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Abstract. Structure-preserving signatures (SPS) have emerged as an important cryptographic
building block, as their compatibility with the Groth-Sahai (GS) NIZK framework allows to con-
struct protocols under standard assumptions with reasonable efficiency.
Over the last years there has been a significant interest in the design of threshold signature schemes.
However, only very recently Crites et al. (ASIACRYPT 2023) have introduced threshold SPS
(TSPS) along with a fully non-interactive construction. While this is an important step, their work
comes with several limitations. With respect to the construction, they require the use of random
oracles, interactive complexity assumptions and are restricted to so called indexed Diffie-Hellman
message spaces. Latter limits the use of their construction as a drop-in replacement for SPS. When
it comes to security, they only support static corruptions and do not allow partial signature queries
for the forgery.
In this paper, we ask whether it is possible to construct TSPS without such restrictions. We start
from an SPS from Kiltz, Pan and Wee (CRYPTO 2015) which has an interesting structure, but
thresholdizing it requires some modifications. Interestingly, we can prove it secure in the strongest
model (TS-UF-1) for fully non-interactive threshold signatures (Bellare et al., CRYPTO 2022)
and even under fully adaptive corruptions. Surprisingly, we can show the latter under a standard
assumption without requiring any idealized model. All known constructions of efficient threshold
signatures in the discrete logarithm setting require interactive assumptions and idealized models.
Concretely, our scheme in type III bilinear groups under the SXDH assumption has signatures
consisting of 7 group elements. Compared to the TSPS from Crites et al. (2 group elements), this
comes at the cost of efficiency. However, our scheme is secure under standard assumptions, achieves
strong and adaptive security guarantees and supports general message spaces, i.e., represents a
drop-in replacement for many SPS applications. Given these features, the increase in the size of
the signature seems acceptable even for practical applications.

1 Introduction

Structure-Preserving Signatures. Structure-preserving signature schemes (SPS for short) intro-
duced by Abe et al. [AFG+10] are signatures defined over bilinear groups where the messages, public keys
and signatures are required to be source group elements. Moreover, signature verification just consists of
group membership testing and evaluating pairing product equations (PPE). SPS are very attractive as
they can be combined with efficient pairing-based non-interactive zero-knowledge (NIZK) proofs due to
Groth and Sahai (GS) [GS08]. This allows to construct many privacy-preserving cryptographic primitives
and protocols under standard assumptions with reasonable practical efficiency.

SPS have been used in the literature to construct numerous cryptographic primitives and building
blocks. Among them are many variants of signatures such as blind signatures [AFG+10, FHS15], group
signatures [AFG+10, LPY15], traceable signatures [ACHO11], policy-compliant signatures [BMW21,
BSW23], homomorphic and network coding signatures [LPJY13, ALP12] and protocols such as
anonymous credentials [CDHK15], delegatable anonymous credentials [Fuc11], compact verifiable shuf-
fles [CKLM12] or anonymous e-cash [BCF+11]. Due to their wide range of applications, SPS have at-
tracted significant research interest. Looking ahead to the threshold setting (i.e., TSPS), we note that
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typical applications of SPS in privacy-preserving applications are as follows: a user obtains a signature
from some entity and then prove possession of a valid signature without revealing it using GS NIZK.
Consequently, thresholdizing the SPS signing process does not have any impact on the remaining protocol
and thus, TSPS can be considered a drop-in replacement for SPS.

The first SPS scheme presented by Abe et al. in [AFG+10] was followed by a line of research to obtain
SPS with short signatures in the generic group model (GGM) [AGHO11, AGOT14, Gha16, Gha17],
lower bounds [AGHO11, AGO11, AAOT18], security under standard assumptions [ACD+12, CDH12,
HJ12, KPW15, LPY15, JR17] as well as tight security reductions [AHN+17, JOR18, GHKP18, AJOR18,
AJO+19, CH20].

Threshold Signatures. Motivated by real-world deployments in decentralized systems such as dis-
tributed ledger technologies, cryptocurrencies, and decentralized identity management, the use of thresh-
old cryptography [DF90] and in particular threshold signatures has become a very active field of research
in the last years with a main focus on ECDSA [GG18, CGG+20, DOK+20, ANO+22, DMZ+21, BS23,
WMYC23], Schnorr [KG20, CKM23] and BLS [BL22] signatures. We recall that an (n, t) threshold sig-
nature allows a set of n potential signers to jointly compute a signature for a message m, which verifies
under a single verification key, as long as at least a threshold t many signers participate.

There are different types of constructions in the literature; ones that require multiple rounds of
interaction (e.g., ECDSA [GG18, CGG+20]), ones that require a pre-processing round that does not
depend on the message (often called non-interactive schemes), e.g,. FROST [KG20] and finally, ones
that are fully non-interactive. The latter are schemes where all the participating signers can simply send
a partial signature and the final signatures can then be combined from threshold many valid partial
signatures, e.g., BLS [Bol03].

Security of Threshold Signatures. Although many works on threshold signatures were known in
the literature, the rigorous study of security notions was done only very recently. In particular, Bellare
et al. in [BCK+22] studied a hierarchy of different notions of security for non-interactive schemes. As our
work focuses on fully non-interactive schemes, we do not recall the entire hierarchy but only the ones
relevant for this setting. In particular, the TS-UF-0 notion is the weaker one and prohibits adversaries from
querying the signing oracle for partial signatures on the challenge message, i.e., the message corresponding
to the forged signature. The stronger TS-UF-1 notion, which will be our main focus, allows adversaries to
query the signing oracle up to t− |CS| times for partial signatures, even on the challenge message. Here
CS with |CS| < t denotes the set of (statically corrupted) signers. Surprisingly, the majority of works on
threshold signatures in the literature relied on weaker TS-UF-0-style notions instead of the much more
realistic TS-UF-1 notion.

Another dimension in the security of threshold signatures is whether they support static or adaptive
corruptions. In the case of static corruptions, the adversary has to declare the set of corrupted signers,
CS, before seeing any parameters of the system apart from (n, t). In contrast, an adaptive adversary can
choose the set of corrupted signers within a security game based on its view of the execution, which is
a realistic assumption in the decentralized setting. All the notions in [BCK+22] consider only a static
setting and refer to a complexity leveraging argument for adaptive security. Precisely, it suggests that
for small number of parties, a guessing argument can yield adaptive security for any statically secure
scheme with a loss of

(
n

t−1

)
, i.e., guessing the set of corrupted parties and aborting if the guess is wrong.

However, this exponential loss of security can become significant as the number of parties increases, e.g.,
supporting n ≥ 1024 (cf. [CKM23]). While there are known generic techniques to lift statically secure
schemes to adaptively secure ones [CGJ+99, JL00, LP01], they all have undesirable side-effects such
as relying on additional heavy tools, e.g., non-committing encryption [CFGN96], or relying on strong
assumptions such as reliable erasure of secret states (cf. [CKM23]).

Apart from the adaptively secure threshold RSA signatures [ADN06], until recently there were no
results on adaptively secure threshold signatures based on popular signature schemes in the discrete
logarithm or pairing setting. Only very recently Bacho and Loss [BL22] as well as Crites et al. [CKM23]
have shown tight adaptive security for threshold versions of the popular BLS [BLS01] and Schnorr
schemes [Sch91], respectively. Interestingly, all these adaptive security proofs need to rely on interactive
assumptions and in particular variants of the One-More Discrete Logarithm Assumption [BNPS03], which
is known as a strong assumption. Only very recently and concurrent to this work, Bacho et al. [BLT+23]
as well as Das and Ren [DR23] present schemes from standard and non-interactive assumptions in the
pairing-free discrete logarithm setting and pairing setting, respectively. It is interesting that only few of
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the existing works achieve adaptive security under the TS-UF-1 notion, e.g., [LJY16, BL22, DR23], with
[LJY16] being the only one from standard assumptions and without requiring idealized models.

Threshold SPS. Recently, Crites et al. [CKP+23] have extended the concept of threshold signatures
to threshold SPS (TSPS). They introduce a definitional framework for fully non-interactive TSPS and
provide a construction that is proven secure in the Random Oracle Model (ROM) [BR93] under the
hardness of a new interactive assumption, called the GPS3 assumption, which is analyzed in the Algebraic
Group Model (AGM) [FKL18]. The authors start from an SPS proposed by Ghadafi [Gha16], that is
secure in the Generic Group Model (GGM), and introduce a message indexing technique to avoid non-
linear operations in the signature components and thus to obtain a fully non-interactive threshold version.
While the TSPS proposed in [CKP+23] is highly efficient and compact (only 2 group elements), the
defined message space is restricted to a so called indexed Diffie-Hellman message space. This prevents its
use as a drop-in-replacement for SPS in arbitrary applications of SPS that are desired to be thresholdized.
Additionally, the security of their proposed TSPS is only shown in the TS-UF-0 model, i.e., under static
corruptions.

1.1 Our Contributions

In this paper, we ask if it is possible to construct TSPS without the aforementioned restrictions and
we answer this question affirmatively. We start with an observation that the SPS from Kiltz, Pan and
Wee [KPW15] has an interesting structure that makes it amenable for thresholdizing although this
process requires some modifications of the original scheme. While Crites et al. [CKP+23] prove security
in the TS-UF-0 model, i.e., under static corruptions, we are able to prove our construction is secure in
the strongest model (TS-UF-1) for non-interactive threshold signatures [BCK+22] and even under fully
adaptive corruptions (which we denote as adp-TS-UF-1 security). We provide a brief overview in Table 1
about our results.

