Papers updated in last 365 days (Page 30 of 2931 results)
Simple Three-Round Multiparty Schnorr Signing with Full Simulatability
In a multiparty signing protocol, also known as a threshold signature scheme, the private signing key is shared amongst a set of parties and only a quorum of those parties can generate a signature. Research on multiparty signing has been growing in popularity recently due to its application to cryptocurrencies. Most work has focused on reducing the number of rounds to two, and as a result: (a) are not fully simulatable in the sense of MPC real/ideal security definitions, and/or (b) are not secure under concurrent composition, and/or (c) utilize non-standard assumptions of different types in their proofs of security. In this paper, we describe a simple three-round multiparty protocol for Schnorr signatures and prove its security. The protocol is fully simulatable, secure under concurrent composition, and proven secure in the standard model or random-oracle model (depending on the instantiations of the commitment and zero-knowledge primitives). The protocol realizes an ideal Schnorr signing functionality with perfect security in the ideal commitment and zero-knowledge hybrid model (and thus the only assumptions needed are for realizing these functionalities).
In our presentation, we do not assume that all parties begin with the message to be signed, the identities of the participating parties and a unique common session identifier, since this is often not the case in practice. Rather, the parties achieve consensus on these parameters as the protocol progresses.
Malicious Security for Sparse Private Histograms
We present a construction for secure computation of differentially private sparse histograms that aggregates the inputs from a large number of clients. Each client contributes a value to the aggregate at a specific index. We focus on the case where the set of possible indices is superpolynomially large. Hence, the resulting histogram will be sparse, i.e., most entries will have the value zero.
Our construction relies on two non-colluding servers and provides security against malicious adversaries that may control one of the servers and any numbers of clients. It achieves communication and computation complexities linear in the input size, and achieves the optimal error , independent of the size of the domain of indices. We compute the communication cost of our protocol, showing its scalability. For a billion clients, the communication cost for each server is under 26 KiB per client.
Our paper solves an open problem of the work of Bell et al. (CCS'22) which presented a solution for the semi-honest setting while incurring sublinear overhead in its efficiency. We formalize a proof approach for proving malicious security in settings where the output and possible additional information revealed during the execution need to provide differential privacy.
Publicly Verifiable Secret Sharing over Class Groups and Applications to DKG and YOSO
Publicly Verifiable Secret Sharing (PVSS) allows a dealer to publish encrypted shares of a secret so that parties holding the corresponding decryption keys may later reconstruct it. Both dealing and reconstruction are non-interactive and any verifier can check their validity. PVSS finds applications in randomness beacons, distributed key generation (DKG) and in YOSO MPC (Gentry et al. CRYPTO'21), when endowed with suitable publicly verifiable re-sharing as in YOLO YOSO (Cascudo et al. ASIACRYPT'22).
We introduce a PVSS scheme over class groups that achieves similar efficiency to state-of-the art schemes that only allow for reconstructing a function of the secret, while our scheme allows the reconstruction of the original secret. Our construction generalizes the DDH-based scheme of YOLO YOSO to operate over class groups, which poses technical challenges in adapting the necessary NIZKs in face of the unknown group order and the fact that efficient NIZKs of knowledge are not as simple to construct in this setting.
Building on our PVSS scheme's ability to recover the original secret, we propose two DKG protocols for discrete logarithm key pairs: a biasable 1-round protocol, which improves on the concrete communication/computational complexities of previous works; and a 2-round unbiasable protocol, which improves on the round complexity of previous works. We also add publicly verifiable resharing towards anonymous committees to our PVSS, so that it can be used to efficiently transfer state among committees in the YOSO setting. Together with a recent construction of MPC in the YOSO model based on class groups (Braun et al. CRYPTO'23), this results in the most efficient full realization (i.e without assuming receiver anonymous channels) of YOSO MPC based on the CDN framework with transparent setup.
Last updated: 2024-03-20
Zero-Dimensional Gröbner Bases for Rescue-XLIX
Rescue-XLIX is an Arithmetization-Oriented Substitution-Permutation Network over prime fields which in one full round first applies a SPN based on followed by a SPN based on the inverse power map . In a recent work, zero-dimensional Gröbner bases for SPN and Poseidon sponge functions have been constructed by utilizing weight orders. Following this approach we construct zero-dimensional Gröbner bases for Rescue-XLIX ciphers and sponge functions.
