Group Decryption*

Bo Qin'?, Qianhong Wu?, Willy Susilo?, Yi Mu?, Yumin Wang!

! National Key Laboratory of Integrated Service Networks
Xidian University, Xi’an City 710048
Shaanxi Province, P. R. China
gqinboo@xaut.edu.cn;ymwang@xidian.edu.au
2 Center for Information Security Research
School of Information Technology and Computer Science
University of Wollongong
Wollongong NSW 2522, Australia
{ghw,wsusilo,ymu}@uow.edu.au

Abstract. Anonymity is one of the main concerns in group-oriented cryptography. However,
most efforts, for instance, group signatures and ring signatures, are only made to provide anonymity
on the sender’s point of view. There is only few work done to ensure anonymity in a cryptographic
sense on the recipient’s point of view in group-oriented communications. In this paper, we for-
malize the notion of group decryptions. It can be viewed as an analogous of group signatures in
the context of public key encryptions. In this notion, a sender can encrypt a committed message
intended to any member of a group, managed by a group manager, while the recipient of the
ciphertext remains anonymous. The sender can convince a verifier about this fact without leaking
the plaintext or the identity of the recipient. If required, the group manager can verifiably open
the identity of the recipient. We propose an efficient group decryption scheme that is proven
secure in the random oracle model. The overhead in both computation and communication is
independent of the group size. A full ciphertext is about 0.2K bytes in a typical implementation
and the scheme is practical to protect the recipient identity in privacy-sensitive group-oriented
communications.

Keywords. group-oriented cryptography, group decryption, anonymity, bilinear pairing

1 Introduction

Anonymity is the main concern in group-oriented cryptography. It has attracted a lot of at-
tentions in the context of digital signatures and extensively studied in the literature, such as
group signatures, ring signatures, etc. However, these types of anonymous signatures only pro-
vide anonymity on the sender’s viewpoint in the communication. There is only few work done
to ensure anonymity on the recipient’s viewpoint using cryptographic primitives. This paper
concentrates on the identity privacy of recipients in group-oriented public key encryptions and
proposes practical solutions.

Let us consider the following scenario. Alice wants to send a secret message to Bob who
is one of the department managers in a company. For some security reasons and the purpose
of protecting the managers from dealing with junk messages, the company gateway system
does not allow the message in the network, unless it is directed for some department manager.
However, Bob may not want to let the gateway know that he is the intended recipient of the

* We noted that Aggelos Kiayias and Yiannis Tsiounis and Moti Yung recently presented an indepen-
dent paper Group Encryption which achieved the same goals with an different implementation at:
http://eprint.iacr.org/2007/015.pdf. Their work was submitted on 12 Jan 2007 from database record but
not publicly accessible until 19 Jan 2007 due to a reviewing process. We submitted this report to eprint on
21 Jan 2007.

2 B. Qin,Q. Wu, W. Susilo, Y. Mu and Y. Wang

message sent by Alice. By knowing only the public information of managers of the company,
the gateway system has to determine whether the encrypted message is allowed to stay in the
network or not. In other words, the gateway needs to test whether the message is indeed sent
to one of the managers in the company, without knowing who is the intended recipient of the
message. Furthermore, in the case of dispute, we may hope a trusted third party can reveal
the identity of the recipient.

There may exist other applications where the recipients’ anonymity is useful. For instance,
in the privacy enhanced optimistic fair exchange scenario, the two parties exchanging the
secrets may not want to reveal their identities to the third party. This notion may also be
useful in identity escrow and transactions over the Internet. In [16], Kiayias et al. illustrate
other examples of recipient anonymity such as anonymous trusted third party escrow, secure
oblivious retriever storage and ad hoc access structure group signature.

There are some related notions on the anonymity of signers in the context of signatures.
Group signatures, introduced by Chaum and van Heyst [9J58], provide signers’ anonymity.
Any group member can sign messages on behalf of the group, but the resulting signatures keep
the identity of signer secret. In the standard definition, there is a third party who can open the
signature, or undo its anonymity in the case of dispute. A ring signature, introduced in [22],
is an alternative mean to achieve anonymity for ad-hoc groups without requiring any trusted
manager. It is used to convince any third party that at least one member in an ad-hoc group
has indeed issued the signature on behalf of the group. In contrast to the group signatures,
the anonymity in ring signatures cannot be revoked.

In the context of public key based encryptions, recently, Bellare et al. [3] presented a notion
of key privacy in public-key encryption schemes. However, the setting, goal and model in their
notion are different from ours. They studied the setting of asymmetric encryptions to capture a
security property for public-key-based encryption schemes that an attacker cannot determine
the public keys that were used to generate the ciphertexts that it sees. Notice that the attacker
cannot verify whether the ciphertexts are valid for some of the potential recipients, and no
trusted party can trace the intended recipient. They use the classic chosen plaintext attack
(CPA) and chosen ciphertext attack (CCA) to model the adversary in their notion. Their
goal is to find public key encryption schemes with a special property referred to as recipient
anonymity or key privacy. They managed to show that the existing well-known schemes such
as the ElGamal encryption [12], the Cramer-Shoup encryption [11] and the RSA-OAEP [723]
provide such a recipient anonymity with or without some slight modifications.

In [T9/18], a similar notion of custodian-hiding verifiable encryption schemes was presented.
In their notion, a sender can verifiably encrypt a message under a chosen public key from a
public key list but the intended recipient is anonymous. Since there is no group manager
to administer the potential recipients, their notion is designed for only ad-hoc applications
and hence each ciphertext has to contain the public key list of potential recipients. Their
instantiations suffer from a linear cost in both communication and computation in addition
to the public key list in each ciphertext. In case of dispute, no group manager can revoke the
anonymity of the receiver.

In this paper, we first contribute the formalization of group decryption. Then we realize an
efficient scheme and prove its security in the random oracle model. To enable our realization,
we also present several sub-protocols which may find independent applications.

— Model and security definitions. We formalize the notion of group decryptions. It can be
viewed as an analogous of group signatures in the context of public key encryptions. In

Group Decryption 3

this notion, a sender can encrypt a committed message to any intended group member
managed by a group manager while the recipient of the ciphertert remains anonymous.
The sender can convince a verifier about this fact without leaking the plaintext or the
identity of the recipient. If required, the group manager can verifiably open the identity of
the recipient (for instance, in case of dispute).

— Efficient implementation. We realize an efficient group decryption scheme from SXDH
bilinear pairings. We prove that the scheme is secure in the random oracle model[6]. The
overhead in both computation and communication is independent of the group size and
the scheme is practical.

— Commitment schemes and X -protocols of group element in pairing groups. We also present
several efficient sub-protocols such as commitment schemes to commit a group element in
pairing groups and the corresponding zero-knowledge proof protocols. These sub-protocols
are of independent interest and maybe useful for other applications.

The rest of the paper is organized as follows. The next section formalizes the notion of
group decryptions. In Section 3, we review the underlying computational assumptions. Section
4 presents the building blocks. We propose our group decryption scheme in Section 5, followed
by a conclusion in the last section.