Table 1. Overview of security notions and our results. t denotes the threshold, M∗ the message corresponding
to the forgery, S1 the set recording signer indices of issued partial signatures and CS the set of corrupted signers.

Security Notion Corruption Model Winning Condition Our Scheme (proof)

TS-UF-0 static corruptions S1(M
∗) = ∅ Theorem 1

TS-UF-1 static corruptions |S1(M
∗)| < t− |CS| Theorem 2

adp-TS-UF-1 adaptive corruptions |S1(M
∗)| < t− |CS| Theorem 3

Interestingly, we can do so by relying on standard assumptions, i.e., the Matrix Diffie-Hellman
(MDDH) assumption family [EHK+17, MRV16]. While this comes at some cost in concrete efficiency, as
shown in Table 2, the overhead is still not significant. For instance, when instantiated in type III bilinear
groups under the SXDH assumption (k = 1), then signatures consist of 7 group elements. When taking
the popular BLS12-381 curve giving around 110 bit of security, this amounts to signatures of size around
380 bytes. Compared to 256 bytes for an RSA signature with comparable security (2048 bit modulus),
this gives an increase of around 50%. This seems perfectly tolerable for most practical applications.

As can be seen from Table 2, an important benefit of our TSPS over the one by Crites et al. [CKP+23]
is that it is not limited to an indexed Diffie-Hellman message space, but works for arbitrary group message
vectors. Thus, it represents a drop-in replacement for SPS when aiming to thresholdize its applications
(such as anonymous credentials, e-cash, etc). Moreover, we prove the unforgeability of the proposed
TSPS scheme against an adaptive adversary under a stronger TS-UF-1 notion of security. We recall that
in contrast, the TSPS proposed by Crites et al. in [CKP+23] only achieves TS-UF-0 security against a
static adversary based on an interactive assumption, called GPS3, in the AGM and ROM.

1.2 Technical Overview

Considering the insights discussed in [CKP+23, Section 1], it can be deduced that a fully non-interactive
TSPS scheme does not involve any non-linear operations during the partial signing phase. The use
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Table 2. Comparison with the existing threshold structure-preserving signature by Crites et al. [CKP+23]. iDH
refers to the indexed Diffie-Hellman message spaces. ℓ is the length of the message vector to be signed. |Gi| denote
the bit-length of elements in groups Gi for i ∈ {1, 2}.

Scheme
Message
Space

Signature
Size

Number of
Pairings

Security
Notion

Security
Model

Underlying
Assumption

[CKP+23] iDH 2|G1| ℓ+ 2
TS-UF-0
(Static)

AGM+
ROM

GPS3

(Interactive)

Ours Gℓ
1 (3k + 3)|G1|+ |G2| 5k + ℓ+ 6

TS-UF-1
(Adaptive)

Standard
Model

Dk-MDDH
(Non-Interactive)

of non-linear operations prevents the reconstruction of the final signature from the partial signatures
via Lagrange interpolation. These non-linear operations include the inversion of secret share keys (i.e.,
[1/ski]), performing multiplication of distinct randomness and secret shares (i.e., [riski]), as well as raising
either secret shares or distinct randomness to a power (e.g., [skζi ] or [rζi ] for any ζ > 1). By employing an
indexing approach, the authors in [CKP+23] were able to circumvent the need for multiplying randomness
and secret keys, as required by Ghadafi’s SPS [Gha16]. In contrast, in our proposed TSPS scheme, we
adopt a distinct perspective for avoiding the non-linear operations.

We start from an observation regarding the SPS construction of Kiltz et al. [KPW15] which computes
the first and second components of signature on a message [m]1 ∈ Gℓ

1 as:

KPW15 : (σ1, σ2) :=

[(
1 m⊤)]

1
K︸ ︷︷ ︸

SP-OTS

+

randomized PRF︷ ︸︸ ︷
r⊤

[
B⊤(U + τ ·V)

]
1
,
[
r⊤B⊤]

1

 ,

where τ is a fresh random integer and r is a fresh random vector of proper size.5 Additionally, the
secret signing and verification keys are defined as follows:

KPW15 : sk := (K,
[
B⊤U

]
1
,
[
B⊤V

]
1
, [B]1) ,

vk := ([KA]2 , [UA]2 , [VA]2 , [A]2) ,

where K, A, B, U and V are random matrices of appropriate dimensions.
As noted by Kiltz et al. in their work [KPW15], their SPS is build based on two fundamental prim-

itives: (i) a structure-preserving one-time signature (SP-OTS), (
[(
1 m⊤)]

1
K), and (ii) a randomized

pseudorandom function (PRF), (r⊤
[
B⊤(U + τ ·V)

]
1
,
[
r⊤B⊤]

1
). In their proof of security, we observe

that both the building blocks are involved in a loose manner. In particular, in most of their proofs, the
reduction samples the SP-OTS signing key K. It is easy to verify that this observation still holds even
when they are arguing about the security of the randomized PRF. Our approach in this work is moti-
vated by this fact which further inspires us to modify Kiltz et al.’s SPS. This adjustment involves defining
the secret key as sk := K and transferring the remaining parameters to the set of public parameters,
i.e., pp := ([A]2, [UA]2, [VA]2, [B]1, [B

⊤U]1, [B
⊤V]1) and the verification is defined as vk := [KA]2.

This rather simple structure allows to obtain the first TSPS for general message spaces in the standard
model that can withhold adaptive corruptions without the exponential degradation [BCK+22] and can
be proven secure in the TS-UF-1 model.

Consider the following setting. Imagine there are n signers, each equipped with their own signing
key, either obtained through the involvement of a trusted dealer or by conducting a Distributed Key
Generation (DKG). Their collective objective is to generate a signature for a given message [m]1 ∈ Gℓ

1.
It is clear that the linear structure of the SP-OTS {

[(
1 m⊤)]

1
Ki}i∈S allows for effortless aggregation

when dealing with a collection of them over any subset S ⊆ [1, n]. Since the random quantities τi and
ri are independently sampled from a uniform distribution by each signer i ∈ [1, n], aggregating the PRF

5 Here we follow the group notation by Escala et al. [EHK+17]. See Definition 2 for more details.
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elements is still challenging. Consequently, we must explore potential modifications needed to enable
the aggregation of these components in comparison to Kiltz et al.’s SPS. We choose to make the tag
τ dependent on the message. Thus, the randomized PRF computed by every signer, while still being a
random element in the respective space, now allows aggregation. Moreover, by establishing an injective
mapping between [m]1 and τ , we can observe that the randomized PRF structure still guarantees the
unforgeability in [KPW15] when attempting to forge a signature on a distinct message. We employ
a collision-resistant hash function (CRHF), H(.), to derive τ from [m]1. This gives the basis of our
construction, where each signer i ∈ [1, n] computes a partial signature on [m]1 as

(σ1, σ2) =
([(

1 m⊤)]
1
Ki + r⊤i

[
B⊤(U + τ ·V)

]
1
,
[
r⊤i B

⊤]
1

)
.

Here the signer i is holding the secret share Ki and chooses a random quantity ri of appropriate size
and uses τ = H([m]1). It is easy to verify that this signature can be aggregated in a non-interactive
manner. Looking ahead, as a first step we prove that this construction achieves TS-UF-0 security, relying
on the well-established and non-interactive standard assumption, i.e., the MDDH assumption.

In case of a TS-UF-1 adversary, we need to deal with the fact that the adversary is allowed to
obtain partial signatures on the forged message [m∗]1. Let us first consider the case of static corruptions.
We cannot apply the unforgeability of [KPW15] here as it did not consider strong Uf-CMA security.6
To overcome this problem, we introduce an information theoretic step to argue that given a number
of partial signatures on the forged message [m∗]1 below the threshold, the adversary does not gather
extra information. In particular, we use Shamir’s secret reconstruction security to ensure that partial
signatures do not really leak much information. In this argument, we implicitly use the “selective security”
of Shamir’s secret sharing where all the parties in the corrupted set are fixed at the start of the game.

In the case of adaptive corruptions, an adp-TS-UF-1 adversary not only is allowed to obtain partial
signatures on the forged message [m∗]1, but also it can corrupt different users to get the corresponding
secret keys within the security game, adaptively. We obviously could follow a standard guessing argument
to achieve adp-TS-UF-1 security based on TS-UF-1 security. However, that direction unfortunately induces
a significant security loss. We critically look at our proof of TS-UF-1 security we have briefly discussed
above. To make our construction adp-TS-UF-1 secure, we show that it is sufficient to argue that the
underlying secret sharing achieves “adaptive security”. In this work, we indeed form an argument that
Shamir’s secret sharing achieves “adaptive security” which in turn makes our construction adp-TS-UF-1
secure.