Last updated: 2024-03-20
A Zero-Dimensional Gröbner Basis for Poseidon
In this paper we construct dedicated weight orders so that a -Gröbner bases of Poseidon can be found via linear transformations for the preimage as well as the CICO problem. In particular, with our Gröbner bases we can exactly compute the -vector space dimension of the quotient space for all possible Poseidon configurations. This in turn resolves previous attempts to assess the security of Poseidon against Gröbner basis attacks, since the vector space dimension quantifies the complexity of computing the variety of a zero-dimensional polynomial system.
A Deep Analysis of two Glitch-Free Hardware Masking Schemes SESYM and LMDPL
In the context of masking, which is the dominant technique for protecting cryptographic hardware designs against SCA attacks, the focus has long been on the design of masking schemes that guarantee provable security in the presence of glitches. Unfortunately, achieving this comes at the cost of increased latency, since registers are required to stop glitch propagation. Previous work has attempted to reduce latency by eliminating registers, but the exponential increase in area makes such approaches impractical. Some relatively new attempts have used DRP logic styles to avoid glitches in algorithmically masked circuits. Promising approaches in this area include LMDPL and SESYM, presented at CHES 2020 and CHES 2022 respectively. Both schemes allow masking of arbitrary functions with only one cycle latency. However, even if glitches no longer occur, there are other physical defaults that may violate the security of a glitch-free masked circuit. The imbalanced delay of dual rails is a known security problem for DRP logic styles such as WDDL, but is not covered by the known security models, e.g., robust probing model.
In this work, we illustrate that imbalanced signal delays pose a threat to the security of algorithmically masked circuits implemented with DRP logic, both in theory and practice. Notably, we underscore the security of LMDPL even when delays are taken into account, contrasting with the vulnerability observed in SESYM under similar conditions. Consequently, our findings highlight the critical importance of addressing imbalanced delays in the design of masked circuits using DRP logic. In particular, our findings motivate the need for an appropriate security model, and imply that relying solely on the probing security model and avoiding glitches may be insufficient to construct secure circuits.
Algebraic isomorphic spaces of ideal lattices, reduction of Ring-SIS problem, and new reduction of Ring-LWE problem
This paper mainly studies an open problem in modern cryptography, namely the Ring-SIS reduction problem. In order to prove the hardness of the Ring-SIS problem, this paper introduces the concepts of the one-dimensional SIS problem, the Ring-SIS problem, and the variant knapsack problem. The equivalence relations between the three are first established, on which the connection between the Ring-SIS problem and the Ring-SIS problem is built. This proves that the hardness of the Ring-SIS problem is no less than that of the variant knapsack problem and no more than that of the SIS problem. Additionally, we reduce the Ring-LWE problem to the Ring-SIS problem, which guarantees the security of encryption schemes based on Ring-LWE to a certain degree. Lastly, this article proves that the difficulty of the Ring-SIS problem and the Ring-LWE problem is moderate with respect to the spatial dimension or polynomial degree.
ON THE IMPLEMENTATION OF A LATTICE-BASED DAA FOR VANET SYSTEM
Direct Anonymous Attestation (DAA) is a cryptographic protocol that enables users with a Trusted Platform Module (TPM) to authenticate without revealing their identity. Thus, DAA emerged as a good privacy-enhancing solution. Current standards have security based on factorization and discrete logarithm problem making them vulnerable to quantum computer attacks. Recently, a number of lattice-based DAA has been propose in the literature to start transition to quantum-resistant cryptography. In addition to these, DAA has been adapted to Vehicle Ad-hoc NETwork system (VANETs) to offer secure vehicule-to-vehicule/infrastructure communication (V2V and V2I). In this paper, we provide an implementation of the most advanced post-quantum DAA for VANETs. We explore the cryptographic foundations, construction methodologies, and the performance of this scheme, offering insights into their suitability for various real-world use cases.
Perfect Zero-Knowledge PCPs for #P
We construct perfect zero-knowledge probabilistically checkable proofs (PZK-PCPs) for every language in #P. This is the first construction of a PZK-PCP for any language outside BPP. Furthermore, unlike previous constructions of (statistical) zero-knowledge PCPs, our construction simultaneously achieves non-adaptivity and zero knowledge against arbitrary (adaptive) polynomial-time malicious verifiers.