2 Modeling Group Decryption

In this section, we formalize the notion of group decryption. It allows a sender to verifiably
encrypt a committed message to any group member while the intended recipient remains
anonymous. In case of dispute, the anonymity can be verifiably revoked by the group manager.

2.1 Group Decryption Algorithms

A group decryption (GE) scheme involves four parties, a group manager who administrate
the group and trace the recipients when necessary, a group of registered members who anony-
mously receives message from senders, a sender who may be group members or outsiders and
has secret message to be sent to the registered members, and a verifier who can verify the GE
protocol without secret inputs. A GE scheme consists of the following procedures.

— ParaGen: It is a polynomial time algorithm which on input a security A, outputs the
system-wide parameters 7.

— GKeyGen: It is a polynomial time algorithm which on input the system parameters T,
outputs the group public and secret key pair (gpk, gsk).

— UKeyGen: It is a polynomial time algorithm which on input the system parameters T,
outputs a user’s public and secret key pair (upk,usk). It outputs independent key pairs
in different runs with the same input .

— Join: It is a polynomial time interactive algorithm between a user U who wants to join a
group and the group manager GM. The user has input usk while the group manager has
input gsk. The common input is (7, gpk, upk). The user has output (mpk, msk) which is
the public and secret key pair of U as a legitimate group member. The group manager
outputs an updated local database which includes a tracing trapdoor 7;; corresponding
to group member U. The tracing trapdoors forms a tracing list Ly secretly maintained
by the group manager. Ty, and Ty, may be identical or not for U # U’. All the legitimate
group members’ public keys mpk comprise of a public key list L.

4

B. Qin,Q. Wu, W. Susilo, Y. Mu and Y. Wang

Encrypt: It is a polynomial time algorithm which on input a secret message m in the
structured message space, the intended group members’s public key mpk in the public key
list and the system parameters m, outputs a ciphertext ¢ in the ciphertext space.
EnVerify: It is a polynomial time algorithm which on input a ciphertext ¢, the system
parameters 7, the group public key gpk and the public key list of the group members,
outputs a bit 1 or 0 to represent that the ciphertext is valid or not.

Decryption: It is a polynomial time algorithm which on input a valid ciphertext ¢, the
system parameters 7, the intended group member U’s public key mpk and secret key msk,
outputs a message m in the message space.

Trace:It is a polynomial time interactive algorithm between the group manager GM and a
verifier. The group manager has secret input (gsk, L) and a common input (7, gpk, Ly, c)
with the verifier, where ¢ is a valid ciphertext. After the interactive algorithm is run, the
manager GM outputs mpk which represents the identity of the intended recipient of ¢
and a zero-knowledge proof that the recipient has been corrected traced, while the verifier
outputs a bit 1 or 0 to represent that the Trace procedure has been correctly run or not.

A group decryption scheme is said to be correct if all the parties follow the scheme honestly,

the EnVerify algorithm outputs 1, the Decryption algorithm outputs the correct message and
the verifier in the Trace procedure outputs 1.

2.2 Adversarial Model in Group Decryptions

We model the adversaries in group decryption schemes with the following oracles to which
the adversaries can query. These oracles are maintained by a challenger.

UKeyGen Oracle. For the i-th (¢ > 0) query to this oracle, the adversary queries this oracle
with an integer ¢. The challenger responds with the i-th user’s public key upk; but keeps
the corresponding secret key wusk;. The challenger maintains a counter n to records the
query times and updates n = 1.

Join Oracle. The adversary queries this oracle with upk; which is an output of the UKeyGen.
The challenger runs the Join procedure for (upk;,usk;). The transcript of this procedure
and the corresponding group member public key mpk; are sent to the adversary. The
challenger updates the corresponding tracing list as the real scheme.

Corruption Oracle. The adversary queries with mpk; and obtains the corresponding secret
key msk; if mpk; is in the group member public key list.

Encryption Oracle. The adversary queries this oracle with (m, mpk;), where m is a message
in the message space and mpk; is in the group member public key list. The challenger
responds the corresponding ciphertext c.

Decryption Oracle. The adversary queries this oracle with a valid ciphertext for decryption.
The challenger responds with the corresponding message.

Trace Oracle. The adversary queries this oracle with a valid ciphertext. The challenger
responds with the identity of the traced recipient and a proof to show that the ciphertext
was sent to the traced recipient.

2.3 Security Definitions of Group Decryption

The security of group decryption schemes includes three aspects, i.e., the semantic security
against chosen-ciphertext attacks, anonymity and traceability. We define these security notions
in the standard two-stage games.

Group Decryption 5

Let us first consider the semantic security against chosen-chiphertext attacks. It states that
the attacker cannot get any information of the encrypted message by accessing all the above
oracles, including the decryption procedure provided that secret key of the intended recipient
and the target ciphertext were not queried. More formally, it is defined by the following game
between a challenger CH and an adversary \A.

Setup: CH runs ParaGen and GkeyGen algorithms to generate the system parameters 7 and
the group public and secret key pair (gpk, gsk). (7, gpk) are sent to the attacker A. CH also
initializes a counter and three lists Ly, Lys, LT to recorder the users, the group members,
and the tracing trapdoors.

Phase 1: A can adaptively make all the oracles defined above.

Challenge: A chooses a tuple (mg, m1, mpk;), where mgp, m; are in the message space and
mpk; € Ly, was never not queried to the Corruption oracle. C’H randomly selects a bit
b € {0,1} and outputs the challenge ciphertext ¢* =Encrypt(m, mpk;, my). CH sends ¢* to
A.

Phase 2: A may make another sequence of queries as in Phase 1 with a constraint that the
Corruption oracle cannot be queried on mpk; and ¢* cannot be queried to the Decrypt
oracle.

Output: Finally A outputs a guess bit ¥ € {0,1}. A wins if " = b. The advantage of A is
defined as | Pr[b = ¥'] — 1|.

Definition 1. We say that a group decryption scheme is semantically secure against chosen
ciphertext attacks if no polynomially bounded adversary has on-negligible advantage in the
above game.

The anonymity states that the attacker cannot determine the intended recipient of a
ciphertext with a probability non-negligible greater than the probability of a random guess,
provided that the attacker did not query the receivers’ secret keys and the trace oracle. Note
that the attacker can choose the message to be encrypted. Formally, the anonymity is defined
by the following game between a challenger CH and an adversary A.

Setup: It is the same as the semantic security game.

Phase 1: A can adaptively make all the oracles defined above.

Challenge: A chooses a tuple (m,mpk;,, mpk;,), where mpk;,, mpk;, € L, were never
queried to the Corruption oracle and m is in the message space. CH randomly selects
a bit b € {0,1} and outputs the challenge ciphertext ¢* =Encrypt(m, mpk;,, m). CH sends
c* to A.

Phase 2: A may make another sequence of queries as in Phase 1 except that the Corruption
oracle cannot be queried on mpk;,, mpk;, and c* cannot be queried to the Trace oracle.

