All papers in 2007 (Page 5 of 482 results)

Last updated:  2007-03-05
Deniable Authentication on the Internet
Shaoquan Jiang
Deniable authentication is a technique that allows one party to send messages to another while the latter can not prove to a third party the fact of communication. In this paper, we first formalize a natural notion of deniable security and naturally extend the basic authenticator theorem by Bellare et al. \cite{bck98} to the setting of deniable authentication. Of independent interest, this extension is achieved by defining a deniable MT-authenticator via a game. This game is essentially borrowed from the notion of universal composition \cite{can01} although we do not assume any result or background about it. Then we construct two deniable MT-authenticators: uncontrollable random oracle based and the PKI based, both of which are just 3-round protocols. The second construction assumes the receiver owns a secret key. Such a setup assumption is very popular in the real world. (Without this assumption), all the previous protocols do not have a widely satisfiable performance when applied in the Internet-like environment. Finally, as our application, we obtain key exchange protocols that is deniably secure in the real world.
Last updated:  2007-04-23
Revisiting an Efficient Elliptic Curve Key Agreement Protocol
Maurizio Adriano Strangio
A recent paper by Wang \emph{et al.} has revealed a vulnerability in the ECKE-1 key agreement protocol. In particular, contrary to the author's claims, protocol ECKE-1 is shown to be susceptible to a key-compromise impersonation attack. This attack was also independently pointed out by the author in another recent paper published in the EURASIP Journal on Embedded Systems. Here we present a revised version of the protocol, ECKE-1R, that is key-compromise impersonation resilient at the expense of a higher computational workload and communication complexity with respect to the original protocol ECKE-1.
Last updated:  2007-03-30
Weakly only Unforgeable Signature and Its Application in Group Signature
Uncategorized
Sujing Zhou, Dongdai Lin
Uncategorized
If a signature scheme is secure in the sense that no forgery on any new message (i.e., a message that has never been signed) is available for any computation restricted adversary, it is said weakly unforgeable (wUF), in contrast to strongly unforgeable (sUF) meaning no new signature on any old message (i.e., a valid signature on the message is already known) is available to such adversaries. sUF signatures are generally considered advantageous over wUF ones because of preference for high level security. But the case may be different when they are employed to construct group signatures. wUF but not sUF signatures, called WoUF signatures in this paper, are investigated in this paper. It is found that by applying a generic construction to WoUF signatures with indirectly-signability and perfectly-unlinkability (also defined in this paper), we can regenerate many efficient group signatures in literature. We also propose improvements to the group signature schemes of CL04, NSN04, KY05, in line with our generic construction.
Last updated:  2007-03-01
How To Find Many Collisions of 3-Pass HAVAL
Uncategorized
Kazuhiro Suzuki, Kaoru Kurosawa
Show abstract
Uncategorized
The hash function HAVAL is an Australian extension of well known Merkle-Damgård hash functions such as MD4 and MD5. It has three variants, $3$-, $4$- and $5$-pass HAVAL. On $3$-pass HAVAL, the best known attack finds a collision pair with $2^{7}$ computations of the compression function. To find $k$ collision pairs, it requires $2^{7}k$ computations. In this paper, we present a better collision attack on $3$-pass HAVAL, which can find $k$ collision pairs with only $2k+33$ computations. Further, our message differential is different from the previous ones. (It is important to find collisions for different message differentials.)
Last updated:  2007-09-05
MPC vs. SFE: Perfect Security in a Unified Corruption Model
Uncategorized
Zuzana Beerliova-Trubiniova, Matthias Fitzi, Martin Hirt, Ueli Maurer, Vassilis Zikas
Show abstract
Uncategorized
Secure function evaluation (SFE) allows a set of players to compute an arbitrary agreed function of their private inputs, even if an adversary may corrupt some of the players. Secure multi-party computation (MPC) is a generalization allowing to perform an arbitrary on-going (also called reactive or stateful) computation during which players can receive outputs and provide new inputs at intermediate stages. At Crypto~2006, Ishai \emph{et al.} considered mixed threshold adversaries that either passively corrupt some fixed number of players, or, alternatively, actively corrupt some (smaller) fixed number of players, and showed that for certain thresholds, cryptographic SFE is possible, whereas cryptographic MPC is not. However, this separation does not occur when one considers \emph{perfect} security. Actually, past work suggests that no such separation exists, as all known general protocols for perfectly secure SFE can also be used for MPC. Also, such a separation does not show up with \emph{general adversaries}, characterized by a collection of corruptible subsets of the players, when considering passive and active corruption. In this paper, we study the most general corruption model where the adversary is characterized by a collection of adversary classes, each specifying the subset of players that can be actively, passively, or fail-corrupted, respectively, and show that in this model, perfectly secure MPC separates from perfectly secure SFE. Furthermore, we derive the exact conditions on the adversary structure for the existence of perfectly secure SFE resp.~MPC, and provide efficient protocols for both cases.
Last updated:  2007-03-01
On bent functions with zero second derivatives
Uncategorized
Sugata Gangopadhyay
Uncategorized
It is proved that a bent function has zero second derivative with respect to $a$, $b$, $a \ne b$, if and only if it is affine on all the flats parallel to the two dimensional subspace $V = \langle a, b \rangle$.
Last updated:  2007-05-07
Almost Secure (1-Round, n-Channel) Message Transmission Scheme
Kaoru Kurosawa, Kazuhiro Suzuki
It is known that perfectly secure ($1$-round, $n$-channel) message transmission (MT) schemes exist if and only if $n \geq 3t+1$, where $t$ is the number of channels that the adversary can corrupt. Then does there exist an {\it almost} secure MT scheme for $n=2t+1$ ? In this paper, we first sum up a number flaws of the previous {\it almost} secure MT scheme presented at Crypto 2004. (The authors already noted in thier presentation at Crypto'2004 that their scheme was flawed.) We next show an equivalence between almost secure MT schemes and secret sharing schemes with cheaters. By using our equivalence, we derive a lower bound on the communication complexity of almost secure MT schemes. Finally, we present a near optimum scheme which meets our bound approximately. This is the first construction of provably secure almost secure ($1$-round, $n$-channel) MT schemes for $n=2t+1$.
Last updated:  2008-11-29
Weaknesses in the Pseudorandom Bit Generation Algorithms of the Stream Ciphers TPypy and TPy
Uncategorized
Gautham Sekar, Souradyuti Paul, Bart Preneel
Show abstract
Uncategorized
The stream ciphers Py, Py6 were designed by Biham and Seberry for the ECRYPT-eSTREAM project in 2005. However, due to several recent cryptanalytic attacks on them, a strengthened version Pypy was proposed to rule out those attacks. The ciphers have been promoted to the `Focus' ciphers of the Phase II of the eSTREAM project. The impressive speed of the ciphers make them the forerunners in the competition. Unfortunately, even the new cipher Pypy was found to retain weaknesses, forcing the designers to again go for modifications. As a result, three new ciphers TPypy, TPy and TPy6 were built. Among all the members of the Py-family of ciphers, the TPypy is conjectured to be the strongest. So far, there is no known attack on the TPypy. This paper shows that the security of TPypy does not grow exponentially with the key-size. The main achievement of the paper is the detection of input-output correlations of TPypy that allow us to build a distinguisher with $2^{281}$ randomly chosen key/IVs and as many outputwords (each key generating one outputword). The cipher TPypy was claimed by the designers to be secure with keysize up to 256 bytes, i.e., 2048 bits. Our results establish that the TPypy fails to provide adequate security if the keysize is longer than 35 bytes, i.e., 280 bits. Note that the distinguisher is built within the design specifications of the cipher. Because of remarkable similarities between the TPypy and the TPy, our attacks are shown to be effective for TPy also. The paper also points out how the other members of the Py-family (i.e., TPy6, Py6, Pypy and Py6) are also weak against the current and some existing attacks.
Last updated:  2009-04-23
A Cramer-Shoup Encryption Scheme from the Linear Assumption and from Progressively Weaker Linear Variants
Hovav Shacham
We describe a CCA-secure public-key encryption scheme, in the Cramer-Shoup paradigm, based on the Linear assumption of Boneh, Boyen, and Shacham. Through a comparison to the Kiltz tag-encryption scheme from TCC 2006, our scheme gives evidence that the Cramer-Shoup paradigm yields CCA encryption with shorter ciphertexts than the Canetti-Halevi-Katz paradigm. We present a generalization of the Linear assumption into a family of progressively weaker assumptions and show how to instantiate our Linear Cramer-Shoup encryption using the progressively weaker members of this family.
Last updated:  2007-02-28
Public Key Encryption that Allows PIR Queries
Dan Boneh, Eyal Kushilevitz, Rafail Ostrovsky, William E. Skeith III
Consider the following problem: Alice wishes to maintain her email using a storage-provider Bob (such as a Yahoo! or hotmail e-mail account). This storage-provider should provide for Alice the ability to collect, retrieve, search and delete emails but, at the same time, should learn neither the content of messages sent from the senders to Alice (with Bob as an intermediary), nor the search criteria used by Alice. A trivial solution is that messages will be sent to Bob in encrypted form and Alice, whenever she wants to search for some message, will ask Bob to send her a copy of the entire database of encrypted emails. This however is highly inefficient. We will be interested in solutions that are communication-efficient and, at the same time, respect the privacy of Alice. In this paper, we show how to create a public-key encryption scheme for Alice that allows PIR searching over encrypted documents. Our solution provides a theoretical solution to an open problem posed by Boneh, DiCrescenzo, Ostrovsky and Persiano on ``Public-key Encryption with Keyword Search'', providing the first scheme that does not reveal any partial information regarding user's search (including the access pattern) in the public-key setting and with non-trivially small communication complexity. The main technique of our solution also allows for Single-Database PIR writing with sub-linear communication complexity, which we consider of independent interest.