Our construction consists of a novel masked sumcheck PCP, which uses the combinatorial nullstellensatz to obtain antisymmetric structure within the hypercube and randomness outside of it. To prove zero knowledge, we introduce the notion of locally simulatable encodings: randomised encodings in which every local view of the encoding can be efficiently sampled given a local view of the message. We show that the code arising from the sumcheck protocol (the Reed--Muller code augmented with subcube sums) admits a locally simulatable encoding. This reduces the algebraic problem of simulating our masked sumcheck to a combinatorial property of antisymmetric functions.
Atlas-X Equity Financing: Unlocking New Methods to Securely Obfuscate Axe Inventory Data Based on Differential Privacy
Banks publish daily a list of available securities/assets (axe list) to selected clients to help them effectively locate Long (buy) or Short (sell) trades at reduced financing rates. This reduces costs for the bank, as the list aggregates the bank's internal firm inventory per asset for all clients of long as well as short trades. However, this is somewhat problematic: (1) the bank's inventory is revealed; (2) trades of clients who contribute to the aggregated list, particularly those deemed large, are revealed to other clients. Clients conducting sizable trades with the bank and possessing a portion of the aggregated asset exceeding are considered to be concentrated clients. This could potentially reveal a trading concentrated client's activity to their competitors, thus providing an unfair advantage over the market.
Atlas-X Axe Obfuscation, powered by new differential private methods, enables a bank to obfuscate its published axe list on a daily basis while under continual observation, thus maintaining an acceptable inventory Profit and Loss (P\&L) cost pertaining to the noisy obfuscated axe list while reducing the clients' trading activity leakage. Our main differential private innovation is a differential private aggregator for streams (time series data) of both positive and negative integers under continual observation.
For the last two years, Atlas-X system has been live in production across three major regions—USA, Europe, and Asia—at J.P. Morgan, a major financial institution, facilitating significant profitability. To our knowledge, it is the first differential privacy solution to be deployed in the financial sector. We also report benchmarks of our algorithm based on (anonymous) real and synthetic data to showcase the quality of our obfuscation and its success in production.
Multi-Party Replicated Secret Sharing over a Ring with Applications to Privacy-Preserving Machine Learning
Secure multi-party computation has seen significant performance advances and increasing use in recent years. Techniques based on secret sharing offer attractive performance and are a popular choice for privacy-preserving machine learning applications. Traditional techniques operate over a field, while designing equivalent techniques for a ring can boost performance. In this work, we develop a suite of multi-party protocols for a ring in the honest majority setting starting from elementary operations to more complex with the goal of supporting general-purpose computation. We demonstrate that our techniques are substantially faster than their field-based equivalents when instantiated with a different number of parties and perform on par with or better than state-of-the-art techniques with designs customized for a fixed number of parties. We evaluate our techniques on machine learning applications and show that they offer attractive performance.
Encrypted Image Classification with Low Memory Footprint using Fully Homomorphic Encryption
Classifying images has become a straightforward and accessible task, thanks to the advent of Deep Neural Networks. Nevertheless, not much attention is given to the privacy concerns associated with sensitive data contained in images. In this study, we propose a solution to this issue by exploring an intersection between Machine Learning and cryptography.
In particular, Fully Homomorphic Encryption (FHE) emerges as a promising solution, as it enables computations to be performed on encrypted data. We, therefore, propose a Residual Network implementation based on FHE which allows the classification of encrypted images, ensuring that only the user can see the result.
We suggest a circuit which reduces the memory requirements by more than 85% compared to the most recent works, while maintaining a high level of accuracy and a short computational time. We implement the circuit using the well-known CKKS scheme, which enables approximate encrypted computations.
We evaluate the results from three perspectives: memory requirements, computational time and calculations precision. We demonstrate that it is possible to evaluate an encrypted ResNet20 in less than five minutes on a laptop using approximately 15GB of memory, achieving an accuracy of 91.67% on the CIFAR-10 dataset, which is almost equivalent to the accuracy of the plain model (92.60%).
On iterated punctured Grover
Grover’s algorithm is a very versatile cryptanalytical tool. Even though it doesn’t provide an exponential speed-up, it still changed the cryptographic requirements all over the world. Usually, Grover’s algorithm is executed with a fixed well-defined function indicating good states. In this paper, we want to investigate what happens if the function is changed over time to mark less and less good states. We compute the amplitudes after steps of an adjusted Grover’s algorithm proposed by Zheng et al. in Nested Quantum Search Model on Symmetric Ciphers and Its Applications (2023). We use the amplitudes to reason that such an approach always leads to a worse run-time when compared to the naïve version. We also indicate at which point in Zheng et al. the counterintuitive nature of quantum computation leads to false assumptions.