Next, we provide a brief intuition of the formal argument for the “adaptive security” of Shamir’s secret
sharing. Informally speaking, we produce a reduction B to break the “selective security” of Shamir’s secret
sharing given an adaptive adversary A of the secret sharing. Being an information theoretic reduction,
B basically runs the adaptive adversary A an exponential number of times. Since B chooses the target
set S independently of A’s run, the expected number of parallel runs of A required to ensure all the
parties whose secrets A queried are indeed from S is upper bounded by exponential. Being an information
theoretically secure secret sharing scheme, Shamir’s secret sharing basically achieves “adaptive security”
due to complexity leveraging but without any degradation in the advantage of the adversary. While we
use Shamir secret sharing as our canonical choice, we believe that all information-theoretically secure
Linear Secret Sharing schemes can be used instead.

2 Preliminaries

Notation. Throughout the paper, we let κ ∈ N denote the security parameter and 1κ as its unary
representation. Given a polynomial p(·), an efficient randomized algorithm, A, is called probabilistic
polynomial time, PPT in short, if its running time is bounded by a polynomial p(|x|) for every input
x. A function negl : N → R+ is called negligible if for every positive polynomial f(x), there exists x0

such that for all x > x0 : negl(κ) < 1/f(x). If clear from the context, we sometimes omit κ for improved
readability. The set {1, . . . , n} is denoted as [1, n] for a positive integer n. For the equality check of two
elements, we use “=”. The assign operator is denoted with “:=”, whereas the randomized assignment is
denoted by a ← A, with a randomized algorithm A and where the randomness is not explicit. We use
D1 ≈c D2 to show two distributions like D1 and D2 are computationally indistinguishable.
6 A signature is called strongly unforgeable when the adversary is not only incapable of producing a valid

signature for a fresh message but also, it cannot generate a new signature for a challenge message M∗, by
observing a valid signature for the same message M∗.
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Definition 1 (Secret Sharing). For any two positive integers n, t < n, an (n, t)Za×b
p

-secret-sharing
scheme over Za×b

p for a, b ∈ N consists of two functions Share and Rec. Share is a randomized function that
takes a secret M ∈ Za×b

p and outputs (M1, . . . ,Mn)← Share(M,Za×b
p , n, t) where Mi ∈ Za×b

p ∀i ∈ [1, n].
The pair of functions (Share,Rec) satisfy the following requirements.

– Correctness: For any secret M ∈ Za×b
p and a set of parties {i1, i2, . . . , ik} ⊆ [1, n] such that k ≥ t,

we have
Pr[Rec(Mi1 , . . . ,Mik : (M1, . . . ,Mn)← Share(M,Za×b

p , n, t)) = M] = 1 .

– Security: For any secret M ∈ Za×b
p and a set of parties S ⊆ [1, n] such that |S| = k < t, for all

information-theoretic adversary A we have

Pr

S = {ii}i∈[1,k] ∧M∗ = M

∣∣∣∣∣∣∣
(M1, . . . ,Mn)← Share(M,Za×b

p , n, t)

S ← A()
M∗ ← A(Mi1 , . . . ,Mik)

 = 1/p .

We follow standard nomenclature to call this “selective security”. In case of “adaptive security”, A
adaptively chooses ij ∈ [1, n] to get Mij one at a time.

We briefly recall the well-known secret sharing scheme due to Shamir [Sha79]. In (n, t)-Shamir Secret
Sharing, a secret s is shared to n parties via n evaluations of a polynomial of degree (t−1). Reconstruction
of the secret is essentially Lagrange interpolation where one computes Lagrange polynomials {λij (x)}j∈S

and linearly combine them with the given polynomial evaluations. The degree of the original polynomial
confirms that one needs at least |S| = t many polynomial evaluations. In this work, we use Shamir Secret
Sharing to secret share a matrix of size a × b, i.e., we use ab-many parallel instances of Shamir Secret
Sharing. To keep our exposition simpler, we however assume that we have an (n, t)-Shamir Secret Sharing
scheme (Share,Rec) which operates on matrices. Since, our work here uses Shamir Secret Sharing quite
generically, it is convenient to make such abstraction without going into the details.

Definition 2 (Bilinear Groups). Let an asymmetric bilinear group generator, ABSGen(1κ), that
returns a tuple G := (p,G1,G2,GT ,P1,P2, e), such that G1, G2 and GT are cyclic groups of the same
prime order p such that there is no known homomorphism between G1 and G2. P1 and P2 are the
generators of G1 and G2, respectively, where e : G1 × G2 → GT is an efficiently computable (non-
degenerate) bilinear map with the following properties:

- ∀ a, b ∈ Zp, e([a]1, [b]2) = [ab]T = e([b]1, [a]2) ,
- ∀ a, b ∈ Zp, e([a+ b]1, [1]2) = e([a]1, [1]2)e([b]1, [1]2) ,

where we use an implicit representation of group elements, in which for ζ ∈ {1, 2, T} and an integer
α ∈ Zp, the implicit representation of integer α in group Gζ is defined by [α]ζ = αPζ ∈ Gζ , where
PT = e(P1,P2). To be more general, the implicit representation of a matrix A = (αij) ∈ Zm×n

p in Gζ is
defined by [A]ζ and we have:

[A]ζ =


α1,1Pζ · · · α1,nPζ

α2,1Pζ · · · α2,nPζ

...
. . .

...
αm,1Pζ · · · αm,nPζ

 .

For two matrices A and B with matching dimensions we define e([A]1, [B]2) = [AB]T .

Definition 3 (Matrix Distribution). Let k, ℓ ∈ N∗ s.t. k < ℓ. We call Dℓ,k a matrix distribution if
it outputs matrices over Zℓ×k

p of full rank k in polynomial time. W.l.o.g, we assume the first k rows of
matrix A← Dℓ,k form an invertible matrix. For ℓ = k + 1, we write Dk in short.

Next, we recall the Matrix Decisional Diffie-Hellman assumption, which defines over Gζ for any
ζ = {1, 2} and states two distributions ([A]ζ , [Ar]ζ) and ([A]ζ , [u]ζ), where A ← Dℓ,k, r ← Zk

p,u ← Zℓ
p

are computationally indistinguishable.
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Definition 4 (Dℓ,k-Matrix Decisional Diffie-Hellman (Dℓ,k-MDDH) Assumption [EHK+17]).
For a given security parameter κ, let k, ℓ ∈ N∗ s.t. k < ℓ and Dℓ,k be a matrix distribution, defined

in Definition 3. We say Dℓ,k-MDDH assumption over Gζ for ζ = {1, 2} holds, if for all PPT adversaries
A we have:

AdvMDDH
Dℓ,k,Gζ ,A(κ) =

∣∣∣Pr [A(G, [A]ζ , [Ar]ζ) = 1]− Pr [A(G, [A]ζ , [u]ζ) = 1]
∣∣∣ ≤ negl(κ) ,

where G ← ABSGen(1κ), A← Dℓ,k, r← Zk
p and u← Zℓ

p.

Definition 5 (Dk-Kernel Matrix Diffie-Hellman (Dk-KerMDH) Assumption [MRV16]). For a
given security parameter κ, let k ∈ N∗ and Dk is a matrix distribution, defined in Definition 3. We say
Dk-KerMDH assumption over Gζ for ζ = {1, 2} holds, if for all PPT adversaries A we have:

AdvKerMDH
Dk,Gζ ,A(κ) = Pr [c ∈ orth(A) | [c]3−ζ ← A(G, [A]ζ))] ≤ negl(κ) ·

The Kernel Matrix Diffie-Hellman assumption is a natural computational analog of the MDDH as-
sumption. It is well-known that for all k ≥ 1, Dk-MDDH ⇒ Dk-KerMDH [KPW15, MRV16].

3 Threshold Structure-Preserving Signatures

In this section, we first present our security model for Threshold Structure-Preserving Signatures (TSPS)
and then present our construction and prove its security.

3.1 TSPS: Syntax and Security Definitions

First, we recall the definition of the Threshold Structure-Preserving Signatures (TSPS) from [CKP+23]
and their main security properties: correctness and threshold unforgeability. Informally, a threshold
signature scheme enables a group of servers S of size n to collaboratively sign a message. In this paper,
we assume the existence of a trusted dealer who shares the secret key among the signers. However, there
are straightforward and well-known techniques in particular distributed key generation (DKG) protocols
(e.g., [Ped92]) that eliminate this needed trust.

Definition 6 (Threshold Structure-Preserving Signatures [CKP+23]). Over a security param-
eter κ and a bilinear group, an (n, t)-TSPS contains the following PPT algorithms:

– pp← Setup(1κ): The setup algorithm takes the security parameter κ as input and returns the set of
public parameters pp as output.

– ({ski, vki}i∈[1,n], vk)← KeyGen(pp, n, t): The key generation algorithm takes the public parameters pp
along with two integers n, t s.t. 1 ≤ t ≤ n as inputs. It then returns secret/verification keys (ski, vki)
for i ∈ [1, n] along with a global verification key vk as output.

– Σi ← ParSign(pp, ski, [m]): The partial signing algorithm takes pp, the ith party’s secret key, ski, and
a message [m] ∈M as inputs. It then returns a partial signature Σi as output.

– 0/1 ← ParVerify(pp, vki, [m], Σi): The partial verification algorithm as a deterministic algorithm,
takes pp, the ith verification key, vki, and a message [m] ∈ M along with partial signature Σi as
inputs. It then returns 1 (accept), if the partial signature is valid and 0 (reject), otherwise.

– Σ ← CombineSign(pp, T, {Σi}i∈T ): The combine algorithm takes a set of partial signatures Σi for
i ∈ T along with T ⊆ [1, n] and then returns an aggregated signature Σ as output.