Last updated:  2007-06-05
A Hybrid Approach to Concurrent Error Detection for a Compact ASIC Implementation of the Advanced Encryption Standard
Namin Yu, Howard M. Heys
In this paper, we investigate the application of concurrent error detection circuitry to a compact application-specific integrated circuit (ASIC) implementation of the Advanced Encryption Standard (AES). The specific objective of the design is to develop a method suitable for compact ASIC implementations targeted to embedded systems such that the system is resistant to fault attacks. To provide the error detection, recognizing that previously proposed schemes are not well suited to compact implementations, it is proposed to adopt a hybrid approach consisting of parity codes in combination with partial circuit redundancy. For compact ASIC implementations, taking such an approach gives a better ability to detect faults than simple parity codes, with less area cost than proposed schemes which use full hardware redundancy. The results of the implementation analysis in this paper show that it is possible to implement an error detection scheme that is robust to multiple faults in a compact AES design such that about 39% of the overall system is devoted to the error detection functionality.
Last updated:  2007-02-28
Knowledge-Binding Commitments with Applications in Time-Stamping (Full Version)
Ahto Buldas, Sven Laur
We prove in a non-black-box way that every bounded list and set commitment scheme is knowledge-binding. This is a new and rather strong security condition, which makes the security definitions for time-stamping much more natural compared to the previous definitions, which assume unpredictability of adversaries. As a direct consequence, list and set commitment schemes with partial opening property are sufficient for secure time-stamping if the number of elements has an explicit upper bound N. On the other hand, white-box reductions are in a sense strictly weaker than black-box reductions. Therefore, we also extend and generalize the previously known reductions. The corresponding new reductions are Theta(sqrt(N)) times more efficient, which is important for global-scale time-stamping schemes where N is very large.
Last updated:  2007-02-28
Two Linear Distinguishing Attacks on VMPC and RC4A and Weakness of RC4 Family of Stream Ciphers (Corrected)
Alexander Maximov
At FSE 2004 two new stream ciphers VMPC and RC4A have been proposed. VMPC is a generalisation of the stream cipher RC4, whereas RC4A is an attempt to increase the security of RC4 by introducing an additional permuter in the design. This paper is the first work presenting attacks on VMPC and RC4A. We propose two linear distinguishing attacks, one on VMPC of complexity $2^{39.97}$, and one on RC4A of complexity $2^{58}$. We investigate the RC4 family of stream ciphers and show some theoretical weaknesses of such constructions.
Last updated:  2007-03-01
Nominative Signature: Application, Security Model and Construction
Dennis Y. W. Liu, Duncan S. Wong, Xinyi Huang, Guilin Wang, Qiong Huang, Yi Mu, Willy Susilo
Since the introduction of nominative signature in 1996, there have been only a few schemes proposed and all of them have already been found flawed. In addition, there is no formal security model defined. Even more problematic, there is no convincing application proposed. Due to these problems, the research of nominative signature has almost stalled and it is unknown if a secure nominative signature scheme can be built or there exists an application for it. In this paper, we give positive answers to these problems. First, we illustrate that nominative signature is a better tool for building user certification systems which are originally believed to be best implemented using a universal designated-verifier signature. Second, we propose a formal definition and a rigorous set of adversarial models for nominative signature. Third, we show that Chaum's undeniable signature can be transformed efficiently to a nominative signature and prove its security.
Last updated:  2007-11-02
Efficient Hierarchical Identity Based Signature in the Standard Model
Man Ho Au, Joseph K. Liu, Tsz Hon Yuen, Duncan S. Wong
The only known constructions of Hierarchical Identity Based Signatures that are proven secure in the strongest model without random oracles are based on the approach of attaching certificate chains or hierarchical authentication tree with one-time signature. Both construction methods lead to schemes that are somewhat inefficient and leave open the problem of efficient direct construction. In this paper, we propose the first direct construction of Hierarchical Identity Based Signature scheme that is proven under the strongest model without relying on random oracles and using more standard $q$-SDH assumption. It is computationally efficient and the signature size is constant. When the number of hierarchical level is set to be one, our scheme is a normal identity based signature scheme. It enjoys the shortest size in public parameters and signatures when compare with others in the literature, with the same security level.
Last updated:  2007-09-26
withdrawn
Uncategorized
withdrawn
Uncategorized
withdrawn
Last updated:  2007-02-28
Low-Density Attack Revisited
Tetsuya Izu, Jun Kogure, Takeshi Koshiba, Takeshi Shimoyama
The low-density attack proposed by Lagarias and Odlyzko is a powerful algorithm against the subset sum problem. The improvement algorithm due to Coster et al. would solve almost all the problems of density < 0.9408... in the asymptotical sense. On the other hand, the subset sum problem itself is known as an NP-hard problem, and a lot of efforts have been paid to establish public-key cryptosystems based on the problem. In these cryptosystems, densities of the subset sum problems should be higher than 0.9408... in order to avoid the low-density attack. For example, the Chor-Rivest cryptosystem adopted subset sum problems with relatively high densities. In this paper, we further improve the low-density attack by incorporating an idea that integral lattice points can be covered with polynomially many spheres of shorter radius and of lower dimension. As a result, the success probability of our attack can be higher than that of Coster et al.'s attack for fixed dimensions. The density bound is also improved for fixed dimensions. Moreover, we numerically show that our improved low-density attack makes the success probability higher in case of low Hamming weight solution, such as the Chor-Rivest cryptosystem, if we assume SVP oracle calls.
Last updated:  2007-03-13
How to Derive Lower Bound on Oblivious Transfer Reduction
Kaoru Kurosawa, Wataru Kishimoto, Takeshi Koshiba
Suppose that we are given an ideal oblivious transfer protocol (OT). We wish to construct a larger OT by using the above OT as a blackbox. Then how many instances of the given ideal OT should be invoked ? For this problem, some lower bounds were derived using entropy. In this paper, we show more tight lower bounds by using combinatorial techniques. Roughly speaking, our lower bounds are two times larger than the previous bounds.
Last updated:  2007-02-20
Algebraic Lower Bounds for Computing on Encrypted Data
Rafail Ostrovsky, William E. Skeith III
In cryptography, there has been tremendous success in building primitives out of homomorphic semantically-secure encryption schemes, using homomorphic properties in a black-box way. A few notable examples of such primitives include items like private information retrieval schemes and collision-resistant hash functions. In this paper, we illustrate a general methodology for determining what types of protocols can be implemented in this way and which cannot. This is accomplished by analyzing the computational power of various algebraic structures which are preserved by existing cryptosystems. More precisely, we demonstrate lower bounds for algebraically generating generalized characteristic vectors over certain algebraic structures, and subsequently we show how to directly apply this abstract algebraic results to put lower bounds on algebraic constructions of a number of cryptographic protocols, including PIR-writing and private keyword search protocols. We hope that this work will provide a simple ``litmus test'' of feasibility for use by other cryptographic researchers attempting to develop new protocols that require computation on encrypted data. Additionally, a precise mathematical language for reasoning about such problems is developed in this work, which may be of independent interest.
Last updated:  2007-05-23
Constructing new APN functions from known ones
Uncategorized
Lilya Budaghyan, Claude Carlet, Gregor Leander
Show abstract
Uncategorized
We present a method for constructing new quadratic APN functions from known ones. Applying this method to the Gold power functions we construct an APN function $x^3+\tr(x^9)$ over $\F_{2^n}$. It is proven that in general this function is CCZ-inequivalent to the Gold functions (and therefore EA-inequivalent to power functions), to the inverse and Dobbertin mappings, and in the case $n=7$ it is CCZ-inequivalent to all power mappings.
Last updated:  2007-08-15
Algebraic and Slide Attacks on KeeLoq
Nicolas T. Courtois, Gregory V. Bard, David Wagner
KeeLoq is a block cipher used in wireless devices that unlock doors in cars manufactured by Chrysler, Daewoo, Fiat, GM, Honda, Jaguar, Toyota, Volvo, Volkswagen, etc. It was designed in the 80's by Willem Smit from South Africa and in 1995 was sold to Microchip Technology Inc for more than 10 million USD. Though no attack on this cipher have been found thus far, the 64-bit key size makes it no longer secure. Hackers and car thieves exploit this, to recover the key by brute force with FPGA's. From our point of view however, this cipher is interesting for other reasons. Compared to typical block ciphers that have a few carefully designed rounds, this cipher has 528 extremely simple rounds with extremely few intermediate variables (one per round). This seems a perfect target to study algebraic attacks on block ciphers. The cipher also has a periodic structure with period of 64 rounds, and an unusually small block size of 32 bits. We present several slide-algebraic attacks on KeeLoq, the best of which allows one to recover the full key for the full cipher within 2^48 CPU clocks. Until now algebraic attacks didn't give interesting results on block ciphers and most researchers seriously doubted if any block cipher will EVER be broken by such attacks. In this paper however, we show that, for the first time in history, a full round real-life block cipher is broken by an algebraic attack. Moreover, our attacks are easy to implement, have been tested experimentally, and the full key can be recovered in practice on a PC.
Last updated:  2007-11-22
Accelerating SSL using the Vector processors in IBM's Cell Broadband Engine for Sony's Playstation 3
Neil Costigan, Michael Scott
Recently the major performance chip manufacturers have turned to multi-core technology as a more cost effective alternative to ever increasing clock speeds. IBM have introduced the Cell Broadband Engine (Cell) as their next generation CPU to feed the insatiable appetite modern multimedia and number crunching applications have for processing power. The Cell is the technology at the heart of Sonys Playstation 3. The Cell contains a number of specialist synergistic processor units (SPUs) optimised for multimedia processing and offer a rich programming interface to applications that can make use of the vector processing capabilities. Multiprecision number manipulation for use in cryptography is one such application. This paper explores the implementation and performance gains when using these capabilities for SSL.
