014)

A The leading monomial of the polynomial in (13)

From (12) and (13), we can deduce

fi0,i1,...,in (x0, x1, · · · , xn) = xi00 · (xj1 · · ·xjs) + ui0+1,1 · h1 + · · ·+ ui0+1,s · hs.

Since that xi00 x
i1
1 · · ·x

in
n is written as xi00 · (xj1 · · ·xjs), thus, our goal is to analyze xi00 ·

(xj1 · · ·xjs) is the leading monomial of fi0,i1,...,in (x0, x1, · · · , xn). Note that the polynomial
hl (1 ≤ l ≤ s) is composed of the terms in gl except for the corresponding terms of monomials

xj1 · · ·xjs , x0 · (xj1 · · ·xjs), · · · , xs−1
0 · (xj1 · · ·xjs).

Let xl00 xk1 · · ·xkt be a monomial of ui0+1,1 · h1 + · · · + ui0+1,s · hs. Hence, we can obtain
{k1, · · · , kt} ⊂ {j1, . . . , js} where t < s. According to the defined order (1), there is

xl00 · (xk1 · · ·xkt) ≺ x
i0
0 · (xj1 · · ·xjs),

which implies that the leading monomial of fi0,i1,...,in (x0, x1, · · · , xn) is xi00 · (xj1 · · ·xjs).

Solving a Class of Modular Polynomial Equations and its Applications 23

B Computation of the Determinant of L(n, d)

Note that the determinant of L(n, d) is product of the diagonal entries. For the case 1, the
contribution of hi0,i1,··· ,in (x0, x1, · · · , xn) to the determinant of L(n, d) is

d∏
i0=0

(
pd ·Xi0

)
.

For the case 2.a, the contribution of hi0,i1,··· ,in (x0, x1, · · · , xn) to the determinant of L(n, d)
is given by:

d∏
i0=s

d∏
s=1

(
p
(d−s)

(
n
s

)
·X(i0+s)

(
n
s

))
.

For the case 2.b, the contribution of fi0,i1,··· ,in (x0X,x1X, · · · , xnX) is:

d∏
s=1

s−1∏
i0=0

(
p
(d+1−s)

(
n
s

)
·X(i0+s)

(
n
s

))
.

To sum up, we get

det(L(n, d)) = pα(n,d) ·Xβ(n,d),

where α(n, d) = d(d+ 1)
d∑
s=0

(n
s

)
− d

d∑
s=0

s
(n
s

)
and β(n, d) =

d(d+1)
2

d∑
s=0

(n
s

)
+ (d+ 1)

d∑
s=0

s
(n
s

)
.

C Computation on pF (n,d)−ε2

Our goal is to derive a lower bound of

(
ω
ω−n

2 2
ω(ω−1)

4 pdn
)− 1

β(n,d)

· p
dω−α(n,d)
β(n,d) .

First, from the values β(n, d) =
d(d+1)

2

d∑
s=0

(n
s

)
+ (d+ 1)

d∑
s=0

s
(n
s

)
and ω = dim(L(n, d)) =

(d+ 1)
d∑
s=0

(n
s

)
, we get ω

β(n,d)
< 2

d+2
. Further, there is

(
ω
ω−n

2 2
ω(ω−1)

4 pdn
) 1
β(n,d)

< ω
1
d+2 2

ω−1
2(d+2) p

dn
β(n,d) = pε2 ,

where ε2 =
2 log2 ω+ω−1
2(d+2) log2 p

+ dn
β(n,d)

.

Second, plugging the values ω, α(n, d) and β(n, d) into
dω−α(n,d)
β(n,d)

, we get that

dω − α(n, d)

β(n, d)
=

2d
d∑
s=0

s
(n
s

)
d(d+ 1)

d∑
s=0

(n
s

)
+ 2(d+ 1)

d∑
s=0

s
(n
s

) = F (n, d).

Thus, (
ω
ω−n

2 2
ω(ω−1)

4 pdn
)− 1

β(n,d)

· p
dω−α(n,d)
β(n,d) > pF (n,d)−ε2 .

24 Jun Xu et al.

D Analysis of the polynomial in (19)

First, we analyze the leading monomial of the polynomial. We know that the leading monomial
of the polynomial in (19) is the product of the leading monomials of the following polynomials:

g(xs10 ;S1), · · · , g(xsl0 ;Sl), g(x
i0−(s1+···+sl)
0 ;Sl+1), g(x00;Sl+2), · · · , g(x00;Sm).

