
Public-Key Quantum Money From Standard Assumptions

(In The Generic Model)

Jake Doliskani*

Abstract

Our main result is a quantum polynomial-time reduction from the group action discrete
logarithm (DLP) problem to a specific cloning problem. A consequence of this result is that the
public-key quantum money scheme proposed by Zhandry (2024), which is based on abelian group
actions, is secure in the generic group action model. Specifically, our result shows that breaking
the quantum money scheme is equivalent, under quantum polynomial-time reductions, to solving
the group action DLP. An immediate implication of our result concerns the relationship between
cloning and preparing Fourier states: our main theorem shows that the problem of cloning group
action Fourier states is equivalent to the problem of preparing them.

*Department of Computing and Software, jake.doliskani@mcmaster.ca.

1

1 Introduction

Quantum money is the quantum-mechanical counterpart to classical money, where bills are rep-
resented by quantum states. Due to the fundamental no-cloning theorem, such bills cannot be
counterfeited. The invention of quantum money was arguably the start of quantum information
science. In a seminal paper, Wiesner [34] proposed the first quantum money scheme. In Wiesner’s
scheme, the bank is required to verify every bill, which means that the bank is involved in every
transaction. This not only makes the scheme rather impractical but also leads to potential security
problems. In modern terminology, Wiesner’s scheme is referred to as a private-key money scheme.
A desired scheme would allow anyone to verify a bill, while only the bank could create it. Such a
scheme is known as public-key quantum money.

The first concrete construction of public-key quantum money was proposed by Aaronson [1],
though it was later broken by Lutomirski et al. [23]. In recent years, several other proposals have
been made [2, 16, 35, 19, 20, 21, 37]; however, each of these schemes has either been broken [12,
29, 5, 21], or relies on non-standard cryptographic assumptions. Despite these ongoing efforts, the
construction of public-key quantum money based on standard cryptographic assumptions remains
elusive.

Cryptographic group actions. The group action Discrete Logarithm Problem (DLP), a gener-
alization of the classical group DLP, involves inverting the action: given two elements from the set
being acted upon, find an element of the acting group that maps one to the other. The DLP is said
to hold for a group action if no Quantum Polynomial Time (QPT) algorithm can solve the DLP
for that action. Such group actions are referred to as cryptographic group actions. The concept
of cryptographic group actions dates back to Brassard and Yung [7], though it was more formally
defined by Couveignes [13]. The primary standard assumption in group action cryptography is the
hardness of the group action DLP.

Quantum money from group actions. A promising candidate for public-key quantum money,
based on abelian group actions, was proposed by Zhandry [37]. In Zhandry’s scheme, the money
states are group-action Fourier states, and the serial numbers are group elements. The verification
is done through a group-action phase kickback unitary that recovers the serial number from the
money state; See Section 3 for more details.

The security of Zhandry’s scheme was proved in in both the generic model and the standard
model, although based on new assumptions. In the generic model, security is proved under an
assumption on the group action called the Decisional 2X Assumption. In the standard model,
security is proved under two assumptions on the group action: the Knowledge of Group Element
Assumption and the Discrete Log with a Single Minimal CDH Query Assumption. As mentioned in
[37], these assumptions are new, and there are no known reductions from any standard assumptions
to them.

This work. We prove that Zhandry’s scheme is secure in the generic model. Specifically, we
give a quantum polynomial time reduction from the group action DLP to the problem of cloning
money states. To the best of our knowledge, this establishes the proposed group action quantum
money scheme as the first public-key quantum money scheme based on standard assumptions in
the generic model of group actions.

An interesting consequence of our results concerns the problem of preparing a uniform super-
position over an orbit of a group action. Specifically, given a group action, the goal is to efficiently

2

generate a uniform superposition over an orbit, which in many cases coincides with the entire set
being acted upon. This problem has been identified as a significant open question in cryptography,
particularly in the context of isogeny graphs, as highlighted by [21, 15, 6]. A corollary of our main
theorem yields a quantum polynomial-time reduction from this uniform superposition problem to
the problem of cloning money states. This result is of independent interest beyond the quantum
money literature, as both uniform superpositions and money states can be viewed as group-action
Fourier states. Our result shows that given the ability to clone Fourier states, one can efficiently
prepare any desired Fourier state.

1.1 Technical Overview

In the following, we describe the main new ideas used in our proof. Let (G,X, ∗) denote a group
action, where the abelian group G acts on the set X via the operation ∗ : G×X → X. Throughout
this paper, we assume that G is of smooth order. Specifically, for any prime ℓ divisor of |G|, we
require that ℓ ≤ poly(log|G|). The money states produced by the Gen algorithm of the quantum
money scheme are of the form

|G(h) ∗ x⟩ = 1√
|G|

∑
g∈G

χ(g, h)|g ∗ x⟩, h ∈ G,

where χ is a character of the group G.

Projecting onto subgroups. Given a subgroup K ≤ G and a money state |ψ⟩ over G, the
projection algorithm is a QPT algorithm that outputs a money state over K. This process can be
illustrated more clearly when G = ZN : for a subgroup K ≤ ZN , the algorithm performs a certain
measurement that produces the state

|(K + g)(r) ∗ x⟩ = 1√
|K|

∑
u∈K

ωur
N |(u+ g) ∗ x⟩, (1)

where 0 ≤ r < M is a random integer that is the outcome of the measurement.

Cloning subgroup states. Given a money state over a subgroup K ≤ G, we use the adversary’s
algorithm to construct a cloning algorithm that can clone the money state with high probability
and small error. Two key challenges in devising this cloning algorithm are: i) efficiently identifying
elements of X that lie in the orbit of K (or one of its cosets), and ii) amplifying the cloning
probability of the adversary o address the first challenge, we employ the random injection technique
introduced by Zhandry in [37]. To tackle the second challenge, we use the amplification algorithm
developed by Marriott and Watrous [24, 32].

Fixing the phase. The subgroup money states (1) obtained through the projection algorithm
are not immediately useful for extracting information about g due to the presence of the phase ωur

N .
To eliminate this phase, we utilize a composition series 0 < K1 < · · · < Ks−1 < Ks = K of the
subgroupK. The procedure begins by repeatedly projecting onto the subgroupK1 until he outcome
r = 0 is achieved.1 In this case, the resulting state is |(K1 + g) ∗ x⟩ = |K1|−1/2

∑
u∈K1

|(u+ g) ∗ x⟩
which is phase-free. From here, we use an algorithm similar to the projection algorithm to obtain
the state |(K2+g)∗x⟩ = |K2|−1/2

∑
u∈K2

|(u+g)∗x⟩. Continuing this process, we ultimately obtain

1We have assumed r = 0 in the present discussion for clarity. However, the algorithm works for any value of r.

3

the state |(K+g)∗x⟩ = |K|−1/2∑u∈K |(u+g)∗x⟩ which is the same as (1), but without the phase.
Since the algorithm used to move from the subgroup Kj to the subgroup Kj+1 is probabilistic, we
require multiple copies of the state in each stage. This is where our cloning algorithm is applied.
The sequence of projection and cloning steps is summarized in the following diagram.

|(K1 + g) ∗ x⟩

poly(logN) copies
of |(K1 + g) ∗ x⟩

|(K2 + g) ∗ x⟩

poly(logN) copies
of |(K2 + g) ∗ x⟩

|(K3 + g) ∗ x⟩

poly(logN) copies
of |(Ks−1 + g) ∗ x⟩

|(Ks + g) ∗ x⟩
clone

pr
oj
ec
t clone

pr
oj
ec
t

pr
oj
ec
t

· · ·
· · ·

· · ·

Putting it all together. Given a pair (x, g ∗ x), where g ∈ G is unknown, we can use the tools
we have developed to recover g. We first consider the case where G = ZN and later explain how
the algorithms can be extended to handle a general abelian group G. Let G = ZN , and let ℓ | N
be prime. We can efficiently prepare the state |(ℓZN + g)∗x⟩ by starting from the state |g ∗x⟩, and
the state |ℓZN ∗ x⟩ by starting from the state |x⟩. From these states, we can compute g mod ℓ by
shifting the latter state to obtain the states |(ℓZN+t)∗x⟩ for different values of t, and then using the
swap-test against the former state. It is important to note that multiple copies of the two states
are required to perform the swap-test for various shifts of t. These copies are generated using
our cloning algorithm. Once we have the ability to compute g mod ℓ for arbitrary prime divisors
ℓ | N , we can employ a group action variant of the Pohlig-Hellman algorithm to fully recover g.

2 Preliminaries

2.1 Group actions

We follow the presentation in [3] for the definition of cryptographic group actions. Abstractly, the
action of a group G on a set X is a mapping ∗ : G×X → X that satisfies the following properties:

1. Compatibility: for every a, b ∈ G and every x ∈ X, g ∗ (h ∗ x) = (gh) ∗ x,

2. Identity: for the identity 1 ∈ G and every x ∈ X, 1 ∗ x = x.

We use the notation (G,X, ∗) for a group G acting on a set X through ∗. A group action (G,X, ∗)
is said to be transitive if for every x, y ∈ X there exists a g ∈ G such that g ∗ x = y. A group
action (G,X, ∗) is said to be free if for every g ∈ G, g = 1 if and only if there is an x ∈ X such
that g ∗ x = x. A group action that is both transitive and free is called regular. Equivalently, a
group action is regular if for every x, y ∈ X there exists a unique g ∈ G such that g ∗ x = y. For a
group action (G,X, ∗) to be computationally useful, the group G, the set X, and the action ∗ must
satisfy certain properties. This leads to the definition of effective group actions.

Definition 2.1 (Effective Group Action). A group action (G,X, ∗) is said to be effective if it
satisfies the following properties:

1. Both G and X are finite.

2. There are efficient algorithms for the following operations in G: membership testing, equality
testing, sampling (close to) uniform elements, group operation and inversion.