Last updated:  2009-03-08
Security Against Covert Adversaries: Efficient Protocols for Realistic Adversaries
Yonatan Aumann, Yehuda Lindell
In the setting of secure multiparty computation, a set of mutually distrustful parties wish to securely compute some joint function of their private inputs. The computation should be carried out in a secure way, meaning that no coalition of corrupted parties should be able to learn more than specified or somehow cause the result to be ``incorrect''. Typically, corrupted parties are either assumed to be semi-honest (meaning that they follow the protocol specification) or malicious (meaning that they may deviate arbitrarily from the protocol). However, in many settings, the assumption regarding semi-honest behavior does not suffice and security in the presence of malicious adversaries is excessive and expensive to achieve. In this paper, we introduce the notion of {\em covert adversaries}, which we believe faithfully models the adversarial behavior in many commercial, political, and social settings. Covert adversaries have the property that they may deviate arbitrarily from the protocol specification in an attempt to cheat, but do not wish to be ``caught'' doing so. We provide a definition of security for covert adversaries and show that it is possible to obtain highly efficient protocols that are secure against such adversaries. We stress that in our definition, we quantify over all (possibly malicious) adversaries and do not assume that the adversary behaves in any particular way. Rather, we guarantee that if an adversary deviates from the protocol in a way that would enable it to ``cheat'' (meaning that it can achieve something that is impossible in an ideal model where a trusted party is used to compute the function), then the honest parties are guaranteed to detect this cheating with good probability. We argue that this level of security is sufficient in many settings.
Last updated:  2007-02-20
A Survey of Single Database PIR: Techniques and Applications
Rafail Ostrovsky, William E. Skeith III
In this paper we survey the notion of Single-Database Private Information Retrieval (PIR). The first Single-Database PIR was constructed in 1997 by Kushilevitz and Ostrovsky and since then Single-Database PIR has emerged as an important cryptographic primitive. For example, Single-Database PIR turned out to be intimately connected to collision-resistant hash functions, oblivious transfer and public-key encryptions with additional properties. In this survey, we give an overview of many of the constructions for Single-Database PIR (including an abstract construction based upon homomorphic encryption) and describe some of the connections of PIR to other primitives.
Last updated:  2007-02-20
The simplest method for constructing APN polynomials EA-inequivalent to power functions
Lilya Budaghyan
The first APN polynomials EA-inequivalent to power functions have been constructed in [1,2] by applying CCZ-equivalence to the Gold APN functions. It is a natural question whether it is possible to construct APN polynomials EA-inequivalent to power functions by using only EA-equivalence and inverse transformation on a power APN function: this would be the simplest method to construct APN polynomials EA-inequivalent to power functions. In the present paper we prove that the answer to this question is positive. By this method we construct a class of APN polynomials EA-inequivalent to power functions. On the other hand it is shown that the APN polynomials from [1,2] cannot be obtained by the introduced method. [1] L. Budaghyan, C. Carlet, A. Pott. New Classes of Almost Bent and Almost Perfect Nonlinear Functions. IEEE Trans. Inform. Theory, vol. 52, no. 3, pp. 1141-1152, March 2006. [2] L. Budaghyan, C. Carlet, A. Pott. New Constructions of Almost Bent and Almost Perfect Nonlinear Functions. Proceedings of the Workshop on Coding and Cryptography 2005, pp. 306-315, 2005.
Last updated:  2007-02-20
Constructing pairing-friendly genus 2 curves over prime fields with ordinary Jacobians
David Freeman
We provide the first explicit construction of genus 2 curves over finite fields whose Jacobians are ordinary, have large prime-order subgroups, and have small embedding degree. Our algorithm works for arbitrary embedding degrees $k$ and prime subgroup orders $r$. The resulting abelian surfaces are defined over prime fields $\F_q$ with $q \approx r^4$. We also provide an algorithm for constructing genus 2 curves over prime fields $\F_q$ with ordinary Jacobians $J$ having the property that $J[r] \subset J(\F_{q})$ or $J[r] \subset J(\F_{q^k})$ for any even $k$.
Last updated:  2007-02-20
Enforcing Semantic Integrity on Untrusted Clients in Networked Virtual Environments
Somesh Jha, Stefan Katzenbeisser, Christian Schallhart, Helmut Veith, Stephen Chenney
During the last years, large-scale simulations of realistic physical environments which support the interaction of multiple participants over the Internet have become increasingly available and economically viable, most notably in the computer gaming industry. Such systems, commonly called networked virtual environments (NVEs), are usually based on a client-server architecture where for performance reasons and bandwidth restrictions, the simulation is partially delegated to the clients. This inevitable architectural choice renders the simulation vulnerable to attacks against the semantic integrity of the simulation: malicious clients may attempt to compromise the physical and logical rules governing the simulation, or to alter the causality of events a posteriori. In this paper, we initiate the systematic study of semantic integrity in NVEs from a security point of view. We argue that naive policies to enforce semantic integrity involve intolerable network load, and are therefore not practically feasible. We present a new provably secure semantic integrity protocol based on cryptographic primitives which enables the server system to audit the local computations of the clients on demand. Our approach facilitates low network and CPU load, incurs reasonable engineering overhead, and maximally decouples the auditing process from the soft real time constraints of the simulation.
Last updated:  2007-02-20
Cryptanalysis of the KeeLoq block cipher
Andrey Bogdanov
KeeLoq is a block cipher used in numerous widespread passive entry and remote keyless entry systems as well as in various component identification applications. The KeeLoq algorithm has a 64-bit key and operates on 32-bit blocks. It is based on an NLFSR with a nonlinear feedback function of 5 variables. In this paper a key recovery attack with complexity of about $2^{52}$ steps is proposed (one step is equivalent to a single KeeLoq encryption operation). In our attack we use the techniques of guess-and-determine, slide, and distinguishing attacks. Several real-world applications are vulnerable to the attack. To our best knowledge this is the first paper to describe and cryptanalyze the KeeLoq block cipher.
Last updated:  2011-11-24
Cryptanalysis of Stream Ciphers Based on Arrays and Modular Addition
Souradyuti Paul
In modern cryptography, stream ciphers are most useful in applications where information needs to be encrypted/decrypted at high speed (e.g. high resolution streaming video data) or when low footprint (gates/memory) encryption is required. In the literature, there exist plenty of stream ciphers whose internal states are based on arrays and that they use modular additions to generate output streams. The abundance of array-based stream ciphers with modular additions can be attributed to the fact that, when implemented in software skillfully, they are able to produce outputs at a very high speed. The main contribution of this thesis is a unified analysis of stream ciphers based on arrays and modular addition. During the process, we detect cryptographic weaknesses in the designs of 9 widely known stream ciphers or pseudorandom bit generators (PRBGs). At first, we show some theoretical results on solving an important class of equations known as \emph{differential equations of addition} (DEA) that combine modular additions over two different algebraic groups such as GF(2) and GF($2^{32}$). The results include, \bite \item proof of the fact that the satisfiability of an arbitrary set of DEA is in the complexity class \pP,\item deriving all the solutions of an arbitrary set of DEA. \eite Next, we apply these results to attack a practical stream cipher named Helix (designed by Ferguson \emph{et al.}) with both chosen plaintexts and adaptive chosen plaintexts. In the second phase, the thesis closely scrutinizes a number of array-based stream ciphers (or PRBGs) in order to estimate their resistance against distinguishing attacks. We eventually discover, counter-intuitively, that the correlations between the array-indices and their associated array-elements, which apparently seem to be useful from the point of view of implementation purposes, can be exploited to mount distinguishing attacks on such type of ciphers if adequate precautions are not taken. In support of our theoretical findings, we point out distinguishing attacks on 8 practical array-based stream ciphers (or PRBGs), namely RC4 (designed by Rivest), RC4A (designed by Paul and Preneel), Py, Py6 (designed by Biham and Seberry), IA, ISAAC (designed by Jenkins Jr.), GGHN, NGG (by Gong \emph{et al.}); our attacks are based on the dependence of array-elements on array-indices. In all the cases we work under the assumption that the key-setup algorithms of the ciphers produce uniformly distributed internal states. We detect flaws in the mixing of bits in the keystream generation algorithms. Our analysis can be explained as the extension, development, adaptation and deeper characterization of the \ti{fortuitous states attacks} on the RC4 cipher by Fluhrer and McGrew in 2000.
Last updated:  2007-02-28
Compiler Assisted Elliptic Curve Cryptography
M. Barbosa, A. Moss, D. Page
Although cryptographic implementation tasks are often undertaken by expert programmers, a plethora of performance and security driven options, as well as more mundane software engineering issues, still make this a challenge. In an attempt to transfer expert knowledge into automated tools, we investigate the use of domain specific language and compilation techniques for cryptographic software, focusing on ECC in particular. Specifically, we describe experiments for specialisation of finite field arithmetic from general purpose code, and the description and optimisation of ECC point arithmetic using a cryptography-aware language and compiler. Our main results show that it is possible to allow description of ECC based software in a manner close to the original mathematics, while allowing the automatic production of an executable whose performance is close to that of a hand-optimised implementation.