– 0/1 ← Verify(pp, vk, [m], Σ): The verification algorithm as a deterministic algorithm, takes pp, the
global verification key, vk, and message [m] ∈M along with an aggregated signature Σ as inputs. It
then returns 1 (accept), if the aggregated signature is valid and 0 (reject), otherwise.

Correctness. Correctness guarantees that a signature obtained from a set T ⊆ [1, n] s.t. |T | ≥ t of honest
signers always verifies.

Definition 7 (Correctness). An (n, t)-TSPS scheme is called correct if we have:

Pr

∀ pp← Setup(1κ), ({ski, vki}i∈[1,n], vk)← KeyGen(pp, n, t), [m] ∈M,

Σi ← ParSign(pp, ski, [m]) for i ∈ [1, n],∀ T ⊆ [1, n], |T | ≥ t,

Σ ← CombineSign
(
pp, T, {Σi}i∈T

)
: Verify (pp, vk, [m], Σ) = 1

 = 1 .
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Unforgeability. Our security model for threshold unforgeability extends the one from Crites et
al. [CKP+23]. Therefore, we need to recall a recent work by Bellare et al. [BCK+22], which investi-
gates existing security notions and proposes stronger and more realistic security notions for threshold
signatures under static corruptions. In particular, the authors in [BCK+22] present a hierarchy of differ-
ent notions of security for non-interactive schemes. We focus on fully non-interactive schemes, i.e., ones
that do not require one round of pre-processing, and thus in this paper only the TS-UF-0 and TS-UF-1
notions are relevant. The TS-UF-0 notion is a less stringent notion of unforgeability. In this context, if
the adversary has previously seen a partial signature on a challenge message [m∗], the act of forging a
signature for that specific message is considered as a trivial forgery. The security of the original TSPS is
proved under this notion of unforgeability.

The stronger TS-UF-1 notion, which is our main focus, allows adversaries to query the signing oracle
up to t−|CS| times for partial signatures, even on the challenge message. Here CS with |CS| < t denotes the
set of (statically corrupted) signers. Moreover, the model in [BCK+22] as well as the TSPS construction
in [CKP+23] only considers static corruptions. But we also integrate the core elements of the model
introduced in the recent work by Crites et al. [CKM23], adapted to fully non-interactive schemes, to
support fully adaptive corruptions. Our model is depicted in Figure 1. The dashed box as well as the
solid white box in the winning condition apply to the TS-UF-0 and TS-UF-1 notions, respectively. Grey
boxes are only present in the adaptive version of the game, i.e., adp-TS-UF-0 and adp-TS-UF-1.

Definition 8 (Threshold Unforgeability). Let TSPS = (Setup,KeyGen,ParSign,ParVerify,
CombineSign,Verify) be an (n, t)-TSPS scheme over message space M and let prop ∈
{TS-UF-b, adp-TS-UF-b}b∈{0,1}. The advantage of a PPT adversary A playing described security games
in Figure 1, is defined as,

Advprop
TSPS,A(κ) = Pr

[
Gprop

TS,A(κ) = 1
]

.

A TSPS achieves prop-security if we have, Advprop
TSPS,A(κ) ≤ negl(κ).

GGGTS-UF-0
TS,A (κ) , GGGTS-UF-1

TS,A (κ) , GGGadp-TS-UF-0
TS,A (κ) , GGGadp-TS-UF-1

TS,A (κ) :

pp← Setup(1κ)

(n, t,CS, st0)← A(pp)
HS := [1, n] \ CS
(vk, {ski}i∈[1,n], {vki}i∈[1,n])← KeyGen(pp, n, t)

([m∗], Σ∗, st1)← A
OPSign(.), OCorrupt(.)

(st0, vk, {ski}i∈CS, {vki}i∈[1,n])

return
(
Verify(pp, vk, [m∗], Σ∗) ∧ |CS| < t ∧

( S1([m
∗]) = ∅ ∨ |S1([m

∗])| < t− |CS| )
)

OPSign(i, [m]):
Assert

(
[m] ∈M ∧ i ∈ HS

)
Σi ← ParSign(pp, ski, [m])

if Σi ̸= ⊥ :

S1([m])← S1([m]) ∪ {i}
return (Σi)

OCorrupt(k):
if k ∈ CS :

return ⊥
else : CS← CS ∪ {k}

HS← HS \ {k}
return (skk)

Fig. 1. Games defining the TS-UF-0 , TS-UF-1 , adp-TS-UF-0 , and adp-TS-UF-1 unforgeability notions

of threshold signatures.
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3.2 Core Lemma

Prior to introducing our construction, we first present the core lemma that forms a basis in the proofs of
our proposed TSPS. It extends the core lemmas from [KW15, KPW15], however it is important to note
that both of these schemes are standard SPS, where there was no need to simulate signatures on forged
messages. In contrast, both the TS-UF-1 and adp-TS-UF-1 security models necessitate the simulation of
partial signature queries on forged messages. Thus we define our core lemma with a key difference being
the introduction of a new oracle, denoted as O∗∗(·).

Lemma 1 (Core Lemma). Let the game GCore
Dk,ABSGen

(κ) be defined as Figure 2. For any adversary
A with the advantage of AdvCoreDk,ABSGen,A(κ) := |Pr[GCore

Dk,ABSGen
(κ)] − 1/2|, there exists an adversary B

against the Dk-MDDH assumption such that with the running time T(A) ≈ T(B) it holds that

AdvCoreDk,ABSGen,A(κ) ≤ 2qAdvMDDH
Dk,G1,B(κ) + q/p ,

where q is a bound on the number of queries requested by adversary A for oracle Ob(·). Note that A can
only query the other oracles only once.

Init():
A,B← Dk, U,V ← Z(k+1)×(k+1)

p

vk := (A,UA,VA, [B]1, [B
⊤U]1, [B

⊤V]1)

b← {0, 1}
Let a⊥ ← Z1×(k+1)

p such that a⊥A = 0

q := 0, Qtag := ∅
return vk

O∗([τ∗]2):
return [U + τ∗V]2

O∗∗([τ∗]1):
return

[
B⊤(U + τ∗V)

]
1

Ob([τ ]1):
µ← Zp, r← Zk

p, q := q + 1

Qtag := Qtag ∪ {τ}
return

([
bµa⊥ + r⊤B⊤(U + τV)

]
1
,
[
r⊤B⊤]

1

)
Fig. 2. Game defining the core lemma, GCore

Dk,ABSGen
(κ).

Proof Sketch. The proof of this lemma uses the proof of core lemma in [KW15, KPW15]. The fundamental
concept of these proofs is primarily an information-theoretic argument that (t⊤(U + τV),U + τ∗V) is
identically distributed to (µa⊥

⊤
+ t⊤(U+ τV),U+ τ∗V) for µ← Zp, a⊥, t← Zk+1

p and τ ̸= τ∗. We use[
bµa⊥

⊤
+ t⊤(U + τV)

]
1

to simulate Ob([τ ]1), [U + τ∗V]2 to simulate O∗([τ∗]2) and
[
B⊤(U + τ∗V)

]
1

to simulate O∗∗([τ∗]1). The detailed proof can be found in Section 3.5.

3.3 Our Threshold SPS Construction

Given a collision resistant hash function, H : {0, 1}∗ → Zp, and message space M := Gℓ
1, we present

our (n, t)-TSPS construction in Figure 3. This consists of six main PPT algorithms – Setup, KeyGen,
ParSign, ParVerify, CombineSign and Verify, as defined in Definition 6. Similar to the settings of Bellare et
al. [BCK+22], we also assume there is a dealer who is responsible for generating key pairs for all signers
and a general verification key.

3.4 Security

Theorem 1. Under the Dk-MDDH Assumption in G1 and Dk-KerMDH Assumption in G2, the proposed
Threshold Structure-Preserving Signature construction in Figure 3 achieves TS-UF-0 security against an
efficient adversary making at most q partial signature queries.
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Setup(1κ):

1: G := (p,G1,G2,GT,P1,P2, e)← ABSGen(1κ).
2: A,B← Dk, U,V ← Z(k+1)×(k+1)

p .
3: pp :=

(
[A]2 , [UA]2 , [VA]2 , [B]1 ,

[
B⊤U

]
1
,
[
B⊤V

]
1

)
.

KeyGen(pp, n, t):

1: K ← Z(ℓ+1)×(k+1)
p .

2: K1, . . . ,Kn ← Share(K,Z(ℓ+1)×(k+1)
p , n, t).

3: Set vk := [KA]2 and (ski, vki) := (Ki, [KiA]2).

ParSign(pp, ski, [m]1):

1: ri ← Zk
p.

2: τ := H([m]1).
3: Output Σi := (σ1, σ2, σ3, σ4) s.t.
4: σ1 :=

[(
1 m⊤

)]
1
Ki + r⊤i

[
B⊤(U + τV)

]
1

,

σ2 :=
[
r⊤i B

⊤]
1

,
σ3 :=

[
τr⊤i B

⊤]
1

,
σ4 := [τ ]2 .

ParVerify(pp, vki, [m]1 , Σi): Output 1 if the following checks hold; else output 0.

1: e(σ1, [A]2) = e
([(

1 m⊤
)]

1
, vki

)
· e (σ2, [UA]2) · e (σ3, [VA]2) .