Output: Finally A outputs a guess bit & € {0,1}. A wins if ¥ = b. The advantage of A is
defined as | Pr[b = ¥'] — 1|.

Definition 2. We say that a group decryption scheme is anonymous if no polynomially
bounded adversary has a non-negligible advantage in the above game.

A group decryption scheme should allow to revoke the identity of the recipient’s identity in
the case of dispute. The traceability of a group decryption scheme is defined by the following
game between a challenger CH and an adversary A.

6 B. Qin,Q. Wu, W. Susilo, Y. Mu and Y. Wang

Setup: It is the same as the semantic security game.

Probe Phase: A can adaptively make queries to all the oracles defined above.

Output: A outputs a valid ciphertext ¢*. A wins if CH cannot output the identity of the
recipient in the member list or provide a valid zero-knowledge proof of the traced identity
accepted by an honesty verifier.

Definition 3. We say that a group decryption scheme is traceable if no polynomially bounded
adversary has negligible probability to win the above game.

3 Preliminaries

3.1 Bilinear Pairings

We review some general concepts of pairing groups [4/15]24]. Let PairingGen be an algorithm
that, on input a security parameter 1%, outputs a tuple T = (p ,G1, Ga, G3, g1, go, €), where
G1 = (g1) and Gy = (g2) have the same prime order p. e : G; x Gy — Gg is an efficient bilinear
map if the following conditions hold:

1. Non-degeneration: e(gi1, g2) # 1;
2. Bilinearity: For all h; € Gy, hy € G and u,v € Z, e(h{, hY) = e(hy, ha)™

From [I4], there are three types of pairing groups:

1. Gy = Gy. Accordingly, we denote it T = (p ,G,G3, g, €) < PairingGen(1*) for simplicity.

2. Go # Gy in which there is an efficient distortion map ¢ : Go — Gy but there is no efficient
distortion map ¢ : G; — Gg, where the distortion map satisfies ¥(g5) = ¥ (g2)" € G; for
any u € Z,.

3. Gg # Gy but there is no efficient distortion map ¢ : Gg — G1 or ¢ : G — Geo.

If G2 # G and there are efficient homomorphisms ¢ : G — Gy and ¢ : G — Go, it can
be re-interpreted as Type 1. The Type 1 case is implemented using supersingular curves. The
curves of Type 2 are ordinary and the homomorphism from Gy — Gy is the trace map. The
curves of Type 3 are ordinary and G is typically taken to be the kernel of the trace map.

3.2 Computational Assumptions

Suppose that T = (p, Gy, Ga, G3, g1, g, €) « PairingGen(1*) are SXDH pairing groups, where
G1, Go, and G3 are public. Our proposals are based on the following assumptions about pairing
groups. We recall that these assumptions have been used by previous works in the literature
[T214117].

Assumption 1 (Inverse of Bilinear Pairing (IBP) Assumption) Let " = (p, Gy,
Ga, G3, g1, g2, €) « PairingGen(1*). Given random value A € Ga, for any probabilistic
polynomial time (PPT) adversary A, the probability to compute X € G satisfying e(X, g2) =
A is negligible in \.

The IBP assumption is weaker than the co-CDH assumption [4]. An adversary A breaking
the IBP assumption can be efficiently converted into an adversary B to break the co-CDH
assumption. The transformation is trivial: Given a co-CDH challenge (g1, g2, g%, 95), B com-
putes A = e(g¥,9%) = e(g1,92)" and queries A with (A, g1, g2). B straightforward uses A’s

Group Decryption 7

reply X = g}"¥ to answer the co-CDH challenge. Similarly, if G; = G2, the IBP assumption is
implied by the classical CDH assumption in the case G = G; = Go.

The IBP assumption is an analog of the RSA assumption in the pairing group settings.

We will use a strong version of the IBP assumption which can be viewed as an analog of
the strong RSA assumption in the pairing group settings. This assumption holds only in the
SXDH pairing groups (Type 3).
Assumption 2 (Strong Inverse of Bilinear Pairing (SIBP) Assumption) Let 1" = (p,
G1, Go, G, g1, g2, €) «PairingGen(1}) be pairing groups of Type 3. Given random value
hs € Go, for any PPT adversary A, the probability to compute a pair (X,Y) € G? satisfying
e(X, g2) = e(Y, ha) is negligible in A.

In pairing groups of type 3, the conventional DDH assumption holds in both G; and Gs.
Hence, such pairing groups are also called SXDH (symmetric external Diffie-Hellman) pairing
groups [I]. In [I], Ateniese et al. exploited such pairing groups to built their practical group
signatures without random oracles.

Assumption 3 (Symmetric External Diffie-Hellman (SXDH) Assumption) Let 1" =
(p, Gy, Ga, Gs, g1, g2, €) «PairingGen(1}) be pairing groups of Type 3. The SXDH assump-
tion states that the standard DDH assumption holds in both G1 and Go.

The LRSW assumption is a discrete-logarithm assumption originally introduced by Lysyan-

skaya et al. [I7] and used in many subsequent works. Recently, a stronger form of the LRSW
assumption, called Strong LRSW, was introduced by Ateniese et al. [2]. Strong LRSW only
holds in SXDH pairing groups (Type 3).
Assumption 4 (Strong LRSW Assumption) For SXDH pairing groups T = (p, G1, Ga,
G3, g1, g2, €) «PairingGen(1"), Let X,Y € Go be chosen at random, and Oxy(-) be an
oracle that takes as input a value v € Z,, and outputs an LRSW-tuple (a,a®,a¥*t"*) for a
random a € Gy. Then for any PPT adversary AV and all u € L,

€T Zp7y — Zp (0/1,0/2,@3,&470/5) — AOX’Y(.)(917927X7 Y) A ai € Gl 1

Pr
X=gY=g)|hag=a}Naz=a¥ Nag = a ANas = a?™ Nu ¢ Q| ~ poly(N)

where Q is the set of queries A makes to Ox y (-).

4 Building Blocks

In this section, as building blocks of our group decryptions, we present new commitment
schemes to commit group element in pairings. The commitment schemes works similarly to
the well-known discrete logarithm and Pedersen commitments [20]. Then we propose zero-
knowledge proofs of the committed values and show that these sub-protocols are 2’-Protocols.

4.1 Commitment

A commitment scheme consists of four efficient algorithms: C = (ParaGen, Com, Open, Ver).
The generation algorithm ParaGen(1%), where k is the security parameter, outputs a public
commitment key pk (possibly empty, but usually consisting of public parameters for the
commitment scheme). Given a message m from the associated message space M, Comyy(m;r)
produces a commitment string ¢ for the message m. The opening algorithm Openpk,(m;r)
produces a decommitment value d for c. Finally, the verification algorithm Ver,,(m,c,d)

8 B. Qin,Q. Wu, W. Susilo, Y. Mu and Y. Wang

accepts (i.e., outputs 1) if the pair (¢, d) is a valid commitment/decommitment pair for m.
We require that for all m € M, Verpy(m, Compyy(m;7), Open,,, (m;r)) = 1 holds with all but
negligible probability. Without loss of generality, we assume that the opening algorithm simply
outputs its randomness r as the decommitment, and the verification algorithm simply checks
if ¢ = Comyy(m; 7).