Last updated:  2007-02-21
Forward-Secure Sequential Aggregate Authentication
Di Ma, Gene Tsudik
Wireless sensors are employed in a wide range of applications. One common feature of most sensor settings is the need to communicate sensed data to some collection point or sink. This communication can be direct (to a mobile collector) or indirect -- via other sensors towards a remote sink. In either case, a sensor might not be able to communicate to a sink at will. Instead it collects data and waits (for a potentially long time) for a signal to upload accumulated data directly. In a hostile setting, a sensor may be compromised and its post-compromise data can be manipulated. One important issue is Forward Security -- how to ensure that pre-compromise data cannot be manipulated? Since a typical sensor is limited in storage and communication facilities, another issue is how to minimize resource consumption due to accumulated data. It turns out that current techniques are insufficient to address both challenges. To this end, we explore the notion of Forward-Secure Sequential Aggregate (FssAgg) Authentication Schemes. We consider FssAgg authentication schemes in the contexts of both conventional and public key cryptography and construct a FssAgg MAC scheme and a FssAgg signature scheme, each suitable under different assumptions. This work represents the initial investigation of Forward-Secure Aggregation and, although the proposed schemes are not optimal, it opens a new direction for follow-on research.
Last updated:  2007-02-20
Forward-secure RFID Authentication and Key Exchange
Tri van Le, Mike Burmester, Breno de Medeiros
Security and privacy in RFID systems is an important and active research area. A number of challenges arise due to the extremely limited computational, storage and communication abilities of a typical RFID tag. This work describes two families of simple, inexpensive, and untraceable identification protocols for RFID tags. The proposed protocols involve minimal interaction between a tag and a reader and place low computational burden on the tag, requiring only a pseudo-random generator. They also impose low computational load on the back-end server. The paper also describes a universally composable security model tuned for RFID applications. By making specific setup, communication, and concurrency assumptions that are realistic in the RFID application setting, we arrive at a model that guarantees strong security and availability properties, while still permitting the design of practical RFID protocols. We show that our protocols are provably secure within the new security model. The security supports, availability, authentication, forward-secure anonymity and key exchange, and modularity. The last attribute is most appropriate for ubiquitous applications.
Last updated:  2007-02-20
Special block cipher family DN and new generation SNMAC-type hash function family HDN
Vlastimil KLIMA
Special block cipher is a new cryptographic primitive designed to be a building block of the new generation hash functions SNMAC [Kl06]. Contrary to classical block ciphers it is knowingly designed focusing to those properties which are expected to be just a “side effect” on usual cipher constructions. Its design anticipates that an attacker could exploit or know its key, or even he/she could discretionarily tamper with the key. The design criteria of SNMAC hash functions are publicly known. Limitly, these functions approach a random oracle, they are computationally resistant against pre-image and collision attacks, and different special block cipher instances can be used in their design. In this paper, we present special block cipher family Double Net DN(n,k)-rho with n-bit block, k-bit key and rho rounds, their building blocks construction principles and design criteria. Based on DN, we define hash functions family HDN(n,k)-rho with n-bit hash code working on blocks of k-n bits. We introduce and propose to use DN(512,8192)-10 and HDN(512,8192)-10 as example instances. It turns out these are not just theoretical concepts, but practically employable functions with speeds only 2-3 times lower than SHA-512 and Whirlpool. Basic idea behind the special block cipher DN is simple – contrary to classical block cipher approach, the same attention is paid to key and plaintext processing. One SP network ensures key mixing, while the second one mixes the plaintext with the key. Once the special block cipher concept is examined and accepted in hash functions, it can be used in advance in its original purpose – data encryption. We suggest the transition from the classical block ciphers to more secure special block ciphers in the future. Its advantage is its readiness for various attacks on the secret key; the attacks which have recently started to emerge in classical block cipher cryptanalysis. Among others, these include side-channel attacks, related keys attacks and rectangular attacks (see e.g. [Bi93], [Bi03], [Ki04], [Ho05], [Ki05], [Bi05], and [Bi06]). With the expansion of the cryptographic instruments and cryptanalytic methods, these attacks will appear more and more frequently. Their common traits are the various attempts to exploit the original assumption on the attacker’s limited power over the secret key or its knowledge. The defence against these attacks is illustrated by the evolution of the functions processing the secret key, starting with simple copy-type functions used in DES and TripleDES to weak non-linear functions in AES. We believe that this trend will continue to strong non-linear functions (similar to the ones used in DN). The employment of these stronger functions in the encryption might not seem as a must in the present, but it probably will be in the future. In the hash functions, it is a necessity today already.
Last updated:  2007-02-20
Security Arguments for a Class of ID-based Signatures
jin zhou, ya-juan zhang, yue-fei zhu
Provable security based on complexity theory provides an efficient way for providing the convincing evidences of security. In this paper, we present a definition of generic ID-based signature schemes (GIBSS) by extending the definition of generic signature schemes, and prove the Forking lemma for GIBSS. That is, we provide the Forking lemma for ID-based signature schemes. The theoretical result can be viewed as an extension of the Forking Lemma due to Pointcheval and Stern for ID-based signature schemes, and can help to understand and simplify the security proofs. Then we propose a new and efficient ID-based signature scheme built upon bilinear maps. We prove its security under k-CAA computational assumption in the random oracle model.
Last updated:  2007-02-19
A Security Analysis of the NIST SP 800-90 Elliptic Curve Random Number Generator
Daniel R. L. Brown, Kristian Gjøsteen
An elliptic curve random number generator (ECRNG) has been approved in a NIST standards and proposed for ANSI and SECG draft standards. This paper proves that, if three conjectures are true, then the ECRNG is secure. The three conjectures are hardness of the elliptic curve decisional Diffie-Hellman problem and the hardness of two newer problems, the x-logarithm problem and the truncated point problem. The x-logarithm problem is shown to be hard if the decisional Diffie-Hellman problem is hard, although the reduction is not tight. The truncated point problem is shown to be solvable when the minimum amount of bits allowed in NIST standards are truncated, thereby making it insecure for applications such as stream ciphers. Nevertheless, it is argued that for nonce and key generation this distinguishability is harmless.
Last updated:  2007-06-04
New Constructions of Fuzzy Identity-Based Encryption
Joonsang Baek, Willy Susilo, Jianying Zhou
In this paper we construct two new fuzzy identity-based encryption (IBE) schemes in the random oracle model. Not only do our schemes provide public parameters whose size is independent of the number of attributes in each identity (used as public key) but they also have useful structures which result in more e±cient key extraction and/or encryption than the random oracle version of Sahai and Water's fuzzy IBE scheme, considered recently by Pirretti et al. We prove that the confidentiality of the proposed schemes is relative to the Bilinear Decisional Bilinear Diffie-Hellman problem.
Last updated:  2007-03-31
Direct Reduction of String (1,2)-OT to Rabin's OT
Kaoru Kurosawa, Takeshi Koshiba
It is known that string (1,2)-OT and Rabin's OT are equivalent. However, two steps are required to construct a string $(1,2)$-OT from Rabin's OT. The first step is a construction of a bit (1,2)-OT from Rabin's OT, and the second step is a construction of a string $(1,2)$-OT from the bit (1,2)-OT. No direct reduction is known. In this paper, we show a direct reduction of string (1,2)-OT to Rabin's OT by using a deterministic randomness extractor. Our reduction is much more efficient than the previous two-step reduction.
Last updated:  2007-02-14
A Coprocessor for the Final Exponentiation of the $\eta_T$ Pairing in Characteristic Three
Jean-Luc Beuchat, Nicolas Brisebarre, Masaaki Shirase, Tsuyoshi Takagi, Eiji Okamoto
Since the introduction of pairings over (hyper)elliptic curves in constructive cryptographic applications, an ever increasing number of protocols based on pairings have appeared in the literature. Software implementations being rather slow, the study of hardware architectures became an active research area. Beuchat et al. proposed for instance a coprocessor which computes the characteristic three $\eta_T$ pairing, from which the Tate pairing can easily be derived, in $33$\,$\mu$s on a Cyclone II FPGA. However, a final exponentiation is required to ensure a unique output value and the authors proposed to supplement their $\eta_T$ pairing accelerator with a coprocessor for exponentiation. Thus, the challenge consists in designing the smallest possible piece of hardware able to perform this task in less than $33$\,$\mu$s on a Cyclone~II device. In this paper, we propose a novel arithmetic operator implementing addition, cubing, and multiplication over $\mathbb{F}_{3^{97}}$ and show that a coprocessor based on a single such operator meets this timing constraint.
Last updated:  2007-02-14
Design and Primitive Specification for Shannon
Philip Hawkes, Cameron McDonald, Michael Paddon, Gregory Rose, Miriam Wiggers de Vries
Shannon is a synchronous stream cipher with message authentication functionality, designed according to the ECrypt NoE call for stream cipher primitives, profile 1A (but well after the call). Shannon is named in memory of Claude E. Shannon[20] of Bell Labs and MIT, founder of Information Theory. Shannon is an entirely new design, influenced by members of the SOBER family of stream ciphers, Helix/Phelix, Trivium, Scream, and SHA-256. It consists of a single 32-bit wide, 16-element nonlinear feedback shift register and an extra word, which is supplemented for message authentication with 32 parallel CRC-16 registers. Shannon is free to use for any purpose, and reference source code can be found at http://www.qualcomm.com.au/Shannon.html .
Last updated:  2007-02-25
Reflection Attacks on Product Ciphers
Uncategorized
Orhun Kara
Show abstract
Uncategorized
In this paper we describe a novel attack method on product ciphers, the {\em reflection attack}. The attack method exploits certain similarities among round functions which have not been utilized in previous self similarity attacks. We give practical examples illustrating the power of the reflection attack on several ciphers such as GOST, DEAL and some variants of DES and Magenta. Many interesting and exceptional properties of the attack are also presented in these examples. In addition, we discuss new design criteria that make product ciphers resistant to self similarity attacks and introduce a definition of similarity degree.
