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Abstract. The Ate pairing and the twisted Ate pairing for ordinary
elliptic curves which are generalizations of the ηT pairing for supersingu-
lar curves have previously been proposed. It is not necessarily the case
that both pairings are faster than the Tate pairing. In this paper we
propose optimized versions of the Ate and twisted Ate pairings with the
loop reduction method and show that both pairings are always at least
as fast as the Tate pairing. We also provide suitable families of elliptic
curves that our optimized Ate and optimized twisted Ate pairings can
be computed with half the loop length compared to the Tate pairing.

1 Introduction

In 2000, Sakai et al [14] proposed an ID-based key agreement protocol using a
bilinear pairing, and pairing-based cryptosystems became one of the most at-
tractive areas of research in elliptic curve cryptography. Famous examples are
Identity Based Encryption [5] and Short Signature [6]. Using a bilinear pairing,
one can construct a nonconventional protocol and reduce the bandwidth. The
pairing computation, however, takes up much more computational costs than
main cryptographic primitives such as modular exponentiation or scalar multi-
plication over elliptic curves, so an efficient algorithm for computing the pairing
presents an important issue in pairing-based cryptography.

Some leading algorithms of computing pairing have been proposed. Such
examples are an efficient algorithm called the BKLS algorithm [2] which was
proposed, and the new pairing on a supersingular (hyper)elliptic curve over a
finite field of characteristic p which was proposed by Duursma et al a year
later [8]. Barreto et al [1] generalized this pairing over supersingular curves with
trace t to be the η pairing and proposed the ηT pairing, where T = t − 1, that
can be computed with half the loop length compared to the η pairing. For these
results, they consider pairings on G1×G2, where G1 = E(Fq)[r],G2 = E(Fqk)[r].
Hess et al [11] extended ηT pairing over an ordinary curve and proposed the Ate
pairing on G2×G1 and the twisted Ate pairing on G1×G2. Note that the latter
can only be faster than the Tate pairing when |T e| ≤ r using a twist E′/Fqe .

In this paper, we propose an optimized version of the Ate and twisted Ate
pairing which can be more efficiently computed than the standard Ate and
twisted Ate pairing if certain conditions are met. We provide some families of
elliptic curves for which these conditions are satisfied.



2 Background

2.1 Tate pairing

Let Fq be a finite field with q = pm elements where p is prime and let E be an
elliptic curve defined over Fq. Denote subgroup order by r such that r|]E(Fq)
and the embedding degree by k such that the smallest positive integer with
r|qk − 1.

Let P ∈ E(Fq)[r] and Q ∈ E(Fqk), and consider the divisor D = (Q+R)−(R)
with R a random point in E(Fqk). For every integer a, let fa,P be a function
with divisor div(fa,P ) = a(P ) − (aP ) − (a − 1)(O), then the Tate pairing is a
well-defined, nondegenerate, bilinear pairing

〈·, ·〉r :

{
E(Fq)[r]× E(Fqk)/rE(Fqk) → F∗qk/(F∗qk)r

(P, Q) 7→ 〈P, Q〉r = fr,P (D)

We will require a unique element of F∗qk for pairing-based protocols, so one

may define the reduced Tate pairing as e(P, Q) = 〈P, Q〉(qk−1)/r
r = fr,P (Q)(q

k−1)/r．
Galbraith et al [10] shows that r can be replaced by any integer N such that
r|N |qk − 1, i.e. e(P, Q) = fN,P (Q)(q

k−1)/N

One can compute fr,P (Q) using Miller’s algorithm. If k is even, then vertical
line gaP through aP can be ignored due to the final powering operation.