4

3. There are efficient algorithms for the following in X: membership testing and unique repre-
sentation.

4. There exists a distinguished element x ∈ X with known bit-string representation.

5. There is exists an efficient algorithm for the mapping ∗: given any g ∈ G and any x ∈ X, the
algorithm outputs g ∗ x.

In this paper, we assume that all group actions are effective. We will also (implicitly) work with
regular groups actions. If a group action (G,X, ∗) is free and x ∈ X is the distinguished element,
then the group action (G,G ∗ x, ∗), where G ∗ x is the orbit of x, is regular. The group action
discrete logarithm problem is defined as follows:

Definition 2.2 (Group Action DLP). Let (G,X, ∗) be an effective group action. Given a pair
(x, g ∗ x), where g ∈ G, the discrete logarithm problem is to compute g.

We say that the DLP assumption holds for (G,X, ∗) if no QPT algorithm can solve the DLP with
respect to (G,X, ∗). A group action for which the DLP assumption holds is called a cryptographic
group action. In the literature, cryptographic group actions often rely on other assumptions beyond
the DLP assumption to ensure security and functionality.

2.2 Generic Group Actions

The generic group action model (GGAM) is a an adaptation of the generic group model to group
actions. In this paper, we adopt the definitions from [37, 36], which are themselves adaptations of
the definitions in [30] given for the generic group model. Let (G,X, ∗) be an effective group action,
and let m ≥ log|G| be an integer. Let L : G → {0, 1}m be a random injection, called the labeling
function. For a fixed x ∈ X, we typically set L(0) = x so that L(g) = g ∗ x for all g ∈ G. This
implies that L(G) = X when the action is regular. In the GGAM, access to the group action is
provided in a black-box manner. Specifically:

1. The element x = L(0) is public, and

2. There is an oracle GGAMG,m that on input (y, g) ∈ {0, 1}m × G returns L(g + L−1(y)) if
y ∈ Im(L); otherwise it returns ⊥.

We will refer to the queries (y, g) ∈ {0, 1}m ×G made to GGAMG,m as group action queries.

The random injection technique. The following technique for simulating a “strict” group
action oracle using another “less strict” group action oracle was introduced in [37]. We will use
this technique for cloning subgroup money states.

Let F be a family of functions f : Y → Y for some set Y , and let y0 ∈ Y be fixed. Let
L : Y → {0, 1}m′

be a random injection, and let O : {0, 1}m′ × F → {0, 1}m′
be an oracle defined

as follows: if x ∈ Im(L) then O(x, f) = L(f(L−1(x))), otherwise O(x, f) =⊥.
Now let Γ : Y → {0, 1}m be another injection, and let P : {0, 1}m × F → {0, 1}m be an oracle

defined as follows: for x ∈ Im(Γ), P (x, f) = Γ(f(Γ−1(x))), but for x /∈ Im(Γ), P may output
other values than ⊥. The goal is to simulate O using P . To do this, we choose a random injection
Π : {0, 1}m → {0, 1}m′

and construct an oracle O′ : {0, 1}m′×F → {0, 1}m′
as follows: if x ∈ Im(Π)

then O′(x, f) = Π(P (Π−1(x), f)), otherwise O′(x, f) =⊥. Consider any algorithm AO with input
L(y0) and superposition access to O, and let AO′

be the same algorithm but with input Π(Γ(y0)),
and superposition access to O′ instead. The following lemma proves that the output distributions
of AO and AO′

are indistinguishable.

5

Lemma 2.3 ([37]). Let Y,F ,Γ and y0 ∈ Y be as above. Assume m′ ≥ m + t for some integer
t > 0. Then for any algorithm A that makes q queries to its oracle∣∣∣Pr [AO(L(y0)) = 1

]
− Pr

[
AO′

(Π(Γ(y0))) = 1
]∣∣∣ ≤ O(2−t/2q)

Here, L and Π are random injections using which O and O′ are derived as above. The probabilities
are over the random choices of L and Π and the randomness of A.

2.3 Quantum Computation

A finite Hilbert space H of dimension N is a complex Euclidean space, isomorphic as a C-vector
space to CN . An N -dimensional quantum state is a unit vector |ψ⟩ ∈ H, where |·⟩ denotes the
Dirac notation. In practice, we usually use specific bases for a Hilbert space. For instance, when
considering a finite group G, we work with the Hilbert space H = CG, which is a |G|-dimensional
space spanned by the basis {|g⟩ : g ∈ G}.

Quantum Fourier transform. Let G be an abelian group. The set of characters of G, denoted
by Ĝ, is the set of homomorphisms χ(a, ·) : G→ C where a ∈ G. If G ∼= ZN1 ⊕ · · · ⊕ ZNk

then the
character χ(a, ·) can be explicitly written as

χ(a, x) = ωa1x1
N1
· · ·ωakxk

Nk

where ωM = exp(2πi/M) is a primitive M -th root of unity. The Fourier transform of a function
f : G→ C is given by

f̂(a) =
1√
|G|

∑
x∈G

χ(a, x)f(x).

The quantum Fourier transform of a (normalized) state
∑

g∈G f(g)|g⟩ is given by
∑

x∈G f̂(x)|x⟩.
For a regular group action (G,X, ∗), any subset S ⊆ G, any y ∈ X, and any h ∈ G, we define

|S(h) ∗ y⟩ = 1√
|S|

∑
g∈S

χ(g, h)|g ∗ y⟩. (2)

There are two orthonormal bases of the space CX . One basis is {|x⟩ : x ∈ X}. For a fixed element
x ∈ X, this basis is the same as {|g ∗ x⟩ : g ∈ G}, which follows from the fact that the action is
regular and thus |X| = |G|. The other basis is given by the states

|G(h) ∗ x⟩ = 1√
|G|

∑
g∈G

χ(g, h)|g ∗ x⟩, h ∈ G.

These state are simultaneous eigenstates of the group action operation. Specifically, for the unitary
Uk : |y⟩ 7→ |k ∗ y⟩, where k ∈ G, we have Uk|G(h) ∗ x⟩ = χ(−k, h)|G(h) ∗ x⟩. These states resemble
the set of Fourier states over the abelian group G. We will also sometimes refer to them as Fourier
states.

Non-uniform algorithms. A non-uniform quantum algorithm is modeled as a family of quan-
tum circuits, where each circuit is specific to inputs of a given size. Similar to the classical model
of non-uniform algorithms, the quantum model allows each algorithm to take advantage of pre-
supplied advice, which may be either classical or quantum. In this work, a non-uniform quantum
algorithm with quantum advice is modeled as a family {Aλ}λ∈N of quantum algorithms such that:

6

– Aλ takes inputs of size λ and a fixed quantum state |ψλ⟩, referred to as quantum advice.

– There exists a polynomial function f : N → N such that, for every λ ∈ N, the description
length of Aλ is bounded by f(λ).

– There exists a polynomial function g : N → N such that, for every λ ∈ N, the running time
of Aλ is bounded by g(λ).

A key assumption in this paper is that the adversary is modeled as a non-uniform quantum algo-
rithm.

The cmpIndex algorithm. Given a state |G(h)∗x⟩, there is an efficient algorithm for computing h.
Specifically, there is a unitary operator that performs the transformation |G(h)∗x⟩|0⟩ 7→ |G(h)∗x⟩|h⟩
using the phase kickback technique. To see this, start with the state |G(h)∗x⟩|0⟩, apply the quantum
Fourier transform to the second register, and then apply the unitary

∑
k∈G Uk ⊗ |k⟩⟨k| to both

registers. This results in the state

1√
|G|

∑
k∈G
|G(h) ∗ x⟩χ(−k, h)|k⟩.

Finally, applying the inverse quantum Fourier transform to the second register yields |G(h) ∗ x⟩|h⟩.

3 The Quantum Money Scheme

In this section, we briefly review the quantum money scheme introduced in [37]. A public-key
quantum money scheme consists of two QPT algorithms:

� Gen(1λ) takes a security parameter as input. It outputs a pair (s, ρs), where s is a binary
string called the serial number, and ρs is a quantum state called a banknote. The pair (s, ρs),
or just ρs, is sometimes denoted by $.

� Ver(s, ρs) takes a serial number and an alleged banknote as input. It outputs either 1 (accept)
or 0 (reject).

A quantum money scheme is said to be correct if the genuine banknotes generated by Gen are
accepted by Ver. More precisely,

Pr[Ver(s, ρs) = 1 : (s, ρs)← Gen(1λ)] ≥ 1− negl(λ).

where the probability is taken over the randomness of Gen and Ver. The money scheme (Gen,Ver)
is said to be secure if, given a genuine bill (s, ρs), there is no QPT algorithm A that can prepare
two (possibly entangled) bills (s, ρ1) and (s, ρ2) that are both accepted by Ver with non-negligible
probability. More precisely,

Pr
[
Ver(s, ρ1) = Ver(s, ρ2) = 1 : (s,ρs)←Gen(1λ)

(ρ1,ρ2)←A(s,ρs)

]
≤ negl(λ).

Construction 3.1. Let {(Gλ, Xλ, ∗)}λ∈J , where J ⊂ N, be a collection of effective regular group
actions for abelian groups Gλ, and let xλ ∈ Xλ be fixed. The quantum money scheme of [37] is as
follows:

7

� Gen(1λ). Start with the state |0⟩|xλ⟩ and apply the quantum Fourier transform over Gλ to
the first register to obtain the superposition

1√
|Gλ|

∑
g∈Gλ

|g⟩|xλ⟩.

Next, apply the unitary |h⟩|y⟩ 7→ |h⟩|h ∗ y⟩ to the above state, and then apply the quantum
Fourier transform to the first register. This yields

1

|Gλ|
∑
h∈Gλ

∑
g∈Gλ

χ(g, h)|h⟩|g ∗ xλ⟩ =
1√
|Gλ|

∑
h∈Gλ

|h⟩|G(h) ∗ xλ⟩

where |G(h) ∗ xλ⟩ is defined as in (2). Measure the first register to obtain a random h ∈ Gλ

collapsing the state to |G(h) ∗ xλ⟩. Return the pair (h, |G(h) ∗ xλ⟩).