Last updated:  2007-04-24
Authorship Proof for Textual Document
J. Wu, D. R. Stinson
In this paper, we investigate the problem of how to prove the authorship of textual documents. First we define the basic functionalities of an authorship proof scheme (APS) based on natural language watermarking, and identify two essential security requirements for an APS to be secure against various attacks. We review existing natural language watermarking schemes, and we propose two new schemes with improved security.
Last updated:  2007-02-14
Symmetric Tardos fingerprinting codes for arbitrary alphabet sizes
Uncategorized
B. Skoric, S. Katzenbeisser, M. U. Celik
Show abstract
Uncategorized
Fingerprinting provides a means of tracing unauthorized redistribution of digital data by individually marking each authorized copy with a personalized serial number. In order to prevent a group of users from collectively escaping identification, collusion-secure fingerprinting codes have been proposed. In this paper, we introduce a new construction of a collusion-secure fingerprinting code which is similar to a recent construction by Tardos but achieves shorter code lengths and allows for codes over arbitrary alphabets. For binary alphabets, $n$ users and a false accusation probability of $\eta$, a code length of $m\approx \pi^2 c_0^2\ln(n/\eta)$ is provably sufficient to withstand collusion attacks of at most $c_0$ colluders. This improves Tardos' construction by a factor of $10$. Furthermore, invoking the Central Limit Theorem we show that even a code length of $m\approx \half\pi^2 c_0^2\ln(n/\eta)$ is sufficient in most cases. For $q$-ary alphabets, assuming the restricted digit model, the code size can be further reduced. Numerical results show that a reduction of 35\% is achievable for $q=3$ and 80\% for~$q=10$.
Last updated:  2007-04-10
Efficient Quintuple Formulas for Elliptic Curves and Efficient Scalar Multiplication Using Multibase Number Representation
Uncategorized
Pradeep Kumar Mishra, Vassil Dimitrov
Show abstract
Uncategorized
In the current work we propose two efficient formulas for computing the $5$-fold ($5P$) of an elliptic curve point $P$. One formula is for curves over finite fields of even characteristic and the other is for curves over prime fields. Double base number systems (DBNS) have been gainfully exploited to compute scalar multiplication efficiently in ECC. Using the proposed point quintupling formulas one can use 2,5 and 3,5 (besides 3,5) as bases of the double base number system. In the current work we propose a scalar multiplication algorithm, which expands the scalar using three bases 2, 3 and 5 and computes the scalar multiplication very efficiently. The proposed scheme is faster than all sequential scalar multiplication algorithms reported in literature.
Last updated:  2007-02-14
New Branch Prediction Vulnerabilities in OpenSSL and Necessary Software Countermeasures
Onur Aciicmez, Shay Gueron, Jean-Pierre Seifert
Software based side-channel attacks allow an unprivileged spy process to extract secret information from a victim (cryptosystem) process by exploiting some indirect leakage of ``side-channel'' information. It has been realized that some components of modern computer microarchitectures leak certain side-channel information and can create unforeseen security risks. An example of such MicroArchitectural Side-Channel Analysis is the Cache Attack --- a group of attacks that exploit information leaks from cache latencies. Public awareness of Cache Attack vulnerabilities lead software writers of OpenSSL (version 0.9.8a and subsequent versions) to incorporate countermeasures for preventing these attacks. In this paper, we present a new and yet unforeseen side channel attack that is enabled by the recently published Simple Branch Prediction Analysis (SBPA) which is another type of MicroArchitectural Analysis. We show that modular inversion --- a critical primitive in public key cryptography --- is a natural target of SBPA attacks because it typically uses the Binary Extended Euclidean algorithm whose nature is an input-centric sequence of conditional branches. Our results show that SBPA can be used to extract secret parameters during the execution of the Binary Extended Euclidean algorithm. This poses a new potential risk to crypto-applications such as OpenSSL, which already employs Cache Attack countermeasures. Thus, it is necessary to develop new software mitigation techniques for BPA and incorporate them with cache analysis countermeasures in security applications. To mitigate this new risk in full generality, we apply a security-aware algorithm design methodology and propose some changes to the CRT-RSA algorithm flow. These changes either avoid some of the steps that require modular inversion, or remove the critical information leak from this procedure. In addition, we also show by example that, independently of the required changes in the algorithms, careful software analysis is also required in order to assure that the software implementation does not inadvertently introduce branches that may expose the application to SBPA attacks. These offer several simple ways for modifying OpenSSL in order to mitigate Branch Prediction Attacks.
Last updated:  2007-03-26
Multiple Modular Additions and Crossword Puzzle Attack on NLSv2
Uncategorized
Joo Yeon Cho, Josef Pieprzyk
Show abstract
Uncategorized
NLS is a stream cipher which was submitted to the eSTREAM project. A linear distinguishing attack against NLS was presented by Cho and Pieprzyk, which was called Crossword Puzzle (CP) attack. NLSv2 is the tweak version of NLS which aims mainly at avoiding the CP attack. In this paper, a new distinguishing attack against NLSv2 is presented. The attack exploits high correlation amongst neighboring bits of the cipher. The paper first shows that the modular addition preserves pairwise correlations as demonstrated by existence of linear approximations with large biases. Next it shows how to combine these results with the existence of high correlation between bits 29 and 30 of the S-box to obtain a distinguisher whose bias is around $2^{-37}$. Consequently, we claim that NLSv2 is distinguishable from a random process after observing around $2^{74}$ keystream words.
Last updated:  2007-02-14
Best Quadratic Approximations of Cubic Boolean Functions
Nicholas Kolokotronis, Konstantinos Limniotis, Nicholas Kalouptsidis
The problem of computing best low order approximations of Boolean functions is treated in this paper. We focus on the case of best quadratic approximations of a wide class of cubic functions of arbitrary number of variables, and provide formulas for their efficient calculation. Our methodology is developed upon Shannon's expansion formula and properties of best affine approximations of quadratic functions, for which we prove formulas for their direct computation, without use of the Walsh-Hadamard transform. The notion of nonquadricity is introduced, as the minimum distance from all quadratic functions, and cubic functions that achieve the maximum possible nonquadricity are determined, leading to a lower bound for the covering radius of second order Reed-Muller code $\mthf{R}(2,n)$ in $\mthf{R}(3,n)$.
Last updated:  2007-02-14
Chosen-Ciphertext Secure Key-Encapsulation Based on Gap Hashed Diffie-Hellman
Eike Kiltz
We propose a practical key encapsulation mechanism with a simple and intuitive design concept. Security against chosen-ciphertext attacks can be proved in the standard model under a new assumption, the Gap Hashed Diffie-Hellman (GHDH) assumption. The security reduction is tight and simple. Secure key encapsulation, combined with an appropriately secure symmetric encryption scheme, yields a hybrid public-key encryption scheme which is secure against chosen-ciphertext attacks. The implied encryption scheme is very efficient: compared to the previously most efficient scheme by Kurosawa and Desmedt [Crypto 2004] it has 128 bits shorter ciphertexts, between 25-50% shorter public/secret keys, and it is slightly more efficient in terms of encryption/decryption speed. Furthermore, our scheme enjoys (the option of) public verifiability of the ciphertexts and it inherits all practical advantages of secure hybrid encryption.
Last updated:  2007-07-06
Cryptanalysis of white box DES implementations
Uncategorized
Louis Goubin, Jean-Michel Masereel, Michael Quisquater
Show abstract
Uncategorized
Obfuscation is a method consisting in hiding information of some parts of a computer program. According to the Kerckhoffs principle, a cryptographical algorithm should be kept public while the whole security should rely on the secrecy of the key. In some contexts, source codes are publicly available, while the key should be kept secret; this is the challenge of code obfuscation. This paper deals with the cryptanalysis of such methods of obfuscation applied to the DES. Such methods, called the ``naked-DES'' and ``nonstandard-DES'', were proposed by Chow et al. in 2002. Some methods for the cryptanalysis of the ``naked-DES'' were proposed by Chow et al., Jacob et al., and Link and Neuman. In their paper, Link and Neuman proposed another method for the obfuscation of the DES. In this paper, we propose a general method that applies to all schemes. Moreover, we provide a theoretical analysis. We implemented our method with a C code and applied it successfully to thousands of obfuscated implementations of DES (both ``naked'' and ``non-standard'' DES). In each case, we recovered enough information to be able to invert the function.
Last updated:  2007-03-23
A New Type of Cipher: DICING_CSB
Li An-Ping
In this paper, we will propose a new type of cipher named DICING_CSB, which come from our previous a synchronous stream cipher DICING. It applies a stream of subkeys and a encryption form of block ciphers, so, it can be viewed a combinative of stream cipher and block cipher. Hence, the new type of cipher has fast speed like a stream cipher and no need MAC.
Last updated:  2011-07-15
From Selective-ID to Full Security: The Case of the Inversion-Based Boneh-Boyen IBE Scheme
Eike Kiltz
In this note we remark that the inversion-based selective-ID secure identity-based encryption (IBE) scheme from Boneh and Boyen can be bootstrapped to full-ID security using a technique by Waters.
Last updated:  2007-02-14
An improved collision probability for CBC-MAC and PMAC
Avradip Mandal, Mridul Nandi
In this paper we compute the collision probability of CBC-MAC for suitably chosen messages. We show that the probability is $\Omega(\ell q^2/N)$ where $\ell$ is the number of message block, $N$ is the size of the domain and $q$ is the total number of queries. For random oracle the probability is $O(q^2/N)$. This improved collision probability will help us to have an efficient distinguishing attack and MAC-forgery attack. We also show collision probability for PMAC with collision probability $\Omega(q^2/N)$ (strictly more than birth day bound). We have used a purely combinatorial approach to obtain this bound. The similar analysis can be made for other MAC like XCBC, TMAC, OMAC etc. We hope this approach will help us to calculate related probabilities.