Miller’s Algorithm

INPUT: P ∈ E(Fp)[r], Q ∈ E(Fpk)/rE(Fpk)
OUTPUT: f ∈ Fpk

f ← 1, V ← P and n = r − 1
for i ← blog2 nc − 1 downto 0 do

f ← f2 · gV,V (Q)/g2V (Q) and V ← 2V
if ni = 1 then

f ← f · gV,P (Q)/gV +P (Q) and V ← V + P
return f

2.2 η and ηT pairing

For P ∈ E(Fq)[r], Q ∈ E(Fqk)[r] where E is a supersingular curve with distortion
map ψ, there exists an automorphism γ such that γψq(P ) = ψ(P ). For M =
(qk − 1)/N, T ∈ Z, the following equation holds:

(〈P, ψ(Q)〉MN )L = (ηT (P, Q)M )aT a−1
,

where a ∈ N, L, c ∈ Z, T a +1 = LN, T = q + cN . Barreto et al [1] have proposed
the η pairing for T = q on the above definition and also introduced improved
version of it with the choice T = q − N and refer to the pairing as ηT pairing.
Since T = q −N = ∓t − 1, the ηT pairing can be computed with half the loop
length compared to the η pairing.

2



2.3 Ate pairing

Let Frobenius endomorphism πq : E → E : (x, y) 7→ (xq, yq) and let G1 =
E[r]∩Ker(πq−[1]),G2 = E[r]∩Ker(πq−[q]). Denote the group order of the elliptic
curve by ]E(Fq) = q+1−t and let T = t−1. Let N = gcd(T k−1, qk−1), T k−1 =
LN . For Q ∈ G2, P ∈ G1, we have the Ate pairing:

aT : (Q,P ) 7→ fT,Q(P )cT (qk−1)/N

where cT =
∑k−1

i=0 T k−1−iqi ≡ kqk−1 mod r. The Ate pairing is nondegenerate
for r - L and bilinear. One can compute fT,Q(P ) using Miller’s algorithm with
loop length blog2 |T |c. If q ∼ r and the average size of trace equals to

√
q, the

Ate pairing can be computed with half the loop length compared to the Tate
pairing.

2.4 Twist

Let E and E′ be two ordinary elliptic curves over Fq with q = pn and p ≥ 5. E′ is
called a twist of degree d of E if there exists an isomorphism ψ : E′ → E defined
over Fq and d is minimal. We remark that the condition k | ]Aut(E) holds true
if and only if E admits a twist of degree k.

Let D ∈ F∗q , then the twists corresponding to D mod (F∗q)d are given by

d = 2 E : y2 = x3 + ax + b,

E′ : y2 = x3 + a/D2x + b/D3,

ψ : E′ → E : (x, y) 7→ (Dx, D3/2y),

d = 4 E : y2 = x3 + ax,

E′ : y2 = x3 + a/Dx,

ψ : E′ → E : (x, y) 7→ (D1/2x,D3/4y),

d = 3, 6 E : y2 = x3 + b,

E′ : y2 = x3 + b/D,

ψ : E′ → E : (x, y) 7→ (D1/3x,D1/2y).

2.5 Twisted Ate pairing

Let E be an elliptic curve admitting a unique twist E′ of degree m over Fqe

for m = gcd(k, ]Aut(E)) and e = k/m. One can alternatively represent G2 as
G2 = E[r] ∩ Ker([ζm]πe

q − 1) where ζm is the primitive mth root of unity such
that [ζm] : (x, y) 7→ (ζ2

mx, ζ3
my). For P ∈ G1, Q ∈ G2, we have the twisted Ate

pairing:
atwist

T e : (P, Q) 7→ fT e,P (Q)cT e (qk−1)/N

where cT e =
∑m−1

i=0 T e(m−1−i)qei ≡ kqk−1 mod r. The Ate pairing is nondegen-
erate for r - L and bilinear. Note that this pairing can only be faster than the
Tate pairing when |T e| ≤ r.
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3 Optimized versions of Ate and twisted Ate pairings

We can regard the optimized versions of Ate and twisted Ate pairing as an ηT

pairing. Let E be an ordinary elliptic curve over Fq and let P ∈ G1 and Q ∈ G2

such that G1 = E[r] ∩Ker(πq − [1]) and G2 = E[r] ∩Ker(πq − [q]).