Note that the leading monomials of g(xs10 ;S1), · · · , g(xsl0 ;Sl) are respectively

xs1 · (xj1 · · ·xjs1), · · · , xsl · (xj1 · · ·xjsl),

the leading monomial of g(x
i0−(s1+···+sl)
0 ;Sl+1) is xi0−(s1+···+sl) · (xj1 · · ·xjsl+1

) and the

leading monomials of g(x00;Sl+2), · · · , g(x00;Sm) are respectively

(xj1 · · ·xjsl+2
), · · · , (xj1 · · ·xjsm).

It is easy to compute that the leading monomial of the polynomial in (19) is

xi0 · (xj1 · · ·xjs1) · (xj1 · · ·xjs2) · · · (xj1 · · ·xjsm)

which is equal to xi00 x
i1
1 · · ·x

in
n from (18) directly. Hence, the leading monomial of the poly-

nomial in (19) is xi00 x
i1
1 · · ·x

in
n .

Next, we show that the polynomial in (19) has the following relation

fi0,i1,...,in (x0, x1, · · · , xn) = 0 mod p(i1+···+in)−(m−l).

Note that the polynomials in (19) are composed of the polynomials generated by the second
strategy. From |S1| = s1, · · · , |Sl| = sl, we have

g(xs10 ;S1) = 0 mod ps1 , · · · , g(xsl0 ;Sl) mod psl .

From s1 + · · ·+ sl ≤ i0 < (s1 + · · ·+ sl) + sl+1, we get 0 ≤ i0− (s1 + · · ·+ sl) < sl+1 = |Sl+1|,
thus there is

g(x
i0−(s1+···+sl)
0 ;Sl+1) = 0 mod psl+1−1.

According to |Sm| ≥ · · · ≥ |Sl+2| ≥ |Sl+1| = sl+1 > 0, we obtain

g(x00;Sl+2) = 0 mod psl+2−1, · · · , g(x00;Sm) = 0 mod psm−1.

Therefore, we get fi0,i1,...,in (x0, x1, · · · , xn) = 0 mod p(s1+···+sm)+(m−l). From (18), we have
s1 + · · ·+ sm = i1 + · · ·+ in. Hence

fi0,i1,...,in (x0, x1, · · · , xn) = 0 mod p(i1+···+in)−(m−l).

E Computation on Dimension and Determinant of L(n, d, k)

Let
S(n, d, k) = {(i1, · · · , in), 0 ≤ i1, · · · , in ≤ k, 0 ≤ i1 + · · ·+ in ≤ dk}.

Denote |S(n, d, k)| is the cardinality of S(n, d, k). Note that |S(n, d, k)| can also be regarded
as the sum of coefficients of the xs in the expansion of the polynomial (1 + x + · · · + xk)n,

s = 0, 1, · · · , dk. Namely, |S(n, d, k)| =
dk∑
s=0

(n
s

)
k+1

.

First, we compute the dimension of L(n, d, k). Clearly, the dimension of the lattice L(n, d, k)
is equal to the number of vectors in I(n, d, k), which can be expressed as (dk+ 1) · |S(n, d, k)|,
Therefore,

dim(L(n, d, k)) = (dk + 1)
dk∑
s=0

(n
s

)
k+1

.

Solving a Class of Modular Polynomial Equations and its Applications 25

Then, we compute the determinant of L(n, d, k). Since that the determinant of L(n, d, k)
is product of the diagonal entries where all tuples (i0, i1, · · · , in) ∈ I(n, d, k), we consider the
following cases.

For the case 1 and case 2.a, the contribution of hi0,i1,··· ,in (x0, x1, · · · , xn) to the deter-
minant of L(n, d) is

∏
(i1,··· ,in)∈S(n,d,k)

dk∏
i0=i1+···+in

(
pdk−(i1+···+in) ·Xi0+i1+···+in

)
,

where i1 + · · ·+ in = 0 in the case 1 and i1 + · · ·+ in > 0 in the case 2.a.
For the case 2.b, the contribution of hi0,i1,··· ,in (x0X,x1X, · · · , xnX) is given as follows:

∏
(i1,··· ,in)∈S(n,d,k)

m−1∏
l=0

s1+s2+···+sl+1−1∏
i0=s1+s2+···+sl

(
pdk−(i1+···+in)+(m−l) ·Xi0+i1+···+in

)
,

which can be rearranged as

∏
(i1,··· ,in)∈S(n,d,k)

pm−1∑
l=0

(m−l)sl+1

·
i1+···+in−1∏

i0=0

(
pdk−(i1+···+in) ·Xi0+i1+···+in

)
according to the relation s1 + · · ·+ sm = i1 + · · ·+ in in (18).