Last updated:  2007-05-01
Improved Security Analysis of PMAC
Mridul Nandi, Avradip Mandal
In this paper we provide a simple, concrete and improved security analysis of {\bf PMAC}, a Parallelizable Message Authentication Code. We show that the advantage of any distinguisher for {\bf PMAC} based on a random permutation is at most $\mathbf{\frac{5q\sigma - 3.5 q^2}{2^n}}$, where $\sigma$ is the total number of message blocks in all $q$ queries made by the distinguisher. In the original paper by Black and Rogaway in Eurocrypt-2002, the bound was $\frac{(\sigma+1)^2}{2^{n-1}}$. Very recently, Minematsu and Matsushima in FSE-2007, have provided a bound $\frac{10\ell q^2}{2^n}$ where $\ell$ is the maximum block length of all messages queried by the distinguisher. Our new bound is better than both original and recently proposed bound and guarantees much more security of PMAC. We also have provided a complete, independent and simple combinatorial proof. This proof idea may help us to find a similar result for other MAC algorithms.
Last updated:  2009-10-06
Formal Security Treatments for IBE-to-Signature Transformation: Relations among Security Notions
Yang Cui, Eiichiro Fujisaki, Goichiro Hanaoka, Hideki Imai, Rui Zhang
In a seminal paper of identity based encryption (IBE), Boneh and Franklin [BF01] mentioned an interesting transform from an IBE scheme to a signature scheme, which was observed by Moni Naor. In this paper, we give formal security treatments for this transform and discover several implications and separations among security notions of IBE and transformed signature. For example, we show for such a successful transform, one-wayness of IBE is an essential condition. Additionally, we give a sufficient and necessary condition for converting a semantically secure IBE scheme into an existentially unforgeable signature scheme. Our results help establish strategies on design and automatic security proof of signature schemes from (possibly weak) IBE schemes. We also show some separation results which strongly support that one-wayness, rather than semantic security, of IBE captures an essential condition to achieve secure signature.
Last updated:  2007-07-26
A General Construction of Tweakable Block Ciphers and Different Modes of Operations
Debrup Chakraborty, Palash Sarkar
This work builds on earlier work by Rogaway at Asiacrypt 2004 on tweakable block cipher (TBC) and modes of operations. Our first contribution is to generalize Rogaway's TBC construction by working over a ring {\ring} and by the use of a masking sequence of functions. The ring {\ring} can be instantiated as either $GF(2^n)$ or as $\bbbz_{2^n}$. Further, over $GF(2^n)$, efficient instantiations of the masking sequence of functions can be done using either a binary Linear Feedback Shift Register (LFSR); a powering construction; a cellular automata map; or by using a word oriented LFSR. Rogaway's TBC construction was built from the powering construction over $GF(2^n)$. Our second contribution is to use the general TBC construction to instantiate constructions of various modes of operations including authenticated encryption (AE) and message authentication code (MAC). In particular, this gives rise to a family of efficient one-pass AE mode of operation. Out of these, the mode of operation obtained by the use of word oriented LFSR promises to provide a masking method which is more efficient than the one used in the well known AE protocol called OCB.
Last updated:  2007-06-29
HCH: A New Tweakable Enciphering Scheme Using the Hash-Counter-Hash Approach
Debrup Chakraborty, Palash Sarkar
The notion of tweakable block ciphers was formally introduced by Liskov-Rivest-Wagner at Crypto 2002. The extension and the first construction, called CMC, of this notion to tweakable enciphering schemes which can handle variable length messages was given by Halevi-Rogaway at Crypto 2003. In this paper, we present {\hch}, which is a new construction of such a scheme. The construction uses two universal hash computations with a counter mode of encryption in-between. This approach was first proposed by McGrew-Viega to build a scheme called XCB and later used by Wang-Feng-Wu, to obtain a scheme called HCTR. Among the hash-Ctr-hash type constructions, an important advantage of {\hch} compared to the others is that {\hch} has a quadratic security bound; XCB does not provide any security bound while HCTR has a cubic security bound. A unique feature of {\hch} compared to all known tweakable enciphering schemes is that {\hch} uses a single key, can handle arbitrary length messages and has a quadratic security bound. An important application of a tweakable enciphering scheme is disk encryption. {\hch} is well suited for this application. We also describe a variant, which can utilize pre-computation and makes one less block cipher call. This compares favourably to other hash-encrypt-hash type constructions; supports better key agility and requires less key material.
Last updated:  2007-02-02
Verifying Data Integrity with Few Queries to Untrusted Memory
Nachiketh R. Potlapally
We present a novel technique for verifying the integrity of data stored in an untrusted memory with a small number of memory accesses. Memory integrity verification, which enables detection of tampering of data stored in untrusted memory, is an essential requirement of secure processors that provide private and tamper-proof computation. Limited on-chip storage in a secure processor makes it necessary for it to store data (including program code) in an untrusted external memory where it is easily susceptible to adversarial tampering. Thus, to ensure validity of computation, it is extremely important to have techniques that can verify integrity of data stored in untrusted memory. Existing memory integrity verification techniques, like Merkle trees, impose very high communication overhead, i.e., large number of queries from processor to memory, in order to perform data integrity verification. Given that memory latency is very high compared to execution speed of the processor, this imposes a significant running time penalty for applications executing on the processor. Our proposed technique, which is based on Chinese remaindering theorem, performs integrity verification with low communication overhead while incurring a modest increase in on-chip storage requirement. We present the details of the proposed technique and provide corresponding proofs of security and correctness.
Last updated:  2007-12-14
Cryptanalysis and Improvement of an Elliptic Curve Diffie-Hellman Key Agreement Protocol
Uncategorized
Shengbao Wang, Zhenfu Cao, Maurizio Adriano Strangio, Lihua Wang
Show abstract
Uncategorized
In SAC'05, Strangio proposed protocol ECKE-1 as an efficient elliptic curve Diffie-Hellman two-party key agreement protocol using public key authentication. In this letter, we show that despite the author's claims protocol ECKE-1 is vulnerable to key-compromise impersonation attacks. We also present an improved protocol --- ECKE-1N, which can withstand such attacks. The improved protocol's performance is comparable to the well-known MQV protocol and maintains the same remarkable list of security properties.
Last updated:  2007-04-25
Private Locally Decodable Codes
Uncategorized
Rafail Ostrovsky, Omkant Pandey, Amit Sahai
Show abstract
Uncategorized
We consider the problem of constructing efficient locally decodable codes in the presence of a computationally bounded adversary. Assuming the existence of one-way functions, we construct {\em efficient} locally decodable codes with positive information rate and \emph{low} (almost optimal) query complexity which can correctly decode any given bit of the message from constant channel error rate $\rho$. This compares favorably to our state of knowledge locally-decodable codes without cryptographic assumptions. For all our constructions, the probability for any polynomial-time adversary, that the decoding algorithm incorrectly decodes any bit of the message is negligible in the security parameter.
Last updated:  2007-01-26
Efficient Methods for Conversion and Solution of Sparse Systems of Low-Degree Multivariate Polynomials over GF(2) via SAT-Solvers
Gregory V. Bard, Nicolas T. Courtois, Chris Jefferson.
The computational hardness of solving large systems of sparse and low-degree multivariate equations is a necessary condition for the security of most modern symmetric cryptographic schemes. Notably, most cryptosystems can be implemented with inexpensive hardware, and have a low gate counts, resulting in a sparse system of equations, which in turn renders such attacks feasible. On one hand, numerous recent papers on the XL algorithm and more sophisticated Groebner-bases techniques [5, 7, 13, 14] demonstrate that systems of equations are efficiently solvable when they are sufficiently overdetermined or have a hidden internal algebraic structure that implies the existence of some useful algebraic relations. On the other hand, most of this work, as well as most successful algebraic attacks, involve dense, not sparse systems, at least until linearization by XL or a similar algorithm. No polynomial-system-solving algorithm we are aware of, demonstrates that a significant benefit is obtained from the extreme sparsity of some systems of equations. In this paper, we study methods for efficiently converting systems of low-degree sparse multivariate equations into a conjunctive normal form satisfiability (CNF-SAT) problem, for which excellent heuristic algorithms have been developed in recent years. A direct application of this method gives very efficient results: we show that sparse multivariate quadratic systems (especially if over-defined) can be solved much faster than by exhaustive search if beta < 1/100. In particular, our method requires no additional memory beyond that required to store the problem, and so often terminates with an answer for problems that cause Magma and Singular to crash. On the other hand, if Magma or Singular do not crash, then they tend to be faster than our method, but this case includes only the smallest sample problems.
Last updated:  2009-07-22
Efficient Hybrid Encryption from ID-Based Encryption
Masayuki Abe, Yang Cui, Hideki Imai, Eike Kiltz
This paper deals with generic transformations from ID-based key encapsulation mechanisms (IBKEM) to hybrid public-key encryption (PKE). The best generic transformation known until now is by Boneh and Katz and requires roughly 704-bit overhead in the ciphertext. We present two new such generic transformations that are applicable to partitioned IBKEMs. A partitioned IBKEM is an IBKEM that provides some extra structure. Such IBKEMs are quite natural and in fact nearly all known IBKEMs have this additional property. Our first transformation yields chosen-ciphertext secure PKE schemes from selective-ID secure partitioned IBKEMs with a 256-bit overhead in ciphertext size plus one extra exponentiation in encryption/decryption. As the central tool a Chameleon Hash function is used to map the identities. The second transformation transforms adaptive-ID secure partitioned IBKEMs into chosen-ciphertext secure PKE schemes with no additional overhead. Applying our transformations to existing IBKEMs we propose a number of novel PKE schemes with different trade-offs. In some concrete instantiations the Chameleon Hash can be made implicit which results in improved efficiency by eliminating the additional exponentiation. Since our transformations preserve the public verifiability property of the IBE schemes it is possible to extend our results to build threshold hybrid PKE schemes. We show an analogue generic transformation in the threshold setting and present a concrete scheme which results in the most efficient threshold PKE scheme in the standard model.