Theorem 1. Let r ≥ 5 be the subgroup order and let S be an integer with
S ≡ q mod r. Define N = gcd(Sk − 1, qk − 1) and Sk − 1 = LN . Let cS =∑k−1

i=0 Sk−1−iqi mod N . Then

aS : (Q,P ) 7→ fS,Q(P )cS(qk−1)/N

defines a bilinear pairing G2 ×G1 → F∗qk [r]. If k | ]Aut(E) then

atwist
S : (P, Q) 7→ fS,P (Q)cS(qk−1)/N

also defines a bilinear pairing G1×G2 → F∗qk [r]. Both pairings aS and atwist
S are

non-degenerate if and only if r - L.

We will show that under certain conditions a suitable choice of S yields
pairings aS and atwist

S which are more efficient than the Ate pairing aT and the
twisted Ate pairing atwist

T for T = t − 1. For these choices of S we call aS and
atwist

S optimised Ate and optimised twisted Ate pairing.

Proof. The proof is essentially the same as in [11], but slightly more general.
We let ψ = πq for the Ate pairing case and ψ = γπq for the twisted Ate pairing

case, where γ ∈ Aut(E) is an automorphism of order k such that (γπq)(Q) = Q
and (γπq)(P ) = [q]P . If we interchange P and Q for the twisted Ate pairing we
have ψ(P ) = P , ψ(Q) = [q]Q = [S]Q and need to consider fS,Q(P )cS(qk−1)/N

like for the Ate pairing. This allows us to deal with both cases in one go.
From Lemma 1 of [11] we obtain

e(Q,P ) = fr,Q(P )(q
k−1)/r = fN,Q(P )(q

k−1)/N

and

e(Q,P )L = fN,Q(P )L(qk−1)/N = fLN,Q(P )(q
k−1)/N

= fSk−1,Q(P )(q
k−1)/N

= fSk,Q(P )(q
k−1)/N . (1)

Lemma 2 of [1] yields

fSk,Q = fSk−1

S,Q fSk−2

S,SQ · · · fS,Sk−1Q. (2)

Since ψ is purely inseparable of degree q, we obtain from Lemma 4 in [11]

fS,ψi(Q) ◦ ψi = fqi

S,Q. (3)
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We have ψi(Q) = SiQ and ψi(P ) = P . Combining this with (2) and (3) gives

fSk,Q(P ) = fS,Q(P )
Pk−1

i=0 Sk−1−iqi

. (4)

Substituting (4) into (1) gives

e(Q,P )L = fS,Q(P )cS(qk−1)/N . (5)

Now (5) shows that aS and atwist
S are bilinear pairings, which are non-degenerate

if and only if r - L. ¤

If we want to apply the twisted Ate pairing for k - ]Aut(E), we can consider
the base extension E1 of E over Fqe , where e = k/ gcd(k, ]Aut(E)). The embed-
ding degree of E1 with respect to r is m = k/e, and we have m | ]Aut(E1). We
can thus apply the twisted Ate pairing from Theorem 1 to E1, replacing q by
qe, k by m and using S ≡ qe mod r.

4 Performance Evaluation

We provide some families of elliptic curves admitting a twist of degree 4 and 6,
and compare the costs of optimized versions with the standard pairings.

4.1 Polynomial Families

Let ρ ≡ log p/ log r be the ratio between the bit lengths of the finite field and
the order of the subgroup. If D = 1, 2, 3 in CM equation 4p − t2 = DV 2, the
following elliptic curves are generated without CM algorithm [9].

E1 : y2 = x3 + ax (D = 1)

E2 : y2 = x3 − 30ax2 + 56a3 (D = 2)

E3 : y2 = x3 + b (D = 3)

where E1(respectively E2 and E3) is a twist of degree 4(respectively 2 and 6).
Some polynomial families with square polynomial have been presented such

as for k = 4, 6 when ρ ∼ 2 [7], for k = 8 when ρ ∼ 3/2 [9] and for k = 12 when
ρ ∼ 1 [4]. These detailed parameterizations are in Appendix.