Thus, we can get that det(L(n, d, k)) =

∏
(i1,··· ,in)∈S(n,d,k)

pm−1∑
l=0

(m−l)sl+1

·
dk∏
i0=0

(
pdk−(i1+···+in) ·Xi0+i1+···+in

) .

First, let us compute
∏

(i1,··· ,in)∈S(n,d,k)

dk∏
i0=0

pdk−(i1+···+in). We can deduce that

∑
(i1,··· ,in)∈S(n,d,k)

dk∑
i0=0

(dk − (i1 + · · ·+ in))

= dk(dk + 1) ·
∑

(i1,··· ,in)∈S(n,d,k)
1− (dk + 1) ·

∑
(i1,··· ,in)∈S(n,d,k)

(i1 + · · ·+ in)

= dk(dk + 1)
dk∑
s=0

(n
s

)
k+1
− (dk + 1)

dk∑
s=0

s
(n
s

)
k+1

where s = i1 + · · ·+ in. Hence,

∏
(i1,··· ,in)∈S(n,d,k)

dk∏
i0=0

pdk−(i1+···+in) = p
dk(dk+1)

dk∑
s=0

(
n
s

)
k+1
−(dk+1)

dk∑
s=0

s
(
n
s

)
k+1 .

Second, let us compute
∏

(i1,··· ,in)∈S(n,d,k)

dk∏
i0=0

Xi0+i1+···+in . Note that

∑
(i1,··· ,in)∈S(n,d,k)

dk∑
i0=0

(i0 + i1 + · · ·+ in)

=
dk(dk+1)

2
·

∑
(i1,··· ,in)∈S(n,d,k)

1− (dk + 1) ·
∑

(i1,··· ,in)∈S(n,d,k)
(i1 + · · ·+ in)

=
dk(dk+1)

2

dk∑
s=0

(n
s

)
k+1
− (dk + 1)

dk∑
s=0

s
(n
s

)
k+1

.

26 Jun Xu et al.

Therefore,

∏
(i1,··· ,in)∈S(n,d,k)

dk∏
i0=0

Xi0+i1+···+in = X

dk(dk+1)
2

dk∑
s=0

(
n
s

)
k+1
−(dk+1)

dk∑
s=0

s
(
n
s

)
k+1 .

Third, let us compute
∏

(i1,··· ,in)∈S(n,d,k)
p

m−1∑
l=0

(m−l)sl+1

. We can rewrite

m−1∑
l=0

(m− l)sl+1 =
m−1∑
l=0

(sl+1 − sl)(1 + · · ·+m− l)

where s0 = 0. Note that there are exactly (sl+1 − sl) entries that are equal to (m− l) in the

exponent set {i1, · · · , in} for l = 0, 1, · · · ,m− 1. Hence,
m−1∑
l=0

(sl+1 − sl)(1 + · · ·+m− l) can

be regarded as a rearrangement of (1 + · · · + i1) + · · · + (1 + · · · + in), which is computed as
i1+···+in+i21+···+i

2
n

2
. Therefore,

∑
(i1,··· ,in)∈S(n,d,k)

m−1∑
l=0

(t− l)sl+1 =
∑

(i1,··· ,in)∈S(n,d,k)

i1 + · · ·+ in + i21 + · · ·+ i2n
2

.

We have known
∑

(i1,··· ,in)∈S(n,d,k)
(i1 + · · ·+ in) =

dk∑
s=0

s
(n
s

)
k+1

. Next, we analyze

∑
(i1,··· ,in)∈S(n,d,k)

(
i21 + · · ·+ i2n

)
.