Isogeny problems with level structure
Given two elliptic curves and the degree of an isogeny between them, finding the isogeny is believed to be a difficult problem---upon which rests the security of nearly any isogeny-based scheme. If, however, to the data above we add information about the behavior of the isogeny on a large enough subgroup, the problem can become easy, as recent cryptanalyses on SIDH have shown.
Between the restriction of the isogeny to a full -torsion subgroup and no ''torsion information'' at all lies a spectrum of interesting intermediate problems, raising the question of how easy or hard each of them is. Here we explore modular isogeny problems where the torsion information is masked by the action of a group of matrices. We give reductions between these problems, classify them by their difficulty, and link them to security assumptions found in the literature.
Quantum Cryptanalysis of 5 rounds Feistel schemes and Benes schemes
In this paper, we provide new quantum cryptanalysis results on 5 rounds (balanced) Feistel schemes and on Benes schemes. More precisely, we give an attack on 5 rounds Feistel schemes in quantum complexity and an attack on Benes schemes in quantum complexity, where n is the number of bits of the internel random functions.
Classical and Quantum Generic Attacks on 6-round Feistel Schemes
In this paper, we describe new quantum generic attacks on 6 rounds balanced Feistel networks with internal functions or internal permutations. In order to obtain our new quantum attacks, we revisit a result of Childs and Eisenberg that extends Ambainis' collision finding algorithm to the subset finding problem. In more details, we continue their work by carefully analyzing the time complexity of their algorithm. We also use four points structures attacks instead of two points structures attacks that leads to a complexity of instead of . Moreover, we have also found a classical (i.e. non quantum) improved attack on rounds with internal permutations. The complexity here will be in instead of previously known.
Asymptotics and Improvements of Sieving for Codes
A recent work by Guo, Johansson, and Nguyen (Eprint'23) proposes a promising adaptation of Sieving techniques from lattices to codes, in particular, by claiming concrete cryptanalytic improvements on various schemes. The core of their algorithm reduces to a Near Neighbor Search (NNS) problem, for which they devise an ad-hoc approach. In this work, we aim for a better theoretical understanding of this approach. First, we provide an asymptotic analysis which is not present in the original paper. Second, we propose a more systematic use of well-established NNS machinery, known as Locality Sensitive Hashing and Filtering (LSH/F). LSH/F is an approach that has been applied very successfully in the case of sieving over lattices. We thus establish the first baseline for the sieving approach with a decoding complexity of for the conventional worst parameters (full distance decoding, where complexity is maximized over all code rates). Our cumulative improvements eventually enable us to lower the hardest parameter decoding complexity for SievingISD algorithms to . This approach outperforms the BJMM algorithm (Eurocrypt'12) but falls behind the most advanced conventional ISD approach by Both and May (PQCrypto'18). As for lattices, we found the Random-Spherical-Code-Product (RPC) to give the best asymptotic complexity. Moreover, we also consider an alternative that seems specific to the Hamming Sphere, which we believe could be of practical interest as it plausibly hides less sub-exponential overheads than RPC.
Studying Lattice-Based Zero-Knowlege Proofs: A Tutorial and an Implementation of Lantern
Lattice-based cryptography has emerged as a promising new candidate to build cryptographic primitives. It offers resilience against quantum attacks, enables fully homomorphic encryption, and relies on robust theoretical foundations. Zero-knowledge proofs (ZKPs) are an essential primitive for various privacy-preserving applications. For example, anonymous credentials, group signatures, and verifiable oblivious pseudorandom functions all require ZKPs. Currently, the majority of ZKP systems are based on elliptic curves, which are susceptible to attacks from quantum computers. This project presents the first implementation of Lantern, a state-of-the-art lattice-based ZKP system that can create compact proofs, which are a few dozen kilobytes large, for basic statements. We thoroughly explain the theory behind the scheme and give a full implementation in a Jupyter Notebook using SageMath to make Lantern more accessible to researchers. Our interactive implementation allows users to fully understand the scheme and its building blocks, providing a valuable resource to understand both ZKPs and lattice cryptography. Albeit not optimized for performance, this implementation allows us to construct a Module-LWE secret proof in 35s on a consumer laptop. Through our contributions, we aim to advance the understanding and practical utilization of lattice-based ZKP systems, particularly emphasizing accessibility for the broader research community.