2: e(σ2, σ4) = e(σ3, [1]2).

CombineSign(pp, S, {Σi}i∈S):

1: Parse Σi = (σi,1, σi,2, σi,3, σ4) for all i ∈ S.
2: Compute Lagrange polynomials λi for i ∈ S.
3: Output Σ := (σ̂1, σ̂2, σ̂3, σ̂4) s.t.

4: σ̂1 :=
∏
i∈S

σλi
i,1 =

[(
1 m⊤

) ∑
i∈S

λiKi

]
1

+
∑
i∈S

λir
⊤
i

[
B⊤(U + τV)

]
1
=

[(
1 m⊤

)
K
]
1
+

r⊤
[
B⊤(U + τV)

]
1

,

σ̂2 :=
∏
i∈S

σλi
i,2 =

[∑
i∈S

λir
⊤
i B

⊤
]
1

=
[
r⊤B⊤]

1
,

σ̂3 :=
∏
i∈S

σλi
i,3 =

[∑
i∈S

τλir
⊤
i B

⊤
]
1

=
[
τr⊤B⊤]

1
,

σ̂4 := σ4 .

Verify(pp, vk, [m]1 , Σ): Output 1 if the following checks satisfy; else output 0.

1: e(σ̂1, [A]2) = e
([(

1 m⊤
)]

1
, vk

)
· e(σ̂2, [UA]2) · e(σ̂3, [VA]2) .

2: e(σ̂2, σ̂4) = e(σ̂3, [1]2) .

Fig. 3. Our proposed TSPS construction.
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Proof. We prove the above theorem through a series of games and we use Advi to denote the advantage
of the adversary A in winning the Game i. The games are described below.

Game 0. This is the TS-UF-0 security game described in Definition 8. As shown in Figure 4, an adversary
A after receiving the set of public parameters, pp, returns (n, t, CS), where n, t and CS represents the
total number of signers, the threshold, and the set of corrupted signers, respectively. The adversary
can query the partial signing oracle OPSign(·) to receive partial signatures and q represents the total
number of these queries. In the end, the adversary outputs a message [m∗]1 and a forged signature
Σ∗.

GGG0(κ):

1: G ← ABSGen(1κ),
2: A,B← Dk,
3: U,V ← Z(k+1)×(k+1)

p .
4: pp := ([A]2, [UA]2, [VA]2, [B]1, [B

⊤U]1, [B
⊤V]1).

5: (n, t,CS, st0)← A(pp).
6: Assert CS ⊂ [1, n].
7: Sample K ← Z(ℓ+1)×(k+1)

p .
8: (K1, . . . ,Kn)← Share(K,Z(ℓ+1)×(k+1)

p , n, t).
9: vk := [KA]2.

10: for i ∈ [1, n]:
11: ski := Ki, vki := [KiA]2.
12: ([m∗]1, Σ

∗, st1)← AOPSign(.) (
st0, vk, {ski}i∈CS, {vki}i∈[1,n]

)
.

13: return (Verify(pp, vk, [m∗]1, Σ
∗) ∧ |CS| < t ∧ S1([m

∗]1) = ∅)

OPSign(i, [m]1):

1: Assert
(
[m]1 ∈M ∧ i ∈ HS

)
.

2: ri ← Zk
p.

3: τ := H([m]1).
4: σ1 :=

[(
1 m⊤

)
Ki + r⊤i B

⊤(U + τV)]
]
1
,

σ2 := [r⊤i B
⊤]1,

σ3 := [τr⊤i B
⊤]1,

σ4 := [τ ]2.
5: Σi := (σ1, σ2, σ3, σ4).
6: if Σi ̸= ⊥ :

7: S1([m]1) := S1([m]1) ∪ {i}.
8: return Σi

Verify(pp, vk, [m∗]1, Σ
∗) :

1: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4).

2: return

(
e(σ̂1, [A]2) = e

([(
1 m∗⊤

)]
1
, [KA]2

)
· e(σ̂2, [UA]2) · e(σ̂3, [VA]2)

∧ e(σ̂2, σ̂4) = e(σ̂3, [1]2)

)
Fig. 4. Game0.

Game 1. We modify the verification procedure to the one described in Figure 5. Consider any forged
message/signature pair ([m∗]1, Σ

∗ = (σ̂1, σ̂2, σ̂3, σ̂4)), where e(σ̂2, σ̂4) = e(σ̂3, [1]2), |CS| < t and
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S1([m
∗]1) = ∅. It is easy to observe that if the pair ([m∗]1, Σ

∗) meets the Verify∗(·) criteria, outlined
in Figure 5, it also satisfies Verify(·) procedure, described in Figure 4. This is primarily due to the
fact that:

e(σ̂1, [A]2) = e
(
[
(
1 m∗⊤)]1, [KA]2

)
· e(σ̂2, [UA]2) · e(σ̂3, [VA]2)

⇐= e(σ̂1, [1]2) = e([
(
1 m∗⊤)]1, [K]2) · e(σ̂2, [U]2) · e(σ̂3, [V]2)

⇐⇒e(σ̂1, [1]2) = e([
(
1 m∗⊤)K]1, [1]2) · e(σ̂2, [U + τ∗V]2) ·

Assume there exists a message/signature pair like ([m∗]1, Σ
∗ = (σ̂1, σ̂2, σ̂3, σ̂4)) that satisifies Verify(·)

and not Verify∗(·), then we can compute a non-zero vector c in the kernal of A as follows:

c := σ̂1 − ([
(
1 m∗⊤)K]1 + σ̂2U + σ̂3V) ∈ G1×(k+1)

1 ·

According to Dk-KerMDH assumption over G2 described in Definition 5, computing such a vector c
is considered computationally hard. Thus,

|Adv0 −Adv1| ≤ AdvKerMDH
Dk,G2,B0

(κ) ·

Verify∗(pp, vk, [m∗]1, Σ
∗):

1: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4 = [τ∗]2).
2: return

(
e(σ̂1, [1]2) = e

(
[
(
1 m∗⊤)K]1, [1]2

)
· e(σ̂2, [U + τ∗V]2) ∧

e(σ̂2, σ̂4) = e(σ̂3, [1]2)
)

Fig. 5. Modifications in Game1.

Game 2. On receiving a partial signature query on a message [mi]1, the query list is updated to include
the message [mi]1 along with its corresponding tag, τi := H([mi]1). The challenger aborts if an
adversary can generate two tuples ([mi]1, τi), ([mj ]1, τj) with [mi]1 ̸= [mj ]1 and τi = τj . By the
collision resistance property of the underlying hash function we have,

|Adv1 −Adv2| ≤ AdvCRHFH (κ) ·
Game 3. In this game, we introduce randomness to the partial signatures by adding µa⊥ to each partial

signature, where µ is chosen uniformly at random and the vector a⊥ is a non-zero vector in the kernel
of A. The new partial signatures satisfy the verification procedure as a⊥A = 0. Figure 6 describes
the new partial signing oracle, OPSign∗(.).

OPSign∗(i, [m]1):
1: Assert

(
[m]1 ∈M ∧ i ∈ HS

)
.

2: ri ← Zk
p, τ := H([m]1), µ← Zp.

3: σ1 := [
(
1 m⊤)Ki + µa⊥ + r⊤i B

⊤(U + τV)]1,
σ2 := [r⊤i B

⊤]1 ,
σ3 := [τr⊤i B

⊤]1 ,
σ4 := [τ ]2 .

4: Σi := (σ1, σ2, σ3, σ4).
5: if Σi ̸= ⊥ :
6: S1([m]1) := S1([m]1) ∪ {i}.
7: return Σi

Fig. 6. Modifications in Game3.
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BInit(·),Ob(·),O∗(·),O∗∗(·)
1 :

1: Assert
(
[m]1 ∈M ∧ i ∈ HS

)
.

2: (A,UA,VA, [B]1, [B
⊤U]1, [B

⊤V]1)← Init().
3: pp := ([A]2, [UA]2, [VA]2, [B]1, [B

⊤U]1, [B
⊤V]1).

4: (n, t,CS, st0)← A(pp).
5: Assert CS ⊂ [1, n].
6: Sample K ← Z(ℓ+1)×(k+1)

p .
7: (K1, . . . ,Kn)← Share(K,Z(ℓ+1)×(k+1)

p , n, t).
8: vk := [KA]2.
9: for i ∈ [1, n]:

10: ski := Ki, vki := [KiA]2.
11: (m∗, Σ∗, st1)← AOPSign∗(.)

(st0, vk, {ski}i∈CS, {vki}i∈[1,n]).
12: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4)

13: if (Verify∗(pp, vk, [m∗]1, Σ
∗) ∧ |CS| < t ∧ S1([m

∗]1) = ∅) :
14: result := true
15: else : result := false
16: return b̃← A(result)

OPSign∗(i, [m]1):

1: τ := H([m]1).
2: (val1, val2)← Ob(τ).
3: σ1 :=

[(
1 m⊤

)
Ki

]
1
· val1.

σ2 := val2,
σ3 := [τ ]1 · val2,
σ4 := [τ ]2.

4: Σi := (σ1, σ2, σ3, σ4).
5: if Σi ̸= ⊥ :

6: S1([m]1) := S1([m]1) ∪ {i}.
7: return Σi

Verify∗(pp, vk, [m∗]1, Σ
∗) :

1: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4).