Since ∑
(i1,··· ,in)∈S(n,d,k)

(
i21 + · · ·+ i2n

)
= n ·

∑
(i1,··· ,in)∈S(n,d,k)

i2n

Here, 0 ≤ in ≤ k and 0 ≤ (i1+· · ·+in−1) ≤ min{dk − in, (n− 1)k} as (i1, · · · , in) ∈ S(n, d, k).
Thus, we can rewrite the above relation using polynomial coefficients:

∑
(i1,··· ,in)∈S(n,d,k)

(
i21 + · · ·+ i2n

)
= n ·

k∑
i=0

min{dk−i,(n−1)k}∑
s=0

i2
(n− 1

s

)
k+1

.

Further, we obtain

∏
(i1,··· ,in)∈S(n,d,k)

p

m−1∑
l=0

(m−l)sl+1

= p
n
2
·
k∑
i=0

min{dk−i,(n−1)k}∑
s=0

i2
(
n−1
s

)
k+1

+ 1
2

dk∑
s=0

s
(
n
s

)
k+1 .

According to the above analysis, we get det(n, d, k) = pα(n,d,k) ·Xβ(n,d,k), where α(n, d, k)=

dk(dk + 1)

dk∑
s=0

(n
s

)
k+1

+
n

2

k∑
i=0

min{dk−i,(n−1)k}∑
s=0

i2
(n− 1

s

)
k+1
−

2dk + 1

2

dk∑
s=0

s
(n
s

)
k+1

and

β(n, d, k) =
dk(dk + 1)

2

dk∑
s=0

(n
s

)
k+1

+ (dk + 1)
dk∑
s=0

s
(n
s

)
k+1

.

Solving a Class of Modular Polynomial Equations and its Applications 27

F Computation on pF (n,d,k)−ε3

Our goal is to show a lower bound of(
ω
ω−n

2 2
ω(ω−1)

4 pndk
)− 1

β(n,d,k)

· p
dkω−α(n,d,k)
β(n,d,k)

where ω = dim(L(n, d, k)).
First, from the values dim(L(n, d, k)) and β(n, d, k), we get ω

β(n,d,k)
< 2

dk+2
, furthermore,

(
ω
ω−n

2 2
ω(ω−1)

4 pndk
) 1
β(n,d,k)

< ω
1

dk+2 2
ω−1

2(dk+2) p
ndk

β(n,d,k) = pε3

where ε3 =
2 log2 ω+(ω−1)
2(dk+2) log2 p

+ ndk
β(n,d,k)

.

Second, according to the values α(n, d, k), β(n, d, k), ω and F (n, d, k), we can compute

dkω − α(n, d, k)

β(n, d, k)
= F (n, d, k).

Therefore, there is the following relation(
ω
ω−n

2 2
ω(ω−1)

4 pndk
)− 1

β(n,d,k)

· p
dω−α(n,d,k)
β(n,d,k) > pF (n,d,k)−ε3 .

G Sage Code for the first strategy

n=14

P=ZZ.random_element(2^999,2^1000)
P=next_prime(P)
a=ZZ.random_element(P)
X=[]
B=[]
E=[]
bb=1000-536
for i in range(n+1):

xi=ZZ.random_element(P)
X.append(xi)
yi=(a+xi).inverse_mod(P)
bi=yi-yi%2^bb
ei=yi%2^bb
B.append(bi)
E.append(ei)

R.<z0,z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12,z13,z14>=QQ[]
Z=[z0,z1,z2,z3,z4,z5,z6,z7,z8,z9,z10,z11,z12,z13,z14]
U is the upper bound of the root
U=ZZ.random_element(2^(bb-1),2^(bb))
G=[]
H=[]
for i in range(n+1):

for j in range(i+1,n+1):
Aij=X[i]-X[j]
Bij=X[i]*B[j]-X[j]*B[j]+1
Cij=X[i]*B[i]-X[j]*B[i]-1
Dij=(X[i]-X[j])*B[i]*B[j]+B[i]-B[j]

28 Jun Xu et al.

f=Aij*Z[i]*Z[j]+Bij*Z[i]+Cij*Z[j]+Dij
bn=(Aij).inverse_mod(P)

g=Z[i]*Z[j]+(Bij*bn)%P*Z[i]+(Cij*bn)%P*Z[j]+(Dij*bn)%P
G.append(g)
H=union(H,g.monomials())

for i in range(n+1):
G.append(Z[i]*P)