4.2 Efficiency Comparison

We follow the analysis of [12] and compare the Tate pairing fr,P (Q), Ate pairing
fT,Q(P ), twisted Ate pairing fT e,P (Q), optimized Ate pairing fS,Q(P ) and opti-
mized twisted Ate pairing fS,P (Q) on ordinary elliptic curves admitting a twist
of degree 6 when k = 6, 12 and degree 4 when k = 4, 8. We refer to fN,P (Q) as
a Miller-Lite operation and fN,Q(P ) as a Full-Miller operation. We denote the
cost of the Miller-Lite operation by CLite and the cost of the Full-Miller opera-
tion by CFull. Assume both operations use projective coordinates. On the form
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Y 2 = X3 +AX +B, the costs for Miller-operations are estimated as follows [11].
When A = −3:

CLite = (4S1 + (2e + 7)M1 + Sk + Mk) log2 N

CFull = (4Se + 6Me + 2eM1 + Sk + Mk) log2 N

When A = 0:

CLite = (5S1 + (2e + 6)M1 + Sk + Mk) log2 N

CFull = (5Se + 6Me + 2eM1 + Sk + Mk) log2 N

where s = 2i3j ,Ms = 3i5jM1, Ss = Ms. Using the parameters in Appendix, we
estimate the loop length for each pairings.

Table 1. The Costs Required for the Different Pairings

Cost(average size t)
Security Level Method Standard Optimized

k = 4, d = 4 Tate 4960
log2 p ∼ 320 Ate 4800 2400
log2 r ∼ 160 twisted Ate 4960 2480

k = 6, d = 6 Tate 11008
log2 p ∼ 512 Ate 11008 5504
log2 r ∼ 256 twisted Ate 11008 5504

k = 8, d = 4 Tate 17664
log2 p ∼ 384 Ate 16896 16896
log2 r ∼ 256 twisted Ate 26496 13248

k = 12, d = 6 Tate 26880
log2 p ∼ 256 Ate 16256 16256
log2 r ∼ 256 twisted Ate 26880 20160

Table 1 represents the costs for different pairing on elliptic curves with k =
4, 6, 8, 12. When ρ ∼ 2, we have r ∼ |t| and conclude the optimized Ate and
optimized twisted Ate pairings are twice as fast as Tate, Ate and twisted Ate
pairings. When k = 8 we see that the optimized twisted Ate pairing is more
efficient than the optimized Ate pairing.

5 Conclusion

We have proposed optimized versions of the Ate and twisted Ate pairing which
are always at least as fast as the Tate pairing. We have also showed that our
optimized Ate and optimized twisted Ate pairings require a Miller loop of only
half the length of the Miller loop of the Ate and twisted Ate pairings, if ordinary
elliptic curves admitting twists of degree 4 and degree 6 with ρ ∼ 2 are employed.
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Appendix

We show the following parameterizations for k = 4, 6, 8, 12 [7, 4, 9] and the value
of T = t− 1 and S = p mod r.

k = 4
t = 4z2 + 2z + 2
r = 4z2 + 1
p = 8z4 + 6z2 + 2z + 1
DV 2 = 4z2(2z2 − 1)2

T = 4z2 + 2z + 1
S = 2z

k = 6
t = 3z2 + 1
r = 3z2 − 3z + 1
p = 9z4 − 9z3 + 9z2 − 3z + 1
DV 2 = 3(3z2 − 2z + 1)2

T = 3z2

S = 3z − 1

k = 8
t = −9z3 − 3z2 − 2z
r = 9z4 + 12z3 + 8z2 + 4z + 1
p = 1

4 (81z6 + 54z5 + 45z4 + 12z3 + 13z2 + 6z + 1)
DV 2 = (3z + 1)2

T = −9z3 − 3z2 − 2z − 1
T 2 = 81z6 + 54z5 + 45z4 + 30z3 + 10z2 + 4z + 1
S = T (for optimized Ate pairing)
S = p2 mod r = −18z3 − 15z2 − 10z − 4 (for optimized twisted Ate pairing)

k = 12
t = 6z2 + 1
r = 36z4 + 36z3 + 18z2 + 6z + 1
p = 36z4 + 36z3 + 24z2 + 6z + 1
DV 2 = 3(6z2 + 4z + 1)2

T = 6z2

T 2 = 36z4

S = T (for optimized Ate pairing)
S = p2 mod r = −36z3 − 18z2 − 6z − 1 (for optimized twisted Ate pairing)
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