2: return

(
e (σ̂1, [1]2) = e

([(
1 m∗⊤

)
K
]
1
, [1]2

)
· e(σ̂2,O∗(σ̂4))

∧ e(σ̂2, σ̂4) = e(σ̂3, [1]2)

)
Fig. 7. Reduction to the core lemma in Lemma 1.
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Lemma 2. |Adv2 −Adv3| ≤ 2qAdvMDDH
Dk,G1,B1

(κ) + q/p.

Proof. We prove this lemma through a reduction to the core lemma, Lemma 1. Let us assume there exists
an adversary A that can distinguish the games Game2 and Game3, we can use it to build an adversary
B1, defined in Figure 7, which breaks the core lemma, Lemma 1. The adversary B1 has access to four
oracles, Init(·),Ob(·),O∗(·),O∗∗(·), however in this reduction, we only use the first three oracles, defined
as follows:

Oracle Init(·): The oracle Init provides the set of public parameters pp.
Oracle Ob(·): On the i-th query to this oracle on [τ ]1, it outputs

(
[bµa⊥ + r⊤i B

⊤(U + τ ·V)]1, [r
⊤
i B

⊤]1
)

depending on a random bit b.
Oracle O∗(·): On input [τ∗]2, it returns [U + τ∗V]2.

When the lemma challenger selects the challenge bit as b = 0, it leads to the game Game2, and when
b = 1, it results in the game Game3. All the other values are simulated perfectly. Thus, |Adv2−Adv3| ≤
AdvCoreDk,ABSGen,B1

(κ) holds and therefore we have,

|Adv2 −Adv3| ≤ 2qAdvMDDH
Dk,G1,B(κ) + q/p ·

Game 4. In this game, we apply the modifications described in Figure 8. Shamir secret sharing (see
Definition 1) ensures that (K1, . . . ,Kn) in Game3 and (K̃1, . . . , K̃n) in Game4 have identical distri-
butions. W.l.o.g, Ki in Game3 and K̃i in Game4 are identically distributed. In Game4, on the other
hand, K̃i and Ki = K̃i − uia

⊥ are identically distributed. Combining these observations, it follows
that Ki in Game3 and Ki in Game4 are identically distributed for all i ∈ [1, n]. Consequently, it can
be deduced that K in Game3 and K + u0a

⊥ in Game4 are identically distributed. Therefore, this
change is just a conceptual change and we have,

|Adv3 −Adv4| = 0 ·

Now, we give a bound on Adv4 via an information-theoretic argument. We first consider the in-
formation about u0 (and subsequently {ui}i∈[1,n]\CS) leaked from vk (and subsequently {vki}i∈[1,n])
and partial signing queries:
– vk := [KA]2 =

[
K̃A

]
2

and vki := [KiA]2 =
[
K̃iA

]
2

for all i ∈ [1, n].

– The output of the jth partial signature query on (i, [m]1) for [m]1 ̸= [m∗]1 completely hides
{ui}i∈[1,n]\CS (and subsequently u0 as the adversary has only |CS| many ui with |CS| < t), since(

1 m⊤)Ki + µja
⊥ =

(
1 m⊤) K̃i +

(
1 m⊤)uia

⊥ + µja
⊥ .

distributed identically to
(
1 m⊤) K̃i + µja

⊥. This is because µja
⊥ already hides

(
1 m⊤)uia

⊥

for uniformly random µj ← Zp.
The only way to successfully convince the verification to accept a signature Σ∗ on m∗, the adversary
must correctly compute

(
1 m∗⊤) (K+u0a

⊥) and thus
(
1 m∗⊤)u0. Observe that, {ui}i∈[1,n]\CS (and

thereby u0) are completely hidden to the adversary,
(
1 m∗⊤)u0 is uniformly random from Zp from

the adversary’s viewpoint. Therefore, Adv4 = 1/p.

Theorem 2. Under the Dk-MDDH Assumption in G1 and Dk-KerMDH Assumption in G2, our Thresh-
old Structure-Preserving Signature construction achieves TS-UF-1 security against an efficient adversary
making at most q partial signature queries.

Proof Sketch. The difference between TS-UF-0 and TS-UF-1 lies in the fact that, in the latter model,
an adversary can request OPSign(·) queries on [m∗]1 for which it aims to forge a signature. The natural
restriction in Figure 1 is expressed as |S1([m

∗]1)| < t − |CS|, where t is the threshold value and the
corrupted parties CS are fixed at the beginning of the game. As this security model allows partial signature
oracle queries on [m∗]1, we next explore the changes we need to make on the proof of Theorem 1.
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GGG3(κ): GGG4(κ):

1: G ← ABSGen(1κ),
2: A,B← Dk,
3: U,V ← Z(k+1)×(k+1)

p .
4: pp := ([A]2, [UA]2, [VA]2, [B]1, [B

⊤U]1, [B
⊤V]1).

5: (n, t,CS, st0)← A(pp).
6: Assert CS ⊂ [1, n].
7: Sample K ← Z(ℓ+1)×(k+1)

p .

8: (K1, . . . ,Kn)← Share(K,Z(ℓ+1)×(k+1)
p , n, t)

Sample u0 ← Zℓ+1
p

(u1, . . . ,un)← Share(u0,Z(ℓ+1)
p , n, t)

(K̃1, . . . , K̃n)← Share(K,Z(ℓ+1)×(k+1)
p , n, t)

Ki := K̃i + uia
⊥,∀i ∈ [1, n]

9: vk := [KA]2.
10: for i ∈ [1, n]:
11: ski := Ki, vki := [KiA]2.
12: ([m∗]1, Σ

∗, st1)← AOPSign(.)

(st0, vk, {ski}i∈CS, {vki}i∈[1,n]) .

13: return

(
Verify∗(pp, vk, [m∗]1, Σ

∗) ∧ |CS| < t ∧ S1([m
∗]1) = ∅

)

Verify∗(pp, vk, [m∗]1, Σ
∗) :

1: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4 = [τ∗]2).

2: return

(
e(σ̂1, [1]2) = e

([(
1 m∗⊤

)
(K + u0a

⊥ )
]
1
, [1]2

)
e (σ̂2, [U + τ∗V]2)

∧ e(σ̂2, σ̂4) = e(σ̂3, [1]2)

)
Fig. 8. Modification from Game3 to Game4.
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Game0, Game1 and Game2 stay the same. To handle TS-UF-1 adversaries, we introduce an additional
game Game′2 to handle partial signature queries on the forged message. In Game′2, the challenger makes a
list of all the partial signature queries and guesses the message on which forgery will be done. However,
the guess will be made on the list of partial signature queries. More precisely, let A make partial signature
queries on [m1]1 , . . . , [mQ]1 s.t. Q ≤ q, the challenger of Game′2 rightly guesses the forged message with
1/Q probability which introduces a degradation in the advantage. This small yet powerful modification
allows the challenger in Game3 to add a uniformly random quantity µ to partial signature oracle queries
on [m]1 ̸= [m∗]1. This concept is formulated by adding an additional line between lines number 2 and 3
in Figure 6. In particular, the new Game′3 (See Figure 9) would set µ = 0 if [m]1 = [m∗]1. Next, we give
an intuitive explanation of the indistinguishability of Game′2 and Game′3 which basically is a modification
of the proof of Lemma 2.

OPSign∗(i, [m]1):
1: assert

(
[m]1 ∈M ∧ i ∈ HS

)
2: ri ← Zk

p, τ := H([m]1), µ← Zp If [m]1 = [m∗]1, set µ := 0

3: σ1 :=
[(
1 m⊤)Ki + µa⊥ + r⊤i B

⊤(U + τ ·V)
]
1
,

σ2 := [r⊤i B
⊤]1,

σ3 := [τr⊤i B
⊤]1,

σ4 := [τ ]2
4: Σi := (σ1, σ2, σ3, σ4)
5: if Σi ̸= ⊥ :
6: S1([m]1) := S1([m]1) ∪ {i}
7: return Σi

Fig. 9. Game′3 in the proof of Theorem 2.

The novelty of this research lies in the need to simulate partial signature queries on the forged message
[m∗]1, a challenge not addressed in previous works like [KW15, KPW15] upon which this study is based.
It’s important to mention that an extra oracle, termed O∗∗(·), is sufficient for our objectives. On any
partial signature query on the forged message [m∗]1, the reduction calls O∗∗([τ∗]1) for τ∗ ← H([m∗]1).
Next we see that a single query to O∗∗([τ∗]1) is sufficient to handle multiple partial signature queries on
[m∗]1. In particular, given a partial signature oracle query on (i, [m∗]1), the reduction uses O∗∗(·) of the
so-called core-lemma (in Lemma 1) to get X =

[
B⊤(U + τ∗V)

]
1
, where τ∗ = H([m∗]1). The reduction

then replies with
( [(

1 m∗⊤)]
1
Ki + r⊤ ·X,

[
r⊤B⊤]

1
,
[
τ∗r⊤B⊤]

1
, [τ∗]2

)
as a partial signature response

to A. Thus, a single call to O∗∗(·) suffices to handle all partial signature queries on [m∗]1.
We define Game4 as being identical to the proof of Theorem 1. In fact, the argument for the indistin-

guishability of Game3 and Game4 from the proof of Theorem 1 applies here as well. The argument that
Adv4 is negligible however requires a small modification. Similar to the proof of Theorem 1, we can show
that all verification keys vk and {vki}i∈[1,n] stay the same. Furthermore, all partial signature queries on
[m]1 ̸= [m∗]1 do not leak any information about {ui}i∈[1,n]\CS. Since, partial signature oracle queries
are allowed on [m∗]1, observe that at most {ui}i∈S1([m∗]1)

are leaked to the adversary. To summarise,
an adversary in TS-UF-1 gets at most {ui}i∈S1([m∗]1)⊔CS even when it is unbounded. Due to the natu-
ral restriction, |S1([m

∗]1)| + |CS| < t ensures that u0 stays completely hidden to the adversary. Thus,(
1 m∗⊤)u0 is uniformly random from Zp from the adversary’s viewpoint. Therefore, Adv4 ≤ 1/p.