G.append(1*P)
cc=Set(H).cardinality()
print ’Dimension of the Lattice=’, cc
M=matrix(ZZ,cc,cc,range(cc*cc))
for i in range(cc):

g=R(G[i])(z0*U,z1*U,z2*U,z3*U,z4*U,z5*U,z6*U,z7*U,z8*U,z9*U,z10*U,z11*U,z12*U,z13*U,z14*U)
for j in range(cc):

cij=g.coefficient(H[j])(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
M[i,j]=cij

tt=cputime()
M=M.LLL()
print ’Time of LLL algorithm’,cputime(tt)
F=[]

M3=[]
for j in range(116):

f1=0
for i in range(cc):

f1=f1+(M[j][i]/H[i](U,U,U,U,U,U,U,U,U,U,U,U,U,U,U))*H[i]

M3.append(f1)

I=(M3)*R
tt=cputime()
B=I.groebner_basis()
print ’Time of Groebner basis’, cputime(tt)
print B[0],E[0]

H Sage Code for the second strategy

P=ZZ.random_element(2^999,2^1000)
P=next_prime(P)

n=4
d=3
a=ZZ.random_element(P)
X=[]
B=[]
E=[]
bb=1000-555
for i in range(n+1):

xi=ZZ.random_element(P)
X.append(xi)
yi=(a+xi).inverse_mod(P)
bi=yi-yi%2^bb

Solving a Class of Modular Polynomial Equations and its Applications 29

ei=yi%2^bb
B.append(bi)

E.append(ei)

R.<z0,z1,z2,z3,z4>=QQ[]
Z=[z0,z1,z2,z3,z4]

G=[]
H=[]
a=0
G2=[]
i=0
for j in range(1,n+1):

Aij=X[0]-X[j]
Bij=X[0]*B[j]-X[j]*B[j]+1
Cij=X[0]*B[0]-X[j]*B[0]-1
Dij=(X[0]-X[j])*B[0]*B[j]+B[0]-B[j]
f=Aij*Z[0]*Z[j]+Bij*Z[0]+Cij*Z[j]+Dij
bn=(Aij).inverse_mod(P)

g=Z[0]*Z[j]+(Bij*bn)%P*Z[0]+(Cij*bn)%P*Z[j]+(Dij*bn)%P
G.append(g)
G2.append([i,j])
H=union(H,g.monomials())

U is the upper bound of the root
U=ZZ.random_element(2^(bb-1), 2^bb)

f=0
for i1 in range(n):

for i2 in range(i1+1,n):
for i3 in range(i2+1,n):

f=f+G[i1]*G[i2]*G[i3]

M=(f).monomials()
ll=len(M)

print ’Dimension of the Lattice=’, ll

F=[]
for i in range(len(M)):

ss=M[i]
s0=diff(M[i],z0)(1,1,1,1,1)
s1=diff(M[i],z1)(1,1,1,1,1)
s2=diff(M[i],z2)(1,1,1,1,1)
s3=diff(M[i],z3)(1,1,1,1,1)
s4=diff(M[i],z4)(1,1,1,1,1)

if(s1+s2+s3+s4==0):
F.append(M[i]*P^d)

30 Jun Xu et al.

else:
s=s1+s2+s3+s4
if(s0>=s):

f=z0^(s0-s)*(G[0])^s1*(G[1])^s2*(G[2])^s3*(G[3])^s4
F.append(f*P^(d-s))

else:
F2=[]
F3=[]
F4=[]
if(s1==1):

F2.append(z1)
F3.append(G[0])

if(s2==1):
F2.append(z2)
F3.append(G[1])

if(s3==1):
F2.append(z3)
F3.append(G[2])

if(s4==1):
F2.append(z4)
F3.append(G[3])

for i in range(len(F2)):
f=1
for j in range(len(F2)):

if(j==i):
f=f*F2[i]

else:
f=f*F3[j]

F4.append(f)

F1=[]
for j in range(s):

F1.append(z0^j*z1^s1*z2^s2*z3^s3*z4^s4)
if(s>1):

R1=IntegerModRing(P^(s-1))
MS=Matrix(R1,s,s,range(s*s))

for j in range(s):
for l in range(s):

MS[j,l]=0

for j in range(s):
for l in range(s):

cjl=(F4[j]).coefficient(F1[l])
cjl=cjl(0,0,0,0,0)
MS[j,l]=cjl

MSIN=MS.inverse()