— Hiding: No PPT adversary (who knows pk) can extract m from Com,(m; 7). Sometimes,
we may need a stronger hiding property where no PPT adversary can distinguish the
commitments to any two message of its choice: Comy,(mi,r1), Compi(mea,re). That is,
Comy(m,r) reveals “no information” about m even allowing the adversary to choose the
message space.

— Binding: Having the knowledge of pk, it is computationally hard for any PPT adversary
A to come up with ¢,m,d,m’,d’ such that (¢,d) and (c,d') are valid commitment pairs
for m and m/, but m # m’ (such a tuple is said to be a collision). That is, A cannot find
a value ¢ which it can open in two different ways.

4.2 3X-Protocols

Let R = (z,w) be some NP-relation (i.e., it is efficiently testable to see if (z,w) € R and
|lw| < poly(|x|)). We usually call = the input, and w the witness (for x). Consider a three
move protocol run between a PPT prover P, with input (z,w) € R, and a PPT verifier V
with input . P chooses a random string r,, computes a = Start(z,w;r,), and sends a to
V. V then chooses a random string ¢ (called “challenge”) from some appropriate domain
E and sends it to P. Finally, P responds with z = Finish(z,w,¢;rp). The verifier V then
computes and returns a bit b = Check(z, a, ¢, z). We require that Start, Finish, and Check
be polynomial-time algorithms, and that |c¢| < poly(|z|). Such a protocol (given by procedures
Start, Finish, and Check) is called a X-Protocol for R if it satisfies the following properties,
called completeness, special soundness, and special honest-verifier zero-knowledge:

— Completeness: If (z,w) € R then the verifier outputs b = 1 (with all but negligible
probability).

— Special Soundness: There exists a PPT algorithm Extract, called the (knowledge) ex-
tractor, such that it is computationally infeasible to produce an input tuple (z, a, ¢, z, ¢, 2’)
such that ¢ # ¢ both lie in the proper “challenge” domain, Check(z, a, ¢, z) = Check(z, a,
d,7') =1, and yet Extract(z,a,c, z, ¢, ') fails to output a witness w such that (z, w) € R.
Intuitively, if some prover can correctly respond to two different challenges ¢ and ¢’ on the
same first flow a, then the prover must “know” a correct witness w for x (in particular, x

has a witness).
— Special HVZK: There exists a PPT algorithm Sim, called the simulator, such that for

any (z,w) € R and for any fixed challenge ¢, the following two distributions are com-
putationally indistinguishable. The first distribution (z,a,c,z) is obtained by running
an honest prover P (with some fresh randomness r,) against a verifier whose challenge
is fixed to c¢. The second distribution (z,d’,c,2’) is obtained by computing the output
(d/,7') <« Sim(x,c) (with fresh randomness ry). Intuitively, this says that for any a-priori
fixed challenge ¢, it is possible to produce a protocol transcript computationally indistin-
guishable from an actual run with the prover (who knows w).

With the well-known Fiat-Shamir transformation [13], the HVZK protocols can be con-
verted into digital signatures. They can be proven secure in the random oracle model due to
the fork lemmal21].

Group Decryption 9

4.3 Knowledge Proof of Committed Element in Pairings Groups

We present a commitment scheme to commit to elements in pairing groups then show how
to prove the knowledge of the committed values. This commitment scheme is similar to the
discrete logarithm commitment scheme.

Let (p, G1, Ga, G3, g1, g2, €) < PairingGen(1). The public commitment key is pk = (p,
G1, Go, G3, g1, g2, €). To commit a group element = € Gy, one computes the commitment

A= e(:I"a 92)
To open the commitment A, the committer shows m € Gy to the verifier. The verifier checks

? ?
that z € G; and e(z, g2) = A. The verifier outputs 1 if both verifications hold; otherwise it
outputs 0. Clearly, the commitment scheme is computationally hiding and binding based on
the IBP assumption.

Similarly to the knowledge proof of discrete logarithm, we present a knowledge proof of
the knowledge of the committed m in A, and denote the protocol by

PK{z|A = e(x,g2)}.
The 3-move protocol is as follows.

Step 1 The prover (i.e., the committer) randomly selects r € G; and sends B = e(r, g2) to
the prover.

Step 2 The verifier challenges the prover with a random ¢ € Z,.

Step 3 The prover responses with s = rxz°.

?
Step 4 The verifier checks that s € Gy and e(s, g2) ;BAC. The verifier outputs 1 if both
checks hold; otherwise it outputs 0.

Theorem 1. The above knowledge proof protocol PK{x|A = e(m, g2)} is X-protocol.

Proof. The completeness of the above protocol is obvious. Now we prove the soundness and
zero-knowledge. We first show the special soundness by construction of an efficient knowledge
extractor if the malicious committer can respond to different challenges ¢ # ¢’ on the same
first flow. Let s # s’ € Gy be the two different responses. From the verification equations, it
holds that e(s, go) = BA® and e(s', go) = BA®. Assume that r € G, satisfies that e(r, g2) = B.

Then we have that s = 72¢ and s’ = ra¢. It follows that sz—¢ = s'z~¢. Hence, 2°¢ = s/s'.
1

Since ¢ — ¢ # 0, x = (s/s') <. The knowledge is extracted.

Then we prove the special HVZK, i.e., to construct an efficient simulator sim, which on
input public parameters pk and A, outputs a simulated transcript (B’, ¢, s') indistinguishable
from the output (B,c,s) of a real run of the protocol. The simulation works as follows.
Randomly select s’ « G1,c¢’ « Z;. Compute B’ = e(s, g2) /A Clearly, e(s',g2) = B'A°,
and (B’,c,s') has identical distribution as the output (B, ¢, s) of a real run of the protocol.
This completes the proof.]

4.4 Equality Proof of Committed Elements in Pairing Groups

Let the prover committed two values A = e(z, g2) and B = e(x, h2), where hy is an indepen-
dent generator of Gy. We present a zero-knowledge proof of the equality of committed group
elements and denote the protocol by

PK{x|A =e(x,g2) N B=e(x,ha)}.

10 B. Qin,Q. Wu, W. Susilo, Y. Mu and Y. Wang
The protocol works as follows.

— Step 1 The prover randomly selects r < G; and sends D = e(r, g2) and E = e(r, hg) to
the verifier.

Step 2 The verifier challenges the prover with ¢ « Z.

— Step 3 The prover responses with s = rz°.

?
— Step 4 The verifier checks that s€ G, 6(8,92);DAC and e(s, g2) < EBC. The verifier
outputs 1 if all checks hold; otherwise, output 0.

Similarly to Theorem 1, we have the following claim.