Theorem 3. Under the Dk-MDDH Assumption in G1 and Dk-KerMDH Assumption in G2, the proposed
Threshold Structure-Preserving Signature construction in Figure 3 achieves adp-TS-UF-1 security against
an efficient adversary making at most q partial signature queries.

Proof. The difference between TS-UF-1 and adp-TS-UF-1 is that an adversary of the later model has
access toOCorrupt(.) oracle and can corrupt the honest signers, adaptively. As per Figure 1, an adp-TS-UF-1
adversary proposes a corrupted set CS at the start of the game which it updates incrementally as the game
progresses. At the time of forgery, the natural restriction in Figure 1 formulates as |S1([m

∗]1)| < t−|CS|,
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where t is the threshold value and CS contains the list of corrupted signers at the forgery phase. Given
that this security model permits an adversary to obtain the secret keys of users it may have queried using
the OPSign(.) oracle in the past, our next step involves investigating the main modifications required for
the proof in Theorem 2.

Game0, Game1, Game2, and Game′2 stay the same. In the proof of Theorem 2, we also have showed
that Game′2 and Game′3 to be indistinguishable due to the so-called core lemma, Lemma 1. We reuse
the reduction in Figure 7 towards this purpose. The reduction in Figure 7 samples K ← Z(ℓ+1)×(k+1)

p

and generates (K1, . . . ,Kn)← Share(K,Z(ℓ+1)×(k+1)
p , n, t). Recall that, the adp-TS-UF-1 adversary A of

Lemma 2 corrupts a party i ∈ [1, n] adaptively. Since the reduction of Lemma 2 already knows Ki in
plain, it can handle the OCorrupt(.) oracle queries quite naturally.

The indistinguishability of Game3 and Game4 are argued exactly the same as in Theorem 2. We
now focus on Adv4. In Game4, the adversary gets to update CS adaptively. Intuitively, all Ki are
independently sampled. Giving out a few of them to the adversary does not change the adversary’s view.
In the proof of Theorem 2, we already have managed to address partial signature queries on forged
message. Except a few details, this ensures our proof will work out. We next give a formal argument.

We prove this theorem through a series of games and we use Advi to denote the advantage of the
adversary A in winning the Game i. The games are described below.

Game 0. This is the adp-TS-UF-1 security game described in Definition 8. As shown in Figure 10, an
adversary A after receiving the set of public parameters, pp, returns (n, t, CS), where n, t and CS
represents the total number of signers, the threshold, and the set of corrupted signers, respectively.
The adversary can query the partial signing oracle OPSign(·) to receive partial signatures. Let Q
represent the number of distinct messages where partial signing queries are made. In the end, the
adversary outputs a message [m∗]1 and a forged signature Σ∗.

Game 1. We modify the verification procedure to the one described in Figure 11. Consider any forged
message/signature pair ([m∗]1, Σ

∗ = (σ̂1, σ̂2, σ̂3, σ̂4)) where e(σ̂2, σ̂4) = e(σ̂3, [1]2), |CS| < t and
S1([m

∗]1) = ∅. Note that if the pair ([m∗]1, Σ
∗) meets the Verify∗(·) conditions, outlined in Figure 11,

it also satisfies Verify(·) procedure, described in Figure 10. This is primarily due to the fact that:

e(σ̂1, [A]2) = e
(
[
(
1 m∗⊤)]1, [KA]2

)
· e(σ̂2, [UA]2) · e(σ̂3, [VA]2)

⇐= e(σ̂1, [1]2) = e([
(
1 m∗⊤)]1, [K]2) · e(σ̂2, [U]2) · e(σ̂3, [V]2)

⇐⇒e(σ̂1, [1]2) = e([
(
1 m∗⊤)K]1, [1]2) · e(σ̂2, [U + τ∗V]2) ·

Assume there exists a message/signature pair ([m∗]1, Σ
∗ = (σ̂1, σ̂2, σ̂3, σ̂4)) that satisfies Verify(.)

and not Verify∗(.), then we can compute a non-zero vector c in the kernel of A as follows:

c := σ̂1 − ([
(
1 m∗⊤)K]1 + σ̂2U + σ̂3V) ∈ G1×(k+1)

1 ·

According to Dk-KerMDH assumption over G2 described in Definition 5, such a vector c is hard to
compute. Thus,

|Adv0 −Adv1| ≤ AdvKerMDH
Dk,G2,B0

(κ) ·
Game 2. On receiving a partial signature query on a message [mi]1, a list is updated with the message

[mi]1 and the corresponding tag τi := H([mi]1). The challenger aborts if an adversary can generate
two tuples ([mi]1, τi), ([mj ]1, τj) with [mi]1 ̸= [mj ]1 and τi = τj . By the collision resistance property
of the underlying hash function we have:

|Adv1 −Adv2| ≤ AdvCRHFH (κ) ·

Verify∗(pp, vk, [m∗]1, Σ
∗):

1: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4 = [τ∗]2).

2: return

(
e(σ̂1, [1]2) = e

(
[
(
1 m∗⊤)K]1, [1]2

)
· e(σ̂2, [U + τ∗V]2) ∧

e(σ̂2, σ̂4) = e(σ̂3, [1]2)

)
Fig. 11. Modifications in Game1.
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GGG0(κ):

1: G ← ABSGen(1κ),
2: A,B← Dk,
3: U,V ← Z(k+1)×(k+1)

p .
4: pp := ([A]2, [UA]2, [VA]2, [B]1, [B

⊤U]1, [B
⊤V]1).

5: (n, t,CS, st0)← A(pp).
6: Assert CS ⊂ [1, n].
7: Sample K ← Z(ℓ+1)×(k+1)

p .
8: (K1, . . . ,Kn)← Share(K,Z(ℓ+1)×(k+1)

p , n, t).
9: vk := [KA]2.

10: ski := Ki, vki := [KiA]2 for i ∈ [1, n].
11: ([m∗]1, Σ

∗, st1)← AOPSign(·),OCorrupt(·)(st0, vk, {ski}i∈CS, {vki}i∈[1,n]).

12: return

(
Verify(pp, vk, [m∗]1, Σ

∗) ∧ |CS| < t ∧ S1([m
∗]1) = ∅

)
OPSign(i, [m]1):

1: Assert
(
[m]1 ∈M ∧ i ∈ HS

)
.

2: ri ← Zk
p.

3: τ := H([m]1).
4: σ1 :=

[(
1 m⊤

)
Ki + r⊤i B

⊤(U + τV)
]
1
.

σ2 := [r⊤i B
⊤]1,

σ3 := [τr⊤i B
⊤]1,

σ4 := [τ ]2.
5: Σi := (σ1, σ2, σ3, σ4).
6: if Σi ̸= ⊥ :

7: S1([m]1) := S1([m]1) ∪ {i}.
8: return Σi

OCorrupt(j):

1: CS← CS ∪ {j}
2: HS← CS \ {j}
3: return skj

Verify(pp, vk, [m∗]1, Σ
∗) :

1: Parse Σ∗ as (σ̂1, σ̂2, σ̂3, σ̂4).

2: return

(
e(σ̂1, [A]2) = e

([(
1 m∗⊤

)]
1
, [KA]2

)
· e(σ̂2, [UA]2) · e(σ̂3, [VA]2)

∧ e(σ̂2, σ̂4) = e(σ̂3, [1]2)

)
Fig. 10. Game0.
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Game 2′. In Game′2, the challenger randomly chooses an index j∗ ← [1, Q] as its guess of the message
on which the forgery will be done. This game is the same as Game 2 except that the challenger aborts
the game immediately if forged message [m∗]1 ̸= [mj∗ ]1.
The challenger of Game′2 rightly guesses the forged message [m∗]1 with 1/Q probability which intro-
duces a degradation in the advantage of Game′2: Adv2′ =

1
QAdv2.

Game 3′. This game is same as Game′2 except we introduce randomness to the partial signatures by
adding µa⊥ to each partial signature query on all messages [m]1 except [m]

∗
1 on which the forgery is

done.

OPSign∗(i, [m]1):
1: assert

(
[m]1 ∈M ∧ i ∈ HS

)
2: ri ← Zk

p, τ := H([m]1), µ← Zp If [m]1 = [m∗]1, set µ := 0

3: σ1 :=
[(
1 m⊤)Ki + µa⊥ + r⊤i B

⊤(U + τ ·V)
]
1
,

σ2 := [r⊤i B
⊤]1,

σ3 := [τr⊤i B
⊤]1,

σ4 := [τ ]2
4: Σi := (σ1, σ2, σ3, σ4)
5: if Σi ̸= ⊥ :
6: S1([m]1) := S1([m]1) ∪ {i}
7: return Σi

Fig. 12. Game′3 in the proof of Theorem 3.