Compressed M-SIDH: An Instance of Compressed SIDH-like Schemes with Isogenies of Highly Composite Degrees
Recently, SIDH was broken by a series of attacks. To avoid the attacks, several new countermeasures, such as M-SIDH and binSIDH, have been developed. Different from SIDH, the new SIDH-like schemes have relatively large public key sizes. Besides, the orders of the torsion groups considered in new SIDH-like schemes are the products of many primes. Therefore, the key compression techniques in SIDH can not be directly applied to these schemes. It remains an open problem to compress the public key in new SIDH-like schemes.
This paper takes M-SIDH as an instance to explore how to compress the public key in new SIDH-like schemes efficiently. We propose compressed M-SIDH, which is reminiscent of compressed SIDH. We also show that our approach to compress the public key of M-SIDH is valid and prove that compressed M-SIDH is secure as long as M-SIDH is secure. In addition, new algorithms to accelerate the performance of public-key compression in M-SIDH are presented in this paper.
We provide a proof-of-concept implementation of compressed M-SIDH in SageMath. Experimental results show that our approach fits well with compressed M-SIDH. The techniques proposed in this work also benefit public-key compression in other SIDH-like protocols, such as binSIDH and terSIDH. Besides, our method for torsion basis generation has the potential to improve the performance of SQALE and dCSIDH.
Single trace HQC shared key recovery with SASCA
This paper presents practicable single trace attacks against the Hamming Quasi-Cyclic (HQC) Key Encapsulation Mechanism. These attacks are the first Soft Analytical Side-Channel Attacks (SASCA) against code-based cryptography. We mount SASCA based on Belief Propagation (BP) on several steps of HQC's decapsulation process. Firstly, we target the Reed-Solomon (RS) decoder involved in the HQC publicly known code. We perform simulated attacks under Hamming weight leakage model, and reach excellent accuracies (superior to ) up to a high noise level ( ), thanks to a re-decoding strategy. In a real case attack scenario, on a STM32F407, this attack leads to a perfect success rate. Secondly, we conduct an analogous attack against the RS encoder used during the re-encryption step required by the Fujisaki-Okamoto-like transform. Both in simulation and practical instances, results are satisfactory and this attack represents a threat to the security of HQC. Finally, we analyze the strength of countermeasures based on masking and shuffling strategies. In line with previous SASCA literature targeting Kyber, we show that masking HQC is a limited countermeasure against BP attacks, as well as shuffling countermeasures adapted from Kyber. We evaluate the ``full shuffling'' strategy which thwarts our attack by introducing sufficient combinatorial complexity. Eventually, we highlight the difficulty of protecting the current RS encoder with a shuffling strategy. A possible countermeasure would be to consider another encoding algorithm for the scheme to support a full shuffling. Since the encoding subroutine is only a small part of the implementation, it would come at a small cost.
Anonymous Complaint Aggregation for Secure Messaging
Private messaging platforms provide strong protection against platform eavesdropping, but malicious users can use privacy as cover for spreading abuse and misinformation. In an attempt to identify the sources of misinformation on private platforms, researchers have proposed mechanisms to trace back the source of a user-reported message (CCS '19,'21). Unfortunately, the threat model considered by initial proposals allowed a single user to compromise the privacy of another user whose legitimate content the reporting user did not like. More recent work has attempted to mitigate this side effect by requiring a threshold number of users to report a message before its origins can be identified (NDSS '22). However, the state of the art scheme requires the introduction of new probabilistic data structures and only achieves a "fuzzy" threshold guarantee. Moreover, false positives, where the source of an unreported message is identified, are possible.
This paper introduces a new threshold source tracking technique that allows a private messaging platform, with the cooperation of a third-party moderator, to operate a threshold reporting scheme with exact thresholds and no false positives. Unlike prior work, our techniques require no modification of the message delivery process for a standard source tracking scheme, affecting only the abuse reporting procedure, and do not require tuning of probabilistic data structures.