Last updated:  2007-01-26
On Perfectly Balanced Boolean Functions
O. A. Logachev
Perfectly balanced functions were introduced by Sumarokov. A well known class of such functions are those linear either in the first or in the last variable. We present a novel technique to construct perfectly balanced functions not in the above class.
Last updated:  2007-01-26
Two Trivial Attacks on Trivium
Alexander Maximov, Alex Biryukov
Trivium is a stream cipher designed in 2005 by C. De Cannière and B. Preneel for the European project eSTREAM. It has successfully passed the first phase of the project and has been selected for a special focus in the second phase for the hardware portfolio of the project. Trivium has an internal state of size 288 bits and the key of length 80 bits. Although the design has a simple and elegant structure, no attack on it has been found yet. In this paper we study a class of Trivium-like designs. We propose a set of techniques that one can apply in cryptanalysis of such constructions. The first group of methods is for recovering the internal state and the secret key of the cipher, given a piece of a known keystream. Our attack is more than $2^{30}$ faster than the best known attack. Another group of techniques allows to gather statistics on the keystream, and to build a distinguisher. We study two designs: the original design of Trivium and a truncated version Bivium, which follows the same design principles as the original. We show that the internal state of the full Trivium can be recovered in time around $c\cdot 2^{83.5}$, and for Bivium this complexity is $c\cdot 2^{36.1}$. These are the best known results for these ciphers. Moreover, a distinguisher for Bivium with working time $2^{32}$ is presented, the correctness of which has been verified by simulations.
Last updated:  2007-01-29
TinyTate: Identity-Based Encryption for Sensor Networks
Uncategorized
Leonardo B. Oliveira, Diego Aranha, Eduardo Morais, Felipe Daguano, Julio Lo'pez, Ricardo Dahab
Show abstract
Uncategorized
In spite of several years of intense research, the area of security and cryptography in Wireless Sensor Networks (WSNs) still has a number of open problems. On the other hand, the advent of Identity-Based Encryption (IBE) has enabled a wide range of new cryptographic solutions. In this work, we argue that IBE is ideal for WSNs and vice versa. We discuss the synergy between the systems, describe how WSNs can take advantage of IBE, and present results for computation of the Tate pairing over resource constrained nodes.
Last updated:  2007-01-26
Fast Digital Signature Schemes as Secure as Diffie-Hellman Assumptions
Changshe Ma, Jian Weng, Dong Zheng
This paper presents two fast digital signature schemes based on Diffie-Hellman assumptions. In the random oracle model, the first scheme S1 has a tight security reduction to the computational Diffie-Hellman (CDH) problem; and the second scheme S2 has a tight security reduction to the decisional Diffie-Hellman (DDH) problem. Comparing with existing signature schemes (whose security is tightly related to CDH problem) like EDL signature schemes, the signature generation of S1 is about 27% faster, and the verification is about 35% faster, if without considering the hash function evaluations. Comparing with existing signature schemes (whose security is tightly related to DDH problem) like KW-DDH signature scheme, the signing of S2 is about 40% faster and the verification is about 35% faster. The high efficiency of the proposed schemes is attributed to a new protocol EDL_mwz which implements the proof of equality of discrete logarithm. The EDL_mwz protocol outperforms its counterpart, the Chaum and Pedersen protocol, as its computation is about 38% faster and its bandwidth is |G| bits shorter. This new protocol may be of independent interests.
Last updated:  2008-01-03
Strongly-Secure Identity-based Key Agreement and Anonymous Extension
Sherman S. M. Chow, Kim-Kwang Raymond Choo
We study the provable security of identity-based (ID-based) key agreement protocols. Although several published protocols have been proven secure in the random oracle model, only a weak adversarial model is considered -- the adversary is not allowed to ask Session-Key Reveal queries that will allow the adversary to learn previously established session keys. Recent research efforts devoted to providing a stronger level of security require strong assumptions, such as assuming that the simulator has access to a non-existential computational or decisional oracle. In this work, we propose an ID-based key agreement protocol and prove its security in the widely accepted indistinguishability-based model of Canetti and Krawczyk. In our proof, the simulator does not require access to any non-existential computational or decisional oracle. We then extend our basic protocol to support ad-hoc anonymous key agreement with bilateral privacy. To the best of our knowledge, this is the first protocol of its kind as previously published protocols are for fixed group and provide only unilateral privacy (i.e., only one of the protocol participants enjoy anonymity).
Last updated:  2007-04-26
Group Decryption
Uncategorized
Bo Qin, Qianhong Wu, Willy Susilo, Yi Mu, Yumin Wang
Show abstract
Uncategorized
Anonymity is one of the main concerns in group-oriented cryptography. However, most efforts, for instance, group signatures and ring signatures, are only made to provide anonymity on the sender's point of view. There is only a few work done to ensure anonymity in a cryptographic sense on the recipient's point of view n group-oriented communications. In this paper, we formalize the notion of group decryptions. It can be viewed as an analogousof group signatures in the context of public key encryptions. In this notion, a sender can encrypt a committed message intended to any member of a group, managed by a group manager, while the recipient of the ciphertext remains anonymous. The sender can convince a verifier about this fact without leaking the plaintext or the identity of the recipient. If required, the group manager can verifiably open the identity of the recipient. We propose an efficient group decryption scheme that is proven secure in the random oracle model. The overhead in both computation and communication is independent of the group size. A full ciphertex is about 0.2K bytes in a typical implementation and the scheme is practical to protect the recipient identity in privacy-sensitive group-oriented communications.
Last updated:  2007-04-03
Sean O'Neil, Benjamin Gittins, Howard A. Landman
VEST (Very Efficient Substitution-Transposition) is a set of families of counter-assisted substitution-transposition ciphers designed and optimised specifically for ASIC and FPGA hardware. VEST ciphers provide fast scalable keystream generation, authenticated encryption and collision-resistant hashing at a very low cost in area and power consumption. All VEST ciphers support variable-length keys and IVs and are naturally very slow in software. Cores of VEST ciphers can be viewed as light-weight T-functions or large bijective nonlinear feedback shift registers (NLFSRs) with massively parallel feedback, assisted by a nonlinear residue number system (RNS) based counter with a very long period. Four VEST cipher family trees are introduced: 80 bit secure VEST4-80, 128 bit secure VEST8-128, 160 bit secure VEST16-160 and 256 bit secure VEST32-256, returning 4 to 32 bits of output per clock cycle while occupying ~3K to ~28K ASIC gates.
Last updated:  2007-01-19
Group Encryption
Aggelos Kiayias, Yiannis Tsiounis, Moti Yung
We present group encryption, a new cryptographic primitive which is the encryption analogue of a group signature. It possesses similar verifiability, security and privacy properties, but whereas a group signature is useful whenever we need to conceal the source (signer) within a group of legitimate users, a group encryption is useful whenever we need to conceal a recipient (decryptor) within a group of legitimate receivers. We introduce and model the new primitive and present sufficient as well as necessary conditions for its generic implementation. We then develop an efficient novel number theoretic construction for group encryption of discrete logarithms whose complexity is independent of the group size. To achieve this we construct a new public-key encryption for discrete logarithms that satisfies CCA2-key-privacy and CCA2-security in the standard model. Applications of group encryption include settings where a user wishes to hide her preferred trusted third party or even impose a hidden hierarchy of trusted parties, or settings where verifiable well-formed ciphertexts are kept in a untrusted storage server that must be prevented from both learning the content of records as well as analyzing the identities of their retrievers.
Last updated:  2007-05-24
Invertible Universal Hashing and the TET Encryption Mode
Shai Halevi
This work describes a mode of operation, TET, that turns a regular block cipher into a length-preserving enciphering scheme for messages of (almost) arbitrary length. When using an n-bit block cipher, the resulting scheme can handle input of any bit-length between n and 2^n and associated data of arbitrary length. The mode TET is a concrete instantiation of the generic mode of operation that was proposed by Naor and Reingold, extended to handle tweaks and inputs of arbitrary bit length. The main technical tool is a construction of invertible ``universal hashing'' on wide blocks, which is as efficient to compute and invert as polynomial-evaluation hash.
Last updated:  2007-01-19
Optimised versions of the Ate and Twisted Ate Pairings
Seiichi Matsuda, Naoki Kanayama, Florian Hess, Eiji Okamoto
The Ate pairing and the twisted Ate pairing for ordinary elliptic curves which are generalizations of the $\eta_T$ pairing for supersingular curves have previously been proposed. It is not necessarily the case that both pairings are faster than the Tate pairing. In this paper we propose optimized versions of the Ate and twisted Ate pairings with the loop reduction method and show that both pairings are always at least as fast as the Tate pairing. We also provide suitable families of elliptic curves that our optimized Ate and optimized twisted Ate pairings can be computed with half the loop length compared to the Tate pairing.