� Ver(h, |ψ⟩). First, check if |ψ⟩ has support in Xλ. If not, return 0. Next, apply cmpIndex to
the state |ψ⟩|0⟩, then measure the second register to obtain some h′ ∈ Gλ. If h′ = h, return
1; otherwise return 0.

For the rest of the paper, unless otherwise stated, we make the security parameter λ implicit in
the notation and use G for Gλ, X for Xλ, and so on. The above scheme is clearly correct, since a
genuine pair (h, |G(h) ∗ x⟩) generated by Gen passes verification with probability 1. The following
theorem asserts that any state |ψ⟩ accepted by the verifier must have non-negligible “overlap” with
the given banknote.

Theorem 3.2 ([37]). Let |ψ⟩ be a state with support in X. Then

Pr[Ver(h, |ψ⟩) = 1] = ∥⟨ψ|G(h) ∗ x⟩∥2.

Furthermore, if the verifier accepts, the post-verification state is exactly |G(h) ∗ x⟩.

It is crucial for the Ver algorithm to be able to recognize the elements of X. In the above
scheme, this is guaranteed by the assumption that the group action (G,X, ∗) is effective. If Ver
cannot efficiently recognize X, for example, if X is a subset of a larger set Y and there is no known
algorithm that can efficiently distinguish X from the rest of Y , the adversary can create counterfeit
banknotes that are accepted by Ver with non-negligible probability. An example of such a scenario
is discussed in Section 4.2.

4 The New Proof of Security

In this section, we provide the details of our security proof for the quantum money scheme. Let
(G,X, ∗) be a regular group action, and let x ∈ X be fixed. Given a pair (x, g ∗ x) with g ∈
G unknown, the goal is to show that given an efficient algorithm for cloning money states in
Construction 3.1, there is an efficient algorithm for computing g. We first consider the case where
G = ZN , and then extend the proof to general abelian groups.

4.1 Projecting Onto Subgroup Money States

In this section, we show how to project the classical states |g ∗x⟩, where g ∈ ZN , onto money states
over any given subgroup K ≤ G. This is done using the following general algorithm.

8

Algorithm 1 (Subgroup Projection).

Input: Regular group action (ZN , X, ∗). A state |ψ⟩ supported on X. A nontrivial subgroup
K ≤ ZN .

Output: A specific projection of |ψ⟩ with support in X

1. Run cmpIndex on the state |ψ⟩|0⟩. If we write |ψ⟩ = ∑
h∈ZN

αh|Z(h)
N ∗ x⟩, the resulting state

is |ψ⟩ = ∑
h∈ZN

αh|Z(h)
N ∗ x⟩|h⟩.

2. Let M = |K|. Then K is the unique subgroup K = (N/M)ZN .

3. Compute (N/M)h into an extra register to obtain the state

1√
N

∑
h∈ZN

αh|Z(h)
N ∗ x⟩|h⟩|(N/M)h⟩.

4. Measure the last register to obtain the state

√
M√
N

∑
h∈MZN+r

αh|Z(h)
N ∗ x⟩|h⟩.

for some 0 ≤ r < M . Here, r is known from the measurement outcome. Specifically, the
measurement outcome is some r′ = (N/M)h′, from which we compute a unique r = h′ < M .

5. Uncompute the last register using cmpIndex, and return the resulting state.

The effect of Algorithm 1 on a general state |ψ⟩ is not immediately clear. Expanding the state
returned by the algorithm, we have

√
M√
N

∑
h∈MZN+r

αh|Z(h)
N ∗ x⟩ =

√
M

N

∑
u∈ZN

∑
h∈MZN+r

αhω
uh
N |u ∗ x⟩

=
M

N

∑
u∈ZN

ωur
N β̂(u)|u ∗ x⟩

where β : MZN → C is the function defined by β(a) = αa+r, and β̂ is its Fourier transform over
MZN . In particular, β is the shifted restriction of the function α : ZN → C, α(h) = αh. The
duality of the Fourier transform on abelian groups suggests that for “nice” functions α, we will
obtain with a state supported on a coset orbit (K + t) ∗ x for some t ∈ ZN . This is indeed the case
when |ψ⟩ is a basis state |g ∗ x⟩ where g ∈ ZN . Since these states are of particular interest in this
paper, we carry out the calculation of their projections in the following.

Lemma 4.1. Let (ZN , X, ∗) be a regular group action and let K ≤ ZN be a subgroup of order M .
On input (|g ∗ x⟩,K), Algorithm 1 outputs the state |(K + t)(r) ∗ x⟩, where r ∈ ZM is uniformly
random and t = g mod K.

Proof. We start by writing

|g ∗ x⟩ = 1√
N

∑
h∈ZN

ω−ghN |Z(h)
N ∗ x⟩.

Applying cmpIndex to |g ∗ x⟩|0⟩ and computing (N/M)h into an extra register gives

1√
N

∑
h∈ZN

ω−hgN |Z(h)
N ∗ x⟩|h⟩|(N/M)h⟩.

9

Measuring the last register gives
√
M√
N

∑
h∈MZN+r

ω−hgN |Z(h)
N ∗ x⟩|h⟩

for a uniformly random 0 ≤ r < M . Now, uncompute the second register using cmpIndex to obtain
√
M√
N

∑
h∈MZN+r

ω−hgN |Z(h)
N ∗ x⟩ =

√
M

N

∑
u∈ZN

∑
h∈MZN+r

ω−hgN ωuh
N |u ∗ x⟩

=

√
M

N

∑
u∈ZN

ω
(u−g)r
N

∑
h∈MZN

ω
(u−g)h
N |u ∗ x⟩

=
1√
M

∑
u∈ZN

u≡g mod (N/M)

ω
(u−g)r
N |u ∗ x⟩.

=
1√
|K|

∑
u∈K

ωur
N |(u+ g) ∗ x⟩

= |(K + g)(r) ∗ x⟩.

Therefore, Algorithm 1 projects the classical state |g∗x⟩ onto a coset state of the form |(K+g)(r)∗x⟩
for a random r ∈ ZM . Note that for t = g mod K, this state is the same as the state |(K+ t)(r) ∗x⟩
up to global phase.

Let y = t ∗ x and Y = K ∗ y. If we consider y ∈ Y as the fixed element, then |(K + t)(r) ∗ x⟩ =
|K(r) ∗ y⟩ is a money state with respect to the group action (K,Y, ∗). Finally, according to Lemma
4.1, running Algorithm 1 on the input (|x⟩,K) results in the state |K(r) ∗x⟩ for a uniformly random
r ∈ ZM .

4.2 Cloning Subgroup Money States

As mentioned in Section 2.3, the adversary is modeled as a family of quantum algorithms {Aλ}λ∈N
where Aλ handles inputs of length λ. Let K be a subgroup of ZN , and let A ∈ {Aλ} be the
algorithm that clones money states with respect to the group action (K,K ∗ y, ∗), where y ∈ X is
fixed. The (possibly non-unitary) quantum operation carried out by A can be described as follows:
on input |K(r) ∗ y⟩|0⟩, where

|K(r) ∗ y⟩ = 1√
|K|

∑
u∈K

ωur
N |u ∗ y⟩ (3)

is a money state over K, the output of A is a state |ψ⟩, which purportedly consists of two (possibly
entangled) copies of |K(r) ∗ y⟩.

Ideally, we would like to obtain a state very close to |K(r) ∗ y⟩|K(r) ∗ y⟩ from the output of
A, enabling us to generate arbitrarily many copies of |K(r) ∗ y⟩ without concerns about handling
approximations or errors. To achieve this, we must address two key challenges: i) How do we ensure
that both registers of the state |ψ⟩ have supports in K ∗ y? and ii) Assuming both registers of |ψ⟩
have support in K ∗ y, how do we then obtain |K(r) ∗ y⟩|K(r) ∗ y⟩? We address these two problems
separately in this section and the next.

In the first problem, the challenge arises from the fact that, although the group action (K,K ∗
y, ∗) is regular, it is not effective. This is because we do not know how to recognize the elements

10

of K ∗ y, i.e., how to distinguish K ∗ y from the rest of X. As a result, some states that are not
close to |K(r) ∗ y⟩ can be accepted by Ver. For instance, consider the state |(K + s)(r) ∗ y⟩ =
|K|−1/2∑u∈K ωur

N |(u + s) ∗ y⟩ for some s ∈ ZN . Although this state is supported on (K + s) ∗ y,
the Ver algorithm is completely oblivious to this fact and accepts the state with probability 1. This
means that, on input |K(r) ∗ y⟩, the adversary A could return two copies of |(K + s)(r) ∗ y⟩, or even
(|K(r) ∗ y⟩+ |(K + s)(r) ∗ y⟩)/

√
2, as legitimate clones of the input. Therefore, we cannot expect to

obtain high-fidelity copies of |K(r) ∗ y⟩ by relying solely on Ver. To address this issue, we employ
the random injection technique from [37]. The idea is to construct an encoding of the elements
of X such that, given initial access to elements of K ∗ y, the adversary has a negligible chance of
computing elements in X \K ∗ y.