Theorem 2. The above protocol PK{x|A = e(x, g2) AN B = e(x,ha)} is a X-protocol. 0

4.5 Knowledge Proof of Pedersen Commitment in Pairing Groups

The Pedersen commitment [20] of discrete logarithms is a widely used commitment scheme.
In this subsection, we present a Pedersen commitment of a group element in SXDH pairing
groups. Let T = (p, Gy, Ga, Ga, g1, g2, €) «PairingGen(1*) be pairing groups of Type 3.
Given random values ho € Go, the Pedersen commitment of of a secret element X € Gy is

A= e(X, gg)e(R, h2)

where r is randomly chosen from G .

Similarly to the classical Pedersen commitment, we argue that this commitment is un-
conditionally hiding and computationally binding. On the one hand, given A € Gj3 and
g2, ho as independent generators of Go, for any X’ € Gy, there exists an R’ € Gy such
that e(R',ha) = A/e(X’, g2). Hence, it is unconditionally hiding. On the other hand, if the
committer can output two pairings (X, R) # (X', R') such that A = e(X,g2)e(R, ha) and
A =e(X', g2)e(R/, ha), then we have e(z, g2)/e(2’, g2) = e(r’, he)/e(r, he). Hence, we can out-
put a pair (x/2', 7' /r) satisfying e(z/2’, g2) = e(r’/r, he). However, this is infeasible in SXDH
pairing groups under the SIBP assumption. Hence the above commitment is computationally
binding.

We provide a knowledge proof of the Pedersen commitment in SXDH pairing groups. We
denote the protocol by

PK{X, R|A = 6<X, gg)e(R, hg)}

The protocol runs as follows.

— Step 1 The prover randomly selects V, W « G; and sends D = e(V, g2)e(W, ha) to the
verifier.

— Step 2 The verifier challenges the prover with ¢ « Z.

Step 3 The prover responses with S =V X¢ 7 = W R°.

?
— Step 4 The verifier checks that S, Z € G; and e(S, g2)e(Z, ha) £ DA®. The verifier outputs
1 if both checks hold; otherwise, output 0.

The completeness of the protocol is straightforward. For the security, we have the following
result. We omit it as it is very similar to Theorem 1.

Theorem 3. The above protocol PK{X, R|A = e(X, g2)e(R, ha)} is a X-protocol. 0

Group Decryption 11

4.6 Knowledge Proof of Discrete Logarithm of Pedersen Commitment in
Pairing Groups

In our GE scheme, we need a further zero-knowledge proof that the prover knows the discrete
logarithm of the committed element to a given base. We denote the protocol by

PE{X,R,z|A = e(X,g2)e(R, ha) N X = g},

where a prover proves the knowledge of X, R € G; and x € Z, satisfying A = e(X, g2)e(R, h2)
and X = g7 without leaking X, R or z. The protocol is as follows.

— Step 1 The prover randomly selects v «— Z,, W « G and sends D = e(g], g2)e(W, ha)
to the verifier.

— Step 2 The verifier challenges the prover with ¢ « Z.

— Step 3 The prover responses with ¢ = v + cx, Z = WR°.

? ?
Step 4 The verifier finally checks that o € Z,,, Z € G1, e(g{, g2)e(Z, h2) L DAe. The verifier
outputs 1 if all checks hold; otherwise, output 0.

Theorem 4. The above protocol PK{X, R,x|A = e(X, g2)e(R, ha)ANX = g7} is a X-protocol.

One can easily follow Theorem to prove the above theorem and we omit the proof. If we
view X as the identity or public key of the prover and x its private key, the above protocol
allows a HVZK proof of the secret key corresponding to a public key hidden in a commitment
and may be useful for anonymous systems.

5 Proposed Group Decryption Scheme

In this section, we propose a group decryption scheme following the definition. We notice that,
currently and independently, Kiayias, Tsiounis and Yung [16] presented a primitive referred
to as group encryption and an efficient instantiation to achieve the same security goals as
ours. We refer to this primitive as group decryption to stress the anonymity on the receiver’s
viewpoint. We briefly compare our proposal with theirs here.

Their general idea is to let the sender first commit to the message to be sent. Then the
sender encrypts the message using the intended receiver’s public key. The sender also encrypts
the receiver’s public key as well as the associated certificate from the group manager using
the open manager’s public key. Finally, the sender proves to a verifier it has behaved honestly
in a zero-knowledge manner. For a practical implementation, proper underlying encryption
schemes have to be found to enable an easy zero-knowledge proof protocol. They realize their
scheme with a cramer-shoup variation of the Paillier cryptosystem and obtain a CCA-2 secure
scheme without using random oracles. The zero-knowledge proof protocol is interactive. It can
be converted into a non-interactive one using the Fiat-Shamir transformation but the security
now relies on the random oracle model. Without considering the transcripts introduced by
the zero-knowledge proof to show the correctness of the encryption, their requires about 5K
bytes.

We also first let the sender commit to the message to be sent. However, before encrypting
the message, the sender rerandomizes the receiver’s public key and the corresponding cer-
tificate, such that the rerandomized public key corresponds to the same secret key as the
original one and any one can verify that the rerandomized certificate is still a signature of

12 B. Qin,Q. Wu, W. Susilo, Y. Mu and Y. Wang

the re-randomized public key, but no one can link them with the original public key and
certificate except the intended receiver and the group manager. Then the sender encrypts the
message using the rerandomized public key of some group member. Finally, the sender just
prove that the last encryption operation takes the committed message as input because the
intended receiver can use its original secret key to decrypt it. For a practical implementation,
we have to find proper encryption schemes and methods to generate the receiver’s public keys
and their certificates allowing rerandomization. We realize our scheme with the original E1Ga-
mal encryption in the context of pairing groups and the CL*-signature [1I2] to generate the
certificates of the group members’ public keys. We obtain CCA-2 security only in the random
oracle model but our scheme is non-interactive. With an interactive zero-knowledge proof, our
scheme can also achieve CCA-2 security without random oracles if the Cramer-Shoup encryp-
tion in the context of pairing groups is adopted. The full ciphertext including the transcript
of zero-knowledge proofs in our scheme is about 0.2K bytes and an order shorter than that
(5K bytes) in [16].

— ParaGen: 7 = (p,G1,Gs,G3, g1, g2, €) < PairingGen(1%). H(-) : {0,1}* — Z,, is crypto-
graphic hash function. Let ho be an independent generator of Gs. The globe parameters
are m = {1, H, ha}.

GKeyGen: Randomly select z,y < Z;. Compute X = ¢3,Y = g5. The public and secret
keys of the group manager are

gpk = (X,Y), gsk = (x,y).

— UKeyGen: Choose at random u « Z;. Compute U = e(gi, g2)*. The public and secret
keys of the user are
upk = U, usk = u.

— Join: A user U can join a group and become a group member via the following protocol

with the group manager GM.

1. U sends E = gf,T = g% to GM via a (an Ind-CCA2) confidential channel and proves
the knowledge of decryption key: o = PK{u|E = ¢{'}.