We show that, we can make a reduction algorithm B for the so-called core-lemma (in Lemma 1) using
A. At the start of the game, B randomly chooses an index j∗ ← [1, Q] as its guess of the message on
which forgery will be done. If [m∗]1 ̸= [mj∗ ]1 = [m∗]1, B aborts. Otherwise, B outputs A’s output
as it is. In particular, B does the following:
1. B receives pp from the challenger.
2. B samples K ← Z(ℓ+1)×(k+1)

p .
3. B then secret shares K into (K1, . . . ,Kn)← Share(K,Z(ℓ+1)×(k+1)

p , n, t).
4. On a OCorrupt(.) oracle query on j ∈ [1, n], B returns Kj .
5. B simulates the partial signature query on (i, [m]1) as following:

– If [m]1 = [m∗]1, it makes a query (i, τ∗) on O∗∗(.) where τ∗ ← H([m∗]1).
• Let B receives val as the response of the above queries.
• B samples ri ← Zk

p and returns Σi := (
[(
1 m⊤)Ki

]
1
· r⊤i · val, r⊤i · val, τ · r⊤i · val, [τ ]2)

to A as the partial signature.
– If [m]1 ̸= [m∗]1, it makes a query (i, τ) on Ob(·), where τ ← H([m]1).
• Let B receives (val1, val2) as the response of the above queries.
• It returns Σi :=

([(
1 m⊤)Ki

]
1
· val1, val2, τ · val2, [τ ]2

)
to A as the partial signature.

6. On Verify∗(.) on (vk, [m∗]1 , Σ
∗), B queries on O∗(·) on [τ∗]2 where τ∗ ← H([m∗]1).

– Let Σ∗ is (σ1, σ2, σ3, σ4 = [τ∗]2).
– Let B receives val as the response of the above query.
– B verifies the signature: e(σ1, [1]2) = e

([(
1 m∗⊤)K]

1
, [1]2

)
·e(σ2, val)∧e(σ2, σ4) = e(σ3, [1]2).

Game′2 and Game′3 are indistinguishable due to the so-called core-lemma (in Lemma 1), then we have:

|Adv2′ −Adv3′ | ≤ 2QAdvMDDH
Dk,G1,B1

(κ) +Q/p ·

Game 4. This game is same as Game′3 except that {Ki}i∈[n] are sampled. In particular, we sample
Ki = K̃i + uia

⊥ for i ∈ [1, n].
Shamir secret sharing (see Definition 1) ensures that (K1, . . . ,Kn) in Game3 and (K̃1, . . . , K̃n) in
Game4 are identically distributed. W.l.o.g, Ki in Game′3 and K̃i in Game4 are identically distributed.
In Game4, on the other hand, K̃i and Ki = K̃i − uia

⊥ are identically distributed. Considering both
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together, Ki is Game′3 and Ki in Game4 are identically distributed for all i ∈ [1, n]. Thus further
ensures that K in Game′3 and K+u0a

⊥ in Game4 are identically distributed. Therefore, this change
is just a conceptual change and Adv3′ −Adv4 = 0.
Finally, we argue that Adv4 = 1/p. Notice that, the adversary gets to update CS adaptively. To
complete the argument, we have to ensure that even after getting Ki = K̃i+uia

⊥ for i ∈ [CS] chosen
adaptively and even after having several partial signatures (possibly on the corrupted keys too), u0

is still hidden to the adversary.
– Firstly, vk and {vki}i∈[1,n] do not leak anything about u0 and {ui}i∈[1,n] respectively. Note that,
A gets ski = Ki = K̃i + uia

⊥ for i ∈ [CS] as a part of Input.
– The output of jth partial signature query on (i, [m]1) for [m]1 ̸= [m∗]1 completely hides
{ui}i∈[1,n]\CS (and subsequently u0 as the adversary has only |CS| many ui where |CS| < t),
since (

1 m⊤)Ki + µja
⊥ =

(
1 m⊤) K̃i +

(
1 m⊤)uia

⊥ + µja
⊥ ·

distributed identically to
(
1 m⊤) K̃i + µja

⊥. This is because µja
⊥ already hides

(
1 m⊤)uia

⊥

for uniformly random µj ← Zp.
– In case of the jth partial signature query on (i, [m∗]1), observe that at most {ui}i∈S1([m∗]1)

are
leaked to the adversary. To summarise, an adp-TS-UF-1 adversary gets at most {ui}i∈S1([m∗]1)

even when it is unbounded.
– Finally, we take a look at the corrupted set CS. We emphasize that this set was updated through

out the game adaptively.
From the above discussion, it is clear that the information theoretically adversary can at most gets
hold of {ui}i∈S1([m∗]1)⊔CS adaptively. Note that, the only way to sucessfuly convince the verification
to accept a signature Σ∗ on m∗, the adversary must correctly compute

(
1 m∗⊤) (K+u0a

⊥) and thus(
1 m∗⊤)u0. So the question now reduces to if the adversary can compute u0 from {ui}i∈S1([m∗]1)⊔CS

which it got adaptively. Since Shamir secret sharing is information theoretically secure, the advantage
of an adversary in case of selective corruption of users is same as the advantage of an adversary in case
of adaptive corruption of users. Thus, u0 is completely hidden to the adaptive adversary,

(
1 m∗⊤)u0

is uniformly random from Zp from its viewpoint. Therefore, Adv4 = 1/p.

3.5 Proof of Core Lemma

Proof of Lemma 1. We proceed through a series of games from Game0 to Gameq. Note that, Init outputs
the same in all the games. In Gamei, the first i queries to the oracle Ob(.) are responded with ([µa⊥ +
r⊤B⊤(U+ τV)]1, [r

⊤B⊤]1) and the next q− i queries are responded with ([r⊤B⊤(U+ τV)]1, [r
⊤B⊤]1).

The intermediate games Gamei and Gamei+1 respond differently to the i + 1-th query to Ob(.). The
Gamei responds with ([r⊤B⊤(U+ τV)]1, [r

⊤B⊤]1) whereas Gamei+1 responds with ([µa⊥ + r⊤B⊤(U+
τV)]1, [r

⊤B⊤]1). We compute the advantage of the adversary in differentiating the two games below.
The advantage of the adversary in Gamei is denoted by Advi for i = 0, . . . , q. On querying Ob(·), Gamei
responds to i+ 1-th query with

([r⊤B⊤(U + τV)]1, [r
⊤B⊤]1) ,

where r← Zk
p.

We define a sub-game Gamei.1 where [Br]1 is replaced with [w]1, [w]1 ← Gk+1
1 . From the MDDH as-

sumption, a MDDH adversary cannot distinguish between the distributions ([B]1, [Br]1) and ([B]1, [w]1).
Thus,

([r⊤B⊤(U + τV)]1, [r
⊤B⊤]1) ≈c ([w

⊤(U + τV)]1, [w]1) ·

All the other values can be perfectly simulated in the reduction by choosing U and V from the appropriate
distributions. In the next sub-game Gamei.2, we introduce the randomness µa⊥ to [w⊤(U + τV)]1 and
proceed to use an information-theoretic argument to bound the advantage in this experiment. As shown
in [KW15], for every A,B← Dk, τ ̸= τ∗, the following distributions are identically distributed

(vk, [w⊤(U + τV)]1,U + τ∗V) and (vk, [µa⊥ +w⊤(U + τV)]1,U + τ∗V) ·
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with probability 1 − 1/p over w. The values [B⊤U]1 and [B⊤V]1 are part of the public values vk :=
(A,UA,VA, [B]1, [B

⊤U]1, [B
⊤V]1) and anyone can compute [B⊤(U + τ∗V)]1 corresponding to a τ∗.

Thus, for τ ̸= τ∗, we have the two following identical distributions:

(vk, [w⊤(U + τV)]1, [U + τ∗V]2, [B
⊤(U + τ∗V)]1) and

(vk, [µa⊥ +w⊤(U + τV)]1, [U + τ∗V]2, [B
⊤(U + τ∗V)]1) ·

(1)

From Equation (1), the subgames Gamei.1 and Gamei.2 are statistically close. We use the MDDH as-
sumption again in the next sub-game Gamei.3 and replace [w]1 with [Br]1. The resulting distribution
is

(vk, [µa⊥ + r⊤B⊤(U + τV)]1, [U + τ∗V]2, [B
⊤(U + τ∗V)]1) ,

which is same as Gamei+1. Thus, from the two MDDH instances as well as the information-theoretic
argument,

|Advi −Advi+1| ≤ 2AdvMDDH
Dk,G1,B(κ) + 1/p ·

4 Conclusion

In this paper, we give the first construction of a non-interactive threshold structure-preserving signature
(TSPS) scheme from standard assumptions. We prove our construction secure in the adp-TS-UF-1 security
model where the adversary is allowed to obtain partial signatures on the forged message and additionally
allow the adversary to adaptively corrupt parties. Although the signatures are constant-size (and in fact
quite small), we consider improving the efficiency of TSPS under standard assumptions as an interesting
future work.
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