F5=[]
for l in range(s0,s0+1):

f=0

Solving a Class of Modular Polynomial Equations and its Applications 31

for j in range(s):
f=f+ZZ(MSIN[l][j])*F4[j]

S2=f.monomials()
g=0
for j in range(len(S2)):

cj=f.coefficient(S2[j])
cj=cj(0,0,0,0,0)
cj=cj%P^(s-1)
cj=ZZ(cj)
g=g+cj*S2[j]

f=g
F.append(f*P^(d+1-s))

else:
F.append(F4[j]*P^d)

rr=len(F)
M2=Matrix(ZZ,rr,rr,range(rr*rr))
for i in range(rr):

f=F[i]
f=f(z0*U,z1*U,z2*U,z3*U,z4*U)
for j in range(len(M)):

cij=f.coefficient(M[j])
cij=cij(0,0,0,0,0)
M2[i,j]=cij

tt=cputime()
M2=M2.LLL()
print ’LLL Time’,cputime(tt)
M3=[]
for j in range(25):

f1=0
for i in range(rr):

f1=f1+(M2[j][i]/M[i](U,U,U,U,U))*M[i]
M3.append(f1)

I=(M3)*R
tt=cputime()
B=I.groebner_basis()
print ’Groebner Basis Time’, cputime(tt)
print B[0],E[0]

I Sage Code for the third strategy

P=ZZ.random_element(2^999,2^1000)
P=next_prime(P)

n=3
d=2
k=2
a=ZZ.random_element(P)
X=[]
B=[]
E=[]
bb=1000-570
for i in range(n+1):

xi=ZZ.random_element(P)
X.append(xi)
yi=(a+xi).inverse_mod(P)

32 Jun Xu et al.

bi=yi-yi%2^bb
ei=yi%2^bb
B.append(bi)

E.append(ei)

R.<z0,z1,z2,z3>=QQ[]
Z=[z0,z1,z2,z3]
G=[]
H=[]

G2=[]
for j in range(1,n+1):

Aij=X[0]-X[j]
Bij=X[0]*B[j]-X[j]*B[j]+1
Cij=X[0]*B[0]-X[j]*B[0]-1
Dij=(X[0]-X[j])*B[0]*B[j]+B[0]-B[j]
f=Aij*Z[0]*Z[j]+Bij*Z[0]+Cij*Z[j]+Dij
bn=(Aij).inverse_mod(P)

g=Z[0]*Z[j]+(Bij*bn)%P*Z[0]+(Cij*bn)%P*Z[j]+(Dij*bn)%P
print g(E[0],E[1],E[2],E[3])%P
G.append(g)
G2.append([i,j])
H=union(H,g.monomials())

#U is the upper bound of the root
U=ZZ.random_element(2^(bb-1), 2^bb)

#This is the starting position for polynomial generation for Case 2.b of the paper

M=[]
for i0 in range(n):

for i1 in range(1+1):
for i2 in range(1+1):

for i3 in range(1+1):
if(i1+i2+i3<=n):

M.append(z0^i0*z1^i1*z2^i2*z3^i3)

F33=[]
F44=[]
for i in range(len(M)):

ss=M[i]
s0=diff(M[i],z0)(1,1,1,1)
s1=diff(M[i],z1)(1,1,1,1)
s2=diff(M[i],z2)(1,1,1,1)
s3=diff(M[i],z3)(1,1,1,1)

if(s1+s2+s3==0):
F33.append(M[i])
F44.append(0)

else:

Solving a Class of Modular Polynomial Equations and its Applications 33

s=s1+s2+s3
if(s0>=s):

f=z0^(s0-s)*(G[0])^s1*(G[1])^s2*(G[2])^s3
F33.append(f)
F44.append(s)

else:
F2=[]
F3=[]
F4=[]
if(s1==1):

F2.append(z1)
F3.append(G[0])

if(s2==1):
F2.append(z2)
F3.append(G[1])

if(s3==1):
F2.append(z3)
F3.append(G[2])

for i in range(len(F2)):
f=1
for j in range(len(F2)):

if(j==i):
f=f*F2[i]

else:
f=f*F3[j]

F4.append(f)

F1=[]
for j in range(s):