2. GM checks the validity of ¢ and e(FE, g2) = e(g1,7) = U. If any check fails or T" has
been in its local database, GM aborts the Join protocol. Else, GM blindly generates
a CL™T-signature S = (a1, as, a3, a4, as) on the user’s secret key u corresponding to the
public key U = e(g1, g2)", where

_ _ _ T _ _
a1 =g{,a2 = E7,a3 = af, a4 = a3, a5 = (ar1a4)?

for a randomly chosen value v « Z;. GM sends S = (a1, a2, a3, a4, as) to U as its group
certificate corresponding to U, where the secret key is hidden in the form as = af'. GM
adds (7', U) to its local database.

3. The user checks that the group certificate S = (a1, as,as,as,as) is a valid CL™-
signature [2]:

e(a1, X) = e(as, g2), e(az, X) = e(as, g2), e(aras,) = e(as, go).

If any equation does not hold, the Join protocol fails. Else, the user computes a knowl-
edge signature (converted from the corresponding) -protocol with the Fiat-Shamir
transformation)

o=KS{u,T|e(a1,T) = e(az, g2) Ne(g1,T) = U A af = a2} (gpk||lupk||S)

Group Decryption 13

on a message of the group public key, the user’s own public key and the corresponding
certificate. Here, a knowledge signature o = K S{x|y = f(x)}(m) denotes a signature
o of message m to show the knowledge of = such that y = f(z). The user & who has
become a group member obtains its member public key and secret key:

mpk = {S,U, 0}, msk = u.

— Encryption: Let a sender want to send a committed message m € G to a group member
U. Tt can verifiably send it to U without leaking the identity of U as follows.

1.

2.

Membership check: The sender verifies the validity of S and o. If any check fails, the
sender aborts.
Message commitment: For m € G, commit the secret message m as follows:

0 — thﬂ = e(m,gg)e(é, h‘2)

. Key Re-randomization: Randomly select r «— Zj and re-randomize the group certificate

of U by computing:
c1 = al,cy = ah,c3 = aj, ¢4 = ay,cs = as.
Message encryption: Randomly choose s < Z;, compute

_ s _ -1 s
Ce = A1,C7r =1 QAg.

. Encryption proof: Prove that (cg, cg, c7) has been correctly generated by compute the

knowledge signature
cs = KS{M, s|e(c7,92)co = e(M, g2)e(d, ha) A cg = ai A M = a5} (col|er]] - |]er),
which is equivalent to the following knowledge signature:
gy = KS{m, s|co = e(m, g2)e(d, ha) A cg = a A cr = m ™ a5} (collcr|] - - ||er).

Output ¢ = (cg, ¢1, o, €3, ¢4, C5,C6, C7, c8) as the resulting ciphertext of message m to
the anonymous group member U.

— Encryption Verification: Any verifier can verify the validity of the ciphertext as follows:

1.

2.

Check that

e(c1, X) = e(cs, g2), e(c2, X) = e(ca, g2), e(c1ca, Y) = e(cs, ga)-

Check that cg is a valid knowledge signature as defined.

If any check fails, the ciphertext is rejected. Else it is accepted.
— Decryption: The group member I/ with a secret key u decrypts a ciphertext ¢ as follows:

1.
2.

3.

Check that co = ¢} to decide whether the ciphertext is intended to U.
Check that validity of the CLT-signature by the equalities:

e(cs, g2) = e(c1,X), e(ca, g2) = e(ca, X), e(cs, g2) = e(ciea,Y).

This check validates that the intended recipient is a registered group member.
Check that cg is a valid knowledge signature to validate that the cipherxtext is com-
puted from the committed message.

14 B. Qin,Q. Wu, W. Susilo, Y. Mu and Y. Wang
If any check fails, the group member 4 aborts the Decryption procedure. Else, it outputs
m = cg/cy.

— Receiver Tracing: The group manager can trace the recipient as follows. It checks
whether there exists (T,U) in its local database such that

e(c1,T) = e(c2, g2)-

If so, output U. Else output an error message. The group manager can prove to a verifier
that it has correctly traced the recipient with the following zero-knowledge proof:

PK{T|e(c1,T) =e(c2,92) Ne(qr1,T) =U}.

The correctness of the scheme follows from a straightforward verification. For the security,
we have the following claims.

Theorem 5. The proposed group decryption scheme is semantically secure against chosen
ciphertext attacks in the random oracle model under the DDH assumption and the Strong
LRSW assumption in SXDH pairing groups.

Proof. We prove that a successful attacker in the semantical security game of our scheme can
be used as a subroutine to break the DDH assumption in Gj.

Assume that we are given a DDH challenge (g1, g§', g’f ,93) € G1, where Gy is from SXDH
pairing groups T = (p, G1,Go,G3,g1,92,¢) «— PairingGen(1"). We are required to answer
whether § = af or not. We first use this DDH challenge to simulate the oracles that the
attacker may query and then use the attacker’s reply to answer the DDH challenge.

Setup. We randomly choose hy € Gg. The globe parameters are m = {1, H, ha}, where
the hash function H(-) : {0,1}* — Z, is modeled as a random oracle. It is simulated in
the standard way. That is, we maintain an H-list and for any query &, if £ is not in the
list, we reply with a random number ¢ € Z, and add (&, ¢) to the H-list. If the £ has been
in the list, we forward the precious reply to maintain consistent. We also randomly select
z,y < Z, and compute X = g3,V = g5. The public and secret key pair of the group manager
is gpk = (X,Y), gsk = (z,y). m and gpk are sent to the attacker.

UkeyGen Oracle. Let the system contain at most n = poly(\) users. We randomly choose
an integer 1 < ig < n. For the attacker’s query ¢ # ig, we behave as the real scheme and send
the corresponding public key to the attacker. If i = ig, we send e(gy, g2) as the ip-th user’s
public key.

Join Oracle. For the attacker’s query upk # e(gf,g2) in the user public key list Ly, we
behave as the real scheme. For query upk = e(g¥, g2), we randomly choose a string in the
ciphertext space to respectively simulate the ciphertext of (g, ¢%). Since the channel here is
confidential and Ind-CCA2 secure (See the Join protocol in Section 5), the attacker cannot
distinguish the simulation from the real scheme with non-negligible probability. We randomly
select (c, s) € Zp X Zj, to simulate the (non-interactive) knowledge proof PK{a|E = g{'}. Add
(95 E¢, c) to the H-list. Use (x,y), we can generate the group certificate S = (a1, az, as, a4, as)
for E = gf as the real scheme. We can also similarly simulate the knowledge signature
o=KS{a,T|e(a1,T) = e(az,92) Ne(g1,T) = U A af = az}(gpk||E||S) in the random oracle
model without knowing «, T

Group Decryption 15

Corruption Oracle. Whenever the attacker queries a group member’s secret key msk, if
mpk corresponds to g%, we declare failure and aborts the protocol, denoted by a bad event
Failure 1. Else we can correctly answer with the corresponding msk since we have generated
such group member’s public and secret key pair as the real scheme. Here, Failure 1 happens

Nne

with probability e = ¢, where n. is the number of corrupted members.