Last updated:  2007-09-07
Interactive two-channel message authentication based on interactive-collision Resistant hash functions
Atefeh Mashatan, Douglas R. Stinson
We propose an interactive message authentication protocol (IMAP) using two channels: an insecure broadband channel and an authenticated narrow-band channel. We consider the problem in the context of ad hoc networks, where it is assumed that there is neither a secret key shared among the two parties, nor a public-key infrastructure in place. The security of our IMAP is based on the existence of Interactive-Collision Resistant (ICR) hash functions, a new notion of hash function security. Our IMAP is based on the computational assumption that ICR hash functions exist. It performs better than message authentication protocols that are based on computational assumptions. That is, while achieving the same level of security, the amount of information sent over the authenticated channel in our IMAP is smaller than the most secure IMAP and Non-interactive Message Authentication Protocol (NIMAP) in the literature. In other words, if we send the same amount of information over the authenticated channel, we can allow much stronger adversaries compared to the existing protocols in the literature. Moreover, our IMAP benefits from a simple structure and works under fewer security assumptions compared to other IMAPs in the literature. The efficient and easy-to-use structure of our IMAP makes it very practical in real world ad hoc network scenarios.
Last updated:  2007-01-19
Universally Composable Key-evolving Signature
Jin Zhou, TingMao Chang, YaJuan Zhang, YueFei Zhu
The standard digital signature scheme can be easily subject to key exposure problem In order to overcome this problem; a feasible and effective approach is employed by key-evolving signature scheme. In this paper, we study key- evolving signature within the UC framework and propose an appropriate ideal functionality that captures the basic security requirements of key-evolving signature. Then, we present a generic way to transform a key-evolving signature scheme into a real-life protocol. Finally, we show that UC definition of security is equivalent to previous definition of security which is termed as EU-CMA security.
Last updated:  2007-05-30
Computing endomorphism rings of Jacobians of genus 2 curves over finite fields
David Freeman, Kristin Lauter
We present probabilistic algorithms which, given a genus 2 curve C defined over a finite field and a quartic CM field K, determine whether the endomorphism ring of the Jacobian J of C is the full ring of integers in K. In particular, we present algorithms for computing the field of definition of, and the action of Frobenius on, the subgroups J[l^d] for prime powers l^d. We use these algorithms to create the first implementation of Eisentrager and Lauter's algorithm for computing Igusa class polynomials via the Chinese Remainder Theorem, and we demonstrate the algorithm for a few small examples. We observe that in practice the running time of the CRT algorithm is dominated not by the endomorphism ring computation but rather by the need to compute p^3 curves for many small primes p.
Last updated:  2007-01-19
New Public Key Cryptosystems Using Polynomials over Non-commutative Rings
Zhenfu Cao, Xiaolei Dong, Licheng Wang
In this paper, we propose a new method for designing public key cryptosystems based on general non-commutative rings. The key idea of our proposal is that for a given non-commutative ring, we can define polynomials and take them as the underlying work structure. By doing so, it is easy to implement Diffie-Helman-like key exchange protocol. And consequently, ElGamal-like cryptosystems can be derived immediately. Moreover, we show how to extend our method to non-commutative groups (or semi-groups).
Last updated:  2008-08-06
Security analysis of the variant of the self-shrinking generator proposed at ICISC 2006
Dong Hoon Lee, Je Hong Park, Jaewoo Han
In this paper, we revisit the variant of the self-shrinking generator(SSG) proposed by Chang et al. at ICISC 2006. This variant, which we call SSG-XOR was claimed to have better cryptographic properties than SSG in a practical setting. But we show that SSG-XOR has no advantage over SSG from the viewpoint of practical cryptanalysis.
Last updated:  2007-01-07
One-Round ID-Based Blind Signature Scheme without ROS Assumption
Wei Gao, Xueli Wang, Guilin Wang, Fei Li
In this paper, we propose a new ID-based blind signature scheme based on bilinear pairings from scratch (i.e. without using existing ID-based signature schemes, and without using existing computational assumptions). First, the round complexity of our ID-based blind signature scheme is optimal. Namely, each interactive signature generation requires the requesting user and the signer to transmit only one message each. Second, the proposed scheme is provably secure against generic parallel attack without using the ROS assumption. Indeed, the security of the proposed scheme is based on a new formalized assumption called one-more bilinear Diffie-Hellman Inversion (1m-BDHI) assumption.
Last updated:  2007-01-07
Efficient Dynamic k-Times Anonymous Authentication
Lan Nguyen
In k-times anonymous authentication (k-TAA) schemes, members of a group can be anonymously authenticated to access applications for a bounded number of times determined by application providers. Dynamic $k$-TAA allows application providers to independently grant or revoke group members from accessing their applications. Dynamic $k$-TAA can be applied in several scenarios, such as $k$-show anonymous credentials, digital rights management, anonymous trial of Internet services, e-voting, e-coupons etc. This paper proposes the first provably secure dynamic $k$-TAA scheme, where authentication costs do not depend on $k$. This efficiency is achieved by using a technique called ``efficient provable e-tag'', proposed in \cite{Nguyen06}, which could be applicable to other e-tag systems.
Last updated:  2007-01-07
Privacy-Protecting Coupon System Revisited
Lan Nguyen
At FC’05, Chen et al. introduced an elegant privacy protecting coupon (PPC) system, CESSS05, in which users can purchase multi-coupons and redeem them unlinkably while being prevented from overspending or sharing the coupons. However, the costs for issuing and redeeming coupons are linear to the redeeming limit. Security of the system is not proved and only some arguments on system properties are provided. Coupons last indefinitely and can not be terminated. In this paper, we propose the first PPC system with constant costs for communication and computation. Coupons are revokable and the system is provably secure.
Last updated:  2007-01-04
Cryptanalysis of Hwang-Chang’s a Time-Stamp Protocol for Digital Watermarking
Jue-Sam Chou, Yalin Chen, Chung-Ju Chan
In 2005, Hwang et al. [17] proposed a time-stamping protocol for digit watermarking. They claimed that their scheme is secure against attacks. However, in this article, we will show that their scheme is not secure enough for that when the owner of the image sends both the encrypted session key and image to the TSS, the attacker can intercept these transmitted data. Then, he can launch an off-line attack to analyze these intercepted data. We will describe the attacker’s action in this article. After that, we propose an improved scheme to prevent this off-line attack.
Last updated:  2007-01-04
The Energy Cost of Cryptographic Key Establishment in Wireless Sensor Networks
Johann Groszschaedl, Alexander Szekely, Stefan Tillich
Wireless sensor nodes generally face serious limitations in terms of computational power, energy supply, and network bandwidth. Therefore, the implementation of effective and secure techniques for setting up a shared secret key between sensor nodes is a challenging task. In this paper we analyze and compare the energy cost of two different protocols for authenticated key establishment. The first protocol employs a ``light-weight'' variant of the Kerberos key distribution scheme with 128-bit AES encryption. The second protocol is based on ECMQV, an authenticated version of the elliptic curve Diffie-Hellman key exchange, and uses a 256-bit prime field GF($p$) as underlying algebraic structure. We evaluate the energy cost of both protocols on a Rockwell WINS node equipped with a 133 MHz StrongARM processor and a 100 kbit/s radio module. The evaluation considers both the processor's energy consumption for calculating cryptographic primitives and the energy cost of radio communication for different transmit power levels. Our simulation results show that the ECMQV key exchange consumes up to twice as much energy as the Kerberos key distribution. However, in large-scale networks, ECMQV is more energy-efficient than Kerberos.
Last updated:  2007-01-11
Cryptanalysis of An Oblivious Polynomial Evaluation Protocol Based On Polynomial Reconstruction Problem
Uncategorized
Huang Lin, Zhenfu Cao
Uncategorized
In 1999, Naor and Pinkas \cite {NP99} presented a useful protocol called oblivious polynomial evaluation(OPE). In this paper, the cryptanalysis of the OPE protocol is presented. It's shown that the receiver can successfully get the sender's secret polynomial $P$ after executing the OPE protocol only once, which means the privacy of the sender can be violated and the security of the OPE protocol will be broken. It's also proven that the complexity of the cryptanalysis is the same with the corresponding protocols cryptanalyzed.
Last updated:  2009-02-13
Families of genus 2 curves with small embedding degree
Uncategorized
Laura Hitt
Show abstract
Uncategorized
Hyperelliptic curves of small genus have the advantage of providing a group of comparable size as that of elliptic curves, while working over a field of smaller size. Pairing-friendly hyperelliptic curves are those whose order of the Jacobian is divisible by a large prime, whose embedding degree is small enough for computations to be feasible, and whose minimal embedding field is large enough for the discrete logarithm problem in it to be difficult. We give a sequence of $\F_q$-isogeny classes for a family of Jacobians of genus two curves over $\F_{q}$, for $q=2^m$, and their corresponding small embedding degrees. We give examples of the parameters for such curves with embedding degree $k<(\log q)^2$, such as $k=8,13,16,23,26,37,46,52$. For secure and efficient implementation of pairing-based cryptography on genus g curves over $\F_q$, it is desirable that the ratio $\rho=\frac{g\log_2 q}{\log_2N}$ be approximately 1, where $N$ is the order of the subgroup with embedding degree $k$. We show that for our family of curves, $\rho$ is often near 1 and never more than 2. We also give a sequence of $\F_q$-isogeny classes for a family of Jacobians of genus 2 curves over $\F_{q}$ whose minimal embedding field is much smaller than the finite field indicated by the embedding degree $k$. That is, the extension degrees in this example differ by a factor of $m$, where $q=2^m$, demonstrating that the embedding degree can be a far from accurate measure of security. As a result, we use an indicator $k'=\frac{\ord_N2}{m}$ to examine the cryptographic security of our family of curves.
Note: In order to protect the privacy of readers, eprint.iacr.org does not use cookies or embedded third party content.