The Systemic Errors of Banded Quantum Fourier Transformation
Quantum Fourier Transformation (QFT) needs to construct the rotation gates with extremely tiny angles. Since it is impossible to physically manipulate such tiny angles (corresponding to extremely weak energies), those gates should be replaced by some scaled and controllable gates. The version of QFT is called banded QFT (BQFT), and can be mathematically specified by Kronecker product and binary fraction. But the systemic errors of BQFT has never been heuristically estimated. In this paper, we generate the programming code for BQFT and argue that its systemic errors are not negligible, which means the physical implementation of QFT with a huge transform size is still a challenge. To the best of our knowledge, it is the first time to obtain the result.
Verifiable Information-Theoretic Function Secret Sharing
A function secret sharing (FSS) (Boyle et al., Eurocrypt 2015) is a cryptographic primitive that enables additive secret sharing of functions from a given function family . FSS supports a wide range of cryptographic applications, including private information retrieval (PIR), anonymous messaging systems, private set intersection and more. Formally, given positive integers and , and a class of functions for an Abelian group , an -party -private FSS scheme for allows a dealer to split each into function shares among servers. Shares have the property that and functions are indistinguishable for any coalition of up to servers. FSS for point function for different and that evaluates to on input for all and to zero on all other inputs for are known under the name of distributed point functions (DPF). FSS for special interval functions that evaluate to on inputs lesser than and to zero on all other inputs are known under the name of distributed comparison functions (DCF).
Most existing FSS schemes are based on the existence of one-way functions or pseudo-random generators, and as a result, hiding of function holds only against computationally bounded adversaries. Protocols employing them as building blocks are computationally secure. Several exceptions mostly focus on DPF for four, eight or servers for positive integer , and none of them provide verifiability.
In this paper, we propose DPF for servers, where is a positive integer, offering a better key size compared to the previously proposed DPF for servers and DCF for servers, also for positive integer . We introduce their verifiable extension in which any set of servers holding keys cannot persuade us to accept the wrong value of the function. This verifiability notion differs from existing verifiable FSS schemes in the sense that we verify not only the belonging of the function to class but also the correctness of computation results. Our schemes provide a secret key size for DPF and for DCF, where is the size of group .
Efficiently Testable Circuits without Conductivity
The notion of ``efficiently testable circuits'' (ETC) was recently put forward by Baig et al.~(ITCS'23). Informally, an ETC compiler takes as input any Boolean circuit and outputs a circuit/inputs tuple where (completeness) is functionally equivalent to
and (security) if is tampered in some restricted way, then this can be detected as will err on at least one input in the small test set . The compiler of Baig et al. detects tampering even if the adversary can tamper with \emph{all} wires in the compiled circuit. Unfortunately, the model requires a strong ``conductivity'' restriction: the compiled circuit has gates with fan-out up to 3, but wires can only be tampered in one way even if they have fan-out greater than one. In this paper, we solve the main open question from their work and construct an ETC compiler without this conductivity restriction.
While Baig et al. use gadgets computing the AND and OR of particular subsets of the wires, our compiler computes inner products with random vectors. We slightly relax their security notion and only require that tampering is detected with high probability over the choice of the randomness.
Our compiler increases the size of the circuit by
only a small constant factor. For a parameter (think ), the number of additional input and output wires is , while the number of test queries to detect an error with constant probability is around .
Practical Lattice-Based Distributed Signatures for a Small Number of Signers
Differential Cryptanalysis of a Lightweight Block Cipher LELBC
In this study, we investigate the newly developed low energy lightweight block cipher (LELBC), specifically designed for resource-constrained Internet of Things (IoT) devices in smart agriculture. The designers conducted a preliminary differential cryptanalysis of LELBC through mixed-integer linear programming (MILP). This paper further delves into LELBC’s differential characteristics in both single and related-key frameworks using MILP, identifying a nine-round differential characteristic with a probability of in a single-key framework and a 12-round differential characteristic with a probability of in a related-key framework.
RLWE-based distributed key generation and threshold decryption
Ever since the appearance of quantum computers, prime factoring and discrete logarithm based cryptography has been put in question, giving birth to the so called post-quantum cryptography. The most prominent field in post-quantum cryptography is lattice-based cryptography, protocols that are proved to be as difficult to break as certain difficult lattice problems like Learning With Errors (LWE) or Ring Learning With Errors (RLWE). Furthermore, the application of cryptographic techniques to different areas, like electronic voting, has also seen to a great interest in distributed cryptography. In this work we will give two original threshold protocols based in the lattice problem RLWE: one for key generation and one for decryption. We will prove them both correct and secure under the assumption of hardness of some well-known lattice problems and we will give a rough implementation of the protocols in C to give some tentative results about their viability.