Encryption Oracle. We do as the real scheme but keep a list to record all the ciphertext we
have produced.

Decryption Oracle. When the attacker queries this oracle with ¢ = (¢, -+, ¢g), if it is not
corresponding to the user public key ¢{', we can reply with the corresponding message m as
the real scheme. If it is corresponding to the user public key ¢ but (c1,--- ,c7,¢5) is in the
ciphertext list but cg # c§, we reply with the plaintext m corresponding to (ci,--- ,c7,cg) if
and only if the encryption verification on ¢ holds. If (c1,- - ,c¢7) is not in the ciphertext list
but the encryption verification on ¢ holds, we run the attacker two times using the standard
rewinding technique [21] to extract M, s. We reply with Mc, ! as the corresponding plaintext.

Trace Oracle. When the attacker queries this oracle with a valid ciphertext ¢ = (¢1,- -+, ¢g),
we trace it with the tracing trapdoors in the tracing list. If mpk does not correspond to ¢,
we reply as the real scheme. If mpk corresponds to g{', we use the standard simulation of the
zero-knowledge proof in the random oracle model to reply the attacker. If all the trapdoors
fail to trace the recipient, we output the group member corresponding to ¢{* as the recipient.
Else we trace the recipient as the real scheme. This simulation fails if the ciphertext is not
generated for any recipient in the group member list which implies that the attacker has
successfully forge a group member certificate results into a solution to the Strong LRSW
assumption. Hence, this Failure 2 happens with negligible probability €2 assuming the Strong
LRSW assumption.

In the challenge phase, the attacker queries with a tuple (mg, m1, mpk), where mg, m; are
in the message space and mpk = (a1, as, as, a4, as, upk, o) is a valid group member’s public key
and has never been queried to the Corruption Oracle. If upk # e(g{, g2), we declare failure and
denoted it by a bad event Failure 8 which happens with probability 1 — % Else we randomly
choose a bit b € {0,1} and do the following.

— Commit the chosen message m;, with ¢ = e(my, g2)e(d, h2) for a random 6 — Gy.

— Compute ¢ = g{,¢5 = (¢g0)7, ¢4 = af,c; = a3, ¢t = (c¢ic;)? for a randomly chosen value
Y — Zy.

— Randomly choose s « Zj, compute cg = (glﬁ)V, ch = m;l(gf)V.

— Simulate the knowledge signature in the random oracle model: c¢§ = K.S{M, sle(c}, g2)cf =
e(M, g2)e(8, ha) A e = () A M = (5 Heglieslleslles ezl e gl es).

— Output ¢* = (¢,], 5, c5, ch, ¢k, cg, ch, c§) as the challenge ciphertext of message my, to the
group member mpk.

After receiving the challenge ciphertext c¢*, the attacker can still query above oracles but
mpk cannot be queried to the Corruption Oracle and ¢* cannot be queried to the Decryption
Oracle. We answer these queries as above.

Finally, the attacker will output its guess bit b’. We conclude that (g1, g%, g’f , g‘f) is a DDH
tuple in G if and only if ¥’ = b. Note that ¢* is valid ciphertext of m; under the group member
public key mpk if and only if (g1, 9§, gl’8 , g‘f) is a DDH tuple. We answer successfully whenever
the attacker has a correct guess. Let the attacker win this semantical security game with
probability e. Hence, we win the DDH challenge with probability (1 —e1)(1 —e2)(1 —e3)e =~
(1 — 2¢)1e This completes the proof. 0

16 B. Qin,Q. Wu, W. Susilo, Y. Mu and Y. Wang

Theorem 6. The proposed group decryption scheme is anonymous in the random oracle
model under the DDH assumption and the Strong LRSW assumption in SXDH pairing groups.

Proof. We prove that a successful attacker in the anonymity game of our scheme can be used
as a subroutine to break the DDH assumption in Gj.

Assume that we are given a DDH challenge (g1, g§', g’f ,93) € G1, where Gy is from SXDH
pairing groups T = (p,G1,Go,G3,g1,92,¢) «— PairingGen(1"). We are required to answer
whether § = o or not. We first use a DDH challenge to simulate the oracles that the attacker
may query and then use the attacker’s reply to answer the DDH challenge.

The simulation is the same as the previous proof in the semantical security. In the challenge
phase, the attacker queries with a tuple (m,mpk;,, mpk;,), where m is in the message space
and mpk;, = (a1p,a2p,a3p, upk;,,0;,) are valid group member’s public keys for b = 0,1
and have never been queried to the Corruption Oracle. If upk;, # e(gy,g2) for b = 0,1, we
declare failure and denoted it by a bad event which happens with probability 1 — % Else
upk;, = e(g{, g2). We compute the challenge ciphertext as follows.

Commit the chosen message m with cf = e(m, g2)e(d, he) for a random 6 — Gj.

— Compute ¢} = g?,cg = g),¢5 = ¥, ¢, = &, ¢t = (cicq)? for a randomly chosen value

Y — Ly,

Randomly choose s «— Z5, compute ¢ = (c})%, ¢t = m™1(c5)".

— Simulate the knowledge signature in the random oracle model using the standard sim-
ulating technique: ¢§ = KS{M,sle(ct, g2)c; = e(M,g2)e(d,ha) A ¢ = (¢])° N M =
(@)l el el).

— Output ¢* = (¢,], 5, c5, i, ¢k, g, cb, c§) as the challenge ciphertext of message my, to the

group member mpk.

After receiving the challenge ciphertext c¢*, the attacker can still query above oracles but
mpk cannot be queried to the Corruption Oracle and ¢* cannot be queried to the Trace Oracle.
We answer these queries as above.

Finally, the attacker will output its guess bit b’. We conclude that (g1, g‘f‘,gf ,g‘f) is a
DDH tuple in Gy if and only if &' = b. Note that c¢* is valid ciphertext of m under the group
member public key mpk;, if and only if (g1, ¢, gf ,g}) is a DDH tuple. We answer successfully
whenever the attacker has a correct guess. Let the attacker win this semantical security game
with probability e. Similarly, we win the DDH challenge with probability (1 — %)%5 This
completes the proof.]

Theorem 7. The proposed group decryption scheme is traceable in the random oracle model
under the Strong LRSW assumption in SXDH pairing groups.

Proof. Assume that we are given a Strong LRSW challenge (g1, X = ¢3,Y = ¢j) € Gy x G3,
where G1, Gy are from SXDH pairing groups ¥ = (p, G1, G2, G3, g1, go, €) « PairingGen(1?).
We are required to output a tuple (a1 € Gy,a2 = af,,a3 = af',a4 = a{*,a5 = a‘qfrmy) for
a value u € Z}p which has never been queried to the LRSW oracle. We first use the LRSW
challenge and the LRSW oracle to simulate the oracles that the attacker may query and then

use the attacker’s reply to answer the Strong LRSW challenge.