Before stating the result of this section, we first clarify the notion of the success probability of
the adversary A. Consider A with respect to the generic group action GGAMK,m′ . Let (K,Y, ∗) be
an effective group action, where Y = L(K) for some injection L : K → 0, 1m

′
, and let y = L(0) be

fixed. Given a banknote (r, |K(r) ∗ y⟩), the output of A is a pair of registers X1X2 containing two
alleged copies of the money state |K(r) ∗ y⟩. This output can be wriiten as

α|K(r) ∗ y⟩|K(r) ∗ y⟩+ |Φ1⟩

for some α ∈ C and some state |Φ1⟩ that is orthogonal to |K(r) ∗ y⟩|K(r) ∗ y⟩, with |Φ1⟩ supported
on Y . We say that the cloning success probability of A is p if |α|2 = p. In this case, the output
can be written as √

p |K(r) ∗ y⟩|K(r) ∗ y⟩+
√
1− p |Φ1⟩,

where |Φ1⟩ is a normalized state orthogonal to |K(r)∗y⟩|K(r)∗y⟩. Algorithmically, this is equivalent
to saying that if we run Ver on both X1 and X2 from the output of A, the probability of returning
two “accept” outcomes is p.

Lemma 4.2. Assume X ⊂ {0, 1}m, and let y ∈ X be fixed. Let m′ ≥ m + ω(log λ). Let A be
an adversary for the quantum money security with respect to the generic group action GGAMK,m′.
Suppose the success probability of A for cloning a banknote with serial number r is p. Then, there
exists a quantum algorithm B that can clone the money state |K(r) ∗ y⟩ with a success probability
negligibly close to p. The algorithm B uses one call to A and poly(logN) additional operations.

Proof. Define the injection Γ : K → X by Γ(a) = a ∗ y, and for any h ∈ K, define the oracle
P (Γ(a), h) = h ∗ Γ(a). Note that P also acts on elements that are not in the image of Γ. Choose a
random injection Π : {0, 1}m → {0, 1}m′

, and define an oracle O′ as follow: if z is in the image of Π
then O′(z, h) = Π(P (Π−1(z), h)); otherwise O′(z, h) =⊥. The adversary B is given Π(Γ(0)) = Π(y)
and superposition access to O′.

To clone the state in (3), B runs the adversary A on the input state |K(r) ∗y⟩, where A’s queries
(z, h) ∈ {0, 1}m′×K to the group action are simulated using O′. Let X1 and X2 be the two registers
containing the output of A. By Lemma 2.3, the combined state of the registers X1X2 is negligibly
close to the state √

p |K(r) ∗ y⟩|K(r) ∗ y⟩+
√
1− p |Φ1⟩,

where |Φ1⟩ is a normalized state supported on K ∗ y and orthogonal to |K(r) ∗ y⟩|K(r) ∗ y⟩.

4.3 Amplifying The Cloning Probability

Let (r, |ψ⟩) be a given banknote, where |ψ⟩ = |K(r) ∗ y⟩, and y ∈ X is known. Let Y = K ∗ y, so,
|ψ⟩ is supported on Y . Let A be an adversary that on input (r, |ψ⟩, y), outputs a state of the form

√
p |ψ⟩|ψ⟩+

√
1− p |Φ1⟩,

11

where p > 0 is a real number, and |Φ1⟩ is a normalized state that is supported on Y and is
orthogonal to |ψ⟩|ψ⟩. The second problem, mentioned in the beginning of Section 4.2, can be
stated more precisely as follows: Given access to A, compute a state negligibly close to |ψ⟩|ψ⟩.

To solve this problem, we use the amplification technique first proposed by Marriott and Wa-
trous [24, 32]. Abstractly, this technique works by repeatedly applying two carefully designed
measurements in an alternating fashion until a desired output is obtained. These measurements
are constructed based on the states obtained by applying (or rewinding) the adversary A.

Suppose that A performs all measurements at the end. In this case, we can model the action of
A as a unitary operator Q, which does not perform the final measurement. We extend this action
to a larger Hilbert space X by introducing an indicator qubit and k workspace qubits. The action
of Q on the state |ψ⟩|0m⟩|0⟩|0k⟩ ∈ X is given by

Q|ψ⟩|0m⟩|0⟩|0k⟩ = α(
√
p |ψ⟩|ψ⟩+

√
1− p |Φ1⟩)|ϕ⟩|0ℓ+1⟩+ β|Φ2⟩|0ℓ+1⟩,

where

- α, β ∈ C satisfy |α|2 + |β|2 = 1,

- |ϕ⟩ is a normalized state represented using k − ℓ qubits,
- |Φ2⟩ is a normalized such that (1⊗ |ϕ⟩⟨ϕ| ⊗ 1)|Φ2⟩ = 0.

The final measurement done by A is described by {Π|ϕ⟩,1 − Π|ϕ⟩}, where Π|ϕ⟩ = 1 ⊗ |ϕ⟩⟨ϕ| ⊗ 1.
For simplicity, and without loss of generality, we write the action of Q as

Q|ψ⟩|0m+k+1⟩ = √p |ψ⟩|ψ⟩|ϕ⟩|0ℓ+1⟩+
√

1− p |Φ3⟩|0ℓ+1⟩, (4)

for some p ≥ 1/poly(logN) and some normalized state |Φ3⟩ that is orthogonal to the state |Ψ⟩ =
|ψ⟩|ψ⟩|ϕ⟩. This is because the phase of α can be absorbed into |ϕ⟩, and the new value p is defined
as |α|2p.

We need to implement a measurement described by {|Ψ⟩⟨Ψ| ⊗ 1,1− |Ψ⟩⟨Ψ| ⊗ 1}. To do this,
we use the indicator qubit as follows. Let T be a unitary that transform the state |Ψ⟩|0⟩ to |Ψ⟩|1⟩
when th first two registers are in the states |ψ⟩|ψ⟩, and leaves |Ψ⟩|0⟩ unchanged otherwise. In other
words, T set the indicator qubit to 1 precisely when the first two registers contain two copies of
|ψ⟩. This unitary can be efficiently implemented using the cmpIndex unitary as follows: compute
the serial numbers of first and second registers, set the indicator qubit to 1 if the serials numbers
are both equal to r, and then uncompute the serial numbers.

Define the projection Π1 = 1⊗|1⟩⟨1|⊗1. The measurement described by {Π1,1−Π1} measures
the indicator qubit in the computational basis. Next, we assume that we have access to an efficient
implementation of the measurement {Π|ϕ⟩,1−Π|ϕ⟩}, as it is implemented by A 2. The projection
Π1Π|ϕ⟩ projects onto states where the third register is |ϕ⟩ and the indicator qubit has value 1. In
other words, the projection Π1Π|ϕ⟩ efficiently implements the projection |Ψ⟩⟨Ψ| ⊗ 1, and therefore
the measurement {|Ψ⟩⟨Ψ| ⊗ 1,1− |Ψ⟩⟨Ψ| ⊗ 1}.

Define the unitary operator U = TQ, where Q and T are as above. The action of U on the
state |ψ⟩|0m+k+1⟩ can be written as

U |ψ⟩|0m+k+1⟩ = √p |ψ⟩|ψ⟩|ϕ⟩|1⟩|0ℓ⟩+
√
1− p |Φ⟩|0ℓ⟩. (5)

for some normalized state |Φ⟩ that is orthogonal to the state |Ψ⟩|0⟩. Specifically, |Φ⟩|0ℓ⟩ =
T |Φ3⟩|0ℓ+1⟩, where |Φ3⟩ is defined by Equation (4).

2This assumes a white-box view of A.

12

Next, we define the following states to facilitate the analysis of our amplification algorithm:

|ϕ1⟩ =
1√
p
(|ψ⟩|0m+k+1⟩ −

√
1− pU∗|Φ⟩|0ℓ⟩),

|ϕ⊥1 ⟩ = U∗|Φ⟩|0ℓ⟩
|ϕ2⟩ = |ψ⟩|0m+k+1⟩,

|ϕ⊥2 ⟩ =
1√
p
(
√
1− p |ψ⟩|0m+k+1⟩ − U∗|Φ⟩|0ℓ⟩),

where |Φ⟩ is defined by Equation (5). LetH be the 2-dimensional Hilbert space spanned by |ϕ1⟩ and
|ϕ⊥1 ⟩. Then both {|ϕ1⟩, |ϕ⊥1 ⟩} and {|ϕ2⟩, |ϕ⊥2 ⟩} form orthonormal bases of H. From the definitions
of these states, we obtain the relations

|ϕ1⟩ =
√
p |ϕ2⟩+

√
1− p |ϕ⊥2 ⟩,

|ϕ⊥1 ⟩ =
√
1− p |ϕ2⟩ −

√
p |ϕ⊥2 ⟩,

|ϕ2⟩ =
√
p |ϕ1⟩+

√
1− p |ϕ⊥1 ⟩,

|ϕ⊥2 ⟩ =
√
1− p |ϕ1⟩ −

√
p |ϕ⊥1 ⟩.

(6)

Define the projection operator
Π = U∗Π1Π|ϕ⟩U. (7)

Then, we have Π|ϕ1⟩ = |ϕ1⟩ and Π|ϕ⊥1 ⟩ = 0. Our algorithm will use the measurement described by
Π,1−Π. Additionally, we will utilize the reflection unitary 2|ϕ2⟩⟨ϕ2| − 1, which can be efficiently
implemented using cmpIndex as follows:

1. Compute the serial number of the first register and store it in an ancilla.

2. Compute an additional qubit b, where b = 1 if the serial number is not equal to r or if the
last m+ k + 1 qubits is not in an all-zero state; otherwise, set b = 0

3. Apply the phase (−1)b

4. Uncompute the b and the serial number.

With all these in hand, we can now outline our amplification algorithm.

Algorithm 2 (cloning amplification).

Input: Banknote (r, |ψ⟩ = |K(r) ∗ y⟩), real number ε > 0
Output: The state |ψ⟩|ψ⟩ or “Fail”

1. Prepare the state |ψ⟩|0m+k+1⟩
2. Repeat the following ⌈(1/p) log(1/ε)⌉ times

(a) Apply the measurement described by {Π,1 − Π}, where Π is the projection defined in
(7). If the outcome is 0, associated to Π, return the first two registers.