Estimating the Unpredictability of Multi-Bit Strong PUF Classes
With the ongoing advances in machine learning (ML), cybersecurity solutions and security primitives are becoming increasingly vulnerable to successful attacks. Strong physically unclonable functions (PUFs) are a potential solution for providing high resistance to such attacks. In this paper, we propose a generalized attack model that leverages multiple chips jointly to minimize the cloning error. Our analysis shows that the entropy rate over different chips is a relevant measure to the new attack model as well as the multi-bit strong PUF classes. We explain the sources of randomness that affect unpredictability and its possible measures using models of state-of-the-art strong PUFs. Moreover, we utilize min-max entropy estimators to measure the unpredictability of multi-bit strong PUF classes for the first time in the PUF community. Finally, we provide experimental results for a multi-bit strong PUF class, the hybrid Boolean network PUF, showing its high unpredictability and resistance to ML attacks.
Threshold Structure-Preserving Signatures: Strong and Adaptive Security under Standard Assumptions
Structure-preserving signatures (SPS) have emerged as an important cryptographic building block, as their compatibility with the Groth-Sahai (GS) NIZK framework allows to construct protocols under standard assumptions with reasonable efficiency.
Over the last years there has been a significant interest in the design of threshold signature schemes. However, only very recently Crites et al. (ASIACRYPT 2023) have introduced threshold SPS (TSPS) along with a fully non-interactive construction. While this is an important step, their work comes with several limitations. With respect to the construction, they require the use of random oracles, interactive complexity assumptions and are restricted to so called indexed Diffie-Hellman message spaces. Latter limits the use of their construction as a drop-in replacement for SPS. When it comes to security, they only support static corruptions and do not allow partial signature queries for the forgery.
In this paper, we ask whether it is possible to construct TSPS without such restrictions. We start from an SPS from Kiltz, Pan and Wee (CRYPTO 2015) which has an interesting structure, but thresholdizing it requires some modifications. Interestingly, we can prove it secure in the strongest model (TS-UF-1) for fully non-interactive threshold signatures (Bellare et al., CRYPTO 2022) and even under fully adaptive corruptions. Surprisingly, we can show the latter under a standard assumption without requiring any idealized model. All known constructions of efficient threshold signatures in the discrete logarithm setting require interactive assumptions and idealized models.
Concretely, our scheme in type III bilinear groups under the SXDH assumption has signatures consisting of 7 group elements. Compared to the TSPS from Crites et al. (2 group elements), this comes at the cost of efficiency. However, our scheme is secure under standard assumptions, achieves strong and adaptive security guarantees and supports general message spaces, i.e., represents a drop-in replacement for many SPS applications. Given these features, the increase in the size of the signature seems acceptable even for practical applications.
A trust-minimized e-cash for cryptocurrencies
We introduce a private cryptocurrency design based on the original e-cash protocol. Our proposal allows for private payments on existing blockchain systems. In our design, the issuance of the private cash is transparent and is associated with a blockchain transfer to provide stronger security.
Lin2-Xor Lemma: an OR-proof that leads to the membership proof and signature
In this paper we introduce an novel two-round public coin OR-proof protocol that extends in a natural way to the log-size membership proof and signature in a prime-order group. In the lemma called Lin2-Xor we prove that our OR-proof is perfectly complete and has witness-extended emulation under the discrete logarithm assumption. We derive from it a log-size one-out-of-many proof, which retains the perfect completeness and witness-extended emulation. Both of our OR- and membership- proofs easily acquire the special honest verifier zero-knowledge property under the decisional Diffie-Hellman assumption. We sketch out a setup-free pairings-free log-size linkable ring signature with strong security model on top of our membership proof. Many recently proposed discrete-log setup-free pairings-free log-size ring signatures are based on the ideas of commitment-to-zero proving system by Groth and Kohlweiss or on the Bulletproofs inner-product compression method by Bünz et al. Our Lin2-Xor lemma provides an alternative technique which, using the general reduction similar to Bulletproofs, leads directly to the log-size linkable ring signature under the same prerequisites.
- « Previous
- 1
- ...
- 29
- 30