Paper 2025/092
Public-Key Quantum Money From Standard Assumptions (In The Generic Model)
Abstract
Our main result is a quantum polynomial-time reduction from the group action discrete logarithm (DLP) problem to a specific cloning problem. A consequence of this result is that the public-key quantum money scheme proposed by Zhandry (2024), which is based on abelian group actions, is secure in the generic group action model. Specifically, our result shows that breaking the quantum money scheme is equivalent, under quantum polynomial-time reductions, to solving the group action DLP. An immediate implication of our result concerns the relationship between cloning and preparing Fourier states: our main theorem shows that the problem of cloning group action Fourier states is equivalent to the problem of preparing them.
Metadata
- Available format(s)
-
PDF
- Category
- Public-key cryptography
- Publication info
- Preprint.
- Keywords
- Quantum MoneyQuantum Cryptography
- Contact author(s)
- jake doliskani @ mcmaster ca
- History
- 2025-07-09: last of 2 revisions
- 2025-01-21: received
- See all versions
- Short URL
- https://ia.cr/2025/092
- License
-
CC BY
BibTeX
@misc{cryptoeprint:2025/092, author = {Jake Doliskani}, title = {Public-Key Quantum Money From Standard Assumptions (In The Generic Model)}, howpublished = {Cryptology {ePrint} Archive, Paper 2025/092}, year = {2025}, url = {https://eprint.iacr.org/2025/092} }