(b) Apply the reflection unitary 2|ϕ2⟩⟨ϕ2| − 1.
3. Return “Fail”

Theorem 4.3. Given a banknote (r, |ψ⟩), let A be a cloning adversary with unitary circuit Q
defined in (4). For any ε ∈ (0, 1), Algorithm 2 outputs |ψ⟩|ψ⟩ with probability at least 1 − ε. The
algorithm makes O((1/p) log(1/ε)) calls to Q and Q∗, and uses poly(logN) additional operations.

13

Proof. The algorithm starts with the state |ϕ2⟩ = |ψ⟩|0m+k+1⟩. According to (6),

|ϕ2⟩ =
√
p |ϕ1⟩+

√
1− p |ϕ⊥1 ⟩.

Applying the measurement {Π,1 − Π}, the outcome 0 occurs with probability p, resulting in the
post-measurement state |ϕ1⟩. The outcome 1 occurs with probability 1 − p, resulting in the post-
measurement state|ϕ⊥1 ⟩. In case of outcome 1, the algorithm continuous with the state

|ϕ⊥1 ⟩ =
√
1− p |ϕ2⟩ −

√
p |ϕ⊥2 ⟩.

Applying the reflection 2|ϕ2⟩⟨ϕ2| − 1 transforms this state to
√
1− p |ϕ2⟩ +√p |ϕ⊥2 ⟩, which, using

(6), can be written as
2
√
(p− p2 |ϕ1⟩+ (1− 2p)|ϕ⊥1 ⟩.

Applying the measurement {Π,1−Π} to this state, the outcome 1 occurs with probability (1−2p)2,
resulting in the post-measurement state |ϕ⊥1 ⟩. Therefore, the probability of outcome 1 in the first
iteration is 1 − p, and for all subsequent iterations, it is (1 − 2p)2. The probability that the
algorithm does not stop after k iterations is then (1 − p)(1 − 2p)2k. For k = ⌈(1/p) log(1/ε)⌉, we
have (1− p)(1− 2p)2k ≤ ε.

Remark 1. In Theorem 4.3, it is assumed that the success probability p of the adversary A is
known. However, this assumption can be eliminated by modifying Algorithm 2 to allow the loop
to run indefinitely until the measurement in Step 2(a) outputs 0. The resulting algorithm still runs
in expected polynomial time and guarantees the correct result.

Remark 2. In the following sections, we will need to clone states of the form |(K+ t)(r) ∗x⟩, where
K is a subgroup of ZN , t = g mod K with an unknown g ∈ ZN , and g ∗ x is known, with x ∈ X
as a known fixed element. However, the cloning algorithm described earlier accepts inputs of the
form |K(r) ∗ y⟩ for a known y ∈ X. Note that |(K + t)(r) ∗ x⟩ = |K(r) ∗ (t ∗ x)⟩ = |K(r) ∗ y⟩ for
y = t∗x, but t is not known a priori. Fortunately, |K(r) ∗ (t∗x)⟩ ∝ |K(r) ∗ (u∗x)⟩ for any u ∈ K+ t.
Therefore, we only need to sample from the set (K + t) ∗ x to obtain y. This is a relatively trivial
task, as we can simply use y = g ∗ x. If a random sample is needed, Algorithm 1 can be run on the
input (|g ∗ x⟩,K), followed by a measurement of the resulting state.

4.4 Fixing The Phase Using Clones

Given a subgroup group K ≤ ZN of order M , Algorithm 1 projects the classical state |g ∗ x⟩ onto
a state |(K + t)(r) ∗ x⟩, where r ∈ ZM is uniformly random and t = g mod (N/M). However, for
our security reduction, we will need such states where r is given, i.e., states of the form

|(K + t)(r) ∗ x⟩ = 1√
|K|

∑
u∈K
|(u+ t) ∗ x⟩.

for a given r ∈ ZM . A naive approach wold be to run Algorithm 1 until we obtain the given r.
But since the r outputted by Algorithm 1 is uniformly random, for each run of the algorithm, the
probability of obtaining the above state is 1/M , which becomes negligible for largeM . In following,
we give an algorithm that efficiently prepares |(K + t)(r) ∗ x⟩, for a given r, using the adversary’s
cloning algorithm.

Lemma 4.4. Let A be a cloning algorithm for the money states in Construction 3.1 for the regular
group action (ZN , X, ∗). Given any subgroup K ≤ ZN , any r ∈ ZM , where M = |K|, and any
element g ∗ x ∈ X, there exists a quantum algorithm that prepares the state |(K + t)(r) ∗ x⟩, where
t = g mod K. The Algorithm makes poly(logN) calls to A and performs poly(logN) additional
operations.

14

Proof. By Lemma 4.2 and Theorem 4.3, we assume that A is a nearly perfect cloning algorithm;
that is, given a banknote (r, |ψ⟩) as input, A outputs (r, |ψ⟩|ψ⟩) with probability exponentially
close to 1.

Let 0 < K1 < · · · < Ks−1 < Ks = K be a composition series of K, where qi = |Ki/Ki−1| is
prime for all i = 1, . . . , s. This means M = |Ks| = q1q2 · · · gs. Let (r0, r2, . . . , rs−1) be the mixed
radix representation of r with respect to the radix vector (q1, q2, . . . , qs−1). In this representation,
we have 0 ≤ ri < qi and

r = r0 + r1q1 + r2q1q2 + · · ·+ rs−1q1 · · · qs−1.

Define the partial sums v1 = r0 and vi = r0 + r1q1 + · · · + ri−1q1 · · · qi−1 for i = 2, . . . , s. Our
strategy is to begin with the projected state |(K1 + t)(v1) ∗ x⟩ over K1. This state can be prepared
by repeatedly running Algorithm 1 until we obtain the phase r = r0 as in Lemma 4.1. Next, we
apply Lemma 4.2 to prepare multiple copies of |(K1 + t)(v1) ∗ x⟩, which are then used to project
onto the state |(K2+ t)

(v2) ∗x⟩. We continue this process, using copies of |(K2+ t)
(v2) ∗x⟩ to project

onto |(K3 + t)(v3) ∗ x⟩, and so on, until we obtain the desired state over K.
We first show how to prepare the initial state. Since |K1| = q1, by running Algorithm 1 on the

input (|g ∗ x⟩,K1), we can project |g ∗ x⟩ onto the state

|(K1 + t)(v) ∗ x⟩ = 1√
q1

∑
u∈K1

ωuv
N |(u+ t) ∗ x⟩

where v ∈ Zq1 is random, and t = g mod (N/q1). Since q1 ≤ poly(logN) and v is uniformly
random, the probability of obtaining the state |(K1 + t)(v0) ∗ x⟩ is 1/q1. Therefore, on average, we
only need to run Algorithm 1 O(q1) times to obtain the outcome v = v0.

Now, assume we have prepared the state |(Ki + t)(vi) ∗ x⟩ for some 2 ≤ i ≤ s. We show how
to prepare the state |(Ki+1 + t)(vi+1) ∗ x⟩ over Ki+1. Let q = |Ki|, i.e., q = q1q2 · · · qi. Writing

|(Ki + t)(vi) ∗ x⟩ in the basis {|Z(h)
N ∗ x⟩}h∈ZN

, we have

|(Ki + t)(vi) ∗ x⟩ = ω−vitN

√
q√
N

∑
j∈ZN/q

ω−jtN/q|Z
(jq+vi)
N ∗ x⟩.

We then use cmpIndex to compute jq + vi into an extra register, subtract vi, and divide by q to
obtain the state √

q√
N

∑
j∈ZN/q

ω−jtN/q|Z
(jq+vi)
N ∗ x⟩|j⟩.

Next, we compute j (mod qi+1) into another register and measure the register. If the measurement
outcome is not equal to ri, we start over using another copy of |(Ki+ t)

(vi) ∗x⟩. Note that outcome
ri occurs with probability 1/qi+1. Therefore, on average, we require at most O(qi+1) copies of
|(Ki + t)(vi) ∗ x⟩ to obtain this outcome. When the outcome is ri, we can write j = kqi+1 + ri,
where k ∈ ZN/qi+1q. Therefore,

jq + vi = kqi+1q + riq + vi = kqi+1q + vi+1.

The post-measurement state is

√
qi+1q√
N

∑
k∈ZN/qi+1q

ω−ktN/qi+1q
|Z(kqi+1q+vi+1)

N ∗ x⟩|kqi+1 + ri⟩.

15

Finally, using cmpIndex again, we uncompute the second register to obtain the state

√
qi+1q√
N

∑
k∈ZN/qi+1q

ω−ktN/qi+1q
|Z(kqi+1q+vi+1)

N ∗ x⟩ = ω
vi+1t
N |(Ki+1 + t)(vi+1) ∗ x⟩,

which is the same as |(Ki+1 + t)(vi+1) ∗ x⟩ up to global phase. By repeating this process, we can
prepare |(Ki + t)(vi) ∗ x⟩ for all the subgroups Ki in the composition series.

4.5 Computing DL Modulo a Prime

Given a group action (ZN , X, ∗), a pair (x, g ∗x) for some g ∈ ZN , and a prime ℓ | N , we show how
to efficiently compute g mod ℓ. The idea is to first project |x⟩ onto a state |K(r) ∗ x⟩ for a random
r, and then use Lemma 4.4 to prepare the states |(K + t)(r) ∗ x⟩, where t = g mod K. From there,
we use the swap-test to determine the value of j for which the shifted state |(K + j)(r) ∗ x⟩ is the
same as the state |(K + t)(r) ∗ x⟩.

Lemma 4.5. Let A be a cloning algorithm for the money states in Construction 3.1 for the regular
group action (ZN , X, ∗). Given a pair (x, g ∗ x) for some g ∈ ZN , and a prime ℓ | N , there exists a
quantum algorithm that computes g mod ℓ using poly(logN) calls to A and poly(logN) additional
operations.