The Setup is the same as the previous proof. We generate the users’ key pairing as the
real scheme. When attacker requires to add these users into the group, we use the secret
user keys u € Zj to ask the strong LRSW oracle. It return us with (a, a®, a¥) for a

Group Decryption 17

random a € Gy. Then we obtain (a”, (a®)(a®)", (a®)"", (a¥T"*¥)") which the corresponding
group certificates and compute the rest parts as the real scheme. All the other actions can
be perfectly simulated as we know the group members’ secret keys. Finally, the attacker will
output a valid ciphertext ¢/ = (¢} --- ,¢§) which we cannot traced. Note that the condition 1
in the Encryption Verification procedure guarantees that (¢} --- ,c§) is a strong LRSW tuple
[2]. Hence, logcx1 ¢y =4/ is not the secret key of any group member and hence has never been

queried to the LRSW oracle. Therefore, (¢} -+ ,cf) can be used to successfully answer the
strong LRSW challenge. This contradicts to the strong LRSW assumption in SXDH pairing
groups and completes the proof. O

6 Conclusion

In this paper, we formalized the notion of group decryptions. It allows a sender to verifiably
encrypt a committed message intended to any member of a group, managed by a group
manager, while the recipient of the ciphertext remains anonymous. In case of dispute, the
group manager can verifiably open the identity of the recipient. We proposed the first group
decryption scheme from pairing groups secure in the random oracle model. Our scheme has
constant complexity in both computation and the communication. To achieve our scheme, we
presented several sub-protocols. These sub-protocols are efficient and of independent interest.

References

1. G. Ateniese, J. Camenisch, S. Hohenberger and B. de Medeiros. Practical group signatures without random
oracles. Cryptology ePrint Archive, Report 2005/385, 2005. http://eprint.iacr.org/.

2. G. Ateniese, J. Camenisch, and B. de Medeiros. Untraceable RFID tags via insubvertible encryption. In
ACM CCS, pp. 92-101, 2005.

3. M. Bellare, A. Boldyreva, A. Desai and D. Pointcheval. Key-privacy in public-key encryption. Asiacrypt’01,
LNCS 2248, pp. 566-582. Springer-Verlag, 2001.

4. D. Boneh, B. Lynn, and H. Shacham. Short signatures from the Weil pairing. Asiacrypt’01, LNCS 2248,
pp. 514-532. Springer-Verlag, 2001.

5. M. Bellare, D. Micciancio, and B. Warinschi. Foundations of group signatures: Formal definition, simplified
requirements and a construction based on general assumptions. Eurocypt’03, LNCS 2656, pp. 614-629.
Springer-Verlag, 2003.

6. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In
Proc. 1st ACM Conference on Computer and Communications Security, pp. 62-73. ACM Press, 1993.

7. M. Bellare and P. Rogaway. Optimal Asymmetric encryption-How to encrypt with RSA. Eurocrypt’95,
LNCS 921, Springer-Verlag, 1995.

8. X. Boyen and B. Waters. Compact Group Signatures Without Random Oracles. EUROCRYPT 2006, LNCS
4004, pp. 427C444. Springer-Verlag,2006. Earlier version available at: http://eprint.iacr.org/2005/381.pdf.

9. D. Chaum and E. van Heyst. Group Signatures. Eurocrypt’91, LNCS 547, pp. 257-265. Springer-Verlag,
1991.

10. J. Camenisch and A. Lysyanskaya. Signature Schemes and Anonymous Credentials from Bilinear Maps.
Crypto’04, LNCS 3152, pp. 56C72. Springer-Verlag, 2004.

11. R. Cramer and V. Shoup. A practical public key cryptosystem provably secure against adaptive chosen
ciphertext attack. Crypto’98, LNCS 1462, pp.13-25. Springer-Verlag, 1998.

12. T. ElGamal. A public key cryptosystem and signature scheme based on discrete logarithms. IEEE Trans-
action on Information Theory, Vol. 31, 1985, pp.467-472.

13. A. Fiat, A. Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature Problems.
CRYPTO 1986, LNCS 263, pp. 186-194. Springer-Verlag, 1998

14. S. D. Galbraith, K. G. Paterson and N. P. Smart. Pairings for cryptographers. Cryptology ePrint Archive,
Report 2006/165, 2006. http://eprint.iacr.org/.

15. S. D. Galbraith and V. Rotger. Easy decision Diffie-Hellman groups. Journal of Computation and Mathe-
matics, 7:201-218, 2004.

18

16

17.

18.

19.

20.

21.

22.

23.

24.

B. Qin,Q. Wu, W. Susilo, Y. Mu and Y. Wang

A. Kiayias, Y. Tsiounis and M. Yung. Group Encryption. Cryptology ePrint Archive: Report 2007/015.
A. Lysyanskaya, R. L. Rivest, A. Sahai, and S. Wolf. Pseudonym systems. SAC’99, LNCS 1758, pp. 184-199.
Springer-Verlag, 1999.

J. K. Liu, P. P. Tsang, D. S. Wong, and R. W. Zhu. Universal custodian-hiding verifiable encryption for
discrete logarithms. ICISC 2005, LNCS 3935, pp.389 - 409. Springer-Verlag, 2006.

J. Liu, V. Wei, and D. Wong. Custodian-hiding verifiable encryption. In WISA 2004, pages 54C67. Springer-
Verlag, 2004. LNCS Vol. 3325.

T. P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing. Crypto’91, LNCS
576, pp.129C140. Springer-Verlag, 1991.

D. Pointcheval, J. Stern. Security proofs for signature schemes. Eurocrypt’96, LNCS 1070, 387-398.
Springer-Verlag, 1996.

R. L. Rivest, A. Shamir, and Y. Tauman. How to leak a secret. In Proc. Asiacrypt’01, LNCS 2248, pp.
552-565, Springer-Verlag, 2001.

V. Shoup. OAEP Reconsidered. In Proceedings of Crypto’01, Lecture Notes in Computer Science Vol.
2139, pages 239-259. Springer-Verlag, 2001

E. R. Verheul. Evidence that XTR is more secure than supersingular elliptic curve cryptosystems. Euro-
crypt’2001, LNCS 2045, pp. 195-210. Springer-Verlag, 2001.

	Group Decryption
	Introduction
	Modeling Group Decryption
	Group Decryption Algorithms
	Adversarial Model in Group Decryptions
	Security Definitions of Group Decryption

	Preliminaries
	Bilinear Pairings
	Computational Assumptions

	Building Blocks
	Commitment
	-Protocols
	Knowledge Proof of Committed Element in Pairings Groups
	Equality Proof of Committed Elements in Pairing Groups
	Knowledge Proof of Pedersen Commitment in Pairing Groups
	Knowledge Proof of Discrete Logarithm of Pedersen Commitment in Pairing Groups

	Proposed Group Decryption Scheme
	Conclusion