F1.append(z0^j*z1^s1*z2^s2*z3^s3)

if(s>1):
R1=IntegerModRing(P^(s-1))
MS=Matrix(R1,s,s,range(s*s))

for j in range(s):
for l in range(s):

MS[j,l]=0

for j in range(s):
for l in range(s):

cjl=(F4[j]).coefficient(F1[l])
cjl=cjl(0,0,0,0)
MS[j,l]=cjl

MSIN=MS.inverse()

F5=[]
for l in range(s0,s0+1):

f=0
for j in range(s):

f=f+ZZ(MSIN[l][j])*F4[j]

34 Jun Xu et al.

S2=f.monomials()
g=0
for j in range(len(S2)):

cj=f.coefficient(S2[j])
cj=cj(0,0,0,0)
cj=cj%P^(s-1)
cj=ZZ(cj)
g=g+cj*S2[j]

f=g
F33.append(f)
F44.append(s-1)

else:
F33.append(F4[j])
F44.append(0)

#This is the ending position for polynomial generation for Case 2.b of the paper

I=[]
M2=[]

for i0 in range(d*k+1):
for i1 in range(k+1):

for i2 in range(k+1):
for i3 in range(k+1):

if(i1+i2+i3<=d*k):
I.append([i0,i1,i2,i3])
M2.append(z0^i0*z1^i1*z2^i2*z3^i3)

F=[]

for i in range(len(I)):
i0=I[i][0]
i1=I[i][1]
i2=I[i][2]
i3=I[i][3]

m=max(i1,i2)
m=max(m,i3)
if(m==0):

f=z0^i0*P^(d*k)
F.append(f)
continue

B=[]
C=[z1,z2,z3]
V=[i1,i2,i3]
S=[]
for l in range(m):
B1=[]
for j in range(n):

if(V[j]>=(m-l)):
B1.append(j)

S.append(len(B1))
B.append(B1)

S3=[]
for l in range(len(B)):

ss=1
for j in range(len(B[l])):

ss=ss*C[B[l][j]]

Solving a Class of Modular Polynomial Equations and its Applications 35

S3.append(ss)

if(i0>=(i1+i2+i3)):
f=z0^(i0-i1-i2-i3)
for l in range(len(B)):

for j in range(len(B[l])):
f=f*G[B[l][j]]

g=0
S1=f.monomials()
for j in range(len(S1)):

aj=f.coefficient(S1[j])
aj=aj(0,0,0,0)
aj=ZZ(aj)
aj=ZZ(aj%P^(i1+i2+i3))
g=g+aj*S1[j]

F.append(f*P^(d*k-i1-i2-i3))

else:
s1=0
S2=[]
G1=[]
for j in range(len(S)):

s1=s1+S[j]
if(s1>i0):

s1=s1-S[j]
break

S2.append(S[j])
l=len(S2)
for j in range(l):

G1.append(z0^S2[j]*S3[j])
G1.append(z0^(i0-s1)*S3[l])
for j in range(l+1, len(S3)):

G1.append(S3[j])

f=1
ff=0
for j in range(len(G1)):

for j1 in range(len(M)):
if(G1[j]==M[j1]):

f=f*F33[j1]
ff=ff+F44[j1]

g=0
S1=f.monomials()
for j in range(len(S1)):

aj=f.coefficient(S1[j])
aj=aj(0,0,0,0)
aj=ZZ(aj)
aj=ZZ(aj%P^ff)
g=g+aj*S1[j]

F.append(f*P^(d*k-ff))

36 Jun Xu et al.

rr=len(F)

print ’Dimension of the Lattice=’, rr
MM=Matrix(ZZ,rr,rr,range(rr*rr))
for i in range(rr):

f=F[i]
f=f(z0*U,z1*U,z2*U,z3*U)
for j in range(len(M2)):

cij=f.coefficient(M2[j])
cij=cij(0,0,0,0)
MM[i,j]=cij

tt=cputime()

MM=MM.LLL()
print ’LLL Time’, cputime(tt)
M3=[]
for j in range(60):

f1=0
for i in range(rr):

f1=f1+(MM[j][i]/M2[i](U,U,U,U))*M2[i]

M3.append(f1)

I=(M3)*R
tt=cputime()
B=I.groebner_basis()
print ’Groebner Basis time’, cputime(tt)
print B[0],E[0]