Proof. Let K = ℓZN be the unique subgroup of index ℓ in ZN . Using Lemma 4.1, we project |x⟩
onto a state |K(r) ∗ x⟩ for some uniformly random r ∈ ZN/ℓ. Next, we use Lemma 4.4 to prepare

the state |(K + t)(r) ∗ x⟩, where t = g mod ℓ. For each 0 ≤ j < ℓ, define the unitary Uj acting on
CX by |y⟩ 7→ |j ∗ y⟩. Then, we have

Uj |K(r) ∗ x⟩ = |(K + j)(r) ∗ x⟩.

Given j, suppose we perform the following procedure λ times: use Lemma 4.2 and Theorem 4.3 to
prepare fresh copies of both |(K + t)(r) ∗ x⟩ and |K(r) ∗ x⟩. Then, run the swap-test on the states
|(K+t)(r)∗x⟩ and Uj |K(r)∗x⟩. If the outputs of all λ runs are 0, then t = j with probability at least
1− 2−λ; otherwise j ̸= t. Therefore, we can efficiently find t by testing all values of 0 ≤ j < ℓ.

4.6 A Quantum Pohlig-Hellman Algorithm

Let (ZN , X, ∗) be a regular group action, and let N = pe11 p
e2
2 · · · perr be the prime factorization of

N . Given a pair (x, g ∗ x), where g ∈ ZN , we showed in the previous section how to compute
g mod ℓ for any prime ℓ | N . This motivates a Pohlig-Hellman-like algorithm for computing g. The
approach is to compute each αi = g mod peii separately for 1 ≤ i ≤ r, and then use the Chinese
remainder theorem to reconstruct g from the collection of αi’s.

We proceed as follows. First, use Lemma 4.5 to compute t = g mod p1. With t in hand, compute
y = (−t)∗(g∗x) = (g−t)∗x to form a new pair (x, y). Now, consider the subgroupK = p1ZN ≤ ZN .
The pair (x, y) is a new DLP instance with respect to the regular group action (K,K ∗ x, ∗). To
apply Lemma 4.5 again, construct a new group action (H,H ⋆ x, ⋆), where H = ZN/p1 , as follows:
for u ∈ H, define u ⋆ x = (p1u) ∗ x. Let g′ = (g − t)/p1. Then, the instance (x, y) with respect to
(K,K∗x, ∗) corresponds to the instance (x, y′) = (x, g′⋆x) with respect to (H,H⋆x, ⋆). We can now
compute g′ mod p1 again and repeat this process until we obtain α1 = g mod pe11 . This procedure
can be used to obtain αi = g mod peii for all i = 1, . . . , r. Finally, using the Chinese remainder
theorem, we combine the results to recover g. The steps of this algorithm are summarized bellow.

16

Algorithm 3 (Pohlig-Hellman).

Input: Regular group action (ZN , X, ∗). A pair (x, g ∗ x) where g ∈ G.
Output: g

1. Let N = pe11 p
e2
2 · · · perr be the prime factorization of N .

2. For i = 1 to r do the following:

(a) Let y = g ∗ x, p = pi, αi = 0.

(b) For e = 0 to ei − 1 do the following:

i. Use Lemma 4.5 to compute t := h mod p where h is defined in y = h ∗ x.
ii. Compute y := (g − t) ∗ x, N := N/p, αi = αi + pei t.

iii. Let K = ZN . Construct a new group action (K,K ⋆ x, ⋆) as follows: for u ∈ K,
u ⋆ x = (pu) ∗ x. Replace the old group action with this new group action.

3. Use the Chinese remainder theorem to recover g from α1, α2, . . . , αr.

4. Return g.

Theorem 4.6. Let A be a cloning algorithm for the money states in Construction 3.1 for the
regular group action (ZN , X, ∗). Given a pair (x, g ∗ x) for some g ∈ ZN , there exists a quantum
algorithm that computes g using poly(logN) calls to A and poly(logN) additional operations.

Proof. The number of iterations in the Pohlig-Hellman algorithm is bounded by poly(logN). Since
N is smooth, the theorem follow from Lemma 4.5.

An immediate corollary of Theorem 4.6 is that, given the ability to clone the Fourier states (3),
we can efficiently prepare any desired Fourier state.

Corollary 4.7. Given a quantum polynomial time algorithm for cloning the Fourier states (3),
there exists a quantum polynomial time algorithm for preparing any desired Fourier state (3).

A special case of the above corollary is that there is a quantum polynomial time reduction from
the problem of preparing uniform superpositions over any given subgroup K ≤ ZN to cloning The
Fourier states (3). Constructing such superpositions is a major open problem in the cryptography
literature (see, for example, [21, 15, 6]). Note that we can also use Lemma 4.4 to generate the
uniform superposition

|K(0) ∗ x⟩ = 1√
|K|

∑
u∈K
|u ∗ x⟩.

by setting g = 0 and r = 0.
We are now ready to state the main result for cyclic groups.

Theorem 4.8. Let (ZN , X, ∗) be an effective group action for which the DLP assumption holds.
Assume X ⊂ {0, 1}m and m′ ≥ m+ω(log λ), where λ = poly(logN) is the security parameter. Let
(Gen,Ver) be the quantum money scheme from Construction 3.1, using the generic group action
GGAMZN ,m′. Then this quantum money construction is secure.

Proof. Let A be an adversary for the security of the quantum money scheme. By Theorem 3.2,
we know that the only states accepted by Ver are those sufficiently close to valid money states.
Therefore, we can consider A as a cloning adversary that clones money states with non-negligible
probability. The theorem now follows directly from Theorem 4.6.

17

5 General Abelian Groups

In this section, we outline how our security proof can be extended to general abelian groups. Let
(G,X, ∗) be a regular group action, where G an abelian group. We can decompose G as a direct
sum of cyclic groups: G ∼= ZN1 ⊕ ZN2 ⊕ · · · ⊕ ZNk

. Given an adversary for the security of the
quantum money with respect to (G,X, ∗), we show how to efficiently solve the group action DLP
in this setting. The idea is to run an extension of our algorithm for the cyclic group ZN on each
of the components Zki of G. Specifically, given a pair (x, g ∗ x) where g = (g1, g2, . . . , gk) ∈ G,
recovering g reduces to the following problem: given a prime p | N1, compute t = g1 mod p. To
achieve this, we extend the algorithms from Sections 4.1–4.4 with slight modifications. To simplify
the notation, let G = H ⊕ ZN , where H = ZN1 ⊕ · · · ⊕ ZNk−1

and N = Nk, and let g = (g̃, gk),
where g̃ ∈ H and gk ∈ ZN .

Projecting onto subgroup states. The projection algorithm (Algorithm 1) remains unchanged,
except that we need to apply it to the second component of g. To demonstrate the extended
algorithm, we carry out the steps on the input state |g ∗ x⟩. Let K be a subgroup of ZNk

of order
|K| =M . Write

|g ∗ x⟩ = 1√
|G|

∑
v∈H

∑
z∈ZN

χH(−g̃, v)ω−zgkN |G(v,z) ∗ x⟩,

where χH(−g̃, ·) is a character of H. Running cmpIndex on the above state gives

1√
|G|

∑
v∈H

∑
z∈ZN

χH(−g̃, v)ω−zgkN |G(v,z) ∗ x⟩|v, z⟩.

Next, compute (N/M)z into an extra register, and measure, to obtain the state
√
M√
|G|

∑
v∈H

∑
z∈MZN+rk

χH(−g̃, v)ω−zgkN |G(v,z) ∗ x⟩|v, z⟩

for some rk ∈ ZM . Let |ψ⟩ be the state resulting from uncomputing the last register using cmpIndex.
Then

|ψ⟩ =
√
M√
|G|

∑
v∈H

∑
z∈MZN+rk

χH(−g̃, v)ω−zgkN |G(v,z) ∗ x⟩

=

√
M

|G|
∑
u∈G

∑
v∈H

∑
z∈MZN+rk

χH(ũ− g̃, v)ω(uk−gk)z
N |u ∗ x⟩ (where u = (ũ, uk))

=
1√
M

∑
uk∈ZN

uk≡gk mod (N/M)

ω
(uk−gk)rk
N |(g̃, uk) ∗ x⟩

=
1√
|K|

∑
u∈K

ωurk
N |(g̃, u+ gk) ∗ x⟩

= |(0⊕K + (g̃, gk))
(0,rk) ∗ x⟩.

Here, 0⊕K is the subgroup of G, where the first k − 1 components are zero. Similarly, (0, rk)
denotes an element of G in which the first k−1 components are zero. As before, for t = gk mod K,
the above state is the same as |(0⊕K + (g̃, t))(0,rk) ∗ x⟩ up to global phase. Let y = (g̃, t) ∗ x and
Y = (0⊕K) ∗ y. Then, |(0⊕K + (g̃, t))(0,rk) ∗ x⟩ = |(0⊕K)(0,rk) ∗ y⟩ is a money state with respect
to the group action (0⊕K, (0⊕K) ∗ x, ∗).

18

Cloning subgroup states. The cloning algorithm of Sections 4.2 and 4.3 remains unchanged.
In fact, the algorithm does not rely on the assumption that the underlying group is ZN . Therefore,
we can replace ZN with a general abelian group G, and the proofs of Lemma 4.2 and Theorem 4.3
remains valid without modification.

The reduction. Let ℓ | N be prime and, let K = ℓZN be the subgroup of ZN of size N/ℓ. Using
the projection algorithm described above, we can prepare the state |(0⊕K + (g̃, gk))

(0,rk) ∗ x⟩ for
a random r ∈ ZN/ℓ. The idea is to zero out the components of g one by one, starting with gk, in
this state until we obtain a state that depends only on g1. From there, we can compute g1 mod p.
We begin by writing

|(0⊕K + (g̃, gk))
(0,rk) ∗ x⟩ =

√
N√
ℓ|G|

∑
v∈H

∑
z∈(N/ℓ)ZN+rk

χH(−g̃, v)ω−zgkN |G(v,z) ∗ x⟩

=

√
N√
ℓ|G|

∑
v∈H

∑
j∈Zℓ

χH(−g̃, v)ω−rkgkN ω−jgkℓ |G(v,jN/ℓ+rk) ∗ x⟩.

Applying cmpIndex to the above state stores (v, jN/ℓ + rk) in an ancilla register. By subtracting
rk from the last register and dividing the result by N/ℓ, we obtain the state

√
N√
ℓ|G|

∑
v∈H

∑
j∈Zℓ

χH(−g̃, v)ω−jgkℓ |G(v,jN/ℓ+rk) ∗ x⟩|v, j⟩.

Measuring the last register, we obtain the measurement outcome j = 0 with probability 1/ℓ.
Therefore, using enough copies of the above state, with at most O(ℓ) trials, we obtain the state

√
N√
|G|

∑
v∈H

χH(−g̃, v)|G(v,rk) ∗ x⟩ = |(0⊕ ZNk
+ (g̃, 0))(0,rk) ∗ x⟩.

Continuing a similar process with the subgroup H and its components, we can zero out gk−1 to
obtain the state |(0⊕ ZNk−1

⊕ ZNk
+ (g1, . . . , gk−2, 0, 0))

(0,rk−1,rk) ∗ x⟩, and then the state

|(0⊕ ZNk−2
⊕ ZNk−1

⊕ ZNk
+ (g1, . . . , gk−3, 0, 0, 0))

(0,rk−2,rk−1,rk) ∗ x⟩,
and so on, until we obtain

|(0⊕ ZN2 ⊕ · · · ⊕ ZNk
+ (g1, 0, . . . , 0))

(0,r2,...,rk) ∗ x⟩ = 1√
|B|

∑
u∈B

χB(u, r)|(g1, u) ∗ x⟩

=
1√
N1

∑
h∈ZN1

ω−hg1N1
|G(h,r) ∗ x⟩,

where B = ZN2 ⊕ · · · ⊕ ZNk
and r = (r2, . . . , rk). At this point, we can apply the extension of

the algorithm from Section 4.5 to the above state to compute g1 mod p. Note that after running
cmpIndex on the above state, the content of the last register will be (h, r). Therefore, the algorithms
from Sections 4.4 and 4.5 only act on the first component h.

The following theorem is a direct generalization of Theorem 4.8 and can be proved using the
same reasoning.

Theorem 5.1. Let (G,X, ∗) be an effective abelian group action for which the DLP assumption
holds. Assume X ⊂ {0, 1}m and m′ ≥ m + ω(log λ), where λ = poly(log|G|) is the security
parameter. Let (Gen,Ver) be the quantum money scheme from Construction 3.1, using the generic
group action GGAMG,m′. Then this quantum money construction is secure.

19

6 On Smoothness

Since the assumption regarding the smoothness of the order of the abelian group G in the group
action (G,X, ∗) is crucial to our security proof, we need to address two main concerns related to
this assumption:

1. Is the group action DLP easier when |G| is smooth?

2. Is it always possible to have potential secure instantiations for different security parameters
under this smoothness condition?

Regarding the first question, as long as the group G contains a large cyclic subgroup, there is
no known evidence suggesting that the hardness of DLP with respect to a group action (G,X, ∗)
depends on the structure of G. It is commonly believed in the literature that the one-wayness of
the action ∗ depends solely on the action itself, not on the structure of G or the set X.

For the second question, we will discuss in the following a potential secure instantiation using
isogenies of elliptic curves. In isogeny-based group actions, the group G is the ideal class group of
an imaginary quadratic order O, and the set X consists of elliptic curves with endomorphism ring
O. To achieve smooth group orders, we employ a generalization of well-known group actions, such
as CSIDH [8], based on oriented elliptic curves. This generalization allows us to tweak parameters
in order to find ideal class groups of smooth order.

Before we discuss oriented isogenies, let us briefly review some basics of isogeny-based group
actions. We refer the reader to [31, 18, 22] for background on elliptic curves and isogenies. Let O
be a quadratic order in a number field K. The set of invertible ideals in O, modulo principle ideals,
form a multiplicative abelian group called the ideal class group of O, denoted by Cl(O). Let Fq be
the finite field with q = pk elements. For an elliptic curve E over Fq, written as E/Fq, denote by
End(E) the endomorphism ring of E. Given a quadratic order O, let Ellq(O) be the set of elliptic
E/Fq such that End(E) ∼= O. Given an ideal a ∈ O and an elliptic curve E ∈ Ellq(O), there is a
unique isogeny ϕa : E → Ea with kernel E[a] = ∩α∈a ker(α). This defines a group action

Cl(O)× Ellq(O) −→ Ellq(O)
(a, E) 7−→ a ∗ E

where a ∗ E = Ea. This is a regular group action.
The above group action is defined only for ordinary elliptic curves, which are curves whose

endomorphism rings are isomorphic to a quadratic order in a number field. In contrast, the endo-
morphism rings of supersingular elliptic curves are orders in quaternion algebras, where the ideal
classes do not even form a group. Despite this, the group action in CSIDH involves a quadratic
order in a number field acting on a set of supersingular elliptic curves. As we will see, this action
is explained by the concept of orientations, first introduced by Colo and Kohel [11].

6.1 Oriented isogenies

Let K be a quadratic number field, and let O be an order in K. A K-orientation on an elliptic curve
E is a homomorphism ι : K ↪→ End(E) ⊗Z Q. Note that when E/Fq is ordinary, the Q-algebra
End(E) ⊗Z Q is a number field, whereas if E is supersingular, it is the quaternion algebra Bp,∞,
ramified at p and ∞. An O-orientation on E is a K-orientation for which ι(O) ⊆ End(E). An
O-orientation is called primitive if ι(O) = ι(K) ∩ End(E). We write (E, ι) to denote a K-oriented
elliptic curve E with orientation ι.

20

Any isogeny ϕ : E → F between elliptic curves E and F induces a map between K-orientations
on E and F : Given a K-orientation ι : K ↪→ End(E) ⊗Z Q there is a K-orientation ϕ∗(ι) : K ↪→
End(E)⊗Z Q defined by

ϕ∗(ι)(α) = (ϕ ◦ ι(α) ◦ ϕ̂)⊗ 1

deg(ϕ)
.

Here, ι(α) is an endomorphism of E, and ϕ̂ : F → E is the dual isogeny of ϕ, defined by the
condition ϕ ◦ ϕ̂ = ϕ̂ ◦ ϕ = [deg ϕ].

Definition 6.1 (Oriented isogeny). Let (E1, ι1) and (E2, ι2) be two K-oriented elliptic curves. An
isogeny ϕ : E1 → E2 is said to be K-oriented if ϕ∗(ι1) = ι2, i.e., the orientation ι2 on E2 is induced
by the orientation ι1 on E1, in which case we write the isogeny as ϕ : (E1, ι1)→ (E2, ι2). We write
(E1, ι1) ∼= (E2, ι2) if there is a K-oriented isomorphism between E1 and E2.

Given a quadratic order O, let SSO(p) be the set of K-oriented isomorphism classes of super-
singular elliptic curves, over the algebraic closure Fp, with a primitive O-orientation. It was shone
by Onuki [26] that SSO(p) is not empty if and only if p does not divide the conductor of O and
does not split in K. We assume that p always satisfies these conditions so that SSO(p) is always
nonempty.

Similar to the ordinary case, ideals in O define unique isogenies from the elements of SSO(p) as
follows. Consider an element (E, ι) ∈ SSO(p). Any ideal a ∈ O defines a subgroup

E[a] =
⋂
α∈a

ker(ι(α)).

This subgroup defines a unique isogeny ϕa : E → Ea, which induces an isogeny of K-oriented
elliptic curves (E, ι) → (Ea, (ϕa)∗(ι)). While it may not be immediately clear that this defines an
action of Cl(O) on SSO(p), Onuki [26] showed that it indeed does, yielding the following action:

Cl(O)× SSO(p) −→ SSO(p) (8)

(a, (E, ι)) 7−→ a ∗ (E, ι),

where a ∗ (E, ι) = (Ea, (ϕa)∗(ι)). This action is automatically free but not transitive, as it may
have two orbit, leading to |SSO(p)| = 2|Cl(O)|. However, as proved in [4, Theorem 4.4], when p
is ramified in K, the above action becomes transitive. Therefore, under the assumption that p is
ramified in K, this action is regular.

With the above background, the particular case of CSIDH can be easily explained as follows.
Let K = Q(

√−p), and let ι : K ↪→ Bp,∞ be a K-orientation that sends
√−p to the p-th power

Frobenius endomorphism π. Then, the set of (isomorphism classes) of elliptic curves used in CSIDH
is SSZ[

√
−p](p), i.e., the set of supersingular elliptic curves with a primitive Z[

√−p]-orientation.

Computing the action. We always haveO = Z[α], where α is called a generator ofO. Therefore,
an orientation ι : O ↪→ Bp,∞ is completely determined by the endomorphism ι(α). An efficient
representation of ι would then mean an efficient representation of both α and ι(α). Given such an
efficient representation of (E, ι) ∈ SSO(p), and any ideal a ∈ Cl(O), the action a ∗ (E, ι) can be
computed efficiently [27, 28, 25].

6.2 Class groups of smooth order

Now that we can choose arbitrary quadratic orders for the action (8) on oriented elliptic curves,
we have significant flexibility in selecting class groups of a specific order. A naive approach is to

21

randomly choose an order O ⊂ K = Q(
√
D) and compute the size |O| to check if it is smooth.

However, computing |O| requires a quantum computer. This approach may not yield an efficient
algorithm, as the probability of |O| being smooth is comparable to the probability of a random
integer being smooth, which is negligible [10].

A more efficient algorithm is based on the reverse of the this approach: instead of randomly
choosing O, we first choose a random smooth integer t and then find a quadratic order O such that
t = |O|. This method is inspired by the following formula, which relates the class numbers of two
quadratic orders O′ ⊆ O.

Lemma 6.2 ([14, Corollary 7.28]). Let D ≡ 0, 1 mod 4 be a negative integer. Let O′ ⊆ O be orders
in the number field K = Q(

√
D) such that [O : O′] = f . Then

h(O′) = h(O)f
[O∗ : O′∗]

∏
p|f

(
1−

(
D

p

)
1

p

)
. (9)

The idea is to equate the right-hand side of (9) to random smooth numbers and solve for f until
an appropriate value is found. Note that the order O′ can be written as O′ = Z+ fO. To simplify
computations, we can choose O to be the maximal order OK , in which case f is the conductor of
O′. Additionally, we can choose D such that OK has class number 1. Define

ΦD(f) = f
∏
p|f

(
1−

(
D

p

)
1

p

)
.

Given a random smooth integer t > 0, the goal is to find f such that ΦD(f) = t. This reduces
to finding a prime number f such that f −

(
D
f

)
is smooth. Again, this can be done efficiently by

choosing random smooth integers and checking whether they are of the form f −
(
D
f

)
for some

prime f . This approach is used in [17, 9].
To summarize, we aim to find a set of primes f1, f2, . . . , fr such that each fi −

(
D
fi

)
is smooth,

and then set f = f1f2 · · · fr as the desired conductor. To ensure that the DLP with respect to the
action (8) is not vulnerable to known attacks [33, 11], f must not be smooth, i.e., at least one of
the primes fi must be large.

22

References

[1] Scott Aaronson. Quantum copy-protection and quantum money. In 2009 24th Annual IEEE
Conference on Computational Complexity, pages 229–242. IEEE, 2009.

[2] Scott Aaronson and Paul Christiano. Quantum money from hidden subspaces. In Proceedings
of the forty-fourth annual ACM symposium on Theory of computing, pages 41–60, 2012.

[3] Navid Alamati, Luca De Feo, Hart Montgomery, and Sikhar Patranabis. Cryptographic group
actions and applications. In Advances in Cryptology–ASIACRYPT 2020: 26th International
Conference on the Theory and Application of Cryptology and Information Security, Daejeon,
South Korea, December 7–11, 2020, Proceedings, Part II 26, pages 411–439. Springer, 2020.

[4] Sarah Arpin, Mingjie Chen, Kristin E Lauter, Renate Scheidler, Katherine E Stange, and
Ha TN Tran. Orientations and cycles in supersingular isogeny graphs. In Research Directions
in Number Theory: Women in Numbers V, pages 25–86. Springer, 2024.

[5] Andriyan Bilyk, Javad Doliskani, and Zhiyong Gong. Cryptanalysis of three quantum money
schemes. Quantum Information Processing, 22(4):177, 2023.

[6] Jeremy Booher, Ross Bowden, Javad Doliskani, Tako Boris Fouotsa, Steven D Galbraith,
Sabrina Kunzweiler, Simon-Philipp Merz, Christophe Petit, Benjamin Smith, Katherine E
Stange, et al. Failing to hash into supersingular isogeny graphs. The Computer Journal, page
bxae038, 2024.

[7] Gilles Brassard and Moti Yung. One-way group actions. In Advances in Cryptology-
CRYPTO’90: Proceedings 10, pages 94–107. Springer, 1991.

[8] Wouter Castryck, Tanja Lange, Chloe Martindale, Lorenz Panny, and Joost Renes. CSIDH: an
efficient post-quantum commutative group action. In Advances in Cryptology–ASIACRYPT
2018: 24th International Conference on the Theory and Application of Cryptology and Infor-
mation Security, Brisbane, QLD, Australia, December 2–6, 2018, Proceedings, Part III 24,
pages 395–427. Springer, 2018.

[9] Mingjie Chen, Antonin Leroux, and Lorenz Panny. Scallop-hd: group action from 2-
dimensional isogenies. In IACR International Conference on Public-Key Cryptography, pages
190–216. Springer, 2024.

[10] Henri Cohen and Hendrik W Lenstra Jr. Heuristics on class groups of number fields. In
Number Theory Noordwijkerhout 1983: Proceedings of the Journées Arithmétiques held at
Noordwijkerhout, The Netherlands July 11–15, 1983, pages 33–62. Springer, 2006.

[11] Leonardo Colo and David Kohel. Orienting supersingular isogeny graphs. Journal of Mathe-
matical Cryptology, 14(1):414–437, 2020.

[12] Marta Conde Pena, Raul Durán Dı́az, Jean-Charles Faugère, Luis Hernández Encinas, and Lu-
dovic Perret. Non-quantum cryptanalysis of the noisy version of aaronson–christiano’s quantum
money scheme. IET Information Security, 13(4):362–366, 2019.

[13] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive, 2006.

[14] David A Cox. Primes of the Form x2+ ny2: Fermat, Class Field Theory, and Complex
Multiplication. with Solutions, volume 387. American Mathematical Soc., 2022.

23

[15] Javad Doliskani. How to sample from the limiting distribution of a continuous-time quantum
walk. IEEE Transactions on Information Theory, 69(11):7149–7159, 2023.

[16] Edward Farhi, David Gosset, Avinatan Hassidim, Andrew Lutomirski, and Peter Shor. Quan-
tum money from knots. In Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference, pages 276–289, 2012.

[17] Luca De Feo, Tako Boris Fouotsa, Péter Kutas, Antonin Leroux, Simon-Philipp Merz, Lorenz
Panny, and Benjamin Wesolowski. Scallop: scaling the csi-fish. In IACR international confer-
ence on public-key cryptography, pages 345–375. Springer, 2023.

[18] D. Husemoller. Elliptic Curves. Graduate Texts in Mathematics. Springer New York, 2013.

[19] Daniel M Kane, Shahed Sharif, and Alice Silverberg. Quantum money from quaternion alge-
bras. arXiv preprint arXiv:2109.12643, 2021.

[20] Andrey Boris Khesin, Jonathan Z Lu, and Peter W Shor. Publicly verifiable quantum money
from random lattices. arXiv preprint arXiv:2207.13135, 2022.

[21] Jiahui Liu, Hart Montgomery, and Mark Zhandry. Another round of breaking and making
quantum money: How to not build it from lattices, and more. In Annual International Con-
ference on the Theory and Applications of Cryptographic Techniques, pages 611–638. Springer,
2023.

[22] Luca De Feo. Mathematics of Isogeny Based Cryptography. arXiv:1711.04062, 2017.

[23] Andrew Lutomirski, Scott Aaronson, Edward Farhi, David Gosset, Avinatan Hassidim,
Jonathan Kelner, and Peter Shor. Breaking and making quantum money: toward a new
quantum cryptographic protocol. arXiv preprint arXiv:0912.3825, 2009.

[24] Chris Marriott and John Watrous. Quantum arthur–merlin games. computational complexity,
14(2):122–152, 2005.

[25] Arthur Herlédan Le Merdy and Benjamin Wesolowski. The supersingular endomorphism ring
problem given one endomorphism. arXiv preprint arXiv:2309.11912, 2023.

[26] Hiroshi Onuki. On oriented supersingular elliptic curves. Finite Fields and Their Applications,
69:101777, 2021.

[27] Aurel Page and Damien Robert. Introducing clapoti (s): Evaluating the isogeny class group
action in polynomial time. Cryptology ePrint Archive, 2023.

[28] Damien Robert. Some applications of higher dimensional isogenies to elliptic curves (overview
of results). 2023.

[29] Bhaskar Roberts. Security analysis of quantum lightning. In Annual International Conference
on the Theory and Applications of Cryptographic Techniques, pages 562–567. Springer, 2021.

[30] Victor Shoup. Lower bounds for discrete logarithms and related problems. In Advances in
Cryptology—EUROCRYPT’97: International Conference on the Theory and Application of
Cryptographic Techniques Konstanz, Germany, May 11–15, 1997 Proceedings 16, pages 256–
266. Springer, 1997.

[31] Joseph H Silverman. The arithmetic of elliptic curves, volume 106. Springer, 2009.

24

[32] John Watrous. Zero-knowledge against quantum attacks. In Proceedings of the thirty-eighth
annual ACM symposium on Theory of Computing, pages 296–305, 2006.

[33] Benjamin Wesolowski. Orientations and the supersingular endomorphism ring problem. In
Annual International Conference on the Theory and Applications of Cryptographic Techniques,
pages 345–371. Springer, 2022.

[34] Stephen Wiesner. Conjugate coding. ACM Sigact News, 15(1):78–88, 1983.

[35] Mark Zhandry. Quantum lightning never strikes the same state twice. or: quantum money
from cryptographic assumptions. Journal of Cryptology, 34:1–56, 2021.

[36] Mark Zhandry. To label, or not to label (in generic groups). In Annual International Cryptology
Conference, pages 66–96. Springer, 2022.

[37] Mark Zhandry. Quantum money from abelian group actions. In 15th Innovations in Theoretical
Computer Science Conference (ITCS 2024). Schloss-Dagstuhl-Leibniz Zentrum für Informatik,
2024.

25

	Introduction
	Technical Overview

	Preliminaries
	Group actions
	Generic Group Actions
	Quantum Computation

	The Quantum Money Scheme
	The New Proof of Security
	Projecting Onto Subgroup Money States
	Cloning Subgroup Money States
	Amplifying The Cloning Probability
	Fixing The Phase Using Clones
	Computing DL Modulo a Prime
	A Quantum Pohlig-Hellman Algorithm

	General Abelian Groups
	On Smoothness
	Oriented isogenies
	Class groups of smooth order

